
ARTICLE

Received 8 Jun 2016 | Accepted 3 Aug 2016 | Published 30 Sep 2016

Giant superconducting fluctuations in the
compensated semimetal FeSe at the BCS–BEC
crossover
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T Wolf3, F. Hardy3, C. Meingast3, H. v. Löhneysen3, A. Levchenko4, T. Shibauchi5 & Y. Matsuda1

The physics of the crossover between weak-coupling Bardeen–Cooper–Schrieffer (BCS)

and strong-coupling Bose–Einstein condensate (BEC) limits gives a unified framework of

quantum-bound (superfluid) states of interacting fermions. This crossover has been studied

in the ultracold atomic systems, but is extremely difficult to be realized for electrons in solids.

Recently, the superconducting semimetal FeSe with a transition temperature Tc¼ 8.5 K has

been found to be deep inside the BCS–BEC crossover regime. Here we report experimental

signatures of preformed Cooper pairing in FeSe, whose energy scale is comparable to

the Fermi energies. In stark contrast to usual superconductors, large non-linear diamagnetism

by far exceeding the standard Gaussian superconducting fluctuations is observed

below T*B20 K, providing thermodynamic evidence for prevailing phase fluctuations

of superconductivity. Nuclear magnetic resonance and transport data give evidence of

pseudogap formation at BT*. The multiband superconductivity along with electron–hole

compensation in FeSe may highlight a novel aspect of the BCS–BEC crossover physics.
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I
n the Bardeen–Cooper–Schrieffer (BCS) regime, weakly
coupled pairs of fermions form the condensate wave function,
while in the Bose–Einstein condensate (BEC) regime, the

attraction is so strong that the fermions form local molecular
pairs with bosonic character. The physics of the crossover is
described by two length scales, the average pair size or coherence
length xpair and the average interparticle distance 1/kF, where kF is
the Fermi wave number. In the BCS regime, the pair size is very
large and kFxpairc1, while local molecular pairs in the BEC
regime lead to kFxpair51. The crossover regime is characterized
by kFxpairB1, or equivalently the ratio of superconducting gap to
Fermi energy D/eF of the order of unity. In this crossover regime,
the pairs interact most strongly and new states of interacting
fermions may appear; preformed Cooper pairing at much higher
temperature than Tc is theoretically proposed1,2. Experimentally,
however, such preformed pairing associated with the BCS–BEC
crossover has been controversially debated in ultracold atoms3,4

and cuprate superconductors5–8. Of particular interest is the
pseudogap formation associated with the preformed pairs that
lead to a suppression of low-energy single-particle excitations.
Also important is the breakdown of Landau’s Fermi liquid theory
due to the strong interaction between fermions and fluctuating
bosons. In ultracold atomic systems, this crossover has been
realized by tuning the strength of the interparticle interaction
via the Feshbach resonance. In these artificial systems, Fermi
liquid-like behaviour has been reported in thermodynamics even
in the middle of crossover3, but more recent photoemission
experiments have suggested a sizeable pseudogap opening and a
breakdown of the Fermi liquid description4.

On the other hand, for electron systems in bulk condensed
matter, it has been extremely difficult to access the crossover
regime. Perhaps, the most frequently studied systems have been
underdoped high-Tc cuprate superconductors5–8 with substantially
shorter coherence length than conventional superconductors. In
underdoped cuprates, pseudogap formation and non-Fermi liquid
behaviour are well established, and unusual superconducting
fluctuations have also been found above Tc (refs 6,7). However, the
pseudogap appears at a much higher temperature than the onset
temperature of superconducting fluctuations8. It is still unclear
whether the system is deep inside the crossover regime and to what
extent the crossover physics is relevant to the phase diagram in
underdoped cuprates. It has been also suggested that in
iron-pnictide BaFe2(As1� xPx)2, the system may approach the
crossover regime in the very vicinity of a quantum critical
point9,10, but the fine-tuning of the material to a quantum
critical point by chemical substitution is hard to accomplish.
Therefore, this situation calls for a search of new systems in the
crossover regime.

