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Abstract 

Cities play an important role in the global debate on climate protection, resource 

efficiency and the economy. In order to pursue a more sustainable development path 

urban energy planning is identified as an important task. This thesis develops the 

argument for scale sensitive local energy planning in order to combine energy demand 

simulation and the development of continuous benchmarks. The current state of urban 

energy simulation is described and a structure is proposed for classifying existing energy 

system models suitable for describing energy needs for urban neighbourhoods. Typical 

local energy planning tasks are described and linked to assessment methods and 

simulation models. 

Based on this discussion a non-linear data driven modelling approach is selected to 

represent daily and hourly space heating needs for existing and new built urban areas. 

The model is applied to the scale of buildings, building clusters and neighbourhoods in 

order to test the application’s robustness and its scalability. The single variant model, 

initially designed for a large application scale, is for the first time successfully applied at 

the scale of building clusters and urban neighbourhoods.  

Comparison with measured energy needs from six case studies containing residential 

and non-residential users showed the applicability of the data-driven approach to the 

scale of neighbourhoods or building clusters. Based on selected statistic tests, 

aggregation effects of heating energy needs are discussed that occur at the scale of 

building clusters and equalize individual user’s specific thermal load profiles. To improve 

the simulation results a new set of parameters is proposed for the application in periods 

of very low temperatures for which the model in its current state shows distinct 

weaknesses. In addition, a modified simulation approach is developed adapted to the 

intermediate scale of neighbourhoods.  

In the application, the model allows for an easy application yet delivers robust 

simulation results for daily and hourly heating needs in early stages of urban 

development projects. It is judged suitable to follow up performance in the form of 

continuous benchmarks with high temporal resolution.  

  



 

 

  



 

 

Zusammenfassung 

In der aktuellen Debatte über Maßnahmen zum Klimaschutz, Ressourceneffizienz und 

der wirtschaftlichen Entwicklung spielen Städte eine wichtige Rolle. Städtische 

Energieplanung ist ein wichtiges Instrument zur Verfolgung nachhaltiger 

Entwicklungsziele. Um die lokale Energieplanung zu unterstützen schlägt diese Arbeit 

einen Ansatz vor, der Energiesimulation und fortlaufend gebildete Kennwerte verbindet. 

Hierzu wird zunächst der Stand der Entwicklung städtischer Energieplanungs-

Werkzeuge diskutiert und Kategorien werden vorgeschlagen, um existierende 

Energiesystemmodelle zu klassifizieren. Zusätzlich werden typische Planungsaufgaben 

beschrieben und den Planungswerkzeugen bzw. den zugrundeliegenden Modellen 

zugeordnet. 

Auf dieser Grundlage wurde ein nicht-linearer datenbasierter Modellansatz gewählt, um 

tägliche und stündliche Heizenergiebedarfe für bestehende und neue Stadtquartiere zu 

simulieren. Das Modell wurde auf den Maßstabsebenen von Gebäuden, 

Gebäudegruppen und Quartieren angewandt, um die Aussagekraft und die 

Skalierbarkeit des Ansatzes zu testen. Das ursprünglich für den Maßstab von Regelzonen 

entwickelte Energiesignaturmodell wurde zum ersten Mal erfolgreich auf den Maßstab 

von Quartieren und Gebäuden angewandt. 

Der Vergleich mit Messdaten aus sechs Fallstudien, die Wohn- und verschiedene 

Nichtwohngebäude beinhalten, bestätigt die Anwendbarkeit des datenbasierten 

Modells für den Maßstab von Stadtquartieren und Gebäudegruppen. Basierend auf den 

Fallstudien wird eine Methode zur Anwendung für bestehende und neue Stadtquartiere 

vorgeschlagen. Zur Verbesserung der Vorhersagegenauigkeit bei der Anwendung für 

tiefe Temperaturen wurde weiterhin ein neuer Satz Modellparameter vorgeschlagen, 

der die Simulationsergebnisse für Temperaturen unter -5 °C verbessern konnte. 

Das gewählte Modell erlaubt eine unkomplizierte Anwendung und liefert verlässliche 

Ergebnisse für den täglichen und stündlichen Heizenergiebedarf. Das Modell kann als 

geeignet angesehen werden, fortlaufende Kennwerte mit hoher zeitlicher Auflösung 

zum Vergleich mit Messdaten zu erstellen, die eine bessere Kontrolle in der 

Betriebsphase von Stadtquartieren erlauben. 
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1 Introduction 

Cities have reached a high level of importance in the global debate on climate 

protection, resource efficiency and the economy (European Union 2007, IPCC 2007, 

UNEP 2011). As centres of activities they are often identified as the places and drivers 

for change (IEA 2009). In order to live up to the role they have been assigned in the 

current discourse, cities need new planning processes, policies and tools. Urban 

emission inventories (Webster, Baier et al. 2013), as part of local climate protection 

strategies, link the environmental impact of the city’s technical infrastructure and 

systems to the larger political context. Planning of the spatial and technical system 

can provide a leverage for decision makers to improve the performance of the urban 

infrastructure (Dotzauer 2002, Woods, Riley et al. 2005, Nielsen and Madsen 2006). 

The objectives of such interventions are the reduction of greenhouse gas emissions 

inscribed in strategies to promote resource efficiency and the integration of 

renewable energy sources into the energy system (pro:21 GmbH and Projektträger 

Jülich 2013). Both strategies are usually linked to facilitate economic growth (Wang, 

Peng et al. 2010, UNEP 2011). 

In addition to energy networks and the connected conversion systems on the 

demand side, multiple opportunities for urban areas emerge at the scale of buildings, 

building clusters and neighbourhoods (Erhorn-Kluttig, Jank et al. 2011, Strzalka, 

Bogdahn et al. 2011, Bahu, Koch et al. 2013). Such measures tackle parts of, or the 

whole, building stock in order to improve the energy performance of buildings at 

different scales. In order to understand the above mentioned developments, energy 

system simulation is often applied for diagnosis as well as predicting and assessing 

the performance of different systems and for the development and evaluation of 

alternative solutions (Coakley, Raftery et al. 2014). However, as the issues and 

planning tasks are diverse there is no silver bullet among the available solutions to 

support local energy planning (LEP). 

Based on the discussion of urban energy planning, this thesis will assess and classify 

current model-supported approaches to local energy planning. The work will 

investigate the scale of urban neighbourhoods, an important but usually ill-defined, 

target scale for urban development projects. It will provide a review and analysis of 
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different models to simulate the heating energy needs for buildings on this 

intermediate urban scale. Based on the work in the IEA EBC Annex51 (Koch and 

Kersting 2011) a focus was put on the identified need to combine simulation and data 

collection in the early planning stages and monitoring and concomitant simulation 

after construction when urban projects often lack the resources to continuously 

support complex simulation or optimisation models. In this way a continuous 

benchmarking of energy use in neighbourhoods throughout the planning, 

implementation and operation phase is proposed (Figure 1).  

 

Figure 1: Modelling and monitoring steps aligned with project phases (Koch and Kersting 2011) 

As a result of the analysis, this thesis will specify a model suitable for modelling 

building energy performance for urban development planning tasks at the 

neighbourhood scale (micro), for modelling technical infrastructure, such as district 

heating networks (meso) and supporting local GHG inventories by building stock 

modelling for cities (macro). It will propose a robust energy model for early design 

stages, which can also be used for continuous commissioning by providing a means 

of accurately predicting realistic benchmarks for space heating needs. The basic 

model described in Chapter 3.2.3 was initially developed for gas load predictions at 

the macro scale of gas distribution networks (Regelzone). The application of the data 

driven model for neighbourhood scale simulation is for the first time successfully 

tested. A set of statistic tests will be described to validate the simulation results 

against measured data from a number of measurement campaigns representing 
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building clusters from single apartments to the scale of a neighbourhood. Different 

temporal, as well as spatial scales, for data aggregation will be tested to deliver a 

solution that addresses the specific scale of urban neighbourhoods.  

The combination of simulation and data base solution was prototyped in the form of 

an OnLine Analytical Processing solution (OLAP) for one case study. While the 

underlying concept was developed in the course of this thesis, the IT-solution was 

developed by Jose Juan Hernandez, José Evora and Octavio Roncal of the University 

of Las Palmas (SIANI) in a cooperative programme with the European Institute for 

Energy Research (EIFER). 

1.1 Why cities act – the environmental challenge  

The environmental impact of human activity poses one of the great challenges of our 

time. With rapidly increasing rates of urbanisation, today more than half the world’s 

population lives in cities (OECD 2010). In Germany, an industrialised country, this 

figure reached nearly 74% in 2011 (United Nations 2012). Globally this trend is 

expected to continue and will become a major challenge to new and existing urban 

areas (Figure 2). As a focal point for human activity, cities are attributed with creating 

60-80 % of all CO2 emissions (OECD 2010). It follows that cities and communities have 

to take on an active role in the efforts to reduce greenhouse gas emissions (GHG). 

More importantly, developing countries identify urbanisation as a means for 

providing better services to citizens and thus increasing the quality of life and also 

increasing intrinsic economic growth by stimulating private consumption (Wang, 

Peng et al. 2010). As pointed out in the World Urbanisation Prospects (United Nations 

2015) “owing in part to their higher incomes, urban dwellers tend to consume more 

per capita than rural dwellers”. The predicted growth of the world’s cities along with 

an increased consumption of goods and energy (Wang, Peng et al. 2010) leads to the 

conclusion that such growth can only be sustained through a fundamental change of 

our economy. Suitable measures in moving towards a green economy were outlined 

in the United Nation Environment Programme’s Green Economy Report (UNEP 2011), 

the importance of cities and buildings were discussed in more detail by Rode, Burdett 

et al. (2011). 
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Figure 2: World Urbanisation Prospects, own illustration based on (United Nations 2015), 

http://esa.un.org accessed 3.8.2015 

It follows that, “[a]s the world continues to urbanize, sustainable development 

challenges will be increasingly concentrated in cities” (United Nations 2014). The 

specific role of communities in the implementation of climate protection measures 

can be traced back to the Brundtland Report from the World Commission for the 

Environment (Brundtland, Khalid et al. 1987) and the Agenda 21 process, initiated at 

the Rio climate summit in 1992. The European Commission also acknowledges the 

role of communities in the 2007 Green Book (European Commission 2007). Kern and 

Alber (2009) point out, “local governments have become major players in the area of 

climate change policy over the past 20 years”. The argument, which is further 

supported by Betsill and Bulkeley (2006), highlights three key issues: access to local 

information, the potential to react to local needs, and control of local policy 

instruments. The role of cities is summarized by Toly (2008) as follows: 

“Like other governmental, but non-state actors, cities have jurisdiction, 

govern with a flexibility not enjoyed by nation-states, and typically do not 

face conflicts with strategic interests. Unlike non-governmental actors, cities 

have large populations and much more direct influence on emissions.” (Toly 

2008) 

The main fields of action in climate change policies for local governments are: energy 

supply, transport planning, urban planning and development, waste and waste water 

management and public procurement (Kern, Niederhafner et al. 2005). In connection 

with energy supply, local forestry and agriculture can play a key role if bioenergy 
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solutions are part of local strategies to reduce the non-renewable part of the primary 

energy use. These sectors are also addressed by the Covenant of Mayors, founded in 

2008 as a network of communities committed to reaching European Energy and 

Climate protection targets. In return, the communities are provided with political and 

financial support by various EU authorities through specific programmes. In 2015 the 

Covenant counted more than 6,400 signatories (Covenant of Mayors 2013, 

http://www.covenantofmayors.eu/ seen 11.8.2015). Upon joining the Covenant, 

each community agrees to issue a Sustainable Energy Action Plan (SEAP). Starting 

from a baseline emission inventory, the SEAP describes the most suitable measures 

for a given community to reach CO2 emission reduction targets by 2020. “It defines 

concrete reduction measures, together with time frames and assigned 

responsibilities, which translate the long-term strategy into action.” (Bertoldi, 

Cayuela et al. 2010).  

Building a Greenhouse Gas (GHG) emission inventory, as described for example in the 

SEAPs, is the initial step for a community or city in order to determine the primary 

action items and measures to successfully reducing the city’s environmental impact. 

Jank, Church et al. (2013) propose a five step approach for managing the local energy 

transition process (Figure 3). As a first step, an energy and emission Inventory is 

created for the whole city or metropolitan area. The inventory also serves to track 

future emissions. Second, a stakeholder analysis is proposed to identify a common 

vision and to establish joint long-term quantitative targets. Based on this inventory, 

different scenarios are developed in a third step. This typically includes a business as 

usual (BAU) scenario against which all other possible future developments can be 

assessed.  

 

Figure 3: Overview of local energy planning transition process, adapted from (Jank, Church et 

al. 2013) 

5 Steps in the Local 
Energy Transition 
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A municipal energy master plan is developed from the information gathered in the 

first steps (4.), which is in line with the established vision and scenarios and is based 

on the inventory. The municipal energy master plan addresses the different fields of 

action and includes the different targets as well as key indicators. In addition, 

neighbourhood energy plans are developed providing detailed technical information 

on demand characteristics, available supply solutions and cost structures. 

Information should be exchanged between the two planning scales in an iterative 

process. In a last step, the defined measures are implemented and monitored over 

time. Depending on the evaluation of the measures’ adjustments might be needed 

or revision of one of the earlier steps. Finally, it is important to note that all five steps 

are “interconnected parts of a whole comprehensive process with iterations and 

feedback loops” (Jank, Church et al. 2013). As explained local energy transition 

processes are driven mostly by national and international environmental policy and 

translate the high-level objectives into local targets. This is typically supported by 

energy system models that allow the quantification of individual measures. Figure 4 

illustrates this iterative process and some exemplary tasks. As depicted, different 

layers in the process from strategic planning to implementation can be identified. 

Chapter 2 will introduce the different scales at which local energy planning takes 

place, based on the aforementioned municipal and neighbourhood plans. Planning, 

and parts of the other process steps, rely heavily on different representations (i.e. 

models) of resource flows in urban systems. Local energy planning and its links to 

citywide strategic planning will be discussed in the next chapter. 

 

Figure 4: Supporting Urban Planning through Multi-Scale Energy System Models 
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Supporting urban energy planning in order to arrive at well-adapted solutions, a 

number of applied methods are provided by the scientific community as well as by 

practitioners. Many of them represent partial urban energy system models that can 

be used to simulate the performance of the system or apply an optimisation to search 

for optimal solutions within a given solution space (Mendes, Ioakimidis et al. 2011). 

A number of these tools or models are described in chapter 3. The section discusses 

different approaches within a more general methodological framework and classifies 

the different tools and methods. 

Integrating energy planning into the urban planning process will become more 

common with the emergence of more refined planning tools. However, energy 

concepts are becoming ever more complex as they involve different actors from 

different disciplines and often combine a number of technical solutions. A clear need 

for suitable benchmarks and a continuous performance monitoring can be identified 

(Erhorn, Erhorn-Kluttig et al. 2012) in order to deliver the energy or carbon emission 

savings predicted in the planning process. Yet, even among widely discussed 

demonstration projects of the past years, a distinct lack of a continuous monitoring 

exists as Zinko and Moshfegh (2012) point out. This research gap was part of the main 

conclusions from the first phase of the IEA ECBCS Annex 51 (Koch and Kersting 2011). 

Related to the data analysis and discussion of the different modelling approaches, 

the question of neighbourhood scale monitoring will be discussed based on the 

outcome of the case study results.  

The research objectives can be summarised as follows: 

1. Provide structured descriptions of tasks and related energy simulation models 

for local energy planning. 

2. Develop a suitable approach for the assessment of heating energy needs for 

early planning stages for the specific scale of urban neighbourhoods.  

3. Support continuous commissioning in the operation phase by providing a 

suitable heating energy needs model to deliver daily and hourly benchmarks. 
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2 Local energy planning (LEP) - from strategic planning to 
local action 

Model-based integrated local energy planning (LEP) has been discussed since the 

early nineties (Barton 2005). Since then a number of successful projects have been 

implemented and a multitude of technical support tools have been developed 

(German Association of Cities 2013). This chapter will identify the most relevant 

objectives of local energy planning and define typical applications for model based 

planning support. LEP tools, methods, and their databases can be seen as ways to 

structure and integrate expert and stakeholder knowledge in the planning process. 

Planning of interrelated measures encompassing the whole urban or metropolitan 

area is often referred to comprehensive or integrated planning (UN-HABITAT 2009). 

The development of such overall plans captured in the city model (Figure 5) is 

especially necessary as “decisions are (1) interdependent, (2) indivisible, (3) 

irreversible, and (4) face imperfect foresight” (Hopkins 2001). The planning scheme 

shown in Figure 5 describes the workflow for continuous local energy modelling and 

corresponds to the planning steps outlined in Figure 3. The process is designed to 

support choices between concurrent decisions.  

 

Figure 5: Model supported planning steps in local energy planning; adapted from (Jank 2012) 

As a first step, the GHG inventory is established for the community to provide 

strategic orientations. There are a number of methods and tools to develop GHG 

emission inventory on the city scale such as EnergyBalance in Denmark and Bilan 
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Carbone in France. In the German city of Freiburg a solution referred to as “Scenario 

Model” was developed by the Öko-Institut (Timpe, Seebach et al. 2007). The tool was 

developed further by the Institut für Energie- und Umweltforschung Heidelberg 

GmbH (ifeu) to monitor CO2-emissions in other municipalities. Today, ifeu uses this 

tool in about ten German cities. A recent overview of existing Greenhouse Gas (GHG) 

inventories is provided by (Bertoldi, Cayuela et al. 2010). Recently, the methodology 

for accounting GHG emissions in cities has been addressed more specifically (Bader 

and Bleischwitz 2009, Kennedy, Steinberger et al. 2010). One of the main problems 

identified was that “inventories compiled with different tools are hardly comparable” 

(Bader and Bleischwitz 2009) which can be explained through different scopes, 

methodologies or even underlying indicators. This greatly limits the comparison of 

the different cities’ efforts. Once strategic (political) targets are defined, the sectors 

represented in the GHG inventory can be further divided by individual sources of 

emissions, according to their contribution to the overall balance. In the context of the 

SEAPs the European Commission (2010) points out that “Buildings are responsible for 

40 % of total EU energy consumption and are often the largest energy consumer and 

CO2 emitter in urban areas.” The resulting actions (policies or planning documents) 

of the individual sectors are then organised in a comprehensive or city-wide energy 

master plan. Master plans “depict on a map the state and form of an urban area at a 

future point in time when the plan is ‘realized’” (UN-HABITAT 2009). This provides a 

complete view of the sum of all measures related to strategic targets and allows the 

assessment of individual measures’ impacts on the whole system. Typically, the 

relevant sectors include residential users, services, industry and transport. In many 

cases, public buildings are regarded separately as they provide an opportunity for 

highlighting projects to which the municipality has direct access. Ideally, the 

municipal energy master plan is established as central document and is then further 

divided into sectorial planning policies, which describe concrete measures at a 

smaller scale or with a narrower scope, such as residential building stock strategies 

or neighbourhood development plans. Thus, the results of individual measures 

targeting single sectors can be evaluated in a common master plan. This approach 

further allows the identification of synergies or opposing objectives at city level. 

Section 2.1 describes energy related objectives at the city scale, corresponding to the 
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urban development plan. Here objectives are understood as the translation of urban 

needs and problems into strategic planning. Based on the objectives, concrete targets 

and measureable results can be set which will be described in section 2.2. 

2.1 Objectives in urban development projects 

The following discussion of objectives for urban development projects is based on 

the analysis of international case studies in the context of IEA Annex 51 as well as a 

review of recent guidelines on the topic (Egger 2011, Rösler 2011, Malottki, Koch et 

al. 2013, Müller and Koch 2014). In the framework of Annex 51 Subtask A, the analysis 

was structured and conducted by the author. The international case studies were 

described by the national participants. The submitted case studies targeted 

completed or nearly completed development projects at the scale of urban 

neighbourhoods; full case study descriptions and assessments can be found in Koch 

and Kersting (2011). For this thesis, part of the material was reassessed to describe 

local energy planning tasks, which relate to the different environmental objectives 

and the defined targets in the projects. In most of the cases, it is important to note 

that the main objectives were not necessarily connected to the environmental 

impacts of the development (Table 1). A main driver for new developments was 

urban growth and the need for new housing development (Table 1, rows 1, 2, 5, 8, 

11, 14). An often-cited objective for existing neighbourhoods is improved quality of 

urban space or residential areas, sometimes expressed in a desire to develop a more 

sustainable neighbourhood (Table 1, rows 3, 4, 15, 16). While the selection of case 

studies is not representative it indicates that even in urban development projects 

identified as national demonstration cases, the objectives relate to societal questions 

and in second instance connect to environmental targets. It follows that in order to 

judge the success of urban development projects energy performance ratings alone 

are clearly insufficient. The energy assessment should always be seen in the context 

of additional objectives of the projects.  
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Table 1: Assessment of the main objectives in urban demonstration projects based on the case 

studies provided by national participants in Annex 51; based on (Koch and Kersting 2011) 

  Project Major Objective Environmental & Energy 
Objectives 

Monitoring 

1 solarCity Pichling 
(AU) 

Housing development, 
sustainability 

Low-energy standard, promote 
walking, participation of tenants 

Municipality 

2 Obertrum (AU) Housing development, low cost, 
promote energy optimisation 

Low-energy standard, district 
heating system 

DH operator 

3 Dockside Green (CA) Sustainability showcase GHG neutral, closed loop system, 
water, transportation, waste 

Developer 
and city audit 

4 Regent Park (CA) Revitalisation High standards of energy 
efficiency mixed community 

Independent 
consultant 

5 Stuttgart-
Burgholzhof (DE) 

Housing development, solar 
showcase 

Low energy level, solar energy Energy bills, 
heat meters 

6 Samsø Island (DK) Use of renewable resources 100% renewable (self-sufficiency) 
with exist. Technologies 

Collection of 
energy data 

7 Stenløse Syd (DK) Housing development, high 
energy performance 

Danish low-energy standard, use 
of solar energy 

- 

8 ZAC de Bonne (FR) Rehabilitation & high energy 
efficiency 

Increased energy performance, 
use of solar energy, recycled 
materials 

- 

9 Grand Lyon (FR) Quality of life, environmental 
protection, economic dev. 

-20% CO2, - 20% energy use, 
+20% renewable energy supply 
(2020), - 75% CO2 (2050) 

- 

10 Andromède 
Toulouse (FR) 

Housing development, 
sustainability 

- 10 % (regulation) - 

11 Nagoya-city (JP) Energy saving 7% energy-saving efficiency 
(compared to BAU) 

DH Operator 

12 Shin-Yokohama (JP) Replace energy systems of public 
buildings 

-18% energy use, -30% CO2 
emissions, -31% costs (compared 
to BAU) 

- 

13 Stad van de Zon (NL) Housing development, CO2 

neutral showcase CO2 
CO2 neutral area, sustainable 
energy 

- 

14 Västra Hamnen (SE) Revitalisation, sustainability 
showcase 

100% renewable energy supply, 
district heating 

University, 
DH operator 

15 Hammarby Sjöstad 
(SE) 

Revitalisation, sustainability 
showcase 

Reduced emission from energy 
and waste, local renewables 

- 

 

However, related to the major objective, "[u]rban planning can help mainstream 

climate change considerations into urban development processes" (UN-HABITAT 

2009). The following main needs for planning sustainable cities are identified by UN-

HABITAT (2009): 

1. developing renewable energy; 

2. striving for carbon-neutral cities; 

3. developing distributed power and water systems; 

4. increasing photosynthetic spaces as part of green infrastructure; 

5. improving eco-efficiency; 

6. increasing a sense of place; 

7. developing sustainable transport; and 
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8. developing ‘cities without slums’ 

Here the focus is put on the objectives related to LEP, which are the increased use of 

renewable energy (1.), moving towards carbon neutral cities (2.), distributed power 

systems (3.) and eco-efficiency (5.). This is consistent with the environmental 

objectives for the urban development projects discussed above that relate to 

citywide GHG emission reduction or specific energy efficiency targets (Table 1). The 

three main strategies to reduce GHG emissions in cities can be summarised as: 

1. Increased energy efficiency related to energy performance of buildings and 

building clusters 

2. Efficient local energy supply systems including district scale distribution and 

distributed combined heat and power (CHP) systems 

3. Increased share of energy from renewable sources including waste heat from 

nearby processes 

These strategies correspond to sustainable development goals by addressing 

efficiency and consistency strategies. As Malottki, Koch et al. (2013) point out 

sufficiency as a third strategy is rarely addressed in urban development projects. The 

three above mentioned fields of action and their combination form the key strategies 

to reach environmental targets in urban development.  

 

Figure 6: GHG balance and influencing factors for the building sector adapted from (Malottki, 

Koch et al. 2013) 

They are ideally integrated as subsequent steps in a local climate protection strategy, 

putting efficiency first and satisfying the remaining energy needs with energy from 

renewable sources (Figure 6). 
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2.2 Targets and planning tasks in local energy planning 

Linked to the identified strategies, specific tasks in urban energy planning can be 

identified that define targets linked to the three strategies to reduce GHG emissions: 

energy efficient buildings, supply technologies and renewable resources.  

Table 2: Summary of the technical measures proposed in national demonstration projects  

  Project Energy Efficient 
Buildings 

Supply Technologies Renewable 
Resources 

1 solarCity Pichling (AT) - District Heating Solar Thermal, PV 

2 Obertrum (AT) Low Energy Buildings District Heating Biomass 

3 Dockside Green (CA) Low Energy Buildings, 
LEED 

District Heating Biomass 

4 Regent Park (CA) Low Energy Buildings District Heating, 
Cogeneration 

- 

5 Samsø Island (DK) Low Energy Buildings District Heating Wind, Biomass, Solar 
Thermal 

6 Stenløse Syd (DK) Low Energy Buildings District Heating Biomass, Solar 
Thermal 

7 Stuttgart-Burgholzhof (DE) Low Energy Buildings District Heating Solar Thermal 

8 ZAC de Bonne (FR) Low Energy Buildings MicroCHP PV 

9 Nagoya-city (JP) - District Heating - 

10 Shin-Yokohama (JP) - District Heating & 
Cooling, Waste Heat 

- 

11 Stad van de Zon (NL) Low Energy Buildings - PV, Wind 

12 Västra Hamnen (SE) - District Heating PV, Wind, Sea Water 
Heat Pump 

 

While these targets are typically pursued in combination, individual projects will 

result in distinct choices of technologies, which are strongly influenced by national 

boundary conditions. Table 2 provides examples of targets and technology choices 

described in the international demonstration projects (Koch and Kersting 2011). In 

the following sections, the three fields of actions will be described. However, it should 

be kept in mind, that in most of the planning tasks listed, municipal planning has little 

direct power to impose measures that go beyond current regulation (Erhorn-Kluttig, 

Jank et al. 2011). Opportunities for energy efficient buildings and the use of 

renewable energies can be created based on zoning and suitable land-use plans 
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(Bebauungspläne). Further targets can be integrated in informal planning 

instruments such as private contracts between the municipality and the developer 

(städtebaulicher Vertrag) (Bayrische Baubehörde 2010). This clearly points out a 

limitation of strategic action in the existing building stock. Not surprisingly, many of 

the case studies discussed here are urban revitalisation projects targeting brownfield 

sites (e.g. case study “Bad Aibling”) or refer to housing estates owned by a private or 

municipal housing agency (e.g. case study “Rintheimer Feld”). This issue is discussed 

in more detail by Libbe, Köhler et al. (2010). 

Recent projects show, that in order to develop comprehensive local energy actions a 

larger scope is required targeting the whole system and enlarging the action to the 

neighbourhood scale. The neighbourhood scale seems preferable to the 

administrative boundaries (i.e. district). While the district describes an administrative 

boundary, a neighbourhood suggests a degree of homogeneity as it is often used to 

describe groups of relatively similar buildings emerging from previous urban 

development projects. Renovation measures of larger settlements provide 

opportunities to increase the overall efficiency of the buildings and the technical 

infrastructure (Jank, Church et al. 2013). In addition, the concept of neighbourhood 

is also used in the social sciences to describe an urban area. In this sense, a group of 

citizens can form a neighbourhood as a focus of social connections (Schnur and 

Gebhardt 2008). This latter aspect can help to facilitate participatory processes. 

Galster (2001) integrates both points of view and describes the neighbourhood as a 

bundle of spatially referenced attributes. These include the structural characteristics 

of buildings and infrastructure as well as the demographic characteristics of the area 

(Galster 2001). The twofold character of neighbourhoods as a social and spatial 

delimitation offers opportunities to target not only technical systems connected to 

buildings or urban infrastructure within the perimeter of a neighbourhood due to a 

homogeneous building structure. In addition, it holds the potential to identify local 

initiatives or tackle issues relevant to a larger part of the population of a 

neighbourhood due to similar interests, shared values or comparable living 

situations. The former characteristic is mostly stressed in technical assessments while 

the latter point of view is usually found in sustainability assessments as well as in 
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social science based approaches to local energy transformation processes (Heyder, 

Huber et al. 2012). International sustainability labels such as LEED Neighbourhood, 

BREAM Community, CASBEE Urban Development and DGNB Stadtquartiere have 

consequently targeted the urban neighbourhood as assessment scale in recent years 

(Koch and Neumann 2011). 

The following sub-chapters will discuss specific planning tasks relevant to the 

neighbourhood scale. The planning tasks and the needs for the technical assessments 

are summarised at the end of each chapter. Based on the discussion of energy system 

models in chapter 3, the developed structure will be used to propose suitable 

modelling approaches for each task (section 3.2.3). 

2.2.1 Energy performance of building clusters 

Within many cities, energy use in buildings is one of the biggest single uses of energy. 

In 2011, space heating accounted for 26% of the total use of final energy in Germany 

(Arbeitsgemeinschaft Energiebilanzen 2013). In the residential sector, space heating 

(66%) and domestic hot water provision (16%) were the two largest uses for final 

energy. In the tertiary sector, they accounted for 44% and 5% of the total final energy 

use (Arbeitsgemeinschaft Energiebilanzen 2013) (Figure 7). Consequently the energy 

performance of buildings plays a key role in defining local climate protection concepts 

(Umweltamt Düsseldorf 2005, Heidelberg 2006).  

 

 

Figure 7: Structure of the German final energy balance by use for the residential and tertiary 

sector, own illustration based on (Arbeitsgemeinschaft Energiebilanzen 2013) 
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ambitious targets are only pursued on a voluntary basis. Energy efficiency targets are 

most commonly translated into performance classes for individual building usually 

corresponding to the national legislation such as the Energy Saving Ordinance (EnEV) 

in Germany. In current practice, the implementation is often left to the market or 

individual investment decisions, which is usually not sufficient to reach the 

community’s climate protection targets (Erhorn-Kluttig, Jank et al. 2011).  

