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Kurzfassung  

Selen (Se) ist ein essentieller Nährstoff und toxischer Schadstoff mit einer 

engen Toleranzgrenze. Aufgrund von heterogener Verteilung auf lokaler und 

globaler Ebene beinhaltet eine inadäquate Selenversorgung ein hohes 

Risiko, welches 0,5 bis eine Milliarde Menschen weltweit betrifft. Pflanzen 

sind für den Menschen die Hauptquelle für Selen und gleichzeitig der prak-

tisch einzige Weg zum Eintritt des Selens in die Nahrungskette. Redoxpro-

zesse bestimmen maßgeblich die Aufnahme und Verteilung von Selen 

innerhalb der Pflanze. Selenisotopenvariationen in geologischen Systemen 

und der oberflächennahen Umwelt wurden als zuverlässige Redoxtracer 

erkannt, was deren Anwendung für die Erforschung des Selenkreislaufs in 

Pflanzen äußerst vielversprechend macht. Dennoch sind Daten zur Seleniso-

topenverteilung in Pflanzen knapp und die Komplexität natürlicher Systeme 

macht eine differenzierte Untersuchung einzelner Prozesse kaum möglich. 

Ziel dieser Studie ist die getrennte Untersuchung von selenbezogenen 

Prozessen in Pflanzen und die Aufdeckung der Zusammenhänge zwischen 

diesen Prozessen und Selenisotopenvariationen, die durch jene ausgelöst 

wurden. Zu diesem Zweck wurde ein Minimum Parameter Ansatz gewählt, 

in dem Pflanzen in geschlossenen und kontrollierten Systemen unter Aus-

schluss externer Einflüsse gezüchtet wurden. Phytoagar, ein künstliches 

nährstofffreies Wachstumsmedium, wurde mit Selen in verschiedenen 

Spezies und Konzentrationen dotiert, und Pflanzen wurden innerhalb einer 

geschlossenen Box darin kultiviert. Massenbilanzierung und die Bestimmung 

von Selenisotopenverhältnissen in den Kompartimenten ermöglichten die 

Quantifizierung von Aufnahme, Translokation und Volatilisierung sowie 

Isotopenfraktionierungen, die im Rahmen dieser Prozesse ausgelöst wurden. 

Selenisotopenverhältnisse (δ
82

Se) wurden mittels Hydridgeneration-

Multikollektor-Induktiv gekoppeltem Plasma-Massenspektrometrie (HG-MC-

ICP-MS) bestimmt (δ
82

Se [‰] = ((
82/76

SeProbe)/(
82/76

SeStandard)-1)*1000). Diese 

Technik zeichnet sich durch hohe Präzision und gleichzeitig hohe Empfind-
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lichkeit auf Matrixeffekte aus. Akkurate und valide Daten erfordern daher 

mehrere Probenaufbereitungsschritte. Aus dem Grund wurde in dieser 

Arbeit eine umfassende Methode für die sinnvolle, präzise und valide 

Bestimmung von stabilen Selenisotopen in Pflanzen und Phytoagar entwi-

ckelt. Grundlage dafür war die Transformation beider Probenarten in eine 

flüssige, möglichst organikfreie Form. Darauf aufbauend wurden die Kom-

ponenten der Probenmatrix selektiv vom Proben-Selen getrennt, um Mas-

seninterferenzen und matrixbedingte Störungen während der Analysen zu 

vermeiden. Für die jeweiligen Schritte und Probenarten wurden diverse 

Methoden angepasst oder neu entwickelt und systematisch auf Effektivität, 

Validität und mögliche Einschränkungen getestet.  

Eine mikrowellenbasierte Aufschlussmethode mit zwei getrennten Reakti-

onskammern wurde als das am besten geeignete Verfahren für Pflanzenma-

terial bewertet, da sie eine Mineralisierungsrate von 99.3 (±0.4) % und eine 

reproduzierbar komplette Wiedergewinnung des Selens garantiert. Für die 

Behandlung des Phytoagars wurde eine speziell entwickelte Vakuumfiltrati-

onsmethode für am geeignetsten erachtet, die jedoch einige Limitierungen 

bezüglich organischer Reste aufwies. Die Anwendung von Anionenaustausch 

im Säulentrennverfahren zur Entfernung der Probenmatrix zeigte eine hohe 

Matrixabhängigkeit, die für selektive Retention durch Thiolgruppen nicht 

entdeckt werden konnte. Beide Methoden ermöglichten die vollständige 

Entfernung kritischer Matrixelemente, jedoch blieben in beiden Fällen orga-

nische Phasen zusammen mit Selen zurück. Selenabtrennung durch Hyd-

ridbildung hingegen konnte Selen vollständig von der organischen Matrix 

abtrennen. Validierungstests zeigten, dass organische Reste einen schwer-

wiegenden Einfluss auf die Korrektur instrumenteller Fraktionierung und 

damit auf die Validität der Ergebnisse haben. Daher erfüllten Anionenaus-

tausch und Thiolretention nicht die analytischen Voraussetzungen. Im Gegen-

satz dazu brachte die Hydridseparation valide und verlässliche Ergebnisse 

mit einer δ
82

Se-Präzision von 0.2 (±0.2) ‰ für Pflanzen und 1.1 (±0.1) ‰ für 

Phytoagar hervor. Die Validität dieser Methode wurde über die Messung 

von zertifiziertem organikreichem Tonstein (SGR-1) bestätigt. Die hier 

entwickelte und validierte Methode bietet eine solide und verlässliche Basis 
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für die Messung stabiler Selenisotope in organischen Proben und charakteri-

siert organische Komponenten als limitierenden Faktor für valide Analytik.  

Auf dieser Grundlage wurden Selenisotopenvariationen innerhalb der 

Kompartimente des Minimum Parameter Ansatzes detektiert. Transportpro-

zesse offenbarten eine große Abhängigkeit von Aufnahme und Translokation 

gegenüber der Selenquellspezies sowie charakteristische limitierende 

Schritte, die besonders bei hoher Selenexposition auftraten. Trotz hoher 

Umsatzraten führten weder Aufnahme noch Volatilisierung zu signifikanter 

Selenisotopenfraktionierung. Translokation hingegen induzierte bedeutende 

Fraktionierungen (Δ
82

Se) von +2.3 ‰ bis +3.5 ‰ in Selenat beziehungsweise 

+1.2 ‰ bis +1.9 ‰ in Selenit dotierten Ansätzen. Höhere Konzentrationen 

im Wachstumsmedium gingen dabei mit geringeren Fraktionierungswerten 

einher. Diese Resultate indizieren eine Verschiebung von metabolischen 

Selenumsatzmechanismen, die Schlüsselprozesse für die Selenakkumulation 

in bestimmten Pflanzenteilen darstellen. Kenntnisse darüber sind von essen-

tieller Relevanz zur Erforschung und Sicherstellung adäquater Selenversor-

gung durch pflanzliche Ernährung.   

Diese Arbeit bietet eine umfassende und validierte Methode zur Selenisoto-

penanalytik in organischen Proben mit einer Präzision, die zur Detektion 

pflanzeninterner Selenisotopenvariationen ausreicht. Mit dem Minimum 

Parameter Kultivierungsansatz wurde eine Möglichkeit geschaffen, Selen-

transformationsprozesse in Pflanzen differenziert zu erforschen. Dieser  

Aufbau bietet zudem die Option sukzessiver Erweiterungen zur Annäherung 

an natürliche Bedingungen und damit zur Entwicklung einer Richtlinie für  

die Interpretation von Selenisotopendaten in Pflanzen aus natürlichen 

Systemen.  
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Abstract  

Selenium (Se) is an essential nutrient as well as a toxin with a narrow range 

of tolerance. Due to heterogeneous distribution on both the local and global 

scale, an inadequate supply with Se is a risk factor that affects an estimated 

0.5 to 1.0 billion people worldwide to varying extent. Plants are the major 

dietary Se source and a bottleneck for the entrance of Se into the biosphere. 

Redox processes thereby determine Se uptake into and distribution within 

the plant. Se isotope variations in geological and environmental samples 

proved to be a good redox tracer making them a promising tool for the 

exploration of the plant related Se cycle as well. However, Se isotope data 

are scarce and the complexity of the natural environment hardly enables 

systematic investigations of particular processes. This study aims to sepa-

rately examine plant related processes and to figure out the relation be-

tween those and isotope signatures induced by them. To reach these goals a 

Minimum Parameter approach was chosen, in which plants were cultivated 

in closed and controlled systems with a minimum of external influences. 

Phytoagar, an artificial growth medium free of nutrients, was doped with Se 

in varying species and concentrations. Plants were cultivated therein in 

closed box systems. Mass balancing and the determination of Se isotope 

signatures in the compartments enabled the quantification of uptake, 

translocation and volatilization as well as isotope fractionation induced by 

them. Se isotope ratios (δ
82

Se) were detected using hydride generation 

multicollector inductively coupled mass spectrometry (HG-MC-ICP-MS) 

(δ
82

Se [‰] = ((
82/76

Sesample)/(
82/76

Sestandard)-1)*1000). This technique is charac-

terized by high precision, but also high sensitivity on matrix effects. The gain 

of accurate and valid data therefore requires several steps of preceding 

sample treatment. A comprehensive procedure for the reasonable, precise 

and valid determination of stable Se isotopes in plants and phytoagar 

samples was developed in this study. Basis was the transformation of plants 

and phytoagar into a liquid form and the reduction of organic compounds, 
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particularly organic Se species, to a minimum. Building on this, matrix 

compounds were separated from sample-Se in order to avoid mass interfer-

ences and inhibitions occurring within Se isotope analytics. A variety of 

methods for the particular steps was modified or developed with regard to 

the target matrices and systematically tested on their efficiency, validity and 

potential limitations.  

A microwave digestion procedure with two reaction chambers was proved 

to be most suitable for plant tissue, having a mineralization rate of 

99.3 (±0.4) % and reproducibly full Se recovery. For phytoagar, the devel-

oped vacuum filtration procedure was most reliable with limitations regard-

ing organic residuals. The application of chromatographic anion exchange 

for matrix separation revealed a high matrix dependency, which was not 

detected for selective Se retention on thiol groups. Both methods were able 

to fully remove critical elements, but retained organic residuals in the 

purified phases. Se separation via hydride formation completely purified 

sample-Se from its organic matrix. It therefore was proved to be highly 

suitable for organic samples. Validation tests showed that organic residuals 

had a severe impact on mass bias correction and yielded invalid isotope 

data. Anion exchange and thiol retention did thereby not meet the demands 

of sample purification, whereas hydride separation produced valid and 

reliable results with a precision in δ
82

Se of 0.2 (±0.2) ‰ for plant and 

1.1 (±0.1) ‰ for phytoagar matrices. Validity of this method was confirmed 

by a certified shale reference (SGR-1). This developed and validated proce-

dure provides a solid and reliable basis for stable Se isotope determinations 

in organic samples and reveals organic compounds as a limiting factor for 

validity.  