Among different families of iron-based superconductors, iron
chalcogenides FeSexTe1� x exhibit the strongest band renormaliza-
tion due to electron correlations, and recent angle-resolved
photoemission spectroscopy studies for x¼ 0.35� 0.4 have shown
that some of the bands near the Brillouin zone centre have
very small Fermi energy, implying that the superconducting
electrons in these bands are in the crossover regime11,12. Among
the members of the iron chalcogenide series, FeSe (x¼ 0) with the
simple crystal structure formed of tetrahedrally bonded layers of
iron and selenium is particularly intriguing. FeSe undergoes a
tetragonal–orthorhombic structural transition at TsE90 K, but in
contrast to other Fe-based superconductors, no long-range
magnetic ordering occurs at any temperature. Recently, the
availability of high-quality bulk single crystals grown by chemical
vapour transport13 has reopened investigations into the electronic
properties of FeSe. Several experiments performed on these crystals
have shown that all Fermi surface bands are very shallow14–16; one
or two electron pockets centred at the Brillouin zone corner with

Fermi energy ee
F � 3 meV, and a compensating cylindrical

hole pocket near the zone centre with eh
F � 10 meV. FeSe is a

multigap superconductor with two distinct superconducting gaps
D1E3.5 and D2E2.5 meV (ref. 14). Remarkably, the Fermi
energies are comparable to the superconducting gaps; D/eF is
B0.3 and B1 for hole and electron bands, respectively14.
These large D/eF(E1/(kFxpair)) values indicate that FeSe is in the
BCS–BEC crossover regime. In fact, values of 2D1/kBTcE9 and
2D2/kBTcE6.5, which are significantly enhanced with respect to
the weak-coupling BCS value of 3.5, imply that the attractive
interaction holding together the superconducting electron
pairs takes on an extremely strong-coupling nature, as expected
in the crossover regime. Moreover, the appearance of a new
high-field superconducting phase when the Zeeman energy is
comparable to the gap and Fermi energies, m0HBDBeF, suggests a
peculiar superconducting state of FeSe (ref. 14). Therefore, FeSe
provides a new platform to study the electronic properties in the
crossover regime.

Here we report experimental signatures of preformed Cooper
pairing in FeSe below T*B20 K. Our highly sensitive magneto-
metry, thermoelectric and nuclear magnetic resonance (NMR)
measurements reveal an almost unprecedented giant diamagnetic
response as a precursor to superconductivity and pseudogap
formation below T*. This yields profound implications on exotic
bound states of strongly interacting fermions. Furthermore, the
peculiar electronic structure with the electron–hole compensation
in FeSe provides a new playground to study unexplored physics of
quantum-bound states of interacting fermions.

Results
Giant superconducting fluctuations. It is well known that ther-
mally fluctuating droplets of Cooper pairs can survive above Tc.
These fluctuations arise from amplitude fluctuations of the
superconducting order parameter and have been investigated for
many decades. Their effect on thermodynamic, transport and
thermoelectric quantities in most superconductors is well under-
stood in terms of standard Gaussian fluctuation theories17.
However, in the presence of preformed pairs associated with the
BCS–BEC crossover, superconducting fluctuations are expected to
be strikingly enhanced compared with Gaussian theories due to
additional phase fluctuations. Moreover, it has been suggested that
such enhanced fluctuations can lead to a reduction of the density
of states (DOS), dubbed the pseudogap1,2.

Quite generally, superconducting fluctuations give rise to an
enhancement of the normal-state conductivity, which manifests
itself as a downturn towards lower T of the resistivity versus
temperature curve above Tc. The high-field magnetoresistance of
compensated semimetals is essentially determined by the product
of the scattering times of electron and hole bands14. The large,
insulating-like upturn in rxx(T) at high fields is thus an indication
of the high quality of our crystals (Fig. 1a). At low temperatures,
however, the expected downturn behaviour is observed, implying
large superconducting fluctuations. Even at zero field, drxx(T)/dT
shows a minimum around T*B20 K (Fig. 1b), indicating the
appearance of excess conductivity below BT*. However, a
quantitative analysis of this excess conductivity is difficult to
achieve because it strongly depends on the extrapolation of the
normal-state resistivity above T* to lower T. In addition, the
resistivity may be affected by a change of the scattering time when
a pseudogap opens at T* as observed in underdoped cuprates18.