Table 3: Energy Performance of Buildings - Planning Tasks and Technical Assessment 

Energy Performance of Building 

Action Planning Task Technical Assessment 

Refurbishment Refurbishment of the existing building 

stock by improving the performance of 

the building envelope 

Annual indicators for specific heating 

needs, monthly energy balance for legal 

compliance, detailed simulation for 

complex technical solutions, measurements 

to assess energy savings 

New Construction High performance buildings in new 

districts, influence on density, 

compactness and orientation 

See above 

Re-densification Increase of the urban density by 

combined refurbishment and insertion of 

new buildings or building parts 

See above 

 

The related actions are summarised in Table 3. In refurbishment projects, the building 

related measures are applied to the existing urban form. In contrast, new 

developments or re-densification projects (i.e. adding new construction to existing 

neighbourhoods) have the potential to increase the density and in the case of new 

buildings influence the compactness and orientation of the project. The technical 

assessment ranges from annual indicators to monthly energy balances, which are 

calculated for legal compliance. Projects, which involve advanced measures in 

renovation or new construction, are typically assessed based on detailed dynamic 

simulations. 
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2.2.2 Efficient local generation and distribution systems 

In addition to the building envelope, efficient supply technologies form an important 

part of the overall system efficiency. Urban neighbourhoods are an important scale 

to enlarge the outreach of energy efficient supply solutions (Erhorn-Kluttig, Jank et 

al. 2011, Rapp, Vautz et al. 2012, pro:21 GmbH and Projektträger Jülich 2013) and to 

compare individual heating solutions with district heating systems. This is also 

reflected in the Energy Performance of Buildings Directive (European Commission 

2010) where common supply systems such as district heating and cooling are 

considered. The directive states that the “analysis of alternative systems may be 

carried out for individual buildings or for groups of similar buildings or for common 

typologies of buildings in the same area” (European Commission 2010). Such 

measures often benefit from economies of scale as discussed in (Boutaud, Koch et al. 

2011) for the case of Quartier Franklin in Mulhouse. They can also help to avoid 

redundancies in energy infrastructure (e.g. parallel gas and district heating networks). 

In local energy planning, urban demonstration projects in the European CONCERTO 

initiative (Pol 2011) or in the German Eneff:Stadt research program (Erhorn-Kluttig, 

Jank et al. 2011) show a wide range of examples. The IEA EBC Annex 51 project 

identified international case studies including a number of projects from the 

aforementioned programs. Demonstration projects often were based on district 

heating schemes (Table 2) connected to a central biomass plant, local waste heat 

sources or cogeneration. The latter two can be seen as key strategies in the urban 

context as biomass supply often poses logistic problems and induces additional 

transport related emissions in dense urban areas. Table 4 describes the requirement 

of the demand assessment for different non-renewable supply solutions. When 

comparing cogeneration systems with pure heating solutions, first layout planning is 

typically done based on an hourly description of the load profile often in the form of 

an annual load duration curve to allow the assessment of CHP running hours. The use 

of waste heat also requires a more detailed demand assessment in order to judge the 

match of supply and demand in a given area. 
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Table 4: Efficient Supply Technologies - Planning Tasks and Technical Assessment 

Efficient Supply Technologies 

Action Planning Task Technical Assessment 

Fossil fuels Exchange of existing heating systems with 

new and more efficient technologies, 

often reduced temperatures in the 

internal distribution system 

Calculation of the heating loads, annual or 

monthly energy balance based on simulation 

of measurements to determine savings in the 

use of non-renewable primary energy and 

associated GHG emissions 

Cogeneration 

(CHP) 

Combined Heat and Power systems for 

individual buildings or building clusters 

connected by a distribution systems, 

mostly driven by heat demand, often self-

consumption or direct marketing of 

produced electricity are investigated 

Annual duration curve to estimate operating 

hours, hourly heat and electricity demand 

based on measurement, simulation or 

standard load profiles 

Waste Heat When available in close proximity waste 

heat is often considered as heat source 

for district heating systems to render the 

overall system more efficient by 

integrating cascading energy use 

Waste heat potential based on 

measurements or comparable processes, 

hourly heat demand based on measurement, 

simulation or standard load profiles 

 

2.2.3 Integration of Renewable Energy Sources 

After the improvement of the systems’ efficiency, the remaining energy needs should 

be satisfied based on renewable sources in order to meet local climate protection 

targets. At the enlarged scale of a neighbourhood, technical measures for efficient 

low carbon supply solutions and optimized urban planning for the use of renewable 

energies should be included at the design stage. Especially for the use of solar energy 

the urban form determined in the zoning plan can play an important role (Everding 

2007). 

Most of the renewable solutions for on-site generation of electricity use intermittent 

energy sources such as solar energy or wind power. Therefore, systems that balance 

energy needs over the course of a year (net-zero energy buildings) require a detailed 

assessment depending on their energy management strategy (Koch, Girard et al. 

2012). Across scales the concept is sometimes expressed as “self-sufficiency” (Table 
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2, Samso Island) or “positive-energy buildings” (Table 2, Grenoble). The latter is 

referring to the same assessment as “net-zero-energy” buildings (Voss, Sartori et al. 

2010). The annual balance is used as a target for dimensioning on-site generation to 

satisfy annual energy needs or to produce additional energy. At first sight, this seems 

to be merely continued evolution from low energy houses to passive houses. 

Conversely, it can be argued that the switch from passive to positive energy 

resembles a change of paradigm in the role within the larger energy system played 

by the building sector (Koch, Girard et al. 2012). According to the definition proposed 

by Voss, Sartori et al. (2010) net zero energy concepts require on-site generation 

technologies to balance the buildings’ energy needs. Seen from the larger scale of 

energy infrastructure, fluctuating production from wind or photovoltaic systems and 

the objective of matching production and demand at any time, makes a case for new 

approaches to energy management. While electricity management today is mostly 

carried out at national level with the corresponding regulatory zones or regional scale 

in smart grid demonstration projects, matching local power production with electric 

or thermal demand patterns will require local management. In the urban context, the 

neighbourhood scale could provide an opportunity to guarantee a certain level of 

diversity of demand through both mixed use and the number of connected users. In 

addition, it offers the opportunity to distribute thermal energy via district heating 

systems. With a view to model based planning support, net-zero concepts are 

typically designed as hybrid systems in which thermal needs are balanced by 

electricity generation. Therefore evaluation of energy from fluctuating renewable 

sources should not only be made on a monthly basis but the temporal resolution 

should be increased to hourly or sub-hourly time steps to better reflect the 

simultaneity of local electricity production and energy needs in the system (Table 5). 

This further allows assessing the load match, i.e. whether the electricity can be used 

on-site or in connected systems.  
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Table 5: Integration of Renewable Energy Sources - Planning Tasks and Technical Assessment 

Integration of Renewable Energy Sources 

Action Planning Task Technical Assessment 

Biomass In cities biomass systems are mostly 

based on woody biomass such as pellets 

for individual buildings and wood chips 

for district heating systems, solid bio 

waste can be considered for large systems 

Calculation of the heating loads, annual or 

monthly energy balance based on simulation 

of measurements to determine savings in the 

use of non-renewable primary energy and 

associated GHG emissions 

Solar thermal Solar thermal systems connected directly 

to individual user or as support for local 

district heating system 

Assessment of solar irradiation on based on 

meteorological data and the urban form, 

monthly balance for legal compliance, hourly 

heat demand based on measurement, 

simulation or standard load profiles 

Heat Pump Heat Pump systems based on geothermal, 

ground water or air as renewable heat 

source, sometimes considered for cooling 

purposes 

Calculation of the heating loads, Availability of 

renewable heat source based on 

measurement and environmental data, 

hourly heating needs to determine electric 

load profile 

Photovoltaic 

(PV) 

PV systems for on-site generation of 

electricity, as for CHP systems often self-

consumption strategies or direct 

marketing of produced electricity are 

investigated 

Assessment of solar irradiation on horizontal 

and vertical surfaces based on meteorological 

data and the urban form, monthly balance for 

legal compliance, hourly or sub-hourly 

electricity demand based on measurement or 

standard load profiles 

Wind turbines Wind power potential in urban spaces is 

often limited to micro wind installations 

due to the available wind speeds and 

impacts of large turbines on neighbouring 

uses 

Wind potential assessment based on 

meteorological data or on site measurement 

for larger installations 

 

2.3 Actors in urban energy planning 

The discussion of the objectives and targets in urban energy planning showed a 

diverse range of strategies and tasks, which results in a number of actors both private 

and public, involved in urban development projects making cooperation a necessity. 

C40 and ARUP (2015) go as far as stating, “there is no solution without collaboration”. 
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The German Association of Cities (Deutscher Städtetag) sees a tradition of integrated 

urban planning since the 1960s with the distinction that the integrated schemes in 

the 60s and 70s remained theoretical studies and have only more recently become 

concrete implementation projects (German Association of Cities 2013). This view is 

shared by Castán Broto and Bulkeley (2013) who show the relation of the occurrence 

of climate change actions being more frequent after ratification of the Kyoto protocol 

in 2005. While a direct correlation with the Kyoto protocol is disputable, their analysis 

supports the tendency of a rising number of implemented projects. In their 

assessment of 627 urban climate change projects in 100 cities Castán Broto and 

Bulkeley (2013) structure the actors according to the main groups of local 

government, other governmental actors such as national government, private actors 

as well as civil society. A similar classification is described by C40 and ARUP (2015). 

While the relations and possible cooperation are manifold, common structures can 

be identified between specific actors. 

National government can facilitate local actions by shaping the framework in which 

local governments act (Bailey and Kirk 2015). The German Association of Cities 

(Städtetag 2011) consequently describes facilitating structures such as rehabilitation 

areas (Sanierungsgebiete) in the German building law (BauGB) but equally highlights 

the need for further legislating support as for example changes in the zoning law 

(BauNVO) to allow for more flexible densities in local development projects. A similar 

solution was applied in North American cases in the form of density bonuses. In 

Annex 51 density bonus was provided in the Dockside Green development project in 

Toronto, Canada. A higher density was accepted in exchange for compliance with 

LEED platinum Standard. On the other hand, in the cooperation with private actors 

local governments take on a facilitating role. Joint financial concepts are among the 

most important objectives for such cooperation (Bailey and Kirk 2015). Private 

commercial actors are distinguished from public participation. As a result “negotiate 

rather than command” (German Association of Cities 2013) can be seen as a more 

adopted strategy for urban energy planning. In order to integrate the different actors 

the German Association of Cities (2013) proposes integrated urban planning as the 

interface between different groups and actors (Figure 8).  
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Figure 8: Local Energy Planning as interface between different actors, adapted from (German 

Association of Cities 2013) 

Despite the multitude of actors, local governments and subsequent departments 

remain dominant and most important actors, yet local energy planning cannot 

successfully attained without further actors. In the majority of the cases investigated 

worldwide by (Castán Broto and Bulkeley 2013), local governments take on a leading 

role. Based on a survey in the year 2009 the German Association of Cities states that 

in most cases climate mitigation measures are promoted by specific departmental 

planning in the fields of green space, environment and energy (Städtetag 2011). 

While the importance of cooperation is highlighted in all of the regarded studies 

Castán Broto and Bulkeley (2013) point out that cooperation does not always 

overcome sectorial barriers, especially regarding energy efficiency and the energy 

infrastructure. According to their assessment “there is still a separation between 

interventions seeking to reconfigure consumption patterns, mostly in the built 

environment, and interventions seeking to transform the systems of energy 

production.” This conclusion is supported by the Association of German Cities which 

identified a dominance of sectorial action and individual projects in urban planning 

(Städtetag 2011). Therefore integration has to be applied to actors as well as sectors 

to unlock the potential identified in cities (C40 and ARUP 2015). 

So far, the different objectives, targets and actors were described as necessary 

elements to develop local energy strategies. As discussed in the introduction the 

most important aspect for any climate protection measure remains the degree to 

which the targets are realised. Chapter 2.4 will discuss the question how the 

realisation of objectives and targets can be assessed in urban energy planning 

projects. 
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2.4 Measuring success 

Once the objectives are translated into targets and specific actions, the question of 

monitoring has to be addressed. This step is crucial to realise the planned gains in 

energy efficiency and reduction of non-renewable primary energy use. Here the focus 

is put on the system’s effectiveness. In other words, the objectives of a given project 

are compared to the outcome (Figure 9). In the context of an urban energy transition 

the overall success of urban energy planning projects, must be measured by 

comparing societal problems or issues and the final impacts of an intervention (Vreuls 

2005), as discussed in the previous chapter. Once the objectives are agreed, they 

should be connected to useful indicators in combination with realistic target values, 

or benchmarks, against which the project outcomes can be compared to assess the 

intervention’s effectiveness (Figure 9).  

 

Figure 9: Policy Evaluation framework, adapted from (Vreuls 2005) 

These objectives are defined as the outcomes of a structured planning process, which 

usually includes documentation of a number of quantitative and qualitative 

requirements. Typical targets in urban development projects include specific energy 

needs, as targets of building energy performance or the share of energy from 

renewable sources for supply solutions, the latter is often expressed in the non-

renewable part of primary energy use. While the comparison of the objectives with 

the outcomes indicates the effectiveness of the project, its efficiency is measured as 

comparison of the inputs and outputs. In the following, a focus will be put on the 

technical efficiency assessment and the effectiveness. Even though it is 

acknowledged that in order to evaluate the success of urban development projects, 
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a wider range of impacts has to be considered and compared to the initial needs and 

objectives. 

While in planning practice, the translation of needs and issues seems to be well 

understood, as it is a main requirement for traditional urban development planning, 

the measurement of outputs of specific efficiency or consistency was rarely rigorously 

implemented even in European lighthouse projects (Koch and Kersting 2011). Little 

can be said about the success of a given urban development project, in terms of the 

project’s sustainability, policy effectiveness, and efficiency unless all development 

steps are continuously tracked. This is not a recent issue as Fels (1986) points out: 

“In the past, programs designed to induce energy conservation in housing 

have nearly all been casual about their measurement of energy savings. […] 

This is particularly distressing given that the single most important objective 

of these programs, the saving of energy, is intrinsically quantifiable and 

relatively accessible by means of data recorded systematically for another 

purpose – billing.” (Fels 1986)  

The international case studies discussed in the Annex 51 project provided a large 

variety of innovative and highly efficient supply technologies as well as efficiency 

measures. In addition to the state of the art in energy planning, a large number of 

case studies were identified as demonstration projects. In both categories, a wide 

range of expertise and the assessment of alternative methodologies were provided 

throughout the planning process. Even though detailed planning and often 

assessment of the specific costs of efficiency measures was an integral part of the 

projects less than half of the identified national case studies that had national or 

greater visibility provided measured evidence for envisioned savings, due to a lack of 

subsequent monitoring (Koch, Jank et al. 2011). In the assessment of more recent 

case studies, Zinko and Moshfegh (2012) found that a larger number of the projects 

implemented monitoring to up to a certain degree. An important conclusion from 

their work is that “monitoring and subsequent evaluation of the anticipated energy 

goals and cost structures should be an essential component of energy conservation 

projects” (Zinko and Moshfegh 2013). Lack of monitoring can be attributed to 

resource constraints or a lack of political interest (Vreuls 2005). In the case of 
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neighbourhoods, a lack of resources does not necessarily refer to the investment 

costs of the monitoring equipment but rather to shortcomings in providing a 

continuous measurement and evaluation of the projects. These projects are typically 

of much longer duration that building projects, often taking up to ten years from 

planning to the completion of the final phases. In addition, only measuring energy 

use after project completion is not enough, as evidenced by the case studies. A longer 

period of adjustment is often needed to provide “verified qualified monitoring” (Jank 

2013, Zinko and Moshfegh 2013).  

In recent research projects funded by the German program Eneff:Stadt monitoring is 

a mandatory requirement. Research projects such as “Rintheimer Feld” in Karlsruhe 

or “Nullenergiestadt Bad Aibling”, that serve as case studies for this work, use 

automated remote meter readings for monitoring energy use or communicating 

information on building performance to tenants. To make full use of the potential of 

automated data assessment, common definitions of the data structure and proposed 

metering points are necessary. In the context of energy efficient buildings, notably 

the program Research for Energy Optimized Building (EnOB) in the German context, 

structured guidelines have been developed (Neumann, Herkel et al. 2006) and, more 

recently, transferred to neighbourhood development schemes (Erhorn, Erhorn-

Kluttig et al. 2012). The guidelines provide a first step on how to monitor the technical 

performance of neighbourhood systems. So far, they have not addressed the lack of 

responsibility in ensuring long-term monitoring and data assessment in urban 

development projects. With project durations of around ten years from early 

planning to the start of operations, it seems necessary to “start processing data as 

soon as the data is provided [and] not wait before all data is available because it might 

be too late to do sufficient analysis or make any corrections.” (pro:21 GmbH and 

Projektträger Jülich 2013). This again points out the necessity to make suitable results 

from simulation available in all project phases as benchmarks for the ongoing 

development (Figure 1). 

Different analytical steps in planning are typically supported by energy system 

models. Chapter 3 will provide an overview on different modelling approaches, 
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describe the current practice of energy system modelling at the urban scale and 

conclude by linking the identified planning tasks to suitable modelling approaches. 

3 Modelling urban energy needs  

In the urban context, energy system models are used at different scales to support 

the various disciplines involved in urban development projects. Modelling can help 

to understand possible impacts of LEP better and to communicate results to a wide 

group of stakeholders. In this process, the range of tasks and modelling applications 

is huge and covers multiple spatial and temporal scales, from buildings to cities, from 

yearly to hourly demand patterns. According to Keirstead, Jennings et al. (2012) an 

urban energy system model can be understood as a formalised mathematical 

representation of the “combined processes of acquiring and using energy to satisfy 

the energy service demands of a given urban area” (Keirstead, Jennings et al. 2012).  

Defining the needs of a project within its resource and time constraints is a key task 

before choosing a modelling approach or a dedicated planning tool. From the 

assessment of international case studies Webster, Baier et al. (2013) provide five 

categories and requirements for the selection criteria to choose the right modelling 

solution for the task at hand. 

Table 6: Criteria for the selection of an energy system model qtd. in (Webster, Baier et al. 2013) 

Model applicability - Model flexibility and robustness 

- Study framework definition 

- Ease of use 

Approach selection - Purpose of study and design criteria […]  

- Model flexibility and adaptability 

Quality and accuracy - Modelling assumptions and methodology 

- Design stages and quality of data 

- Validation of results and simulation 

procedures 

Data availability - Access to relevant sources of information 

- Appropriate and high-quality input data 

- Climate data, internal heat gains, material 

and construction 

Desired outcomes - Parameter sensitivity 

- Key design messages 

- Transparency for communication 
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In the following section, solutions supporting urban or local energy planning are 

discussed, with a focus on their representation of thermal energy needs for buildings, 

building clusters or neighbourhoods. The comparison includes a number of 

approaches identified by Erhorn-Kluttig, Jank et al. (2011), Rapp, Vautz et al. (2012) 

and pro:21 GmbH and Projektträger Jülich (2013). Furthermore, modelling 

approaches were included, which are developed by associations or academic 

institutions. A number of these are discussed in (Zhao and Magoulès 2012), (Mendes, 

Ioakimidis et al. 2011) and (Keirstead, Jennings et al. 2012). A more general review of 

energy system modelling is provided by Koch, Harnisch et al. (2003). 

3.1 Energy system models 

Several approaches have been traditionally pursued to simulate urban energy needs. 

They range from bottom‐up representations that include statistical and physical 

methods to top‐down approaches that treat urban area as an energy sink and do not 

detail individual end‐uses. Each method shows strengths and limitations, relying on 

various levels of inputs, different modelling approaches, and leading to a large range 

of applicable results, suitable for different phases of development projects. 

3.1.1 Top-down and Bottom-up – a question of perspective 

The classification of top-down and bottom-up approaches (Kavgic, Mavrogianni et al. 

2010) reflects the model’s capability to represent detailed descriptions of individual 

entities in the system (bottom-up) or the description of the overall system (Mendes, 

Ioakimidis et al. 2011). Top-down approaches typically treat individual sectors as 

energy sinks or sources without a detailed distinction of the structure of the energy 

needs (Swan and Ugursal 2009). The variables of such approaches are commonly 

based on, or include, the gross domestic product, employment rates, price indices, 

etc. Top-down approaches are also used for long-term energy scenarios and are 

based on historic data. Here only conclusions concerning the central system can be 

drawn (Heller 2000). Bottom-up models are employed for detailed demand 

predictions for different sectors based for example on energy bill data. Such detailed 

description can either be expressed based on physical representations of the system 

or statistical methods (Kavgic, Mavrogianni et al. 2010).  
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3.1.2 Process representation 

In their review of quantitative building performance assessment methods Wang, Yan 

et al. (2012) distinguish forward and inverse models. Forward models are based on 

the knowledge of the system’s physical processes, while inverse or data-driven 

models are based on results of past experiments. The same categories of modelling 

approaches are proposed by ASHRAE (2005) where the former are also referred to as 

white-box and the latter are referred to as black-box models. Finally Grey-box models 

are described by Coakley, Raftery et al. (2014) as an intermediate category containing 

“certain key (or aggregated) system parameters”. In their application forward 

approaches seek to represent the individual building’s performance as well as 

individual technologies (Yamaguchi, Shimoda et al. 2013). In contrast, data-driven 

approaches can often be found when infrastructure systems are assessed as 

described for example by Nielsen and Madsen (2006). These latter models typically 

consider the aggregated demand of e.g. a number of buildings. An overview on a 

number of tools discussed in this chapter can be found in Annex E: Urban energy 

planning tools. 

3.1.2.1 Forward or deterministic models 

The forward modelling approach uses input variables and applies the representation 

of physical processes to predict outputs. With readily available computing power, 

complex models have been designed to include natural phenomena and physics 

based interactions within the system. The forward approach delivers a more or less 

complete representation of the physical world. Heller (2000) classifies this category 

as deterministic modelling. It is the most common approach used to describe and 

predict energy use at the building scale. This category of models includes dynamic 

building simulations such as EnergyPlus, DOE-2 and TRNSYS (Coakley, Raftery et al. 

2014) as well as steady state or quasi steady-state models, as for example specified 

by EN 832, DIN 18599 and EN ISO 13790. At the building scale, these models can 

address detailed comparisons of planning alternatives by simulating the buildings’ 

energy needs (i.e. micro-simulation). They are based on a representation of physical 

properties of buildings as well as the supply and distribution systems used to satisfy 

the energy needs. For the building scale a recent overview is provided by Wang, Yan 
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et al. (2012). At the scale of neighbourhoods, however, these forward modelling 

approaches require an intensive data collection phase as specific parameterisation is 

essential to ensure the results’ reliability (Coakley, Raftery et al. 2014). Following an 

object oriented micro-simulation approach, the modelling language MODELICA 

(Modelica Association 2011) - with different frontends such as Dymola or Open 

Modelica - gained support for detailed modelling of buildings and HVAC equipment 

beyond the single building scale (Huber and Nytsch-Geusen 2011). Other examples 

of specific languages are INSEL (Schumacher 1991) as well as TRNSYS a modelling 

framework using Fortran for programming model components. All three solutions are 

typically employed to support detailed forward modelling. While the level of detail 

for the studies varies, all of the micro simulation approaches have the benefit of 

providing a high level of flexibility in representing changes in individual energy 

efficiency measures or technologies. Another example of a citywide application of 

such a micro model was conducted for the city of Osaka by Shimoda, Asahi et al. 

(2007). In their study, the heating and cooling needs of 20 building categories were 

simulated with five different insulation levels. In connection with forward building 

models also sub models representing user behaviour can be included which is the 

case for SunTool (Starkovic, Campell et al. 2006). SunTool and its successor CitySim 

(Robinson, Haldi et al. 2009) are based on archetype buildings providing default 

parameters for the forward demand model.  

In order to provide a tool for the development of local energy concepts, the District 

Energy Concept Advisor (D-ECA) (Erhorn-Kluttig, Erhorn et al. 2013) was developed 

by Fraunhofer IBP and represents a further simplification of the simulation. Buildings 

are represented by archetypes so that the user is provided with initial default values. 

The calculation of thermal needs is done according to DIN 18599 as a steady state 

monthly energy balance. In comparison to a pure building archetype approach (IWU 

2003, Klauß 2010) the D-ECA’s adaptation adds flexibility in the definition of building 

properties as well as supply technologies. Instead of using the geometry of archetype 

buildings, energy balance models such as ISO 13790 are recently also coupled with 

spatial urban data models (Bahu, Koch et al. 2013). The 3D city models are structured 

according to the CityGML (Geography Markup Language) standard developed by the 
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Open Geospatial Consortium (OGC). The approach was applied by Strzalka, Bogdahn 

et al. (2011) to the area of the Scharnhauser Park and tested against measured data. 

Bahu (2012) calculated the heating energy needs for the City of Lyon and used the 

city’s 3D model to classify the building stock. 

 

Figure 10: Results from building classification and steady-state heat demand calculation (Bahu, 

Koch et al. 2013) 

In their application, forward models require detailed knowledge of the phenomena 

affecting system behaviour as well as the various interactions to ensure accurate and 

meaningful results. As scale increases, the parameterisation of forward models 

becomes increasingly challenging. When moving towards city scale, the amount of 

involved parameters, operation schedules and data dramatically increases and 

induces a large number of potential sources for uncertainties and propagating errors 

in physical models (Coakley, Raftery et al. 2014). Therefore, in addition to the correct 

representation of the individual processes, the quality of the input data becomes a 

critical feature for white box models in their application to cities and 

neighbourhoods. 

3.1.2.2 Data driven modelling 

The data-driven approach uses input and output variables that are known and 

measured to determine a mathematical description of the system. This obviously 

requires the system to have already been built and for measurements to have been 
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taken. Data‐driven approaches are often not only simpler to use but also more robust 

predictors of performance than deterministic models (ASHRAE 2005). A pure black 

box model defines the input output relation without describing the physical 

properties of the modelled process. Black box models are performant but sometimes 

inflexible in their application. By its empirical nature, this approach does not require 

an understanding of the underlying physical processes. This leads to a simplified 

model structure but a loss of flexibility as parameters cannot always be traced back 

to the physical behaviours. In addition, the transferability of the data sets used to 

develop the model to the application case must be tested.  

Statistic load profiles for district scale supply systems 

A well-known approach to represent aggregated thermal needs is based on specific 

load curves described per building use. The data is typically based on real cases. 

Schulz (2007) used this approach to assess different strategies of integrating 

combined heat and power systems into the electricity grid. A similar approach based 

on measured data was proposed for URBS (Richter 2003). While the benefit is 

obviously a realistic load profile, this pure black box approach requires a thorough 

investigation of the existing energy users or significant engineering knowledge to 

overcome the limited inherent transferability. The Distributed Energy Resource 

Customer Adoption Model (DER-CAM) is an optimisation approach developed by 

LBNL, which follows the same concept and, based on custom profiles, focuses on 

identifying the best combinations of DG technologies to meet thermal and electric 

demand. 

Typical days 

Another widely used approach consists in the application of typical days, which are 

connected to form an annual profile for daily energy use. This method is used in 

TIMES HEAT (Merkel 2012) and GOMBIS (Saadat 2003) and was also applied by Woldt 

(2007) for the integration of local CHP systems into the electricity market. The VDI 

4655 (VDI 2008) describes reference profiles for thermal and electric energy use in 

single and multifamily buildings. It is specifically targeting the design of combined 

heat and power (CHP) systems. The annual distribution of the heat demand is based 
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on either the calculated annual heat demand or the measured demand of the 

previous period. 

The climatic conditions are identified using 15 climatic zones defined by DIN 

4710:2003-1, which are also used by the German Meteorological Service (DWD). The 

data basis is provided by the test reference years (TRY), as published by the DWD. 

Test reference years are “data records of selected meteorological measurements […] 

for each hour of one year.” (VDI 2008). The number of typical days in one year is 

determined from the zone’s TRY. The categories applied are summarised in Table 7.  

Table 7: Typical-day categories after VDI 4655 (VDI 2008) 

Season Workday W Sunday S 
 Fine H Cloudy B Fine H Cloudy B 

Transition - Ü ÜWH ÜWB ÜSH ÜSB 
Summer - S SWX SSX 
Winter - W WWH WWB WSH WSB 

 

For the distribution of energy demand per day the VDI 4655 provides factors on a 

resolution per minute basis resulting in the daily demand curve. For the planning of 

cogeneration systems COPRA (9.2.4) uses a similar method, which is based on nine 

different type days (i.e. (Transition, Summer, Winter) x (Workday, Saturday, Sunday)) 

(Dr. Valentin Energie Software GmbH 2002) for the distribution of monthly heating 

needs. A similar solution, based on the use of typical days, is applied to represent 

thermal needs in the Hybrid Optimization Model for Electric Renewables (HOMER), 

which was developed in 1993 by the North-American National Renewable Energy 

Laboratory (NREL). HOMER is mainly used to evaluate grid connected or off-grid 

concepts for micro grids. To represent thermal loads, it uses typical daily load profiles; 

the user can then adjust the minimum, maximum and average values for the monthly 

variation. Alternatively, HOMER reads external profiles for thermal loads (NREL 

2005). The use of TRY allows the model to be adjusted to specific climate conditions. 

A drawback with this method is that the limited number of differentiated time 

intervals results in abrupt changes in the transition periods, which are visible as steps 

in the annual load duration curve. 
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Archetype buildings and urban forms 

In Germany settlement typologies were developed for the residential sector as early 

as 1980 (Roth, Häubi et al. 1980). The approach has continuously been developed 

(Jenssen and Karakoyun 2005, Maïzia, Sèze et al. 2009, Koch 2010) and was also 

applied to the potential for renewable energy sources (Hegger and Dettmar 2014). 

Yet their application for heat demand estimation beyond large scale assessment for 

regions and early concept phases is critically discussed (Jentsch, Pohlig et al. 2008) as 

some urban archetypes display large variations.  

The added value of archetypes of buildings and urban form can be seen in the 

possibility to link benchmark values to urban patterns and thus make it available for 

urban planning at a larger scale (Webster 2007). At the smaller scale, building 

archetypes are a common way to describe the properties of specific building classes, 

which are typically defined by age and use. Typologies exist for residential buildings 

(IWU 2003, Diefenbach and Born 2007) as well as for non-residential buildings (Klauß 

2010). Archetypes are often used in the development of strategic energy planning 

(Heidelberg 1996, Umweltamt Düsseldorf 2005). As such archetypes offer an easy to 

use classification of different buildings, they are also used as reference values in a 

number of energy planning tools such as the District Energy Concept Advisor (Erhorn-

Kluttig, Erhorn et al. 2013). The tool was originally developed in the German context 

but includes international building archetypes in the international version. 

Archetypes are mainly used to define annual benchmarks for larger urban areas or as 

input to deterministic models, describing building properties for a given class of 

buildings. 

3.1.3 Grey-Box Approach 

The grey-box approach combines both data-driven and forward methods. In a grey 

box model, the main physical dependencies describing the system are identified, yet 

these do not fully depict the physical reality as certain elements are approximated by 

general rules. Due to this, grey box models are expected to provide a higher degree 

of flexibility as physical representations can be altered according to the modelled 

system. They are faster in the application yet more restricted in the freedom of 

technology choices as a limited number of parameters are modelled compared to 
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forward modelling approaches. Déqué, Ollivier et al. (2000), Nielsen and Madsen 

(2006) and Hellwig (2003) provide examples of grey-box models. 

3.1.3.1 Heating degree days 

Heating and cooling degree days are a further method that reduces the information 

required on the physical properties of buildings. Heating degree days (HDD) are 

defined by the number of days during which the average temperature is lower than 

a given limit temperature. Below this temperature the heat losses by transmission 

and ventilation induce a heat input to maintain an inside temperature.  

 

Figure 11: Exemplary calculation of the number of heating days and the heating degree days HDD 

(19/12), (Koch and Girard 2009) 

Figure 11 illustrates the calculation of daily heating degree-days during a month with 

an inside nominal temperature (i) and limit temperatures (lim) of 19°C and 12°C 

respectively. In this example, the heating period is 20 days long and accounts for 

229 Kd. Once the number of HDD is calculated, they are multiplied by the overall heat 

loss coefficient representing the building’s performance and divided by the seasonal 

equipment efficiency. A multitude of variations of the basic method exist for different 

applications, discussed in detail by Day (2006), the objective of the approach is to 

determine weather related energy use in buildings. 

In the Clean Energy Project Analysis toolkit RETScreen, Natural Resources Canada 

(2005) proposes an approach based on heating degree days to calculate monthly 

energy needs. In order to calculate an hourly annual load duration curve for the 
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layout planning of combined heat and power systems a peak and base load factor are 

added. 

