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Abstract. This article introduces an improvement in the Se-
ries Distance (SD) approach for the improved discrimina-
tion and visualization of timing and magnitude uncertainties
in streamflow simulations. SD emulates visual hydrograph
comparison by distinguishing periods of low flow and pe-
riods of rise and recession in hydrological events. Within
these periods, it determines the distance of two hydrographs
not between points of equal time but between points that are
hydrologically similar. The improvement comprises an auto-
mated procedure to emulate visual pattern matching, i.e. the
determination of an optimal level of generalization when
comparing two hydrographs, a scaled error model which is
better applicable across large discharge ranges than its non-
scaled counterpart, and “error dressing”, a concept to con-
struct uncertainty ranges around deterministic simulations or
forecasts. Error dressing includes an approach to sample em-
pirical error distributions by increasing variance contribu-
tion, which can be extended from standard one-dimensional
distributions to the two-dimensional distributions of com-
bined time and magnitude errors provided by SD.

In a case study we apply both the SD concept and a bench-
mark model (BM) based on standard magnitude errors to a
6-year time series of observations and simulations from a
small alpine catchment. Time–magnitude error characteris-
tics for low flow and rising and falling limbs of events were
substantially different. Their separate treatment within SD
therefore preserves useful information which can be used for
differentiated model diagnostics, and which is not contained
in standard criteria like the Nash–Sutcliffe efficiency. Con-
struction of uncertainty ranges based on the magnitude of er-
rors of the BM approach and the combined time and magni-
tude errors of the SD approach revealed that the BM-derived

ranges were visually narrower and statistically superior to the
SD ranges. This suggests that the combined use of time and
magnitude errors to construct uncertainty envelopes implies
a trade-off between the added value of explicitly considering
timing errors and the associated, inevitable time-spreading
effect which inflates the related uncertainty ranges. Which
effect dominates depends on the characteristics of timing er-
rors in the hydrographs at hand. Our findings confirm that
Series Distance is an elaborated concept for the comparison
of simulated and observed streamflow time series which can
be used for detailed hydrological analysis and model diag-
nostics and to inform us about uncertainties related to hydro-
logical predictions.

1 Introduction

Manifold epistemic and aleatory uncertainties make the sim-
ulation of streamflow a fairly uncertain task. The assessment
of uncertainties, i.e. quantification, evaluation, and commu-
nication, is thus of great concern in decision making, model
evaluation, the design of technical structures like flood pro-
tection dams or weirs, and many other issues. The quantifi-
cation and evaluation of uncertainties typically involves the
comparison of simulated and observed rainfall–runoff data.

For this purpose, visual hydrograph inspection is still the
most widely used technique in hydrology as it allows for the
simultaneous consideration of various aspects such as the oc-
currence of hydrological rainfall–runoff events, the timing
of peaks and troughs, the agreement in shape, and the com-
parison of individual rising or falling limbs within an event.
The main strength of visual hydrograph comparison results
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from the human ability to identify and compare matching,
i.e. hydrologically similar parts of hydrographs (“to compare
apples with apples”) and particularly to discriminate verti-
cal (magnitude) and horizontal (timing) agreement of hydro-
graphs. Whereas the former implies that rising and falling
limbs of the two time series are intuitively and meaningfully
matched before they are compared, the latter refers to a joint
but yet individual consideration of timing and magnitude er-
rors. Visual hydrograph inspection is hence a powerful yet
demanding evaluation technique which is still rather difficult
to mimic by automated methods. Clear disadvantages of vi-
sual hydrograph inspection, however, are its subjectivity and
that its application is restricted to a limited number of events.

1.1 Single and multiple criteria for hydrograph
evaluation

To overcome this shortcoming, a large number of numeri-
cal criteria (Nash and Sutcliffe, 1970; Legates and McCabe,
1999; Pachepsky et al., 2006; Dawson et al., 2007; Laio and
Tamea, 2007; Bennett et al., 2013) have been proposed. How-
ever, each criterion typically evaluates only one or just a few
hydrograph aspects and there is no “one size fits all” solu-
tion available. For this reason different attempts have been
undertaken to compare expert judgement and automated cri-
teria (Crochemore et al., 2014) and to establish model eval-
uation guidelines (e.g. Moriasi et al., 2007; Biondi et al.,
2012; Harmel et al., 2014). Key points of related guidelines
typically include the statement that the choice of the met-
ric should depend (i) on the modelling purpose, (ii) on the
modelling mode (calibration, validation, simulation, or fore-
cast), and (iii) on the model resolution (time stepping, spatial
resolution). Further, most authors recommend the combina-
tion of several, preferably orthogonal criteria, which might
imply combined application of absolute and relative crite-
ria (Willmott, 1981). Hence, within the last decade several
multi-criteria approaches for model calibration and evalua-
tion have been proposed (Gupta et al., 1998; Boyle et al.,
2000; Vrugt et al., 2003; Efstratiadis and Koutsoyiannis,
2010; Kollat et al., 2012), which combine different perfor-
mance criteria and/or evaluation against hydrological signa-
tures such as the shape of the flow duration curve (Euser
et al., 2013; Hrachowitz et al., 2014). Even approaches aim-
ing to mimic visual hydrograph comparison were developed.
These include multicomponent mapping (Pappenberger and
Beven, 2004), self-organizing maps (Reusser et al., 2009),
wavelets (Liu et al., 2011), the hydrograph matching algo-
rithm (Ewen, 2011), and the “Peak-Box” approach for the
interpretation and verification of operational ensemble peak-
flow forecasts (Zappa et al., 2013). Despite this considerable
progress, many practical and scientific applications (Haag
et al., 2005; Gassmann et al., 2013; Seibert et al., 2014;
Wrede et al., 2014; Kelleher et al., 2015; Zhang et al., 2016)
still rely on simple mean squared error (MSE) type dis-
tance metrics such as the long-established Nash–Sutcliffe ef-

ficiency (NASH) or the root mean squared error (RMSE)
even though their shortcomings are well known (Seibert,
2001; Schaefli and Gupta, 2007; Gupta et al., 2009).

A less recognized issue of MSE-type criteria is that these
compare points with identical abscissa, i.e. at the same po-
sition in time. This means that points in the observation are
“vertically” compared to points in the simulation (in the fol-
lowing we refer to them as vertical metrics). The problem
with this is that small errors in timing may be expressed as
large errors in magnitude. It is obvious that neither individ-
ual criteria nor the combination of different vertical metrics
within a multi-objective approach can compensate for this.

1.2 Uncertainty assessment and model diagnostics –
learning from model deficiencies

Just as with performance criteria, many methods related to
the quantification, visualization, and communication of un-
certainties were developed in recent decades, and the value
of knowledge about simulation uncertainty is now gen-
erally acknowledged. The range of methods is large and
comprises manifold probabilistic and non-probabilistic ap-
proaches. Probabilistic concepts, for instance, include the to-
tal model uncertainty concept (Montanari and Grossi, 2008),
methods based on Bayes’ theorem (Krzysztofowicz, 1999;
Krzysztofowicz and Kelly, 2000), and various ensemble
techniques (Roulston and Smith, 2003; Georgakakos et al.,
2004; Cloke and Pappenberger, 2008). Non-probabilistic
methods include the generalized likelihood uncertainty es-
timation (GLUE) (Beven and Binley, 1992), possibilistic
methods (Jacquin and Shamseldin, 2007), or approaches ap-
plying fuzzy-set theory (Nasseri et al., 2014). Uncertainty
assessment is a field of ongoing research, and so far there
is no generally accepted technique available. The most im-
portant points of criticism of the non-probabilistic methods
are their subjectivity and their inconsistency with probabilis-
tic approaches when these are applied to cases which can be
explicitly answered using statistical approaches (Stedinger
et al., 2008). On the other hand, probabilistic approaches
always rely on the assumptions of ergodicity and stationar-
ity, which are rarely fulfilled in reality. A spin-off of uncer-
tainty assessment is the field of model diagnostics, which ul-
timately aims to learn more about and from model deficien-
cies. Related approaches either analyse the temporal patterns
of parameter identifiability (Wagener et al., 2003) or the coin-
cidence of typical errors (Reusser et al., 2009) and parameter
sensitivity (Reusser and Zehe, 2011) in streamflow simula-
tion.

Motivated by the limitations of vertical distance metrics,
Ehret and Zehe (2011) developed the Series Distance (SD)
approach. SD is not a single equation but rather a concept
designed for joint but separated assessment of timing and
magnitude errors in streamflow simulations, either for events
in distinct periods or the entire time series. “Joint but sep-
arated” means that both the time and magnitude distances
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between the observed and simulated hydrographs are deter-
mined for matching pairs of points in the event, but the two
distances are kept separate. Such separate treatment is for
instance desirable in flood forecasting, where errors in mag-
nitude are relevant for dike defence, whereas errors in timing
are crucial for reservoir operation. The separation of timing
and magnitude errors is further helpful for improving model
diagnostics as they point towards different deficiencies in the
model structure.