Based on this, Se isotope variations among the compartments of the Mini-

mum Parameter approach were detected. Se transfers revealed a high 

dependence of uptake and translocation on Se source species as well as 

species characteristic rate limiting steps occurring at high Se exposure. 

Despite of high rates, volatilization and uptake did not yield significant Se 

isotope fractionation. In contrast, translocation induced high fractionation 

(Δ
82

Se) of +2.3 ‰ to +3.5 ‰ for selenate respectively +1.2 ‰ to +1.9 ‰ for 
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selenite supplied plants. Higher initial Se concentration thereby corresponds 

to lower fractionation. These results indicate shifts in metabolic Se trans-

formations that involve key processes for Se accumulation in particular plant 

parts. Knowledge of these mechanisms is crucial for the investigation and 

assessment of adequate human Se supply via plant foods.   

This thesis provides a comprehensive and validated method for Se isotope 

analytics in organic samples with a precision sufficient for the detection of 

plant internal Se isotope variations. The Minimum Parameter cultivation 

approach offers a differentiated investigation of Se transformation process-

es occurring related to plants. This setup has high potentials for successive 

extensions to approximate natural conditions and to provide a guideline for 

the interpretation of Se isotope data in plants derived from natural systems. 
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1 Introduction 

1.1 Motivation 

Selenium (Se) plays a key role for human nutrition, animal health and envi-

ronmental systems, as Se is an essential nutrient for all mammals and a 

toxin for any organism with a narrow tolerance range (Rayman, 2006). 

However, Se cycling in the biosphere and environment is not fully investi-

gated yet. In terrestrial environments, plants deal as a bottleneck for Se in 

entering the biosphere and are therefore of particular relevance (Wu, 2004). 

Plant Se metabolism is characterized by Se species dependent uptake and 

reduction processes and the adjacent formation of particular molecules 

influencing accumulation or depletion in plants. As Se is a very redox sensi-

tive element, the Se cycle in the environment and in plants is complex, 

transient and individual regarding ecosystem, land use and plant species 

(chapter 2.2).  

Se stable isotope signatures proved to be a precise redox tracer and able to 

reconstruct Se related processes within geological and environmental 

samples. Spot tests on plant samples in different environments indicated 

high variations in Se isotope composition that were specific for the given 

ecosystem (chapter 2.3). Therefore, the determination of Se isotope compo-

sition of single samples as a state parameter might be able to give insight 

into Se related processes that took place and to reconstruct how the current 

Se status came to be. Therefore it is a promising and feasible tool to explore 

the Se cycle in plants growing under various conditions and reveal the 

individual causes of Se related issues.  

A prerequisite is the full understanding of relations between characteristic 

Se isotope signatures in plants and their underlying processes, which are not 

systematically investigated yet. This requires the possibility to separately 

determine plant related Se processes that are naturally occurring parallel to 
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each other. Furthermore, particular sample preparation and analytical 

methods have to be developed, implemented and validated to gain reliable 

Se isotope data from plants. With both issues requiring systematic pre-

studies their combination contain a considerable potential to provide a solid 

and reliable basis for the use of Se isotope signatures in plants and other 

biological samples.  

1.2 Goals and objectives 

The main goal of this study is the provision of a methodical basis to sepa-

rately investigate Se transformation processes that in nature occurring in 

parallel (e.g. inorganic and microbial Se reduction in soil and water, uptake 

of different Se species) and the extent of Se isotope variations induced by 

those. Cultivation experiments in the laboratory are a reasonable approach 

as they facilitate closed and controlled conditions as well as a continuous 

monitoring and reproduction. Independent, parallel setups enable the 

separate supplementation of Se species and concentrations. Therefore the 

first objective of this thesis is the development of a Minimum Parameter 

approach, which allows focusing on single processes only including H2O, Se 

and the plants, avoiding the influence of soil components and macronutri-

ents. This includes the adaption of existing concepts to the particular de-

mands of Se isotope analytics, the monitoring of parameters and their 

stability as well as the examination of reasonable Se species and concentra-

tion supply with regard to Se isotope variations among compartments of the 

closed system.  

Quantification of Se transfer processes and Se isotope fractionations pre-

supposes the determinations of Se content and Se isotope ratio in any 

compartment. Precise and valid Se isotope analytics requires preceding 

sample treatment and selective purification from matrices, which is particu-

larly challenging with organic rich samples deriving from the Minimum 

Parameter cultivation. Therefore, the second objective of this study is the 

development and implementation of comprehensive procedures meeting 
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the analytical challenges. This includes the development of new methods or 

the adaption of existing ones to particular sample demands as well as the 

systematic monitoring of efficiency with particular regard to analytical 

validation.   
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2 State of the art 

2.1 Selenium – properties and relevance for 
environment and health 

2.1.1 Chemical and geochemical properties 

Selenium is an element in the periodic table with number 34 in group 16, 

period 4 and an atomic mass of 78.96 amu (Wieser et al., 2013) (Figure 1 

(a)). It belongs to the group of chalcophile elements and shares particular 

properties with other elements of this group such as sulphur (S) and telluri-

um (Te). Se tends to form insoluble complexes and to be incorporated into 

crystal gratings of sulphidic minerals, substituting S. Additionally it forms 

mobile oxyanions and a variation of organic complexes (Wiberg et al., 2001; 

Lenz and Lens, 2009). Redox and pH conditions are an important factor for 

the stability of or transformation into a species or compound, particularly 

with Se, which has a high sensitivity on pH and redox changes (Takeno, 

2005) (Figure 1 (b)).  
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(a)                                                                    (b) 

Figure 1(a)  The position of Se within the periodic table of elements (USGS, 2015), (b) Pourbaix 

diagram of Se (Se-O-H availability, 20°C, 1M Se, PhreeqC based model) (Takeno, 

2005). 

In oxic environments Se tends to form selenate anions (SeO4
2-

) that are 

thermodynamically favored in stability and characterized by their high 

solubility and mobility. Selenate has a low affinity to reactions due to its 

tetraedic structure being energetically advantageous and therefore very 

stable (Olin et al., 2005). Oxygen exchange rates with H2O were reported to 

be exceptionally low with a half-life of 10
6
 years at 25°C and neutral pH 

conditions (Kaneko and Poulson, 2012). Selenate forms either bidentate 

outerpheric (Figure 2 (a)) or monodentate innerspheric (Figure 2 (b)) com-

plexes, e.g. on ferric (Fe(III)) oxide and hydroxide surfaces. These sorption 

mechanisms are relatively weak and reversible (Su and Suarez, 2000; Peak 

and Sparks, 2002).  

The oxyanion selenite (SeO3
2-

), available at moderately oxic conditions 

within the entire pH range, is soluble and mobile as well, but more affine to 

sorption (e.g. to iron oxides, clay minerals) as innerspheric bidentate com-

plexes, which are more stable and rather irreversible (Zhang and Sparks, 

1990; Su and Suarez, 2000) (Figure 2 (c)). Furthermore selenite tends to 

reduction processes to Se(0) or Se(-II) and, as a consequence, the incorpora-
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tion into mineral or organic particles. Oxygen exchange with H2O is very 

quick and frequent (Kaneko and Poulson, 2012).  

 

Figure 2:  Simplified scheme of sorption mechanisms on ferric hydroxides of the Se oxyan-

ions selenate (blue) and selenite (red) – (a) selenate sorption as bidentate 

outerspheric complex, (b) selenate sorption as monodentate innerspheric com-

plex, (c) selenite as bidentate innerspheric complex (data from Zhang and Sparks, 

(1990), Su and Suarez (2000), Peak and Sparks (2002)). 

Elemental Se (Se(0)) is hardly soluble and tends to precipitation on mineral 

surfaces or as nanoparticles. Being different from the other Se species, Se(0) 

plays a minor role in environmental and biological processes, although Se(0) 

can be bioavailable to particular organisms and even produced from Se 

oxyanions by microbials under aerobic and anaerobic conditions (Winkel et 

al., 2012; Jain et al., 2014).   

Se’s fully reduced oxidation state, Se(-II), is very reactive and easily incorpo-

rates into mineral complexes and organic molecules. Under strongly reduc-
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ing and acidic conditions it forms gaseous hydrides (H2Se), which is a charac-

teristic property for Se and only shared by few other elements (e.g. Ge, As, 

Br, Te, Sb, Bi). The use of this characteristic for analytical purposes is widely 

applied (e.g. Ribeiro et al., 2004; Rouxel et al., 2004).  

2.1.2 Physiological function 

Se is of high environmental significance, because it is an essential nutrient 

and a toxin for all mammals including human beings (Rayman, 2006). It 

replaces S by Se in the amino acids methionine and cysteine and therefore 

forms the different essential amino acids selenomethionine (SeMet) and 

selenocysteine. These are part of a variety of proteins such as thyroid 

hormones, enzymes protecting cells from oxidation and free radicals as well 

as muscle tissue and brain cells (Holben and Smith, 1999; Pillai et al., 2014). 

Se strengthens the immune system (Rayman, 2006; Brinkman et al., 2006) 

and detoxifies As(III) and Hg(II) by forming covalent As-Se and Hg-Se bonds 

(Gailer, 2007; Ralston and Raymond, 2013; Pickering et al., 2014). Clark et al. 

(1996) reported a preventive effect of Se on cancer, but the universality, the 

actual causes and the applicability are still controversial, whereby the 

medical research is very active regarding this issue (Ip, 1998; Marshall, 

2014). Several studies reported furthermore the key role of Se in the Human 

Immunodeficiency Virus (HIV) metabolism, while stating that an adequate 

Se level retarded the onset of Acquired Immune Deficiency Syndrome (AIDS) 

and reduced the mortality of the HIV infected patients studied, although the 

reasons are not fully discovered yet (Semba and Grey, 2001; Baum et al., 

2001, Kupka et al., 2004; Sudfeld et al., 2014 and others). On the other hand 

the replacement of S in amino acid in high amounts can have severe impacts 

on the functionality of S requiring proteins such as DNA reparing enzymes, 

tissue structures and functions and neural cells (Moreno-Reyes et al., 1998).  

The tolerance range of chronic daily uptake for human beings is on average 

between 40 and 400 µg, depending on age, weight and gender, whereas the 

recommended minimum uptake is 70 µg (Figure 3).   
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Figure 3:  Relation between daily Se uptake and Se related diseases – thresholds for an 

average grown-up person (qualitative image) (data from Moreno-Reyes et al. 