3.1.3.2 Energy signatures 

The above-discussed approaches represent forward models of decreasing physical 

representation. In addition, data-driven models are used at the scale of buildings. In 

the assessment of the energy performance of HVAC equipment, energy signatures 

are commonly used (Bauer and Scartezzini 1998) (Rabl and Rialhe 1992). According 

to Day (2006) energy signature models were first described by Jacobsen (1985) in 

order to assess building performance data. A more recent application of energy 

signature models for the purpose of the assessment of energy performance of large 

samples of buildings is described by Raffio, Isambert et al. (2007) and Mazzarella, 

Liziero et al. (2009). A good overview is presented in the form of ASHRAE’s inverse 

modelling toolkit (Kissock, Haberl et al. 2003). 

The simplest form of an energy signature describing space-heating needs is a linear 

regression model matching heating energy use and mean outdoor temperature. Such 

a model can be referred to as a linear single-variant data driven approach. The VDI 

standard 3807 (VDI 2007) describes regressions for different temporal resolutions. 

The 2005 ASHRAE Handbook (ASHRAE 2005) provides further examples of this class 

of models. The following section will focus on methods to determine the daily energy 

use. The regression model’s inherent logic can be explained by the buildings’ thermal 

balance. This becomes obvious when compared to the basic principles for the 

calculation of the heat demand for a given zone. Here the equations described relate 

to DIN EN ISO 13790:2008-09. The space heating needs (QH,nd) described in Equation 

3-1 is composed of the heat transfer through transmission (Qtr) and ventilation losses 

(Qve), the internal (Qint) and usable solar gains (ηH,gn Qsol) as well as the heat demand 

for domestic hot water preparation (QW). 

QH,nd = Qtr + Qve - Qint - ηH,gn Qsol+ QW Equation 3-1 

Equation 3-2 and Equation 3-3 (DIN EN ISO 13790:2008-09 equations 16 and 20) 

establish the approximately linear dependency of energy losses through transmission 
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and ventilation on the outdoor temperature, which is also reflected in energy 

signature models. 

Qtr = Htr,adj (int,set,H − e ) t Equation 3-2 

 

Htr,adj   total transmission heat transfer coefficient of the zone 

θint,set,H  set temperature for the zone 

θe   outdoor temperature 

t   time 

Qve = Hve,adj (int,set,H,z − e ) t Equation 3-3 

 

Hve,adj  total ventilation transfer coefficient 

θint,set,H  set temperature for the zone 

θe   outdoor temperature 

t  time 

 

Often the temperature independent share of energy used (e.g. domestic hot water) 

is represented by a base load (Figure 12, QB) as a horizontal line. The interception 

between the heating curve (regression line) and this base load is the heating limit 

temperature (Figure 12, lim). For domestic use, the change point is between 12°C 

and 18°C outdoor temperature (Mazzarella, Liziero et al. 2009) depending on the 

building’s performance and set indoor temperature. In urban energy modelling a 

linear energy signature is used, for example in the tool EnerGIS (Girardin, Marechal 

et al. 2010) to represent the thermal needs of urban districts. Ali, Mokhtar et al. 

(2011) used a linear regression model for the prediction of the electricity demand for 

cooling and (electric) heating at community scale.  

 

Figure 12: Dependency of daily heating energy needs on average daily temperature 
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The model depicted in Figure 12 can be referred to as a three parameter (3P) single 

change point model, as it contains two linear sections. In addition, linear models have 

been developed with multiple change points to reflect other effects such as limited 

heating capacity in winter (Mazzarella, Liziero et al. 2009). Based on the assessment 

of measured data Dotzauer (2002) proposed a segmented linear model for the 

prediction of thermal loads in district heating systems with four change points which 

resembles the selected non-linear energy signature model described in section 4.1. 

These grey-box models constructed along the logic of the energy balance thus 

represent a link between the forward and data-driven calibrated approaches 

(Kissock, Haberl et al. 2003). To assess cooling loads Masuda and Claridge (2014) 

compared the 4P-CP to multiple linear regression models and found the former easier 

to calibrate via iterative calculations of the least square regression analysis proposed 

by Kissock, Haberl et al. (2003). The segmented linear model with four change points 

approximates the non-linear models that are discussed in detail below. These sigmoid 

energy signature models were developed for the gas load predictions (Geiger and 

Hellwig 2002, Eichlseder 2008, BDEW, VKU et al. 2014). This model category was 

applied by the author at the scale of district heating systems (Woods 2012), which 

will be described in more detail in Chapter 5.1. 

3.1.4 Description of state transitions – steady-state and dynamic models 

Steady-state models are based on a simplified thermodynamic description of the 

energy system. In contrast to prescriptive regulations defining maximum values for 

individual building parts, performance based building codes often rely on reference 

values from steady-state physical models. This is due to the decreased level of 

complexity but also the fact that compliance is usually proven based on the monthly 

energy balance. Dynamic models tend to include a higher temporal resolution 

compared to steady-state models and typically require a larger number of inputs. 

Usually dynamic models are used for tasks requiring hourly or sub-hourly data, which 

is for example the case for applications where the effects of the building’s thermal 

mass play a significant role (ASHRAE 2005). As Wang, Yan et al. (2012) point out, the 

description of state transitions is not bound to the general type of modelling 

approach (i.e. forward or data-driven). 
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3.1.5 Optimisation of energy system models 

Optimisation methods can also be applied to models of the energy system, usually 

integrating its technical, economic and environmental aspects, including both 

demand and supply side descriptions in the models. The resulting equilibrium system 

is then optimised towards a target function using mathematical approaches such as 

linear programming (Koch, Harnisch et al. 2003). Often the total costs of the system 

are used as target functions. In order to obtain a realistic representation of the energy 

system, optimisation models include a number of additional conditions also referred 

to as bounds such as the availability of technologies. Bounds provide the limiting 

conditions under which a decision in the optimisation process is taken. Therefore 

defining of the bounds is vitally important to ensure the relevance of the modelling 

results. Just as their documentation is vital to the transparency to the overall 

modelling process. TIMES HEAT (Fichtner, Genoese et al. 2013) is an example of an 

optimisation approach. In contrast to the first category, simulation models describe 

the energy system by adding single processes to process chains or networks. While 

optimisation models tend to focus on cost functions, simulation models are usually 

applied to quantify the technical or techno-economic potential for energy savings or 

emission reductions (Koch, Harnisch et al. 2003). Expert knowledge, used in the 

detailed description of simulation models, replaces the solemnly mechanistic 

approach in optimisation models and technical measures can be discussed on a 

detailed level. As noted in the case of optimisation models, the quality and 

transparent documentation of expert knowledge as the equivalent of the bounds can 

prove as a main factor determining the model’s quality. Even though the approaches 

follow clearly different paths, Koch, Harnisch et al. (2003) suggest that through 

increasing the number of bounds, the optimisation eventually transforms into a 

simulation approach.  

3.2 Applications of energy system models for neighbourhoods 

3.2.1 Intermediate Summary 

The discussion of different methods delivers categories to classify the different 

models applied for the representation of heating needs at the scale of urban areas. 

Table 8 provides an overview on the discussed tools, models or research projects. The 
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differentiation between deterministic and data-driven models is a principal criteria 

to differentiate the approaches. When reading the table from left to right the level 

of flexibility in the models decrease. At the same time the dependency on detailed 

input data increases when read from right to left. Based on the introduced methods 

the next section will explore the temporal resolution of the different models as a 

second criteria for the choice of models for different planning tasks, which will be 

discussed at the end of this chapter. 

Table 8: Overview on the representation of heating needs at neighbourhood or city scale by 

current energy demand models 

Deterministic Models Data-Driven Models 

Dynamic Steady-State Energy Signatures Typical Days Load Profiles 

  Non-Linear Linear   

SunTool 
(Starkovic, 
Campell et al. 
2006) 
CitySim 
(Robinson, Haldi 
et al. 2009) 
INSEL 
(Eicker 2006) 
MODELCA 
(Huber and 
Nytsch-Geusen 
2011) 

3D-GIS 
(Strzalka, 
Bogdahn et al. 
2011) 
(Bahu, Koch et 
al. 2013) 
District-ECA 
(Erhorn-Kluttig, 
Erhorn et al. 
2013) 
(Shimoda, 
Asahi et al. 
2007) 
(Yamaguchi 
and Shimoda 
2010) 

(Nielsen and 
Madsen 2006) 
MacroDE 
(Woods 2012) 
(Hellwig 2003) 
 
 

ENERGIS 
(Girardin, 
Marechal et 
al. 2010) 
Inverse 
Modelling 
Toolkit 
(Kissock, 
Haberl et al. 
2003) 
(Rabl and 
Rialhe 1992) 
 

COPRA 
(Dr. Valentin 
Energie 
Software GmbH 
2002) 
GOMBIS 
(Saadat 2003) 
TIMES HEAT 
(McKenna 
2013) 
VPP (Brauner, 
Pöppl et al. 
2006) 
HOMER (NREL 
2005) 

POLIS  
(Richter 2004) 
URBS 
(Richter 2003) 
BHKW Plan 
DER-CAM 
 

 

3.2.2 Temporal resolution of existing modelling approaches 

Based on the previously described categories, the calculation of heating needs at 

different time scales is a key characteristic of the approaches. Figure 13 illustrates 

the different methods and their general approach to aggregate or disaggregate 

thermal needs from hourly to annual time steps. 

For many of the identified planning tasks, heating needs are represented at the 

hourly scale. Forward approaches achieve this by detailed building descriptions and 

simulation of the physical behaviour at hourly or sub-hourly scale. This approach is 

for example used by Shimoda, Asahi et al. (2007) or Robinson, Haldi et al. (2009). The 

methodologies include many examples of R-C models with different numbers of 
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nodes. Energy balance calculations described by DIN 18599, DIN 4108, EN 832 or ISO 

13790 are used to calculate monthly energy balances (Nouvel, Schulte et al. 2013). 

ISO 13790 links the micro-simulation and an energy balance approach as it provides 

a simplified dynamic model. A recent example of a monthly energy balance is used 

by the Energy Concept Advisor (D-ECA) (http://www.district-eca.de) developed by 

Fraunhofer Institute for Building Physics (pro:21 GmbH and Projektträger Jülich 

2013). Further discussions of different approaches are provided by Swan and Ugursal 

(2009) and Zhao and Magoulès (2012). A requirement for micro-simulation models is 

a detailed description of building characteristics and in cases where simulation is on 

an hourly or sub-hourly scale, information on technical installation as well as building 

operation schedules. This often proves as a major obstacle to the application in early 

planning stages. Figure 13 shows a number of applied methods or models with their 

respective time scale. In their study on virtual power plants Brauner, Pöppl et al. 

(2006) refer to an R-C model according to VDI 2067 (VDI 1998) to calculate daily 

energy needs. These were then transformed into hourly profiles, based on 

standardised profiles from a comparison of calculated profiles with measurement 

data. The calculation described by the VDI 2067 is also used in the COPRA tool 

developed by Valentin Energie Software GmbH (Dr. Valentin Energie Software GmbH 

2002) in addition to the application of typical days. 

 

Figure 13: Bottom-Up and Top-Down approaches according to their temporal resolution (/a = 

annual, /mon = monthly, /d = daily, /h = hourly demand) 
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In the group of data-driven models, a number of approaches can be found that use 

the annual energy needs and disaggregate them to daily energy needs (Figure 13, 

column 5, 6, 7). These are then further disaggregated by using statistic load profiles 

for hourly energy use. The models introduced by Brauner, Pöppl et al. (2006), 

Girardin, Marechal et al. (2010), Hellwig (2003), Sawillion (2002) and in the VDI 4655 

(VDI 2008) fall into this category. While temporal aggregation scales are similar, they 

vary in the form of the calculation. As an example of a non-linear energy signature 

model Hellwig (2003) used a single variant regression to determine daily heating 

needs from annual energy needs. The latter were based on the energy use from 

previous years. For the disaggregation to an hourly demand curve, temperature 

dependant hourly load profiles were extracted from measured data and applied to 

daily energy use. Many larger geographic scale applications use a distribution of an 

annual heat demand based on typical days. In the German context, the typical days 

are often based on VDI 4655 (VDI 2008). For the application of the method, annual 

heating needs are calculated, for example, based on a steady-state energy balance 

applied to archetype buildings (IWU 2003, McKenna 2013). The year is then classified 

according to the different seasons (winter, summer & transition), weekdays, 

weekends or holidays and the cloudiness of the day, resulting in 10 typical profiles. 

The same approach can be found in COPRA with different predefined typical days 

that also represent different seasons (winter, summer, transition) and define 

weekdays, Saturdays and Sundays for each season. In the TIMES model different time 

slices from typical days are also used to represent an hourly load profile for different 

building categories (Fichtner, Genoese et al. 2013). Richter (2003) used calculated 

reference load curves for the complete year to distribute annual energy needs in the 

URBS model. 

A number of models use a two-step disaggregation of annual heating needs because 

the temporal scale of days shows a strong correlation with the mean outdoor 

temperature (Heller 2002). The hourly distribution over the course of the days 

depends more on individual factors, such as the operating schedule for the heating 

system, as well as the presence and activity of inhabitants. The models (Figure 13, 

rows 3,4,5,6 & 7) therefore show compatibility at the scale of daily energy needs. 
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Using the daily energy needs as common denominator, hourly profiles could be 

exchanged because all of the listed models refer to statistic profiles for aggregated 

users. 

3.2.3 Modelling Requirements for Local Energy Planning  

It has been pointed out that the three steps to reduce GHG emissions in the building 

stock relate to different assessment methods. Looking at the thermal energy needs a 

higher temporal resolution is required going from energy performance targets for 

buildings to integrated systems using intermittent (e.g. PV, wind) or time dependant 

(waste heat) energy sources. Table 9 provides an overview on the different planning 

tasks as well as the connected methods to assess energy needs and exemplary 

solutions. It lies in the logic of the increasing requirements from urban energy master 

planning to detailed assessment of renewable that the requirements on temporal 

resolution and flexibility decrease from top to the bottom of Table 9.  

Table 9: Energy Needs Assessment Methods for different Local Energy Planning Tasks 

 Planning Task Energy Needs Calculation Exemplary Approaches 

Energy Efficient Buildings 

 Urban Energy Master Plan Annual Indicator [kWh/(m2a)] Building Archetypes, Settlement 

Typologies 

 Construction Permit, Energy 

Efficient Buildings 

Monthly Energy Balance DIN 18599, D-ECA, RETScreen 

Efficient Supply Solutions 

 Potential for CHP (Feed-In) & 

District Heating 

Annual load duration curve COPRA, Energy Signature, ISO 

13790, POLIS 

 Use of Waste Heat Hourly Demand Curve COPRA, Energy Signature, ISO 

13790, POLIS 

Renewable Energy Sources 

 Biomass, Heat Pump Hourly Demand Curve COPRA, Energy Signature, ISO 

13790, POLIS 

 CHP, PV, Wind (on site use) ¼ Hourly Demand Curve EnergyPlus, TRNSYS 
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Even though simpler planning tasks could be solved using a more complex solution, 

it is common sense to apply the simplest method possible as they involve fewer 

hypothesis and thus sources of uncertainty. This principle is also known as Occam’s 

razor (Young, Parkinson et al. 1996). The sum of the planning tasks should be 

executed as consecutive steps in any urban energy-planning project. In this way, 

Table 9 can also be read as process steps to move from a municipal GHG emission 

inventory to local energy master plans as described in Figure 5. Malottki, Koch et al. 

(2013) propose to first develop an overview model (“Grobmodell”) and then link 

detailed models for specific purposes.  

4 Methodology and Data 

Based on the description of urban planning tasks and the different approaches in 

urban energy modelling, an energy signature model was selected for modelling 

energy needs at the scale of neighbourhoods. The following sections provide the 

underlying rational that led to the choice of the non-linear data driven model as well 

as the statistic tests applied to assess the fitness of the approach in comparison with 

a number of case studies. Tests were applied at different scales from individual 

apartments to district heating systems of approximately 7.2 MWth installed capacity 

and at temporal resolutions from monthly to hourly time series. 

4.1 Modelling approach 

To provide guidance in the early stages of planning processes of energy efficient 

urban redevelopment projects, the objective of the thesis is to test a methodology, 

which is fast in its application yet robust when transferred to new development 

projects. During implementation and operation, continuous benchmarks are required 

suitable to assess monitored data on a daily or hourly basis. This second objective 

follows the logic of a continuous modellingto detect inefficient operations within 

short time delays and is linked to the operation of building clusters. While advanced 

building simulations can deliver accurate and reliable results for a small number of 

buildings, the use of expert modelling languages or frameworks such as Modelica or 

TRNSYS is limited to the later planning phases because of the high resource needs. In 

addition, the quality of the results is highly dependent on a detailed knowledge on 
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the building properties and for large areas “require[s] more input than the available 

data can support” (Coakley, Raftery et al. 2014) which is often the case in existing 

urban areas. In such cases, the use of statistical models is proposed to replace 

detailed forward modelling approaches as they can easily be used for the 

continuation of initial planning phases throughout the building operation. At the 

building scale, data-driven models are often used to monitor individual objects 

(Kissock, Haberl et al. 2003, Raffio, Isambert et al. 2007). The difficulty of model 

parameterisation due to lack of structured data (Mendes, Ioakimidis et al. 2011) in 

urban energy planning provides for an argument in favour of a data-driven approach. 

Among the reviewed solutions the sigmoid model developed by Geiger and Hellwig 

(2002) was deemed to be the most promising solution. The model was originally 

developed for application in gas distribution grids. Similar data-driven models are 

commonly used at the urban or regional scale to estimate day-ahead gas 

consumption (BDEW 2010, BDEW, VKU et al. 2014). Here, the applicability of a single-

variant, data-driven model will be tested on the scale of neighbourhoods. In the 

urban planning context, the neighbourhood level is an important implementation 

scale for direct planning actions. Data-driven models inherently perform better at a 

large scale, to assess the limits of the approach case validation considers the 

neighbourhood scale and performs tests down to the scale of individual buildings. 

The selected modelling approach will be discussed in more detail after a general 

introduction to the family of single variant, data driven models, (also referred to as 

energy signature or regression models, (section 4.1.1). This will be followed by the 

identification of meaningful statistic tests (section 4.2) in order to make a judgement 

of the fitness of the model for the application to the case studies and for comparison 

to measured data (section 4.3). 

Single variant data driven models have been applied by Kissock, Haberl et al. (2003) 

in the development of an inverse modelling toolkit for building stocks, and by 

Girardin, Marechal et al. (2010) for urban districts. While such models have been 

found to successfully predict demand patterns at the large scale, the obvious short-

comings are the “insensitivity to dynamic effects (e.g., thermal mass) and to variables 

other than temperature (e.g., humidity and solar gain)” (ASHRAE 2005).  
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The representation of thermal capacity in the selected sigmoid model will be 

discussed in the model description. The significance of the solar gains will be 

investigated based on one of the case studies. Heller (2002) estimates the 

significance of solar radiation as 7.7% compared to a significance on 83% of the 

ambient temperature, however, this literature based assessment does not discuss 

the cross correlation of the two. The correlation also can be expected to depend on 

the building standard, which also greatly influences the heating limit temperature as 

the latter decreases with higher building standard. This question will be investigated 

based on the case study data that includes buildings from various performance 

standards. 

4.1.1 Selected non-linear single variant inverse modelling approach 

In the German gas market the volume of gas to be delivered daily to bulk customers 

is estimated a day in advance. Gas suppliers base their load prediction on a 

standardised assessment defined by the BDEW, VKU et al. (2014). The gas vendor 

estimates the next day’s gas consumption and notifies the organisation responsible 

of the specific market area. On the following day, the actual amount of gas delivered 

is measured, and the difference is cleared by the market area responsible (BDEW, 

VKU et al. 2014). A sigmoid regression model is used to estimate daily gas 

consumption using a set of parameter to describe different customers’ profiles. In 

addition, a second, purely statistical, model is applied to distribute daily energy use 

to hourly values. Due to the distinct modelling steps and underlying methods, the 

model validation will be conducted using different temporal scales. While the model 

was developed for the application at the macro scale, of thousands of households or 

other gas customers, the main interest of this thesis is to test the application on the 

scale of the neighbourhood. According to Breuer (Breuer and Schmell 2007) a 

neighbourhood can be estimated to encompass around 500 residential units, or a 

spatial scale of 10 ha. The question of scalability in terms of both space and time will 

be revisited in the discussion (Chapter 6). 

4.1.1.1 Mathematical description of the model 

The described sigmoid regression model was initially developed at the TU Munich by 

(Geiger and Hellwig 2002), (Hellwig 2003) and was adapted by (Eichlseder 2008) for 
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the Austrian context. The single variant model is mainly based on outdoor 

temperature and is parameterised by a set of four variables, according to the building 

use and an additional factor describing different weekdays. The latter is applied only 

for non-residential uses. The original set of parameters developed at the TU Munich 

considered the use (i.e. residential and several non-residential uses) as well as the 

performance of the building envelope. Eichlseder (2008) used only one value per 

building type (see Table 10). Equation 4-1 provides the basic formula for the sigmoid 

function. The parameters A, B and C modify the slope and the change point of the 

function and therefore correspond to the building type and performance while D 

shifts the curve vertically and thus represents the part of energy use that is 

independent of the outside temperature (e.g. domestic hot water; see Figure 14). 

The temperature ϑ0 describes the point of discontinuity with T equals 40°C.  

ℎ =
𝐴

1 + (
𝐵

𝜗𝑎 − 𝜗0
)

𝐶 + 𝐷 Equation 4-1 

 
h: normalised daily energy use 
ϑa:  equivalent temperature for the day 
ϑ0:  40°C (point of discontinuity) 

 

A main advantage of the sigmoid function in comparison to polynomial regression 

functions is that it allows for asymmetric transformation. Figure 16 shows variations 

of each individual factor for the purpose of illustration. 

 

Figure 14: Sigmoid function with parameter set for different building types and variations shown 

in Table 10 
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The basic function (Series 1) uses the values proposed by Eichlseder (2008) for 

multiple dwelling units as a reference. Series 2 uses a lower value for parameter A, 

resulting in a lower maximum energy need for colder days and a flatter slope of the 

function. Thus, the new curve would be more representative for buildings with a 

higher energy performance. Decreasing the negative factor B shifts the inflection 

point (IP) of the function parallel to the abscissae towards the origin (Series 3). 

Increasing factor C maintains the inflection point but increases the slope of the curve 

(Series 4). Finally, modifications of D shift the curve vertically. 

 

Table 10: Parameter sets (A, B, C, D) see (Eichlseder 2008) and variations (HEF: single dwelling 

unit, HMF: multiple dwelling unit, HG: tertiary units) 

Type A B C D 

HEF 2.8423 -36.8892 6.5692 0.1225 

HMF (Series 1) 2.3994 -35.6696 5.6347 0.1728 

Series 2 1.2000 -35.6696 5.6347 0.1728 

Series 3 2.3994 -40.000 5.6347 0.1728 

Series 4 2.3994 -35.6696 8.000 0.1728 

 

 

For comparison, Table 11 provides the set of parameters of residential buildings of 

different age classes. Geiger and Hellwig (2002) referred to new buildings for 

constructions between 1979 and 2002. As described above, the depicted 

modification of the parameters A and C results in a lower daily demand, as well as a 

shallower function representing uses with less temperature dependant energy use 

patterns such.  

Table 11: Parameters for the variables A, B, C and D for old and new buildings after (Geiger and 

Hellwig 2002) and (BDEW, VKU et al. 2014), (HEF: single dwelling unit, HMF: multi dwelling 

unit) 

 
Single dwelling Multiple dwelling 

 
old new HEF old new HMF 

A 3.130 2.794 3.1850 2.496 2.059 2.5187 

B -37.19 -37.28 -37.4124 -34.74 -34.74 -35.0333 

C 5.752 5.403 6.1723 5.661 6.427 6.2240 

D 0.0983 0.1714 0.0761 0.1021 0.2807 0.1010 

 

 



56 

 

While these factor modifications can be explained by the mathematical function, the 

increase of the temperature independent share of the daily energy needs is the result 

of the statistic samples used for the model synthetisation. The values reflect a 

relatively higher share of DHW needs for better performing buildings (i.e. new 

construction). In the basic application to simulate daily energy use for a given 

location, the temperature is smoothened as will be explained in section 4.1.1.2. The 

sigmoid function then delivers the normalised daily energy use h, which together with 

the average energy use per day, results in the predicted daily load curve. The annual 

energy use is typically estimated based on the climate corrected past annual energy 

use. 

4.1.1.2 Representation of dynamic effects 

In order to represent latent effects in the heating needs, which can be explained, for 

example by the thermal inertia of buildings, Geiger and Hellwig (2002) introduced a 

calculated temperature value (ϑa) that is used in the sigmoid function (Equation 4-1). 

The temperature value is calculated based on a geometric sequence with four 

elements. Thus, the calculation takes into account the weighted measured 

temperature of the day for which the energy needs are calculated, as well as for the 

three days before, with a weighting factor decreasing by 0.5 per day (Equation 4-2). 

 

𝜗𝑎 =
𝜗𝑡 + 0.5 × 𝜗𝑡−1 + 0.25 × 𝜗𝑡−2 + 0.125 × 𝜗𝑡−3

1 + 0.5 + 0.25 + 0.125
 Equation 4-2 

 

ϑa:  calculated temperature for the day 
ϑt:  measured temperature for the day 
ϑt-1:  measured temperature for the day before 
ϑt-2:  measured temperature for the two days before 
ϑt-3: measured temperature for the three days before 

 

In the application of the model this leads to a smoothing of isolated peaks in the 

outdoor temperature and resembles a latent reaction of the building system.  

4.1.1.3 Representation of different week days 

For energy use in buildings, different patterns can be observed depending on the 

temporal scale. While so far the model has been described in relation to the mean 
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daily outdoor temperature, other cyclic factors can be observed that affect the use 

of energy. For non-residential buildings, Geiger and Hellwig (2002) proposed to 

introduce week-day factors to provide a weighting based on the specific day. 

Depending on the sector, these factors show a distinct pattern with the highest 

modifications on weekends. For residential use, no modification is foreseen. 

Table 12: Weekday factors for exemplary uses after (Hellwig 2003) 

 FMon FTue FWed FThu FFri FSat FSun 

Retail 1.0692 1.07 1.0589 1.0478 1.0449 0.9123 0.7982 

Hotels 0.9767 1.0389 1.0028 1.0162 1.0024 1.0043 0.9584 

Residential 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

 

4.1.1.4 Temporal correction 

For use as predictive model, the application requires the recalculation of measured 

total energy use Wx to the period of a year. The length of the measurement expressed 

in the number of days (dx) should ideally include a full heating period. The type of use 

must be specified so that the variables for the calculation of the normalised daily 

energy use for the measurement period can be calculated according to Equation 4-1, 

based on the smoothened outdoor temperature for the period. The temperature 

series can consist in measured or predicted data for a given period. 

The annual energy use 𝑊𝑎 is calculated using Equation 4-3 

𝑊𝑎 =
ℎ̅𝑎

ℎ̅𝑥

×
365

𝑑𝑥
× 𝑊𝑥 Equation 4-3 

with  

ℎ̅𝑎 =
∑ ℎ𝑖

365
𝑖=1

365
 Equation 4-4 

and 

ℎ̅𝑥 =
∑ ℎ𝑖

𝑥
𝑖=1

𝑑𝑥
 Equation 4-5 

 
Wa total energy use in the calculation year 
Wx total energy use in the measurement period 
ℎ̅𝑎 mean daily energy use in the calculation year 
ℎ̅𝑥 mean daily energy use in the measurement period 
ℎ𝑖  calculated daily energy use based on the sigmoid function 
dx length of measurement period in days 
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4.1.1.5 De-normalisation 

The daily energy use 𝑊(𝜗𝑎) is then calculated using Equation 4-6 based on the average 

daily energy use 𝑊̅𝑎. 

with 

 
𝜗𝑎 predicted mean daily temperature 
ℎ(𝜗𝑎) normalised daily energy use 
𝑊(𝜗𝑎) de-normalised daily energy use 
𝑊̅𝑎  mean daily energy use 

 

Continuous daily reference values can be calculated for measured sites based on the 

smoothening of the daily mean outdoor temperature values using the geometric 

series (Equation 4-2). In a second step, the normalised daily energy use ℎ̅𝑎 is 

calculated by applying Equation 4-1 for a given building type. 

4.1.1.6 Hourly application 

After the daily heating needs are calculated, statistic hourly load profiles are applied 

to distribute the daily demand or the mean power requirements over the course of a 

day. The hourly profiles cover specific temperature bands (Figure 15).  

 

Figure 15: Hourly Load Profiles for Different Outdoor Temperatures for Residential Multi 

Dwelling Houses, own illustration adapted from (Geiger and Hellwig 2002) 
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𝑊̅𝑎 =
𝑊𝑎

365
 Equation 4-7 
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Due to the two-step modelling approach, the statistic profiles could be replaced by 

site-specific load profiles for small building clusters. A suitable method for the load 

profile synthetisation is described by (Grohmann 2000). At the scale of 

neighbourhoods, the extraction of specific profiles has limited relevance as different 

use profiles seem difficult to extract. Instead aggregated load profiles could be 

extracted.  

4.1.1.7 Model to model comparison 

In addition to case studies based on measured energy use data, described in chapter 

4.3 the data driven model was compared to results of a deterministic model. In (Koch 

2010) a simplified steady state energy balance model is compared to the energy 

signature model representing a non-linear, data-driven approach. For the reference 

case daily energy needs for a virtual test case of a cluster of single family buildings 

were calculated, using a simplified deterministic simulation model based on DIN EN 

ISO 13790 (DIN 2008). Building archetypes (IWU 2003) were used to determine the 

specific geometry and main properties for the theoretic case study. For the 

comparison, heating needs of a number of buildings were calculated without 

consideration of distribution losses in a local district heating system. This inter-model 

comparison is not suitable for assessing the quality of results, but is included here to 

describe the inherent logic of the energy signature.  

 

Figure 16: Comparison of Simulations based on a Forward and Data-Driven Approach (Koch 

2010) 
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The data driven model follows the same tendency described by the forward 

approach. The subdued reactivity of the energy signature (Figure 16) can be 

attributed to the geometric sequence of past days’ outdoor temperature used to 

determine the calculated temperature for the day (Equation 4-2). In the data-driven 

model, this aspect represents the building inertia, which is not represented in the 

steady state calculation model. 

 

Figure 17: Comparison of the daily energy needs calculated with a steady state energy balance 

and an energy signature model assuming the same annual heat demand (Koch 2010) 

While the general relationship between energy use and mean daily outdoor 

temperature is an inherent feature of both models, it can be seen that the linear 

increase of heating needs at low temperatures (<0°C) is not followed by the sigmoid 

function, which assumes a decline in the slope of energy needs (Figure 17). With 

reference to (BMFT 1977) Verbruggen (1982) described the “decreasing marginal 

heat consumption with decreasing outside temperature” as a “generally identified 

property”. The same characteristic is described by (Sawillion 2002). 

Mazzarella, Liziero et al. (2009) argued that the non-linear increase of thermal daily 

energy use with decreasing outdoor temperatures in energy signatures could be 

explained by the installed power, which is limited to a design point. In the German 

context where usually rather over-dimensioned heating systems can be found 

(Diefenbach, Loga et al. 2002) this argument seems hardly convincing. A more 

plausible explanation for this phenomenon could be a decreasing ventilation rate 

with decreasing outdoor temperatures. In the assessment of the passive house 
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settlement “Gartenhofsiedlung Lummerlund” Ebel, Großklos et al. (2003) found that 

the average window opening hours varied greatly between summer (average of 10,6 

h/d) and the heating period (average of 0,88 h/d). The correlation between window 

opening hours and the mean daily outdoor temperature was found to be relatively 

stable between 5°C and 18°C; below 5°C the opening was largely reduced. In the 

sigmoid function, this phenomenon is depicted based on the statistical evidence. The 

effect could be described in an energy balance by a variation of the air exchange rate 

depending on the mean outdoor temperatures for temperatures below zero degrees. 

