Influence of Pressure and Temperature on the Growth and Properties of Pulsed Laser Deposited PZT for MEMS

A. Schatz1, D. Pantel1, and T. Hanemann2,3

1 Robert Bosch GmbH, Robert-Bosch-Campus 1, 71272 Renningen, Germany, Corporate Sector Research and Advance Engineering
2 University of Freiburg, Department of Microsystems Engineering - IMTEK, Laboratory for Materials Processing, Georges-Köhler-Allee 102, 79110 Freiburg, Germany
3 Karlsruhe Institute of Technology, Institute for Applied Materials (IAM), P.O. Box 3640, 76021 Karlsruhe, Germany
Motivation
PZT for MEMS

PZT MEMS on the market

- Silicon Sensing: gyroscope with vibrating ring layout
- Panasonic: gyroscope with tuning fork layout
- poLight: autofocus lens
- Foundries: Rohm, SINTEF, Silex Microsystems AB, X-FAB Semiconductor Foundries AG, ...

Technologically interesting material for MEMS actuators

- High $e_{31,f}$ is needed
- $e_{31,f}$ is dependent on the microstructure*

PZT growth-control is of main interest:
Variation of deposition pressure and temperature influence growth and properties.

* S. Trolier-McKinstry and P. Muralt, J. Electroceram., 12 (2004), pp. 7-17
Introduction

Pulsed Laser Deposition

IR heater: up to 800 °C
(445 ≤ T_{dep} ≤ 570 °C used for PZT)

Background gas (here: p_{O_2})
range used: 0.05 to 0.20 mbar

Diverse materials: e.g. PZT, LNO*, SnO$_2$, CuO, ...

Manifold applications: perfect tool for corporate research

* LNO = LaNiO$_3$
Variation of Pressure (p_{O2}) Microstructure (SEM)

$T_{dep} = 570 \, ^{\circ}C$

$\rho_{O2} = 0.05 \, \text{mbar}$

$\rho_{O2} = 0.20 \, \text{mbar}$

$\bar{\phi} = 127 \, \text{nm}$

$\bar{\phi} = 64 \, \text{nm}$

The grain sizes and grain boundaries are effected by the deposition pressure.
Variation of Temperature (T_{dep})
Microstructure (SEM)

$T_{dep} = 445 \, ^\circ C$

$T_{dep} = 510 \, ^\circ C$

$T_{dep} = 570 \, ^\circ C$

$\bar{\phi} = 86 \, \text{nm}$

$\bar{\phi} = 104 \, \text{nm}$

$\bar{\phi} = 127 \, \text{nm}$

$P_{O_2} = 0.05 \, \text{mbar}$
Variation of Pressure / Temperature
Crystalline Phase (XRD)

Pressure and temperature have significant influence on the crystalline phase but no clear trend is visible.

- Pyrochlore peak positions (no peaks visible)
Variation of Pressure / Temperature Atomic Composition (EDX)

The lead content of the film correlates with the microstructure.
Variation of Pressure (p_{O_2}) Permittivity

The domain mobility of the film deposited at 0.20 mbar seems to be much higher.
Variation of Temperature (T_{dep}) Permittivity

The mobility of the domains decreases with increasing deposition temperatures.

Extrinsic contribution

$P_{O2} = 0.05 \text{ mbar}$
The microstructure has high effect on the $e_{31,f}$. Not only crystalline phases but also grain boundaries play a major role.

$e_{31,f}(E_3) = -\frac{d\sigma_1}{dE_3}$

Conclusion
PLD settings: high effect on PZT properties

- PZT film properties are dependent on p_{O2} and T_{dep}
 - Microstructure: smooth columnar structure \leftrightarrow coarse grain boundaries
 - No clear trend in crystalline phases (XRD)
 - Lead content: higher for higher p_{O2} and lower T_{dep}
 - Extrinsic contribution to the permittivity (mobility of the domains dependent on the microstructure)

- Piezoelectric coefficient $e_{31,f}$: no linear correlation to p_{O2} and T_{dep}
 - Additional factors (e.g. lead content) besides crystalline phases need to be used as indicator for high $e_{31,f}$
 - Combinations of p_{O2} and T_{dep} with other deposition settings (laser energy, laser spot size, ...) result in even higher -$e_{31,f}$ of >14 C/m² (not shown here)
THANK YOU