(1998), Levander and Burk (2006) and Stranges et al. (2010)). 

Characteristic Se toxicity symptoms are brittle nails respectively horn and 

hooves of livestock, hair loss and skin lesions due to a dysfunctional beta-

sheet structure in those tissues (Moreno-Reyes et al., 1998; Holben and 

Smith, 1999) (Figure 4 (a)-(c)). Another characteristic disease is blind stag-

gers, a neurological dysfunction particularly affecting livestock, indicated by 

an unsteady staggering gait and loss of vision (Moreno-Reyes et al., 1998) 

(Figure 4 (d)). In plants, excessive uptake might lead to reduced growth and 

crop failures (Dhillon et al., 2005).   
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Figure 4:  Se toxicity symptoms – (a) brittle horn and hooves (www.upei.ca (10.03.2014)),  

(b) brittle nails (Dhillon et al., 2005), (c) hair loss (Fordyce, 2007), (d) blind staggers 

(www.nature.com (10.03.2014)). 

The quantitatively more important issue is Se deficiency. An estimated 0.5 

to 1 billion people worldwide are affected from it to a varying extent (Haug 

et al., 2007). The Keshan disease, discovered in the Chinese province of 

Keshan and prevailing in China, is a severe consequence of Se deficiency. It 

is a cardiomyopathy and affects the functionality of the heart muscle (Stone, 

2009). Another disease frequently occurring in China is the Kashin-Back 

disease, named after its discoverers. This type of osteoarthritis particularly 

affects children and their bone growth, leading to stunted development of 

the skeleton (Moreno-Reyes et al., 2001) (Figure 5 (a)). Another dysfunction 

caused by Se deficiency is the White Muscle Disease, which impacts the 

development of muscles and typically occurs with livestock. It usually affects 

the leg muscles first, but may expand to any muscle including the heart 

(Gunes et al., 2010) (Figure 5 (b)). Furthermore, thyroid dysfunctions as well 

as an increased risk of diabetes were reported to be characteristic conse-

quences of chronic Se deficiency in human beings (Contempre et al., 1992; 

Stranges et al., 2010).  

Aside of severe consequences for humans’ and animals’ health, inadequate 

Se supply might also cause economic losses in agriculture and livestock 

farming as well as threatening food security in particular regions.   
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Figure 5:  Se deficiency symptoms – (a) Kashin-Back disease, (b) White Muscle Disease 

(WMD) (http://drainameducci.blogspot.de, www.upei.ca, www.goatbiology.org 

(10.03.2014)). 

2.1.3 Economic relevance and industrial applications 

Exploiting interest and public awareness for Se and its physiological func-

tions (chapter 2.1.2), there is a particular industry branch providing Se 

supplements and Se fortified food. Public health campaigns address the 

importance of an adequate Se supply as well. Examples of both are given in 

Figure 6.  

 

Figure 6: (a) Advertisement for Se fortified potatoes Selenella from Italia 

(www.salvomessina.com (21.07.2015)), (b) naturally Se enriched potatoes Selena 

from a Se rich area in Ireland (www.selena.ie (21.07.2015), (c) Se fortified eggs 

(www.ocado.com (21.07.2015), (d) health campaign to promote naturally enriched 

garlic as dietary Se source (www.mhlw.go.jp (21.07.2015)). 
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Furthermore Se is of high relevance for technical and pharmaceutical appli-

cations. Figure 7 shows the industry branches using Se and their fraction of 

total Se used in industry as well as examples of products containing Se as a 

key component. For instance, dietary supplementations play an important 

role for humans and livestock. The semiconducting property of Se is used in 

electronics and energy production. In glassware, pigments are made from Se 

to obtain green color. Furthermore Se is applied in metalworking, among 

other functions as alloy component (www.selenium.de (2011)).  

 

Figure 7:  Industrially used Se divided into branches (left), examples of products containing 

Se (right) ((www.selenium.de – data from 2011) www.bembu.com, 

www.selenium.de (28.01.2014)). 

As there are no particular Se deposits, Se is gained as a byproduct of copper 

(Cu) mining. Due to the expansion of the renewable energy sector, Moss et 

al. (2011) expect a global rise in Se demand for photovoltaic systems within 

the next decades. For that reason the necessity to carefully manage the 

scarce resource will rise, including the implementation of innovative tech-

nology in Se acquisition and recycling in order to sustainably fulfil the global 

Se demands (Haug et al., 2007). 
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2.1.4 Distribution in the environment 

The relative abundance of Se within the earth crust (<16 km) is 8*10
-5

 % 

(Bodik et al., 1988) making Se a trace element. Soil contents are on global 

average 0.05 ppm and in most waters <0.1 µg L
-1

. However, due to Se’s 

redox sensitivity on environmental conditions its distribution is heterogene-

ous especially on the earth surface, which causes a high range of soil Se 

concentrations with hot spots of up to 1200 ppm (Dhillon and Dhillon, 2003; 

Fernández-Martínez and Charlet, 2009). The near surface environment 

shows a very dynamic Se cycle characterized by redox changes (Figure 8). 

This applies especially for the Critical Zone, which is characterized by the 

interaction of lithosphere, pedosphere, hydrosphere, biosphere and atmos-

phere (US NRC, 2001).  

 

Figure 8:  Schematic global cycle of Se with main focus on the terrestrial environment. Blue 

arrows – process involves oxidation of Se species, green arrows – process involves 

reduction of Se species. Warning symbols indicate specific environmental settings 

that are at risk of either developing Se deficiency (open warning symbol) or Se ex-

cess (shaded warning symbol) (Winkel et al., 2012). 

Potential geogenic Se sources are generally organic and S rich source rocks 

such as black shales, carbonaceous limestones, carbonaceaous cherts, 

mudstones and seleniferous coal. Main anthropogenic sources are fossil fuel 
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combustion and sulphidic ore mining. By exposing Se containing ores to the 

surface, Se might be mobilized through oxidation (Wang and Gao, 2001; 

Wen and Qiu, 2002; Zhu et al., 2008a). Mobilized Se is distributed via the 

atmo- and hydrosphere. Potential sinks are lakes, organic and iron rich soils 

as well as the biosphere in general. When available, Se tends to excessive 

bioaccumulation and –magnification and therefore high enrichment in 

organisms (Wu 2004; Winkel et al., 2012). One example for Se excess is the 

San Joaquin Valley in California, USA. The area is characterized by marine 

shales as Se rich source rocks and subsequently by Se rich groundwater in 

adjacent aquifers. Intensive agricultural activities including continuous 

excessive irrigation with Se rich water from deeper aquifers have led to Se 

enrichment in soils and plants. Due to consistently low permeable shale 

layers, Se enriched seepage water can hardly be naturally discharged or 

diluted. Within the last decades, high amounts of this water were artificially 

drained and passed into the wetlands of Kesterson National Park. In this 

area, Se concentrations in water were reported to be 300 µg L
-1

 on average 

and 4200 µg L
-1

 on maximum measured in the late 1980s (Presser and 

Ohlendorf, 1987; Fan et al., 1988; Ohlendorf, 2002) and thereby exceeded 

the WHO drinking water threshold by factor 30 respectively 420 (WHO, 

2011). The consequences for the local ecosystem were devastating. Ohlen-

dorf (1986) estimated that 20% of all birds had deformities and 40% of the 

embryos died before hatching. Deformities and high mortality rates were 

reported for several fish species as well (Ohlendorf, 2002). In 1986, Kester-

son National Park was officially declared as a waste dump and the drain into 

San Francisco Bay (Pacific Ocean) was closed. However, significant amounts 

of highly Se contaminated water are still draining into the Pacific Ocean 

(Ohlendorf, 2002). Since the 1980s until today Kesterson National Park was 

an object of studies on potential phytoremediation measures concerning Se 

contaminated ecosystems (e.g. Banuelos and Lin, 2005).  

Another example for critical Se accumulation is a region in Eastern Punjab, 

India, that is characterized by intensive agricultural land use as well. The 

agricultural land is continuously irrigated with Se rich groundwater having 

concentrations of average 69.5 µg L
-1

 and maximum 341 µg L
-1

. Consequences 
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were the Se enrichment in soils (average 6.5 ppm) and plants (3 – 670 ppm) 

(Bajaj et al., 2011) clearly exceeding the US EPA threshold of 5 ppm Se for 

forage (US-EPA, 2000). Crop failures and economic damages could be ob-

served alongside Se toxicity symptoms in the local population (Dhillon et al., 

2005). The issue escalated with the change of wheat-maize to wheat-rice 

rotating cultivation, probably because rice cultivation requires higher 

amounts of irrigation water and influences the Se retention and mobility 

with a changing redox environment (Bajaj et al., 2011). Both examples show 

that the accumulation of Se depends on various factors like source rock Se 

concentration, redox environment, land use and water management. Fur-

thermore the mineral composition of the soil, the plant species and its 

affinity to Se as well as climate and hydrological conditions might advance 

Se accumulation (Winkel et al., 2012).  

In areas with low retention potential, for instance caused by low organic 

content and low sorption potential due to lack of clay minerals and iron 

oxides, Se tends to be leached out and depleted. In nature, this often occurs 

simultaneously with low water retention capacity and oxic conditions, which 

both increasing the mobility of Se (Figure 9). On the contrary, high Se reten-

tion potentials in soils with high organic, iron and clay mineral content might 

immobilize Se in the soil and prevent plant uptake. Furthermore a high 

water retention capacity might induce stagnating water. Combined with 

high organic content reducing conditions might arise, which tend to trans-

form Se into the insoluble and hardly bioavailable Se(0) (Sarret et al., 2005; 

Chakraborty et al., 2010). Wang and Gao (2001) reported a clear coincidence 

of different factors negatively influencing the bioavailability of Se – low soil 

Se concentrations, high evaporation rates, slightly acidic pH values and high 

soil organic content – with the prevalence of Se deficiency disease patterns 

in China. Particularly in North-Eastern China as well as in parts of Central 

and South China the local population is affected by Keshan disease, Kashin-

Back disease or both. Se deficiency was reported in huge parts of sub-

Saharan Africa by Chilimba et al. (2011) and Joy et al. (2014), especially 

Malawi and Sambia. A combination of low soil Se, low soil pH and high 

retention potential by mineral composition caused low Se content in local 
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staple food and Se deficiency symptoms in the local population. Due to Se 

poor source rocks, parts of North-Western and Eastern USA as well as huge 

parts of Europe are depleted in Se, making Se supplementation necessary 

particularly for cattle, cows, sheep and horses (Oldfield, 2002) and led to 

field experiments on Se biofortification on national scale, e.g. in Finland 

(Alfthan et al., 2015). Figure 9 schematically shows the influence factors and 

their interaction in Se depletion and accumulation potentially leading to Se 

deficiency or toxicity.  

