

ATEFA facility for performance evaluation of an Alkali Metal Thermo-Electric Converter (AMTEC)

N. Diez de los Rios Ramos¹, A. Onea¹, W. Hering¹, A. Weisenburger², M. Stüber³, S. Ulrich³, R. Stieglitz¹ ¹Institute for Neutron Physics and Reactor Technology, ²Institute for Pulsed Power and Microwave Technology, ³Institute for Applied Materials - Applied Materials Physics

Motivation AMTEC in Space

- Flexible heat source
- Direct conversion of heat to electricity
- AMTEC net fuel consumption = 0
- High expected AMTEC efficiency (~ 40 %)
- Static system
- Modular connection

AMTEC Test Facility (ATEFA)

- Facility for efficiency and performance evaluation of AMTEC
- Sodium system (800 °C, 1.5 bar)
- Argon system controls: p_{Na} , \dot{m}_{Na}
- Safe design (handling of Na)
- Ceramic-metal joint developed for 800°C
- Electrode-sputtering achieved (TiC, TiN, Mo)
- Data acquisition and control system finished
- Automatic operation during steady state

- Key process: Na-ionization (Δp across BASE)
- Na → Na⁺ + e⁻ Na(0) sod Issues: Na(+) sodium ions AMAN Ceramic-metal joint . Electrons(-) Electrode sputtering BASE Overvoltage losses Power degradation (BASE, electrode) Operation principle of AMTEC

Overvoltage losses in AMTEC

The overvoltage losses can be separated into ohmic losses ξ_r (20%) and polarization losses in the cathode ξ_c (80%).

U at open circuit

KIT - The Research University in the Helmholtz Association

Na - Tanks