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Abstract: The monitoring of ecosystems alterations has become a crucial task in order to 

develop valuable habitats for rare and threatened species. The information extracted from 

hyperspectral remote sensing data enables the generation of highly spatially resolved 

analyses of such species’ habitats. In our study we combine information from a species 

ordination with hyperspectral reflectance signatures to predict occurrence probabilities for 

Natura 2000 habitat types and their conservation status. We examine how accurate habitat 

types and habitat threat, expressed by pressure indicators, can be described in an ordination 

space using spatial correlation functions from the geostatistic approach. We modeled 

habitat quality assessment parameters using floristic gradients derived by non-metric 

multidimensional scaling on the basis of 58 field plots. In the resulting ordination space, 

the variance structure of habitat types and pressure indicators could be explained by 69% 

up to 95% with fitted variogram models with a correlation to terrestrial mapping of >0.8. 
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Models could be used to predict habitat type probability, habitat transition, and pressure 

indicators continuously over the whole ordination space. Finally, partial least squares 

regression (PLSR) was used to relate spectral information from AISA DUAL imagery to 

floristic pattern and related habitat quality. In general, spectral transferability is supported 

by strong correlation to ordination axes scores (R2 = 0.79–0.85), whereas second axis of 

dry heaths (R2 = 0.13) and first axis for pioneer grasslands (R2 = 0.49) are more difficult  

to describe. 

Keywords: Natura 2000; conservation status; ordination; ecological gradients; imaging 

spectroscopy; PLSR 

 

1. Introduction 

In response to the Convention on Biological Diversity (Rio de Janeiro, 1992), the European Union 

adopted the Habitats Directive for the establishment of a coherent network of protected sites for rare, 

threatened, or endemic species and habitat types. This network, called Natura 2000, is aimed at 

preserving and restoring ecological interdependencies, dispersal, and establishment processes. 

European Union members need to report on their conservation status every six years. It has become 

clear that extensive efforts are required to obtain regulatory, technical, and scientific information as 

well as comprehensive ecosystem management [1]. In particular, there is a need for ecological research 

to be carried out beyond the local scale to implement controllable management systems. To obtain 

relevant knowledge about the spatial dynamic of ecological processes that influence the conservation 

status of habitats, spatially explicit data on the location and distribution of species are required [2]. 

Recent developments in remote-sensing techniques have increasingly allowed for a detailed 

description of spatial organization of habitat characteristics and driving environmental factors [2–4]. 

However, currently, only a few studies have implemented ecological knowledge in remote-sensing-based 

assessment systems for Natura 2000 monitoring [5–7]. There is still a considerable gap in knowledge 

transfer between remote-sensing specialists and ecologists in conjunction with the application demands 

of legal authorities [5,8,9]. The first steps in combining ecological knowledge with Natura 2000 habitat 

management are usually carried out using indicator species mapping [10–12], whereby habitat types 

and indicator species for habitat-status assessment are modeled separately or on the basis of object 

classes describing habitat quality and quantity in aggregate forms as habitat units [13–16]. Such 

approaches start from the premise that vegetation and habitat structures exist in a discrete pattern that 

can be classified a priori into categories [17]. It is assumed indirectly that habitat types and 

conservation status can be described by co-occurring species assemblages, as stated in the concept of 

ecological community assembly. The basic problem of these models is that the categories depend on 

ad hoc hypotheses on the observed and expected ecological relevance and cannot be adapted to new 

findings or changes without changing the whole model. Moreover, multiple species gradients are 

aggregated within a limited number of categories in which derived biotope/habitat types become 

difficult to interpret in terms of both class membership and spectral representation [18]. 
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There are different approaches regarding the spatial analysis of species assemblages. A number of 

basic concepts, e.g., distance decay and fractal scale, as summarized in Palmer and White [19], suggest 

the concept of vegetation continuum [20–22] as a more universal description of vegetation structures.  

It is generally stated that vegetation compositions vary continuously along environmental gradients. 

Fractal self-similarity of spatial vegetation pattern is solved by setting the observation scale to 

individual species abundances. Species assemblages are used to describe vegetation as a whole. 

Therein, plant species variations are capable of representing the negative relation of distance and 

similarity in ecological phenomena as evidence of species turnover along an environmental gradient. 

Transitions are no longer unexplained sources of variance. In fact, they are thought of as fundamental 

properties of vegetation. In particular, management strategies need to focus on these transitional 

ecotones, where species richness is occasionally maximized, and competition increases sensitivity on 

external factors [23,24]. Gradients between or at the edge of community clusters are likely to represent 

patterns of processes that determine habitat structure. Such multidimensional transition areas are of 

utmost importance in ecosystem management as required in the Natura 2000 network, where gradual 

differences in habitat conditions determine the required management actions [25]. In contrast to a  

pre-definition of discrete habitat units, n-dimensional representation of species–environmental 

interrelations can be described quantitatively using ordination techniques [26]. 

Floristic ordination spaces have been proven to be statistically coherent with spectral signatures 

extracted from remote-sensing images. There are several studies relating ordination-space 

arrangement, e.g., of heathlands [27–29], bogs and wet meadows [30–32], tree species [33], plant 

strategy types [34], and plant functional responses [35] to spectral gradients, whereby evidence for 

spatial prediction capabilities is provided. However, to date, no detailed analyses of the Natura 2000 

habitat-type-specific ordination arrangement for management purposes have been published. This 

study was designed on an interdisciplinary basis to describe ecologically and predict spectrally the 

Natura 2000 habitat types and their conservation status on the basis of floristic gradients in an 

ordination space. We want to find out which habitat types and pressure indicators are adequately 

represented in ordinated structures. It is intended to reveal habitat transition as well as habitat threat 

owing to species shift induced by e.g., habitat management, as reflected by species gradients in a 

vegetation continuum. Such habitat quality parameters are required for reporting Natura 2000 

conservation status in a six-year cycle. We are, furthermore, interested in determining whether habitat 

types and related pressure indicators can be modeled using hyperspectral reflectance  

signatures. Spatially explicit transfer of habitat characteristics can help to establish area-wide  

remote-sensing-based monitoring systems for the conservation of valuable natural habitats. Thereby, 

the mapping of gradual changes in plant species and habitats shall give a detailed representation of 

ecological interdependencies for selecting optimal management strategies. This paper introduces a 

methodological framework for integrating ecological knowledge into habitat conversion monitoring. It 

demonstrates a combined procedure of habitat conservation status assessment from a species 

ordination and hyperspectral image predictions. For this purpose this study is directed by three  

key hypotheses: 

(a) The floristic variety can be described by ordination; integration of new species does not change 

the ordination space fundamentally; 
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(b) Habitat types, transitions, or pressure indicators can be described continuously within the 

specific ordination space via spatial correlation functions; on that basis a Natura 2000 habitat 

conservation status assessment can be derived for management purposes; 

(c) Distinct habitat type areas in the ordination space can be related to patterns of reflectance. 

In this study, an approach is presented that reveals the transition between habitat types as well as 

modulations in pressure affecting the conservation status of habitats. For the first time, an evaluation of 

management efforts is derived directly from an ordination space, as reflected in hyperspectral imagery. 