We therefore examine the superconducting fluctuations in
FeSe through the diamagnetic response in the magnetization.
The magnetization M(T) for magnetic field H parallel to the c axis
(Supplementary Fig. 1) exhibits a downward curvature below
BT*. This pronounced decrease of M(T) can be attributed to the
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diamagnetic response due to superconducting fluctuations.
Figure 1c shows the diamagnetic response in the magnetization
Mdia between 0 and 40 K for m0H¼ 4, 8 and 12 T, obtained by
subtracting a constant M as determined at 30 K. Although there is
some ambiguity due to weakly temperature-dependent normal-
state susceptibility, we find a rough crossing point in Mdia(T, H)
near Tc. Such a crossing behaviour is considered as a typical
signature of large fluctuations and has been found in cuprates19.
The thermodynamic quantities do not include the Maki—
Thompson-type fluctuations. Hence, the fluctuation-induced
diamagnetic susceptibility of most superconductors including
multiband systems can be well described by the standard
Gaussian-type (Aslamasov–Larkin, AL) fluctuation susceptibility
wAL (refs 20–22), which is given by

wAL � �
2p2

3
kBTc

F2
0

x2
ab

xc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc

T �Tc

r
ð1Þ

in the zero-field limit23. Here F0 is the flux quantum and xab (xc)
is the effective coherence lengths parallel (perpendicular) to
the ab plane at zero temperature. In the multiband case, the
behaviour of wAL is determined by the shortest coherence length
of the main band, which governs the orbital upper critical field.
The diamagnetic contribution wAL is expected to become smaller
in magnitude at higher fields, and thus |wAL| yields an upper
bound for the standard Gaussian-type amplitude fluctuations. In
the inset of Fig. 1c, we compare wdia at 8 T with wAL, where we use
xab (¼ 5.5 nm) and xc (¼ 1.5 nm)14,15. Obviously the amplitude
of wdia of FeSe is much larger than that expected in the
standard theory, implying that the superconducting fluctuations
in FeSe are distinctly different from those in conventional
superconductors.

The highly unusual nature of superconducting fluctuations in
FeSe can also be seen in the low-field diamagnetic response. Since
the low-field magnetization below 2 T is not reliably obtained

from conventional magnetization measurements, we resort
to sensitive torque magnetometry. The magnetic torque
t¼ m0VM�H is a thermodynamic quantity that has a
high sensitivity for detecting magnetic anisotropy. Here V is the
sample volume, M is the induced magnetization and H is
the external magnetic field. For our purposes, the most important
advantage of this method is that an isotropic Curie contribution
from impurity spins is cancelled out24.

At each temperature and field, the angle-dependent torque curve
t(y) is measured in H rotating within the ac (bc) plane, where y is
the polar angle from the c axis. In this geometry, the difference
between the c axis and ab plane susceptibilities, Dw¼ wc� wab,
yields a p-periodic oscillation term with respect to y rotation,
t2yðT;H; yÞ ¼ 1

2 m0H2VDw T;Hð Þsin 2y (Fig. 2a; Supplementary
Fig. 2; Supplementary Note 1)25,26. In the whole measurement
range, Dw is negative, that is, wab4wc, which is consistent
with magnetic susceptibility27 and NMR Knight-shift
measurements28,29. Figure 2b shows the T dependence of
Dw at 7 T, which is determined by the amplitude of the sinusoidal
curve. At Ts, Dw(T) exhibits a clear anomaly associated
with the tetragonal–orthorhombic structural transition. On
approaching Tc, Dw shows a diverging behaviour. Figure 2c,d
depicts the T and H dependence of |Dw|(T,H), respectively. Above
T*B20 K, |Dw|(T, H) is nearly field independent. Below T*,
however, |Dw|(T,H) increases with decreasing H, indicating non-
linear H dependence of M. This non-linearity increases steeply
with decreasing temperature. Since |Dw| points to a diverging
behaviour in the zero-field limit on approaching Tc (Fig. 2d), this
strongly non-linear behaviour is clearly caused by superconducting
fluctuations.