However, as Eichlseder (2008) points out, for the German or Austrian context, it is 

particularly difficult to provide sufficient proof for the argument as few measured 

data sets exists for low temperatures, due to the absence of days with mean 

temperatures below -5 °C.  

The model-to-model comparison indicated that the energy signature provided 

plausible results for an aggregated scale with little input data. For a more reliable 

validation, the model designed for the scale of regulatory zones of the gas grid was 

tested against measurements of mixed-use case studies at the scale of single 

buildings up to district heating systems. 

4.1.2 Proposed parameter set for low temperatures 

A distinct weakness in the prediction of peak loads at very low temperatures was 

identified in first applications of the model. This finding is consistent with the 

assessment of gas load predictions for the cold year 2012 conducted by Roon, 

Gobmaier et al. (2014). To overcome this issue, new parameter sets were calculated 

based on data from the year 2012 of the case study “Rintheimer Feld” using a non-

linear curve fitting based on a Generalized Reduced Gradient solver to identify an 

optimal parameter set for the case study data. Figure 18 shows the measured data 

and simulation results of the existing parameter set (sim HMF) and the new 

parameter set (sim HMFx) as well as the fitted curve based on the GRG algorithm. 

The corresponding parameter sets are provided in Table 13. 
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Figure 18: Measured data for the year 2012 (Rintheim case study) and fitted sigmoid curve 

Non-linear curve fitting was applied by minimising the root mean square error of the 

sigmoid function compared to the measured data. The curve fitting was restricted to 

the temperature dependant part of the heating energy needs (i.e. parameters A, B & 

C). The solver used was the Generalized Reduced Gradient (GRG2) Algorithm 

developed by Leon Lasdon and Allan Waren (Lasdon, Waren et al. 1978). Within the 

given constraints for the parameter variation, the solver iteratively tests solutions for 

multiple variables and optimizes the calculation for a given objective. In this case, the 

selected objective is to minimize the root mean square error of the simulation results 

compared to the measured values. The optimum is a function of the adjustable model 

parameters A, B and C. As the function includes multiple values for which the rate of 

change must be measured, the function has multiple partial derivatives, forming a 

vector, which is referred to as a gradient of the function.  

Table 13: Exemplary Parameter Sets for Single (HEF) and Multiple (HMF) Dwelling Buildings 

(BDEW, VKU et al. 2014) and Proposed Parameter Set (HMFx) 

 Parameter Single Dwelling Multiple Dwelling 

  HEF04 HMF04 HMFx 

A 3,1850 2,5187 2,059 

B -37,4124 -35,0333 -39,7624 

C 6,1723 6,2240 5,3844 

 

By applying the finite difference estimate of the derivative, each adjustable cell is 

modified and the impact on the optimum cell is observed. This process is repeated in 
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multiple iterations to identify optimality conditions. Optimality conditions are 

reached when the gradient of the optimum cell is zero, as it reflects the rate of change 

with regard to the adjustable cells. Thereby the parameters resulting in the maximum 

or in this case minimum value of the optimum cell (CVRSME) are identified.  

Before comparing the results to further case study data their plausibility in relation 

to the physical properties of a heating load curve is discussed. In comparison to the 

function calculated with the existing parameter set (i.e. HMF04), the new curve has 

a higher peak value at low temperatures along with an increase in the steepness of 

the sigmoid curve (Figure 19). This was the main weakness of the existing profile 

“HMF 04” in the application to residential buildings in the very cold year 2012. As 

further parameters were modified, the difference was regarded as a relative indicator 

in the form of the difference between the peak power at a given temperature below 

the change point and the value delivered by the derivation of the curve (ΔP). Figure 

19 shows the two parameter sets “HMF04” and “HMFx” instantiated for annual space 

heating needs with ΔPHMF and ΔPHMFx respectively. 

  

Figure 19: Comparison of the energy signature based on the existing parameter set “HMF04” and 

the proposed set “HMFx” 

As discussed in section 4.1.1.7, ΔP can be explained by a lower ventilation rate and 

thus lower ventilation losses in the building’s energy balance. At -10°C the existing 

profile for multi dwelling units HMF04 has a ΔP of 32%, the new parameter set 
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(HMFx) results in a value of 17%. Compared to an actual heating load curve the 

derivation of the sigmoid describing the inclination at the change point can be used 

as an approximation to identify the heating limit temperature. For the new 

parameter set the deviation results in a heating limit temperature of 15 °C. This is 

comparable to the value for the HMF04 profile (16°C) and corresponds to target 

values of low energy buildings (Figure 19). The modification of parameter “C” results 

in a reduction of the heating limit temperature and increases the inverted “S” shape. 

Finally, a modification of parameter “B” in the regression reduces the heating limit 

temperature by shifting the curve towards the origin (see Figure 14).  

The new parameter set referred to as HMFx was applied without further calibration 

to other case studies in order to assess its fitness. Especially for low temperatures in 

2012, the new parameter set well depicted the thermal behaviour of groups of 

buildings especially regarding peak loads of heating needs. The detailed discussion is 

provided in the result section. 

4.2 Statistic tests 

In order to test the quality of the results, a number of statistical indicators will be 

introduced to determine a suitable measure of quality. In order to test the fitness of 

the model, the simulated results for a given sample are compared to the measured 

data based on different spatial and temporal aggregations (i.e. size of samples).  

An important criterion often used in building simulation is the mean biased error 

(MBE) that delivers a non-dimensional description of the bias of the model (Coakley, 

Raftery et al. 2014). In addition, the coefficient of variation of the root mean square 

error (CV RMSE) is proposed as a common indicator for the fitness of a model. Table 

14 provides acceptance criteria for the different indicators based on a monthly and 

hourly building performance simulation developed by the American Society of 

Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) (ASHRAE 2002), the 

International Performance Measurement and Verification Protocol (IPMVP) (EVO 

2007), and the American Federal Energy Management Program (FEMP) (US DOE and 

Nexant 2008). 
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Table 14: Acceptance criteria for building energy performance simulation models (ASHRAE 

2002, EVO 2007, US DOE and Nexant 2008), qtd. in (Coakley, Raftery et al. 2014) 

Standard/guideline Monthly criteria (%) Hourly criteria (%) 

  MBE CVRMSE MBE CVRMSE 

ASHRAE Guideline 14 5 15 10 30 

IPMVP 20 – 5 20 

FEMP 5 15 10 30 

 

Hellwig (2003) proposed the standard deviation as a description of the sigmoid 

function. In order to relate the test to the non-linear function, the standard deviation 

was calculated for segments of 1 °C. In the samples used in the original study, as in 

the case study data examined here, the very low temperature segments suffer from 

an absence of sample data, which renders the calculation of the standard deviation 

difficult. Consequently, the confidence interval decreased substantially with 

decreasing temperatures. 

As further test the least squares regression with the resulting coefficient of 

determination and the Bravais-Pearson correlation coefficient will be calculated 

(Kühlmeyer 2001). The combination with further statistical tests seems necessary 

because the correlation, even though it is often used as main indicator in model 

validation, does not deliver sufficient evidence to determine the fitness of the model 

(Bland and Altman 1986) (Figure 20). Along the same line of thought Grohmann 

(2000) proposed to assess load curves by combining the correlation in combination 

with the variance and the mean value for a given timescale. As the selected model 

uses the annual energy use as basis and therefore implicitly shows the same mean 

value as the measured data. The standard deviation of the simulated as well as the 

measured data will be compared as a measure for a similar variance.  

Figure 20 illustrates different combinations and the limited validity that could arise 

from using only one or two of the described indicators. Series A and Series B show 

the same variance and mean value, but a negative correlation. Series A and C have a 

perfect positive correlation and the same mean value, but a different variance.  



66 

 

  

 

Figure 20a-c: Illustration of the different criteria to compare individual profiles adapted from 

(Grohmann 2000) 

Series A and Series D are strongly correlated and have the same variance, but differ 

in their mean value. Figure 20 b and c also illustrates Bland and Altman’s criticism 

(Bland and Altman 1986) that the correlation coefficient alone must not be used to 

determine the fitness of a model. For both cases the correlation coefficient is 1, 

however it is apparent that Series A and Series C have a different spread and Series 

A and D a different mean value. Consequently the results will be discussed based on 

a set of statistic tests for correlation, mean value and variance. Theil’s coefficient of 

inequality (Theil’s U) is applied as itcombines the three criteria of mean value, 

variance and correlation (Sterman 2000). In the interpretation of the results, these 

indicators will be used in parallel to the Bravais-Pearson correlation coefficient as well 

as the CV RMSE in order to compare the results to common criteria of acceptance. 

4.2.1 Mean bias error (MBE) =MRGP 

The MBE is often used to compare simulation results with real measurements. The 

limitation of this indicator is that positive and negative errors will compensate each 

other.  

MBE =
∑ (𝑥𝑖 − 𝑦𝑖)

𝑁𝑝

𝑖=1

∑ (𝑥𝑖)
𝑁𝑝

𝑖=1

 Equation 4-8 
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The MBE captures the mean difference between each instance (i) of a series of 

measured (x) and simulated (y) values. N provides the number of values in the interval 

p. However, positive and negative errors will compensate each other which limits the 

interpretation of the MBE (Coakley, Raftery et al. 2014). As the errors are normalised, 

larger values are not overweighed in the assessment (Andres and Spiwoks 2000), the 

MBE is sometimes also referred to as mean relative weighted error. In this application 

the MBE has a limited explanatory power as the simulation model is fed with the 

annual energy heating needs of the given case. The mean value will coincide and thus 

the value of MBE will implicitly be very small. 

4.2.2 Coefficient of variation of root mean square error (CV RMSE) 

In the assessment of simulation results, the Root Mean Square Error (RMSE) is often 

used to describe the differences between measurement and prediction. The RMSE 

represents the sum of these differences, which are also referred to as residuals. The 

RMSE is a scale dependant measure. Here it is used in relation to the mean 

observation (𝑥̅) as the coefficient of variation of the root mean square error (CV 

RMSE).  

CV RMSE =

√∑
(𝑥𝑖 − 𝑦𝑖)2

𝑁𝑝

𝑁𝑝

𝑖=1

𝑥̅
 

Equation 4-9 

Due to the normalisation, the CV RMSE is scale independent and can be compared to 

general compliance criteria described in Table 14 (Coakley, Raftery et al. 2014). 

4.2.3 Variance 

The variance s2
n is a measure for the spread of a sample and thus describes the 

density of n samples of the variable x. The variance is defined as the average of the 

squared differences from the mean (Kühlmeyer 2001). 

𝑠𝑛
2 =

1

𝑛
∑(𝑥𝑖 − 𝑥̅)2

𝑛

𝑖=1

 Equation 4-10 

 

The standard deviation s is defined as the square root of the variance. 

 

s = √𝑠2 Equation 4-11 
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4.2.4 Covariance 

The covariance sxy describes the interdependency of two data sets. For sxy = 0 the two 

variables can be regarded as independent; the inverse conclusion cannot be drawn 

(Kühlmeyer 2001).  

𝑠𝑥𝑦 =
1

𝑛
∑(𝑥𝑖 − 𝑥̅) ∗ (𝑦𝑖 − 𝑦̅)

𝑛

𝑖=1

 Equation 4-12 

with −∞ ≤ 𝑠𝑥𝑦 ≤ +∞  

While the covariance displays a unidirectional linear relation as a positive and the 

inverse as a negative value, the strength of the correlation cannot be concluded from 

the covariance.  

4.2.5 Bravais-Pearson correlation coefficient 

In order to measure the strength and direction of a linear relationship between two 

metric variables the Bravais-Pearson correlation coefficient ρ is calculated. The 

correlation coefficient is calculated on the basis of the covariance of two variables x 

and y divided by the product of their standard deviations (Duller 2006).  

ρ =
𝑠𝑥𝑦

𝑠𝑥 ∗ 𝑠𝑦

 Equation 4-13 

with −1 ≤ ρ ≤ +1  

From ρ < 0 it can be concluded that the values are inversely linear related, for ρ = 0 

no linear relation is existing and ρ > 0 proves a unidirectional linear relation. For two 

samples x and y that fall on one a straight line |ρ| = 1. 

The correlation coefficient used here is only measuring the linear correlation of two 

sets of data. Therefore, to test the fitness of the model, the simulated values will be 

related to the measured values in a regression analysis instead of comparing the two 

nonlinear functions. According to (Duller 2006) 0.7 < ρ < 1 indicates a strong 

correlation and thus indicate a close match between simulation and reality. 

4.2.6 Coefficient of Determination R2 

The coefficient of determination is the relation of the variance explained by the 

regression of x and y (Andres and Spiwoks 2000). The value of one indicates a perfect 

prediction. For R2= 0.9, ninety percent of the variation in the response variable can 
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be explained by the explanatory variables. The remaining ten percent can be 

attributed to unknown, lurking variables or inherent variability. The depiction of 

measured space heating needs, compared to calculated aggregated needs, is an 

often-used depiction of the fitness of the model, see for example Yamaguchi, 

Shimoda et al. (2013). Especially for non-linear models, the discussion of the 

deviation in this form is comparatively easy to assess.  

 

Figure 21: Regression of measured and simulated values with the trendline (red) as well as the 

line of equality (dotted blue line) 

When comparing simulation and measurement, R2 provides a good impression of the 

relation of the two variables. R2 alone can be misleading as it shows the consistency 

of the variation but not the agreement in absolute values. As Bland and Altman (1986) 

point out, the correlation, as sole indicator is insufficient. For analysis, the line of 

equality (in this case a line plot with y=x) and the distribution of residuals should be 

taken into account (see Figure 21). 

4.2.7 Theil's coefficient of inequality (Theil's U)  

Finally, a statistical measure combining the above-described requirements of 

comparing the mean and the variance, as well as the covariance of two time series, 

is a derivation of Theil’s coefficient of inequality (Theil’s U). The objective of the 

original test was to assess the quality of a prediction and to compare it to the naïve 

prognosis represented by the prior value of the time series (Andres and Spiwoks 

2000).  
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U =
√1

𝑛
∑ (𝑃𝑡 − 𝐴𝑡)2𝑁

𝑡=1

√1
𝑛

∑ (𝐴𝑡)2𝑁
𝑡=1

 Equation 4-14 

With P being the predicted change at time t, 

P𝑡 =
𝑦𝑡 − 𝑥𝑡−ℎ

𝑥𝑡−ℎ

 Equation 4-15 

and A being the measured change at time t. 

A𝑡 =
𝑥𝑡 − 𝑥𝑡−ℎ

𝑥𝑡−ℎ

 Equation 4-16 

 

As described in more detail in Andres and Spiwoks (2000), Theil’s U can be dismantled 

in three components to test the mean value (Um, Equation 4-17), the variance (Uv, 

Equation 4-18) and the correlation (Uc, Equation 4-19) as individual error 

components. Here, the variation proposed by Sterman (2000), also referred to in 

Schmidt, Jäger et al. (2013) is used that applies Theil’s U to the measured and 

simulated values.  

 

U𝑚 =
(𝑦̅𝑡 − 𝑥̅𝑡)2

1
𝑛

∑ (𝑦𝑡 − 𝑥𝑡)2𝑁
𝑡=1

 Equation 4-17 

 

U𝑣 =
(𝑠𝑦 − 𝑠𝑥)2

1
𝑛

∑ (𝑦𝑡 − 𝑥𝑡)2𝑁
𝑡=1

 Equation 4-18 

 

U𝑐 =
2 (1 − 𝑟𝑥𝑦) ∗ 𝑠𝑦 ∗ 𝑠𝑥

1
𝑛

∑ (𝑦𝑡 − 𝑥𝑡)2𝑁
𝑡=1

 Equation 4-19 

With s being the standard deviation and r the correlation coefficient for the variables 

x and y. The combined indicators provide the ratio of errors that can be attributed to 

the different sources with 𝑈𝑚 + 𝑈𝑣 + 𝑈𝑐 = 1. 

As explained for the MBE, Um has a limited significance regarding the fitness of the 

model. In this case it still proves useful to detect deviations from the mean value, 

which in this case rather point out difficulties in the application of the model where 

Um ≠ 0. The individual indicators are expressed as percentage values. Two time series 

have the same mean value with Um = 0 and the same variance with Uv = 0. A perfect 

correlation of two time series would result in Uc = 1.  
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4.3 Case study description 

In the course of the research work, different data sets were made available for 

developing and testing the modelling approach, which are described in detail in 

Annex C. In all case studies, data was anonymised and treated without reference to 

individual users or units. Table 15 summarises the case studies used for the model 

validation. In all cases, data was used at the lowest scale of measurement and further 

used for aggregated buildings or building clusters up to a complete neighbourhood 

or zones. 

Table 15: Case studies used for the model validation 

 Case Study Building Use Size Scale 

1 Rintheimer Feld Residential 3,900 m2 Apartment, Buildings, Building Cluster 

2 Single family buildings Residential 600 m2 Buildings 

3 Blaue Heimat Residential 4,700 m2 Buildings, Building Cluster 

4 Bad Aibling Residential, Hotel, School, Office 26,800 m2 Building Cluster, Neighbourhood, DH 

5 CHP Ops Residential, School, Recreational facility 2.8 MWth Building cluster, Neighbourhood, DH 

6 Commercial Zone Office, Light Industrial n.a. Building Cluster, Commercial Zone 

4.3.1 Rintheimer Feld 

Measurement of two low energy buildings was accessible for testing the fitness of 

the energy signature model. The demonstration buildings in the Rintheimer Feld 

project were assessed in comparison to a reference building renovated to meet the 

standard measures applied in other renovations conducted by VOLKSWOHNUNG 

GmbH. Monitoring was installed for one staircase in the reference building (10 units) 

and in all 60 units of the two demonstration buildings. Each building contains three 

staircases (entrances) with ten residential units each with a cellar in which the central 

space heating and domestic hot water provision is located. Data was received and 

treated in an anonymised form, so that no reference is made to individual apartments 

or users. As the selected simulation approach does not consider specific physical 

properties of individual apartments, the single objects are not referenced to their 

specific location. Reliable measurements on the installed sensors was obtained from 

September 2011 onwards (Jank 2013). For the model validation, measurements were 

available for a period of twelve months between January 2012 and December 2012. 
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The temporal resolution is, depending on the sensor, provided in one minute time 

intervals. For synchronisation, measurements were aggregated to hourly and daily 

time series. In total nine measurement failures longer than four hours were identified 

as missing days each affecting ten apartments each (90 missing values). The days 

were substituted by the maximum value of the continuous measurement for that day 

and checked against the following day’s value. From the sixty samples, two 

apartments were excluded from further work as the time series delivered implausible 

patterns. To test the proposed approach combining simulation and monitoring, a 

data warehouse solution was implemented. Data analysis and queries were 

conducted based on an online analytical processing (OLAP) solution, described in 

section 5.2. 

4.3.2 Single building systems 

For the individual building case study, monitoring data from eight individual buildings 

in South West Germany was used. The data was recorded between the 1st of August 

2008 and the 31st of July 2010. For privacy reasons no address specific information is 

correlated to the datasets and the individual buildings are referred to “building A” up 

to “building H”. All buildings are situated within a 20 km radius in a village context so 

that similar weather conditions are assumed for the analysis. All buildings were 

recently modernised and each was equipped with a new individual heating system 

for provision of space heating and domestic hot water.  

 

Figure 22: Measurements and simulation of the aggregated daily heating needs of all single-family 

buildings  
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The data was available in hourly time steps. Due to long consecutive periods of 

missing values and implausible values, two buildings were excluded from the case 

study. Data from the space heating needs of six buildings were selected for 

comparison with simulated demand in different levels of aggregation. In order to do 

so, a randomly chosen building was added to the cumulated load for each simulation 

run. The last case therefore corresponded to the aggregated demand of all buildings.  

4.3.3 Blaue Heimat 

The building cluster “Blaue Heimat” originally built 1951 was renovated in 2005 with 

the target of a net-zero energy building. After renovation, the low energy building 

contained 40 residential units. The concept includes two adjacent buildings supplied 

by the same energy system, which were not renovated to the same standard. Data 

was provided for all three buildings at a 15-minute resolution. Data was made 

available for the period between 14.7.2009 until 1.1.2011 and thus contained data 

for 536 days. In total six measurement failures with 41.6 days were reported as 

missing values. Data for 365 days was used for the model validation. As a number of 

consecutive missing values fell in the month of December 2010, the 1st of September 

2009 was selected as starting point. The selected year contained 8.2 days as missing 

values.  

The case study consists of three data sets for two existing buildings as well as the 

central low energy building. Figure 55 shows the measured data for space heating 

and domestic hot water use mapped to the ambient temperature. The energy 

signatures of the three buildings show typical curves for a well-operated system with 

clear dependency on the outdoor temperature. Due to its higher performance and 

lower peak demand the low energy buildings are typically represented by the 

shallower curve (MFH A). 
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Figure 23: Energy signatures of the three building parts in the “Blaue Heimat” case study 

4.3.4 Bad Aibling 

For the Bad Aibling case study, data for the zero energy development project in Bad 

Aibling was kindly made available. The B&O Park Area in Bad Aibling is a conversion 

of a former military site. The target was defined as zero energy development for the 

brown field project (Böhm, Schroeder et al. 2010). The redevelopment project and 

accompanied research activities were funded through the EnEff:Stadt research 

program by the German Ministry for Economics (BMWi). For the purpose of this 

thesis, hourly data was provided aggregated at building level and specified per use. It 

was further assigned to the branches of the local district heating network. For the 

tests, data was anonymised and treated without reference to specific buildings or 

users. Data was provided for the years 2012 and 2013 for different uses. Hotels 

represented an especially large share of the available data. In total, measurements 

for 2012 and 2013 contained five missing days. Furthermore, a residential cluster 

along with office and school buildings were also used. Over the course of the two 

years 15 days were reported as missing data. As the hourly temperature data 

contained a number of missing values, it was compared to the hourly and mean daily 

temperature measured at the DWD station 1262 located at Munich airport (Figure 

57).  
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Figure 24: Comparison of the site-specific mean daily outdoor temperature measured in Bad 

Aibling and Munich (DWD station 1262) for the year 2013 

This comparison was done to complete missing values in the temperature data and 

to test the sensitivity of the simulation results to site-specific temperature data. The 

comparison showed good agreement between the two temperature measurements. 

Figure 57 shows the comparison of data from 2013. 

4.3.5 CHP Ops 

Data was provided for five individual building clusters of different use types 

connected to the district heating system here referred to as “CHP Ops”. The data 

contains the delivered energy at each building cluster and therefore does not contain 

losses in the distribution system outside the buildings. The mean power output of a 

district was made available in 10-minute time steps for two measurement periods 

between 1.2.2008 until 27.1.2009 and 5.7.2009 until 1.7.2010.  

Seventy-six percent of total demand refers to residential uses. About a third of the 

apartments were built in 2005. The rest of the residential building stock consisted of 

buildings from the last century, which, however, were well maintained, and a small 

number of small multifamily apartments built in the 1970s. The non-residential uses 

include a recreation centre including a swimming pool, a school building as well as a 

nursery. For one of the five building clusters, 34 daily measurements were missing. 

These were added by linear interpolation and compared to the same weekdays of the 

week before and after.  
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4.3.6 Commercial Zone District Heating System 

At a high aggregation level, the total load of a district heating system supplying heat 

for a commercial zone was used as a case study. For confidentiality reasons no 

reference to the exact location or the specific user or processes was provided. The 

site located in the south of Germany consisted of two-third light industrial use and 

one-third office spaces. The absolute energy use in 2013 was 291 MWh and 222 MWh 

in 2014. Based on annual benchmark values (BMVBS 2009) it can be estimated that 

the site hosts approximately 1000 m2 of office buildings and 1500 m2 of light 

industrial use. Data was provided as complete time series of hourly energy use for 

the years 2013 and 2014.  

5 Results 

5.1 Model validation 

The model validation presented in this chapter is based on the case studies described 

in chapter 4.3. Due to the limited number of cases, the results cannot provide proof 

of a method. Yet, as all case studies across different use categories, scales and 

geographical locations point to similar conclusions, the presented results are 

interpreted as robust trends. It can be stated as a common result that the quality of 

simulation results, or the fitness of the model, increases with larger sample size. The 

case study “CHP Ops”, which delivered the best results in terms of CV RMSE comes 

closest to the scale of a neighbourhood. The case studies “Blaue Heimat” and “Bad 

Aibling” resemble small neighbourhoods while the assessment of single apartments 

in the case study “Rintheimer Feld” and the single-family buildings, represent 

extreme application cases for a data driven model. Yet, even the latter produced very 

good results at a daily resolution. These results confirm the basic research hypothesis 

that the data driven approach is applicable at the scale of a neighbourhood and even 

at the scale of building clusters. 

For low temperatures, a new set of parameters is proposed which delivered better 

results than the original parameters for multifamily buildings for the cold year 2012. 

This is especially true for the representation of peak loads and is indicated by the 

improved value when comparing the variance of measured and simulated time series. 
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In the case of “Blaue Heimat” the measured data for heating energy needs was 

available including domestic hot water needs. Here, the simulation was calibrated to 

correspond to actual mean daily domestic hot water consumption. The calibration, 

which was done analogous to the proceeding proposed by Richter (2004), proved to 

be an effective and easy way to improve simulation results. For a useful application 

in the urban context, few modifications should be necessary, as an automated 

application is essential. The adjustment of the parameter (D) for the domestic hot 

water demand was judged an effective calibration measure with reasonable effort.  

For non-domestic uses, the use-specific correction of the weekday factors proved an 

additional way to improve the model for the use as a continuous benchmark. 

The detailed results of the simulations and the application of the chosen statistic 

indicators are provided in the following sections for each individual case study. 

5.1.1 CHP Ops 

For the case study “CHP Ops” the mean daily thermal power, as well as the hourly 

power demand, was simulated based on the described set of model parameters, as 

well as the total heating energy needs over the year. The headline results of the 

comparison of measurements and simulation are published in (Woods 2012).  

 

Figure 25: Comparison of the aggregated measurements and simulations for mean daily power 

from the CHP Ops case study (Woods 2012) 
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maintain a realistic application scenario. The simulation was run for six different 

measurement points in the district heating system, three residential and three non-

residential. Losses of the distribution system were not included in the data as the 

delivered energy use was considered. Table 16 shows the individual results for each 

building cluster, as well as an aggregation of all residential users (Table 16, row 7) and 

the non-residential users (Table 16, row 8). Finally, the total energy needs were 

simulated, based on the annual power demand of all uses. 

Table 16: Selected results from the model validation for the case study „CHP Ops“ 

  
Daily Series 

CV 
RMSE 

R2 ρ 
σs/ 
σm 

Um Uv Uc 

1 Residential building cluster 1 13.53% 0.94 0.96 0.94 0.06% 6.41% 93.81% 

2 Residential building cluster 2 17.26% 0.88 0.94 1.13 0.00% 10.45% 89.83% 

3 Residential building cluster 3 23.88% 0.95 0.97 1.55 0.00% 78.72% 21.56% 

4 Tertiary buildings GBH 19.57% 0.81 0.96 1.03 0.00% 0.49% 99.79% 

5 Tertiary building cluster 1 50.54% 0.70 0.83 0.76 0.00% 18.49% 81.78% 

6 Tertiary building cluster 2 63.95% 0.61 0.78 0.68 0.00% 25.11% 75.17% 

7 Aggregated residential buildings 12.33% 0.94 0.97 1.01 0.06% 0.06% 100.16% 

8 Aggregated tertiary buildings 19,72% 0.84 0.91 1.00 0.00% 0.00% 100,28% 

9 All buildings 11.18% 0.95 0.97 1.02 0.04% 1.15% 99.09% 

 

The simulation for residential building clusters delivers good results regarding the CV 

RMSE between 13.53% and 23.88%. The aggregated value is even lower, at 12.33% 

for all residential buildings. The majority of the tertiary buildings perform less well, 

with CV RMSE values up to nearly 64%. This can be explained mainly by the lack of 

calibration of the model taking into account the weekday factors. The tertiary time 

series shows regular weekly patterns, which were not adopted in order to remain 

comparable to a large-scale application. Still, for aggregated non-domestic uses, the 

CV RMSE reaches a good value of 21.38%. When considering all uses of the system 

the error is even further reduced to a value of 11.18%. Here, the large share of 

residential users helps to improve the result in comparison to non-domestic users. 

The share of the heating energy needs for residential users was 76% of the total 

demand. 
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Out of the residential buildings, the variance is well depicted for clusters one and two 

while the third cluster showed a much lower standard deviation for the 

measurements in comparison with the simulations. The third residential cluster 

(Table 16, row 3) also has a low value of Uc as this indicator combines the correlation 

with the standard deviations of both measured and simulated values. Even though 

the spread of the sample cannot be explained by the model, the correlation still 

delivers a very good result at over 95% for all residential uses. The model performed 

poorly on this individual building cluster. 

Even though non-domestic uses are typically less temperature dependant and 

depend more on the operation schedule and day of the week, the model shows good 

correlation between 78% and 96% for different uses. 

In the aggregation, the model depicts both the domestic and non-domestic uses 

extremely well. The model regards the variance of measurements with only one 

percent deviation for the residential building clusters and a perfect fit for the non-

residential aggregated heating energy needs. A very high level of fitness is finally 

reached when aggregating the whole mean daily power demand of the system (Table 

16, row 9) with a correlation coefficient of 97% and Uc = 99,09%, The variance is also 

very well matched with a Theil’s coefficient for the variance (Uv) of only 1,15%. The 

aggregated results show that by the increase of scale, some of the limitations to the 

predictions of individual uses, such as building cluster 3, are overcome. Profiles 

largely deviating from normal – in this case residential – use are compensated by the 

averaging effect with increasing size. 

The objective of the Macro DE project was not only to deliver daily power demand 

but, more so, the hourly power demand suitable to generate an annual load duration 

curve for the potential sites for district heating systems across the UK. Hence, the 

hourly simulation results were evaluated for the case study. The model shows good 

results for the aggregation of all buildings, as well as for the residential buildings 

remaining in the boundaries set for the expected accurateness of an hourly building 

energy performance simulation by (ASHRAE 2002).  
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Table 17: Selected results from the model validation for the case study “CHP Ops” (hourly 

simulation) 

  Hourly Series 
CV 

RMSE 
R2 ρ 

σs/ 
σm 

Um Uv Uc 

1 Residential Buildings 29.71% 0.76 0.87 0.94 0.00% 1.43% 98.58% 

2 Non-Domestic Buildings 37.25% 0.62 0.79 0.87 0.00% 4.11% 95.90% 

3 All Buildings 24.13% 0.82 0.91 0.98 0.00% 0.18% 99.83% 

4 
All Buildings, annual load duration 
curve 

2.00% 1.00 1.00 0.98 0.09% 26.42% 73.51% 

 

As could be expected, non-domestic uses perform less well with a value of 37.25% 

for the CV RMSE (Table 17). Again, it should be mentioned that no detailed analysis 

was conducted on, for example, working hours and daily schedules. For the complete 

hourly power demand simulation of the system, the coefficient of determination 

indicates that 82% of the measurements can be explained by the model. For the 

whole site, variation as well as correlation, reach very good levels of 0.18% and 

99.83% respectively. 