 

Figure 9:  Scheme of influence factors for Se mobility and the origins of Se related problems 

(simplified) (circled blue – hydrological conditions, brown – geological and soil 

properties, purple – pH and redox conditions, green – Se related processes, red – 

Se related problems). 
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Several factors indicate an increase in Se related problems within the next 

decades. Climate change will probably raise precipitation variabilities and 

enhance local contrasts in precipitation amounts (IPCC, 2013), which in turn 

will influence redox conditions, leaching and the composition of soils. 

Population and space pressure as well as the rising popularity of land as 

investment possibility (land grabbing) will expand the area of intensively 

cultivated agricultural land (Taagepera, 2014; Antonelli et al., 2015), which is 

a critical issue in context of Se as exemplarily reported for San Joaquin and 

Punjab. Due to economic growth particularly in emerging countries, the 

demand of metals and energy and therefore mining activities will probably 

grow (Legarth, 1996; Miller, 2013) and thereby extent the main anthropo-

genic Se source. That is why the knowledge on environmental Se cycling and 

the elaboration of solution concepts for Se deficiency and toxicity will gain 

importance. 

An overview about the global Se distribution is given by Oldfield (2002). A 

detailed review on the global Se cycle is given by Winkel et al. (2012).  

2.2 Selenium and plants 

2.2.1 Role of plants 

As described in chapter 2.1.4, Se is a biophilic element, which tends to 

accumulate in the biosphere and to magnify along the food chain (Wu, 

2004). Plants are bottlenecks for the entrance of Se into the biosphere 

(Figure 10) and therefore key objectives for the investigation of Se pathways 

and management of adequate Se supply of humans and animals. Plant foods 

are the major dietary Se source in most countries, followed by meat and 

fish. Drinking water plays a minor role (US-NIH, 2013).  
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Figure 10:  Simplified scheme of Se entering and transport into the food chain via plants and 

bioaccumulation along the food chain. 

Various parameters influence the uptake of Se into plants, the soil concen-

tration is only one of them (Ellis and Salt, 2003; Winkel et al., 2012) (Figure 9). 

Se underlies active uptake mechanisms by nutrient transporters and trans-

formation processes such as reduction and incorporation within the plants. 

The role of Se in plants is not fully investigated yet. It is probably not essen-

tial, but might fulfill several functions such as protection against certain 

(a)biotic stresses in moderate concentrations (Hasanuzzaman et al., 2014), 

but leads to phytotoxicity in high concentrations (Dhillon et al., 2005). Plants 

take up Se via macronutrient transporters and include it into their tissue or 

emit it to the atmosphere (Li et al., 2008). The oxidation state of Se plays a 

major role in forming bindings and species, and those determine uptake, 

translocation and accumulation pathways. Furthermore, the role of the 

plant species is important, because those significantly differ regarding 
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uptake, accumulation and volatilization affinity. This chapter presents the 

common sense of Se transport and transformation pathways related to 

plants and regarding various influence factors.    

2.2.2 Se uptake and translocation processes 

The processes of Se uptake and translocation by plants dependent on source 

species were investigated by several studies using cultivation experiments. 

Many of them focussed on Se non-accumulator plants that are frequent as 

agricultural crops, e.g. maize, rice and wheat. As they are frequent in nature 

and most relevant for plant uptake, the Se oxyanions selenate and selenite 

as well as the organic species and amino acid SeMet were regarded. Table 1 

shows experimental parameters and translocation factors (T) of the studies 

mentioned. The translocation factors were calculated via the absolute Se 

amounts measured in the plant parts (a(Se) [µg]) according to Equation (1).     

𝑇 =
𝑎(𝑆𝑒)𝑠ℎ𝑜𝑜𝑡

𝑎(𝑆𝑒)𝑟𝑜𝑜𝑡
   (1) 
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Table 1:  Overview over selected studies on cultivation of Se non-accumulator plants with 

varying Se concentrations, growth media and cultivation times and their results con-

cerning translocation (translocation factor according to Equation (1)) (volatilization 

was neglected in all studies) 

 

Kikkert and  

Berkelaar (2013) 

Nothstein 

(2015) 
Longchamp et al. (2015) 

cultivated plant wheat rice maize 

Se supplied (µg L-1) 40 - 400 250 1000 

growth medium 
soil + optimum 

nutrient supply 

phytoagar + 

no nutrients 
optimum nutrient solution 

cultivation time 300 min (5 h) 
16 days  

(384 h) 

until maturity (~6 mon) 

(>4000 h) 

Translocation 

factor 
   

selenate supply >1 4.6 13.3 

selenite supply <0.1 0.5 0.6 

SeMet supply 0.25 - 0.75 N/A N/A 

 

Figure 11 schematically shows the absolute Se uptake and translocation 

depending on the source species as well as the average species distribution 

in roots and shoots. Thereby, selenate and selenite illustrations contain 

average values of Kikkert and Berkelaar (2013), Nothstein (2015) and Long-

champ et al. (2015) and the SeMet image is based on Kikkert and Berkelaar 

(2013) as the only study investigated SeMet uptake. The Se species distribu-

tion within the plants derives from Kahakachchi et al. (2004). The figure only 

gives a qualitative impression as the studies differ in framework conditions 

such as growth medium, Se concentration supplied, cultivation time and 

plant species. Nevertheless tendencies are recognizable that correspond 

with previous studies (e.g. Zayed et al. (1998), Li et al. (2008), De Souza et al. 

(1998)).  
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Figure 11:  Schemes of Se distribution and species abundances in different plant parts 

according to Longchamp et al. (2015), Kikkert and Berkelaar (2013), Nothstein 

(2015) (wheat, maize, rice) and Kahakachchi et al. (2004) (Brassica) (Table 1). The 

blue circle parts represent the selenate fraction, the red ones the selenite fraction, 

the green ones organic Se species, mainly SeMet. 

All presented studies agreed that selenate had the highest uptake and 

translocation among all supplied Se species (Longchamp et al. (2015), 

Kikkert and Berkelaar (2013), Nothstein (2015), Zayed et al. (1998), Li et al. 

(2008), De Souza et al. (1998)). Reasons are on the one hand the high 

amount of sulphate transporters via which selenate is taken up (Li et al., 

2008), on the other hand the high thermodynamic stability of selenate and 

therefore low affinity to species transformation or retention (chapter 2.1.1 

and 2.1.4). As a consequence, selenate is very affine to enter the plant and 

being translocated within it. The species distribution in plants, reported by 

Kahakachchi et al. (2004), shows that the very dominant fraction was still 

available as selenate, which applies even more for shoots than for roots 

(Figure 11 left). This confirms the idea of Gissel-Nielson (1984) that selenate 

mainly remains in this species while transported to the shoots whereas Se 

taken up as selenite is quickly transformed and transported as organically 
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bound Se. That the entire residual Se could be identified as organic Se 

compounds, mainly SeMet (Kahakachchi et al. (2004)), indicates that sele-

nite, which is a mandatory intermediate in the reduction and transformation 

of selenate to organic Se species, is indeed very unstable within the plant 

and affine to reduction and organic incorporation. The selenite supplemen-

tation setups confirm this assumption as almost 96% of the selenite taken 

up was found as organically bound Se in the plants (Figure 11 center) 

(Kahakachchi et al. (2004)). Additionally, the uptake rate of selenite was - by 

far - lower than this of selenate or SeMet, and the translocation rate was 

very low in relation to selenate and SeMet (Longchamp et al. (2015), Kikkert 

and Berkelaar (2013), Nothstein (2015), Zayed et al. (1998), Li et al. (2008), 

De Souza et al. (1998)). This might depend on the uptake mechanism, which 

is not as clearly identified as the one of selenate. Li et al. (2008) proved that 

it was an active uptake process and they assumed that it was probably taken 

up by phosphate transporters due to their abundance and the chemical 

similarity of selenite and phosphate, whereas Zhao et al. (2010) hypothe-

sized that it might be taken up by silicon transporters. However, the more 

probable reason for the lower uptake and translocation rates is the quick 

transformation of selenite into organic Se, its incorporation into the plant 

tissue (Figure 11 center)  (Kahakachchi et al. (2004); De Souza et al. (1998); 

Li et al. (2008)) and therefore the retention of the major fraction within the 

roots. The small fraction translocated was mainly transformed into organic 

species before translocation (Gissel-Nielson (1984); Kahakachchi et al. 

(2004); De Souza et al. (1998)). Nothstein (2015) however reported that 

selenate supplied rice plants stored 38-54% in organic form with minor 

differences between roots and shoots, whereas selenite supplemented rice 

plants stored 85-100% as Seorg in the roots and 64-80% in the shoots respec-

tively. 

Data on the transport pathways of Se in plants supplied with organic species 

is sparse although organic Se is frequent in the environment and almost 

100% available as SeMet there and within non-accumulator plants (Li et al., 

2008, Neal 1995). According to Sandholm et al. (1973) SeMet is taken up via 

amino acid transporters and therefore only competes with the amino acid 
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methionine. In short term experiments (300 min exposure) with wheat the 

uptake rates were detected 40-100 times higher than for anorganic Se 

species and the shoot concentrations were highest, too. In contrast to 

selenate and selenite supplied plants, SeMet was evenly distributed be-

tween roots and shoots (Kikkert and Berkelaar, 2013). The uptake rates as 

well as the bioavailability and the affinity for incorporation are very high, 

which leads to both – incorporation into the roots and translocation fol-

lowed by incorporation into the shoots.  

The tendencies are similar in those three studies, although they use differ-

ent growth media, cultivation times, supplied Se concentrations and plant 

species. The translocation factor of selenate increases with extended culti-

vation time and Se concentration, which might be a result of higher phyto-

mass growth rates in shoots compared to roots and with limited interaction 

of selenate with the root tissue. Selenite was generally mainly stored in the 

roots and hardly translocated, but with increasing cultivation time and Se 

concentration the translocation factor rises probably due to rate limiting 

steps for reduction and incorporation and therefore backlog effects. 

On the molecular level, Mounicou et al. (2006) reported that the roots 

contained mainly high molecular weight Se molecules, which are less mobile 

and mainly the product of Se incorporation into the plant tissue or for-

mation of proteins, whereas the leaves contained low molecular weight Se 

molecules, which are the more mobile inorganic species, especially selenate, 

as well as small and soluble organic compounds such as SeMet that were 

not incorporated yet and might partly be transformed to volatile species 

such as methylselenides (chapter 2.2.4).   