Here we present substantial improvements (Sect. 2) to
the original approach of Ehret and Zehe (2011), particu-
larly the coarse-graining procedure. We furthermore intro-
duce a heuristic approach to visualize timing and magni-
tude uncertainties in streamflow simulations by construct-
ing two-dimensional uncertainty ranges in Sect. 3. Related
to that, we provide and test several quality criteria to eval-
uate deterministic uncertainty ranges. The skill of uncer-
tainty ranges is still rarely evaluated in hydrology (Franz
and Hogue, 2011), and most of the available methods such
as rank probability scores (Duan et al., 2007), rank his-
tograms, or the usage of different moments of the proba-
bility density function (De Lannoy et al., 2006) were de-
veloped in climatology (Gneiting et al., 2008; Franz and
Hogue, 2011). These approaches typically quantify ensem-
ble spread and thus are probabilistic approaches to evalu-
ate uncertainty estimation. To our knowledge only few de-
terministic approaches, e.g. categorical statistics such as the
Brier score or contingency tables or combinations of deter-
ministic and probabilistic approaches (Shrestha et al., 2009),
are available. In Sect. 4 we test the feasibility of the ad-
vanced SD approach in a case study and compare it to a
standard benchmark error model. Section 5 contains the re-
sults and discussion, Sect. 6 the related conclusions. To fos-
ter the use of the SD approach, we publish the SD (Mat-
lab) code, licensed under Creative Commons license BY-NC-
SA 4.0, together with a ready-to-use sample data set along-
side this manuscript. It is accessible via a GitHub reposi-
tory https://github.com/KIT-HYD/SeriesDistance (Ehret and
Seibert, 2016).

2 Series distance – concept and modifications

SD was developed to resemble the strengths of visual hydro-
graph inspection in an automated procedure, which typically
rests on the following premises (Ehret and Zehe, 2011):

– Hydrographs contain individual events separated by pe-
riods of low flow.

– Events are composed of rising and falling limbs or seg-
ments which are separated by peaks and troughs.

– These different parts of event hydrographs reflect differ-
ent hydrometeorological processes and should be com-
pared individually, so as to not compare apples with or-
anges. This is of particular importance if the simulated
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Figure 1. Time series of observed (black) and simulated (grey) dis-
charge during a hydrological event. The horizontal line represents a
user-specific threshold which differentiates between event and non-
event periods. The light grey lines represent the Series Distance con-
nectors linking hydrologically comparable points in the two time
series. Time and magnitude distances are calculated between these
points. The black rectangle highlights time steps where a part of the
recession of the simulation overlaps with a rising part of the obser-
vation (figure from Ehret and Zehe, 2011).

(sim in the following) and observed (obs in the follow-
ing) hydrographs do belong to different parts of the hy-
drograph at the same time step t (compare black rectan-
gle in Fig. 1).

– A comprehensive evaluation of the agreement of match-
ing rising and falling limbs of two hydrographs requires
consideration of both errors in timing and magnitude as
this better informs us about ways to improve the model.
A simulated rising limb can, for example, match per-
fectly with its observed counterpart with respect to val-
ues but occur systematically too early or too late, which
would indicate the need to adjust model parameters re-
lated to runoff concentration and flood routing or to im-
prove the related model components.

– A comprehensive comparison of sim and obs should
also provide information on the overall agreement with
respect to the occurrence of relevant events and times
of low flow. This is typically expressed by contingency
tables, which contain information about correctly pre-
dicted, missed, and falsely predicted events.

These criteria listed above inform about different error
sources, and their individual evaluation therefore provides
useful information for a targeted model improvement. As SD
accounts for all of these aspects, it is not a single formula but
rather a procedure which includes the following steps. For
each step, the main innovations are described in detail in the
sections below.

– Hydrograph preprocessing (Sect. 2.1). New: routines to
create gap-free, non-negative time series and to filter ir-
relevant fluctuations.
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– Identification and pairing of events (Sect. 2.2). New:
routines to read user-specified events and to treat the
entire time series as a single, long event.

– Identification, matching, and coarse-graining of seg-
ments (Sect. 2.3): New: this part has been completely
reworked and now applies the coarse-graining proce-
dure.

– Calculation of the distance between matching segments
with respect to both timing and magnitude (Sect. 2.4).
This is the core of SD, and it is important to note that
the distances are computed between points of the hy-
drographs considered to be hydrologically similar. New:
routines to calculate a scaled magnitude error.

– Calculation of a contingency table which counts match-
ing, missing, and false events. No changes.

2.1 Hydrograph preprocessing

The application of SD usually requires some preprocess-
ing to assure gap-free and non-negative time series of equal
length; related routines are now included in the SD code.
Further routines are available for the adjustment of con-
secutive identical values; the identification of rising and
falling limbs requires non-zero gradients and for time se-
ries smoothing, which is often necessary due to the pres-
ence of sensor-related non-relevant microsegments. Smooth-
ing is based on the Douglas–Peucker algorithm (Douglas
and Peucker, 1973), which preserves extremes but filters the
noise (Ehret, 2016). Preprocessing also involves the identifi-
cation of segments, i.e. contiguous periods of rise or fall in
the hydrograph. This is based on the slope of the hydrograph
computed between two successive time steps.

2.2 Identification and pairing of events

For many aspects of hydrology such as flood forecasting or
studies of rainfall–runoff transformation, it is useful to con-
sider a hydrograph as a succession of distinct events, usu-
ally triggered by rainfall events, separated by periods of low
flow. As SD is based on the concept of comparing similar
parts of obs and sim hydrographs, it ideally also involves the
steps of identifying events both in the obs and sim time se-
ries and then relating the resulting events between the se-
ries. On this level, the general agreement of the two series is
evaluated with a contingency table, which counts the num-
ber of hits (observed events that have a matching simulated
counterpart), misses (observed events without a simulated
counterpart), and false alarms (simulated events without an
observed counterpart). This is also the basis for the further
steps of the SD procedure: only for matching pairs of obs–
sim events can matching segments of rise and fall within the
events be identified and the combined time–magnitude error
be computed. For misses, false alarms, and periods of low

flow this is not possible. For these cases, the best indicator of
hydrological similarity in obs and sim is similarity in time;
i.e. the distance between the observed and simulated hydro-
graph can be computed with a standard vertical distance mea-
sure. The detection of events in hydrographs and their subse-
quent pairing, however, is not trivial and has to our knowl-
edge not yet been solved in an automated and generalized
way. The original version of SD applied a simple no-event
threshold (see Fig. 1) which, however, often produced un-
satisfactory results in the form of many non-intuitive misses
or false alarms if the events peaked just above or below the
threshold. To overcome these limitations, two further options
are now included in SD. The first allows the reading of event
start and end points and matching obs and sim events from
user-provided lists. This “event mode” option allows users to
apply any desired event detection method, such as those pro-
posed by Blume et al. (2007), Seibert et al. (2016), or Merz
and Blöschl (2009), and is recommended if a clear distinction
between events and low flow is important. If the identifica-
tion of events is either not possible or relevant, both the obs
and sim time series can be treated as two single, long, match-
ing events, and the steps of segment identification and match-
ing as described in the next section are applied to the entire
time series. Despite its simplicity, this “continuous mode”
has been shown to work well in the authors’ opinion after
applying the SD approach to different discharge time series
in both the event and the continuous mode. Shown to work
well in this context means even in the continuous mode, SD
linked parts of obs and sim time series that visually appeared
to be matching segments within matching events. Since this
is difficult to show in a simple graph or statistic, we provide
the SD code and test data together with the article.

2.3 Pattern matching: identification, matching, and
coarse-graining of segments

This section describes the core of the SD concept, i.e. the
way to identify, within a matching pair of an observed and
a simulated event, hydrologically comparable points of the
hydrographs in order to quantify their distance in magnitude
and time. This pattern matching procedure has been substan-
tially improved in the new version of SD and is therefore
described in detail here.

