ATEFA facility for performance evaluation of an Alkali Metal Thermo-Electric Converter (AMTEC)

N. Diez de los Rios Ramos¹, A. Onea¹, W. Hering¹, A. Weisenburger², M. Stüber³, S. Ulrich³, R. Stieglitz¹

¹Institute for Neutron Physics and Reactor Technology, ²Institute for Pulsed Power and Microwave Technology, ³Institute for Applied Materials - Applied Materials Physics

Motivation AMTEC in Space
- Flexible heat source
- Direct conversion of heat to electricity
- AMTEC net fuel consumption = 0
- High expected AMTEC efficiency (~ 40 %)
- Static system
- Modular connection

AMTEC technology
- Key process: Na-ionization (Δp across BASE)
- Issues:
 - Ceramic-metal joint
 - Electrode sputtering
 - Overvoltage losses
 - Power degradation (BASE, electrode)

AMTEC Test Facility (ATEFA)
- Facility for efficiency and performance evaluation of AMTEC
- Sodium system (800 °C, 1.5 bar)
- Argon system controls: \(p_{\text{Na}}, i_{\text{Na}} \)
- Safe design (handling of Na)
- Ceramic-metal joint developed for 800°C
- Electrode-sputtering achieved (TiC, TiN, Mo)
- Data acquisition and control system finished
- Automatic operation during steady state

Overvoltage losses in AMTEC
The overvoltage losses can be separated into ohmic losses \(\xi_r \) (20%) and polarization losses in the cathode \(\xi_c \) (80%).

Characteristics curve of AMTEC

<table>
<thead>
<tr>
<th>Variable</th>
<th>AMTEC @ INR 1993</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V)</td>
<td>0.4 – 1.2 V</td>
</tr>
<tr>
<td>(I)</td>
<td>0.5 – 1.5 A/cm²</td>
</tr>
<tr>
<td>(P)</td>
<td>0.5 – 1.5 W/cm²</td>
</tr>
<tr>
<td>(\eta_{\text{AMTEC}})</td>
<td>~ 20 %</td>
</tr>
<tr>
<td>(T_{\text{Na}})</td>
<td>600 – 1000 °C</td>
</tr>
<tr>
<td>(p_{\text{Na}})</td>
<td>1 Pa – 0.1 MPa</td>
</tr>
</tbody>
</table>

Operation principle of AMTEC

Transport process in the cathode

And depend mainly on the morphology:
- Internal resistance of the cell
- Cathode:
 - Grain size
 - Porosity
 - Thickness
- Current collector structure

ATEFA facility

AMTEC test cell