Row four of Table 17 provides assessment of the annual load duration curve 

comparing measured and simulated data. Hourly simulation delivers excellent results 

as the variance is well represented with a value of 98%. The correlation coefficient, 

as well as the coefficient of determination, implicitly show complete agreement, as 

the annual load duration curve is a sorted data series (Figure 26). 

 

Figure 26: Annual load duration curve for the “CHP Ops” case study 
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this individual application does not prove the fitness of the model in general, it does 

provide supporting arguments for the use of temperature dependant hourly load 

profiles. The profile is dominated by domestic hot water use during summer and has 

less significant peaks in winter. 

 

Figure 27: Measured and simulated hourly energy needs for a summer week for the “CHP Ops” 

case study  

Both exemplary weeks also show a limitation of the unbiased application, as the 

simulation does not correctly represent the differences between weekdays and 

weekends. The weekend in the shown sample fell on the fifth and sixth of July (Figure 

27), in the winter sample it was the seventh and eighth of December (Figure 28). Also 

in winter, the sharp drop around noon was not correctly predicted. 

 

Figure 28: Measured and simulated hourly energy needs for a winter week for the “CHP Ops” 

case study 
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Table 18 summarises the results of the model validation in different temporal scales. 

The error (CV RMSE) increases but for the aggregated site remains within the bounds 

of 30% defined by (ASHRAE 2002), even for hourly resolution over the whole district 

heating system. Non-domestic uses show the highest CV RMSE at hourly resolution 

with 37.25%, which is not surprising given the specific uses in the non-domestic 

sector to which as previously mentioned the load profiles were not adapted. At the 

hourly scale, the simulation of the non-domestic uses shows a decreasing correlation 

and variance which points to a weakness in the hourly load profile. Yet even for the 

non-domestic users, the results indicate a high robustness up to a daily time scale. 

Table 18: Selected results from the model validation for the case study „CHP Ops“, comparing 

indicators at monthly, daily and hourly time scale 

 Series CV RMSE ρ σs/ σm 

    mon d h mon d h mon d h 

1 Residential buildings 5.98% 12.33% 29.71% 0.91 0.97 0.87 0.95 1.01 0.94 

2 Non-Domestic buildings 6.65% 19.72% 37.25% 0.90 0.91 0.79 1.00 1.00 0.87 

3 All buildings 3.62% 11.18% 24.13% 0.91 0.97 0.91 0.97 1.03 0.98 

 

For the whole site, the correlation and the variance are very well represented, even 

at hourly resolution, with a value of 91% for the correlation coefficient and 98% for 

the variance. For the scale of the “CHP Ops” district heating system, both indicators 

deliver good results independent of temporal resolution. 

5.1.2 Blaue Heimat 

For the “Blaue Heimat” case study, simulations of daily heating energy needs were 

carried out for two existing apartment buildings, as well as for the renovated 

apartment building reaching low energy standard. For the two existing buildings, 

hourly simulations of the heating energy needs were also conducted. The 

corresponding measurements include space heating needs, as well as domestic hot 

water needs. Finally, daily and hourly simulations were taken for the aggregation of 

the largest possible number of users. To test the low energy buildings simulation, the 

newly refurbished building was simulated using the set of model parameters for 

multi-family buildings (HMF), as well as the newly proposed parameter set (HMFx). 

The selected results of the model application (Table 19) show a good agreement 

between simulated and measured data for both parameter sets. 
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As mentioned in the case study description in section 10.3.2, the base load, or the 

energy needs in summer, included domestic hot water needs as well as distribution 

losses. This base load is represented in the energy signature by the factor “D”. In 

order to represent the summer months correctly, the factor was recalculated based 

on the mean monthly domestic hot water demand, which was distributed to daily 

needs. As a result, the model reflects the average daily needs during the months of 

June, July and August. The corresponding factor was set as D = 0.19.  

Table 19: Selected results from the model validation for the case study “Blaue Heimat” (daily 

simulation) 

  Daily Series 
CV 

RMSE 
R2 ρ 

σs/ 
σm 

Um Uv Uc 

1 Multifamily Building A (HMF) 20.74% 0.93 0.96 0.83 0.00% 34.28% 66.00% 

2 Multifamily Building A (HMFx)  18.30% 0.93 0.96 0.93 0.00% 6.32% 93.96% 

3 Multifamily Building B (existing) 13.65% 0.97 0.98 0.92 5.13% 17.36% 77.77% 

4 Multifamily Building C (existing) 20.74% 0.97 0.98 0.94 6.45% 10.78% 83.03% 

5 All buildings A-C 11.59% 0.98 0.99 0.91 4.08% 25.77% 70.42% 

6 All buildings A-C (HMFx) 11.05% 0.98 0.99 0.94 4.48% 14.27% 81.51% 

 

The simulation with the existing parameter set for new apartment buildings (Table 

19, row 1) underestimates peak demand on cold days as can be seen in Figure 29 

expressed in a low value of Uv of 34.28%. This difference in the variance can also be 

seen by the ratio of the standard deviations of the two data sets (σs / σm), which is 

significantly lower than the value of the simulation using the new parameters. The 

value of CV RMSE shows an acceptable agreement with the result just within the 

limits of the criteria range for building energy performance models (ASHRAE 2002). 

In comparison, the simulation with the new parameter set (Table 19, row 2) 

decreases the value of CV RMSE to 18.3%. More importantly, peak demand during 

colder periods is well described (Figure 29) and is reflected in an increase in the ratio 

of the standard deviations by 10% as well as a good measure of Theil’s U for the 

variance of 6.32% and the correlation (93.96%). 
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Figure 29: Time series plot of simulation for building A with Ta, Measured, HMF (CV RMSE 

20.74%, σs/ σm = 0.83, HMFx (CV RMSE 18.3%, σs/ σm = 0.93) 

Both simulation runs result in the same coefficient of determination (R2). Yet, as 

discussed for the selection of the statistic indicators, R2 should be regarded in 

connection with other indicators such as the line of equality (Bland and Altman 1986). 

Figure 30 shows that the trend line (red) fits the line of equality (black) better for the 

proposed parameter set HMFx (Figure 30a). 

 

Figure 30a, b: Regression plot of the measured and simulated daily energy use based on the HMFx 

profile (left) as well as the HMF profile (right) 

The simulations of the two existing buildings deliver good results for the variance 

expressed by the ratio between the two standard deviations (σs/σm). In the 

application to the two existing apartment buildings, CV RMSE also delivers a very 

good result of 13.65% for building B and a good value of 20.74% for building C. For 

the two cases, Theil’s U for the mean value delivers a value 5.13% and 6.45% 

respectively. Due to the simulation design, these values indicate a slight deviation of 
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the mean values of the measured values and the simulated results. This can be 

explained by missing values for a total of 8.2 days over the year. The variation of the 

mean value can be explained by the temperature data, which was maintained for the 

replaced values but which does not correspond to the relationship on which the 

model is based. The sum of all buildings (Table 19, row 5 & 6) delivers the best value 

for CV RMSE (11.59%). The result is only slightly improved by the profile applied for 

the low energy building. With the newly proposed profile, CV RMSE decreases to 

11.05%. Even though the demand of the low energy buildings represents only 22.7% 

of the total demand, the improvement of the model parameter shows an increase of 

accuracy for the variance with a level of agreement of 94% for the two standard 

deviations. 

 

Figure 31: Measured and simulated daily energy use for building C 

Based on the data provided for the “Blaue Heimat” case study, the hourly distribution 

was simulated and compared with the hourly measured values for the two existing 

residential buildings. Even though the data included a number of storage units 

attached to the CHP system with a value of 36.27%, the CV RMSE just slightly exceeds 

the threshold of 30% for the aggregated hourly demand (Table 20). The Bravais-

Pearson coefficient shows a high correlation of measured and simulated hourly 

values. In addition, the variance can be explained well by the model with a low value 

of 1.28% for Uv. This shows very high suitability for assessing the annual load duration 

curve, which fundamentally requires a good prediction of the variance to predict peak 

loads correctly and thus the maximum power requirement. 
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Table 20: Selected results from the model validation for the case study “Blaue Heimat” (hourly 

simulation) 

  Hourly Series 
CV 

RMSE 
R2 ρ σs/σm Um Uv Uc 

1 Residential building B 41.61% 0.72 0.85 0.89 0.00% 4.10% 95.91% 

2 Residential building C 46.67% 0.65 0.81 0.89 0.00% 3.22% 96.79% 

3 Aggregated buildings 36.27% 0.76 0.87 0.94 0.00% 1.28% 98.73% 

4 Annual load duration curve 7.72% 0.99 1.00 0.00 0.00% 28.37% 71.65% 

 

In this case study, the annual load duration curve is represented with a CV RMSE of 

7.72% and shows a perfect correlation between simulated and measured values. 

While the hourly application for individual buildings shows substantial errors (CV 

RSME). As in all applications discussed here, the model was not adjusted except for 

the adaptation of the total amount of domestic hot water. 

Table 21: Selected results from the model validation for the case study „Blaue Heimat“, 

comparing indicators at monthly, daily and hourly time scale  

 
Series CV RMSE ρ σs/ σm 

    mon d h mon d h mon d h 

1 Multifamily Building A  9.35% 18.30% - 0.91 0.96 - 0.91 0.95 - 

2 Multifamily Building B  8.88% 13.65% 41.61% 0.91 0.98 0.85 0.90 0.92 0.89 

3 Multifamily Building C  14.09% 20.74% 46.67% 0.91 0.98 0.81 0.93 0.94 0.89 

4 All buildings A-C 7.36% 11.05% 36.27% 0.91 0.99 0.87 0.92 0.94 0.94 

 

To investigate dependency on the temporal resolution in connection to the already 

discussed spatial resolution, the simulation results and measured values were 

aggregated at monthly resolution. Table 21 shows the results of the model validation 

for CV RMSE, the Bravais-Pearson coefficient () as well as the variance expressed by 

the ratio of the standard deviation of the simulated and measured time series 

(s/m). The value of CV RMSE increases notably with the passage from daily to hourly 

resolution. A possible reason might be seen in the inclusion of three 1000 l storage 

tanks of the central CHP system as well as smaller storage (375 l) between the two 

connected non-renovated buildings and each heat meter. Despite this specific layout 

and the relatively small size, the hourly value is close to an acceptable error with 

36.27% for the aggregation of buildings B and C. The daily and monthly simulation 
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shows a very good fit with a low error of 7.37% at monthly scale. On the other hand, 

the correlation coefficient and the variance deliver robust results with no change of 

the variance between hourly and daily simulations and a slight decrease for the 

correlation, which remains on a high level of 87%. The case study further provided 

data for low energy buildings and existing buildings in the same location with the 

same monitoring period. Figure 32 shows the correlation of the space heating energy 

needs with ambient temperature in the upper row and the correlation with solar 

radiation in the lower row. The left hand sample refers to the building section 

constructed in low energy standard. The column on the right side refer to one of the 

existing buildings. As the scale of the axis was maintained Figure 32 also depicts the 

much better energy performance of the refurbishment resulting in a shallower 

energy signature (left column). 

 

 

Figure 32: Correlation of space heating energy needs with ambient temperature (top row) and 

solar radiation (bottom row) for a low energy and an existing building, “Blaue Heimat” case study 

For all cases, the scatter plot shows a high coefficient of determination (R2) for the 

ambient temperature with a distinct nearly linear form in the heating period. For 

solar radiation, a relatively weak link is shown by a coefficient of determination below 

0.5. The correlation between heating needs and solar radiation does not significantly 

increase for the low energy building.  
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5.1.3 Rintheimer Feld 

In the “Rintheimer Feld” case study individual apartments were monitored with heat 

meters. This case study, therefore, lends itself to investigating the effect of 

aggregation and testing the limiting scale for the application of an energy signature 

approach. This is of particular interest as the model was initially intended for large 

scale building stock, of hundreds or thousands of users. 

 

Figure 33: Measured and simulated daily space heating needs with existing (“HMF”) and 

proposed parameter set (“HMFx”), building 2 

The main results of the model application to simulate the heating energy needs for 

the demonstration buildings are summarised in Table 22 and Table 23, the time series 

is displayed in Figure 33. For the total demand, the individual residential units were 

aggregated. The demand curve, therefore, provides heating needs without internal 

distribution losses.  

Table 22: Selected results from the model validation for the case study “Rintheimer Feld” for a 

complete apartment building (daily resolution) 

  Daily Series 
CV 

RMSE 
R2 ρ 

σs/ 
σm 

Um Uv Uc 

1 Multifamily Building (complete) 26.11% 0.93 0.96 0.88 0.00% 18.16% 82.12% 

2 Multifamily Building (complete, NEH) 20.27% 0.95 0.97 0.96 0.00% 4.17% 96.10% 
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The simulation of all buildings shows a good match of simulated and measured 

values. This is especially the case when the model is applied with the newly proposed 

parameter set HMFx (Table 22, row 2). The variance is well represented with a result 

of Uv, slightly above four percent. In addition, the correlation shows a very good result 

of Uc = 96.1%. The error CV RMSE shows a good value of 20.27%. For the existing 

parameter set the error is 6.5% higher, the old parameter set fails to represent the 

peak load. Uv reaches a value of 18.16%, the ratio of the two standard deviations is 

0.88 compared to 0.96 for the HMFx parameter set. The difference in the standard 

deviations with the existing parameters results from an underestimation of the peak 

for very cold days, which occur mainly in February as shown in Figure 33. While both 

model runs deliver an acceptable error, the results of the old parameter set would 

not be suitable to estimate the heating power in, for example, district heating 

systems, for mean daily temperatures below -5°C (Figure 34). In its original design, 

the model does not predict the peak correctly. While the new parameter set can 

predict energy use at low temperatures, it should be noted that such low mean daily 

temperatures were a rare occurrence in the near past. 

 

Figure 34: Energy signature for the daily heating needs of all apartments in the “Rintheimer 

Feld”, measured values (blue) are compared to simulation (HMF, green triangles; HMFx, red 

squares) 

In order to investigate the relevance of scale in the data-driven energy performance 

simulation, the individual units’ space heating needs were simulated. The units were 

aggregated in a random order without reference to the position within the building 

(i.e. storey or staircase). Table 23 shows the simulation for one, five, ten, fifteen, 
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twenty and thirty units. As could be expected, the simulation of an individual unit 

involves a high relative error of 143.08% and shows a low coefficient of determination 

of 54%. The standard deviation of the simulated sample is less than half the value of 

the measurement. Theil’s U again shows the limits of correctly predicting the variance 

and correlation for a single unit.  

Table 23: Selected results from the model validation for the case study „Rintheimer Feld“, 

random aggregation of individual apartments (daily resolution) 

  Daily Series 
CV 

RMSE 
R2 ρ 

σs/ 
σm 

Um Uv Uc 

1 Multifamily Building 1 unit 143.08% 0.54 0.73 0.42 0.00% 59.90% 40.38% 

2 Multifamily Building 5 units 44.56% 0.73 0.85 0.98 0.00% 0.16% 100.12% 

3 Multifamily Building 10 units 39.37% 0.86 0.92 0.81 0.00% 23.71% 76.57% 

4 Multifamily Building 15 units 27.39% 0.93 0.96 0.85 0.00% 25.90% 74.37% 

5 Multifamily Building 20 units 23.66% 0.94 0.97 0.87 0.00% 24.97% 75.31% 

6 Multifamily Building 30 units 23.60% 0.95 0.97 0.87 0.00% 27.32% 72.96% 

 

The results for the aggregated simulation in Table 23 show, however, that the error 

is decreasing with each increase in the scale until the heating needs of the complete 

building with 30 units are simulated with an error of 23.6%. The same effect can be 

seen for the other indicators as the correlation increases as well as the coefficient of 

determination. In the applied tests, a less stringent development of the indicators for 

the variance can be seen. This, again, highlights the need to use a set of indicators to 

validate the modelling results in comparison to the measurements. For example, for 

the five units (Table 23, row 2) Theil’s U delivers very good results, yet the relative 

error (CV RMSE) and the coefficient of determination clearly show the limits of the 

simulation at such a low scale. Figure 35 shows the measured and simulated values 

for randomly selected apartments. First a single apartment (top left) is selected which 

shows a low level of correlation. Samples of five, ten and thirty apartments show 

increasing correlations. As discussed in section 4.2 in addition to the regression 

function the line of equality (i.e. x = y) is provided to put the correlation into context. 

An improvement of the results with increasing scale can also be seen for the 

coefficient of determination, which increases with each additional unit.  
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Figure 35: Regression analysis of simulated against measured daily space heating needs for 

random samples of one, five, ten and thirty apartments (top left to bottom right) with least square 

regression function and line of equality 

When applied to the case study, this shows that from a random sample of fifteen 

apartments, the coefficient of determination (R2) starts to stabilise above 90% (Figure 

36). Below ten units the results become more volatile, as some units are better 

represented than others are. 

 

Figure 36: Coefficient of determination (R2) in dependence of the size of a random sample 
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Table 24 provides the complete set of values for the coefficient of determination in 

addition to the Bravais-Pearson Correlation coefficient at the different aggregation 

levels. 

Table 24: Coefficient of determination (R2) and Bravais-Pearson Correlation Coefficient (ρ) in 

dependence on the sample size (random sample) for the simulation 

sample size 1 2 3 4 5 6 7 8 9 10 15 20 30 

  R2 0.54 0.54 0.46 0.53 0.73 0.73 0.80 0.81 0.84 0.86 0.93 0.94 0.95 

  Ρ 0.73 0.73 0.68 0.73 0.85 0.86 0.89 0.90 0.92 0.93 0.96 0.97 0.97 

 

For the “Rintheimer Feld” case study, the residuals were also considered which are 

summed up in the Root Mean Square Error (RMSE). The distribution of the residuals 

(Figure 37) shows an increasing RMSE for temperatures above 15°C. This is both 

plausible and expected as the single variant model is mainly suited to predict the 

temperature dependant part of the load even though the heating limit temperature 

was observed to be higher than 15°C (Jank 2013). Prediction errors are largely 

reduced with decreasing temperatures. 

 

Figure 37: Residuum values for the simulation of two complete buildings for the case study of 

“Rintheimer Feld” 

The comparison to the daily solar radiation showed no correlation to the residuum 

i.e. the error of the simulated values. Again, the correlation of the daily energy needs 

with the solar radiation was tested (Figure 38). As in the case study “Blaue Heimat” 

no distinct correlation could be found. The measured solar radiation has little 

explanatory power for the daily space heating needs compared to the ambient 

temperature for the case study data. 
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Figure 38: Test for correlation between daily heating needs and the sum of daily solar radiation, 

“Rintheimer Feld” 

For the year 2012 depicted in Figure 38 a small cluster of values can be identified 

around a value of 2000 Wh/m2 and day correlated to high energy needs (red circle). 

This group of values relates to the very cold days in February 2012, which had 

temperatures around -10 °C but due to clear sky a relatively high solar radiation. 

5.1.4 Single-dwelling residential buildings 

On the one hand, the case study of single-dwelling residential units enabled the 

investigation of a new set of parameters for individual buildings. On the other hand, 

it provided a test case to aggregate individual users to a larger sample, as was done 

in the “Rintheimer Feld” case study. This latter aspect specifically aims at 

investigating the limits of significance for the chosen modelling approach. The single 

dwelling residential buildings were simulated individually (Table 25). In addition, a 

random aggregation of the buildings was done adding an additional building to the 

sample in each consequent step (Table 26). Overall, the model predicted heating 

needs relatively well given that, for this case study, the scale was decreased to 

individual buildings. The errors moved in a span between 24.10% up to 44.12% for 

individual buildings. However, even at a small scale, the aggregation of five buildings 

resulted in a good value for the CV RSME of 19.14% for all buildings. In three of five 

cases, the variance was well described and the prediction for the whole sample 

showed a very good result of less than one percent for Uv. For all buildings, the 
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correlation coefficient delivered high values. This, in combination with the high 

coefficient of determination, underlines that the model is capable of explaining and 

correctly predicting the trend between 83% and 96% of the measurements for single 

buildings and 95% of the aggregated buildings. 

Table 25: Selected results from the model validation for the single-family buildings 

  Daily Series 
CV 

RMSE 
R2 ρ σs/ σm Um Uv Uc 

1 SFH A 34.81% 0.87 0.93 1.10 0.00% 6.73% 93.54% 

2 SFH B 25.22% 0.92 0.96 1.02 0.00% 0.61% 99.67% 

3 SFH C 24.10% 0.96 0.98 0.85 0.00% 37.98% 62.29% 

4 SFH D 30.22% 0.88 0.94 1.00 0.00% 0.00% 100.27% 

5 SFH G 44.12% 0.83 0.91 0.78 0.00% 25.04% 75.24% 

6 SFH A. C. G. D. B 19.14% 0.95 0.97 0.98 0.00% 0.83% 99.44% 

 

In the comparison of individual buildings, the simulation of building G delivered the 

least convincing results for an individual building, with a CV RMSE of 44.12% and an 

agreement of 78% for the standard deviation of the measured and simulated time 

series. This can be seen by the large spread of measured data in the energy signature 

when compared to the slender curve of simulated data (Figure 39a). On the other 

hand, the overall variance of total energy use for all five buildings is well represented 

by the model (Figure 39b) with a nearly similar standard deviation for measured and 

simulated heating needs (Uv = 0,83%). 

  

Figure 39a, b: Energy signature of building G and the total energy for all buildings (depicted with 

different scale) 
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Table 26: Selected results from the model validation for the random aggregation of individual 

single family buildings 

  Daily Series 
CV 

RMSE 
R2 ρ σs/ σm Um Uv Uc 

1 SFH A 34.81% 0.87 0.93 1.10 0.00% 6.73% 93.54% 

2 SFH A. C 22.67% 0.94 0.93 1.01 0.00% 0.09% 100.18% 

3 SFH A. C. G 21.77% 0.95 0.97 0.95 0.00% 4.06% 96.22% 

4 SFH A. C. G. D 34.81% 0.95 0.97 0.97 0.00% 2.37% 97.91% 

5 SFH A. C. G. D. B 19.14% 0.95 0.97 0.98 0.00% 0.83% 99.44% 

 

The individual residential buildings were included here to test the aggregation of 

similar individual uses of the same kind. Even though the number of units is too small 

to see a saturation effect, which in the “Rintheimer Feld” case study, could be 

observed in samples larger than 20 units, the small sample already shows increasing 

accuracy with an increasing number of users. As a random order was chosen, the 

trend is not linear: this was also true for the “Rintheimer Feld” case when using 

samples smaller than five units. As shown by the results in Table 26 aggregated 

results for buildings A and C as well as A, C and G perform better than the individual 

buildings’ results (Table 25). This supports the argument that the individual operation 

schedules and usage of the buildings evens out when aggregated.  

 

Figure 40: Scatter plot oft eh measured and simulated daily energy needs for all single family 

buildings with the trend line (black) and the line of equality (x = y; red)  
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Consequently, the aggregation of all buildings performs best when compared to all 

other combinations of smaller sample sizes (Figure 40). For single-dwelling buildings, 

the monthly and daily temporal resolutions are compared in Table 27. Nearly all 

errors remain in the established limits, except for building A with 26%. For the 

aggregated five buildings, the monthly error is again substantially smaller, at 12%. As 

seen in the other case studies, variance and correlation are less sensitive to the 

temporal scale and deliver comparable results for both simulations. A decrease for 

the Bravais-Pearson coefficient can be seen which can be explained by the much 

smaller sample size of the monthly simulations. 

Table 27: Selected results from the model validation for the random aggregation of individual 

single family buildings comparing indicators at monthly and daily time scale 

 Series CV RMSE ρ σs/ σm 

    mon d h mon d h mon d h 

1 SFH A 26.40% 34.81% - 0.88 0.93 - 1.09 1.10 - 

2 SFH B 11.74% 25.22% - 0.91 0.96 - 1.02 1.02 - 

3 SFH C 15.30% 24.10% - 0.91 0.98 - 0.86 0.85 - 

4 SFH D 13.82% 30.22% - 0.90 0.94 - 1.00 1.00 - 

5 SFH G 20.55% 44.12% - 0.91 0.91 - 0.81 0.78 - 

6 SFH A. C. G. D. B 11.98% 19.14% - 0.91 0.97 - 0.96 0.98 - 

 

5.1.5 Bad Aibling 

In the case study of Bad Aibling especially the non-residential uses were of interest 

for the model evaluation. The provided data allowed for tests based on hotels, offices 

as well as school buildings and included some residential buildings located in the 

north loop of the district heating network. In order to investigate aggregating effects 

the analysis was conducted based on data of the years 2012 and 2013, which included 

the most complete data sets. The simulation was carried out for individual uses 

aggregated by floor space and is discussed individually. Finally the western and 

eastern part of the network were aggregated which each included different uses. 

In the western part of the north loop, the dominant user is the hotel with more than 

3000 square meter of net surface. While this surface also includes the restaurant and 

other specific uses of the hotel the space heating needs were simulated using a 

profile specified for hotels (GBH) (BDEW, VKU et al. 2014). The selected profile 
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includes specific weekday factors, which distinguish between the individual 

weekdays. However, the results for the simulation (Table 28, row 5) show little 

improvement when compared to the simulation based on the profile used for 

residential buildings (Table 28, row 6 and 7). The latter do not use weekday factors. 

The Bravais-Pearson Correlation Coefficient is identical for all cases as is the 

coefficient of determination (R2) and the ratio between the variance of the simulated 

and measured values (Table 28). Only a slight difference is shown for the CV RMSE, 

which especially for the Hotel (GBH) and the residential (HMF) profile is marginal with 

a value of 0.01%, the new profile tested (HMFx) shows a slightly higher error 0.45% 

above that of the hotel profile.  

Table 28: Selected results from the model validation for the North-West loop of the network in 

Bad Aibling 

  Daily Series Profile 
CV 

RMSE 
R2 ρ σs/ σm Um Uv Uc 

1 Office Buildings Kat 7 44.75% 0.69 0.83 0.89 0.00% 4.07% 96.21% 

2 Hotels (580 sqm) GBH 49.14% 0.76 0.87 0.74 0.00% 26.44% 73.84% 

3 Hotels (1160 sqm) GBH 27.44% 0.87 0.93 0.93 0.00% 4.03% 96.25% 

4 Hotels (2030 sqm) GBH 22.42% 0.91 0.95 0.95 0.00% 2.31% 97.96% 

5 All Hotels (3230 sqm) GBH 19.98% 0.92 0.96 0.99 0.00% 0.13% 100.14% 

6 All Hotels HMFx 20.45% 0.92 0.96 0.99 0.00% 0.08% 100.19% 

7 All Hotels HMF 20.01% 0.92 0.96 0.99 0.00% 0.09% 100.18% 

8 All buildings. North West Loop mixed 22.73% 0.90 0.95 0.99 0.00% 0.16% 100.11% 

 

As the results indicate the daily energy use of all hotels has a firm correlation to the 

mean daily outdoor temperature with little significance of weekdays (Figure 41). 

In contrast to the aggregated space heating needs for the hotels, the single office 

building shows a distinct error (CV RMSE) of 44.75%. Also the correlation delivers 

poor results of 69% with relatively well depiction of the spread. 
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Figure 41: Correlation between daily space heating needs and mean daily outdoor temperature 

for the office building for weekdays (orange circles) and weekends (blue triangle) 

The significant error in the simulation of the space heating needs for the single office 

building can also be shown in the correlation between mean outdoor temperature 

and the daily heating needs. Here a distinct cluster of measurements above a mean 

daily energy need of 1200 kWh lies outside the cloud of points which is relatively well 

predicted. For specific uses such patterns can indicate specific days e.g. weekdays 

that show a higher or lower value and must thus be assessed separately or 

represented by weekday factors (Mazzarella, Liziero et al. 2009). Here all 

measurements above the value fall in the period between 14th Mars and 8th April with 

no significant correlation to weekdays (Figure 41) and the mean outdoor 

temperature which varies between -4 °C and +4 °C and is +0.6 °C on average. In this 

case the only possible explanation is to a specific user behavior or malfunction of the 

operation schedule. On the other hand the remaining values show a relatively 

compact point cloud with again little relevance of the day of the week.  

The aggregation across different uses in the western part of the north loop shows an 

equalizing effect with increasing numbers of users. Here the relatively large error 

from office buildings is merged with the good prediction for hotel buildings. The 

simulation for all buildings results in a good value of 22.73% (CV RMSE) with a very 

good depiction of the variation and the correlation. The trend line for the comparison 

between simulated and measured values (Figure 42) lies close to the line of equality. 

0

200

400

600

800

1000

1200

1400

1600

1800

-10 -5 0 5 10 15 20 25 30

D
ai

ly
 S

p
ac

e 
H

ea
ti

n
g 

N
ee

d
s 

[k
W

h
]

Mean Daily Outdoor Temperature [°C]

Space Heating Needs Offices

weekdays weekends



99 

 

 

Figure 42: Correlation of the measured and simulated daily space heating needs for the all 

buildings in the western section of the district heating loop with trend line (red) and line of 

equality (dotted blue) 

In the North Eastern part of the low temperature network the space heating demand 

is dominated by the school buildings, in addition the residential block was included 

in the simulation. Table 29 shows the main results from the statistical analysis of the 

simulation. The residential building cluster was simulated using the existing 

parameter set as well as the proposed parameters for multifamily buildings. In this 

case both deliver comparable results with a CV RMSE of 24% and 27% respectively.  

Table 29: Selected results from the model validation for the Northeast loop of the network in Bad 

Aibling 

  Daily Series Profil 
CV 

RMSE 
R2 Ρ σs/ σm Um Uv Uc 

1 Residential (2250 sqm) HMF 24.34% 0.90 0.94 0.97 0.45% 1.07% 98.75% 

2 Residential (2250 sqm) NEH 26.87% 0.88 0.94 1.04 0.38% 1.10% 98.79% 

3 School & Boarding (2150 sqm) NEH 31.03% 0.86 0.93 0.92 0.01% 4.27% 96.00% 

4 School (8090 sqm /partial) NEH 29.41% 0.91 0.95 0.85 0.06% 22.62% 77.59% 

5 All School buildings NEH 26.08% 0.91 0.95 0.91 0.00% 9.46% 90.81% 

6 All buildings. North East Loop NEH 20.01% 0.92 0.96 0.99 0.00% 0.09% 100.18% 

 

The daily space heating needs are generally well represented by both simulations, an 

important factor not represented in the simulation is the apparent shut down of the 

heating system until early September in the residential building, which might be due 

to a planned scheduling of the heating system to avoid unnecessary heating needs 
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during colder summer nights. This goes hand in hand with a local peak at the days in 

which the heating system is started which might be correlated to heating up the 

building as before no space heating was supplied. Both effects can be seen in the 

comparison of the load curves in Figure 43 and contribute a substantial part of the 

total CV RMSE. 

 

Figure 43: Daily space heating needs in one residential building compared to simulated values 

using different parameter sets 

The two school buildings were simulated using the residential parameter set (Table 

29, rows 3 to 5). Even though they represent a specific use the simulation represents 

the correlation well with values for the Bravais Pearson coefficient of 93% and 95%, 

the total results in a value of 95%. The variance is well depicted for the total floor 

space with a value of 91%. The school buildings’ energy needs were predicted with 

an error of 31% and 29% respectively. As for the hotels no correlation to specific 

weekdays was identified in the correlation analysis. The larger scale of all aggregated 

buildings delivered good results of an error of 20% for the daily space heating needs. 

The model can be said to explain 92% of the measurements (R2), finally also the 

variance of simulation and measurement coincides resulting in a ratio of 99%.  