The term “hydrologically comparable” relates to how a hy-
drologist would visually compare hydrographs and includes
several aspects and constraints. The first constraint is based
on the perception that even if hydrological simulations may
deviate from the observations in magnitude or timing, their
temporal order is usually correct. Therefore, in SD, match-
ing points are compared chronologically by preserving their
temporal occurrence: the first point in obs is compared to
the first in sim, the second to the second, the last to the last.
Please note that this does not require the two events to be
of equal length, as in SD, the hydrograph is considered a
polygon from which the points to compare can be sampled
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by linear interpolation without restriction to its edge nodes.
This is explained in detail below. The second constraint re-
lates to the slope of the hydrograph: to ensure hydrological
consistency, points within rising segments of sim are only
compared to points in rising segments of obs, and the same
applies to falling segments. This creates a problem related
to the within-event variability of the two hydrographs: it is
easy to imagine a case in which the number of segments
in the obs and sim event differs. This can be either due to
sensor-related high-frequency micro fluctuations of the ob-
servations, which can create sequences of many short rising
and falling segments, or to general deviations of the simu-
lation from the observation, such as a double-peaked sim-
ulated event while the observed event is single-peaked. In
visual hydrograph evaluation, a hydrologist will detect the
dominant patterns of rise and fall in the two time series and
identify matching segments by doing two things: filtering
out short, non-relevant fluctuations and then relating the re-
maining ones by jointly evaluating their similarity in timing,
duration, and slope. The stronger the overall disagreement
of the obs and sim event, the more visual coarse-graining
will be done before the hydrographs are finally compared,
while at the same time the degree of coarse-graining will
also influence the hydrologist’s evaluation of the hydrograph
agreement: the higher the required degree of coarse-graining,
the smaller the agreement. In SD, these steps are emulated
by iteratively maximizing an objective function: while in-
creasingly coarse-graining the two events, their overall time
and magnitude distance is evaluated. The final evaluation of
agreement is then done on the level at which the optimal
trade-off between coarse-graining and hydrograph distance
occurs, i.e. where the objective function is minimal. The pro-
cedure consists of four steps and is explained in the following
sections: (1) determination of segment properties, (2) equal-
izing the number of segments in the obs and sim event, (3) it-
erative coarse-graining, and (4) distance computation for the
optimal coarse-graining level.

1. For each segment i in the initial sequence of rises
and falls of an event, its properties relevant for coarse-
graining are determined: start and end time, dura-
tion (dt(i)), and absolute magnitude change (dQ(i)).
From this the relative duration (dt∗(i)) and the rela-
tive magnitude change (dQ∗(i)) of each segment is cal-
culated, i.e. its duration normalized by the total dura-
tion and its magnitude change normalized by the total
sum of absolute magnitude changes of the entire event.
dt∗(i) and dQ∗(i) are then used to determine the rel-
ative importance of each segment (ISEG(i)) using the
Euclidean distance (Eq. (1)). Taken together, all ISEG(i)

of the time series sum up to 1, and segments that are rel-
evant, i.e. that are either very long and/or include large
discharge changes, receive large values of ISEG.

ISEG(i)=
√

dt∗2(i)+ dQ∗2(i) (1)

2. If the number of segments in the obs and sim event dif-
fers, they are logically equalized by removing the re-
quired number from the event with the surplus. This is
done with a directed, iterative aggregation of segments:
the least relevant segment (the one with the smallest
value of ISEG) is selected and assimilated by its two
neighbouring segments. For instance, a small relevant
rising segment will then be combined with its preced-
ing and succeeding falling segment to a single, long,
falling segment. For the new segment the properties are
then determined; its relative importance is the sum of
the previous three segments.

It is important to note that this procedure is a purely
logical assimilation: the timing and magnitude of the
points in the dissolved segment remain unchanged; they
are only reassigned to the new and larger segment. This
also implies that the meaning of coarse-graining in the
context of SD is slightly different from its meanings
in statistics and thermodynamics or in upscaling (At-
tinger, 2003; Neuweiler and King, 2002). In the first
case, coarse-graining is synonymous with the aggrega-
tion and averaging of physical quantities; in the second,
it is related to the preservation of heterogeneity effects
upon aggregation. In the case of SD, it means that log-
ical ordering properties are aggregated, while the abso-
lute values of the timing and magnitude of the data are
not changed.

Obviously, this procedure includes a false classifica-
tion: the rising segment in the previous example is
now hidden within a larger falling segment. This can
be considered as the price of coarse-graining and can
be quantified by the number of falsely classified edge
nodes (n∗mod) of the time series. Therefore, n∗mod is a
useful quantity to punish excessive coarse-graining in
the objective function, Eq. (2).

3. With the number of segments in the obs and sim events
equalized, their SD timing and magnitude distance can
be computed. To this end, the first obs segment is com-
pared to the first sim segment, the second to the sec-
ond, etc. Since the segments can differ in length we
here assume that for each segment pair, the appropri-
ate number of points is evenly distributed along the seg-
ment duration and can thus be found by linear inter-
polation between the time series edge nodes. The first
point in the obs segment is then connected to the first
point in the sim segment, the second to the second, etc.
For each connector its horizontal and vertical projec-
tion, i.e. length in time and magnitude, respectively, is
determined (compare again Fig. 1), yielding the joint
time and magnitude error of the particular point pair.

In the initial version of SD, the number of points for
each segment pair was found by calculating the mean of
the two relative durations, I ∗dt , such that long-segment
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pairs received many points and the overall number of
connector points of the time series equalled its number
of edge nodes. In order to better emulate a hydrologist’s
perception of segment importance, in the current ver-
sion of SD the number of points is determined by the
mean relative importance ISEG (Eq. 1) of a segment pair.
This assigns more points to (and hence puts more em-
phasis on) short but steeply rising segments while still
preserving the same overall number of points.

At this point the result of the SD procedure – a two-
dimensional distribution of time and magnitude errors,
separately for the rising and the falling segments – is
available. However, in practice the problem of non-
intuitive segment matching often spoils the results. Due
to the constraint of time-ordered segment matching, any
minor change in monotony within a rising or a falling
limb that is only present in either the obs or sim event
will produce a false matching of segments. The left
panel in Fig. 2 illustrates this problem, where the first
falling segment in the observed series (labelled with “2”
in a square) corrupts segment matching: in chronolog-
ical terms the steep flood rise in obs (“3” in a square)
would be compared to the second rising segment in sim
(“3” in a circle), which is obviously wrong. In this case,
the SD time and magnitude distances will be very large,
while visual comparison would most likely be done as
shown in the right panel of Fig. 2 and yield good agree-
ment.

We overcome this problem using iterative coarse-
graining again: within the events, successively more
segments are logically aggregated with their neighbours
until finally the entire event consists of only two seg-
ments: one rise and one fall. Compared to the last step,
in which we apply coarse-graining to either sim or obs
in order to equalize the number of segments in the sim-
ulated and observed event, we here apply it simultane-
ously to the obs and sim event. Hence, an equal number
of segments and unique segment matching is ensured.
The final comparison of the two events is done for the
coarse-graining step in which the total SD errors and the
degree of coarse-graining together are small. Both re-
quirements are considered in the coarse-graining objec-
tive function (θ ). The latter consists of four criteria. The
first two are as follows: (i) the number of edge nodes
in falsely classified segments (n∗mod) and (ii) the cumu-
lated importance of the dissolved segments (I ∗SEG,cum).
As discussed above, the false classifications inevitably
occur during the aggregation of segments. Both cri-
teria monotonically increase with the number of dis-
solved segments and therefore punish excessive coarse-
graining. Further criteria are (iii) the SD timing (E∗SD,t )
and (iv) magnitude errors (E∗SD,Q) summed up over all
segments of the event. They are small when segments
that are hydrologically similar, i.e. close in time, dura-

tion, and magnitude, are compared. As in Eq. (1), each
criterion is first normalized to the range of [0 1] and then
combined using the Euclidean distance (Eq. (2)):

θ =

√
γ1n
∗2
mod+ γ2I

∗2
SEG,cum+ γ3E

∗2
SD,t + γ4E

∗2
SD,Q. (2)

Note that θ also includes weighting factors (γ1 . . . γ4)
for each criterion, which allows for a user- or time-
series-specific adjustment of the objective function.
Their setting is hence case-specific, with the constraint
that γ1 . . . γ4 have to sum up to unity. For example, if
the temporal agreement of segments is important, the
weight for E∗SD,t should be large. Setting γ3= 1 and all
other weights to 0 will hence result in a vertical compar-
ison of the time series, provided that the positions of the
edge nodes are identical. The opposite case (γ4= 1 and
γ1= γ2= γ3= 0) minimizes vertical deviations which
leads to horizontally extended SD connectors. Large
weights for either γ1 or γ2 will prevent any logical ag-
gregation and the pattern matching procedure will sug-
gest the initial conditions as the best solution. Conse-
quently, “extreme” parametrizations of θ are not mean-
ingful as they will prevent the purpose of SD, which is
to compare points which are hydrologically similar.