Thus, the diamagnetic response of FeSe contains H-linear
and non-linear contributions to the magnetization; Dw(T)
can be written as Dw ¼ Dwnl

diaþDwl
diaþDwN, where Dwnl

dia and
Dwl

dia represent the diamagnetic contributions from non-linear
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Figure 1 | Excess conductivity and diamagnetic response of a high-quality single crystal of FeSe. (a) T dependence of rxx in magnetic fields (H||c). The

structural transition occurs at Ts¼90 K, which is accompanied by a kink in rxx(T). Inset shows the crystal structure of FeSe. (b) T dependence of rxx (red)
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compared with the estimated wAL in the standard Gaussian fluctuations theory (red).
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and linear field dependence of magnetization, respectively,
and DwN is the anisotropic part of the normal-state
susceptibility, which is independent of H. Since Dw(T) is almost
H independent at high fields (Fig. 2d), Dwnl

dia is estimated by
subtracting H-independent terms from Dw. In Fig. 2e, we plot
Dwnl

dia

�� �� estimated from Dwnl
diaðHÞ � DwðHÞ�Dwð7TÞ, which we

compare with the expectation from the Gaussian fluctuation

theory at zero field given by DwAL � � 2p2

3
kBTc
F2

0

x2
ab
xc
� xc

� � ffiffiffiffiffiffiffiffiffiffi
Tc

T �Tc

q
.

Near Tc, Dwnl
dia at 0.5 T is nearly 10 times larger than DwAL. It

should be noted that since Dwnl
dia

�� �� increases with decreasing H,
Dwnl

dia

�� �� in the zero-field limit should be much larger than Dwnl
dia

�� ��
at 0.5 T. Thus, the non-linear diamagnetic response dominates
the superconducting fluctuations when approaching Tc in the
zero-field limit. We note that, although the AL diamagnetic
contribution contains a non-linear term visible at low fields, this
term is always smaller than the AL fluctuation contribution at
zero field20–22.

Our magnetization and torque results provide thermodynamic
evidence of giant superconducting fluctuations in the normal

state of FeSe by far exceeding the Gaussian fluctuations. We stress
that, since the energy scale of kBT*B2 meV is comparable to ee

F, it
is natural to attribute the observed fluctuations to preformed
pairs associated with the BCS–BEC crossover. In the presence of
those pairs, superconducting phase fluctuations5 arising from the
mode coupling of fluctuations are expected to be significantly
enhanced and to produce a highly non-linear diamagnetic
response, as observed in the experiments. This non-linear
response with large amplitude is profoundly different from the
Gaussian behaviour in conventional superconductors.

Pseudogap formation. Next, we discuss the possible pseudogap
formation associated with the preformed pairs, which suppresses
the DOS and hence leads to a change in quasiparticle scattering.
We have measured the relaxation time T1 of 77Se NMR
spectroscopy in FeSe single crystals (Supplementary Fig. 3) at
different fields applied along the c axis. At 14.5 T close to the
upper critical field, the temperature dependence of 1/T1T, which
is dominated by the dynamical spin susceptibility w(q) at the
antiferromagnetic wave vector q¼ (p, p), can be fitted well by a
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Curie–Weiss law in a wide temperature range below Ts (Fig. 3a,
inset). At low fields of 1 and 2 T, however, 1/T1T(T) shows a
noticeable deviation from this fit (dashed line in Fig. 3a, inset),
and the difference between the fit and the low-field data
D(1/T1T) starts to grow at BT* (Fig. 3a, main panel). As the
superconducting diamagnetism is an orbital effect that is
dominated at q¼ 0, the spin susceptibility w(p, p) is not
influenced by the orbital diamagnetism. Therefore, the observed
deviation of 1/T1T(T) is a strong indication of a depletion of the
DOS, providing spectroscopic evidence for the psedugap
formation below BT *. The onset temperature and the field
dependence of the non-linear contribution of 1/T1T(T) bear a
certain similarity to the features of the diamagnetic susceptibility,
pointing to the intimate relation between the pseudogap and
preformed pairs in this system.