2. Material and Methods 

2.1. Study Area 

The study was implemented on a former military training area, Döberitzer Heide, located at 53° 

latitude North and 13° longitude East in the west of Berlin, Germany (Figure 1). As a result of  

long-term military use, open dryland assemblages established on glacial ground moraine deposits that 

are mainly characterized by sandy, acidic substrate in Regosol, Cambisol, and Podzol soil types 

(World Reference Base) [36]. Translocation of soil substrate during military actions is reflected in a  

small-scale floristic variability with mosaics and interpenetration of xeric sand grasslands, herb-rich 

grasslands, dry heath, and pioneer woods. The main area of 3946 ha is protected as a Special Area of 

Conservation (SAC) within the European Natura 2000 network. The SAC includes habitat types 

(Lebensraumtyp (LRT)) such as Inland dunes with open Corynephorus and Agrostis grasslands  

(LRT 2330), European dry heaths (LRT 4030), and Xeric sand calcareous grasslands (LRT 6120). 

Within the study area, these Natura 2000 habitat types can be characterized by major indicator species 

according to Zimmermann [37]. The most prevalent indicator species are Corynephorus canescens for 

LRT 2330, Calluna vulgaris for LRT 4030, and Festuca brevipila grouped into Festuca ovina agg. for 

LRT 6120. Natural succession takes place in various patterns and different phases, just as a bundle of 

management activities is realized in order to preserve habitat quality. Especially open pioneer  

stages are threatened owing to degeneration phases where cryptogams (e.g., Cladonia sp.,  

Polytrichum piliferum) and different grass species cover increase. Within the entire area, open drylands 

are generally affected by scrub encroachment (e.g., Populus tremula, Sarothamnus scoparius) and the 

invasion of highly competitive grasses (e.g., Calamagrostis epigejos). Heathland conversion is 

additionally characterized by grass encroachment (e.g., Deschampsia flexuosa) and degeneration 

phases where mosses and lichens cover increase as the canopy of Calluna decreases [38]. Calluna 

heathlands are widespread over the whole study area with varying habitat quality conditions. The 

conservation of open pioneer stages is mostly realized in coherent areas where heathlands and different 

grasslands types are adjoined. The distribution of typical xeric and sand calcareous grasslands is 

patchier, with only rare sites reaching a good conservation status. Soil substrate variations particularly 

influence the quality of calcareous grassland habitats by inducing species shift along acidity gradients 

(e.g., Luzula campestris). Since 2004, different strategies of habitat management have been implemented 

by the nature foundation Sielmanns Naturlandschaften. These include the repressing of tree  

species or highly competitive grasses growth through big mammal grazing (e.g., Bison bonasus and  

Equus ferus przewalski), tree removal, and mulching of Calluna heath to support regeneration. 
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Figure 1. The former military training area Döberitzer Heide, visualized on flight stripes of 

the hyperspectral airplane campaign; field plots for plant species sampling are distributed 

in four open dryland areas; the test area for spatially explicit model transfer is marked  

in green. 

2.2. Floristic Data 

In order to determine the vegetation continuum for open dryland habitats (including LRT 2330, 

LRT 4030, and LRT 6120) of the research area, vegetation samples were collected on 58 plots. Species 

abundances were estimated using the enhanced Braun–Blanquet method [39], whereby species 

nomenclature is based on Rothmaler et al. [40]. Additionally, for every plot the Natura 2000 habitat type as 

well as the habitat conservation status was mapped. Terrestrial mapping of conservation status  

was conducted using the national assessment scheme framework proposed by “Bund/Länder  

Arbeitsgemeinschaft Naturschutz, Landschaftspflege und Erholung” (LANA) [41] and adapted for the 

federal state of Brandenburg by Zimmermann [37]. It incorporates the core assessment  

criteria—habitat structure, species inventory, and habitat disturbance—towards three assessment 

categories for a favorable (A: excellent, B: good) or an unfavorable (C: adverse) conservation status. 

All criteria are defined by thresholds of plant species abundances and expert evaluations (e.g., present, 

low, extensive) [37] integrating characteristic communities of habitat conversions that are typical for 

our study area (see Section 2.1). Consequently, habitat pressure, represented in B/C assessment 

categories, can be described by structural parameter (e.g., senescence, vitality) and listed plant species 

assemblages [37]. Pressure strength is maximized when (a) structural and species diversity is low or 
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(b) the influence of disturbance species is high. On the basis of expert knowledge, the spatial 

distribution of the sample plots was chosen so as to cover all relevant vascular plant species, mosses, 

and lichens, thus including all important habitats with typical transitions, succession states, and 

pressure indicators. In total, the fractional cover of 98 species was estimated in 1-m2 plots. To ensure 

that the vegetation properties can be adequately mapped with hyperspectral imagery, the plots were 

located within homogeneous structures according to species composition, bare soil, and litter cover 

within a minimum radius of 5 m. 

2.3. Species Ordination and Floristic Pattern Significance 

In our first hypothesis, we argue that only a stable and significant floristic pattern, reflected in an 

ordination space-derived vegetation continuum, can be used to describe habitat characteristics for 

management purposes. We applied a nonmetric multidimensional scaling (NMS) procedure [42] on a 

site-by-species matrix to project rank-ordered species similarities into two-dimensional ordination 

space (Figure 2A). The original number of plant species was reduced to omit species that rarely appear 

with low abundances over all field plots. These are known to produce strong distortion effects on the 

final ordination topology without increasing floristic pattern significance [43]. Furthermore, owing to a 

weak spatial representation, their introduced variance cannot be assumed to be causally related to 

image spectra. Similarities were then calculated using the Bray–Curtis distance measure [44] on the 

final matrix of 58 sites by 38 species. We used Kruskal’s stress value [42] to interpret the goodness of 

fit for the resulting ordination space topology. To avoid local minima for stress values, the procedure 

searches within 1000 random start configurations until a stable solution is reached.  

Since an ordination space for species assemblages is a generalized representation of the ecological 

environment, projected floristic patterns need to be assessed on their ability to represent ecological 

relevant structures. Furthermore, the stability of the projected patterns reveals whether an appropriate 

sample size was chosen to describe floristic heterogeneity adequately. Hence, we define two null 

hypotheses stating that there is no stable ordination plot configuration, and the ordinated pattern is not 

significantly different from random configurations. We used a combined statistical algorithm, testing 

sample stability and structural strength on ordination axes scores introduced by Pillar [45,46]. 

Stability was tested by generating 1000 bootstrapped samples [47,48] from the final site-by-species 

matrix. The bootstrapped matrices were then projected into ordination space with NDMS 

transformation and axes scores were compared to reference ordination after score matrix matching by 

Procrustes adjustment [49]. Subsequently, stability (C) was evaluated using the average Pearson 

product moment correlation (r) between reference scores (S) and test scores (S*) in each ordination 
dimension (i) over all bootstrapped samples (n): ܥ ൌ  ሾݎሺ ܵ, ܵ

∗ሻሿ/݊


ୀଵ
. 