As can be seen in Fig. 2, dissolving a single segment can
drastically change the events’ overall SD time and mag-
nitude distance. Also, as during the successive removal
of segments in coarse-graining, it is impossible to pre-
dict which combination of segments dissolved in obs
and sim will yield the best value of θ ; thus, all possible
combinations are tested and the best is kept. If, e.g., both
the obs and sim event consist of 10 segments, 10× 10
combinations of segment dissolutions are tested (obs1
with sim1, obs1 with sim2, etc.). The coarse-graining
scheme is thus computationally demanding. The com-
bination with the minimum θ is kept and serves as the
basis for the next segment reduction step in the coarse-
graining procedure.

4. Once the coarse-graining is done, the optimal value of θ
is available for each reduction step, starting with the ini-
tial number of segments and ending with two. In Fig. 3,
this is shown for a three-peak event with initially 15 seg-
ments. As can be seen in the lower right panel, the value
of the objective function is initially high: here segment
matching is poor and as a result SD timing errors and
thus θ are high (upper left panel). After dissolving three
segments, agreement is much better (lower left panel)
and θ is at its minimum. Further segment aggregation
does not further decrease SD errors, but now the num-
ber of falsely classified nodes increases and leads to an
increase in θ (upper right panel). The interplay of the
two antagonist parts of θ often leads to the occurrence
of a local minimum in the coarse-graining of complex
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Figure 2. Illustration of the time-ordered matching of segments in the coarse-graining procedure. The rising and falling segments of the
simulation (sim) and observation (obs) are numbered and colour-coded according to their chronological order. Series distance compares
segments with identical number and/or colour.
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Figure 3. Coarse-graining steps: all plots contain data from the same multi-peak discharge event but for different levels of coarse-graining.
The initial conditions (top left panel) are characterized by a large number of poorly matching simulated (dashed) and observed (solid)
segments as indicated by the non-intuitively placed SD connectors (grey lines). Segments required to match according to the chronological
order constraint of SD are indicated by matching colours. In the last coarse-graining step (top right panel) the connectors are placed more
meaningfully but the representation of the entire event by only two segments (one rise, one fall) appears inadequately coarse. The optimal
level of coarse-graining, here reached at step three, yields visually acceptable connectors while preserving a detailed segment structure
(bottom left panel). This step is associated with a minimum of the coarse-graining objective function (Eq. 2), indicated by the red dot in the
bottom right panel. Grey dots indicated the values of the objective function for all other coarse-graining steps.

multi-peak events. The related reduction step can then
be regarded as the optimal degree of coarse-graining
and the final values of SD time and magnitude errors
are determined based on this level. In “simple” events
in which no or little coarse graining is required, the ob-

jective function values often increase fairly linearly. In
any case SD time and magnitude errors are determined
based upon the coarse-graining step with the smallest
θ value.
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2.4 Modifications in the SD error model

In the initial version of SD, the magnitude error (ESD,Q) was
calculated as the absolute difference between points in sim
and obs linked by a Series Distance connector (c):

ESD,Q(c)=Qobs(c)−Qsim(c). (3)

In the current version, the magnitude error can alternatively
be scaled by the mean of the connected points:

E∗SD,Q(c)=
Qobs(c)−Qsim(c)

1
2 (Qobs(c)+Qsim(c))

. (4)

This yields a relative and hence dimensionless expression of
the vertical error (E∗SD,Q), which facilitates the construction
of uncertainty ranges of variable width (see Sect. 3). As in
the first version of SD, both absolute and relative vertical er-
ror values E(∗)SD,Q> 0 indicate that Qobs(c)>Qsim(c). The
calculation of Series Distance timing errors (ESD,t ) accord-
ing to Eq. (5) remained unchanged. Error values of ESD,t > 0
indicate that obs occurs later than sim:

ESD,t (c)= tobs(c)− tsim(c). (5)

Similar to the scaling of the vertical error, the timing error
could also be scaled using, e.g., event duration. This could be
helpful if the error compared to the length of the event or the
average length of all events in the time series is of interest.

The application of SD timing and magnitude error models
(ESD,t (c) and ESD,Q(c)) makes sense where timing errors
are both present and detectable, i.e. during events in which
discharge is not constant in time. During low-flow condi-
tions time offsets are, however, difficult, if not impossible to
detect. Therefore, a simple one-dimensional, vertical, “stan-
dard” error model analogous to Eq. (3), which relates values
at the same time step t , suffices here:

ES(t)=Qobs(t)−Qsim(t). (6)

Analogously to the scaled vertical SD error model in
Eq. (4), a scaled version of the one-dimensional vertical error
model (E∗S(t)) was added:

E∗S(t)=
Qobs(t)−Qsim(t)

1
2 (Qobs(t)+Qsim(t))

. (7)

3 Error dressing: a heuristic approach for the
construction of uncertainty ranges

The SD concept can be applied to a variety of tasks such as
model diagnostics, parameter estimation, calibration, or the
construction of uncertainty ranges. In this section we pro-
vide one example thereof and describe a heuristic approach
for the construction of uncertainty ranges for determinis-
tic streamflow simulations. Uncertainty ranges provide re-
gions of confidence around an uncertain estimate and are of

practical relevance and a straightforward means of highlight-
ing and of assessing magnitude and timing uncertainties of
hydrological simulations or forecasts. Conceptually, uncer-
tainty ranges should be wide enough to capture a significant
portion of the observed values but as narrow as possible to
be precise and, thus, meaningful. These requirements are an-
tagonistic as large uncertainty ranges, which capture most
or all observations, are usually imprecise to a degree that
makes them useless for decision-making purposes (Franz and
Hogue, 2011).

The method we propose here follows the concept proposed
by Roulston and Smith (2003) and yields quantitative esti-
mates of forecast uncertainty by “dressing” single forecasts
with historical error statistics. The original approach was de-
signed to dress ensemble forecasts; for SD it was adapted to
deterministic streamflow simulations and extended from one
dimension (magnitude) to two (magnitude and timing). Like
statistical approaches to uncertainty assessment, error dress-
ing is based on the fundamental assumptions of ergodicity
and stationarity, i.e. the assumption that errors that occurred
in the past are reliable predictors for errors in the future. In
the following we first outline the regular, one-dimensional
deterministic error dressing method and then describe its
modifications for SD.

3.1 The one-dimensional case

Provided with a record of past streamflow observa-
tions (Ohist) and corresponding model simulations (Shist),
any valid error model such as Eq. (6) can be applied to calcu-
late a distribution of historic errors. This distribution can then
be sampled (Fig. 4, upper left panel) using a suitable strategy
and the selected subset of errors can be applied to each time
step of the simulation. Connecting all upper and all lower
values of the dressed errors yields corresponding envelope
curves (Fig. 4, upper right panel). For this procedure Roul-
ston and Smith (2003) coined the term error dressing.

The choice of the sampling strategy, however, strongly
influences the statistics of the resulting uncertainty ranges
and should be carefully selected. In our case, the precon-
dition was that the approach should be extendible to two-
dimensional cases to allow its later application to the er-
ror distributions of the SD approach. Therefore, we defined
the sampling strategy according to the variance contribution,
which is straightforward to apply for the one-dimensional
case: for each point of the error distribution its relative con-
tribution (dσ 2

i ) to the unbiased variance of the total error dis-
tribution (σ 2

x ) is calculated according to Eq. (8):

dσ 2
i =

(xi − x)
2

nσ 2
x

100. (8)

Here x and n denote the mean and the size of the correspond-
ing error distribution. The usage of the unbiased variance,
having n in the denominator not n− 1, ensures that all dσ 2

i

sum up to 100. Next, all points of the error distribution are
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ordered by the values of dσ 2
i , and, starting with the smallest,

a desired subset of all dσ 2
i , e.g. 80 % is taken from the list.

This subset represents an informal probability (p ∈ [0 1]) as
it relates to the number of observations that fall within the un-
certainty range. Small values of p are associated with narrow
(sharp) uncertainty ranges but at the cost of a higher portion
of true values that fall outside. Contrary, high values of p
cause wide (imprecise) uncertainty ranges which, however,
contain most errors that occurred in the past. For practical
applications, typically coverages of 80 to 90 % are chosen.
In Fig. 4, top left panel, the coverage was set to p= 0.8.

3.2 The two-dimensional case

SD yields two-dimensional distributions of coupled errors in
timing and magnitude and thus requires a two-dimensional
strategy for the sampling of error subsets and the construc-
tion of envelope curves (Fig. 4, lower row panels).

