



### KIT activities for Verification & Validation of Liquid Metals Thermal Hydraulics

- CFX + variable turbulent Pr number
- TRACE + empirical models

Institute for Neutron Physics and Reactor Technology

#### Michael Boettcher, Wadim Jaeger, Robert Stieglitz

Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology



www.kit.edu

### **Motivation**



At the INR a large sodium loop (7 m<sup>3</sup>; 37 m total length, up to 150 m<sup>3</sup>/h) is under construction along with smaller liquid metal cooled loops.

Furthermore, other liquid metal cooled facilities exist at the KIT (e.g. KALLA).

In addition, the INR is involved in several European projects for liquid metal cooled facilities/reactors (e.g. MYRRHA).

Therefore, validated tools are needed for the design, operation and demonstration of safety of these loops/plants.



KArlsruhe SOdium LAboratory - KASOLA





$$Pr_{turb} = \frac{v_{turb}}{\lambda_{turb}} \rho cp = f(y+, Re, Pr,...)$$
(1)

Very difficult to obtain from measurements especially for liquid metal flows !



Idea:

Pr<sub>t</sub> from DNS/LES data as 3D look-up tables by Tri-linear Interpolation and use them for similar flow types !

 $^{\upsilon}_{turb}$  by RANS turbulence models  $\lambda_{turb}$  by (1) and look-up tables

## Validation Cases



| 2D channel flow                 | • <u>y</u> <u>x</u>                                                                    | Re = 5600, 22000<br>Pr = 0.01, 0.1, 1<br>DNS/LES data<br>No buoyancy               |            |
|---------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------|
| Pipe flow                       |                                                                                        | Re = 5700 111000<br>Pr = 0.0160.0046<br>Standard correlations<br>Buoyancy included | complexity |
| Gap flow<br>single pin          | 5<br>960<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | Re = 33000 400000<br>Pr ~ 0.016 (LBE flow)<br>Detailed measurements                | Increasing |
| Rod bundle flow<br>Pin assembly |                                                                                        | Re = 7800 78000<br>Pr ~ 0.016 (LBE flow)<br>OECD correlation and<br>measurements   |            |

## Validation Cases: Pipe Flow







### Validation case: Pipeflow with constant heat flux







## Validation Cases: Single Pin





#### **Model informations:**

569 000 elements (16 cells in circumferential direction), structured SST turbulence model Buoyancy model with production and dissipation of turbulence Conjugate heat transfer (pin)

### Boundary conditions:

### Inlet

Velocity profile (equilibrium) Constant inlet temperature T<sub>0</sub> Constant turbulence quantities (1%) **Outlet** 

 $\Delta p=0$  [Pa] at the outlet

### Pin surface

Heat flux; pin head: heat flux derived

from measurements

#### **Other surfaces**

adiabatic



V&V Workshop, July 5-6, KTH Stockholm 21.06.2016

**KALLA** – **Ka**rlsruher **l**iquid metal **la**boratory THEADES - Thermalhydraulics and ADS Design outlet 3 Spacer ø 8.2mm 19 pins Temperature 190°C-450°C 11.48 mm pitch Flow rate 47 m<sup>3</sup>/h inle Length ~1.3 m 5.9 bar Pressure 3 Spacers Heating 0.43 MW Source: T.Wetzel et. al, IKET



## Validation Cases: Rod Bundle





### Validation Cases: Rod Bundle





Lower Re: Significantly thicker thermal layers Pr<sub>t</sub>>1 for most central subchannel regions

Higher Re: Thinner thermal layers Higher y<sup>+</sup> Pr<sub>t</sub> <1 at central subchannels

## Validation Cases: Rod Bundle





## **TRACE Closure Models**



The standard TRACE code (water with liquid and vapor phase) requires 10 parameters in order to close the field equations.

