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Abstract 

Build-to-order series production is gaining increasing importance as markets demand customer-specific product variants. Orders 
have to be assigned to plants and periods in global production networks and then to lines and cycles. Consequently, respective 
workloads as well as supplied materials have to be balanced due to limitations in resource capacities. 
As first step planning defines the solution space for second step planning, this paper introduces a mathematical model for order
assignments to plants and periods anticipating assignments to lines and cycles. Given that orders are not fully specified for first 
step planning, the approach includes provisions for dealing with uncertainty. 
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1. Introduction 

The importance of customizing products to satisfy 
individual customers’ demands has been increasing 
significantly throughout the last decades. [1] Kotler argues that 
mass markets no longer exist and that even segmented markets 
are too broad, making it necessary to consider the demands of 
individuals. [2] This development can be noted specifically 
when regarding the idea of mass customization, which emerged 
during the late 1980s. Mass customization, which can be 
defined as a system for the production of output that meets 
individual customer needs at a cost close to what is achievable 
in mass production, has gained increasing importance. [3] 

There are a number of levels at which customization can 
take place. In many important cases, e.g., the production of 
automobiles, standardized modules are assembled to achieve 
customized products. In this case, often termed build-to-order 
(BTO), development and production of components is based on 
demand forecasts, while final assembly is based on customer 
orders. [4] To be able to achieve high volumes of output at 
competitive prices, while at the same time remaining able to 
fulfill specific customer demands through the individual 
assembly of components to products according to customers’ 

specifications, mixed-model assembly lines (MMAL) are used. 
[5] These are assembly lines in which flexible resources are 
utilized in order to reduce set up effort and achieve sequences 
of products with lot sizes of one. [6] MMALs can be found in 
a wide range of industries, from consumer electronics to 
aircraft manufacturing. [6, 7] 

While the importance as well as the capability to produce 
customized products has increased, so has the prevalence of 
global production networks, in which business activities are 
distributed throughout multiple countries. [8] Of great 
importance in such networks are final assembly activities; 
locating these within the markets which they serve can improve 
delivery lead times and lead to considerable savings in 
transportation costs and tariffs. [9] Consequently, and due to 
the necessity of employing sufficient capacity, globally 
operating companies are likely to devote a range of plants to 
final assembly activities. 

Assuming a global production network in which the final 
assembly of mass-customized products is managed by MMALs 
in a range of plants, different planning tasks need to be 
considered. Firstly, specific orders traceable to customers have 
to be assigned to plants as well as to periods for final assembly 
in one planning step, as both assignments are necessary for 
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material requirements planning. Within the plants and periods, 
each order needs to be assigned to one of a range of assembly 
lines as well as to a cycle within that line, i.e. the orders need 
to be sequenced. These two assignments may also be conducted 
in a single step, as the assignment to cycles requires the 
assignment to lines and an assignment to lines prior to the 
assignment to cycles is unlikely to be necessary. 

However, the latest possible time for planning both steps, 
covering spatial and temporal assignments each, differ. The 
first planning step may be described as tactical or mid-term, 
while the second planning step may be described as operational 
or short-term. It should be noted, however, that it is difficult to 
establish any clear definition of the terms independently from 
specific industries and sometimes even from specific planning 
objects [5, 9]. 

Due to the differences in planning lead times, the two 
planning steps should be considered sequentially in a 
hierarchical approach. This allows for reduction in complexity 
of planning. Furthermore, it is likely that different 
organizational levels are responsible for carrying out mid-term 
decisions concerning all plants than the ones that are 
responsible for carrying out short-term decisions concerning 
individual plants. Planning is probably more effective if 
decision-making is allocated to the appropriate level. [10] To 
reflect this, the term global order assignment is used for the first 
planning step and the term local order assignment is used for 
the second planning step. 

Global order assignment defines the solution space for local 
order assignment, with lines being a subset of the plants and 
cycles being a subset of the periods that orders can be assigned 
to in global order assignment. 