How does one sample from bivariate distributions of cou-
pled errors with different units? Statistics and computational
geometry offer concepts based on the ordering of multivari-
ate data sets, such as geometric median or centre point ap-
proaches. The former provides a central tendency for higher
dimensions and is a generalization of the median which, for
one-dimensional data, has the property of minimizing the
sum of distances. Centre points are generalizations of the me-
dian in higher-dimensional Euclidean space and can be ap-
proximated by techniques such as the Tukey depth (Tukey,
1975) or other methods of depth statistics (Mosler, 2013).
Here, however, we want the errors to be centred around the
mean (not around the median). Hence, we apply the same
concept that we use for the one-dimensional case to SD in
that we sample based on the combined contribution of each
point to the total variance. Analogously to Eq. (8) we calcu-
late the relative timing (dσ 2

t ) and magnitude (dσ 2
Q) contribu-

tion of each point to the total variances of the corresponding
distributions. Their sum yields an estimate of the combined
contribution of each point to the combined variance of both
error distributions:

dσ 2
t+Q = dσ 2

t + dσ 2
Q. (9)

Analogously to the one-dimensional case, the points
are ordered by increasing combined variance contribution
dσ 2
t+Q, and, starting from the point with the smallest value

which is close to or at the mean, a subset of errors can be
extracted. The shape of the resulting subset depends on the
underlying distribution of errors. Uncorrelated errors yield
more or less circular or oval shapes (Fig. 4, lower left panel).
By contrast, correlated errors yield different shapes, which is
valuable for diagnostic purposes.

SD distinguishes periods of low flow, rising, and falling
limbs. Hence, subsets of two 2-D error distributions (rising
and falling limb) and from one one-dimensional error distri-
bution (low flow) are calculated and applied to each point of
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Figure 4. Sketch of the one- and two-dimensional error dressing
method using normally distributed random numbers (n= 1000).
The upper row panels show the one-dimensional case with an em-
pirical cumulative distribution function of errors (upper left panel)
and an 80 % subset thereof sampled according to increasing vari-
ance contribution. The application (dressing) of the subset of errors
to a hydrograph and the construction of the corresponding envelop
curves is illustrated in the upper right panel. The lower row pan-
els show the same procedure for the two-dimensional case. From
the two-dimensional distribution of empirical errors (bottom left
panel) 80 % (colour-coded) are again sampled according to the com-
bined variance contribution of both distributions (colour ramp). The
bottom right panel contains a sketch of the two-dimensional error
dressing method and the construction of envelope curves. Please
note that the use of normally distributed numbers yields symmetri-
cal samples and envelopes, which is usually not the case for real-
world data, which are usually skewed.

a simulation: points of low flow are dressed with the low-
flow error subset, points of rise with error subsets from ris-
ing limbs, etc. Altogether this yields a region of overlapping
error ovals around a simulation (Fig. 4, lower right panel),
which can for convenience be represented by an upper and
lower envelope curve. These lines are found by subdividing
the time series into time slices of length dt (the temporal res-
olution of the original series), centred around each edge node
of series. In each time slice, the magnitude and timing of the
largest and smallest error are identified. These values span
the upper and lower limit of the uncertainty envelope, respec-
tively. Using linear interpolation yields the upper and lower
limits of the envelope at the points in time of the original
series, which is useful to calculate evaluation statistics.
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4 Case study

This case study, based on real-world data, serves to present
and to discuss relevant aspects of SD by comparison with a
benchmark error model (BM).

4.1 Data and site properties

We used discharge observations (Ohist) of a 6-year pe-
riod (30 October 1999–30 October 2005) from gauge “Ho-
her Steg” (HOST), which is located in the small alpine
catchment of the Dornbirner Ach River in north-western
Austria. Catchment size is 113 km2, the elevation range is
400–2000 m a.s.l., and mean annual rainfall differs between
1100 and 2100 mm yr−1. For the 6-year period, hourly hy-
drometeorological time series (n= 52 633 time steps) were
used to drive an existing, calibrated conceptual water bud-
get model of the type LARSIM (Large Area Runoff Simu-
lation Model, gridded version, resolution= 1 km2; Ludwig
and Bremicker, 2006), which yielded acceptable simula-
tions (Shist) with a NASH of 0.78. Please note that for the
discussion of the SD concept, neither the model itself nor
the catchment properties are particularly relevant. The main
purpose of the case study was to apply realistic data. This
is also the reason why we used the entire 6-year period to
both derive and apply the error distributions; i.e. we did not
distinguish periods of error analysis and error application.

4.2 Conceptual setup

For the benchmark model, we derived distributions of 1-D
vertical errors. We did not differentiate cases of low flow and
events, which is rather simplistic but standard practice. For
the SD approach we did differentiate these cases. This may
be considered an unfair advantage for SD as it allows the
construction of more custom-tailored uncertainty envelopes.
However, as the objective of the case study is not a compe-
tition between the two approaches but a way to present in-
teresting aspects of SD, we considered it justified. For SD,
the required starting and end points of hydrological events
were manually determined both in Ohist and Shist by visual
inspection. Altogether there were n= 123 events in each se-
ries, and they were fully matching; i.e. no missing events or
false alarms occurred. The resulting contingency table is ob-
viously trivial and therefore not discussed further here.

Both for SD and BM, we applied scaled errors (E∗SD,Q(c)

according to Eq. (4) and EBM according to Eq. (7), respec-
tively), as we found that compared to the standard error
model, they are more applicable across the usually large dis-
charge ranges present in hydrographs. For SD, the weights
γ1, . . . , γ4 used in the objective function of the coarse-
graining procedure (Eq. 2) were set to 1

7 , 1
7 , 5

7 , and 0, respec-
tively, based on iteratively maximizing the visual agreement
of segments in matching events of sim and obs. Additional
studies with different data sets (not shown here) yielded sim-

ilar optimal weights, which corroborates that this is a rel-
atively robust choice and sufficient for a proof of concept,
as intended in this study. For more widespread applications,
a detailed sensitivity analysis is desirable. Such an analy-
sis is, however, difficult as several different time series, flow
conditions, and rainfall–runoff events would have to be vi-
sualized and compared. Moreover, there is no robust bench-
mark available to which we may compare the outcome of
the proposed coarse-graining procedure. For this reason we
provide software such that any interested person can find out
for him/herself whether the proposed method suits his or her
needs or not.

Based upon SD and BM we derived empirical error dis-
tributions from the entire test period and then used them, in
the same period, to construct uncertainty envelopes around
the simulation Shist using the error dressing approach as
described in Sect. 3. To ensure comparability we enforced
identical coverages for both approaches during the construc-
tion of the envelope curves; i.e. we made sure that the de-
sired fraction of observations (e.g. 80 %) fell within the un-
certainty envelope. For the standard error model this was
straightforward: if from the 1-D distribution of errors a subset
of p= 80 % is selected and used to construct the uncertainty
envelope as described in Sect. 3.1 for the same period of time,
then by definition the number of observations within the en-
velope must also be 80 %. For SD, however, as a consequence
of error ovals overlapping in time (Fig. 4, lower right panel),
this is not self-evident and typically many more observations
fall within the uncertainty envelope than the level p at which
the subset of the 2-D error distribution is sampled. This issue
was solved by iteratively sampling the error distributions at
various levels of p until the desired percentage of observa-
tions (here: 80 %) fell within the uncertain envelope.

4.3 Evaluation of deterministic uncertainty ranges

The evaluation of deterministic uncertainty ranges requires
methods to quantify properties such as coverage or precision.
Here we propose a set of statistics which can be applied to
uncertainty ranges irrespective of how they were constructed.
While this ensures comparability of the SD and BM-derived
ranges, it does not exploit the advantages of the SD approach,
i.e. separate treatment of time and magnitude uncertainties.

1. Coverage (φ) is the most intuitive criterion. It quantifies
the ratio of observations that fall inside the simulated
uncertainty range and can take values between 0 (no
single observed value included) and 1 (all observations
included). φ can easily be obtained as the number of
observations (nobs) that fall inside the uncertainty range
around a simulation, divided by the total length of the
time series (n):

φ =
nobs

n
. (10)
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2. Precision (PRC) allows the comparison of different un-
certainty ranges. PRC is the average width of the uncer-
tainty envelope, i.e. the average difference of the upper
(UE+(t)) and the lower (UE−(t)) envelope curve. The
smaller PRC, the sharper the uncertainty range. High
coverages (φ) typically require wide uncertainty ranges
and, thus, high values of PRC. PRC has the same unit
as the discharge time series.

PRC=
1
n

(
UE+(t)−UE−(t)

)
(11)

3. Finally we suggest scaling PRC by the value of the sim-
ulation according to Eq. (4), i.e. to express uncertainty
relative to the magnitude of the simulation. PRC∗ is di-
mensionless and decreases with decreasing width of the
uncertainty range. An uncertainty range of zero width
yields a PRC∗ of 0. Hence, small values of PRC∗ indi-
cate high skill.