2.2.3 Se accumulating plants 

When characterizing Se uptake and accumulation as well as the accompany-

ing metabolic pathways, three types of plants are commonly differentiated: 

the non-accumulators, the secondary accumulators and the hyperaccumula-

tors. Concerning Se species distribution, the main difference is the varying 

character and composition of organic Se compounds. 
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Chapter 2.2.1 deals with non-accumulating plants, which are most frequent 

and most important for agriculture, e.g. rice, maize and wheat. They accu-

mulate the biophilic Se in moderate amounts compared to the other plant 

types. As selenite and the minor fraction of selenate is directly transformed 

into the amino acid SeMet and then included into proteins, effectively the 

entire organic Se is available as solved SeMet or, in lower amounts, SeCys2, 

as water soluble non protein forms (e.g. methylselenomethionine) or as 

protein part, with a clear dominance of SeMet (Mounicou et al., 2006, Neal 

1995). Mounicou et al. (2006) additionally reported that non-accumulator 

plants contained higher ratios of Se bearing proteins than secondary or 

hyperaccumulating plants, probably due to the lack of Se exclusion mecha-

nisms from plant metabolism.  

Secondary accumulators, e.g. Brassica juncea, accumulate high amounts of 

Se if present, but they do not have competitive advantage on Se rich sites 

and lacking Se does not impair their growth and development (USDA, 2014). 

Secondary accumulators contain a variety of organic Se species. The amino 

acids SeMet and SeCys2 were found in similar proportions (Mounicou et al., 

2006). Moreover, up to 50% of the total organic Se species were character-

ized as water soluble non protein forms, mainly methylselenomethionine. 

Other studies assumed that the transformation of SeMet to methylseleno-

methionine and the further transformation to the volatile species dime-

thylselenide (DMSe) was an active mechanism to exclude Se from the plant 

tissue and therefore enhance the Se tolerance (Neal 1995, Tagmount et al. 

2002, Goa et al. 2000).  

Hyperaccumulators (or primary accumulators), e.g. Astralagus bisulcatus, 

Stanleya pinnata, accumulate exceptionally high amounts of Se. By early Se 

accumulation and due to particular strategies for tolerating high Se 

amounts, they are perfectly adapted to Se rich areas and more competitive 

than Se sensitive plants. Additionally a herbicide effect due to high Se 

emissions was reported (El Mehdawi et al., 2011). In hyperaccumulator 

plants, selenite is directly transformed to methylselenocysteine instead of 

SeMet. Methylselenocysteine cannot be incorporated into the plant tissue. 

It is directly transformed into the volatile dimethyldiselenide (DMDSe) and 
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emitted into the atmosphere (volatilization) (LeDuc et al. (2004)). DMDSe 

contains two Se atoms, which ensures a more efficient Se emission than the 

formation of DMSe by secondary accumulators. However, both accumulator 

types are characterized by active Se exclusion mechanisms based on volati-

lization. Active mechanisms are generally energy-intensive, and volatilization 

prevents material and energy recovery, which is why plants will only use 

them if necessary. Therefore it is probable that those mechanisms are 

activated and controlled by Se concentration thresholds and accumulating 

plants might additionally be able to conduct non-accumulators’ Se pathways 

if Se is only present in moderate amounts. Detailed investigations on this 

issue – beside the ones mentioned – are lacking yet. 

However, the plant species and its affiliation to a particular accumulator 

type are of high importance not only for uptake rates, but also for the Se 

metabolism and the underlying reactions within and related to the plant. 

Figure 12 summarizes the characteristic metabolic pathways regarding the 

accumulator type. 

 

Figure 12:  Simplified scheme of Se transformation processes within plants characteristic for 

(but not limited to) the group of non-accumulators (blue), secondary accumulators 

(red) and hyperaccumulators (green) (DMDSe – dimethyldiselenide, DMSe – dime-

thylselenide, MeSeMet – methylselenomethionine, MeSeCys – methylselenocyste-

ine, SeMet – selenomethionine, SeCys2 – selenocysteine) (data from Neal (1995), 

De Souza et al. (1998), Goa et al. (2000), Tagmount et al. (2002), LeDuc et al. 

(2004), Mounicou et al. (2006) and Jones et al. (2014)). 
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2.2.4 Se volatilization 

Se volatilization is defined as biologically induced emission of Se as gaseous 

component into the atmosphere. It is a very important process within the 

plant related Se cycle, quantitatively and regarding ability and tolerance for 

Se accumulation. As discussed in chapter 2.2.3, the transformation of Se into 

volatile species is an active mechanism to tolerate harmful Se stress. The 

volatilization rates can reach up to 77% of the taken up Se (Jones et al., 

2014). However, the amount is very much dependent on Se species and 

supplied concentration as well as the plant species and its particular Se 

metabolism. Because of the necessity of complex setups experimental data 

on Se volatilization in plants is rare. Terry et al. (1992) determined the 

volatilization rates of a variety of plant species. In general, they found a high 

correlation between tissue concentration and volatilization rate, both in 

variations of factor 10 (Se volatilized per phytomass) respectively 23 (Se 

volatilized per leaf area). This confirms the results presented in chapter 2.2.3 

that the affinity to accumulate Se is directly connected to the tendency of Se 

emission via volatilization. Among broccoli and cabbage, Oryza sativa (rice) 

was reported to have the highest volatilization rates of up to 350 µg Se m
-2

 

(leaf area) d
-1

 respectively 2500 µg Se kg
-1

 (phytomass dry weight) d
-1

. The 

volatilization rates per leaf area are exceptionally high for rice, whereas the 

rates per phytomass are intermediate. Also more than 70% of the Se taken 

up in rice was stored in the leaves, which is the highest value of all plant 

species examined. This indicates that the dominant Se fraction volatilized 

was emitted via the leaves. De Souza et al. (1998) examined the volatiliza-

tion rates for Brassica juncea supplied with selenate and selenite in parallel 

setups. Volatilization was 2-3 times higher with selenite supplied plants, 

whereby the accumulation and volatilization rates increased linearly with 

source concentration in both setups. It was assumed that the volatilization 

from selenate was limited by selenate reduction, which is thermodynamic-

cally unfavored and therefore works as a limiting factor. Volatilization of 

selenite supplied plants may be limited by selenite uptake and by conversion 

of SeMet to DMSe, probably not by selenite reduction and transformation to 
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SeMet based on the observed instability of selenite in plants (chapter 2.2.2) 

(De Souza et al. 1998).  

Jones et al. (2014) investigated the sources of volatilization with different 

accumulator plants and found that the volatilization rate in hyperaccumula-

tor plants (77%) was elevated by factor 3 compared to a secondary accumu-

lator (25%) at equal Se amounts supplied. Furthermore they discovered that 

in the hyperaccumulator setup the very dominant fraction was volatilized 

via the shoots, whereas the fractions volatilized from the secondary accu-

mulator setup were similarly divided between shoots and roots (56%, 44%). 

It was assumed that SeCys2, a selenite metabolite from the hyperaccumula-

tors was more mobile and reached the shoots in higher amounts than 

SeMet, the analogous product in the secondary accumulator Se metabolism 

(Figure 12). SeMet was tendentially retained in the roots and partly incorpo-

rated, partly transformed into volatile species there (Jones et al., 2014).  

2.3 The stable selenium isotope system 

Stable isotopes are atoms with the same number of protons and electrons, 

but a differing number of neutrons. They share the same space in the 

periodic table of elements (iso (greek) – same, topos (greek) – place), but 

have little variations in their physico-chemical behavior, especially at chemi-

cal reactions or phase transitions (Hoefs, 2009).  

The partitioning of Se isotopes between substances or phases is called 

isotope fractionation. The major processes inducing isotope fractionations 

are isotope exchange reactions (equilibrium isotope distribution) and kinetic 

processes. Furthermore there are mass independent processes inducing 

isotope fractionations, which are neglected in this study. Details are given by 

Hoefs (2009).  

Isotope exchange summarizes all processes with no chemical net reaction, 

but changes in isotope distribution between substances, phases or single 

molecules in order to reach an isotopic equilibrium. Isotopic exchange 

reactions can be described as special cases of chemical equilibria as in 
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Equation (2), characterized by the equilibrium constant K defined in Equa-

tion (3). A and B are different substances, phases or molecules, a and b are 

abundances and 1 and 2 represent the lighter respectively heavier isotope.              

𝑎 ∗ 𝐴1 + 𝑏 ∗ 𝐵2 = 𝑎 ∗ 𝐴2 + 𝑏 ∗ 𝐵1             (2) 

𝐾 =
(

𝐴2
𝐴1

)𝑎

(
𝐵2
𝐵1

)𝑏
         (3) 

Molecular bindings are influenced by rotational, translational and vibration-

al energy. As rotation and translation do not significantly differ between the 

compartments, differences in vibrational energy are the predominant cause 

for isotope fractionation by isotope exchange. As a consequence, the bind-

ing energy is higher in molecules containing the heavy isotope instead of the 

lighter one, making the binding more stable. Molecules containing bindings 

of lighter isotopes have a higher tendency to break.  

The fractionation factor α, commonly used in geochemistry, is defined via 

the equilibrium constant K according to Equation (4) (chapter 2.3.2). n is the 

number of atoms exchanged. 

 𝛼 = 𝐾1/𝑛       (4) 

Kinetically induced isotope fractionation is based on the mass (m) depend-

ency of reaction speed (v) (Equation 5). As the kinetic energy Ekin is usually 

equal for isotopically heavy and light compounds in the same system, higher 

masses lead to lower reaction speed and vice versa.  

𝐸𝑘𝑖𝑛 =
1

2
∗ 𝑚 ∗ 𝑣2           (5) 

Therefore isotopic effects are conserved in incomplete unidirectional pro-

cesses such as evaporation, dissociation, diffusion and biologically induced 

reactions (Hoefs, 2009).  

Using those effects, a variety of methods for several elements was applied 

to trace sources and processes involving particular elements and molecules, 
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e.g. hydrogen, oxygen, carbon, nitrogen, sulphur and several heavy ele-

ments. An overview is given by Hoefs (2009) as well. With increasing analyti-

cal precision a variety of heavy elements can be analyzed on their isotope 

composition, which widely expands the opportunities of stable isotopes as a 

geochemical tool. A summary of recent research activities concerning heavy, 

non-traditional stable isotopes such as Se is given by Wiederhold (2015). 

This study is concentrating on the Se stable isotope system and its potential 

as a process tracer in plants.   

Selenium has six stable isotopes, 
74

Se, 
76

Se, 
77

Se, 
78

Se, 
80

Se and 
82

Se, with 

characteristic abundances in the earth crust given in Figure 13. The high 

range of Se isotopes opens promising possibilities for its application as 

geochemical tool as well as for precise analytics.  