Pattern Significance was tested, generating 1000 random permutations from the final site-by-species 

matrix. Permuted scores were calculated using NMS transformation and compared with test scores 

taken from a second NMS on the permutation matrix using the same bootstrap samples as derived in 

the stability test. Permutation scores (Sp) were then correlated (r) to the bootstrapped permutation 

scores (S**) and results were compared to the bootstrapped correlation from the stability test. We then 

calculated the probability (P) of permutation correlation being greater or equal to our reference 
correlation over all bootstrapped sample (n): ܲ ൌ ሾݎሺ ܵ


ܵ
∗∗ሻ  ሺݎ ܵ ܵ

∗ሻሿ. 
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We can now reject our null hypotheses for 1 − C < α and P < α, respectively, whereby α probability 

threshold was defined with 0.10. 

 

Figure 2. Methodological framework presented as a conceptual workflow: (A) plant 

species ordination; (B) functional habitat type and pressure aggregation; (C) continuous 

pattern prediction; (D) pattern recognition and spectral calibration; and (E) spatially 

explicit predictions on the basis of image spectra. 

2.4. Habitat Type and Habitat Pressure Aggregation 

Aggregation techniques are needed in order to translate species composition of ordination plots into 

Natura 2000 habitat categories (Figure 2B). On the basis of expert knowledge, site-specific vegetation 

characteristics (see Section 2.1), and listed Natura 2000 habitat indicator species [37], a functional 

plant species relation was developed for habitat type and habitat pressure evaluation. Specific habitat 

functions consist of a weighted sum of cover values for indicator species (Table 1). Again, weights are 

defined by expert knowledge incorporating site-specific habitat characteristics and legal requirements 

for the conservation status assessment. The weighted aggregate of habitat function components was 

standardized between 0 and 1 over all plots to represent a probability scale in case of habitat-type 

aggregates or a relative strength of influence for pressure aggregates. Standardization was performed 

by dividing the weighted sum of a plot by the maximum that can be reached considering probabilities 

in all plots. Every plot can be uniquely defined by score coordinate pairs at positions u in the 

ordination space. Thus, we can describe information related to plots as a realization z(u) of a spatial 

random variable Z that holds the distribution function for all possible realizations [50]. A realization of 
a habitat/pressure function can consequently be written as ݖሺݑሻሾ0,1ሿ ൌ ሺ ߚ ܰሻ



ୀଵ
max	ሺ ߚ ܰሻ



ୀଵ
ൗ , 
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where β denotes the weights of the components (e.g., plant species) N for the plots i–n. Single 

components and related weights were selected as indicators for defining the habitat types (typical 

habitat indicators) as well as pressure parameters (negative pressure indicators) to assess the 

conservation status (Table 1). We thus assumed that the habitat indicator species would be positively 

linked to the occurrence probabilities of habitat types when they are known as typical character 

species. A negative link can be discerned when they are considered to be pressure indicators for habitat 

conversion. Finally, probability/strength values can be assigned to plots in the ordination space as 

discrete translation of the allocated species composition. 

Table 1. Species list for habitat-type-specific habitat functions. Species are aggregated 

according to weighted composites of habitat indicator species (indicating a Natura 2000 

habitat type) and pressure indicator species (indicating habitat conversion/threat) in order 

to represent typical habitat realizations within the ordination space of the study area. 

Habitat Type 
Habitat Type Probability z(u) Pressure Strength z(u) 

Weight [β] Component [N] Weight [β] Component [N] 

LRT 2330 1 Corynephorus canescens 1 Calamagrostis epigejos 

0.5 Bare ground cover 1 Agrostis capillaris 

0.2 Cladonia sp. 1 Rubus caesius 

  0.5 Rumex acetosella 

  0.5 Polytrichum piliferum 

  0.5  Hieracium pilosella 

  0.2 Cladonia sp. 

LRT 4030 1 Calluna vulgaris 1 Populus tremula juv. 

0.5 Cladonia sp. 1 Sarothamnus scoparius 

  1 Deschampsia flexuosa 

  1 Festuca ovina agg. 

  1 Nardus stricta 

  1 Calamagrostis epigejos 

  1 Agrostis capillaris 

  0.5 Polytrichum piliferum 

  0.2 Cladonia sp. 

LRT 6120 1 Festuca ovina agg. 1 Populus tremula juv. 

0.5 Agrimonia eupatoria 1 Sarothamnus scoparius 

0.5 Galium verum 1 Rubus caesius 

0.5 Koeleria macrantha 1 Luzula campestris agg. 

0.5 Ononis repens 1 Calamagrostis epigejos 

0.5 Peucedanum oreoselinum 1 Plantago lanceolata 

0.2 Agrostis capillaris 1 Arrhenatherum elatius 

  1 Tanacetum vulgare 

  0.5 Deschampsia flexuosa 

  0.5 Holcus lanatus 

  0.5 Rumex acetosella 

  0.5 Artemisia campestris 

  0.2 Festuca ovina agg. 

  0.2 Agrostis capillaris 
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2.5. Surface Analysis and Interpolation in the Ordination Space  

Our hypothesis states now that z(u) is spatially determined and therefore can be described by spatial 

correlation functions to predict habitat-type probabilities and pressure strength on unknown grid cells 

for the entire ordination space (Figure 2C). However, as a nature of ordination, similar information is 

grouped in clusters with gradual changes to adjacent regions with different floristic compositions [51]. 

This trend violates the intrinsic hypothesis as an assumption for geostatistical prediction [52] and 

superimposes inner group variability that should be detected in order to assess habitat quality. To 

overcome this, we first separated the spatial trend. This was done by fitting first-, second- and  

third-order polynomial regression models for score axes with ordinary least squares (OLS). The best 

model according goodness of fit was selected to predict the broad scale trend of habitat type 

characteristics within the ordination space. Subsequently, a variogram analysis was carried out on the 

model residuals. We used the geostatistical approach, which combined spatial correlation modeling 

(variography) with subsequent spatial predictions (kriging) [53]. Herein, spatial correlation  

functions can be modeled by fitting an experimental variogram that describes spatial variance 	
γ ൌ ሾݖሺݑሻ െ	ሺݖሺݑ  ݄ሻሿଶ  for plots i in relation to distance classes h. Every habitat function is 

assumed to have a typical correlation length (range) at which the maximum variance (sill) between 

point pairs is achieved. From that range distance, the variance decreases towards zero distance where an 

inexplicable minimum variance (nugget) remains. From this, one can then describe spatial correlation 

structures using variogram models fitting nugget, sill, and range parameters within the codomain of the 

spatial boundary condition of the ordination space [54]. We used an effective range in which 95% of the 

maximum variance was achieved to interpret the correlation lengths. Furthermore, we introduced a 

modified coefficient of determination, R2
var, to describe the amount of explained variance for 

variogram models in comparison with a null model. As an appropriate null model where no spatial 

correlation could be identified, we selected the nugget effect model with no range parameter owing to 

maximum variance levels over all distances. The nugget level was defined as the median variance for 

all possible pairwise distances (sample variogram). We then built the ratio between the sum of squares 

for variogram model residuals (SSR) and the sum of squares for null-model residuals (SSN). According 

to R2
var = 1 − SSR/SSN, spatially determined habitat functions can be identified when their variogram 

models contribute significantly to the explanation of spatial variance. 

