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Finite Element Heterogeneous Multiscale
Method for Time-Dependent Maxwell’s
Equations

Marlis Hochbruck and Christian Stohrer

Abstract We propose a Finite Element Heterogeneous Multiscale Method (FE-
HMM) for time dependent Maxwell’s equations in second-order formulation. This
method can approximate the effective behavior of an electromagnetic wave traveling
through a highly oscillatory material without the need to resolve the microscopic de-
tails of the material. To prove an a-priori error bound for the semi-discrete FE-HMM
scheme, we need a new generalization of a Strang-type lemma for second-order hy-
perbolic equations. Finally, we present a numerical example that is in accordance
with the theoretical results.

Key words: time dependent Maxwell’s equations, finite element heterogeneous
multiscale method, Strang-type lemma for hyperbolic PDEs

1 Introduction

We want to simulate electromagnetic wave propagation in a highly oscillatory mate-
rial. Finite Element Heterogeneous Multiscale Methods (FE-HMM) have proven to
be efficient and reliable methods for many multiscale problems, see e.g. [1, 2]. The
most important advantage of an FE-HMM is that the influence of the microscopic
details of the material are taken into account, whilst only a macroscopic discretiza-
tion of the whole computational domain is needed. In this article, we propose (to the
best of our knowledge) the first FE-HMM scheme for second-order time-dependent
Maxwell’s equation. In [6] and [10] FE-HMMs for time-harmonic Maxwell’s equa-
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tions in rapidly oscillatory materials were presented. There, two types of micro prob-
lems were used to approximate the effective (or upscaled or homogenized) solution.
These micro problems are solved on small sampling domains such that the over-
all computational cost does not become infeasibly large. Here, we apply the FE-
HMM scheme from [6] to the time-dependent case. More precisely, we consider a
multiscale material with permittivity εη and permeability µη , where η denotes the
characteristic microscopic length of the material. We assume that η is much smaller
than the diameter of the computational domain Ω . Hence, the superscript η indi-
cates that a given variable displays a microscopic behavior. The multiscale second
order time-dependent Maxwell’s equation is given by

∂ttε
η(x)Eη(t;x)+∇×

(
ν

η(x)(∇×Eη(t;x)
)
= fff (t;x) in (0,T )×Ω , (1)

where Eη is the unknown multiscale electric field and

ν
η = (µη)−1

is the inverse of the magnetic permeability. To derive this equation from the stan-
dard first-order Maxwell’s equations we assumed that the electric field is generated
by a density free current and that the conductivity is zero (lossless material). The
precise functional analytic setting, the initial and boundary conditions are given in
Section 2, where we also recall a homogenization result derived from [15, Theorem
3.2]. In a nutshell, it states that Eη converges to the solution Eeff of an effective
Maxwell’s equation as the characteristic length η tends to zero. In Section 3 we
describe how the idea of [6] can be used to build a FE-HMM for (1) to approximate
Eeff. All the advantages of FE-HMM schemes mentioned above carry over to the
time-dependent case. We give an a-priori estimate of the difference between the FE-
HMM and the effective solution in Section 4. This estimate is based on a improved
version of the Strang-type Lemma given in [3]. To conclude this article we give a
numerical example that corroborates our theoretical findings.

Notation. Let Ω ⊂ Rd be a Lipschitz domain, with d = 2,3. We denote by H`(Ω)
the standard Sobolev spaces and set L2(Ω) = H0(Ω) as usual. Vector valued func-
tion spaces are denoted in bold face, e.g. we set HHH`(Ω) := H`(Ω)d . We denote
the corresponding scalar product and norm by (·, ·)`,Ω , and ‖·‖`,Ω respectively. The
space HHH(curl;Ω) consists of all LLL2(Ω) functions with a bounded curl. This space
is a Hilbert space with respect to the scalar product

(v,w)curl,Ω = (v,w)0,Ω +(curlv,curlw)0,Ω .