PRC∗ =
1
n

(
UE+(t)−UE−(t)

)
Qsim(t)

(12)

In the case study, we used φ as a means to ensure compa-
rability rather than for comparison: coverage for both the SD
and BM approach was set to 80± 0.5 %. For SD the required
percentage of sampled errors was found by trial and error to
be p= 76 % (Table 3). With coverage equalized, SD and BM
can be directly compared by PRC and PRC∗. High (relative)
precision, i.e. small values of PRC(∗), indicate better perfor-
mance. If the evaluation of uncertainty ranges with respect to
over- and undershooting is of interest, additionally the per-
centage of observations above or below the uncertainty range
can be computed analogously to Eq. (10). This is for instance
of interest for flood forecasters who try to minimize over-
shooting or water supply managers who try to minimize un-
dershooting. For the sake of brevity, this has not been further
considered here.

5 Results and discussion

In this section we first discuss some general aspects of the
SD concept and then compare it to the benchmark approach
using the case study data.

5.1 Potential and limitations of the core SD concept

Series Distance is an elaborate method for the compari-
son of simulated and observed streamflow time series. The
concept allows the distinction between different hydrologi-
cal conditions (low flow and rising and falling limbs) and
determines joint errors in timing and magnitude of match-
ing points within matching segments of related hydrographs.
Differences in the high- and/or low-frequency agreement of

the obs and sim hydrographs are considered with an itera-
tive coarse-graining procedure, which effectively mimics vi-
sual hydrograph comparison. This differentiated evaluation
makes SD a powerful tool for model diagnostics and perfor-
mance evaluation.

The challenges of SD are, however, in the details: the ro-
bust, precise, and meaningful partitioning of the hydrograph
into periods of low flow and events is difficult. We tested
various approaches including baseflow separation and filter-
ing techniques (e.g. Douglas and Peucker, 1973; Chapman,
1999; Perng et al., 2000; Eckhardt, 2005), penalty functions
(Drabek, 2010), fuzzy logic (Seibert and Ehret, 2012), and
the methods proposed by Merz and Blöschl (2009) and Nor-
biato et al. (2009). In all cases, the results were unsatisfactory
when applied to a range of different flow regimes. The same
applies for the matching of conjugate events in obs and sim.
Currently, there is no robust and automated method available
for any of the two cases. Possible remedies are the adaptation
of any of the methods proposed above to specific conditions
(Seibert et al., 2016), manual event detection, and matching,
or one could treat the entire time series as a single, long event,
at the expense of losing the separate treatment of low-flow
cases. Within an event, the quality of the segment matching
significantly determines the quality of the subsequent match-
ing of obs and sim points and hence the quality of the SD
error calculation. This challenge has been solved in a mostly
very satisfactory way by the iterative coarse-graining proce-
dure. The resulting set of matching segments and the required
degree of coarse-graining is in itself a useful result which can
be used for comparative hydrograph analysis.

Qualitative analyses of the weighting factors γ1 . . . γ4 in
Eq. (2) confirmed that these parameters emphasize different
aspects of the hydrograph and thus allow for a flexible adap-
tation of the pattern matching procedure to different flow
regimes. Applied to a single event, different combinations
of γ -parameters cause different segments to be identified
and matched, leading to differing SD results and aggregation
steps. Overall, γ1 and γ2 are less sensitive than γ3 and γ4.
Table 1 qualitatively summarizes the impact of the different
weighting factors. Figure 5 provides the coarse-graining so-
lution for the event depicted in Fig. 3 if θ is parametrized us-
ing equal weights (case no. 5 in Table 1). This plot highlights
that different solutions can be acceptable and that coarse-
graining remains to a certain degree arbitrary. In any case the
parametrization of θ requires a visual verification as small
modifications may yield different results. We found that the
configuration presented in the case study (Sect. 4.2) which
punishes large timing errors (E∗SD,t ) produces good agree-
ment with visual coarse-graining for different events or con-
ditions and we thus suggest it as default parametrization. A
more in-depth study of the impacts of γ1 . . . γ4 using stream-
flow data from different regimes and events would, however,
be desirable.

The hydrograph matching algorithm (HMA) proposed by
Ewen (2011) is, to our knowledge, the only method which
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Table 1. Qualitative description of the impact of the different weighting factors of the objective function θ (Eq. 2), which governs the coarse-
graining procedure. Note: none of the extreme parametrizations described by the cases nos. 1–4 is meaningful as any of them prevent the
comparison of hydrologically similar points.

Case γ1 γ2 γ3 γ4 Impact

1 1 0 0 0 no aggregation of segments
2 0 1 0 0 no aggregation of segments
3 0 0 1 0 horizontal differences are minimized, i.e. vertical comparison
4 0 0 0 1 vertical differences are minimized, i.e. horizontal comparison
5 1

4
1
4

1
4

1
4 equal weights, compare Fig. 5

6 1
7

1
7

5
7 0 suggested default, compare Fig. 3 (bottom left panel)
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Figure 5. Optimal coarse-graining solution of the event depicted in
Fig. 3 if equal weights (γ parameters) are applied to the objective
function θ (Eq. 2). In this case the coarse-graining procedure selects
different edge nodes for two segments (see black boxes) leading to
slightly larger timing and smaller magnitude errors compared to the
bottom left panel in Fig. 3.

is similar to the SD concept in the sense that it relates ele-
ments of an observed to elements in a simulated hydrograph
in an intuitive manner. Similar to SD, the HMA uses connec-
tors (“rays”) to establish these relationships. However, the
manner in which these connectors are identified is different.
The HMA moves chronologically through all elements of obs
and calculates the distance to points in sim which are located
within a defined window around the element in obs using a
penalty function. This procedure generates a (possibly huge)
matrix of penalty values. In a second step the optimal “path”
through this matrix is identified, which yields the connectors.
This makes the HMA computationally demanding. However,
the same also applies for SD as the coarse-graining scheme
may require a large number of iterations. The advantage of
SD is that unique relationships of points in obs and sim are
established, which is not the case for HMA. Leaving aside
these methodological finesses, we believe that for hydrolog-
ical studies there is a large potential for “intuitive” distance
metrics which is not yet fully exploited: in the intercompar-

ison study of Crochemore et al. (2014) both HMA and SD
closely resembled expert judgement and outperformed stan-
dard (vertical) distance metrics during high- and, for HMA,
also low-flow conditions.

5.2 Potential and limitations of the error dressing
method

Error dressing is a simple method and straightforward to ap-
ply. Conceptually it is very similar to statistical concepts like
the total uncertainty method introduced by Montanari and
Grossi (2008) insofar as it does not distinguish between dif-
ferent sources of uncertainty. Unlike rigorous statistical con-
cepts, error dressing, however, does not make any assump-
tions regarding the nature of the population of errors: they are
directly sampled from the empirical distribution, thus avoid-
ing the need to fit a theoretical distribution to the data. The
fundamental assumption of error dressing is hence that the
available sample represents the population and implies that
the skill of the resulting uncertainty ranges strongly depends
on the representativeness of the empirical distribution of er-
rors. This may not be the case if records are short and/or if
the available data only cover a limited range of conditions.
This is, however, a frequent problem of statistical methods
for uncertainty assessment (not only in hydrology), where
often the extremes are of interest, although they are rare by
definition (Montanari and Grossi, 2008). Further uncertain-
ties arise from erroneous observations, which is a common
problem in hydrology. These conceptual limitations lead to
the fundamental question of whether it is better to profit from
statistical (or heuristic) information on the basis of the sta-
tionarity assumption or to neglect it by questioning the as-
sumption itself (Montanari, 2007). This discussion is, how-
ever, beyond the scope of this study.

The error dressing concept in the presented form does
not distinguish between seasonality or different flow mag-
nitudes as the same error distributions are applied to each
rising (and/or falling) limb. More sophisticated implemen-
tations are of course possible, such as a differentiation of
errors according to flow magnitudes to better capture ex-
tremes, or differentiation according to forecast lead times.
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The same applies for the sampling strategy: as an alternative
to the method presented here based on combined variance
contribution, the sampling of specific quantiles using the me-
dian as central reference or the fitting and application of any
parametric function to the distribution is of course possible.
A practical insight from applying the error dressing concept
is that the variance-based method effectively filters outliers,
which sometimes occur when errors are calculated between
poorly matching segments.

A last general issue relates to the sampling from the two-
dimensional error distribution. Due to the superposition of
error clouds in successive time steps it is possible that er-
rors in timing at one time step mimic errors in magnitude
at neighbouring time steps (Fig. 4, bottom right panel). This
depends on the temporal extent of the error ovals. As a con-
sequence, the relationship between p, which defines the size
of the subset from the distribution, and coverage (φ) becomes
non-unique. In any case it is not directly linear as in the one-
dimensional case in which p equals φ per definition (at least
for the period of calibration). Typically φ exceeds p in the
two-dimensional case, and desired coverage rates of ≈ 80 %
require us to set p to ≈ 0.65–0.75. If a specific coverage is
desired, the related value of p is best found by iteration. Al-
together, the error dressing concept seems suitable for practi-
cal applications where long time series are available but more
sophisticated uncertainty assessments are not feasible, either
because of the required effort or because of limited knowl-
edge of the underlying system.