A list of 19 different variogram models was fitted to residuals using generalized least squares [55]. 

The model with the best fit regarding the minimal sum of squared error [56] for variances at all 

pairwise sample distances was selected to describe the spatial autocorrelation and calculate the kriging 

weights. Kriging was applied on a regular grid with 0.01 intervals that was expanded inside the score 

axes. This procedure was applied to (a) field-based habitat types and conservation status assessment 

and (b) habitat-function-based habitat types and pressure strength. For terrestrial habitat types, we used 

regression kriging of indicators [57], adding Krige interpolation and predictions from a logistic 

regression. A logit link function was used to transform the final results to occurrence probabilities. 

Simple regression kriging with a polynomial regression was applied to terrestrial habitat assessment 

categories and habitat-function-based habitat type probabilities and pressure strengths. In order to identify 

significant trend axes for regression models, we applied a backward variable selection until the Akaike 

Information Criterion [58] was minimized. To compare the goodness of fit for coordinate regression 
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approaches, we used adjusted R2 and, for a better comparison, the Nagelkerke R2 [59] in the logistic 

regression models. 

For external validation purposes, we compared the final variogram models and resulting kriging 

interpolations for both field-based and habitat-function-based derivations of habitat type and habitat 

pressure. To show how terrestrial mapping as reflected in ordination structures can be reproduced on 

the basis of functional relations that regularly connect plant species occurrences, the resulting kriging 

grids of both mapping methods were correlated. The average deviation between all kriging pixels was 

evaluated using the Pearson Product Moment correlation as well as the R2 in a linear regression. 

Additionally, the variogram model parameters were compared in order to estimate the spatial 

correlation strength of habitat type and assessment/pressure within the ordination space. 

2.6. Habitat Transition and Habitat Pressure Analysis 

Isosurfaces derived from the combination of trend surface modeling and kriging predictions can be 

used to identify habitat type transitions and habitat pressures by means of isosurface recombination 

and reallocation of information stored in ordinated plots (Figure 2D). Habitat-type probabilities are 

generally constructed to reveal the potential of habitat type establishment on the basis of typical habitat 

indicator species. To clearly demonstrate transition zones, we combined the occurrence probability 

grids by multiplying probabilities less than 50% for specific habitat type pairs. We assumed that below 

this individually replaceable threshold, ordination space can be used to reveal inter-habitat-type 

transition as typical habitat conversion. Above this threshold, we assumed that more distinct  

species-dependent pressures to habitat quality can be revealed. The strength of inter-transition is derived 

by a min/max normalization of the arithmetic product of probability surfaces for habitat type pairs. 

Intrahabitat pressures that are responsible for the threat of habitat quality can be revealed by 

defining a habitat function on the basis of weighted indicator species (Table 1). Here, the relative 

strength of pressures allocated to a habitat type with an occurrence probability above 30% is calculated 

as a realization of z(u). Consequently, the strength of influence is positively correlated to the number 

of pressure species and their fractional cover. More specifically, areas of strong pressure influence 

were categorized on the basis of species compositions reallocated to distinct ordination regions. The 

strength of individual species influence was calculated with a min/max weighting according to specific 

species cover of related plot position in the ordination space. 

For the purpose of conservation status assessment, we combined habitat type probability functions 

with pressure strength functions. We assumed that the probability of a certain habitat type is reduced 

when pressure factors increase. In conclusion, predicted ordination space grids for habitat type 

occurrence probabilities were subtracted by pressure-strength grids. The result was equally scaled to 

three different color intensities with gradual transitions. Finally, we categorized three assessment 

levels (A: excellent, B: good, C: adverse; see Section 2.2) in the center of each color class, whereas 

habitat probabilities ≤0% were excluded from the visualization. 

2.7. Spectral Data 

Hyperspectral images were acquired during a flight campaign on 4 June 2011 between 10:00 and 

12:30 (Universal Time). The imaging spectrometer used was the Airborne Imaging Spectrometer for 
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Application (AISA DUAL (UFZ, Leipzig, Germany)) ranging from visible (400 nm) to shortwave 

infrared (2500 nm) in 367 spectral bands. The pushbroom scanning system operated in a 24° field of 

view with an instantaneous field of view of 0.075° for the coverage of single ground elements. In total, 

22 flight stripes with 300 samples per scanning line were recorded. The mean flight altitude was 1500 m 

above sea level, and the mean aircraft speed was 180 km/h. Images were geometrically corrected using 

an inertial measurement unit and ground control points. Overlapping flight stripes were merged into a 

single mosaic using an adjusted algorithm for automated control point allocation (Scale Invariant 

Feature Transform) [60]. The final product pixel size was resampled to 2 m × 2 m. Internal radiometric 

calibration was supplemented with spectral binning, smear correction, and destriping (Reduction of 

Miscalibration Effects) [61] to generate reliable at-sensor radiance. In order to obtain top-of-the-canopy 

reflectance (TOC), a radiative transfer model (ATCOR-4,) was implemented, followed by an empirical 

line correction (ELI) [62]. As a reference for ELI post-calibration, we used field spectra that were 

collected around the acquisition time with a field spectroradiometer (ASD Inc., Boulder, CO, USA). 

To account for observed nonlinearity within a range of 400–600 nm, we adjusted the usual ELI 

procedure with polynomial regression equations until the best polynomial fit between the image and 

the reference spectra was found. Reflectance signatures of the field plots were finally extracted from 

the image mosaic. A transformation to 1035 spectral variables including continuum removal [63], first 

Savitzky–Golay derivative [64], and spectral indices for water, pigment, nitrogen, cellulose, lignin 

absorption, and band-depth-normalized absorption features [65] provided spectral predictors for a 

coherence analysis with ordination space arrangement. The continuum was derived by fitting a convex 

hull over the top of a reflectance spectrum. Subsequently, absorption features are generated by 

dividing the original spectrum by the continuum curve. Savitzky–Golay derivatives are produced on 

the basis of a second-order polynomial filter of the original spectrum. The first derivative was 

calculated stepwise for a five-point filter length in order to render the slope for the entire spectrum. 

The derived spectral variables are listed in Table S2 in the Supplementary Materials (Supplementary B). 