We denote by HHH0(curl;Ω) the closure of CCC∞
0 (Ω) in HHH(curl;Ω). This is the subspace

of HHH(curl;Ω) of functions with vanishing tangential components on the boundary
∂Ω . Details about these spaces can e.g. be found in [14]. We denote likewise peri-
odic boundary condition. For example for the centered unit cube Y = (−1/2, 1/2)d ,
we denote by HHHper(curl;Y ) the closure of CCC∞

per(Y ).
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2 Analytic setting

For the analytical results and the error analysis in Section 4 we assume that the
permittivity εη and the inverse permeability νη are locally periodic. We would like
to stress, that our FE-HMM scheme can be adapted easily to more general situations.

Definition 1. A tensor ξ η : Ω → Rd×d is locally periodic if there is a tensor ξ :
Ω×Rd→Rd×d , which is Y -periodic (Y = (−1/2, 1/2)d) in its second argument, such
that ξ η(x) = ξ (x, x/η) for almost every x ∈ Ω . We call such a function ξ blueprint
of ξ η .

In addition to the local periodicity we make from now on the following regularity
assumptions on the tensors εη and νη :

The blueprints of ε
η and ν

η are symmetric and in
(
C(Ω ;L∞

per(Y )
)d×d . (A1)

The tensors ε
η and ν

η are uniformly bounded and positive definite. (A2)

We consider the variational formulation of (1).
Find Eη : (0,T )→ HHH0(curl;Ω), such that for all v ∈ HHH0(curl;Ω)(

∂ttε
η Eη(t),v

)
0,Ω +

(
ν

η curlEη(t),curlv
)

0,Ω =
(
f(t),v

)
0,Ω ,

Eη(0) = E0, and ∂tEη(0) = E′0.

(2)

This problem has a unique solution if, see e.g. [12, Thm. 8.1],

E0 ∈ HHH0(curl;Ω), E′0 ∈ LLL2(Ω), and f ∈ LLL2(0,T ;L2(Ω)).

Note that by the choice of the space HHH0(curl;Ω) we use boundary conditions of a
perfect electric conductor. This means that the tangential component of Eη vanishes
at the boundary. Other boundary conditions could be used as well.

Homogenization theory. In [15] homogenization results for time-dependent first
order Maxwell’s equations have been proven, that answer the question how Eη be-
haves as η → 0. In the case of lossless materials with no charge density, it is easy
to rewrite this result in a second-order formulation. Similar results can be found in
[5], [11], and [13]. Let us first introduce the involved micro problems.

Definition 2. Let Yη(x) = x+ηY be the scaled and shifted unit cell. The first micro
problem at x ∈Ω constrained with a given v ∈ HHH(curl;Ω) is defined as follows.

Find ϕ
v(x, ·) ∈ ϕ

v
lin(x, ·)+H1

per(Yη(x)), such that
∫

Yη (x)
ϕ

v(x,y)dy = 0 and(
ε

(
x,
·
η

)
∇∇∇y ϕ

v(x, ·),∇∇∇ζ

)
0,Yη (x)

= 0, for all ζ ∈ H1
per(Yη(x)),

(3)

where ϕv
lin(x,y) = v(x) · (y− x).
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Definition 3. The second micro problem at x ∈ Ω constrained with a given v ∈
HHH(curl;Ω) is defined as follows.

Find
(
uv(x, ·), p

)
∈
(
uv

lin +HHHper(curl;Yη(x))
)
×H1

per(Yη(x)),

such that
∫

Yη (x)
uv(x,y)dy = 0,

∫
Yη (x)

p(y)dyyy = 0, and(
ν

(
x,
·
η

)
curly uv(x, ·),curlz

)
0,Yη (x)

+
(
uv(x, ·),∇∇∇q

)
0,Yη (x)

+
(
z,∇∇∇ p

)
0,Yη (x)

= 0,

for all (z,q) ∈ HHHper(curl;Yη(x))×H1
per(Yη(x)),

(4)
where

uv
lin(x,y) = v(x)+

1
2

curlv(x)× (y− x).