 

Figure 13:  Natural average abundance of the six stable Se isotopes (data from Berglund and 

Wieser (2011)). 
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2.3.1 Se stable isotope analytics 

Due to a variety of factors Se isotope analytics is quite challenging, e.g. (but 

not limited to) 

 isobaric interferences, especially if argon (Ar) operated machines 

and hydride generation (HG) techniques are used (Table 2) 

 high redox sensitivity of Se, high numbers of redox species with  

different properties 

 high tendencies of Se to volatilize even at low temperatures 

 tendency of particular Se species to adsorb to and be retained by 

various materials, especially plastics 

 tendency of Se to adsorb and bind to organic matter 

 high ionization potential and therefore low ionization rates, if  

inductively coupled plasma (ICP) based techniques are used 

 generally low concentrations in natural environments 

These properties need particular attention regarding analytics, internal 

correction mechanisms and sample preparation methods (chapters 3.5 and 4). 

Basic prerequisites for accurate measurements are the reduction of matrix 

element concentrations and organic residuals to a minimum. Critical ele-

ments for the analytics are on the one hand transition metals (e.g. Cr, Co, 

Cu, Ni, Fe) that inhibit HG (Elwaer and Hintelmann, 2008c), on the other 

hand hydride generating elements apart from Se (As, Ge) as well as several 

metal oxides that form isobaric interferences on Se and monitor masses (Fe, 

Ni, Co, Zn, Cu) (chapter 3.2.2). Main elements (Na, Mg, Al, P, Ca, Fe) may 

disturb the analytical process because of their quantity and potential inter-

action with critical elements (chapter 4.4), large organic molecules are in 

particular harmful for precise analytical measurements within MC-ICP-MS 

(chapters 4.2 and 4.3). Organic Se molecules are particularly critical, because 

their behavior – deviating from inorganic Se species (Se oxyanions) – might 

lead to non-correctable Se isotope fractionation due to selective Se losses 

within preparation procedures and analytical measurements. Depending on 
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the sample matrix there are several approaches for the digestion and purifi-

cation of samples (chapters 4.2-4.4). The most suitable preparation methods 

very much depend on the sample matrix and therefore must be found 

individually.  

A historical overview of analytical techniques applied for Se isotope deter-

minations is given by Johnson (2004). As a first approach, Krouse and Thode 

(1962) developed a fluorination based technique, SeF6, in analogy to the 

applied SF6 method for sulphur isotope determinations (e.g. Rees, 1978). 

One disadvantage of this method is the demand of high amounts of Se for 

reliable measurements, which is generally available for S, but not for Se. The 

first mass spectrometry based method was published by Wachsmann and 

Heumann (1992) using thermal ionization mass spectrometry (TIMS). In-

strumental mass bias correction using a 
82

Se/
74

Se Double Spike was first 

reported by Johnson et al. (1999), whereas the 
80

Se/
76

Se ratio was given as 

output. Rouxel et al. (2002) developed a method based on multicollector 

inductively coupled plasma mass spectrometry (MC-ICP-MS). Using this 

method, several masses could be measured simultaneously and plasma 

fluctuations that might have led to invalid and unreproducible results were 

compensated. On-line HG was applied, which transformed Se from the liquid 

sample into gaseous H2Se that was introduced into the plasma. Thereby less 

energy was needed to ionize the sample, enabling higher plasma tempera-

ture and higher ionization rates. Furthermore HG exclusively carries hydride 

generating elements (Se, As, Ge and some others) into the mass spectrome-

ter, which strengthens the Se signal and avoids matrix interferences. On the 

other hand, HG might form problematic mass interfering hydrides of Ge and 

As (Table 2) that require particular correction mechanisms. To correct the 

instrumental mass bias a sample standard bracketing technique was used, 

which measures the same standard after and before any sample and sub-

tracts the drift defined by deviation among both standards. This method did 

not include the correction of matrix effects and artificial isotope fractiona-

tion during sample preparation (Rouxel et al., 2002). Zhu et al. (2008b) first 

used HG-MC-ICP-MS with a 
74

Se/
77

Se Double Spike, which was able to 

correct instrumental mass bias as well as fractionation during sample prepa-
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ration. This approach combines the advantages of the methods by Johnson 

et al. (1999) and Rouxel et al. (2002). As all of those methods were quite 

complex and challenging Layton-Matthews et al. (2006) aimed to set up a 

method based on classic ICP-MS coupled with a dynamic reaction cell (DRC), 

HG as sample introduction system (HG-DRC-ICP-MS) and sample-standard 

bracketing as mass bias correction.  

Figures 14 and 15 include the method used for each particular study and 

data point mentioned. Further variations regarding sample introduction, 

analytical method and correction mechanisms are given by Layton-

Matthews et al. (2006), Elwaer and Hintelmann (2007), Elwaer and Hintel-

mann (2008a), Elwaer and Hintelmann (2008b), Elwaer and Hintelmann 

(2008c), Stüeken et al. (2013), Olesik and Gray (2014) and Pogge von 

Strandmann et al. (2014). Hence, Se isotope determinations are a very 

challenging and individual issue concerning sample matrix, instrumental 

setup and required precision. Therefore any laboratory has to find its own 

method based on the studies mentioned and according to their demands.  

2.3.2 Previous studies on Se isotope signatures  
in the environment 

The isotope composition for Se as well as for other isotope systems is 

commonly given as ratio of two particular isotopes in ‰ related to a stand-

ard of a known isotope composition according to Equation (6). 

δ Se 82 [‰] = (
( Se/ Se)sample

7682

( Se/ Se)standard
7682 − 1) ∗ 1000        (6) 

Isotope fractionation is defined by a particular process and the isotope 

composition of its states (reagent, product, initial). It can be described by 

the Rayleigh model that is common in isotope geochemistry (e.g. Mariotti et 

al., 1981). In an open system with virtually infinite Se pools in reagent as 

well as product and therefore a linear transport the fractionation can be 

approximated according to Equation (7). For non-linear transport, the 
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Rayleigh model requires the knowledge of the amount of Se reacted in the 

process regarded (1-f), respectively the fraction remaining in the reactant (f) 

to calculate the fractionation factor (α) and the fractionation Δ (Equations 

(8) and (9)) (Mariotti et al., 1981).  

 Δ Se82  [‰] = δ Seproduct − δ Sereactant
8282   (7) 

 (
δ Seproduct

82

δ Seinitial
82 − 1) =  f (α−1) ↔ α =  −

(1−f)∗(δ Seproduct
82 −δ Seinitial

82 )

f∗ln (f)
  (8) 

 Δ Se82  [‰] = ln(α) ∗ 1000 ≈ (α − 1) ∗ 1000   (9) 

Varying standards were used depending on the studies and laboratories 

such as Canyon Diablo Triolite (CDT), MH495 Se standard solution, Merck 

AAS Se standard solution and NISTSRM3149 (National Institute of Standards 

and Technology, Gaithersburg – Standard Reference Material 3149) (re-

ferred to as NIST3149). To ensure comparability between laboratories, 

NIST3149 is nowadays the commonly used standard for Se isotope analytics. 

It is isotopically certified and, as well as the Merck standard, very similar to 

the average Se isotope composition on earth surface.  

Figure 14 shows the Se isotope compositions reported in previously pub-

lished studies and their authors. Exponents define analytical method (1-6) 

and standard used (*-****) for each study presented (for comparability all 

calculated to 
82

Se/
76

Se if necessary).   
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Figure 14:  Studies on Se isotope ratios related to a standard material (Equation 6) (* 

NISTSRM3149 ** MERCK AAS Se standard solution *** MH495 **** Canyon Dia-

blo Troilite meteorite) measured with different methods (1SeF6 (Krouse and 

Thode, 1962); 2TIMS with 82/74 Double Spike (Johnson et al., 1999); 3HG-MC-ICP-

MS with bracketing (Rouxel et al., 2002); 4HG-MC-ICP-MS with 74/77 Double Spike 

(Zhu et al., 2008b); 5HG-DRC-ICP-MS with bracketing (Layton-Matthews et al. 

2006); 6HG-MC-ICP-MS with bracketing (Stüeken et al. 2013)) and in different 

sample matrices (cyan – microorganisms, white – water, grey – inorganic laborato-

ry experiments, green – plants, purple – fungi, orange – soils and sediments, dark 

blue – rock samples, olive – shales) (all Se isotope ratios given in 82Se/76Se) (studies 

in which Se isotope fractionation was calculated are excluded from this figure, but 

presented in Figure 15) (state of November 2015, no claim for completeness). 
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The Se isotope composition of geological and environmental samples covers 

a high range from lower than -14 ‰ to more than +11 ‰. Besides rocks 

originating from high temperature environments, various studies investigat-

ed shales and their weathering products regarding the changing Se isotope 

composition. It is obvious that weathered and altered shales have much 

higher ranges than the original shales in both directions – enrichment and 

depletion – in δ
82

Se. This indicates that the underlying alteration processes 

are various and frequent as they probably induce a variety of Se fractiona-

tions. The same applies for sediments and soils that are exposed to changing 

environmental conditions. Additionally biosphere compartments such as soil 

microbes and plants show characteristic Se isotope ratios significantly 

differing from the surrounding water and soils.  

Figure 15 shows Se isotope fractionations for several processes calculated 

using Rayleigh (Equations (7)-(9)). Exponents were chosen in analogy to 

Figure 14. 
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Figure 15:  Studies on Se isotope fractionation (calculated using Rayleigh model (Equations 

(7)-(9)) related to a standard material (* NISTSRM3149 ** MERCK AAS Se standard 

solution *** MH495 **** Canyon Diablo Troilite meteorite) measured with differ-

ent methods (1SeF6 (Krouse and Thode, 1962); 2TIMS with 82/74Se Double Spike 

(Johnson et al., 1999); 3HG-MC-ICP-MS with bracketing (Rouxel et al., 2002); 4HG-

MC-ICP-MS with 74/77Se Double Spike (Zhu et al., 2008b)) and in different sample 

matrices (cyan – microorganisms, white – water, grey – inorganic laboratory ex-

periments, green – plants, purple – fungi, orange – soils and sediments, dark blue 

– rock samples, olive – shales) (all Se isotope ratios given in 82Se/76Se) (state of No-

vember 2015, no claim for completeness). 