For the case study furthermore data for the year 2012 was provided which also in 

Bavaria included a series of very cold days. The proposed profile to better represent 

the peak loads during cold periods was applied to the case study as well. Results of 

both years are compared in Table 30 for residential uses and in Table 31 for the 

hotels. 
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Table 30: Comparison of Simulation results for residential uses for the years 2012 and 2013 

  Daily Series Profile 
CV 

RMSE 
R2 ρ σs/ σm Um Uv Uc 

1 Residential (2250 sqm) 2012 HMF 24.36% 0.92 0.96 0.89 0.00% 14.68% 85.81% 

2 Residential (2250 sqm) 2012 HMFx 27.31% 0.89 0.94 0.98 0.00% 0.26% 100.29% 

3 Residential (2250 sqm) 2013 HMF 24.34% 0.90 0.94 0.97 0.45% 1.07% 98.75% 

4 Residential (2250 sqm) 2013 HMFx 26.87% 0.88 0.94 1.04 0.38% 1.10% 98.79% 

 

While the variance is in all cases better represented by the newly proposed profile 

only the simulation for non-domestic uses delivers better results in both years. For 

residential uses, the simulation results indicate an increase of the CV RSME of 3% for 

2012 and 2.5% for 2013, the deviation of the variance is improved by 8% in 2012 but 

delivers comparable deviations for simulations in 2013. 

Table 31: Comparison of simulation results for non-residential uses for the years 2012 and 2013 

  Daily Series Profile 
CV 

RMSE 
R2 ρ σs/ σm Um Uv Uc 

1 Hotels 2012 HMF 30.41% 0.91 0.95 0.81 0.00% 32.09% 67.85% 

2 Hotels 2012 HMFx 26.67% 0.92 0.95 0.90 0.00% 12.11% 87.68% 

3 Hotels 2012 GBH 30.61% 0.91 0.95 0.81 0.00% 30.81% 69.28% 

4 Hotels 2013 HMF 24.10% 0.91 0.95 0.92 0.00% 6.96% 93.31% 

5 Hotels 2013 HMFx 23.66% 0.91 0.95 0.99 0.00% 0.21% 100.06% 

6 Hotels 2013 GBH 24.45% 0.90 0.95 0.92 0.00% 6.46% 93.81% 

 

The good representation of the peak demand in the year 2012 by the HMFx profile is 

shown in Figure 44. The variance for the aggregated hotel use is improved by 9% in 

2012 and by 7% in 2013. In the former, a good value of 90% is reached for the ratio 

between the two standard deviations, for the latter an excellent value of 99% of 

agreement for the variation is reached.  
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Figure 44: Measured and simulated daily heating needs for aggregated hotel use for the year 2012, 

“Bad Aibling” 

Finally, the simulation was applied to an hourly time resolution for the aggregated 

hotel buildings as well as the residential building cluster. Especially the hotels were 

relatively well depicted as shown in Table 32. The parameter sets HMF and HMFx 

only slightly surpass the threshold of 30% for the hourly simulation. With a relation 

of the standard deviations of 97%, the HMF profile shows good representation of the 

spread of the sample.  

Table 32: Selected results from the model validation for the case study “Bad Aibling” (hourly 

simulation) 

  Hourly Series Profil 
CV 

RMSE 
R2 ρ σs/ σm Um Uv Uc 

1 All Hotels HMF 32.32% 0.84 0.91 0.97 0.00% 0.63% 99.38% 

2 All Hotels GBH 37.86% 0.78 0.88 0.95 0.00% 1.25% 98.76% 

3 All Hotels HMFx 34.07% 0.82 0.90 0.94 0.00% 2.20% 97.80% 

4 Residential HMF 42.54% 0.77 0.88 0.89 0.00% 5.42% 94.65% 

5 Residential HMFx 47.36% 0.73 0.86 0.99 0.00% 0.01% 100.04% 

4 Annual load duration curve (hotel) HMF 8.24% 0.99 0.99 0.97 0.01% 9.63% 90.37% 

 

The relatively large error for the residential simulations was carried through to the 

hourly simulation resulting in a CV RMSE of 43% (HMF) and 47% (HMFx). As in the 

other applications, the latter depicts the variation extremely well with a value of 
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0.01% for Uv. Sorting into an annual load duration curve delivers small errors of 8.24% 

and nearly full compliance for the correlation and the variation. 

5.1.6 Commercial Zone District Heating System 

Simulations were carried out for both years using the share of light industrial (GKO) 

and office use (GMK) that referred to the total energy use (Table 33, rows 1 & 3). The 

daily error showed good results of 19% for 2013 and 22.25% for 2014 at a daily 

resolution. Based on the default values the coefficient of determination delivers good 

results of 0.94 for 2013 and 0.92 for the year 2014. With values above 97%, the 

Bravais-Pearson coefficient of determination shows a close correlation of 

measurement and simulation. The good results are also reflected in the results of 

Theil’s U. 

Table 33: Selected results from the application case to a mixed use district heating system for 

daily energy use  

  Daily Series Profile 
CV 

RMSE 
R2 ρ σs/ σm Um Uv Uc 

1 2013 GKO 19.02% 0.94 0.97 0.98 0.00% 0.68% 99.59% 

2 2013 MOD GKO 14.97% 0.97 0.98 0.97 0.16% 2.30% 97.81% 

3 2014 GKO 22.25% 0.92 0.97 1.01 0.00% 0.06% 100.21% 

4 2014 MOD GKO 19.24% 0.94 0.97 0.97 0.19% 1.12% 98.97% 

 

To test the application, a first adjustment was made to the weekday factors. The 

distribution of daily energy use per day of the week was calculated and compared to 

the default weekday factors based on the energy signature model (Table 34). The 

comparison showed that the original simulation overestimated energy use on the 

weekends. According to the measured data of the year 2013, the weekday factors of 

the simulation were adjusted. In this case, the calculated weekday factors for the 

specific site were used. The simulation results at a daily resolution were improved by 

4% for 2013 and 3% for 2014 (Table 33, rows 2 & 4). The coefficient of determination 

slightly increased for both years by 3% and 3% respectively. 
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Table 34: Weekday factors calculated for the measured daily energy use 2013 and 2014 and profile 

values 

 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

2013 1,128 1,093 1,062 1,067 0,998 0,772 0,881 

2014 1,108 1,082 1,126 1,020 0,946 0,786 0,931 

Simulation 1,061 1,070 0,986 1,005 1,036 0,925 0,917 

 

In a second step, the hourly distribution of the heating needs was simulated using the 

default hourly load curves to distribute the daily energy use. For the hourly 

resolution, the application of the default parameter resulted in high relative root 

mean square errors around 50% (Table 35, rows 1 & 3). The results for the coefficient 

of determination drop below 0.7 for the year 2014. Still a distinct correlation is 

indicated by the correlation coefficient as well as a good match of the variance. The 

latter is confirmed by looking at the annual load duration curve (Table 35, rows 5 & 

6). The sorted energy use simulation closely matches the measured data. 

Table 35: Selected results from the application case to a mixed use district heating system for 

hourly energy use 

  Hourly Series Profile 
CV 

RMSE 
R2 ρ σs/ σm Um Uv Uc 

1 2013 - 1/3 Office. 2/3 Prod GKO 47.74% 0.71 0.84 0.94 0.00% 1.16% 98.85% 

2 2013 MOD f.h - 1/3 Office. 2/3 Prod GKO 29.33% 0.89 0.94 0.94 0.04% 3.42% 96.55% 

3 2014 - 1/3 Office. 2/3 Prod GBH 53.92% 0.63 0.79 0.96 0.00% 0.49% 99.52% 

4 2014 MOD f.h - 1/3 Office. 2/3 Prod GBH 36.20% 0.82 0.91 0.93 0.05% 2.60% 97.36% 

5 JDL 2013 - 1/3 Office. 2/3 Prod GBH 14.00% 0.98 0.99 0.94 0.00% 13.53% 86.48% 

6 JDL 2014 - 1/3 Office. 2/3 Prod GBH 9.29% 0.99 0.99 0.96 0.00% 16.41% 83.60% 

 

Figure 45 shows the systematic error between measured (blue line) and simulated 

values (dotted line). Over the course of the year, a relatively constant time delay 

between measured and simulated peak values of approximately eight hours can be 

identified. The parameters of the hourly load distribution over the course of a day 

was modified and the simulation was repeated (orange line).  
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Figure 45: Measured and simulated hourly load curve for the first two weeks of the year 2013, 

Commercial Zone 

By detecting the two described systematic errors in the simulation results for the year 

2013 the parameters were changed and the simulation was carried out for 2014 

(Table 35, row 3, 4). The CV RMSE for the hourly simulation for the year 2013 

improved by 18.4% to 29.33%. The same indicator improved by 17.7% to 36.2% for 

the year 2014. Even the latter therefore is close to the quality criteria defined for the 

hourly simulation. The coefficient of determination was improved by 18% and 19% 

respectively to 89% and 82%. This shows that the simple adaptation largely improved 

the explanatory power of the model. The variance remained constant for 2013 and 

decreased slightly by 2% for 2014. With regard to the hourly load profiles two further 

phenomena, which are not well depicted by the model are secondary peaks on 

weekdays and flat load profiles on the weekends that typically fall between Friday 

17:00 and Sunday 22:00. To improve the model further would require an in-depth 

load analysis, which would require detailed information on the involved processes 

and operation schedules, vacation periods, local weather conditions as well as a 

better understanding of the measurement points on site (Grohmann 2000). Such a 

proceeding would be a possible application for a given site but is beyond the scope 

of this thesis as it was judged difficult for the application to urban neighbourhoods.  
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5.2 Tool specification for combined simulation and monitoring 
for neighbourhoods 

In parallel to the validation of the model results, case studies were used as a basis to 

discuss a framework to implement data analysis functions for monitoring, as well as 

simulation. The concept was implemented in a first prototype. Work in this thesis 

covered the concept definition, simulations for the case study as well as the 

specification of the OLAP queries. The implementation was done in cooperation with 

the institute SIANI of the University of Las Palmas.  

The application to the case study data showed the robustness of the selected model. 

A second commonly highlighted feature of data driven models is that, in the 

application, relatively little expertise is required to run the models. The single variant 

model thus lends itself to being implemented in a data base system to supply 

continuous daily or hourly benchmarks after completion of a given urban 

development project. In this section, a software solution for combined simulation 

and building monitoring at the scale of urban neighbourhoods is proposed and 

presented as a prototype. The objective of this application case is to deliver 

benchmarks with a short delay, so that the results can immediately be compared to 

information on actual energy use per day. The benchmark consists of the simulated 

daily energy use based on the described regression model for load prediction. The 

final objective is to detect malfunctions or ineffective/unnecessary energy use in the 

building more quickly for the system operator and provide the possibility of a direct 

feedback for the user. By connecting the simulation with online weather forecasts, 

the simulation of benchmark values could be effectively transformed into a thermal 

load prediction for a number of residential units. Here, however, the approach was 

tested with ex-post monitoring data.  

While the concept and functionality of the proposed solution is based on analysis of 

the monitoring data presented here, the implementation was realised by Octavio 

Roncal, a student under the supervision of Jose Juan Hernandez and Jose Evora. The 

OLAP solution is based on the Monet framework developed at the University of Las 

Palmas (SIANI). An application for the assessment of smart grid simulation data is 

described in (Evora, Hernandez et al. 2013). 
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In order to access the data via a graphical analytical interface, the data was 

transformed into a data warehouse solution and prepared for access via an online 

analytical processing (OLAP) approach. The OLAP interface will display monitoring 

data of buildings’ thermal needs and, at the same time, provide daily benchmark 

values. 

5.2.1.1 Online Analytical Processing OLAP – general approach 

In the family of data warehouse applications for decision support, “OLAP applications 

are based on multidimensional modelling that intuitively represents data under the 

metaphor of a cube whose cells correspond to events that occurred in the business 

domain”. (Wrembel and Koncilia 2007).  

 

Figure 46: The data cube concept with measurements, dimensions and their hierarchy, own 

illustration adapted from (Wrembel and Koncilia 2007) 

Continuing this metaphor, the edges of the cube represent the dimensions that 

usually contain further hierarchies. In the case of monitoring data from the Rintheim 

project, the hierarchy of the spatial dimension can be deduced from the data 

structured by, for example, building, staircase, apartment and room (see Figure 47). 

For the OLAP analysis, solutions combine the flexibility of spread sheets for data 

analysis with robust data storage and fast access for large data sets (Farkisch 2011). 

The interface allows maintaining a hierarchical structure in the analysis. In addition, 

OLAP allows for the aggregation, or disaggregation, of different attributes as well as 

the temporal dimension or linking sensors across the spatial reference. While a tree 
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structure in different relational database formats is easy to navigate (e.g. building or 

staircase), OLAP can, for example, be used to compare measurements of specific 

sensors in specific room types across all monitored buildings at different temporal 

scales. As will be discussed in section 6.3 this is a key requirement for monitoring at 

the scale of urban neighbourhoods. 

5.2.1.2 Implementation of a prototype 

 

 

Figure 47 a), b): Dimensions used in the data cubes available for analysis, own illustration 

The cubes represent the logic order of quantitative data aligned with descriptive 

object layers (Gabriel, Gluchowski et al. 2009). The monitoring data (e.g. heat meter 

in kWh) can thus be analysed according to spatial reference (i.e. building, apartment, 

room, zone, etc.). It is displayed according to different temporal scales (minutes, 

hours, days or month). The complete hierarchy of the spatial reference can be 

adjusted to the monitoring infrastructure of a given installation. The Rintheim case 

study data for 2012 was integrated into the OLAP solution. 

Different concepts are available for displaying a section of the data cube for 

navigating through the data structure. The operation used for selecting and 

displaying a certain fraction of the data related to one or two dimensions is referred 

to as “slicing”; a “slice is a subset of a multi-dimensional array corresponding to a 

single value for one or more members of the dimensions not in the subset” (OLAP 

Council 2014). Based on the simplified cube metaphor, Figure 48 a) shows a slice for 

the collective sensors of a spatial reference. This could for example be the total 
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annual data collected from one apartment. This data slice would then include diverse 

sensors such as heat meters, temperature and CO2 sensors etc. and their specific time 

stamps; the slice could be viewed in different temporal aggregations. In Figure 48 b), 

a different slice is shown, which in this case refers to time series from the same 

sensors in different locations. Such a slice could deliver all DHW meters in each of the 

bathrooms in all three buildings. 

 

Figure 48 a), b): Illustration of slicing operation for e.g. all sensors of one apartment (left) or one 

sensor for all apartments (right), own illustration 

While the concept of slicing shows the overview and limit one dimension to a single 

value, the extraction of a smaller share of the data is also possible. This concept is 

referred to as “dicing”. Figure 49 shows the representation of a time series for a single 

measurement in one location (e.g. internal temperature in the one room over time, 

Figure 49 a). In this, the operation can be seen as an overlay of multiple slices. The 

second example is of an individual measurement of one data object related to one 

spatial scale and a time span (Figure 49 b). Both could be either more, or less, 

aggregated within the represented hierarchy. 

 

Figure 49 a), b): Illustration of dicing operation for e.g. a time series of heat meter data for one 

apartment (left) and an individual data point (right), own illustration  
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The concepts for changing the scale within the hierarchy of the dimensions is referred 

to as “drill-down”, to deepen the level of analysis, and “roll-up”, to go back to see the 

larger aggregated picture. Especially the different aggregations for the spatial 

reference were used in the discussion of the robustness of the statistic approach at 

small scales (i.e. a small number of users). When the highest level of detail is reached 

the query (i.e. the original measurement data) is referred to as “drill-through”. 

Specific data views that deliver the neighbouring elements on the same hierarchical 

level are called “drill-across”.  

 

Figure 50: Screenshot of OLAP based on Monet framework 

6 Discussion 

The presented work contributes to connecting urban planning and local energy 

planning. Even though the focus is put on the latter aspect, both fields should be 

addressed in common when assessing the results in terms of quality and usefulness. 

In the following discussion, the main findings as well as the positioning of the thesis 

in the context of current applied research are reflected. 

6.1 Applied energy system models for local energy planning 

The area of application investigated in the framework of this thesis exemplifies two 

main strands of urban energy modelling, which are the development of forward and 

data-driven approaches. The intermediate neighbourhood scale has yet to be claimed 

by either side. It is argued here that there is no silver bullet to solve all questions in 
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energy planning at this scale. Therefore, key tasks for the application of simulation 

models were identified from which propositions can be deducted to apply either one 

or the other solution. In future a more differentiated discourse seems necessary in 

order to address the different tasks which are clearly identified at building scale 

(Wang, Yan et al. 2012, Zhao and Magoulès 2012) and are currently discussed as part 

of the standardisation for city wide urban energy planning (IEC/SEG 1-WG2 2015). At 

the macro scale GHG inventories have been developed and applied by many cities 

(Bader and Bleischwitz 2009). The intermediate scale ranging from building clusters 

to urban neighbourhoods falls in the middle of the two. The current discussion shows 

a clear need for clarifying sector specific modelling connected to local energy 

planning tasks and eventually their relation to urban planning tasks (Cajot, Koch et al. 

2015). A number of urban energy planning tasks have been identified (Table 9) and 

linked to the requirements for energy system models. 

New construction, and possibly building stock with well-known and well-documented 

properties, can benefit from detailed, forward models that can be parametrised 

based on data bases or three dimensional geometry models in combination with 

steady state or dynamic physical building model approaches (Bahu, Koch et al. 2013). 

This allows for a large flexibility in simulating different technical solutions in detail 

and simulate system operation schedules. The case study of Rintheim can be seen as 

an example for such a well-known and monitored building stock. Often this will go 

hand in hand with a single ownership and management by a single housing 

association.  

For most of the building stock in our cities, such detailed descriptions of the building 

properties are not available or are difficult to obtain due to diverse ownership, 

privacy restrictions or simply lack of documentation. In such cases, data-driven 

models can play an important role, as deterministic models are over-parameterised 

for this purpose (Coakley, Raftery et al. 2014). Such applications include the 

estimation of heating needs for district heating systems, where data-driven models 

are already widely used (Dotzauer 2002, Nielsen and Madsen 2006). As was shown, 

data driven models are well suited to support local energy planning, for example, by 

determining energy efficiency targets through the aggregated assessment of block 
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structures based on energy use. Finally, due to their scalability they can be applied to 

the development of citywide energy master plans. This latter application was 

demonstrated by Hellwig (2003) in the original validation case for the energy 

signature model, which was compared to gas consumption data for the city of Berlin. 

Early planning phases, where little information is available, lend themselves to this 

kind of modelling approach. To assess different planning alternatives, data-driven 

models, such as the energy signature approach discussed here, can be coupled with 

forward models to represent technologies and calculate annual heating energy 

needs. These needs can be used as input to deliver realistic hourly load profiles by 

applying a data-driven model. 

Today, however, the discussion on data-driven and deterministic models seems to 

have developed into two competing strands of research rather than a joint 

discussion. The cause can possibly be found in a lack of structure in the target domain 

(i.e. which solution for which problem) and the desire and ambition to identify a 

solution that fits all needs. This discourse holds in its core the questions about the 

degree of uncertainty in natural and man-made systems: 

“While large models based on a deterministic-reductionist philosophy have 

an important part to play in environmental research, it is advantageous to 

consider alternative modelling methodologies which overtly acknowledge the 

poorly defined and uncertain nature of most environmental systems.” (Young, 

Parkinson et al. 1996) 

By testing the limits of scale this thesis contributes to the current discussion on urban 

application cases and their scale. With regard to the distinction of forward and data-

driven models, the choice of a specific model is essentially a choice between 

statistical significance versus the availability of structured data for parametrising the 

model (Figure 51). 
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Figure 51: Deterministic and data-driven models with the corresponding scale 

From a methodological point, the presented work connects to previous modelling 

approaches conducted at different spatial scales. The core model concept is directly 

derived from work by Hellwig (2003) which is still used in the gas load prediction 

(BDEW, VKU et al. 2014). The general approach of energy signatures and so-called 

grey box models is also widely used in the simulation of heat demand for district 

heating systems (Heller 2000). For the latter, mostly linear signature models are used. 

Energy signatures with various numbers of change points have long been used in 

building performance assessment (Kissock, Haberl et al. 2003). The thesis applied for 

the first time the selected single variant data driven model at different scales and 

tested the lower spatial and temporal limits of the sigmoid energy signature model 

in predicting heating energy needs for residential and a number non-domestic use 

types. 

In the current mostly academic discussion, a number of new simulation approaches 

at city scale were proposed that are predominantly based on a physical simulation 

i.e. deterministic models (see chapter 3). An exception seem to be tools for planning 

district heating systems. Here a number of data-driven approaches can be found 

(Nielsen and Madsen 2006, Zhivov, Liesen et al. 2010). Both simulation approaches 

were discussed with their strength and weaknesses. While a decision for either 

approach depends on the specific case, a preference for physical modelling for new 

construction can be seen when parameters are known or defined. The data driven 

approach can generally be expected to be better suited in cases where little 
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information is available, as is most often the case in existing neighbourhoods. In such 

cases, data-driven models can help to avoid errors resulting from inaccurate 

parametrisation that are inherent to deterministic approaches at large scales. In 

addition, data driven simulation has a clear advantage when simulation models are 

passed on to users inexperienced in building simulation, when monitoring is to be 

continued beyond the duration of a scientific research project.  

6.1.1 Scaling down black box models 

The investigation of energy use in individual buildings and residential units in the case 

study Rintheim showed that already at the relatively small scale of buildings and 

building clusters, different use patterns are compensated by the number of users. 

The result is a more homogeneous demand curve at hourly and daily time resolution 

that is well represented by the energy signature model. Based on the investigated 

case studies it proved robust and applicable for a small number of users. This was 

further supported by the case study data from Bad Aibling in which meaningful 

results with a CV RMSE around 20% were reached for daily energy use in residential 

or hotel building clusters above 2000 square meter conditioned surface. This size 

corresponds well with the size 20 to 30 residential units, which lead to equally good 

results. 

The CHP Ops case study provided a good example for a larger area including non-

residential buildings that thus showed more diverse heat demand patterns, especially 

over different weekdays. Here, however, the total needs were dominated by 

residential demand, therefore in total an accurate simulated load profile was 

provided for the site. 

Both the temporal and the spatial scale were tested in different case studies. As can 

be expected when applying data driven models, errors increase when the temporal 

or spatial scale is decreased. Results for the daily energy use remain robust at the 

larger scale of the CHP Ops case study. At this scale, even hourly predictions were 

possible for the residential and aggregated district heating system within the limits 

of acceptable errors according to ASHRAE (ASHRAE 2002). 
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It was shown that the quality of results is a function of spatial scale and temporal 

resolution. This means that the model can be used with a high amount of confidence 

for small scales when the temporal resolution remains at the daily scale. In an 

extreme case, even single residential units’ monthly demand curve was well 

predicted. When the scale increases to that of a typical urban neighbourhood, higher 

temporal resolution can be simulated up to hourly demand curves.  

The robustness regarding variance and correlation that was shown for residential 

buildings, and building clusters in the non-domestic sector, indicate that the method 

is highly suitable for the generation of annual load duration curves, which are often 

used, for layout planning of cogeneration systems.  

6.1.2 Scaling up deterministic models 

As noted before, the main challenge of using deterministic models at a large scale lies 

in their parametrisation. Typically, the key parameters when assessing heating needs 

of buildings relate to the building geometry, the characteristics of the building parts 

and the technical equipment as well as the operational schedule and the operation 

by the user. 

6.1.2.1 Building parameter 

With the rapid development of open standards for the description of building 

geometry at the urban scale, the application of automated parametrisation for 

forward models has become less resource intensive. Amongst other solutions 

CityGML is one of the solutions that offers an accessible way to provide input data 

for deterministic models, which can be executed as batch simulation based on 3D 

data (Bahu, Koch et al. 2013, Nouvel, Schulte et al. 2013). A main advantage lies in 

the automatised data import, which typically includes information on surfaces and 

volumes of building parts as well as their orientation. In addition, solar irradiation on 

specific surfaces can be calculated. Today, many cities and federal states such as 

Berlin and Bavaria, are engaged in providing information on the level of detail 2 (LOD 

2), corresponding to the volumetric depiction of buildings including roof geometry. 

Dedicated internal zones of buildings and locations of windows in the façade surfaces 

(LOD 3) are less common in large-scale CityGML models. As discussed above such 
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applications facilitate the calculation of heating needs when other building 

parameters such as the thermal transmittance (U-value) of individual building parts 

and the supply system layout are known (Strzalka, Bogdahn et al. 2011). While these 

developments solve part of the important technical questions of data handling and a 

homogeneous data model, existing urban areas with a diverse ownership still prove 

difficult to be assessed with forward models. Such neighbourhoods do not undergo 

homogeneous maintenance cycles and therefore show a large diversity of 

performance classes. In addition, access to building information is limited and the 

structure of available data inconsistent. Even at the scale of individual buildings 

Karlsson, Rohdin et al. (2007) found differences up to 50% of which a large part was 

attributed to the technology representation but also the operation schedule. At the 

scale of neighbourhoods “lack of precise inputs will lead to low accurate simulation” 

(Zhao and Magoulès 2012). In such situations deterministic models are often over too 

detailed (Coakley, Raftery et al. 2014), as errors from poor input data result in larger 

errors throughout the calculation process. Moreover, in the existing building stock, 

measurements are usually easier to obtain than parametrising detailed models 

(Wang, Yan et al. 2012). 

6.1.2.2 Operation schedule 

Increased computing power has facilitated the standardised calculation of heat 

demand for larger areas. Even though calculation can be executed, the modelling 

approach is not per se prepared to accommodate non-standard operation schedules. 

Comparison with measured data can lead to derivations by the factor of three once 

buildings are inhabited (Strzalka, Bogdahn et al. 2011). Schnieders, Feist et al. (2001) 

showed this effect when comparing four passive house settlements with identical 

construction. These showed a spread of +/- 100% in a nearly normal distribution 

pattern in energy use for space heating. Such a normal distribution pattern was also 

reported by Ebel, Großklos et al. (2003) as well as by Eikmeier, Pfaffenberger et al. 

(2004) where the frequency distribution was differentiated according to building type 

(i.e. multi-dwelling units, semi-detached and detached houses). An alternative to 

representing the operation schedule for a large number of buildings is the data driven 

modelling of individual parameters such as window opening hours, indoor 
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temperature, shading devices, etc. as part of the parametrisation of deterministic 

models, resulting in a grey-box approach. It can be concluded that, at the scale of 

urban areas and based on the methodological improvement in building simulation, 

deterministic models are today mainly suitable for calculating energy needs in newly 

constructed and homogenously managed neighbourhoods where characteristics of 

the buildings are known and well documented. The better predictability of future 

strategies in the redevelopment might eventually stimulate increased efficiency in 

housing estates managed by public or private associations despite the critique such 

areas received in the past. The emerging discussion on stochastic models for 

modelling user behaviour (Haldi and Robinson 2011) might eventually enrich 

deterministic models by stochastic information.  

6.1.3 Lack of accepted tools and methods 

While the discussion on urban energy modelling has gained structuring inputs 

regarding planning tasks and suitable energy system models by Coakley, Raftery et 

al. (2014), Yamaguchi and Shimoda (2010) and others it remains a predominantly 

academic discussion. The reality of urban planning is often much less ambitious. 

Depending on the project stage and the project’s objectives, sometimes simple 

models or rules of thumb are used to take far reaching decisions. Developing detailed 

simulation solutions that aim to cover the full range of possible applications does not 

always seem to be the right solution. Moreover, it is of utmost importance to ask the 

right questions at the appropriate stage of the project. Future work should consider 

the integration of urban planner and local decision maker in the development of 

solutions. In the assessment of current practices in energy simulation for urban 

planning, the investigated tools point to the conclusion that “current energy-

environmental modelling packages are rarely used at the community level” (Mendes, 

Ioakimidis et al. 2011). This is consistent with the findings from IEA Annex 51 (pro:21 

GmbH and Projektträger Jülich 2013). Possible reasons for the disconnect between 

urban planning and the local energy planning discourse are discussed by Cajot, Koch 

et al. (2015). Essentially, urban planning tasks are generally characterised “by the 

involvement of many actors with different interests, the difficulty to state the 

problem explicitly, and the lack of immediate or ultimate solutions”. Therefore linking 
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specific energy planning tasks to the larger process of urban planning can be seen as 

a key requirement to integrate the explanatory power of energy system models into 

urban development planning.  

6.1.4 Urban energy modelling 

It is commonly agreed that a main challenge in successful urban energy planning is to 

develop comprehensive energy concepts in early planning stages (Erhorn-Kluttig, 

Jank et al. 2011). As urban planning processes have become “more participatory, 

flexible, strategic and action oriented” (UN-HABITAT 2009), the action oriented 

approach proposed by Jank, Church et al. (2013) seems a possible way to link 

objectives to concrete measures. Therefore, access to results from energy system 

models is required at a point in time when little information is available. The planning 

tasks described in chapter 2 allow for the consecutive application of models from 

simple benchmarks to complex simulation tools. A stepwise approach seems a 

suitable method to ensure consistent assumptions throughout the planning 

development phases. The selection of the models should predominantly be made 

based on the planning task. Reflecting the discussion of international case studies and 

the specific planning tasks for local energy planning the following successive steps 

are proposed which are consistent with the general concept described in Figure 1. In 

a first step, a baseline model is developed using annual benchmarks based on 

measured annual energy needs or archetype buildings. The annual benchmarks can 

be transformed into hourly load profiles for specific uses on site or an annual load 

duration curve by applying the discussed energy signature model as one suitable 

solution. 

Energy efficiency measures and use of energy from renewable sources in the design 

stage can be discussed using forward models, archetype buildings or a combination 

of both as proposed in the District Energy Concept Advisor. Again, the energy 

signature can be used to calculate hourly values from monthly energy needs. Forward 

models should be employed for the assessment of detailed load matching, dynamic 

effects within the local energy system or specific operational strategies. 



119 

 

In the implementation phase, changes in the selected measures should be reflected 

in the model. Where projects are executed in a series of construction stages, 

monitoring results from first stages should be used for comparison against the 

modelling results. During operation, annual and monthly benchmarks should be 

continuously updated. The described energy signature model provides the 

opportunity to derive daily and hourly benchmarks that can help to detect 

unforeseen energy use with a minor time lag. Especially in the implementation and 

operation phase, the proceeding can benefit from the use of data driven models as 

these allow the application by the developer or operator of the site to deliver 

continuous benchmarks at the scale of the urban neighbourhood. In order to develop 

the described approach, site-specific measurements can be used to calibrate the 

energy signature for a given project. In addition, standard parameter sets can be 

developed from the assessment of measurements to complement existing energy 

signatures. 

6.2 Application of the energy signature model at neighbourhood 
scale 

Conducted research work (pro:21 GmbH and Projektträger Jülich 2013, Cajot, Koch 

et al. 2015) has clearly shown the relevance of an intermediate scale for urban (re-) 

development projects. Even though no harmonised vocabulary is used, the different 

definitions are all targeting an operational scale within cities. The planning has been 

referred to as local energy planning (LEP). This intermediate scale lies in between 

building and city-wide energy assessment.  

6.2.1 Relevance of the approach 

It was shown that based on annual energy-use data and limited information on the 

built structure, the tested energy signature model delivered reliable results with a 

limited amount of effort. This is especially important, as consistent data is usually not 

available for the largest part of our cities. In comparison to the available case study 

data, the selected energy signature model delivered very good results that have been 

discussed in detail in Chapter 5.  
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A clear benefit for the application in the existing urban fabric is the limited amount 

of input data needed. Also for the application case with no contextual information 

for a commercial zone the model delivered results with good resemblance of the 

actual load curve in terms of correlation and variance and acceptable values for CV 

RMSE. The hourly time scale of the simulation is relevant for most urban energy 

planning tasks from the assessment of energy efficiency measures to hourly use of 

distributed generation from fossil or renewable energy sources. For an early stage 

layout planning for district heating connected to CHP systems the model delivers 

realistic predictions for a site specific annual load duration curve. 