Note that the first micro problem is the well-known elliptic cell problem of classical
homogenization theory posed over the shifted sampling domain Yη(x) instead of the
unit square Y if one chooses v to be a (constant) unit vector of Rd . The second micro
problem is used less frequently and related to the first one through “dual formulas”,
see [5, Ch. 1, Rem. 5.9]. We recall the following homogenization result.

Theorem 1 (cf. [15, Thm. 3.2]). Let εη and νη be locally periodic with blueprints
ε , respectively ν , which fulfill the assumptions (A1) and (A2). For η > 0 let Eη be
the solution of the multiscale Maxwell’s equation (2). Then, as η→ 0, Eη converges
weakly-∗ in L∞(0,T ;LLL2(Ω)) to Eeff, where Eeff is the solution of the following ef-
fective Maxwell’s equation.

Find Eeff : (0,T )→ HHH0(curl;Ω), such that for all v ∈ HHH0(curl;Ω)

Seff(∂ttEeff(t),v)+Beff(Eeff(t),v) = (f(t),v)0,Ω ,

Eeff(0) = E0, and ∂tEeff(0) = E′0.

(5)

The effective scalar product Seff is given by

Seff(v,w) =
∫

Ω

1∣∣Yη(x)
∣∣
(

ε

(
x,
·
η

)
∇∇∇y ϕ

v(x, ·),∇∇∇y ϕ
w(x, ·)

)
0,Yη (x)

dx,

for all v,w∈HHH(curl;Ω), where ϕv and ϕw are the solutions of the first micro prob-
lem at x constrained with v, respectively w, see Definition 2. The effective bilinear
form Beff is given by

Beff(v,w) =
∫

Ω

1∣∣Yη(x)
∣∣
(

ν

(
x,
·
η

)
curly uv(x, ·),curly uw(x, ·)

)
0,Yη (x)

dx

for all v,w ∈ HHH(curl;Ω), where uv and uw are the solutions of the second micro
problem at x constrained with v, respectively w, see Definition 3.
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We choose to give the effective scalar product and the effective bilinear form in
a non-standard version, since it reveals well the connection with our multiscale
scheme defined below.

Nevertheless, we would like to mention that Seff and Beff could also be given with
the help of an effective permittivity εeff and an effective inverse permeability νeff as

Seff(v,w) = (εeffv,w)0,Ω and Beff(v,w) = (νeff curlv,curlw)0,Ω . (6)

Explicit formulas for the effective tensors εeff and νeff in terms of the solutions of
the micro problems can e.g. be found in [5, Rem. 5.8]. This rewriting process has
been shown in [6] for discretized versions of Seff and Beff, but one can follow the
lines of the given proof also in the continuous case. Note, that it can be shown that
εeff and νeff only vary on a macroscopic length scale and that the bilinear forms Seff

and Beff are symmetric, bounded, and coercive.
We do not give a complete proof here but mention the involved ideas. With the

help of the “dual formulas” one can rewrite the effective equation as effective first
order Maxwell’s equations with effective electric permittivity and effective magnetic
permeability. These effective equations are simplified versions of the ones given in
[15]. The simplification originates by considering only lossless materials. In [15] the
notion of two-scale convergence [4] was applied to Maxwell’s equation to derive the
convergence result.

3 Multiscale Algorithm

As usual for FE-HMM schemes our algorithm consists of a macro and a micro
solver. For the macro solver we discretize the effective equation (5) with edge el-
ements from Nédélec’s first family. To this end let TH be a shape regular triangu-
lation of the computational domain Ω into simplicial elements K. We let H be the
largest diameter of all elements K in TH and would like to emphasize that H can be
much larger than the characteristic length η of the material. By VVV H ⊂ HHH0(curl;Ω)
we denote the corresponding finite element space, for instance consisting of edge
elements.