A variety of Se isotope fractionating processes in nature have already been 

figured out. The core process, which is mainly responsible for Se isotope 

fractionation, is the reduction of Se(VI) (SeO4
2-

) to Se(IV) (SeO3
2-

) and further 

to Se(0) and various Se(-II) species. Inorganic reduction combined with 

sorption or precipitation thereby plays a lesser role than biologically medi-

ated reduction by microorganisms. Reduction of the thermodynamically 
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stable SeO4
2-

 is energy consuming and therefore particularly leads to isotope 

fractionation. Transformation of SeO3
2-

 to Se(0) contains a phase transition 

towards precipitation of Se(0) or volatilization in addition to reduction itself. 

In both cases Se(IV) to Se(0) reduction induced higher isotope fractionation 

than Se(VI) to Se(IV) reduction.  

The application of the Se isotope system as a tool to explore geological and 

environmental processes is on the rise due to analytical progress, increasing 

awareness regarding the potentials as well as the growing relevance of Se 

for human health (Figure 16). Therefore the investigation and optimization 

of analytical and sample preparation processes will probably see an increase 

in importance as well.  

 

Figure 16:  Number of studies exploring or using the Se isotope system in the geological and 

environmental context, published per year (including analytical studies) (refer-

ences in Figures 14 and 15 and in chapter 2.3.1) (state of November 2015, no claim 

for completeness). 

Apart from geological and environmental issues there are numerous areas 

of application for stable Se isotope determinations in various sample matri-

ces and experimental set ups, e.g. for biomedical, forensic and archeological 

issues, as other stable isotopes are already successfully applied for these 

purposes (e.g. Heuser and Eisenhauer, 2010; Zangrando et al., 2014).  
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2.3.3 Se isotope fractionation in plants 

As illustrated in Figure 12, biologically mediated reduction plays a major role 

at Se isotope fractionation in nature. Especially microbial reduction was 

reported to induce Se isotope fractionation in a wide range, dependent on 

microbial and Se source species. The difference is most visible with cultiva-

tion experiments supplementing Se(VI) versus Se(IV), e.g. with bacterial 

(Herbel et al., 2000) and microbial consortia (Ellis et al., 2003). The same 

applies for volatilization processes induced by Se(VI) and Se(IV) supplement-

ed fungi (Schilling et al., 2011b), which showed much higher volatilization 

rates and higher Se isotope fractionation with Se(IV) (Figure 15). Regarding 

chapter 2.2, the analogy of those mechanisms to the Se metabolism in 

plants is obvious and makes Se isotope determinations a promising tool for 

the investigation of the Se cycle in plants and the soil-plant system. Howev-

er, there is little data and no systematic studies on Se isotope composition 

and fractionation in plants. Herbel et al. (2002) determined the Se isotope 

composition of two wetland plants, the roots of Scirpus robustus (saltmarch 

bulrush) (δ
82

Se = 3.95 ‰) as well as Ruppia maritima (widgeon grass)  

(δ
82

Se = 4.73 ‰) and compared it to those of surrounding water and sedi-

ment. The average differences to water (-1.11 ‰) and sediment (0.69 ‰) 

were measurable, but small (Figure 14). According to Herbel et al. (2002) the 

reduction processes took place deeply within the plants so that the isotopic 

composition of the total plant could not be influenced significantly. Schilling 

et al. (2015) determined δ
82

Se in Se rich wheat crops from Punjab, India, and 

found a significant enrichment of heavy isotopes within the plants com-

pared to the bioavailable Se fraction in the irrigation water (+2.5 ‰ and 

+3.2 ‰) (Figure 14). According to the authors this could unlikely be caused 

by volatilization, instead they assumed alternative processes such as trans-

locations. Both studies show that there are strongly differing mechanisms to 

induce isotope fractionation. They probably depend on individual ecosystem 

or plant properties. This indicates that the Se isotope system could be a 

differentiating tool to examine Se transformation processes in particular 

environmental systems. However, the number of studies and determined 
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plants is very limited, and in situ environments contain various influence 

parameters aside from the plant. A differentiation between plant related 

processes and other Se transformation mechanisms will hardly be possible 

in a complex in situ system. Controlled cultivation experiments with a 

limited number of parameters are therefore a reasonable approach to study 

Se isotope fractionations related to plants depending on particular influence 

factors. Plant cultivation setups using non-traditional stable isotope systems 

in order to investigate metabolic processes were already performed for the 

micronutrients Fe (Guelke and von Blankenburg, 2007; Guelke-Stelling and 

von Blankenburg, 2012; Arnold et al. 2015), Zn (Arnold et al., 2015) and Cu 

(Weinstein et al., 2011). Thereby differing uptake and translocation path-

ways dependent on redox conditions and plant species were revealed and 

valuable contributions to an adequate Fe, Zn and Cu supply of the food 

chain were made.  

Thus, a variety of factors are indicative for Se isotope applications on plant 

cultivation setups to be a  promising tool for the investigation of the plant’s 

role within the Se cycle as well as the causes for Se accumulations and 

depletions in plants and the food chain. Those factors are the abundance of 

Se reduction processes in plants (chapter 2.2), the sensitivity of Se isotope 

fractionation on reduction in geological, environmental and biological 

systems as well as the successful application of other non-traditional stable 

isotope systems in plant cultivation setups (chapter 2.3). 
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3 Analytical methods 

3.1 Overview of standard analytical 
methods applied 

Methods presented in this chapter were applied to determine element 

concentrations, organic compounds, frequent anions as well as Se species. 

Standard analytical procedures were available at the Institute of Applied 

Geosciences (KIT) respectively at University of Basel. Raw data were sub-

tracted on laboratory blanks although this was not reasonable (e.g. to 

quantify total contamination potentials). Concerned data are marked as 

such. Averages are given as mean values, standard deviations (±) as 1σ 

percentile. Calculations were performed using Microsoft Office 2010 Excel.   

3.1.1 Element concentrations 

For concentration measurements of sodium (Na), magnesium (Mg), alumini-

um (Al), phosphorus (P), calcium (Ca), chromium (Cr), iron (Fe), cobalt (Co), 

nickel (Ni), copper (Cu), zinc (Zn), germanium (Ge), arsenic (As) and Se 

inductively coupled plasma mass spectrometry (ICP-MS) ((X-Series 2, Ther-

mo Scientific) was used. This method is based on the ionization of aqueous 

atoms and molecules into single positively charged ions by the plasma 

formed by ionized Ar, a subsequent separation by atomic mass and single 

detection of the intensity of the ion beam arriving in a Faraday cup. For the 

determination of Se a collison cell was introduced upstream into the beam. 

The cell contained a gas mixture from hydrogen (H) and Helium (He), which 

destroys molecular interferences (ThermoScientific, 2015). This method is 

very precise and not sensitive on molecular bounds, but affine to isobaric 

interferences that can be corrected internally via averaging different isotope 

signals and correct isobaric interferences via the knowledge on natural 
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isotope abundances. ICP multielement standard VI (Merck) was used as a 

calibration standard for all elements except P and Ge, which were calibrated 

with ICP single standards (Merck, Alfa Aeser). In case only Se was measured, 

Se AAS standard (Roth) was used for calibration.   

10 µg L
-1

 of a scandium-rhodium-indium standard solution (50 µL 1 ppm 

stock solution to 5 mL sample) were added to each sample as internal stand-

ard. Each measurement series included blanks to control memory effects as 

well as Se standard solutions and reference materials (CRM-TMDW drinking 

water reference, High-Purity Standards) for validation and monitoring of 

instrumental bias. Recoveries of monitoring Se standards (Se = 25 ppb) were 

on average 100.5 (±1.8) %, those of reference (Se = 10 ppb) 102.5 (±2.6) %.  

Samples derived from digestion were diluted 1:10 to 1.3 % HNO3, the phyto-

agar extracts were diluted 1:5 to 0.8 % HNO3 prior to measurement. Due to 

complicated matrices, samples derived from the purification experiments 

were evaporated at 70°C and diluted to 1 % HNO3.  

3.1.2 Total organic carbon (TOC) 

The determinations of total organic carbon (TOC) in aqueous samples were 

performed using a vario TOC cube (elementar). This method is based on a 

catalytic oxidation of organically bound carbon (C) to up to 1200°C and the 

measurement of formed CO2 with non-dispersive infrared sensoring (NDIR). 

Potassium hydrogen phthalate (Merck) was used as a calibration standard. 

Standard solutions of 1 ppm were measured continuously for bias monitor-

ing and validation. The average TOC recovery of these standard solutions 

was 104.0 (±4.2) %. Acidified blanks were measured as well to monitor the 

influence of acid samples such as digests.  

Due to their matrices, all digests, extracts and samples from purification 

were diluted 1:5 causing an elevated detection limit of 0.9 mg L
-1

.  



3.1  Overview of standard analytical methods applied 

43 

3.1.3 Anions 

For the determination of frequent anions such as flouride (F
-
), chloride (Cl

-
), 

bromide (Br
-
), nitrate (NO3

-
), phosphate (PO4

3-
) and sulphate (SO4

2-
) as well 

as for qualitative Se species detection in standard solutions, ion chromatog-

raphy (IC) was used. This method is based on an ion exchange process 

between mobile phase (eluant) and stationary phase (exchange column). As 

anions differ in charge and size they are separated chromatically. Anion 

concentration, type of exchange column, pH value and counter ions in the 

mobile phase influence the separation process and therefore the suitability 

for particular anions. An ICS 1000 (Dionex, ThermoScientific) with an IonPac 

As14 (4 mm) exchange column and an IonPac AG14 pre-column was used. 

The eluant consisted of 3.5mM Na2CO3 and 1.0 mM NaHCO3 with a flow rate 

of 1.15 mL min
-1

. The calibration was made from diluted multi ion IC stand-

ard solution (Specpure) by Alfa Aeser. Blanks were measured before and 

after the sequence to trace memory effects.  

Although it was not calibrated for the quantification of Se, IC enables the 

clear differentiation of selenate and selenite peaks in high concentrations 

when no other anions are present. With this method the selenate and 

selenite stock solutions were proved to be stable for duration of minimum 

one year if stored at 4°C. Furthermore Se isotope standards were analyzed 

on their qualitative species composition. 