The pseudogap formation is further corroborated by the
measurements of Hall (RH), Seebeck (S) and Nernst (n)
coefficients (Fig. 3b–d). The negative sign of the Hall and
Seebeck data indicates that the transport properties are
governed mainly by the electron band, which is consistent with
the previous analysis of the electronic structure in the
orthorhombic phase below Ts (ref. 16). Obviously, at T *B20 K,
all the coefficients show a minimum or maximum. Since
the Hall effect is insensitive to superconducting fluctuations,
the minimum of RH(p(sh� se)/(shþse)), where se(h) is the
conductivity of electrons (holes), suggests a change of the carrier
mobility at BT *. The thermomagnetic Nernst coefficient consists
of two contributions generated by different mechanisms:
n¼ nNþ nS. The first term represents the contribution of
normal quasiparticles. The second term, which is always
positive, represents the contribution of fluctuations of either
amplitude or phase of the superconducting order parameter. On
approaching Tc, nS is expected to diverge30. As shown in Fig. 3d,
however, such a divergent behaviour is absent. This is because in
the present very clean system, nN is much larger than nS

(Supplementary Fig. 4a; Supplementary Note 2). Since nN

and S are proportional to the energy derivatives of the Hall
angle and conductivity at the Fermi level, respectively, nN /
ð@ tan yH=@eÞe¼eF

and S / ð@ ln s=@eÞe¼eF
both sensitively detect

the change of the energy dependence and/or anisotropy of the
scattering time at the Fermi surface (see also Supplementary
Fig. 4b,c for n/T(T) and S/T(T)). Therefore, the temperature
dependence of the three transport coefficients most likely implies
a change in the quasiparticle excitations at T *, which is consistent
with the pseudogap formation. We also note that anomalies at
similar temperatures have been reported for the temperature
dependence of the thermal expansion13 as well as of Young’s
modulus29. Recent scanning tunnelling spectroscopy data also
suggest some suppression of the DOS at low energies in a similar
temperature range31.

Discussion
Figure 4 displays the schematic H–T phase diagram of FeSe for
H||c. The fluctuation regime associated with preformed pairing is
determined by the temperatures at which drxx(H)/dT shows a
minimum and n(H) shows a peak (Supplementary Fig. 5a,b;
Supplementary Note 3) in magnetic fields, as well as by the onset
of D(1/T1T) (Fig. 3a). The diamagnetic signal, NMR relaxation
rate and transport data consistently indicate that the preformed
pair regime extends over a wide range of the phase diagram.
The phase fluctuations dominate at low fields where the
non-linear diamagnetic response is observed (Fig. 2d). This
phase-fluctuation region continuously connects to the vortex
liquid regime above the irreversibility field Hirr, where a
finite resistivity is observed with a broad superconducting
transition (Fig. 1a).

Let us comment on the electronic specific heat, which is another
thermodynamic quantity related to the DOS of quasiparticles. The
specific heat C at comparatively high temperatures, however, is
dominated by the phonon contribution pT3 (refs 29,32), which
makes it difficult to resolve the pseudogap anomaly. Also, the
reduction of C/T may partly be cancelled with the increase by the
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strong superconducting fluctuations found in the present study.
It should be also stressed that FeSe exhibits a semimetallic
electronic structure with the compensation condition, that is, the
electron and hole carrier densities should be the identical. Such a
compensated situation of the electronic structure may alter
significantly the chemical potential shift expected in the BEC
theories for a single-band electronic structure. How the entropy in
crossover semimetals behaves below T * is a fundamentally new
problem, which deserves further theoretical studies.

Finally, we remark that the preformed Cooper pairs and
pseudogap develop in the non-Fermi liquid state characterized
by a linear-in-temperature resistivity, highlighting the highly
unusual normal state of FeSe in the BCS–BEC crossover regime.
The resistivity above T * can be fitted up to B50 K as rxx(T)¼
rxx(0)þATa with a¼ 1.1� 1.2, where the uncertainty arises
from the fact that rxx(0) is unknown (Fig. 1b). Thus, the exponent
a close to unity indicates a striking deviation from the Fermi
liquid behaviour of a¼ 2. This non-Fermi liquid behaviour in
FeSe is reminiscent of the anomalous normal-state properties of
high-Tc cuprate superconductors. The main difference between
these systems and FeSe is the multiband nature of the latter34,35;
the Fermi surface consists of compensating electron and hole
pockets. The present observation of preformed pairs together
with the breakdown of Fermi liquid theory in FeSe implies an
inherent mechanism that brings about singular inelastic
scattering properties of strongly interacting fermions in the
BCS–BEC crossover.