The finite element discretization of (5) reads as follows.
Find Eeff

H : (0,T )→VVV H , such that for all vH ∈VVV H

Seff(∂ttEeff
H (t),vH)+Beff(Eeff

H (t),vH) = (f(t),vH),

Eeff
H (0) = ΠHE0, and ∂tEeff

H (0) = ΠHE′0,

(7)

where ΠH is a suitable LLL2-projection onto VVV H . Yet, this formulation can not be used
directly, since the evaluation of Seff and Beff would require the exact solution of
micro problems at every point x ∈Ω , i.e. of infinitely many micro problems.

To overcome these issues we replace Seff and Beff by there discretized counter-
parts. In this process, two discretization steps are involved. Firstly, the outer integral
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over the computational domain Ω is replaced by a quadrature formula: In every el-
ement K ∈ TH we choose JK quadrature nodes xK, j and corresponding quadrature
weights ωK, j, j = 1, . . . ,JK . Then we approximate

∫
Ω

g(x)dx≈ ∑
K∈TH

JK

∑
j=1

ωK, jg(xK, j) =: ∑
K, j

ωK, jg(xK, j).

Secondly, the micro problems are not solved analytically, but the solutions are ap-
proximated using finite elements. Therefore, we consider microscopic triangulations
Th(x) of the sampling domains Yη(x) into simplicial elements with maximal dia-
mater h. Let ϕv

h be the FE solution of the first micro problem (3). This means, that
ϕv

h is the solution of (3), where the space H1
per(Yη(x)) has been replaced with the

space Wh,per of Lagrange finite elements with periodic boundary conditions defined
over Th(x) of a given order. Similarly, let uv

h be the FE solution of the second micro
problem (4). Here we replace additionally the space HHHper(curl;Yη(x)) with an edge
element space VVV h,per with periodic boundary conditions defined again over Th(x).
With these FE solutions of the micro problems, we can define the HMM scalar
product and the HMM bilinear form by

SHMM
H (vH ,wH)

= ∑
K, j

ωK, j

|Yη(xK, j)|

(
ε

(
xK, j,

·
η

)
∇∇∇y ϕ

vH
h (xK, j, ·),∇∇∇y ϕ

wH
h (xK, j, ·)

)
0,Yη (xK, j)

,

BHMM
H (vH ,wH)

= ∑
K, j

ωK, j

|Yη(xK, j)|

(
ν

(
xK, j,

·
η

)
curly uvH

h (xK, j, ·),curly uwH
h (xK, j, ·)

)
0,Yη (xK, j)

.

It can be shown that SHMM and BHMM are symmetric, bounded and coercive, if εη ,
νη are sufficiently smooth and if the quadrature formula is accurate enough, with
respect to the chosen macroscopic FE space VVV H . This is well known for FE-HMM,
see [1, 2] and the references therein. For the specific case of Maxwell’s equation a
detailed discussion on the regularity assumptions can be found in [6]. Regarding the
quadrature formula, we also refer to [7, Chapter 4], where the problem of numerical
integration for standard FEM is considered.

Finally the FE-HMM scheme for second-order time-dependent Maxwell’s equa-
tion can be written as follows.

Find EHMM
H : (0,T )→VVV H , such that for all vH ∈VVV H

SHMM
H (∂ttEHMM

H (t),vH)+BHMM
H (EHMM

H (t),vH) = (f(t),vH),

EHMM
H (0) = ΠHE0, and ∂tEHMM

H (0) = ΠHE′0.

(8)
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Note that this FE-HMM scheme leads to a system of second-order ordinary differen-
tial equations and can be solved numerically with a standard time-stepping scheme,
e.g. the leap-frog scheme. The analysis of fully discrete FE-HMM schemes will be
considered in a subsequent paper.