For single phase liquid metal flow only two parameters are needed.

| Parameter                       | Mass                                          |           | Field equations<br>Energy |           | s<br>Momentum |            |
|---------------------------------|-----------------------------------------------|-----------|---------------------------|-----------|---------------|------------|
|                                 | Liquid                                        | Gas       | Liquid                    | Gas       | Liquid        | Gas        |
| $\frac{A}{A_i}$                 | Х                                             | Х         |                           | X         | X             | Х          |
| <u> </u>                        | Y                                             | Y         |                           | <b>X</b>  | v             | y          |
| 1<br>0.                         | <u>, , , , , , , , , , , , , , , , , , , </u> | 21        |                           | 21        | V             | v          |
| $c_{i}$                         |                                               |           |                           |           | X             | <b>7 T</b> |
| $c_{wg}$                        | V                                             | V         |                           | v         | V             | X<br>v     |
|                                 | $\Lambda$                                     | $\Lambda$ |                           | $\Lambda$ | $\Lambda$     |            |
| $h_{ig}$                        | X                                             | Х         |                           | X<br>V    | X             | Х          |
| $h_{gl}$                        | Х                                             | Х         | Х                         | X         | Х             | Х          |
| $h_{wg}$                        |                                               |           | X                         | X         |               |            |
|                                 |                                               |           |                           |           |               |            |
| Wall-to-liquid drag coefficient |                                               |           |                           |           |               |            |
|                                 |                                               |           |                           |           |               |            |



## **Liquid Metals**



Original Version

- Sodium (Na)
- Lead-Bismuth-Eutectics (PbBi)
- 1<sup>st</sup> Modification
  - Lead (Pb)
  - Lead-Bismuth-Eutectics (**PbBi**)
- 2<sup>nd</sup> Modification
  - Potassium (K)
  - Sodium-Potassium Alloy (NaK)
  - Mercury (**Hg**)
- 3<sup>rd</sup> Modification
  - Lithium (Li)
  - Lithium-Lead Alloy (LiPb)
  - Indium-Gallium-Tin Alloy (InGaSn)

Jaeger, W. & Sánchez Espinoza, V.H., "Improvements and Validation of the System Code TRACE for Lead and Lead-Alloy Cooled Fast Reactors Safety-Related Investigations.", *NUREG/IA-0421*. Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, DC, 2013.

Jaeger, W., Hering, W., Diez de los Rios, N. & Gonzalez, A., "Validation of TRACE in the field of liquid metal heat transfer.", Proceedings of: *ASME 2014 International Mechanical Engineering Congress and Exposition (IMECE2014)*. Montreal, Canada, 2014.

## **Liquid Metals**





15 21.06.2016 V&V Workshop, July 5-6, KTH Stockholm

## Wall Drag: LACANES Benchmark 1/2





Jaeger, W. & Sánchez Espinoza, V.H., "Improvements and Validation of the System Code TRACE for Lead and Lead-Alloy Cooled Fast Reactors Safety-Related Investigations.", *NUREG/IA-0421*. Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, DC.

## Wall Drag: LACANES Benchmark 2/2





Jaeger, W. & Sánchez Espinoza, V.H., "Improvements and Validation of the System Code TRACE for Lead and Lead-Alloy Cooled Fast Reactors Safety-Related Investigations.", *NUREG/IA-0421*. Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, DC.



## Wall Drag: KASOLA 2/2







Jaeger, W., Boettcher, M. & Sánchez Espinoza, V.H., "Thermal-Hydraulic Evaluation of an LBE Cooled 19 Pin Bundle in the Frame of TRACE Validation.", *International Conference on Nuclear Engineering (ICONE21)*. Chengdu, China, 2013.

# Wall Drag: KALLA Rod Bundle – Spacers



Jaeger, W., Boettcher, M. & Sánchez Espinoza, V.H., "Thermal-Hydraulic Evaluation of an LBE Cooled 19 Pin Bundle in the Frame of TRACE Validation.", *International Conference on Nuclear Engineering (ICONE21)*. Chengdu, China, 2013.

## Wall Drag: KALLA Rod Bundle – Spacers



Jaeger, W., Boettcher, M. & Sánchez Espinoza, V.H., "Thermal-Hydraulic Evaluation of an LBE Cooled 19 Pin Bundle in the Frame of TRACE Validation.", *International Conference on Nuclear Engineering (ICONE21)*. Chengdu, China, 2013.

## Wall Drag: Rectangular Channels





## Liquid Metal Heat Transfer



- Heat transfer to liquid metal  $\neq$  Heat transfer to water.
- Characterization of heat transfer → Prandtl number.
- Prandtl number = Ratio of the momentum and thermal diffusivity.
- Pr  $\approx 1 \rightarrow$  Thermal boundary layer  $\approx$  Velocity boundary layer.
- Liquid metals  $\rightarrow$  Pr << 1
  - Thermal boundary layer >> Velocity boundary layer
  - Heat diffusion >> Momentum diffusion.
  - Heat conduction >> Heat convection.



