

¹ Institute of Neutron Physics and Reactor Technology (INR)

ID: 87

³ UKAEA, CCFE, Abingdon, Oxfordshire, OX14 3DB, UK

Proposal of the Confinement Strategy for EU DEMO

Xue Zhou Jin¹, Dario Carloni¹, Robert Stieglitz¹, Sergio Ciattaglia², Jane Johnston³, Neill Taylor³

Introduction

Following the European roadmap to the realisation of fusion energy, a demonstration fusion power plant (DEMO) is currently in pre-conceptual design phase until 2020. In this context an external stakeholder group formulated a nuclear licensed manufacturing and construction (M/C) mission statement as the top level requirement for a DEMO, translating essentially to the confinement of radioactive and hazardous materials as the most fundamental safety function in normal, abnormal and accidental situations. Taking a bottom-up approach at system level, the confinement function is identified for the main systems at the PBS level 1. Consequently, a confinement strategy has been proposed.

Safety relevant sources and hazards

Energy

- In operation: enthalpy in structure and coolant, plasma thermal energy, magnetic energy, disruption mechanical energy
- Decay heat after the plasma shutdown
- Energy from exothermal chemical reactions (W/Be/PbLi air/steam), dust explosion, overpressure scenarios, spills of cryogenic or hot He into the VV and containment, etc.;
- Energy release due to postulated H₂ explosion

Radioactive sources

- Tritium in different facility regions (VV, PHTS, fuel cycles)
- Dust in the VV
- Activated corrosion products (ACPs)
- Neutron sputtering products
- Activated materials
- Radioactive isotopes from noble gases (Ne or Ar) used for plasma seeding
- \square N₂ seeding for ELM mitigation, N₂ impurity in structure, injected N₂ to avoid H₂ explosion.
- Internal hazards
 - Internal fire, explosion, flooding
 - Thermal releases
 - Plasma transients / disruption
 - Missile effects and pipe whip
 - Loss of vacuum, coolant, heat sink, cryogenics
 - Mechanical, chemical and toxic, magnetic and electromagnetic risks External hazards
 - Natural environment (earthquakes, extreme climatic conditions, flooding, fire) Human activities (air crash, station blackout, etc.)

Confinement systems

First confinement system

- First barrier
 - VV and its extensions (incl. NB cell.
 - VVPSS in case of accident) Blanket-, divertor- and VV-PHTS

Second barrier

- VVPSS & connections to the VV
- Drain tank
- PHTS-HX
- Glove boxes
- CPS. TER
- Emergency cooling system
- Isolation valve
- Second confinement system

Third barrier

- Active systems: HVAC system, N-
- VDS, TEP system, S-VDS, EDS Common discharge point, EV
- Tokamak and tritium building

Barriers in maintenance

First confinement system

- Emergency cooling system
- cell (advanced concept)

- HVAC system, ADS, VDS, EDS
- Common discharge point
- Tokamak building
- Crossing structure to the AMF

Conclusion

- Based on the DEMO main systems identified with the confinement function, a confinement strategy has been proposed: two
 - confinement systems and three associated barriers during normal operation, and two barriers in maintenance.
- The main safety systems and devices have been proposed.
- Not all source terms are covered by both active and passive barriers. More passive safety systems are required.
- Identify the confinement function for the sub-systems & components accompanying the development of PBS levels in future.
- Open issues: source inventories, provision of the He EV, discharge of the huge amount of magnet energy in accident scenarios, leak conditions, wall & composite liner options for the tokamak building taking into account cost implications, additional passive / active methods , maintain confinement for different plant states (cold and hot standby, maintenance).

Objectives of DEMO confinement

- to protect every inventory of radioactive, toxic or hazardous material: to prevent mobilisation into rooms where personnel could be exposed,
 - to prevent release to the environment that could lead to public exposure.
- to meet DEMO general safety objectives in compliance with the environment in operational / accidental situation,
- to reduce potential impacts to the extent reasonably practicable.

DEMO main systems at the PBS level 1

Active system	Passive system	
Magnet system (-) Tritium, fuelling, vacuum (TFV) (+/-) Tritium extraction removal (TER) EC system (+) NBI system (+) IC system (+) Plasma diagnostic & control system (+/-) Blanket-PHTS (+) V/-PHTS incl. emergency cooling system (+) DIV-PHTS (+)	VVPSS (+) RM system (+) BOP (-) Cryoplant & cryodistribution (-) Electrical power supply systems (-) Plant Control System (-) Auxiliaries system (-) Radwaste treatment (+)	VV (+) Divertor (-) BB system (-) (HCPB, HCLL, DCLL, WCLL) Limiter (-) Cryostat (-) Thermal shields (-) Buildings (tokamak & tritium buildings) (+) Radwaste storage (+)

(+) with confinement function, (-) no confinement function.

Assignment of sources to confinement barriers

	Source		Barrier	
I) t			active	passive
	Energy Dec Spil Hot H2 c	Decay heat	Emergency cooling system	PCCS (WCLL)
		Chemical reaction energy	Emergency cooling system	PCCS (WCLL)
		Dust explosion	N2 dilution, O2 limitation	vv
		Overpressure scenarios	VVPSS, drain tank	VV, EV, rupture disc
		Spills of cryogenic / hot He into the VV	-	VV, EV, rupture disc
		H ₂ explosion	N2 injection	VV, PAR
	Radioactive source terms Dust / ACPs Activated materials	S-VDS, EDS, isolation valve	VV, emergency storage system	
		Dust / ACPs	Isolation valve	VV
		Activated materials	-	VV

26th IAEA Fusion Energy Conference 17–22 October 2016, Kyoto, Japan

- First barrier VVPSS drain tank

 - Cryostat (if vacuum is unaffected
 - CCD, transport cask (ITER) or how
- Second confinement system
- Second barrier

- AMF