4 Error analysis

FE-HMM schemes can be seen as non-conforming FE methods, since the true ef-
fective and the HMM bilinear form differ from each other. In [6] the FE-HMM for
time harmonic Maxwell’s equation was analyzed using the notion of T -coercivity.
Since we now consider a hyperbolic time-dependent PDE we can no longer use this
theory. However, the present situation is closely related to the one in [3], where
a FE-HMM scheme for the scalar valued acoustic wave equation was introduced.
There, a Strang-type lemma for wave equations was proven, where only the bilinear
forms, but not the involved scalar products may differ from each other. Here we
generalize it, such that it is applicable to our FE-HMM scheme.

Let V ⊂H ∼H ′ ⊂V ′ be a Gelfand triple of Hilbert spaces and W ⊂V be a closed
subset. We consider the following problem.

Find u : (0,T )→W, such that for all w ∈W

S
(
∂ttu(t),w

)
+B
(
u(t),w

)
=
〈

f (t),w
〉
,

u(0) = u0, and ∂tu(0) = u′0,

(9)

where S,B : W ×W → R are symmetric bilinear forms. S and B are assumed to be
H-coercive and V -coercive, respectively, i.e., there exist constants 0 < λ ≤ Λ such
that

S(v,v)≥ λ‖v‖2
H , S(v,w)≤Λ‖v‖H‖w‖H , (10a)

B(v,v)≥ λ‖v‖2
V , B(v,w)≤Λ‖v‖V‖w‖V , (10b)

for all v,w ∈W . We denote the norms of bilinear forms by

‖B‖V := sup
v,w∈W\{0}

|B(v,w)|
‖v‖V‖w‖V

, ‖S‖H := sup
v,w∈W\{0}

|S(v,w)|
‖v‖H‖w‖H

.

In the following, we will drop the explicit indication of the time dependence
whenever possible, for better readability.

Theorem 2 (Strang-type lemma for second-order hyperbolic equations). Let
S, S̃,B, B̃ : W ×W → R be symmetric bilinear forms satisfying (10a) and (10b), re-
spectively. For given f : [0,T ]→ V ′ and u0,u′0 ∈W, let u be the solution of (9).
Furthermore, let ũ be the solution of (9) with S and B being replaced by S̃ and B̃,
respectively. If ∂ r

t u,∂ r
t ũ ∈ C(0,T ;V ) for r ∈ {0,1,2}, then there is a constant C

(depending on T and ∂ r
t u for r ∈ {0,1,2}) such that
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‖∂t(u− ũ)‖L∞(0,T ;H)+‖u− ũ‖L∞(0,T ;V ) ≤C
(
‖S− S̃‖H +‖B− B̃‖V

)
.

Proof. The proof consists of three steps. The key idea is to consider the projection
û(t) ∈W of u(t) given by

B̃
(
û(t),w

)
= B

(
u(t),w

)
for all w ∈W (11)

and splitting the error into

e := u− ũ = ê+ ẽ, where ê := u− û and ẽ := û− ũ. (12)

(a) By the continuous embedding of H1(0,T ;V ) in the Bochner space C([0,T ];V ),
see e.g. [8, Sec. 5.9.2], we have for v ∈ H1(0,T ;V )

‖v‖L∞(0,T ;V ) ≤C
(
‖v‖L2(0,T ;V )+‖∂tv‖L2(0,T ;V )

)
, . (13)

Using (13) for v = ê and v = ∂t ê, respectively, we obtain

‖e‖L∞(0,T ;V )+‖∂te‖L∞(0,T ;H) ≤C
(
‖ê‖L2(0,T ;V )+‖∂t ê‖L2(0,T ;V )+‖∂

2
t ê‖L2(0,T ;V )

)
+‖ẽ‖L∞(0,T ;V )+‖∂t ẽ‖L∞(0,T ;H).