A distributed order freeze is assumed, where each option of 
an order is specified at the latest possible point in time 
considering replenishment lead times of individual parts. [11] 
Global order assignment needs to be conducted under 
uncertainty if there are unspecified options at the time of 
execution. Furthermore, global order assignment has to 
anticipate local order assignment in order to make plans robust. 

Within the context of this work, literature on the assignment 
of orders in such a set-up is first reviewed. Following this, an 
approach to model global order assignment with anticipation of 
local order assignment, as well as the model application, are 
introduced. The paper is concluded with a summary and an 
outlook on further research. 

2. Literature review 

2.1. Order assignment to cycles in MMALs 

In the context of MMALs, mostly two planning problems 
are considered. Firstly, the resources necessary at such an 
assembly line need to be grouped and assigned to stations. This 
is called line balancing. Secondly, orders need to be assigned 
to production cycles, which is called sequencing. [5] The 
sequencing of MMALs will be anticipated in the global order 
assignment, as described further below. Two basic objectives 
for the sequencing of a MMAL can be identified in literature: 
minimization of work overload and balancing of material 
requirements. [6, 12] 

Options are often used to define a product in a way so that it 
meets the specific needs of a customer. [3] The options chosen 
for one order through configuration lead to processing times 
specific to the order. If several time-intensive orders are built 
consecutively on a MMAL, stations may become overloaded 
which then needs to be dealt with, e.g., through compensation 
or line stoppage [5]. The mixed-model sequencing (MMS) 
approach takes into explicit consideration processing times, 
worker movements and other characteristics of the MMAL. 
Based on this, work overloads caused by the choice of a 
sequence are minimized. [6] With the car sequencing (CS) 
approach, less information and simpler computation is 
required. Instead of explicitly considering processing times, 
certain spacing constraints are prescribed, i.e. at most H out of
N orders that can be processed consecutively on a MMAL can 
be fitted with a certain option. As can be derived from its name, 
CS is predominant in the automotive industry. [12] 

The options chosen within one order also imply certain 
material requirements. The second objective leads to a focus on 
balancing the requirements of materials in assembly throughout 
the planning horizon. Steady demand is one of the prerequisites 
to profit from a JIT supply system. Level scheduling (LS) 
forms the only corresponding approach. Here, sequences for 
MMALs are built by minimizing the deviation from an ideal 
material requirement rate. Other approaches to LS also exist, 
that consider throughput or output instead of input. However, 
these are not addressed in this paper. [6, 13] 

In some instances, the approaches are combined to achieve 
improved sequencing results. The way in which combination 
takes place depends on model specifications. [14, 15] 

2.2. Order assignment to plants or periods 

Bruns and Sauer develop an approach for scheduling orders 
for a number of plants. Each order, in this case, is processed at 
multiple plants. To coordinate global and local planning levels, 
predictive and reactive scheduling is applied and combined. 
The actual approach for solving the scheduling problems on 
both levels is not focused here, however. [16] Chen and Hung 
formulate a model and an algorithm to allocate orders to 
multiple plants. [17] Similarly, Chan et al. focus on the 
allocation of orders to factories and the computation of 
schedules at each factory, which, individually, represent job 
shops. Orders are not reallocated between factories, which is 
explained by economic reasons and a lack of capability. The 
allocation and scheduling problems are solved simultaneously, 
which implies that all characteristics of orders are known at the 
time that they are allocated to plants. [18] The above authors, 
however, neither specifically consider plants with MMALs as 
the destination for assignment, nor the variety in demand that 
is associated with mass customization. 

The level of information is likely to increase over time, 
implying that more information is available for the second 
planning step than for the first. This makes it necessary for 
global order assignment to anticipate specifications of orders 
as well as local order assignment in order to avoid myopic 
decision-making. [4] In a hierarchical planning system, 
Schneeweiss differentiates between four types of anticipation. 
Firstly, perfect anticipation implies that the actual behavior of 



332   Jens Buergin et al.  /  Procedia CIRP   50  ( 2016 )  330 – 335 

the lower planning level is fully known and considered. 
Secondly, approximate anticipation also considers the behavior 
of the lower planning level, although only in an approximate 
way. Thirdly, implicit anticipation only considers part of the 
lower planning level’s behavior. These three types of 
anticipation are called reactive. In contrast, with non-reactive 
anticipation, only basic characteristics of the lower planning 
level are considered, which do not react to the upper planning 
level results. [19] 