5.3 Case study results

As described in Sect. 4.2, within the 6-year time series, al-
together n= 123 events were manually identified in both
obs and sim. The events matched perfectly; i.e. no missed
events or false alarms occurred. This is often the case for
simulations of responsive catchments where rainfall events
trigger runoff events in most cases and where the precipi-
tation time series thus carries important information about
the occurrence of hydrological events. This is not necessar-
ily the case for hydrological forecasts, especially mid- to
long-term, where false precipitation events can generate false
hydrological events. In the latter case, event-based informa-
tion contained in the contingency table can be valuable. The
mean event durations were 146 and 154 h for obs and sim,
respectively, and on average each event initially contained
13 (sub)peaks. The optimal level of event comparison was
on average achieved after two coarse-graining steps, which
reduced the number of peaks on average to four and led
to average durations of 37 h for rising limbs and 109 h for
falling limbs for both obs and sim. These statistics again
bear diagnostic potential as they can be interpreted as sur-
rogates for the mean concentration time of the catchment or
as a reservoir constant and can thus be compared to other
data. Generally, the matching of segments resulting from the
coarse-graining procedure corresponded well with visual hu-

man reasoning (not shown). In the following we compare the
error distributions and uncertainty envelopes derived from
the SD and BM approach for our test case.

5.3.1 Comparison of error distributions

Altogether four error distributions were calculated: for SD
two 2-D distributions (one for the rising and one for the
falling event limbs) and one 1-D distribution for the low-flow
conditions; for BM a single 1-D distribution of magnitude er-
rors for the entire time series. The distributions are shown in
Fig. 6, corresponding statistics in Table 2.

Comparing the 2-D distributions reveals distinct differ-
ences in shape: for the rising limbs the distribution is rather
oval; for the falling limbs it is almost circular. This is par-
ticularly evident in the sampled subsets. The uniform spread
of the errors within the oval and the circle indicates that for
the data at hand, the timing and magnitude errors are largely
uncorrelated but dependent upon the hydrological conditions
(rise or fall). The (scaled) magnitude errors for both distri-
butions are located between ±1.5. The magnitude biases for
both distributions are relatively small and lie, according to
the ranges provided by Di Baldassarre and Montanari (2009),
within the error of measurement: SDQ,rise= 0.1 for the rising
limbs, SDQ,fall= 0.008 for the falling limbs. Note that pos-
itive magnitude biases indicate simulations that on average
underestimate the observations. For timing errors, the differ-
ences are more pronounced: while for the rising limbs, timing
errors are located between ±10 h for the sampled subset and
biased by −0.2 h (indicating simulations lagging behind the
observations), for the falling limbs both the bias (−3 h) and
the range (±20 h) are much larger. Please note that we dis-
cuss the timing errors of the subset here rather than those of
the entire sample, as the latter include few but large outliers
caused by occasional poor matching of falling limbs during
coarse-graining.

Together, these results confirm that different flow condi-
tions, i.e. low-flow, rising or falling limbs of events, exhibit
different error characteristics. This suggests that a differen-
tiation between hydrological conditions can be meaningful.
For instance, timing errors of the recession in the case study
would be strongly underestimated by timing errors of the ris-
ing limbs, and vice versa, as depicted in the lower panel of
Fig. 8. The comparison of 1-D distributions of the SD and
BM model revealed that important error characteristics of
rare events can be shadowed by frequent but often less im-
portant low-flow conditions.

5.3.2 Comparison of uncertainty envelopes

Subsets of both the SD and BM error distributions were used
to construct uncertainty envelopes (UE) around the entire
simulated time series Shist. For better visibility of the details,
only a 3-week period is shown in Fig. 7; the envelope statis-
tics presented in Table 3, however, are based on the entire se-
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Table 2. Statistical properties of the individual Series Distance (SD) and benchmark (BM) error distributions from the case study. For the
entire distribution we provide the first and third quartile, the mean, median, and the percentage of outliers (data points which are more than
3 standard deviations apart from the mean). For the subset we provide the sampled upper (maximum) and lower (minimum) boundaries.
The subscripts with SD refer to errors in magnitude (Q) and timing (t) separately for the rising (rise) and falling (fall) limbs, respectively.
SDLF provides results for the periods of low flow.

Error Entire distribution Sampled subset

Distribution 25 % quartile Mean Median 75% quartile % outlier Minimum Maximum

SDQ,rise (–) −0.15 0.11 0.13 0.39 0.7 −0.44 0.67
SDQ,fall (–) −0.23 0.01 0.01 0.25 0.5 −0.54 0.55
SDt,rise (h) −0.50 −0.22 0.66 1.60 2.1 −8.41 7.98
SDt,fall (h) −3.89 −2.87 0 1.56 2.9 −21.61 15.86
SDLF (–) −0.64 −0.35 −0.37 −0.06 0.1 −0.89 0.19
BM (–) −0.54 −0.23 −0.24 0.09 0.1 −0.83 0.37

Figure 6. One- and two-dimensional error distributions from the
case study. The upper row contains Series Distance (SD) results for
the rising and falling limbs. The left panel in the lower row shows
the one-dimensional SD distribution of errors for the periods of low
flow. The panel in the bottom right contains the 1-D distribution of
magnitude errors of the benchmark model (BM) for the entire time
series. The highlighted subset represents the 80 % subset used to
construct the uncertainty envelopes. Distribution statistics are pro-
vided in Table 2. To improve the readability of the upper two panels,
we restricted their timing axes to the range [−45 45]. The number
of outliers, i.e. points outside the range mean± 3 SD (standard de-
viations) ([−42 36]), was < 1 % for the falling limbs and 1 order of
magnitude less for the rising limbs. The dotted lines highlight the
origins (all panels).

ries. The percentages p= 76 % for SD and p= 80 % for MD
of sampled errors in the subsets were selected such that the
overall coverage (φ) of the uncertainty envelopes was 80 % in
both cases. Compared to UEBM, the UESD in Fig. 7 appears
both smoother and more inflated. This is due to the timing
component of the error model, which spreads the uncertainty
envelope in time. This is particularly visible at the beginning
of the events. Here, timing errors dressed to a given time
step clearly extend to neighbouring time steps, representing
the uncertainty about the true event start. In the case of sev-
eral peaks occurring within a short time (Fig. 7, last event),
the smoothing effect of the timing component can lead to a
merging of the related uncertainty envelopes towards a sin-
gle, large region. Also the difference between smaller tim-
ing errors in the rising limbs and larger timing errors in the
falling limbs are visible. Partly, timing errors of the falling
limb even mimic timing errors in the rising limb (compare
also Fig. 8, lower panel). The false inflation of the uncer-
tainty envelope due to the timing error is undesirable. The
reasons for it are, however, manifold. Possible ways forward
to narrow the time-inflated SD uncertainty envelope would
be (i) to replace the static timing error model (Eq. (5)) by
a relative representation, e.g. by using mean event duration,
(ii) to further differentiate the error distributions, e.g. accord-
ing to flow magnitude and (iii) in the consideration of the au-
tocorrelation of the errors which is typically large in stream-
flow data. Of course, errors in the coarse-graining can also
contribute to false inflation.

In comparison, the uncertainty envelope of the BM model
appears slimmer and more precise. However, due to the lack
of consideration of timing uncertainties, especially during
steep flood rises, the uncertainty envelopes become very nar-
row. Such a “vanishing” of the uncertainty envelopes implies
that there are no timing errors to be expected at all (com-
pare, e.g., the period 6–7 June 2001 in Fig. 7), which is de-
ceptive, keeping in mind the SD results for the timing er-
rors (Fig. 6). We thus consider this aspect a disadvantage of
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Table 3. Coverage (φ), precision (PRC), and relative preci-
sion (PRC∗) of uncertainty envelopes. UESD and UEBM denote
Series Distance and benchmark error model, respectively. The last
column (p) provides the percentage of sampled values of the corre-
sponding distribution(s).

Uncertainty φ PRC PRC∗ p

envelope (–) (m3 s−1) (–) (%)

UESD 80.5 8.2 1.3 76
UEBM 80.0 5.1 1.0 80
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Figure 7. Time series detail showing the resulting one- and two-
dimensional uncertainty envelopes around the historic stream-
flow simulation. The envelopes were derived upon Series Dis-
tance (UESD) and the benchmark approach (UEBM), respectively,
using error dressing. Please note that the coverage of the SD and
BM envelope may differ for different subsets of the time series, like
in this detail. For the entire time series, however, the coverage of
BM and SD are identical.

the one-dimensional error dressing method, especially as the
timing of flood rises is often critical in hydrological applica-
tions (Seibert et al., 2014).