It remains to bound ê and ẽ defined in (12).
(b) To bound ê one can follow the lines of the first paragraph of the proof of [3,

Lemma 4.4]

‖∂ r
t ê‖L2(0,T ;V ) ≤C‖B− B̃‖V‖∂

r
t u‖L2(0,T ;V ), r = 0,1,2.

(c) Bounding ẽ is motivated by the second part of the proof of [3, Lemma 4.4].
However, here we have to deal with the different scalar products S and S̃. From the
definitions of the projection û in (11) and ẽ in (12) we obtain

S̃(∂ 2
t ẽ,w)+ B̃(ẽ,w) = S̃(∂ 2

t û,w)−S(∂ 2
t u,w) for all w ∈W.

Setting w = ∂t ẽ yields

1
2

d
dt

(
S̃(∂t ẽ,∂t ẽ)+ B̃(ẽ, ẽ)

)
= (S̃−S)(∂ 2

t u,∂t ẽ)− S̃(∂ 2
t ê,∂t ẽ).

By (10), we conclude

λ

2
d
dt

(
‖∂t ẽ‖2

H +‖ẽ‖2
V
)
≤
(
‖S− S̃‖H‖∂

2
t u‖H +Λ‖∂ 2

t ê‖H
)
‖∂t ẽ‖H .

Using the abbreviations

ρ = ‖∂t ẽ‖2
H +‖ẽ‖2

V and σ = ‖S− S̃‖H‖∂
2
t u‖H +Λ‖∂ 2

t ê‖H ,

we find by applying Young’s inequality
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λ

2
d
dt

ρ(t)≤ σ(t)‖∂t ẽ‖H ≤
1
2
(
σ

2(t)+ρ(t)
)
.

Gronwall’s lemma yields for 0≤ t ≤ T

ρ(t)≤ eT/λ

(
ρ(0)+

∫ t

0
σ

2(s)ds
)
. (14)

The initial condition of (9) imply ẽ(0) =−ê(0) and ∂t ẽ(0) =−∂t ê(0). Using again
that H1(0,T ;V ) is continuously embedded in C([0,T ];V ) we have

ρ(0)≤C‖∂t ê‖2
L∞(0,T ;V )+‖ê‖

2
L∞(0,T ;V ).

Inserting the definition of ρ , taking square roots of the inequality (14), considering
the supremum over t ∈ [0,T ], and using the bound (13) for v = ê and v = ∂t ê, proves
the desired bound. ut

Corollary 1. As above, let Eeff
H and EHMM

H be the solution of (7) and (8), respec-
tively. If ∂ r

t Eeff
H ,∂ r

t EHMM
H ∈C(0,T ;HHH0(curl;Ω)) for r ∈ {0,1,2}. If εη , νη are suf-

ficiently smooth and if the quadrature formulas are accurate enough, then∥∥∂t(Eeff
H −EHMM

H )
∥∥

L∞(0,T ;LLL2(Ω))
+
∥∥Eeff

H −EHMM
H

∥∥
L∞(0,T ;HHH0(curl;Ω))

≤C
(
‖Seff−SHMM

H ‖LLL2(Ω)+‖B
eff−BHMM

H ‖HHH(curl;Ω)

)
.

(15)

Proof. The assertion follows directly from Theorem 2 by setting H = LLL2(Ω), V =
HHH0(curl;Ω), W = VVV H , S = Seff, B = Beff, S̃ = SHMM

H , and B̃ = BHMM
H . As already

mentioned, the additional assumptions ensure that the involved bilinear forms fulfill
(10). ut

To get more insight of the a-priori error bound (15) we split the overall error into
macro and HMM error. Approximating the effective scalar product and the effective
bilinear form with numerical integration, c.f. (6). We set for vH ,wH ∈VVV H

Seff
H (vH ,wH) = ∑

K, j
ωK, jε

eff(xK, j)vH(xK, j) ·wH(xK, j),

Beff
H (vH ,wH) = ∑

K, j
ωK, jν

eff(xK, j)curlvH(xK, j) · curlwH(xK, j),

and define

∆Smac = ‖Seff−Seff
H ‖LLL2(Ω), ∆Bmac = ‖Beff−Beff

H ‖HHH(curl;Ω),

∆SHMM = ‖Seff
H −SHMM

H ‖LLL2(Ω), ∆BHMM = ‖Beff
H −BHMM

H ‖HHH(curl;Ω).