Dörmer et al. consider the problem of assigning orders to 
planning periods during which those orders are then sequenced 
to cycles of an MMAL. They develop a number of solution 
approaches that anticipate the performance of sequencing with 
the orders given. Furthermore, they propose an integrated 
approach that directly sequences all orders when allocating 
them to periods in a MMS approach. They find this integrated 
approach with perfect anticipation to provide superior 
performance. [12] This implies, however, that orders are fully 
specified by the time that planning takes place. 

In contrast to Dörmer et al. [12], Wittek, who develops a 
model to assign production volumes to plants in the automotive 
industry, assumes demand to be completely unspecified at the 
time of planning. Instead of specified orders, only basic product 
models are assigned, for which demand is known sufficiently 
in advance. Even though MMALs are used for final assembly, 
it is assumed that capacity utilization of any model is equal. [9] 
This makes consideration of the impact of the later chosen 
sequence on work overload superfluous. Furthermore, material 
balancing is not considered, only aggregated capacity 
constraints for materials are taken into account. Clearly, this 
shows a case of non-reactive anticipation, where only basic 
structural information of the lower planning level, e.g., about 
capacities, is considered in the upper planning level. 

Similar to Dörmer et al. [12], Boysen et al. suggest an 
approach to assign orders to periods in an MMAL environment, 
which they call master scheduling. This is presented in an 
overall planning framework that starts with an initial 
configuration of the MMAL. The master schedule is then 
generated, after which the MMAL is reconfigured to 
accommodate for major adjustments in product mix or 
processing technologies. Both initial configuration and 
reconfiguration are line balancing tasks. After reconfiguration 
is completed, the orders are sequenced to the MMAL. Re-
sequencing is further considered to accommodate for 
unexpected disturbances. Due to high interdependence of the 
master scheduling and the sequencing tasks, the authors 
suggest ways in which the latter can be anticipated. Different 
constraints are proposed for the master scheduling model for 
each form of sequencing (MMS, CS and LS). [5] The 
anticipation mechanism corresponds to implicit anticipation, as 
given above. From the perspective of anticipation, the model 
can thus be seen as being in-between the models of Wittek [9] 
and Dörmer et al. [12]. Moreover, Boysen et al. claim that LS 
reduces the degrees of freedom in sequencing more than what 
is necessary. Accordingly, only few materials are actually 
delivered to a line in sequence and arrival in bulk at discrete 
points in time is more common. This makes reduction of 
inventory through leveling of material input only possible if the 
periods considered are greater than individual cycles, e.g., 

when planning at an aggregated level as in the first planning 
step. [13] 

Boysen et al. [5] and Wittek [9] consider minimization of 
costs and maximization of profit, respectively, as the objective 
for the assignment. Maximization of profits and often, 
consequently, minimization of costs is likely to be the objective 
for a majority of organizations (see, e.g., [20]), which is why 
choosing this as the goal for mid-term planning is consistent. 
Minimization of costs is rarely sensible at the lower level of 
planning, however, because it is difficult to identify the cost 
drivers and the influence of the sequence upon them at this 
detailed level [13]. Instead, as in the case of MMAL 
sequencing, surrogate objective functions are used. Due to the 
integration of sequencing within the planning model, Dörmer 
et al. consider work overload as the characteristic to be 
minimized even for mid-term planning. [12] 

2.3. Further considerations 

Often, as in the cases of Boysen et al. [5] and Dörmer et al. 
[12], data is assumed known and constant. In practice, 
however, uncertainty is common. In particular, when planning 
where and at what time to produce orders, full specification of 
those orders in advance is very unlikely. [9] To improve 
decision-making processes, this uncertainty needs to be 
considered. Generally, there are a number of ways to do so. 
Firstly, deterministic values can be replaced with expected 
values. [21] This is often used, e.g., in scheduling, where it can 
be seen as an improvement over pure deterministic approaches, 
but it often is not sufficient. Due to the possibility of two 
substantially different distributions having the same expected 
value, it is often necessary to consider the entire distribution of 
random variables, in which case stochastic optimization 
models arise. [22] These can further be differentiated between 
compensation and chance-constrained models with the former 
including the possibility of compensation in case of constraints 
being breached and the latter including a certain minimum 
probability that constraints are fulfilled. Obviously, while 
solution quality may improve, computational effort increases. 
[21] Robust optimization allows foregoing knowledge of 
probabilities, by using scenarios to describe potential 
realizations. The aim is not a probabilistic guarantee of some 
kind, but to achieve a solution close to optimality under all 
scenarios considered. [23] 