Narrow spectral bands as well as overlapping physical plant properties lead to redundant spectral 

information. Redundancy in statistical models causes problems of multicollinearity with unreliable 

estimates of regression coefficients [66,67]. We therefore used partial least-squares regression  

(PLSR) [68], which calculates the orthogonal linear combination of original predictor dimensions 

(latent variables). A variable pre-selection can increase the predictive power of regression  

models [69,70]. Hence, dimension reduction in latent variables was incorporated with backward 

variable selection using a wrapper approach maximizing the model’s goodness of fit based on 

predictor significance and variable importance implemented in the R package autopls [34]. Separate 

models were generated for axis scores as dependent variables. Within an internal leave-one-out (LOO) 

cross-validation, the number of latent variables for the best model was estimated, minimizing the error 

of prediction. LOO statistics were used to evaluate the predictive accuracy [root-mean-square error 

(RMSE)] and goodness of fit R2 for individual axis models. Furthermore, the number of selected latent 

and predictor variables was used to evaluate PLSR model stability. Thereby, an increase in model 

complexity is incident to the consequences of model overfitting (variance–bias trade-off). 
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3. Results 

3.1. Ordination Space Stability and Pattern Significance 

The final two-dimensional ordination space that showed the floristic variance distribution within 

our study area yielded a stress value a = 0.0016. This can be interpreted as an excellent representation 

of initial species composition [42,51]. The cover values of the major indicator species (see Section 2.1) 

are well separated into different ordination plot regions with their transitions (Figure 3a). Although a 

third of all samples per bootstrap iteration were excluded from the NMS ordination in each bootstrap 

iteration [71], the average correlation over all iterations with n = 1000 samples was high at C = 0.969 

for the first axis and C = 0.956 for the second axis (Figure 3b). The interquartile range (IQR) is higher 

for the second axis, with more outliers to lower correlation. Nevertheless, the difference 1 − C for 

averaged correlations was lower than the α threshold 0.10 for both axes. Hence, we can reject the null 

hypothesis and state that the reference ordination space is stable in terms of plot selection. Comparing 

bootstrapped samples from randomly permuted data with the same bootstrap sampling units, we can 

see an increasing IQR with correlations ranging from 0 to 0.93 (Figure 3b). Thereby, the averaged 

correlation of the first ordination axis amounts to C = 0.714, and for the second axis C = 0.629. With a 

probability of P = 0.033 for the first axis and P = 0.021 for the second axis, the permuted correlation is 

higher over all iterations. Again, the α threshold was undershot, and it could be alternatively assumed 

that reference ordination space represents significant floristic structures. 

 

Figure 3. (a) Reference ordination space for open dryland habitats within the study area. 

Ordination scores were standardized between 0 and 1; point size is positively correlated to 

species cover of major indicator species. Green = Corynephorus canescens;  

blue = Festuca ovina agg.; orange = Calluna vulgaris. (b) Boxplot for 1000 bootstrapped 

correlations (µA) and for 1000 randomly permuted correlations (µ0) for ordination axes scores 

NMS1 and NMS2. 

(a) 

(b) 
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3.2. Variography 

For the three main habitat types in the open drylands of the Döberitzer Heide, we fitted variogram 

models to predict the occurrence probability of habitat types and the relative strength of pressure 

factors to assess conservation status on the basis of the habitat functions on the ordination plots. The 

results were compared with plot-specific field-survey data, including habitat-type delimitation and 

habitat conservation status assessment (Table 2). As expected for all habitat types, a significant spatial 

coherence can be observed for both ordination axes, except for LRT 2330, where only the NMS2 

direction features a significant trend. Comparing R2
reg, it can be clearly seen that a spatial trend is more 

influential on habitat-type transition (R2
reg Habitat type probability ≫ R2

reg Pressure strength) for both 

habitat functions and terrestrial datasets, whereas change owing to pressure indicator species is more 

dependent on the floristic composition for LRT 2330 and LRT 6120, as reflected in higher values of 

R2
vario that explain the residual variance. It can generally be revealed that species-rich plot 

compositions show a lower spatial dependency, which is particularly evident for LRT 6120 where  

R2
reg ≪  R2

vario. Generally, variogram models are able to explain plot variances of experimental 

variograms from 69% to 95% in eight of 10 cases, considering R2
vario. Only variogram models for 

pressure factors and the assessment parameter for LRT 4030 are less than 50% better than a null 

model. In the case of LRT 2330, variogram models can explain spatial variances even better than 

terrestrial data. In all cases, an effective range up to a maximum variance, that is, at least 68% higher 

than the nugget variance, can be derived. 

Table 2. Variogram models for field-survey-based habitat types and habitat conservation 

status assessment (ter.), and for habitat-functions-based habitat types and pressure strength 

(fun.). Mat = Matern with kappa = 5; Cir = circular; Sph = spherical; Ste = Matern with M. 

Stein’s parameterization; cn = nugget; c0 = sill; a0 = effective range; R2
vario = coefficient of 

determination for variogram models; R2
reg = coefficient of determination for coordinate 

regression; dim reg = significant dimensions (v1, v2) in spatial regression. 

 

Spatial Regression Variography 

LRT 2330 R2 reg dim reg R2 vario model cn c0 a0 

Habitat Type Probability 
ter. habitat type 0.893 v2 0.704 Mat 0,000 0.059 0.214 

fun. habitat type 0.729 v1,v2 0.893 Cir 0.009 0.028 0.221 

Pressure Strength 
ter. assessment 0.809 v2 0.752 Mat 0.000 0.026 0.196 

fun. pressure 0.365 v2 0.839 Sph 0.000 0.086 0.306 

LRT 4030 

Habitat Type Probability 
ter. habitat type 0.783 v1,v2 0.933 Mat 0.000 0.094 0.588 

fun. habitat type 0.871 v1,v2 0.932 Cir 0.002 0.022 0.366 

Pressure Strength 
ter. assessment 0.65 v1,v2 0.424 Mat 0.000 0.047 0.131 

fun. pressure 0.693 v1,v2 0.362 Sph 0.000 0.033 0.176 

LRT 6120 

Habitat Type Probability 
ter. habitat type 0.609 v1,v2 0.954 Mat 0.000 0.193 0.555 

fun. habitat type 0.491 v1,v2 0.835 Ste 0.000 0.052 0.330 

Pressure Strength 
ter. assessment 0.449 v1,v2 0.875 Cir 0.000 0.076 0.412 

fun. pressure 0.418 v1,v2 0.698 Sph 0.005 0.035 0.579 
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3.3. Habitat Type Functions and Assessment of Pressures 

Using relevant habitat type functions with specific variogram models, the occurrence probability for 

three different habitat types was spatially predicted within the ordination space on the basis of kriging 

weights (Figure 4). Thereby, isolines represent locations with equal probabilities, whereby the 30% 

threshold of being a specific habitat type is highlighted with a dashed line in bold black. For all three 

habitat types, clear separations into different ordination space areas with typical inter-habitat 

transitions could be identified. Whereas LRT 4030 shows an omnidirectional decrease in occurrence 

probability, it can be shown that the distribution of habitat function components, bare soil cover for 

LRT 2330, and Agrostis capillaris and Festuca ovina agg. for LRT 6120, is more variable. These 

components overlap with adjacent habitat type distributions, whereby habitat conversion through 

transition is made visible. Furthermore, variations of occurrence probabilities above 50% occur as a 

result of varying indicator species abundances owing to the presence of pressure species. 

 

Figure 4. Kriging predictions for habitat type probability on the ordination plane. Isolines 

and allocated color transitions represent regions of similar floristic composition on the 

basis of realized habitat type probability functions. The 30% probability threshold is 

visualized with a dashed line. 