Methods
Sample preparation and characterization. High-quality single crystals of
tetragonal b-FeSe were grown by low-temperature vapour transport method at
Karlsruhe Institute of Technology and Kyoto University13. As shown in Fig. 1b,
taking rxx(Tc

þ )E10 mO cm as an upper limit of the residual resistivity leads to the
residual resistivity ratio (RRR)440. The large RRR value, large magnetoresistance
below Ts, quantum oscillations at high fields15,16, a very sharp 77Se NMR line
width29, and extremely low level of impurities and defects observed by scanning
tunnelling microscope topographic images14,33, all demonstrate that the crystals

used in the present study are very clean. The tetragonal structure is confirmed by
single-crystal X-ray diffraction at room temperature. The tetragonal [100]T/[010]T

is along the square edges of the crystals, and below the structural transition, the
orthorhombic [100]O/[010]O along the diagonal direction.

Magnetization and magnetic torque measurements. The magnetization was
measured using a vibrating sample option (VSM) of the Physical Properties
Measurement System by Quantum Design. Supplementary Figure 1 shows tem-
perature dependence of the magnetization in a single crystal of FeSe for several
different fields. We obtained the diamagnetic response in the magnetization,
Mdia, by shifting the curves to zero at 30 K, that is, by subtracting a constant
representative of the normal-state magnetization ignoring the small paramagnetic
Curie–Weiss contribution.

Magnetic torque is measured by using a micro-cantilever method25,26. As
illustrated in the inset of Fig. 2b, a carefully selected tiny crystal of ideal tetragonal
shape with 200� 200� 5 mm3 is mounted on to a piezo-resistive cantilever. The
crystals contain orthorhombic domains with typical size of B5 mm below Ts.
Supplementary Figure 2a–f shows the magnetic torque t measured in various fields,
where the field orientation is varied within a plane including the c axis (y¼ 0,180�)
and the field strength H¼ |H| is kept during the rotation. The torque curves at 0.5
and 1T (Supplementary Fig. 2a and b) are distorted at 8.5 K, which is expected in
the superconducting state of anisotropic materials36 whereas those above 9 K are
perfectly sinusoidal.

NMR measurements. 77Se NMR measurements were performed on a collection of
several oriented single crystals, and external fields (1, 2 and 14.5 T) are applied
parallel to the c axis. Since 77Se has a nuclear spin I¼ 1/2, and thus no electric
quadrupole interactions, the resonance linewidth of the NMR spectra are very
narrow with full width at half maximum of a couple of kHz (Supplementary Fig. 3).
The nuclear spin-lattice relaxation rate 1/T1 is evaluated from the recovery curve
R(t)¼ 1�m(t)/m(N) of the nuclear magnetization m(t), which is the nuclear
magnetization at a time t after a saturation pulse. R(t) can be described by
R(t)pexp(� t/T1) with a unique T1 in the whole measured region, indicative of a
homogeneous electronic state. In general, 1/T1 for H||c is related to the imaginary
part of the dynamical magnetic susceptibility w(q, o) by the relation

1
T1T
/
X

q

AðqÞ Imwðq;oÞ
o

; ð2Þ

where A(q) is the transferred hyperfine coupling tensor along the c axis at the Se
site and o¼ gn/H with gn/(2p)¼ 8.118 MHzT� 1 is the NMR frequency. 1/T1T at
the Se site is mainly governed by the magnetic fluctuations at the Fe sites,
that is, particularly in FeSe, the short-lived stripe-antiferromagnetic correlations at
q¼ (p, p) in the tetragonal notation. It should be noted that the superconducting
diamagnetism is an orbital effect that is dominated at q¼ 0 and thus it does not
affect the dynamical spin susceptibility at q¼ (p, p).

Thermoelectric measurements. The thermoelectric coefficients were measured
by the standard d.c. method with one resistive heater, two Cernox thermometers
and two lateral contacts (Fig. 3d, inset). The Seebeck signal S is the transverse
electric field response Ex (||x), while the Nernst signal N is a longitudinal response
Ex (||x) to a transeverse temperature gradient rxT(||x) in the presence of a
magnetic field Hz (||z), that is, S�Ex/(�rxT) and N�Ey/(�rxT), respectively.
The Nernst coefficient is defined as n�N/m0H.

Data availability. The data that support the findings of this study are available on
request from the corresponding authors (T.S. or Y.M.).
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