There is a significant amount of literature on the topic of 
stochastic or robust scheduling. [22, 24, 25] However, to the 
best knowledge of the authors, in the context of MMAL, 
uncertainty is only considered in balancing or combined 
balancing and sequencing tasks [26-28]. In the context of 
standalone sequencing of MMAL or in the context of 
anticipation of those sequences in global order assignment, 
uncertainty remains to be incorporated. Uncertainty, when 
considered in the contexts named above, is often constrained to 
processing times. This is only natural because of the high 
susceptibility to variance in such settings [28]. Due to 
processing times being largely dependent on the choice of 
options in an MMAL context, the uncertainty in options, if 
existent, needs to be considered foremost before the uncertainty 
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in processing times required to produce those options, 
however. 

3. Proposed approach 

Nomenclature 

i  order index 1,...,i I
l  plant location index 1,...,l L
l  customer location index 1,...,l L
t  period index 1,...,t T
o  option index 1,...,o O
r  interest rate 
 production cost for basic product model (not 

including selectable options) at plant l
 production cost for option o  at plant l ;

includes cost for workers, material, etc. 
 penalty cost per period of delay for order i
 distribution cost from plant location l  to 

customer location l
 throughput time of plant l
 distribution time from plant location l  to 

customer location l
 supply time from supplier of option o  to 

plant l
iEDT  earliest accepted delivery time for order i
iLDT  latest accepted delivery time for order i

 maximum capacity (in cycles) of plant l  per 
period 

 indication that at most H  orders in a 
sequence of N  can use option o

 control parameter for anticipation of car 
sequencing for option o

 control parameter for anticipation of level 
scheduling for option o

 resp. lto to  control parameters for enforcement of 
constraints 

 decision variable; binary assignment of 
order i  to plant l  at period t

 random variable; usage of option o  within 
order i ; probability of choice is  

In the following, an approach is presented to handle the 
problem of distributing not fully specified orders to plants and 
periods in which they can be produced on one or multiple 
MMALs (global order assignment). Similar to Boysen et al. 
[5], provisions are taken on an aggregate basis to allow for 
feasibility of generated sequences at a later assignment step 
(local order assignment). The form of anticipation is implicit, 
with specific characteristics of lines not considered. It is argued 
that due to the major influence of the uncertainty considered, 
the additional model accuracy provided by more exact forms of 
anticipation is not worth the additional computational effort. 
Consideration of the impact on local order assignment is thus 
aggregated over multiple lines and cycles. The approach used 
is also predictive without reactive components. However, in 
contrast to Boysen et al. [5], layout of lines is considered to be 
fixed, implying that line balancing is not necessary. In addition, 
specification of orders, i.e. option choices, is assumed to be 
unknown. Rather, binary option choices with known 

probabilities, depending on the customer of an order, are 
assumed. 

Due to the aggregated nature of the decision making process 
at this level, only option choices are considered that may 
critically affect production. Based on the motivation for CS 
found in literature, it is assumed that only one option of a group 
of interdependent options has such a critical impact. 
Consequently, it is presumed that options regarded here are 
independent from each other: 

~ ( ) ,io ioB Bernoulli p i o            (1) 

where all ioB  are independent and variables ioB  that are 
associated with orders from a certain customer are identically 
distributed for all orders of the customer. 

Following the reasoning given in section 2, the aim is 
minimization of costs. Revenues and, consequently, profits are 
not considered, because orders are assumed to be given and 
requiring of assignment in any case. 