Habitat type transition within the ordination space is visualized in Figure 5. The first transition is 

located between pioneer stages of inland dunes and dry heath. This gradient of overlapping 

probabilities is mainly characterized by a change in lichen cover. The second transition between 

European dry heaths and Xeric sand calcareous grasslands is realized in two situations. Changing 

cover of different grass species on ordination plots is overlain with decreased Calluna vulgaris 

proportions in the upper part. A direct transition to LRT 6120 in the lower part is based on a change in 

characterizing herb cover. This transition is weaker because a typical herbal diversity for LRT 6120 

may not be directly linked to heathland transition. The typical transition is weakened by intermediate 

grass stages such as Festuca ovina agg. or Nardus stricta. Within the ordination space, no direct 

conversion between LRT 6120 and LRT 2330 can be identified. 
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Figure 5. Relative strength of inter-habitat transition, as visualized by the arithmetic 

product of habitat-type probabilities below 50%. The color scale is min/max normalized 

over all transition pairs. 

Figure 6 shows the kriging-predicted pressure strengths for chosen habitat types. For all habitat 

types, locations with strong pressure influence can be detected. In contrast, there are stable locations 

where there appears to be no influence of any pressure species. The plot-specific informational content 

within the reference ordination space can be subsequently used to assign pressure factor complexes for 

interpretation of habitat structures (Table 3). Regarding the habitat-quality status of LRT 2330, an 

important threat can be seen in a loss of bare soil cover with increased lichens and moss cover (Aa in 

Figure 6). This status changes into strong pressure complexes of establishing Rubus shrubs 

interspersed with Rumex acetosella and moss species (Ab in Figure 6). An increasing Rumex 

acetosella cover is also linked to an increased pressure of grass invasion (Ac in Figure 4). In particular, 

Agrostis capillaris cover can be identified as an important parameter for grass invasion, while its 

presence is often connected with xeric grassland herbs (Ad in Figure 6). 

The composition of intra-habitat pressures is more complex within LRT 4030. We can discriminate 

between different grass invasion categories. While Ba–c in Figure 6 is dominated by a transition 

between Festuca ovina agg. and Calamagrostis epigejos communities, the Bd–Bf gradient in Figure 6 

is characterized by Nardus stricta and Deschampsia flexuosa mixtures. These gradients are well 

defined at the transition to LRT 6120 and can be transferred to a better differentiation of grass invasion 

categories. In addition, ordination space arrangements enable the identification of shrub invasion with 

Sarothamnus scoparius (Bc–Bd in Figure 6) as well as tree establishment (Bg in Figure 6), which is 

superimposed with increased lichen cover.  

Base-rich and herb-diverse LRT 6120 habitats occupy only small areas of the ordination space. 

These are often adjacent to grassland species that can also become established under acidic conditions. 

The predicted pressure strength reveals different gradients for grass species (Cc–Cf in Figure 6) that 

are not characteristic for a favorable status of LRT 6120. Thereby, the ordination space arrangement 

can be used to separate typical habitats from various different grassland types. Furthermore, pressures 

through tree growth in Ca–Cb will have a strong influence on habitat quality. 
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Table 3. Pressure-complex definition on the basis of plot localization within a region of 

maximum pressure strengths on the ordination plane. Species cover is aggregated over a 

certain number of plots by min/max-normalized fractional cover values in order to assess 

the direction of species influence on habitat pressures. 

Pressure 
LRT 2330 LRT 4030 LRT 6120 

Fraction Plant Species Fraction Plant Species Fraction Plant Species 

a 
1.00  

0.66 

Cladonia sp.  

Polytrichum piliferum 

1.00  

0.72  

0.60 

Festuca ovina agg.  

Rumex acetosella  

Agrostis capillaris 

1.00  

0.75  

0.47 

Populus tremula juv. 

Calamagrostis epigejos 

Luzula campestris 

b 

1.00  

0.99  

0.69 

Polytrichum piliferum  

Rubus caesisus  

Rumex acetosella 

1.00  

0.62  

0.55 

Calamagrostis epigejos 

Agrostis capillaris  

Rumex acetosella 

1.00  

0.70  

0.60 

Populus tremula juv. 

Festuca ovina agg.  

Agrostis capillaris 

c 

1.00  

0.92  

0.44 

Rumex acetosella  

Agrostis capillaris  

Calamagrostis epigejos 

1.00  

0.52  

0.42 

Calamagrostis epigejos 

Sarothamnus scoparius 

Agrostis capillas 

1.00  

0.84  

0.80 

Festuca ovina agg.  

Agrostis capillaris  

Rumex acetosella 

d 

1.00  

0.90  

0.48 

Agrostis capillaris  

Hieracium pilosella  

Ornithopus perpusillus 

1.00  

0.83  

0.83 

Luzula campestris  

Sarothmanus scoparius 

Nardus stricta 

1.00  

1.00  

0.75 

Agrostis capillaris  

Plantago lanceolata  

Trifolium arvense 

e 
  

1.00  

0.84  

0.56 

Nardus stricta  

Deschampsia flexuosa 

Danthonia decumbens 

1.00  

0.44  

0.38 

Calamagrostis epigejos 

Poa angustifolia  

Tanacetum vulgare 

f 
  

1.00  

0.91  

0.57 

Deschampsia flexuosa 

Nardus stricta  

Cladonia sp. 

1.00  

0.34  

0.34 

Calamagrostis epigejos 

Arrhenatherum elatius 

Poa angustifolia 

g 
  

1.00  

0.33  

0.33 

Populus tremula juv. 

Cladonia spec.  

Polytrichum piliferum 
  

 

Figure 6. Kriging predictions for pressure strength on the basis of realized pressure 

functions. Letters correspond to pressure-factor complexes in Table 3, and dashed lines 

denote a habitat type probability of 30%. 
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On the basis of derived inter-habitat transition and intraspecific pressure complexes, a Natura 2000 

habitat type assessment of conservation status was realized. This results in a grid-based continuous 

assessment for ordination space locations dependent on habitat type positions (Figure 7). Thereby, the 

conservation status can be described by three color intensities with gradual transitions. The center of 

each habitat type represents a favorable conservation status, whereby internal fluctuations and  

inter-habitat transitions are characterized by decreasing habitat qualities. 

 

Figure 7. Probability for a Natura 2000 assessment of conservation status of three habitat 

types on an ordination plane. Equally spaced thresholds for assessment categories are 

shown by dotted lines. 

We validated the distribution of conservation status assessment within the ordination space, 

calculating the Pearson product moment correlation and RMSE for assessment grids derived for  

field-survey-based assessment functions (Table 4a). Over all habitat types, a strong correlation with 

field surveys can be observed. The generated ordination space assessment approach differs at most by 

15% from terrestrial assessment, which is within the range that can be achieved by subjective human 

differences. The lowest Pearson correlation with field surveys occurs for LRT 6120 (<0.859), which is 

also evident in habitat type prediction. In general, habitat type and assessment functions, generated by 

floristic composition on ordinated plot location, can adequately reproduce results obtained from 

terrestrial mapping in the study area. 

3.4. Spectral Predictability 

Table 4b provides a summary of the habitat-type-specific spectral PLSR model parameter and  

LOO accuracy assessment. Regression models that relate reflectance to scores on the first ordination 

axis can explain habitat-type-specific variances of up to 82% in internal validation. The lowest fit was 

generated at LRT 2330, where 49.1% of score variability could be explained by spectral variables. 