## Liquid Metal Heat Transfer – Regimes



| Flow<br>Regime/Phenomena |            | Duct Flow  |  |            | Bundle Flow |  |
|--------------------------|------------|------------|--|------------|-------------|--|
|                          |            | $\bigcirc$ |  | $\bigcirc$ | $\Delta$    |  |
| Forced convection        | Laminar    | Х          |  |            |             |  |
|                          | Turbulent  | Х          |  |            |             |  |
|                          | Transition | Х          |  |            |             |  |
| Mixed convection         | Laminar    |            |  |            |             |  |
|                          | Turbulent  |            |  |            |             |  |
|                          | Transition |            |  |            |             |  |
| Free<br>convection       | Laminar    |            |  |            |             |  |
|                          | Turbulent  |            |  |            |             |  |
|                          | Transition |            |  |            |             |  |
| Entrance Length Effect   |            |            |  |            |             |  |
| Variable Property Effect |            |            |  |            |             |  |

### **Original version**

**25** 21.06.2016 V&V Workshop, July 5-6, KTH Stockholm

## Liquid Metal Heat Transfer – Regimes



| Flow<br>Regime/Phenomena |            | Duct Flow |   |   | Bundle Flow |  |
|--------------------------|------------|-----------|---|---|-------------|--|
|                          |            | 0         |   | 0 | $\triangle$ |  |
| Forced convection        | Laminar    | Х         | Х | Х | Х           |  |
|                          | Turbulent  | Х         | Х | Х | Х           |  |
|                          | Transition | Х         |   |   |             |  |
| Mixed convection         | Laminar    | Х         |   |   |             |  |
|                          | Turbulent  | Х         |   |   |             |  |
|                          | Transition | Х         |   |   |             |  |
| Free<br>convection       | Laminar    | -         |   |   |             |  |
|                          | Turbulent  | Х         |   |   |             |  |
|                          | Transition | -         |   |   |             |  |
| Entrance Length Effect   |            | Х         |   |   | Х           |  |
| Variable Property Effect |            |           |   |   |             |  |

### **Modified version**

**26** 21.06.2016 V&V Workshop, July 5-6, KTH Stockholm

## Liquid Metal Heat Transfer – Models



| Flow<br>Regime/Phenomena |            | Duct Flow  |        |        | Bundle Flow        |  |
|--------------------------|------------|------------|--------|--------|--------------------|--|
|                          |            | $\bigcirc$ |        | 0      | $\triangle$ $\Box$ |  |
| Forced convection        | Laminar    | Const.     | Jaeger | Jaeger | Const.             |  |
|                          | Turbulent  | Stupinski  | Jaeger | Jaeger | Ushakov            |  |
|                          | Transition | Stupinski  |        |        | Ushakov            |  |
| Mixed convection         | Laminar    | Cubic      |        |        |                    |  |
|                          | Turbulent  | Cubic      |        |        |                    |  |
|                          | Transition | Cubic      |        |        |                    |  |
| Free<br>convection       | Laminar    |            |        |        |                    |  |
|                          | Turbulent  | Hyman      |        |        |                    |  |
|                          | Transition |            |        |        |                    |  |
| Entrance Length Effect   |            | Das        |        |        | Jaeger             |  |
| Variable Property Effect |            |            |        |        |                    |  |

### **Modified version**

**27** 21.06.2016 V&V Workshop, July 5-6, KTH Stockholm

## Liquid Metal Heat Transfer – Pipe





28 21.06.2016 V&V Workshop, July 5-6, KTH Stockholm



#### Liquid Metal Heat Transfer – Rectangular IT



# Liquid Metal Heat Transfer – Rectangular



21.06.2016 V&V Workshop, July 5-6, KTH Stockholm

31

# Liquid Metal Heat Transfer – Parallel Plat



21.06.2016 V&V Workshop, July 5-6, KTH Stockholm

32

# Liquid Metal Heat Transfer – Parallel Plat





V&V Workshop, July 5-6, KTH Stockholm 21.06.2016

### Liquid Metal Heat Transfer – Annular





**35** 21.06.2016 V&V Workshop, July 5-6, KTH Stockholm



Péclet number [-]

#### 21.06.2016 V&V Workshop, July 5-6, KTH Stockholm

100

0

36

10

Institute for Neutron Physics and Reactor Technology

10,000

1,000

# Liquid Metal Heat Transfer – Rod Bundle



## Liquid Metal Heat Transfer – Application