Pro Dist Inv Penmin Cos Cos Cos Cost t t t            (2) 

Pro Pro ProCos Cos Cosilt io ol l
t T l L i I o O

t X B t t  (2.1) 

Dist DistCos Cos iltll
t T l L i I

t t X         (2.2) 

Inv Pro ProCos Cos Cosilt io ol l
t T l L i I o O

t X B t t r

Prmax , 0o Dist
i l ll

EDT Time Time t         (2.3) 

Pen PenCos Cosilt i

t T l L i I

t X t

Pro Distmax , 0il ll
t Time Time LDT         (2.4) 

Due to production taking place on MMALs, throughput time 
is considered constant and independent of orders. 

Basic constraints found in (3) and (4) ensure that all orders 
are assigned exactly to one plant and one period and that no 
more orders can be assigned to a plant in a period than the 
amount of production cycles within: 

1ilt

t T l L

X i         (3) 

max ,ilt l
i I

X C l t         (4) 

Without loss of generality, it is assumed that no more orders 
are considered for assignment than total cycles are available 
throughout all periods and plants. 

To anticipate the second assignment step and allow for its 
feasibility given the decisions of the first assignment step, both 
CS and LS constraints, found in (5) and (6) respectively, are 
considered on an aggregate basis as in Boysen et al. [5]. 

max , ,oCS
ilt io o l

oi I

H
X B L C l t o

N
        (5) 

iop

CS
oL

ProCos olt

DistCos llt

Dist
llTime

iltX

o

o

H

N

ProCos lt

PenCos it

Sup
olTime

max
lC

LS
oL

ioB

Pro
lTime
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Sup( )ol
ioil t Time

l L i I

X B

Sup( ' )
'

1
,

ol
ioil t Time

t t T l L i I

X B t o
K

        (6) 

where

Sup

'

Sup

min max , ' 1

min max , 1

ol
l

t T
t

LS
o ol

l

Time T t

K
L Time T t

The existence of a maximum of options corresponding to 
each CS rule multiplied by the overall capacity can be seen as 
a necessary condition for achieving a feasible sequence. To 
increase the chance of obtaining such, the factors CS

oL  can be 
adjusted in the range 0 1CS

oL . [14] 
The reasoning of Boysen et al. [13] is followed by using LS 

not as anticipation of sequencing, but for balancing material 
supply between periods. Materials are substituted by option 
choices and no differentiation between materials required for 
one option or interrelated material demands of options are 
considered. The factor LS

oL  with 1 LS
oL  further allows 

relaxation of the assumption of a uniform distribution of input 
[14]. 

Considering that final assembly on MMALs is close to the 
end of most value streams, reduction of bullwhip effects is 
more substantial if material is balanced higher upstream. 
Consequently, suppliers are focused rather than producers in 
the anticipation of material requirements and a derivate form of 
the LS-anticipation provided by Boysen et al. [5] is used. The 
parameter t  thus describes the reference period for suppliers in 
inequality (6), while in (5) it shows the reference period for the 
plants. In (6) it is assumed that balancing the total amount of 
supply for any option throughout the planning horizon is 
sufficient to balance each supplier’s workload. This is the case, 
for example, whenever option-related supplies for all plants are 
supplied by the same suppliers each. On the other extreme, 
whenever each plant uses its own suppliers, constraints can be 
considered on a per plant basis to achieve balancing of material 
supply. Furthermore, past and future orders are not considered 

' 0 'iltX t T  and an approximately uniform distribution 
of supply lead times is presumed. Consequently, e.g., in period 
1, material needs of orders are considered where the option 
supply time is at most T , while in period 3, only orders with 
supply times 3T  are regarded. The right side of the 
inequality is adjusted accordingly by the factor tK  that can 
easily be reconfigured in case other assumptions are made. 

Altogether, both objectives of sequencing are taken into 
account – while CS focuses on throughput, LS focuses on input 
and both should be considered in global order assignment to 
allow for reasonable decision-making. 