This resulted in a maximum RMSE of 21%. In second-axis models, the RMSE is maximized for  

LRT 4030 (RMSE = 20%). The related model provides a poor explanation for the variance in the 

second ordination dimension (R2 = 0.13). In contrast, the explanatory power of second-axis models is 

high (R2 > 0.80) for LRT 2330 and LRT 6120. The number of latent variables selected is small:  

n_C = 2 for all models. This small number of latent variables indicates model stability, owing to a high 

score variance, which can be explained by a minimal number of orthogonal components in PLSR. The 
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original 1035 spectral variables were drastically reduced between 147 and 9. In particular, species-rich 

LRT 6120 can be explained spectrally by only a small number of significant spectral variables on the 

ordination plane. 

Table 4. (a) External validation between kriging grids on the ordination plane for 

terrestrial mapping and habitat functions. (b) Internal LOO validation between spectral 

variables and axis scores. cor = Pearson product-moment correlation; RMSE = root mean 

squared error; R2 = coefficient of determination; n_C = number of latent components in 

final PLSR-model; n_pred = number of significant predictors/spectral variables. 

(a) 
Occurrence Probability Assessment Categories 

cor RMSE [%] cor RMSE [%] 

LRT 2330 0.937 15 0.918 12 

LRT 4030 0.971 10 0.925 8 

LRT 6120 0.811 20 0.859 15 

 

(b) 
Spectral Model NMS1 Spectral Model NMS2 

R2 RMSE [%] n_C n_pred R2 RMSE [%] n_C n_pred 

LRT 2330 0.491 21 2 147 0.827 10 2 142 

LRT 4030 0.820 12 2 68 0.130 20 2 61 

LRT 6120 0.789 12 2 9 0.854 10 2 14 

In order to prove model transferability and demonstrate spatially explicit habitat type monitoring, 

we applied PLSR models on an open dryland area of the Döberitzer Heide. There, habitat type 

occurrences as well as related conservation status assessment for >30% occurrence probabilities were 

predicted after masking any tree and shadow pixels (Figure 8). Generally, a clear distribution pattern of 

specific habitat types can be mapped. Results indicate that the typical floristic composition for  

habitat type LRT 6120 characterization is present in only a few regions (probability >40%). This is 

also reflected in predicted assessment categories where conservation status is mainly assigned between 

C and B (unfavorable). 

In fact, habitat type LRT 6120 occurs in various transitions to pioneer grasslands and dry heaths as 

shown in red (10–40% probability). Open pioneer grasslands and dry heaths are more common in the 

study area. Their conservation status mainly ranges between A and B, whereas spatial patterns indicate 

an expected decrease in habitat quality from core areas to edge regions (Figure 8 zoomed subplots). 

External validation was performed on the 58 field plots by extracting habitat types for a probability 

threshold of >30% and for equally spaced assessment categories. Habitat types LRT 2330 and  

LRT 4030 can be mapped with an overall accuracy (OAA) of 100%, whereas species diversity in  

LRT 6120 is more difficult to detect (OAA = 73.3%). However, degenerated stages of LRT 6120 with 

probabilities <30% were not included in the validation. Terrestrial assessment categories show good 

conformity with LRT 2330 (OAA = 84.2%) and with LRT 4030 (OAA = 89.5%). Conservation status 

variations are more complex in LRT 6120, which results in an OAA of 66.6%. 
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Figure 8. Top panel: AISA DUAL true-color composite image of the test area (left); open 

dryland extraction after masking trees and shadows (right). Middle panel: spatial 

occurrence probability predictions of three habitat types. Bottom panel: continuous habitat 

type conservation status predictions with color centroids representing status (A: excellent; 

B: good; C: adverse); a typical transitional area between the three habitat types was 

exposed in the subplot zoom. 

4. Discussion 

4.1. Spatial Correlation 

Our study demonstrates the use of spatial correlation functions to determine habitat types, pressures, 

and conservation status in a site-specific ordination space. As an initial step, we introduced habitat 
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functions as representations of habitat occurrence and pressure/threat strength. It should be noted that 

predicted habitat patterns are strongly dependent on selected species and chosen species weights. In 

this respect, our study presents a straightforward procedure to determine how expert knowledge on 

habitats and habitat pressures can be transferred to ordination space projections. The modeled type and 

status therein are seen as possible representations of ecological interdependencies in a vegetation 

continuum. There is no general allocation of floristic composition to a certain habitat type or pressure 

complex. Every ordination space can be quantified individually according to the study area, assessment 

demands, or management purposes. Our approach provides a reproducible aggregation technique on the 

basis of species lists and is therefore distinct from a priori habitat classification or obviously  

subject-dependent terrestrial assessment. 

The species composition used in this study to describe the conservation status categories for dry 

heath is based on the legal standards defined in Annex I of the European Habitat Directive [72], as well 

as expert knowledge [37,73]. However, the proposed methodology is not restricted to Natura 2000 

habitat types. With an appropriate sampling of indicator species and pressure factors, every monitoring 

or assessment approach can be analyzed on its ability to reflect clear patterns in an ecological gradient 

space. Thereby, habitat type probabilities as well as pressure strength are spatially predicted on the 

basis of variogram models. In geostatistics, there is no standard methodology to select an appropriate 

model. In our study, the best model was selected by minimizing the prediction error for a choice of 19 

known models. Nevertheless, it is important to keep in mind that the final results for a grid-based 

probability pattern are dependent on the choice of spatial correlation function (variogram model) and 

its overall predictive capacity. Spatial probability patterns are therefore not deterministic and can only 

be approximated, taking into account adapted selection algorithms [74,75]. Another source of spatial 

uncertainty is in the ordinary kriging procedure itself. The number of points used to calculate weights 

for an unknown grid cell can have an influence on spatial heterogeneity. We constantly used half the 

number of total plots per grid cell to derive reliable kriging weights. 

4.2. Species Composition 

Probability aggregation in ordination space dimensions is usually applied on external variables to 

interpret abstract gradients. Vegetation ecologists are well aware of spatial statistic methodology [76], 

which is used to produce isolines representing external correlation structures by means of classification 

approaches [77] or trend-surface analyses [78]. To our knowledge, this is the first time that  

multi-species probability estimation, on the basis of habitat/pressure functions, has been examined.  

In addition to habitat type and threat, the conservation status can consequently be described by 

ordination space structures that reveal species gradients on the basis of pressure definition. However, 

even though separation of general gradient patterns with axis models reveals fine-scale floristic 

heterogeneity that can be described by means of variography, the identification of unique species 

complexes may become complicated in species-rich continua. Therein, differential species contribute 

at different gradient positions to habitat quality and distribution. Species complexes are not generally 

separated in single positions in ordination owing to overlay and indifferences as part of the 

unexplained variance. Even if habitat types can be directly allocated using probability thresholds, a 

distinct separation of near-ordinated but floristic variable plot locations should be reviewed critically. 
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Besides gradually changing species cover in adjacent plots, abrupt changes in species representation as 

revealed by pressure complexes (Table 3) are evident in ordinated species composition. In addition to 

axis stability and pattern significance estimation, a good floristic representation can be further 

increased by optimizing preserved sample variance. In our study we used a two-dimensional NMS 

with an excellent representation of the floristic variation (stress = 0.0016) in order to demonstrate a 

two-dimensional Kriging procedure. The decision was based on evaluating the strength of spectral 

correlation to single score axes. The averaged R2 of the first NMS axis over all habitat types was 

maximized in a 2D solution. However, additional variance patterns may be related to spectral 

signatures. For this purpose, a case-specific choice of number of ordination axes, distance metric, 

original dimensions (surface and vegetation structure parameters besides plant species), and a detailed 

analysis on recent algorithmic developments such as Isomap [28,79] still ought to be considered. 