Due to Corollary 1 and the triangular inequality we have the following result.

Corollary 2. Under the assumption of Corollary 1 we have
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H )

∥∥
L∞(0,T ;L2(Ω))

+
∥∥Eeff−EHMM

H
∥∥

L∞(0,T ;HHH0(curl;Ω))

≤
∥∥∂t(Eeff−Eeff

H )
∥∥

L∞(0,T ;L2(Ω))
+
∥∥Eeff−Eeff

H
∥∥

L∞(0,T ;HHH0(curl;Ω))

+C
(
∆Smac +∆Bmac +∆SHMM +∆BHMM

)
.

Convergence rates in terms of H and h can be found in [6].

5 Numerical example

Let the computational domain Ω = [0,1]2 be triangulated into uniform meshes TH
of different mesh sizes H. Furthermore, define the function gη by

gη(x) =
√

2+ sin
(

2π
x
η

)
and let the electric permittivity and the inverse magnetic permeability be given by

ε
η(x1,x2) =

gη(x1)gη(x2)√
2

, ν
η(x1,x2) =

2
gη(x1)gη(x2)

,

with η = 2−8 ≈ 0.004. For this particular case the effective parameters can be com-
puted analytically and one finds εeff = νeff = 1. We choose the source term

fff (t;x1,x2) =

(
−π2 sin(−πt)cos(πx1)sin(πx2)

π2 sin(πt)sin(πx1)cos(πx2)

)
,

such that the solution of the effective Maxwell’s equation (5) is given by

Eeff(t;x1,x2) =

(
−sin(πt)cos(πx1)sin(πx2)
sin(−πt)sin(πx1)cos(πx2)

)
.

We discretize using lowest order HHH(curl;Ω)-conforming edge element from
Nédélecs first family for the macro solver, i.e.

VVV H =

{
vH ∈ HHH0(curl;Ω)

∣∣∣∣∀K ∈TH ∃aK ,bK ∈ R2 :
vH(x) = aK +bK× x for x ∈ K

}
.

Is it well known that in this case
∥∥Eeff−Eeff

H

∥∥
L∞(0,T ;HHH0(curl;Ω))

is of order H, where

Eeff
H is the solution of the discretized effective Maxwell’s equation (7).

For the micro solver we use Lagrange and edge elements of order one. For this
particular choice it is shown in [6, Section 5] that we have

∆Smac = ∆Bmac = 0 and ∆SHMM, ∆BHMM ≤C
( h

η

)2
,
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where C is independent of h and η .
In Figure 1 we show the maximal HHH(curl;Ω)-error between Eeff and EHMM

H for
various values of H. If r = H1/H2 denotes the refinement factor between two macro
meshes TH1 and TH2 , then we use

√
r as the refinement factor between the cor-

responding micro meshes. This simultaneous refinement strategy accounts for the
different convergence orders (1 for the macro and 2 for the micro solver). As ex-
pected from the theoretical consideration above, we see that the proposed FE-HMM
scheme (8) converges linearly for the above choices of the finite element spaces.

0.0631 0.1 0.158 0.251 0.398

0.0631

0.1

0.158

0.251

H

∥ ∥ Eef
f −

E
H

M
M

H

∥ ∥ L∞
(0
,T

;HH H
0(

cu
rl

;Ω
))

‖Eeff−EHMM
H ‖

O(H)

Fig. 1 Maximal difference between the effective and the FE-HMM solution, computed with first
order elements. As expected we retrieve first order convergence. The experiment was conducted
with FreeFem++ [9].
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