Bernoulli-distributed random variables can be found in (2), 
(5), and (6). Due to the planning horizon being medium in 
length, it seems reasonable to use the expected value ioE B
as an approximation within the objective function (3). While 
actual costs are then bound to deviate from the expected costs, 
deviations are unlikely to have much impact as long as cost 
objectives can be achieved on the long term by averaging the 
costs per period. 

Within the constraints in (5) and (6), substitution of ioB  by 
its expected value may improve solution accuracy whenever 
order assignments have to take place before specification. 
There is no guarantee, however, that feasibility can still be 
achieved. Due to the potential of prohibitively high cost of a 
global reallocation later on, e.g., because of already realized 
component ordering, infeasibilities are often unacceptable. To 
consider the potential of infeasibility, the model can be 
reformulated into a chance-constrained model: 

max , ,oCS
ilt io o ltol

oi I

H
P X B L C l t o

N
        (5.1) 

Sup( )1
ol

t ioil t Time
l L i I

P K X B

Sup( ' )
' , '

0 ,
ol

io toil t Time
t T t t l L i I

X B t o      (6.1) 

Due to (1), (5.1) is the cumulative distribution function (cdf) 
of the Poisson binomial distribution, which is explained in 
more detail, e.g., in [29]. To calculate (6.1), it is necessary to 
compute the cdf of the multiple of one Poisson binomial 
distribution minus another Poisson binomial distribution. To 
facilitate calculation, a simple but often highly effective 
approximation can be achieved with the normal distribution 
[29]. The difference of two distributions in (6.1) further 
increases the computational effort required, which can be 
avoided by approximating them. Using a normal 
approximation for each Poisson binomial distribution, one in 
(5.1) and two in (6.1), as well as subtracting the approximations 
within (6.1), leads to the following approximated constraints: 

max 0.5

, ,
(1 )

oCS
o ilt iol

o i I
lto

ilt io io

i I

H
L C X p

N
l t o

X p p
 (5.2) 

0
,to

to
to

EV
t o

Var
        (6.2) 

where Sup( )1 0.5
ol

to t ioil t Time
l L i I

EV K X p

Sup( ' )
' , '

0.5
ol

ioil t Time
t T t t l L i I

X p

and Sup
2

( )1 1
ol

to t io ioil t Time
l L i I

Var K X p p

Sup( ' )
' , '

1
ol

io ioil t Time
t T t t l L i I

X p p

4. Model application 

With standard optimization tools like IBM ILOG CPLEX, 
the model is solvable to optimality in the deterministic case. 
The use of the chance-constrained model increases complexity 
of solving, however. Thus, a scenario-based approach should 
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also be considered. This has the additional advantage that an 
assumption of independency is not required. 

The approach is currently being validated in the case of an 
aircraft manufacturer, comparing both the chance-constrained 
model and a scenario-based approach. 

A more general industrial applicability is also given for 
other companies operating global production networks with 
MMALs and planning unspecified customer orders in a mid-
term horizon. An important assumption is that customer 
choices can be anticipated based on order history, which is 
likely to be the case in other capital goods industries, too. 
Depending on the options included in the model, option choices 
may be regarded as independent as introduced here. 
Furthermore, it is assumed that LS and CS are used for 
sequencing in a later planning step, which covers a wide range 
of industrial applications. If, however, different sequencing 
techniques are used, the anticipatory constraints need to be 
adjusted.  

5. Summary and outlook 

In this paper, an approach for the assignment of orders to 
plants and periods within global production networks was 
discussed in which final assembly of orders is completed at a 
range of plants with mixed-model assembly lines. Even though 
this planning process is highly relevant in practice, it was 
shown that such a procedure is discussed only to a slight degree 
in literature. Furthermore, order specification by customers is 
often considered in an ‘all or nothing’ approach; orders are 
either fully specified or assumed to be specified in mid-term 
production planning, or they are not considered individually at 
all. However, companies are likely able to attribute 
probabilities to option choices of individual customer orders. 

A model was presented for mid-tem assignment of 
customer-specific orders to plants and periods in global 
production networks that considers the feasibility of the 
operational sequencing problem that is likely to take place at a 
later point in time, while also considering the uncertainty in 
order specifications. 

Next, it will be necessary to complete validation of the 
approach with data from an industrial case. 
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