4.3. Spectral Application 

The spectral discrimination of axis gradients varies for specific habitat types and selected axes. It 

should be noted that as part of the applied NMS ordination, axes are principal component rotated in 

order to explain the maximum variances in the plot configuration. The resulting directions are not 

automatically related to spectral diversity, and it can be assumed that linking the spectral 

discriminability to axis-specific rotation angles will increase the predictive accuracy. Further research 

is needed to find supporting evidence for this. Another source of unexplained regression variance can 

be seen in the representation of the spectral sample itself. Spatial heterogeneity on 2 m pixel size can 

introduce an increased signal variance owing to adjacent effects. Furthermore, spatial non-stationarity 

due to phenology shift or varying litter cover can influence model representation on image pixels [16]. 

In addition, image-spectra calibration always delivers spectral response models under the boundary 

conditions of acquisition time. Spectral library information on the basis of TOC reflectance can be 

considered to be an improvement for true variance estimation and transferability when phenological 

phases are covered adequately. Nevertheless, the transferability of regression models for floristic 

patterns still remains complicated owing to vegetation status, irrespective of the species [80]. 

Additional parameters such as the chemical constituents under the influence of plant stress and  

growth [81], and spatial heterogeneity such as litter content and canopy height [82], should be 

described in order to obtain reliable models for monitoring purposes. However, the approach presented 

here can enhance a Natura 2000 habitat assessment with spatially explicit predictions of conservation 

status incorporating floristic compositions along ecological gradients. 

4.4. Conservation Status Assessment 

The presented approach demonstrates a pixel-wise conservation status assessment on the basis of 

Natura 2000 habitat type transition and pressure indicators that are directly derived from ordination 

space structures. An important advantage can be seen in the decoupling of the spectral and the 

ecological models. We can spectrally predict the vegetation continuum and a posteriori derive 

information from that. It crucially differs from common remote sensing based methods, where image 

pixels are classified according to different habitat types [12,83] or habitat quality parameters [12,15]. 

Therein, an image pixel is determined by one attribute that was a priori defined as a relevant 
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ecological entity for the evaluation of habitat quality. Various habitat quality indicators are  

developed [10] that allow a fine-scale prioritization of management strategies. Although  

remote-sensing-derived habitat quality maps show a good correlation to terrestrial mapping 

approaches, they can only explain variations in fine-scale conservation status indicators up to 39% [6]. 

In the proposed approach, the information mapped at the pixel scale is variable. Fine-scale variations 

are directly transferred from ordination space via spectral coherences. Both habitat transition and 

pressure species complexes are transferable to images using the informational content of the ordination 

space that projects the floristic variation in an environmental space. This enables additional 

conclusions about the mapped conservation status. Thereby, an image pixel is linked to the structure of 

the site-specific ordination space that holds information such as the direction of habitat succession, the 

distribution of plant species, or, indirectly, about the abiotic gradients. Commonly, this information has 

to be defined before mapping and the conservation status assessment is based exactly on these defined 

categories [12,14]. The functional aggregation technique coupled with probability, pressure strength, 

and assessment predictions also allow a continuous interpolation of ordinated plot information. Hence, 

habitat conversion can be made visible in continuous gradients when ordination dimensions are 

transferred to image data. Development tendencies with regard to species shifts can be revealed in 

these transitional areas. However, the aim of the study was not to give a complete conservation status 

assessment. It is rather aimed at providing a methodological framework for the evaluation of plant 

species shift that is assumed to be responsive to management in our study area (grazing, mulching, 

species removal). We do not include additional, structural vegetation parameters (e.g., vitality, 

senescence) or anthropogenic influences (e.g., burning, nutrient transfer) in the ordination that can 

increase the accuracy of habitat quality assessment. It has further to be mentioned that this study is 

based on a site-specific ordination space for open dryland habitats on former military training areas in 

Brandenburg. In order to reveal fine-scale variations in transition and species composition, such 

ordination results are restricted to certain biogeographical regions. Integration of different habitat types 

always depends on the availability of species data whereby comprehensive data archives such as 

spectral libraries can be used to transfer the proposed methodology. Plant species data as well as 

related spectroradiometer measurements used in this study were therefore stored in a freely accessible 

database called SPECTATION [84]. Therein, field plot-specific plant species lists, vegetation class and 

conservation status units, and surrounding soil properties are stored for open dryland and wetland 

habitats in conjunction with spectral reflectance signatures for the years 2008 to 2011. This enables 

reproducible research on similar habitats or methodological extensions to different habitat types, which 

could be a subject for analysis in future studies. Species ordination and subsequent spectral variance 

estimation in a broader scale (e.g., country- or Europe-wide) has still to be investigated by means of 

new multidimensional interpolation methods. With regard to this, the crucial question for further 

research is: how many habitat types can we integrate in one ordination in such a way that fine-scale 

variations are still visible in ordination as well as in the spectral response? New statistical approaches 

from big data analysis in conjunction with spectral library information open future perspectives on 

detailed Natura 2000 habitat mapping. 
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4. Conclusions 

The probability of a habitat being of a specific type depends on the habitat status incorporating  

inter-habitat transitions and pressure factors. The information content of ordination spaces can be used 

to continuously determine such habitat structure parameters. It can be shown that floristic patterns 

projected in the ordination space are significant and stable. There is strong evidence that functionally 

aggregated habitat characteristics on the basis of plant species data are spatially determined over 

distinct regions of the ordination space. Empirical score axes models as well as residual variogram 

models can be used to describe the ordination space variability of habitat characteristics such as habitat 

type and habitat pressure. A subsequent model combination further allows a spatially continuous 

interpolation of habitats and related pressure strength over the entire ordination space. Habitat 

transition as well as pressure indicators can be made visible in distinct ordination space regions for 

conservation status assessment. Results correspond well to terrestrial Natura 2000 conservation status 

assessment. Using evidence on spectral coherence, habitat status probabilities can be used directly to 

produce spatially explicit maps. This approach differs crucially from conventional remote-sensing-based 

habitat assessment methods that assume discrete management units as predefined natural components. 

Spatial monitoring is no longer dependent on threshold-based changes in habitat categories. The 

potential of change can be directly projected over probabilities in ordination spaces, and assessment 

tendencies are directly transferable to spatial information. This enables the Natura 2000 monitoring to 

assess habitat type vulnerability more rapidly and allows a more effective prioritization of management 

activities to preserve a certain conservation status. This is especially true in open land habitats on 

former military training areas, where habitat conversion is driven along successional gradients and 

terrestrial mapping is complicated by undiscovered military munition.  
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