While the quality of the results is the key criteria to judge a simulation approach in 

the urban planning context an easy applicability can be judged equally important. 

Energy signature models are easy to use and can be applied in the context of 

continuous commissioning by users who are not specifically experts in energy 

simulation. This application scenario corresponds well to the different applications of 

energy signature models, often used for assessing large amounts of data (Stram and 

Fels 1986, Rabl and Rialhe 1992, Masuda and Claridge 2014) and continuous 

monitoring (Mazzarella, Liziero et al. 2009). For the latter task, the concept of an 

online analytical processing solution was developed based on the data analysis of the 

different case studies. 

6.2.2 New parameter set for low outdoor temperatures 

Based on the assessment of simulation results, a new set of parameters was proposed 

for the energy signature model developed by (Hellwig 2003). At the time the model 

was developed, the “new buildings” category referred to buildings built before 2002 

and equipped with monitoring equipment. In 2002, a more rigid regulation was 

introduced with the Energy Savings Ordinance 2002 (BMVBW 2002). The application 

of the model with the existing parameter set for residential and non-residential uses 

(Hellwig 2003, BGW 2006, BDEW, VKU et al. 2014) showed limitations in predicting 

peak demand for periods of extremely cold temperature. A new set of parameters 

was deduced from the analysis to improve the prediction of heating needs. The need 

to improve the model for periods of very cold temperatures was pointed out by Roon, 

Gobmaier et al. (2014) in the context of gas load predictions. The new parameter set 
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for the model delivered improved results, based on 2012 data from the Rintheim and 

Bad Aibling case studies. 

6.2.3 Potential for future improvement 

The sigmoid model, in its original context of gas load prediction, is designed for use 

without reference to buildings or operation schedules. When applied to urban areas 

and building clusters, the approach lends itself to be improved by integrating easily 

accessible information. This holds the potential to improve the modelling results in 

future application cases. For application in neighbourhoods, it seems both promising 

and feasible to analyse the demand curve in more detail by using existing 

measurements or by including a short-term measurement campaign, before 

conducting simulations. The model proved robust for daily simulations at 

neighbourhood scale. Especially for hourly simulations for non-domestic users, data 

analysis of past measurement periods holds the potential to further improve the 

simulation model for a given neighbourhood, by improving weekday factors and site-

specific patterns of use. The application for the commercial zone clearly showed this 

potential. 

6.2.3.1 Non temperature dependant needs 

When modelling smaller urban areas (e.g. building blocks), it is proposed to 

individually determine the factor for summer needs, mainly corresponding to 

domestic hot water needs in residential buildings. This can be done either by daily or 

monthly measurements of domestic hot water needs for the summer months or by 

a standard assessment based on the household size for residential buildings, as for 

example provided by a number of standards (VDI 2007). In the “Blaue Heimat” case 

study instead of using statistical values for domestic hot water use, the model was 

calibrated using the mean daily value for the months of June, July and August. This is 

consistent with the approach proposed by (Richter 2004) for POLIS and is based on 

information which generally should be available to local energy planners. At the scale 

of building clusters, or neighbourhoods, it seems feasible either to use measured data 

or to estimate daily energy use for domestic hot water by the number of households 

or the residential surface. As domestic hot water use is not explained by a 

temperature dependant model, it is recommended to substitute the purely statistical 
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values for the parameter “D” by a factor adjusted to a more detailed assessment 

when working at the neighbourhood scale. The profiles developed by Grießbaum 

(2012), as well as stochastic domestic hot water profiles developed by Jordan and 

Vajen (2000), could provide further means to better adapt hourly simulation. The 

former profiles were developed in the course of a master thesis supervised by the 

author. Finally, for a detailed application, on site measurements could be taken to 

provide coherence with residents’ schedules 

While domestic hot water needs are relatively easy to estimate for a larger sample, 

schedules for non-domestic users are less evident. In the CHP Ops case study, a 

swimming pool was included in the load and showed distinct patterns that obviously 

cannot be explained by a temperature dependant energy model. As in the Macro DE 

project, aimed at an automatic application for England, Scotland and Wales, no 

calibration was made. Yet on the scale of the district heating system, these heating 

energy needs could be determined in the same way as a base load over the course of 

the year (parameter “D”). In such cases, future applications should consider on-site 

measurements outside the heating period to improve modelling results.  

6.2.3.2 Weekdays 

As was shown in the CHP Ops case study, non-domestic uses often have a dedicated 

use pattern specific to weekdays. This fact is incorporated in the energy signature 

approach, yet in the selected model, the relation is not very expressive i.e. different 

weekdays vary only slightly. In a real application, such patterns should, as domestic 

hot water needs, be part of a pre investigation of a given site. Even though in most 

cases, the weekday differentiation was overruled by the number of users who were 

insensitive to the day of the week, simulation results especially for non-residential 

use could be further improved by site-specific values. In the Bad Aibling case study a 

school building, offices and hotels were included in the data used for testing the 

energy signature. No significant sensitivity to the days of the week could be found for 

the office and school uses. While this mainly depends on the operational schedule of 

the facility itself, the low energy standard can be seen as a reason for continuous 

heating rather than a low setback temperature. The application case for a commercial 

zone showed the relevance of weekday factors at daily and hourly resolution. For the 
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case study, both daily as well as hourly simulation results were improved by including 

site-specific values. For detailed applications for building clusters also weekday 

specific hourly load profiles can improve simulation results. 

6.2.3.3 Solar radiation 

The energy signature model uses the ambient temperature as a single regressor 

variable, therefore, solar radiation is not directly used to explain heating demand 

patterns. As solar energy plays a significant role in today’s building concepts, solar 

radiation was tested as potential factor in improving modelling results. The 

regression analysis on solar radiation returned poor results compared to the 

significance of ambient temperature, as shown for the example of Blaue Heimat in 

Figure 32. This is consistent with the assessment made by Heller (2002) who 

attributed only 7.7% of the explanatory power to the solar radiation, compared with 

83% for ambient temperature. While the estimation of solar radiation is an important 

step in deterministic modelling, especially for non-domestic buildings, their relevance 

in the data-driven heating needs assessment was found secondary to the ambient 

temperature. As the two factors are cross-correlated, it is difficult to determine the 

specific explanatory power. Future work could be useful targeting buildings with high 

efficiency standard such as passive house constructions. 

6.3 Simulation and Monitoring 

The depiction of realistic demand profiles is an important task in the early planning 

stages of urban development. It is essential to improve and update simulation results 

throughout the implementation and operation process in order to deliver the desired 

positive effects. Therefore, as proposed in this thesis, monitoring and simulation 

tasks should go hand in hand (Figure 1). In each step, both monitoring of the projects 

and energy simulation with a relevant level of precision are necessary to evaluate the 

potential, and later the success, of urban policies and energy efficient development 

projects. As discussed in the Annex 51 project “consistent monitoring remains one of 

the most important aspects that should be carried out throughout the project 

phases” (Koch, Kersting, 2011). In the described iterative process, monitoring can 

deliver the necessary inputs for running energy simulations. The results of the latter 

can be compared to measurements in the form of continuously updated benchmarks. 
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While such target values are important in early planning stages in order to compare 

different solutions, they are even more necessary when the development project 

starts operation. Typically, targets for the buildings’ performance are rarely achieved 

in the first years of operation. Hence, a continuous monitoring is indispensable for 

measuring the success of the development. Without a suitable monitoring concept, 

or at least measurement of key performance data, there is little value in detailed 

energy simulations as the target values will remain good intentions and describe a 

theoretical potential. 

On the other hand, reliable simulation results can help to identify malfunctioning 

equipment and put monitoring results into perspective of clear target values. For 

such tasks, energy signature models have been successfully applied in the past at the 

building scale (Mazzarella, Liziero et al. 2009, Masuda and Claridge 2014). Once 

validated for a specific site, simulation results can also serve to evaluate the data 

reliability. Kohlhepp and Buchgeister (2013) propose the continuous updating of 

simulation models through the planning, implementation and operation cycle of 

buildings. While for individual buildings, this task can be carried out based on 

deterministic simulation models as shown for example by Eicker (2006), it seems 

unrealistic to maintain the support for a detailed simulation model during the urban 

planning cycle which can easily span a decade from early concepts to implementation 

(Koch and Kersting 2011). In urban projects, also the lack of responsibilities for 

continuous monitoring and the development of benchmarks can be seen as a main 

obstacle to efficient project delivery. 

6.3.1 Scalability 

As an indirect result, the work conducted leads to the conclusion that the solution for 

data assessment in monitoring must be scalable. The aggregation of measurement 

data is equalising to a large part of the variation of individual users due to system 

operation, user behaviour, etc. While this effect enables the application of the energy 

signature model, it can also overshadow malfunctions or poorly operated individual 

systems. This indicates that the energy signature analysis proposed by Neumann and 

Jacob (2008) at building scale should be restricted to smaller systems, as effects of 

scale can overshadow malfunctioning in individual systems. In order to allow for 
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specific investigation of a system’s performance, overall modelling is not sufficient. 

From this arises the dilemma that reliable load prediction is feasible at a larger scale 

with a limited possibility of detecting individual malfunctions. At a smaller scale, non-

intended use of energy or malfunctioning can be detected but the prediction of 

energy needs becomes less robust due to the reduced scale. IT solutions to store 

monitoring data at the district scale must thus be flexible enough to allow for a 

scalable investigation in terms of time and space (i.e. building, residential unit, and 

technical component). With the concept of slicing, the proposed OLAP solution 

ensures the temporal and spatial scalability, which is a general quality of data 

warehouse solutions. Monitoring at the scale of urban neighbourhoods can, for the 

reasons described, not replace the optimisation of individual systems at building 

level. Once correct operation can be ensured, the data-driven model can carry 

forward realistic benchmarks. 

In the course of the work conducted for this thesis a number of data sources were 

analysed for which little knowledge on the specific measurements was available 

except for technical reports, as for example in the “Rintheimer Feld” case study. This 

reflects the conditions for which the approach was developed; moreover, it showed 

that statistical results of the model pointed towards particularities or unplausible 

values in the data. Therefore, modelling can be understood, not only as a means to 

predict but also to analyse (Figure 52).  

 

Figure 52: Schematic comparison between modelling, simulation and monitoring 

Figure 52 shows the idealised information flow between known (!) and unknown (?) 

values for modelling, simulation and monitoring. Once applicability is ensured in the 
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modelling process, the tested model can be used either to predict outputs in the form 

of a simulation or to assess operation via measured outputs and a known model in 

which the operational parameters have been correctly assigned. 

6.3.2 Data availability 

The simulation in the framework of this thesis was carried out with generally limited 

access to information on the projects. This highlights one advantage of a data-driven 

approach, as it can be conducted with little information on the building properties. 

While most of the case studies provided information on the installed systems and the 

buildings’ characteristics, in a realistic urban planning scenario only a fraction of this 

information would be available. The three main case studies from Manheim, 

Karlsruhe and Bad Aibling delivered a high level of detail and a high quality of data 

for the statistic tests. However, such diligent monitoring of urban development 

projects is far from the current standard. As the case studies in EBC Annex 51 showed, 

even international lighthouse projects do not always apply a high quality of energy 

monitoring (Zinko and Moshfegh 2012). 

6.3.2.1 Weather data 

The approach proofed to be robust and not dependant on on-site measurements. 

Ambient temperature data provided by the German Meteorological Service 

(Deutscher Wetterdienst -DWD) was used for the Blaue Heimat and Bad Aibling case 

studies. In both cases, weather station data delivered good results. In Karlsruhe 

(Rheinhafen) and Bad Aibling (Munich) measured data corresponded well to DWD 

station data. Specific urban temperature phenomena such as urban heat islands 

might, in some dense areas, render the simulation more difficult. Based on the case 

studies for the heating period no adverse effect was identified. 

6.3.3 Missing values 

Resulting from discussions with Rafael Botsch on the case study of Bad Aibling it was 

tested to use the data driven model in order to substitute missing values for larger 

periods. Here only a random case was calculated to test the application for missing 

values. In Figure 53 a period of eight days was randomly deleted from the measured 

data resulting in a time series of 358 days. In order to apply the energy signature 
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model the missing values, a linear interpolation was applied. The energy use 

estimated for the missing period was added to the rest of the year to receive an 

approximation of the total annual energy use. With the annual energy use, the 

simulation was carried out. The process was iterated with the sum over the missing 

days that resulted from the simulation.  

 

Figure 53: Application of the Energy Signature Model to Substitute Missing Values 

The variation between the linear approximation and the first simulation was 4.9% 

over eight days. The second iteration did not result in a significant increase of the 

simulated energy needs for the period (<0.2%). Here only a first test could be 

provided. The correct application would need more exhaustive testing as it obviously 

depends on the length of the period as well as the variance of the load in that time. 

7 Conclusions 

7.1 Application of the energy signature model 

The selected energy signature model was, for the first time, applied to a small number 

of users representing scales from building clusters up to urban neighbourhoods. In 

addition, the model was successfully tested at different temporal resolutions from 

months to hours. The scales corresponded to the different case studies and the 

monitoring resolution. Simulations were carried out for monthly and daily energy 

needs and, where sufficient measurements were available, at hourly time scales. The 

small number of users was considered a proper test for the fitness of the model in 
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testing its limits of scale or the temporal resolutions. For aggregated buildings, the 

coefficient of variation of the root mean square error (CV RSME) lay between 20% 

and 30% for daily simulations and 30% to 40% for hourly simulation. At the large scale 

of a district heating system (CHP Ops case study), the results lay well within the range 

proposed by ASHRAE (Table 14) for hourly simulation. For daily simulation, the 

correlation measured with the Bravais-Pearson correlation coefficient lay above 90% 

for all aggregated uses and above 96% for aggregated residential uses. For hourly 

simulations, the coefficient ranged from 79% for non-residential uses to 87%, and up 

to 91% for residential uses. The relation of the standard deviation of measured and 

simulated samples was used to test the similarity of the variance. The ratio of the 

standard deviations for daily simulations reached values between 91% and 99% for 

non-residential uses and 95% to 100% for residential uses. The hourly simulation 

resulted in 87% for tertiary buildings and 94% to 97% for aggregated residential 

buildings. These results confirm the usability of the selected energy signature model 

for urban neighbourhoods and building clusters. The practical value also lies in the 

fact that little input data is required to run such models. The difficulties in the 

parametrisation of deterministic models can be seen as the main obstacle to base the 

assessment on the physical representation instead. While performance related 

difficulties have been largely solved the availability and quality of input data is the 

main problem for the latter category of models.  

In addition to general fitness, the scalability of the energy signature approach was 

investigated. It can be concluded that very promising results can be reached at 

different temporal and spatial scales. The limits of scalability depend on both the 

temporal and the spatial scale. For time and space, aggregating effects can be 

observed, promoting the use of data driven models. When larger areas are 

considered, hourly simulation can deliver good results as was shown in the CHP Ops 

and Blaue Heimat case studies. When the scale of application is reduced to a small 

number of users, the temporal resolution for simulation should be increased to a 

daily representation to achieve good results.  

The case studies presented show that the selected modelling approach can be used 

as a quick model to predict monthly and daily energy needs at the neighbourhood 
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scale and can even produce good results, down to a smaller number of users. The 

results from the Rintheim case study indicate a saturation effect at the size of 20 to 

30 similar users (e.g. residential units) for the daily simulation.  

The model delivered good predictions of hourly heating energy needs at the scale of 

urban neighbourhoods and can be applied with very little effort. A simple Excel tool 

was developed as a by-product of the analysis. Below the scale of building clusters, 

the quality of the hourly prediction is less certain. The method proved easily 

applicable and thus suitable for use in early planning stages or for initial energy 

concepts. Even though the sigmoid method was originally designed based on 

buildings mostly constructed before the introduction of the German Energy Saving 

Ordinance EnEV2002 (Hellwig 2003) it proved applicable to low energy buildings. 

As outlined in the discussion the application of energy signature models on building 

clusters or neighbourhoods should include the assessment of annual heating needs 

for the different use types and climate correction of the values (see 4.1.1). 

Additionally the non-temperature dependant part of the load should be identified or 

estimated specific to the application case in order to improve the simulation results. 

The prediction of domestic hot water consumption and the weekday factors for non-

domestic users yield the largest potential for improvement. For the former, the use 

of average domestic hot water use outside the heating period was successfully 

tested. The latter was applied in the application case for a mixed-use district heating 

network. As shown in the Bad Aibling and the commercial zone case study, specific 

schedules for heating systems should be included where such information is 

available. This could be done by e.g. overruling the distribution function until the start 

of the heating period, modification of weekday factors or inclusion of site-specific 

hourly profiles. Based on these preparatory steps, the energy signature model can be 

applied using a test reference year (TRY) or a specific meteorological year to simulate 

heating needs during a specifically hot or cold year. In addition to the generation of 

hourly and daily time series, due to the good results in terms of correlation and 

variance, the model resulted in excellent results for simulating annual load duration 

curves, which are typically used for the planning of district heating and cogeneration 

systems and for smaller areas, based on an hourly simulation. 
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A new set of parameters (HMFx) is proposed in order to improve the quality of 

simulation results for periods of extremely low temperatures that occurred in the 

year 2012. For the Rintheimer Feld case study, the CV RMSE was reduced by six 

percent and the prediction of the variance was improved by eight percent. In the Bad 

Aibling case study, the variance in the 2012 results was improved by seven percent 

for residential buildings and by nine percent for hotels. The latter also showed a slight 

improvement of the CV RMSE, while the residential prediction was slightly worse. In 

this case study, the cold period in February 2012 was compared to the warmer year 

2013. In the latter, both parameter sets showed similar performance. The proposed 

change in the parameter set mainly effects temperatures below minus five degrees. 

As the model uses a geometric row of days this effect is only visible for a period of 

consecutive days. The new profile was successfully applied to the data of different 

case studies. The observations of an underestimation of peak loads based on the 

original parameter set (BDEW, VKU et al. 2014) for low temperature periods is 

consistent with results from a recent study on the state of gas load prediction by 

Roon, Gobmaier et al. (2014). Even though this thesis is focused on the relatively 

small scale of urban areas, the results contribute to the future discussion on the much 

larger scale of gas market areas. Based on the results presented, the choice of a linear 

model for deep temperatures (Roon, Gobmaier et al. 2014) could not be supported. 

In contrast to this option, measurements from residential and non-residential uses 

(hotels) show a non-linear development at low temperatures. In the discussed case 

studies peak loads are higher than predicted by the original sigmoid function (BDEW, 

VKU et al. 2014) but do not follow a linear trend with decreasing temperatures. A 

linear substitute at very low temperatures could thus risk overestimating peak loads. 

The redefinition of input parameters for the energy signature approach therefore 

should be investigated to improve the gas load prediction in periods of very cold 

temperatures.  

7.2 Simulation and monitoring for urban neighbourhoods 

The results show that the model can be a useful component in a combination of 

monitoring and simulation to predict the aggregated energy needs at hourly scale in 

the operational phase of an urban development. In this context, the approach can be 
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used, with limited additional effort, as a calibrated model to provide a continuous 

benchmark for smaller areas or for a smaller number of users. 

A four-step approach for local energy planning is proposed (section 6.1.4), in which 

the discussed energy signature model is proposed in the conception phase to develop 

realistic benchmarks with an hourly time resolution based on measured or calculated 

annual energy needs. The data-driven approach is judged suitable for most urban 

energy planning tasks and can be combined with steady state calculation approaches 

that are suited to describe individual efficiency measures. For detailed simulation of 

operation strategies or the representation of dynamic effects in the local energy 

system it should be replaced by a forward modelling approach. In this way, the energy 

signature can be used to derive continuous benchmarks for daily or hourly energy 

use in the operation phase for new or existing buildings.  

The investigation at different temporal and spatial scales lead to the paradoxical 

conclusion that the aggregating effect that allows for the application of the data-

driven model at the scale of a neighbourhood also prohibits the use of monitoring 

data only at the aggregated scale as the sole source of information to make a 

judgement on the performance of individual users. In other words, specific user 

behaviour or the unintended inefficient operation of the system is not necessarily 

visible at the scale of a neighbourhood. Thus, neighbourhood scale monitoring 

schemes should always be accompanied by the assessment of individual users. This 

highlights the need of the application of a multi-scale monitoring of urban 

development projects.  

In order to support the application by multi-scale data analysis, an online analytical 

processing (OLAP) framework was discussed to implement the simulation model. 

Specifications were developed in the framework of this thesis. The OLAP concept 

chosen for the implementation meets the main requirement of scalability for 

monitoring and simulation. Depending on the data source, spatial and temporal 

aggregation or disaggregation can be applied. This functionality is implemented in 

OLAP via the concept of slicing not unlike the better-known pivot tables. 
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7.3 Classification of urban energy system models 

The state of the art in urban energy modelling tools was described based on the 

current discussion in applied research. A classification of urban energy models is 

proposed in chapter 3.1.5 (Table 9), contributing to the discussion on energy system 

models at the urban scale. In the context of this thesis, a focus was put on the 

comparison of physical and statistical models, also regarding their inherent 

aggregating or disaggregating nature. For this purpose, various demand models were 

described and classified according to their temporal and spatial scales. For a number 

of tools, this analysis points out compatibilities in the daily assessment. In this sense, 

the discussed regression model could be used as an alternative energy demand 

model in solutions such as EnerGIS or TIMES HEAT.  

The development of tools is often driven by individual research and development 

projects, and shows little incentive to move towards standardisation. This is possibly 

linked to the fact that often urban development projects are seen as one-of-a-kind 

actions (Cajot, Koch et al. 2015). To an extent, this is true due to their context-specific 

nature. However, often similar local energy planning tasks can be identified and are 

currently discussed in the context of standardisation (IEC/SEG 1-WG2 2015). As a 

contribution to this discourse, chapter 2 proposes a structure of urban planning tasks 

related to local energy planning. The structure is based on the review of existing 

urban energy concepts and follows the widely accepted approach of targeting energy 

efficiency of building and supply systems first and satisfying remaining energy needs 

with energy from renewable sources (Malottki, Koch et al. 2013). For each 

subsequent step requirements for local energy planning tools are identified as well 

as exemplary approaches. 

7.4 Known limitations 

While the simulations for the different case studies delivered very good results for all 

aggregated residential applications, only a limited number of non-domestic load 

profiles was tested in the case studies CHP Ops, Bad Aibling and the mixed 

commercial zone. The application delivered good results, yet it is apparent that more 

work needs to be done to test the reliability of non-domestic simulations. Weekday 

factors especially, could be calibrated in a pre-assessment of the data.  
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The results obtained for the year 2012 and 2013 indicate the fitness of the newly 

developed set of parameters (HMFx profile), which predicts peak loads at low 

temperatures better than the existing profiles. Yet, larger application tests should be 

conducted before the results of this thesis can be more generally accepted.  

Finally, even though data-driven models are generally described a solution that can 

be applied without expert knowledge (ASHRAE 2005), optimal or correct system 

operation should be assured by experts before simulation is carried out, as errors in 

the operation could be carried forward in the simulation. In other words the strength 

of data-driven models goes hand-in-hand with the risk of simulating inefficient plant 

operation as no normative calculation is provided. 

8 Outlook 

This thesis delivered tests on the robustness but also the limitation of the regression 

model at the scale of urban neighbourhoods. For residential neighbourhoods or 

building clusters larger than 30 individual users, good results were obtained. In order 

to allow a flexible application of the energy signature model, future work should 

focus on the development of a set of validated sets of parameters for different 

building uses. For a number of uses tests at the neighbourhood scale were conducted 

in this thesis.  

The model was integrated into the JAVA based simulation language of AnyLogic as 

part of the EnergyLogic library. The modules are currently tested for a wider 

application in the context of on-going projects, simulating local energy systems. The 

library will be published under an open source license in the coming years in order to 

allow a wider application as well as to collect experiences from further application 

cases. 

The classification of modelling approaches (see section 3) showed the compatibility 

of different top-down approaches as they use similar temporal aggregation scales. 

Future work will test the application of the sigmoid regression model in the 

application of TIMES. While the building typology and the hourly load profiles could 

be maintained (McKenna 2013, Fehrenbach, Merkel et al. 2014), “steps” in the 

annual load curve from the direct application of typical days could be avoided. 
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Based on the developed concept for combined simulation and continuous 

benchmarking for neighbourhoods and the prototype application developed by SIANI 

institute, the tested energy signature model and statistic indicators will be 

implemented in the MONET framework developed by SIANI. The energy signature 

model will be tested to provide ongoing benchmarks for continuous monitoring and 

for load predictions based on on-line weather forecast data. The first use cases will 

apply the energy signature to calculate continuous benchmarks for the heating needs 

at neighbourhood scale. Thus, the measurements can be compared to daily or hourly 

values generated automatically based on actual temperature measurements. 

Deviations from the benchmark beyond the expected uncertainty could indicate 

malfunctions in the operation of the heating system with little lead-time. The second 

use case requires the connection to online weather forecast to predict future energy 

needs. Such an application could provide for the basis to optimise plant operation in 

district heating systems. 

The discussed fields of applications in different planning stages for urban 

development planning are a core question, which is investigated in the IEA EBC Annex 

63: “Implementation of energy strategies in communities”. The work conducted in 

this thesis seeks to contribute to this discussion by providing an easy to use yet robust 

model to support decision making in local energy planning and continuous 

monitoring at the neighbourhood scale and eventually help to realise the ambitious 

targets set in today’s urban development projects. 
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10 Annex 

10.1  Annex A: Definitions 

Brownfield land 

brownfield land is land previously used for industrial purposes or certain commercial uses 

and that may be contaminated by low concentrations of hazardous waste or pollution and 

has the potential to be re-used once it is cleaned up. (CEMAT 2007) 

Building Energy Performance 

“Calculated or measured amount of energy actually used or estimated to meet the different 

needs associated with a standard use of the building, which may include, inter alia, energy 

use for heating, cooling, ventilation, domestic hot water and lighting.” ISO 16818:2008(E), 

3.84 

Comprehensive Plan 

“Reflects the belief that the planning system should plan towns (or large parts of them) as a 

whole and in detail.” (UN-HABITAT 2009) 

Energy and GHG Inventory 

“An inventory is a summary of all the energy consumed and GHG emissions produced 

within a community […] and by what sources and sectors.” (CEMAT 2007) 

Energy Efficiency 

Ratio between an output of performance, service, goods or energy, and an input of energy 

Energy Need for Heating or Cooling 

“Heat required for delivery to or extracted from a conditioned space by a heating or cooling 

system to maintain the intended temperature during a given period of time.” ISO 

16818:2008(E), 3.82; In EN 15603 energy need is referred to as a calculated value 

Energy use for space heating and cooling 

“energy input to the heating or cooling system to satisfy the energy need for heating or 

cooling, respectively” ISO 16818:2008(E), 3.87 

Energy System 

The “combined processes of acquiring and using energy in a given society or economy.” 

(Jaccard 2006, Keirstead, Jennings et al. 2012) 
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Integrated Planning 

A “process involving the drawing together of level and sector specific planning efforts which 

permits strategic decision-making and provides a synoptic view of resources and 

commitments. Integrated planning acts as a focal point for institutional initiatives and 

resource allocation. In the context of integrated (or comprehensive) planning, economic, 

social, ecological and cultural factors are jointly used and combined to guide land- and 

facility-use decisions.” (CEMAT 2007) 

Local Energy Planning (LEP) 

An “approach to support the development of a local energy strategy by means of rational 

planning and management principles.” (Jank 2000) 

Master Plan 

“These are spatial or physical plans that depict on a map the state and form of an urban 

area at a future point in time when the plan is ‘realized’. Master plans have also been called 

‘end-state’ plans and ‘blue-print’ plans.” (UN-HABITAT 2009) 

Urban Area  

An “area which physically forms part of a town or city and is characterised by an important 

share of built-up surfaces, high density of population and employment and significant 

amounts of transport and other infrastructure (as opposed to rural areas).” (CEMAT 2007) 

Urban Energy Master Plan 

A spatial or physical plan that depicts the individual measures or components that form the 

future combined processes of acquiring and using energy in a given urban area. 

Urban Energy System Model 

A “formal system that represents the combined processes of acquiring and using energy to 

satisfy the energy service demands of a given urban area.” (Keirstead, Jennings et al. 2012) 

Urban Regeneration and Revitalisation 

Process that “aims at transforming the obsolete socio-economic base of certain urban areas 

into a more sustainable socio-economic base through the attraction of new activities and 

companies, modernisation of the urban fabric, improvement of the urban environment and 

diversification of the social structure; towards sustainable territorial development.” 

(CEMAT 2007)  
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10.3 Annex C: Case Study Description 

In the context of the Macro DE project, the author conducted simulations for a district 

heating system referred to as “CHP Ops”. The full results from the project are 

published by Woods (2012). For this thesis, reference is made only to the demand 

model validation case. VOLKSWOHNUNG GmbH, a communal housing association 

based in Karlsruhe, provided detailed data for residential use from the housing estate 

“Rintheimer Feld”. Technical data access was made available by the University of 

Applied Science Karlsruhe for the conducted analysis. This data set was used to test 

the model’s scalability. Data for a third case study was provided by Fraunhofer ISE 

measured in the “Blaue Heimat” project. Here, aggregated data for a cluster of 

buildings was used to test the model. This case study can be seen as a proto-typical 

application for the model in a realistic application case without in depth knowledge 

of the underlying variations within the buildings’ operation. Based on the 

“Nullenergiestadt” project in Bad Aibling, the University of Applied Science 

Rosenheim supported this thesis with measured data for residential and non-

residential uses. A further case study was investigated to test the model’s scalability. 

Data from individual, single-family houses were used to test the simulation results 

against individual load profiles. The data was collected in order to monitor the 

operation of individual heating units for single-family houses. Data was made 

available by EIFER and previously prepared by Grießbaum (2012) to test simulations 

for hybrid energy systems. Finally, access to measurements form a commercial zone 

was granted by Drees & Sommer for the purpose of validation. The individual projects 

and the data sets are described in the following sections. 

10.3.1 CHP Ops site in the Macro DE project 

10.3.1.1 Case study description 

The Macro Distributed Energy (DE) project was carried out in 2010 in order to assess 

the potential for district heating systems with a maximum installed power of 5 MWel 

in the United Kingdom (Woods 2012). In the framework of the project, the energy 

signature approach was applied by the author supported by the project team to 

describe hourly heat demand profiles in the United Kingdom for a total of 4,660 

statistical zones. These higher density zones are referred to as Middle Layer Super 
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Output Areas (MLSOAs). The selected zones were clustered into representative 

zones, classified by attributes such as scale, heat density and the ratio of residential 

to tertiary demand (Sipowicz, David et al. forthcomming). Further technical and 

economic analysis was carried out by project partners to assess the suitability for 

district heating systems for the derived classes. The project was led by Caterpillar 

with Paul Woods (AECOM) as technical coordinator; other project partner included 

the University of Manchester, EDF R&D, MK niras, DELTA and WADE. EIFER’s 

contribution was led by Kevin McKoen. The author was responsible for the 

identification and application of the thermal demand model (Figure 54). The 

calculation was executed with the help of two students (A. Nichersu and N. 

Griessbaum). A more detailed project description can be found at www.eti.co.uk. 

While the demand assessment was carried out for the whole UK, a test of the model’s 

fitness was conducted with data from an individual district heating system, which for 

reasons of confidentiality was referred to as “CHPS Ops”.  

 

Figure 54: Comparison of measured (blue) and simulated daily heat demand qtd. in (Woods 2012) 

In this thesis reference will only be made to the published case study results (Woods 

2012) the work will not provide further details on the district heating system. 