The statistical evaluation of the different uncertainty en-
velopes (Table 3) confirms the visual impression: the BM un-
certainty envelope outperforms SD in terms of absolute and
relative precision (PRC and PRC∗, respectively) given identi-
cal coverage (φ). On average, UESD is 3.1 m3 s−1 wider than
the benchmark envelope, which corresponds to a relative dif-
ference of 30 % as indicated by PRC∗. This suggests that the
use of the SD concept to construct uncertainty envelopes im-
plies a trade-off between two effects: on the one hand, the ex-
plicit consideration of timing errors potentially yields better-
tailored uncertainty envelopes, as apparent timing errors can
be treated as such. On the other hand, if timing is not a domi-
nant or at least substantial component of the overall error, the
time-spreading effect of the SD envelope construction can
lead to an undesirable inflation effect. In our case study, the
latter effect apparently predominated. For hydrological fore-
casts based on uncertain meteorological forecasts, however,
the opposite may be the case.

Figure 8. Vertical and horizontal error bars. The upper panel shows
magnitude error bars (Q) for the Series Distance (SD) method and
the benchmark (BM) approach. For SD different error bars are
drawn for low-flow conditions and rising (rise) and falling (fall)
limbs. In the BM case the same error bars are applied in all cases.
The lower panel shows the corresponding timing error bars (t) of
SD (not available for BM), again separately for the rising and falling
limbs. To improve readability we plotted error bars only every third
hour and introduced a slight time offset between SD and BM (upper
panel only). Both panels show a subset of the hydrograph section
depicted in Fig. 7 and are based on the same data.

5.3.3 Disentangling the importance of magnitude and
timing errors

To further investigate the individual effects of errors in tim-
ing and magnitude, we also applied them separately to the
simulated time series. To this end we applied case-specific
subsets of the error distributions – i.e. 2-D errors for rising
and falling limbs and 1-D error distributions for low flow
– to each point of the simulated time series just as in the
previously described error dressing approaches. The differ-
ence was that we did not apply the entire error subset (oval
or circle) but its projection on the time and magnitude axis,
respectively. The resulting uncertainty bars therefore extend
from the maximum to the minimum magnitude (upper panel)
and timing (lower panel) values of the error subsets and are
depicted in Fig. 8. For comparison we also plotted the mag-
nitude errors of the BM approach. In this representation it
becomes obvious that the error bars of the SD and BM ap-
proach show considerable differences with respect to extent
and symmetry. For the magnitude error bars the deviations
are most pronounced in the rising limbs and less so in the
falling limbs and during low-flow conditions. While the SD
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method reflects the underling characteristics of the errors, the
BM method applies the same error to all cases. Constructing
an uncertainty envelope from only the SD magnitude errors
would yield an envelope comparable to that of BM but be
more variable and have higher uncertainty towards overes-
timations than towards underestimations. Note that the true
distribution of errors within the error bars is unknown.

The lower panel in Fig. 8 reveals that the uncertainties
with respect to timing are considerable, typically during the
recessions. Combining horizontal and vertical errors to con-
struct the 2-D SD uncertainty envelope using the method de-
scribed in Sect. 3 will inevitably cover a large region. While
this is undesirable, it points towards possible alternatives to
construct uncertainty ranges: rather than uniting the horizon-
tal and vertical uncertainty components, intersecting them,
i.e. to use only elements which are common to both error
components,s would also be possible, for example, and most
likely narrow the uncertainty envelope. Also, discharge time
series usually exhibit considerable autocorrelation and so
do related simulation errors. Exploiting this memory effect
by time-conditioned sampling of the error distribution via a
Markov process would be a further alternative to better tailor
uncertainty envelopes (Vrugt et al., 2008; Montanari et al.,
1997).

Finally, even if the SD error distributions are not used
to construct uncertainty envelopes, knowledge of magnitude
and timing error distributions is valuable for model diag-
nostics: in their approach to identifying characteristic error
groups in hydrological time series Reusser et al. (2009) had
to inversely infer the effect of timing errors to their signa-
tures; SD offers a method to directly measure timing errors
and thus to improve this step.

6 Conclusions

The main goal of this paper was to present major develop-
ments in the SD concept since its first version presented by
Ehret and Zehe (2011). These include the development of
an iterative optimization procedure which effectively mimics
coarse-graining of hydrographs when comparing them visu-
ally. The parameters of the inherent objective function were
derived manually for this study; for more widespread ap-
plications, however, we recommend an in-depth sensitivity
analysis using data from different regimes. Coarse-graining
yields a set of matching segments within observed and sim-
ulated hydrological time series and the optimal degree of
coarse-graining, both of which can be used as input for com-
parative hydrograph analysis. Further developments include
the introduction of a scaled error model, which has proven
to be better applicable across large discharge ranges than
its non-scaled counterpart, and error dressing, a concept to
construct uncertainty ranges around deterministic streamflow
simulations or forecasts. Error dressing includes an approach
to sample empirical error distributions by increasing vari-

ance contribution, which we extended from standard one-
dimensional distributions to the two-dimensional distribu-
tions of combined time and magnitude errors of SD.

Applying the SD concept and a benchmark model (BM)
based on standard magnitude errors to a 6-year time series
of observations and simulations in a small alpine catchment
revealed that different flow conditions (low flow and rising
and falling limbs during events) exhibit distinctly different
characteristics of timing and magnitude errors with respect
to mean and spread. Separate treatment of timing and magni-
tude errors and a differentiation of flow conditions as done in
SD is thus recommended in general as it preserves useful in-
formation. Exploiting these characteristics and their correla-
tions can support targeted model diagnostics. Deeper insights
can easily be provided if the error distributions are further
differentiated by discharge magnitude classes, by season, or
by considering the temporal autocorrelation of errors. The
latter would allow the development of a time-conditioned er-
ror sampling strategy when constructing 2-D uncertainty en-
velopes.

Applying the error distributions of both SD and BM to
construct uncertainty ranges around the fairly accurate sim-
ulation revealed a remarkable timing uncertainty. This sug-
gests that we commonly underestimate the role of horizontal
uncertainties in streamflow simulations. For the given data,
the BM-derived uncertainty ranges were in consequence vi-
sually narrower and statistically superior to the SD ranges.
This suggests that the use of the SD concept to construct un-
certainty envelopes according to the proposed error dressing
method implies a trade-off between two effects: on the one
hand, the explicit consideration of timing errors potentially
yields better-tailored uncertainty envelopes, as apparent tim-
ing errors are treated as such. On the other hand, the time-
spreading effect of the SD envelope construction, which es-
sentially is the union of the time and magnitude error un-
certainty ranges, can lead to an undesirable inflation. For the
case study data, the latter effect predominated, while for hy-
drological forecasts based on uncertain meteorological fore-
casts the opposite may be the case. This also opens inter-
esting avenues for new ways to construct uncertainty ranges
based on the SD concept, e.g. as the intersection (rather than
the union) of the two error components.

We conclude that Series Distance is an elaborate concept
for the comparison of simulated and observed streamflow
time series which can be used both for detailed hydrologi-
cal analysis and model diagnostics. Its application, however,
involves considerably more effort than standard diagnostic
measures, which are typically justified if timing errors are
dominant or of particular interest. More generally, we believe
that for hydrological studies there is a large potential for in-
tuitive distance metrics such as the hydrograph matching al-
gorithm proposed by Ewen (2011) or the SD concept, which
should be further exploited as suggested by Crochemore et al.
(2014).
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To foster the use of the SD concept and the methods
therein we publish a ready-to-use Matlab program code
alongside to the manuscript under a Creative Commons li-
cense (CC BY-NC-SA 4.0). It is accessible via https://github.
com/KIT-HYD/SeriesDistance. This repository also includes
extended versions of the SD concept which we did not de-
scribe in full length here. These allow for a continuous usage
of the method (no data on events required) and/or a differen-
tiation of vertical errors according to flow magnitude.

7 Data availability

A development release of the Series Distance program code
(Ehret and Seibert, 2016), licensed under a Creative Com-
mons license (CC BY-NC-SA 4.0), is published alongside
this manuscript via GitHub https://github.com/KIT-HYD/
SeriesDistance. The repository also includes a sample data
set of an observed and a simulated discharge time series.

Parametrization files for the Large Area Runoff Simulation
Model (LARSIM, Ludwig and Bremicker, 2006) and the cor-
responding hydrometeorological data sets which we used in
the case study can be obtained from the authors upon request.
LARSIM executables can be obtained upon request from
the Landesanstalt für Umwelt, Messungen und Naturschutz
Baden-Württemberg, Germany (LUBW, 2016).
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