10.3.1.2 Data Description 

Measurement of the mean power output was made available by the plant operator 

for the project in 10-minute time steps for two measurement periods between 

1.2.2008 until 27.1.2009 and 5.7.2009 until 1.7.2010. Data was provided for five 
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individual building clusters of different use types connected to the district heating 

system. The data contains the delivered energy at each building cluster and therefore 

does not contain losses in the distribution system outside the buildings.  

The data used for model validation consisted of different uses serviced by a central 

CHP system. In the context of the project, both non-residential and residential use 

profiles were tested for daily and hourly demand. Seventy-six percent of total 

demand refers to residential uses. About a third of the apartments were built in 2005. 

The rest of the residential building stock consisted of buildings from the last century, 

which, however, were well maintained, and a small number of small multifamily 

apartments built in the 1970s. For one of the five building clusters, 34 daily 

measurements were missing. These were added by linear interpolation and 

compared to the same weekdays of the week before and after.  

10.3.2 Blaue Heimat 

10.3.2.1 Case study description 

Data for this case study was kindly provided by Sebastian Herkel and Florian Kagerer 

from Fraunhofer ISE. The case study description is based on published project reports 

(Herkel and Kagerer 2011). The building cluster “Blaue Heimat” originally built 1951 

was renovated in 2005 with the target of a net-zero energy building. After renovation, 

the low energy building contained 40 residential units. The concept includes two 

adjacent buildings supplied by the same energy system, which were not renovated 

to the same standard. Planning and construction works were accompanied by 

Fraunhofer ISE. The external walls, roof and basement ceiling were insulated 

resulting in a high overall performance expressed in a specific transmission 

coefficient (HT’) of 0.31 W/(m2K). The windows were exchanged for triple glazing. In 

order to reduce ventilation losses, decentralised ventilation with heat recovery was 

installed for each staircase. The three-story building is supplied with heat by a gas 

driven combined heat and power (CHP) system with an installed capacity of 80 kWth 

and 50 kWel. In order to increase CHP running hours, the system also supplies two 

neighbouring buildings with heat. These are connected via two decentralised hot 

water storage tanks of 800 litres for domestic hot water and two 325-litre storage 

tanks for space heating needs. The locally produced electricity is fed into the grid and 
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taken into account for the total primary energy balance of the building. After 

renovation, the building achieved a very low value of 19 kWh/(m²a) for specific 

annual space heating needs. With 11 kWh/(m²a), the specific domestic hot water 

needs are in the range of the assumptions for the German building regulation (12.5 

kWh/(m²a)). The central CHP system is connected to existing buildings via a 

distribution system in the basement of the low energy renovation project. By means 

of the electricity produced on-site the project nearly reaches a net-zero energy 

standard (Herkel and Kagerer 2011).  

Monitoring was conducted by Fraunhofer ISE in the context of the IEA Task 37 

“Advanced Housing Renovation by Solar and Conservation” supported by the BMWi 

(Herkel and Kagerer 2011). Monitoring began in July 2009 and a full year of 

monitoring data was provided for the period between October 2009 and September 

2010. 

10.3.2.2 Data Description 

Data was provided for all three buildings at a 15-minute resolution. The data was 

checked for missing values and provided in a structured format by Fraunhofer ISE. 

Data was made available for the period between 14.7.2009 until 1.1.2011 and thus 

contained data for 536 days. In total six measurement failures with 41.6 days were 

reported as missing values. Data for 365 days was used for the model validation. As 

a number of consecutive missing values fell in the month of December 2010, the 1st 

of September 2009 was selected as starting point. The selected year contained 8.2 

days as missing values.  

As in the other case studies, data from heat meters were used for comparison with 

the simulation results. These included the aggregated measurement of the heat 

supply to each of the adjacent buildings, as well as related domestic hot water needs. 

The load curve for the two existing buildings could be well traced as heat meters were 

installed at the connection points. The two load profiles were subtracted from the 

total measured heat supply for the total building cluster. Even though this associates 

relatively larger circulation losses from horizontal distribution (i.e. connection to 

adjacent buildings) to the remaining profile of the low energy building, it was judged 

an acceptable simplification given the external view on the project, which 
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corresponds to the limited amount of information, assumed for many urban energy 

planning tasks. 

The case study thus consists of three distinct data sets for two existing buildings as 

well as the central low energy building. Figure 55 shows the measured data for space 

heating and domestic hot water use mapped to the ambient temperature. The energy 

signatures of the three buildings show typical curves for a well-operated system with 

clear dependency on the outdoor temperature. Due to its higher performance and 

lower peak demand the low energy buildings are typically represented by the 

shallower curve (MFH A). 

 

Figure 55: Energy signatures of the three building parts in the “Blaue Heimat” case study 

As they represent different performance classes, all three buildings were individually 

simulated to test the simulation model. In order to describe the total balance 

correctly, the model was adopted to represent the given amount of energy use in 

summer as the sum of domestic hot water needs and distribution losses. The monthly 

balances evaluated by Herkel and Kagerer (2011) showed relatively stable losses 

throughout the year. 

10.3.3 Rintheimer Feld 

10.3.3.1 Case study description 

Case study data was kindly provided by Dr. Reinhard Jank, Mr. Kuklinski and Mr. 

Kürsten (VOLKSWOHNUNG GmbH) with the technical support of Prof. Wolfrum 
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(University of Applied Science Karlsruhe). Information on the project is based on the 

published reports, project publications such as (Jank 2013) and personal 

communication. The data is based on the monitoring of three residential buildings 

with 30 residential units each, organised in three staircases. For the model validation 

measurement of two of the buildings were used. The three buildings were part of the 

urban regeneration project Rintheimer Feld that was supported by the EnEff:Stadt 

research program. The objective of the project was to develop an integrated energy 

concept combining the renovation of the buildings to an economic optimum with a 

new supply infrastructure for the neighbourhood. The renovation measures were 

implemented by VOLKSWOHNUNG GmbH between 2009 and 2015. In addition to the 

overall targets for the whole neighbourhood “Rintheimer Feld”, two buildings were 

selected to test new technologies, which are currently not part of standard 

renovation measures. The work was accompanied by the RWTH as research partner 

in an EnEff:Stadt project. The monitoring concept was developed by RWTH Aachen 

and the University of Applied Science Karlsruhe and installed by the latter. The 

monitoring data is evaluated by the RWTH Aachen in an ongoing project funded by 

the BMWi. 

Measurement of two low energy buildings was accessible for testing the fitness of 

the energy signature model. In addition to a disaggregated data set, this case study 

can be seen as a test to apply the signature model to high performance buildings as 

the cases of “Blaue Heimat” and “Bad Aibling”. The first building was designed as a 

“3-litre” building referring to the energy content of 3 litres of fuel. The target value 

for the heating energy needs that was also reached after renovation in 2012 was 35 

kWh/(m2a). The second building was designed with the more ambitions target of 31 

kWh/(m2a) which again was confirmed after the renovation measures (Jank 2013). In 

both buildings, which share the same geometry the renovation, measures included 

high performance building parts including passive house components. As the 

objective was to compare the performance of building technologies, a number of 

different solutions was included in the renovation scheme especially in the second 

building, characterized as an experimental building. Here also different supply 

solutions were included such as CO2 borehole heat exchangers connected to a heat 

pump as well as an air-water heat pump system. Regarding the application of the 
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data-driven model, a specific challenge was seen in the representation of the latency, 

which is inherent to low temperature panel heating systems. Detailed technical 

specifications for the buildings can be found in (Jank 2013), further details on the 

neighbourhood concept are published in a dedicated publication of the research 

program EnEff:Stadt by Jank and Kuklinski (2015). 

10.3.3.2 Data Description 

The demonstration buildings in the Rintheimer Feld project were assessed in 

comparison to a reference building renovated to meet the standard measures 

applied in other renovations conducted by VOLKSWOHNUNG GmbH. Monitoring was 

installed for one staircase in the reference building (10 units) and in all 60 units of the 

two demonstration buildings.  

Each building contains three staircases (entrances) with ten residential units each 

with a cellar in which the central space heating and domestic hot water provision is 

located. In the case study a number of different technologies is used (i.e. district 

heating, CO2 heat pump and an air-water heat pump), therefore the space heating 

needs captured by the heat meter of individual apartments were used for analysis. 

The data was received and treated in an anonymised form, so that no reference is 

made to individual apartments or users. As the selected simulation approach does 

not consider specific physical properties of individual apartments, the single objects 

are not referenced to their specific location. For the monitoring each apartment is 

subdivided in its rooms and contains a central heat meter for space heating. In each 

staircase, four apartments are additionally equipped with heat meters for all rooms 

(living room, kitchen, sleeping room, bath, and children). The installed heat meter 

measures the amount of energy (kWh) as well as the inlet and outlet temperature 

(°C) and the volume flow (l/h) at 60 seconds intervals. In addition, within each 

apartment, domestic hot water use is measured via a heat meter (kWh) as well by its 

volume flow (l/h) and inlet and outlet temperature (°C). Next to the heat meters in 

each room (usually living room, children, sleeping, kitchen, bathroom) measurements 

of room temperature [°C] and relative humidity [%] were taken. In addition, values 

for luminance [lux] and CO2 concentration [ppm], as well as volatile organic 

compounds, (VOC) were measured. Household electricity use is measured in 15-
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minute time steps, as well as auxiliary electricity for the heating and hot water 

systems (i.e. pumps, etc.). A weather station was set up to measure temperature, 

relative humidity, global radiation, luminosity, wind speed and direction. For each 

measurement, an absolute value is provided as a timestamp [yyyy/mm/dd hh:mm:ss] 

every 90 seconds. For the further analysis raw data from heat meters of apartments 

and data obtained from the local weather station was used. 

Reliable measurements on the installed sensors was obtained from September 2011 

onwards (Jank 2013). For the model validation, measurements were available for a 

period of 12 months between January 2012 and December 2012. The temporal 

resolution is, depending on the sensor, provided in 60 second time intervals; each set 

of values is provided in relation to an absolute timestamp [yyyy/mm/dd hh:mm:ss] 

specific to the sensor, as measurements were not synchronised. The raw data was 

received grouped per day and staircase and further structured with one csv file per 

heat meter or sensor. The data for the analysis was anonymised so that no reference 

could be made to individual users. The data was received as continuous 

measurement from 240 sensors installed in 60 units. The temporal resolution was 

based on one-minute time steps. As the sensors used individual time stamps, the data 

was imported into a SQL database. For synchronisation, measurements were 

aggregated to hourly and daily time series. In total 9 measurement failures longer 

than four hours were identified as missing days each affecting ten apartments each 

(90 missing values). The days were substituted by the maximum value of the 

continuous measurement for that day and checked against the following day’s value. 

From the sixty samples, two apartments were excluded from further work as the time 

series delivered implausible patterns. In one case, the main heating load was 

measured in summer with decreasing loads in winter; in the second case, no 

significant heating load was measured. As it could not be determined if this was due 

to malfunctioning heat meters, as reported in other cases (Jank 2013) or due to 

specific heat demand patterns both apartments were excluded. 

To test the proposed approach combining simulation and monitoring, a data 

warehouse solution was implemented in the framework of a student project with 

support by the SIANI institute. Data analysis and queries were conducted based on 
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an online analytical processing (OLAP) solution, which will be described in section 

5.2). 

10.3.4 Single building systems 

Data was kindly provided by EIFER for testing the application of individual residential 

buildings. The data was first prepared by Niklas Grießbaum in the context of his 

diploma thesis (Grießbaum 2012). The thesis was supervised by the author and Dr. 

Aurelian Florin Badea (KIT-IFRT). As in the case study “Rintheimer Feld”, the 

application of the heating needs is investigated for the scalability of the approach. 

According to the underlying hypothesis, a simplified model should deliver better 

results for increasing numbers of users and reach saturation when a statistically 

significant number is reached.  

10.3.4.1 Case study description  

For the individual building case study, monitoring data from eight individual buildings 

in South West Germany was used. The data was recorded between the 1st of August 

2008 and the 31st of July 2010. For privacy reasons no address specific information is 

correlated to the datasets and the individual buildings are referred to “building A” up 

to “building H”. All buildings are situated within a 20 km radius in a village context so 

that similar weather conditions are assumed for the analysis. All buildings were 

recently modernised and each was equipped with a new individual heating system 

for provision of space heating and domestic hot water. The systems were all 

connected to a storage tank and use radiators for the heat distribution.  

10.3.4.2 Data Description 

Heat meters were included for the boiler and for the solar thermal system as well as 

for storage for each building. For total heating needs, these meters were used in 

connection with the heat meter data for the heating and domestic hot water circuit. 

Due to the heat meters’ assumed rounding effects, validation from heat 

measurements was preferred to flow and temperature measurements. The data was 

available in hourly time steps. Data treatment was carried out in the framework of a 

diploma thesis (Grießbaum 2012), which found the time steps to not be isochronal, 

i.e. some hours were assigned none or two values. Data was filtered to ensure each 



161 

 

data set contained 17520 values. In the data treatment missing data for periods 

shorter than four hours were interpolated using a piecewise cubic spline 

interpolation polynomial (pchip) (Grießbaum 2012) longer periods were reported for 

manual treatment. Due to long consecutive periods of missing values and implausible 

values two buildings were excluded from the case study.  

 

Figure 56: Measurements and simulation of the aggregated daily heating needs of all single-family 

buildings  

Data from the space heating needs of six buildings were selected for comparison with 

simulated demand in different levels of aggregation. In order to do so, a randomly 

chosen building was added to the cumulated load for each simulation run. The last 

case therefore corresponded to the aggregated demand of all buildings. This could 

be seen as the equivalent of the heating needs supplied by a common heating system 

without considering the distribution losses outside the buildings. 

10.3.5 Bad Aibling 

10.3.5.1 Case Study Description 

Data for the zero energy development project (“Nullenergiestadt”) in Bad Aibling was 

kindly made available by Prof. Mathias Wambsganß, Rafael Botsch and Florain 

Alscher of the University of Applied Science Rosenheim. The case study description is 

mainly based on published reports and project publications such as (Böhm, Schroeder 

et al. 2010). The B&O Park Area in Bad Aibling is a conversion of a former military site. 

The target was defined as zero energy development (“Nullenergiestadt”) for the 

brown field project. The 70 ha site located 50 kilometres south of Munich and was 
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constructed as a military area for the German air force in the thirties. After the 

Second World War it was used by the US military and housed 1400 military staff and 

their families. In addition to barracks, it included a number of services. Energy was 

supplied by three boilers with a nominal power of 6.5 MW each connected to a 

district heating system. In 2004 the US Army abandoned the site and thus 

opportunities arose for the current development (Böhm, Schroeder et al. 2010). 

During the redevelopment, the existing structure was transformed into residential 

and recreational buildings as well as hotel facilities and a school building (Table 36). 

The redevelopment project and accompanied research activities were funded 

through the EnEff:Stadt research program by the German Ministry for Economics 

(BMWi). The development aimed at high standards for renovation between EnEV 

2007 and Passive House standard, as well as EnEV -50% up to the passive house 

standard for new construction. The existing district heating infrastructure was 

maintained and redesigned to comply with the reduced needs. In the northern part 

of the area serviced by the district heating system mainly residential uses, hotels, 

school buildings and a small part of office space are located.  

Table 36: Summary of the buildings in the north loop, estimation for the initial system layout qtd. 

in (Böhm, Schroeder et al. 2010) 

Use 
Net surface 

m2 
Heating needs 

[kWh/m²a] 
Auxiliary energy 

[kWh/m²a] 
Electricity needs 

[kWh/m²a] 

Residential / Housing 1.012 87 5 20 

Residential / Housing 1.922 70 5 20 

Residential / Housing 2.246 51 5 20 

Residential / Housing 2.152 75 5 20 

Residential / Housing 116 42 5 20 

Residential / Office (ground floor) 1.478 88 5 25 

Residential / Office (ground floor) 481 47 5 25 

Residential / Office (ground floor) 968 55 5 25 

School 2.152 150 25 35 

Seminar spaces / Apartment building 1.496 50 10 25 

School / Office building 8.092 75 30 45 

Hotel 1.202 69 5 20 

Hotel / Gastronomy 872 83 30 50 

Hotel / Apartment 578 70 5 20 

Hotel / Apartment 578 63 5 20 

Gastronomy 1.429 69 30 50 
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During summer, the district heating system is supported by solar thermal systems 

installed mainly in the northern area which initially connect to decentralised storage 

units and then, in second instance, to the network. Heat pumps provide the necessary 

temperature level for domestic hot water when needed. A wood chip boiler installed 

in the centre of the northern loop is the main heat supply in winter. The renovated 

gas boiler in the south functions as backup system. In addition to the roof mounted 

thermal solar collectors, a large PV plant supports the project’s net-zero energy target 

of the project. In the projected energy balance, the total thermal needs for space 

heating and warm water were estimated at 2.044 MWh/a, the auxiliary energy 

amounts to 444 MWh/a with 861 MWh/a total electricity needs including household 

electricity. 

10.3.5.2 Data Description 

In order to control the performance of the energy system a monitoring system was 

defined as part of the EnEff:Stadt research program. The implementation is based on 

the software “MoniSoft” developed by KIT-fbta. The concept was aligned with the 

EnEff:Stadt program’s guidelines (Erhorn, Erhorn-Kluttig et al. 2012) and 

implemented on site by Prof. Wambsganß and his team at the University of Applied 

Science Rosenheim. The system collects data from the building operation and stores 

it in a database. Analysis is conducted by the University of Applied Science Rosenheim 

in order to periodically observe the system and store data, control the correct 

functioning of the system, check on the plausibility of the data and maintain the 

monitoring hardware when necessary (Böhm, Schroeder et al. 2010). For the purpose 

of this thesis, hourly data was provided aggregated at building level and specified per 

use. It was further assigned to the branches of the local district heating network. For 

the tests, data was anonymised and treated without reference to specific buildings 

or users. As the “Nullenergiestadt” contains a number of non-residential buildings, it 

was of particular interest for model validation to test non-residential parameter sets. 

The data was provided as synchronised data at an hourly time scale. From the 

provided data, the years 2012 and 2013 were providing for two nearly complete 

annual time series for different uses. Hotels represented an especially large share of 

the available data. In total, measurements for 2012 and 2013 contained five missing 
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days. Furthermore, a residential cluster along with office and school buildings were 

also used. Over the course of the two years 15 days were reported as missing data. 

With regard to previous tests, measurements from 2012 were of specific interest 

when testing the newly proposed parameter set for low temperatures, as February 

2012 included a period of subsequent days with very low temperatures, reaching 

hourly values below -20 °C. Site-specific weather data was provided. As the hourly 

temperature data contained a number of missing values, it was compared to the 

hourly and mean daily temperature measured at the DWD station 1262 located at 

Munich airport (Figure 57).  

 

Figure 57: Comparison of the site-specific mean daily outdoor temperature measured in Bad 

Aibling and Munich (DWD station 1262) for the year 2013 

This comparison was done to complete missing values in the temperature data and 

to test the sensitivity of the simulation results to site-specific temperature data. The 

comparison showed good agreement between the two temperature measurements. 

Figure 57 shows the comparison of data from 2013. This is of interest for future 

application cases as when modelling energy needs for urban areas most cities can 

provide for global meteorological measurements, while data at smaller scales such 

as postcodes or districts will be difficult if not impossible to obtain in most cases. 

10.3.6 Commercial Zone District Heating System 

At a high aggregation level, the total load of a district heating system supplying heat 

for a commercial zone was used as a case study. Data was kindly made available by 
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Sven Reiser and Gregor Grassl of Drees & Sommer. For confidentiality reasons no 

reference to the exact location or the specific user or processes was provided. The 

site located in the south of Germany consisted of two-third light industrial use and 

one-third office spaces. The absolute energy use in 2013 was 291 MWh and 222 MWh 

in 2014. The climate corrected values are 271 MWh and 249 MWh using the DWD 

(ww.dwd.de) climate factors for the respective years. Based on annual benchmark 

values (BMVBS 2009) it can be estimated that the site hosts approximately 1000 m2 

of office buildings and 1500 m2 of light industrial use. Data was provided as complete 

time series of hourly energy use for the years 2013 and 2014. Given the limited 

amount of information, the case study lends itself as a test for a real application case. 

Simulation based on the default parameter set were carried out for the year 2013. 

The resulting errors were analysed in comparison with the measurement data. 

Findings from this comparison were used to improve the parameter of the simulation. 

The modified simulation was rerun for 2013 and for 2014. Such an application could 

be imagined for site-specific simulation or in cases were the method should be 

adapted for continuous application after an accompanying research. 

Table 37 summarises the case studies used for the model validation. In all cases, data 

was used at the lowest scale of measurement and further used for aggregated 

buildings or building clusters up to a complete neighbourhood or zones. 

Table 37: Summary of the case studies 

 Case Study Building Use Scale 

1 CHP Ops Residential, School, Recreational facility Building cluster, Neighbourhood 

2 Blaue Heimat Residential Buildings, Building Cluster 

3 Rintheimer Feld Residential Buildings, Building Cluster 

4 Single family buildings Residential Buildings 

5 Bad Aibling Residential, Hotel, School, Office Building Cluster, Neighbourhood 

6 Commercial Zone Office, Light Industrial Building Cluster, Commercial Zone 
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10.4 Annex D: Complete statistic results 

10.4.1 Case Study “CHP Ops” 

 Series CV RMSE ρ σs/ σm 

    mon d h mon d h mon d h 

1 Residential building cluster 1 8.44% 13.53% - 0.91 0.96 - 0.88 0.94 - 

2 Residential building cluster 2 5.58% 17.26% - 0.91 0.94 - 1.07 1.13 - 

3 Residential building cluster 3 18.13% 23.88% - 0.91 0.97 - 1.53 1.55 - 

4 Tertiary buildings GBH 8.22% 19.57% - 0.91 0.96 - 1.02 1.03 - 

5 Tertiary buildings GKO 1 9.63% 50.54% - 0.91 0.83 - 0.88 0.76 - 

6 Tertiary buildings GKO 2 10.55% 63.95% - 0.91 0.78 - 0.89 0.68 - 

7 Aggregated residential buildings 5.98% 12.33% 29.71% 0.91 0.97 0.87 0.95 1.01 0.94 

8 Aggregated tertiary buildings 6.65% 19.72% 37.25% 0.90 0.91 0.79 1.00 1.00 0.87 

9 All buildings 3.62% 11.18% 24.13% 0.91 0.97 0.91 0.97 1.02 0.98 

 

10.4.2 Case Study “Blaue Heimat” 

 
Series CV RMSE ρ σs/ σm 

    mon d h mon d h mon d h 

1 Multifamily Building A  9.35% 18.30% - 0.91 0.96 - 0.91  0.93 - 

2 Multifamily Building B  8.88% 13.65% 41.61% 0.91 0.98 0.85 0.90 0.92 0.89 

3 Multifamily Building C  14.09% 20.74% 46.67% 0.91 0.98 0.81 0.93 0.94 0.89 

4 All buildings A-C 7.36% 11.05% 36.27% 0.91 0.99 0.87 0.92 0.94 0.94 

 

10.4.3 Case Study “Rintheimer Feld” 

 
Series CV RMSE ρ σs/ σm 

    mon d h mon d h mon d h 

1 Multifamily Building 1 unit 89.51% 143.08% - 0.76 0.73 - 0.51 0.42 - 

2 Multifamily Building 5 units 24.12% 44.56% - 0.87 0.85 - 1.14 0.98 - 

3 Multifamily Building 10 units 20.27% 39.37% - 0.89 0.92 - 0.88 0.81 - 

4 Multifamily Building 15 units 12.47% 27.39% - 0.91 0.96 - 0.88 0.85 - 

5 Multifamily Building 20 units 12.74% 23.66% - 0.91 0.97 - 0.87 0.87 - 

6 Multifamily Building 30 units 14.28% 23.60% - 0.91 0.97 - 0.86 0.87 - 

7 Multifamily Building (complete) 13.74% 26.11% - 0.91 0.96 - 0.89 0.88 - 

8 Multifamily Building (complete) 8.24% 20.27% - 0.91 0.97 - 0.94 0-96 - 
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10.4.4 Case Study “Single dwelling units” 

 
Series CV RMSE ρ σs/ σm 

    mon d h mon d h mon d h 

1 SFH A 26.40% 34.81% - 0.88 0.93 - 1.09 1.10 - 

2 SFH B 11.74% 25.22% - 0.91 0.96 - 1.02 1.02 - 

3 SFH C 15.30% 24.10% - 0.91 0.98 - 0.86 0.85 - 

4 SFH D 13.82% 30.22% - 0.90 0.94 - 1.00 1.00 - 

5 SFH G 20.55% 44.12% - 0.91 0.91 - 0.81 0.78 - 

  

 
Series CV RMSE ρ σs/ σm 

    mon d h mon d h mon d h 

1 SFH A 26.40% 34.81% - 0.88 0.93 - 1.09 1.10 - 

2 SFH A. C 16.13% 22.67% - 0.88 0.93 - 0.99 1.01 - 

3 SFH A. C. G 13.72% 21.77% - 0.91 0.97 - 0.94 0.95 - 

4 SFH A. C. G. D 26.40% 34.81% - 0.91 0.97 - 0.95 0.97 - 

5 SFH A. C. G. D. B 11.98% 19.14% - 0.91 0.97 - 0.96 0.98 - 

10.4.5 Case Study “Bad Aibling” 

 
Series CV RMSE ρ σs/ σm 

    mon d h mon d h mon d h 

1 Residential (2250 sqm) 10.97% 24.34% - 0.90 0.94 - 0.99 0.97 - 

2 Residential (2250 sqm) 2012 16.95% 24.36% 42.54% 0.90 0.96 0.88 0.86 0.89 0.89 

3 School & Boarding (2150 sqm) 16.01% 31.03% - 0.90 0.93 - 0.89 0.92 - 

4 School (8090 sqm /partial) 20.41% 29.41% - 0.90 0.95 - 0.82 0.85 - 

5 All School buildings 6.77% 26.08% - 0.91 0.95 - 0.99 0.91 - 

6 Office Buildings 35.85% 44.75% - 0.91 0.83 - 0.88 0.89 - 

7 Hotels (580 sqm) 14.21% 49.14% - 0.79 0.87 - 0.88 0.74 - 

8 Hotels (1160 sqm) 11.41% 27.44% - 0.89 0.93 - 0.98 0.93 - 

9 Hotels (2030 sqm) 7.81% 22.42% - 0.91 0.95 - 0.94 0.95 - 

10 All Hotels 6.77% 20.01% 32.32% 0.91 0.96 0.91 0.99 0.99 0.97 

11 All buildings NW 10.08% 22.73% - 0.91 0.95 - 0.96 0.99 - 

12 All buildings NE 10.08% 20.01% - 0.91 0.96 - 0.96 0.99 - 

13 All buildings loops NW & NE 17.97% 19.55% - 0.95 0.96 - 0.98 0.98 - 
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10.4.6 Case Study “Commercial Zone” 

 Series CV RMSE ρ σs/ σm 

   mon d h mon d h mon d h 

1 Sim 2013 - 19.02% 47.74% - 0.97 0.84 - 0.98 0.94 

2 Modified Sim 2013 - 14.97% 29.33% - 0.98 0.94 - 0.97 0.94 

3 Sim 2014 - 22.25% 53.92% - 0.97 0.79 - 1.01 0.96 

4 Modified Sim 2014 - 19.24% 36.20% - 0.97 0.91 - 0.97 0.93 

5 Annual load duration curve 2013 - - 14.00% - - 0.99 - - 0.94 

6 Annual load duration curve 2014 - - 9.29% - - 0.99 - - 0.96 
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10.5 Annex E: Urban energy planning tools  

Table 38: Local energy planning tools 

Tool / Method 
Application Moddelling approach 

(demand side) 
Developer References 

Forward models     

R-C models     

CitySim, Suntool District scale 
energy demands 
simulation 

R-C model statistic 
subroutines for user 
beaviour 

EPFL, University 
Nottingham 

(Starkovic, Campell et al. 
2006), (Robinson, Haldi et 
al. 2009) 

OSAKA model City wide energy 
demand 
simulation 

R-C model applied to 
building archetypes 

University of Osaka (Shimoda, Fujii et al. 
2004), (Shimoda, Asahi et 
al. 2007) 

Energy balance 
models 

      

District Energy 
Concept Advisor 

Development of 
district energy 
concepts 

DIN 18599 based on 
building archetypes 

Fraunhofer IBP (Erhorn-Kluttig, Erhorn et 
al. 2013) 

CITY GML based 
building simulation 

Large scale energy 
demand 
modelling 

ISO 13790 steady state 
energy balance 

TU Munich, HfT 
Stuttgart, EIFER 

(Nouvel, Schulte et al. 
2013), (Bahu, Koch et al. 
2013) 

RETScreen (CHP 
module) 

Potential 
assessmetn for 
RES & CHP 

Annual load duration 
curve based on monthly 
energy balance 

NRCan (Natural Resources 
Canada 2005) 

Heating / Cooling 
Degree Days 

Heating demand 
assessment 

simplified forward 
building representation 

multiple (Day 2006) 

Data driven models     

Energy signature 
models 

        

EnerGIS District scale heat 
demand 
assessment 

linear regression model EPFL (Girardin, Dubuis et al. 
2008), (Girardin, 
Marechal et al. 2010) 

District Heating 
models 

District scale heat 
demand 
assessment 

multiple linear 
regression model 

Dotzauer, Heller, 
Nielsen 

(Dotzauer 2002), (Heller 
2002), (Nielsen and 
Madsen 2006) 

Gasload prediction 
(DE, AT) 

Gas load 
prediction 

sigmoid regression, 
statistic hourly profiles  

TU Munich, TU 
Graz 

(Hellwig 2003), (Geiger 
and Hellwig 2002), 
(Eichlseder 2008), 
(BDEW, VKU et al. 2014) 

Static Load curves     

POLIS, URBS District heating 
system 
assessment 

Measured or statistic 
load annual load profile 

Max-Planck-Institut 
for Plasma Physics, 
GEF Ingenieure 

(Richter 2004), (Richter, 
Graf et al. 2007), (Zhivov, 
Liesen et al. 2010) 

BHKW Plan Layout planning 
for mid-scale CHP 
systems 

statistic profile for 
annual load duration 
curve 

Steinborn 
innovative 

 

Type day    
 

    

COPRA Layout planning 
for mid-scale CHP 
systems 

 
Dr. Valentin 
Energiesoftware 
GmbH 

(Dr. Valentin Energie 
Software GmbH 2002) 

Deeco Urban energy 
system modelling 

 
TU Leipzig, TU 
Berlin 

(Bruckner, Morrison et al. 
2003), (Bruckner 2001), 
(Wittmann and T. 2007) 

TIMES HEAT Optimisation for 
national and 
individual heat 
supply systems 

Typical days per 
weekday and period 
coupled to hourly load 
profiles 

KIT IIP, EIFER (Merkel 2012), (McKenna 
2013), (Fehrenbach, 
Merkel et al. 2014) 

VDI 4655 Reference load 
profiles for 
residential 
buildings 

Typical days per 
weekday and period 
coupled to hourly load 
profiles 

VDI (VDI 2008) 

GOMBIS Development of 
district energy 
concepts 

Typical days per 
weekday and period 
coupled to hourly load 
profiles 

Korb 
Systemtechnik 

(Saadat 2000), (Saadat 
2003) 
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Table 38 provides an overview on local energy planning tools and methods 

categorised according to the applied demand side model. A tool is understood as a 

software solution combining different functionalities for a specific purpose and user. 

Table 38 is limited to specific tools, yet a large number of relevant case studies can 

be found that are based on generic modelling frameworks or languages such as 

Modelica (Fritzson 2006, Huber and Nytsch-Geusen 2011), TRNSYS (Nußbicker-Lux 

2010, TRNSYS 2011) or INSEL (Schumacher 1991). 

 