3.1.4 Se species 

Se species were determined in spot tests for selected samples within purifi-

cation method development and after plant cultivation to monitor the 

stability of the Se source species. The working group around Markus Lenz 

from the Institute for Ecopreneurship, located at University of Applied 

Sciences and Arts Northwestern Switzerland (FHNW), supported this work 

with their analytics, which are optimized and calibrated for various organic 

and inorganic Se species. Depending on the sample matrix and the expected 

species they are using three methods. The first and second one were ion 
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exchange and ion pair, both of which are based on ICP-MS with a subse-

quent high performance liquid chromatograph (HPLC-ICP-MS) (Bird et al., 

1997). Their third method is online pre-concentration, which is based on 

ICP-MS with a subsequent ion chromatograph (IC-ICP-MS) (Lenz et al., 

2012). Ion exchange makes use of the differing sorption potentials of sele-

nate and selenite in a strong anion exchange column, but it is less suitable 

for organic Se species. Ion pair provides an optimal separation for organic Se 

species (Bird et al., 1997). Online pre-concentration IC-ICP-MS is a very 

sensitive and accurate method for the quantification of Se(IV) and Se(VI) in 

trace concentrations due to an online coupled pre-concentrating trap (Lenz 

et al., 2012). Sample preparations and data processing were performed 

according to Bird et al. (1997) and Lenz et al. (2012). A limitation of this 

method is that samples must be pH neutral. Therefore acid matrices could 

not be determined on Se species composition without neutralization, which 

in turn might change Se species stability and composition.   

3.2 Development of analytical method for Se 
isotope determinations 

The analytical method for the determination of Se isotopes with HG-MC-ICP-

MS was developed and implemented by Ronny Schönberg, Stephan König 

and their team of the Isotope Geochemistry Group (University of Tübingen). 

Based on the concept subjected in this study, they set up the analytical 

foundation as cooperation partners. The development, analytical setting and 

data assessment are presented in this chapter.   

3.2.1 Instrumental setting 

Instrumental analytics were based on a Neptune Plus Multicollector ICP-MS 

(MC-ICP-MS) (ThermoScientific) with on-line HG as sample introduction 

system. Hydrides were generated from Se (H2Se) in the liquid samples and 

introduced into the Ar plasma with a power of 1200 W (chapter 3.2.6). In 
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addition to Ar, methane (CH4) was injected into the plasma (chapter 3.2.5) 

(Figure 18).   

In analogy to ICP-MS Se hydrides were ionized in the plasma and the ion 

beam was routed through the electrostatic analyzer (ESA) to focus it and 

filter out ions that drop out of a given mass to charge ratio. The ion beam 

was introduced into an electromagnetic field, which separates the ions 

depending on their masses and introduces them into an array of nine mova-

ble Faraday cups. Thereby it was able to measure signal intensities of nine 

characteristic isotope masses in parallel. Simultaneous detection compen-

sates deviations by plasma fluctuations and therefore highly increases 

precision. The Faraday cups were connected to electrical ground via adapta-

ble amplifiers that were equipped with high-ohmic resistors of variable 

resistivity (R). The amplified signal (ion current I) was converted to a tension 

(V) by a V/F converter according to Equation (10) (Figure 17) (ThermoScien-

tific, 2015). Figure 18 schematically illustrates the analytical procedure as 

well as the transformation of liquid sample Se into ion beams. The analytical 

precision for NIST3149 matrix free standard is at least 0.2 ‰.  

𝑉 = 𝐼 ∗ 𝑅   (10)       (10) 

 

Figure 17:  Photograph and scheme of Faraday cups used in MC-ICP-MS analytics  

(modified from ThermoScientific, 2015). 
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Figure 18:  Scheme of HG-MC-ICP-MS analytics for Se isotope measurements (in parts 

modified from ThermoScientific (2015) and NRM (2015)). 

3.2.2 Interferences 

As small deviations in isotope composition were supposed to be measured, 

correction mechanisms as applied for ICP-MS (chapter 3.1.1) were not 

sufficient. Therefore alternative correction or avoidance mechanisms must 

be found. Se has a variety of isobaric interferences derived from various 

sources. Table 2 lists all interferences on Se masses with single isotope 

abundances of >0.1 % (according to Berglund and Wieser (2011)). It is 

reasonable to differentiate between those interferences, which are caused 

by the sample matrix or contaminants from the preparation procedure, 

which can be filtered out and/or avoided, and those, which are caused by 

process reagents, e.g. HCl, Ar, Kr, hydrides. The latter are essential for 

analytics and therefore must be corrected.  The first ones are highly critical 

if they remain residual in the samples, because they do appear neither in 

the background signal nor in the standard solutions and therefore can 

directly impact results. Measures to avoid contamination are described in 

chapter 4.1 and methods to filter out potential interferences in chapter 4.4. 
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The second ones can be widely corrected by background subtraction (on 
peak zero). Substantial interferences require additional mathematical 
correction via simultaneously detected monitor masses, because plasma 
fluctuations between background and sample measurements might have a 
significant influence on them. Mathematical corrections using background 
signal and monitor masses are given in chapter 3.2.8. 

Table 2: Interferences on Se and monitor masses measured on Faraday cups at MC-ICP-MS. 
All potential elemental or molecular interferences with natural isotope abundances 
of >0.1 % are considered (no regard of 17O, 36S and 40K containing molecules). OPZ – 
on peak zero (chapter 3.2.8.1), Pur. – purification (chapter 4.4), HG (chapter 3.2.6), 
calc. – calculations, mathematical correction (chapter 3.2.8). 

mass 
Target 
isotope 

Interferences 

from process reagents 
 

 
from sample or contamination 

ArAr Kr 
ArCl, 
ClCl 

Hyd-
rides 

Ge Oxides other 
++ 
charged 

72 72Ge 
36Ar 
36Ar  

35Cl37Cl 
  

56Fe16O, 
54Fe18O, 

40Ca16O16O 

40Ar32S 
144Nd++ 
144Sm++ 

73 73Ge 
  

38Ar35Cl 

72GeH, 
36Ar36

ArH 
 

57Fe16O, 
55Fe18O, 
55Mn18O 

40Ar33S 146Nd++ 

74 74Se 
38Ar36

Ar  
37Cl37Cl 73GeH 74Ge 

58Ni16O, 
58Fe16O, 
56Fe18O, 

40Ca16O18O, 
42Ca16O16O 

40Ar34S, 
39K35Cl 

148Sm++ 

148Nd++ 

76 76Se 

40Ar36

Ar  
38Ar38

Ar 
  

75AsH 76Ge 

60Ni16O, 
58Ni18O, 

44Ca16O16O 

39K37Cl, 
36Ar40Ca, 

41K35Cl 

152Sm++ 
152Gd++ 
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77 77Se 
  

40Ar37Cl 

76GeH, 

40Ar36

ArH, 
38Ar38

ArH, 
76SeH 

 
59Co18O 

38Ar39K, 
36Ar41K 

154Gd++ 
154Sm++ 

78 78Se 
40Ar38

Ar 
78Kr 

 
77SeH 

 

60Ni18O, 
62Ni16O 

38Ar40Ca, 
41K37Cl 

156Dy++, 
156Gd++ 

80 
40Ar 
40Ar 

40Ar40

Ar 
80Kr 

 
79BrH 

 

64Zn16O, 
64Ni16O, 

44Ca18O18O, 
32S16O16O16O 

40Ar40Ca 
160Dy++ 
160Gd++ 

81 
40Ar40A

rH    
80SeH 

 

65Cu16O, 
63Cu18O, 

33S16O16O16O 

81Br, 
36Ar45Sc, 

40Ar41K 

162Er++  
162Dy++ 

82 82Se 
 

82Kr 
 

81BrH 
 

66Zn16O, 
64Zn18O, 

32S16O16O18O 

36Ar46Ti, 
40Ar42Ca 

164Dy++ 
164Er++ 

83 82SeH 
 

82Kr 
   

67Zn16O, 
65Cu16O 

38Ar45Sc, 
36Ar47Ti, 
40Ar43Ca 

166Er++ 

Interference 
correction 

OPZ, 
calc 

OPZ OPZ calc 
Pur, 
calc 

Pur., HG Pur, OPZ Pur, HG 

3.2.3 Cup configuration 

The cup configuration defines the spatial distribution of the movable Fara-
day cups and therefore the masses detected. They include Se masses and 
monitor masses for interference correction. Cup configuration and its 
intentions are summarized in Table 3. Considering the width of the Faraday 
cups (1.78 mm), they can gradually be moved to the right position using the 
Neptune monitoring software. Four out of six Se masses (74Se, 77Se, 78Se and 
82Se) were measured for Se isotope ratios in samples and Double Spike 
correction (chapters 3.5.7 and 3.5.8). 76Se was left out because of its high 
and superimposing interferences of 76Ge, 40Ar36Ar and 38Ar38Ar as well as 
possibly 75AsH. As Ge was one of the most affecting interferences (Table 2), 
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two masses were monitored to measure not only Ge concentrations, but 
additionally the instrumental mass bias of Ge for the most valid correction. 
Mass 80 was monitored mainly for 40Ar40Ar to quantify and correct all 
interferences by all Ar dimers. Mass 81 was measured with the aim of 
40Ar40ArH quantification to correct interferences by ArAr hydrides. Mass 83 
was detected to quantify 82SeH, thereby enabling Se and Ge hydride correc-
tion with HG rates of Ge and Se assumed to be equal. Details on mathemati-
cal interference correction are given in chapter 3.2.8. Signal amplifiers with 
a resistivity of 1011 Ohm were allocated to all masses except mass 80, which 
had a lower amplifier of 1010 Ohm in order to avoid instrumental damage by 
the particularly high 40Ar40Ar signal, and 83, which was assigned to a strong-
er one of 1012 Ohm because of its low raw signal.  
Before starting measurement series, a gain correction was conducted, which 
artificially adds tension on the cups and measures the outcomes to control 
the signal intensity and - if necessary - includes gain factors.  

Table 3:  Cup configuration applied for Se isotope analytics with HG-MC-ICP-MS 

Cup L4 L3 L2 L1 C H1 H2 H3 H4 
Mass 72 73 74 77 78 80 81 82 83 
Target 
Iso-
tope 

72Ge 73Ge 74Se 77Se 78Se 
40Ar40Ar 

80Se 

1H40Ar40Ar 
1H80Se 

82Se 1H82Se 

pur-
pose 

Ge  
correction 

Mass bias 
correction 

(Double 
Spike) 

smp 
Se 

Ar 
correc-

tion 

Ar hydride 
correction 

smp 
Se 

Hy-
dride 

correc-
tion 

3.2.4 Signal optimization 

To ensure stable and precise mass detection, signals must be tuned in 
advance. Gas flows (sample Ar, additional Ar) as well as torch and lens 
positions (Figure 18) were adjusted and optimized before every measure-
ment series. A general enhancement of signal strength and stability was 
tried by (de-) activating the guard electrode and changing the plasma power 
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(radio frequency (RF)). The first approach led to a significant increase of the 
signal-to-noise ratio (S/N), which is why the activated guard electrode was 
maintained. Cold plasma (950 W) resulted in lower S/N as plasma at 1200 W 
and 1350 W with similar S/N. As plasma fluctuations usually increase with 
temperature, which in turn is more or less proportional to RF power, 
1200 W was chosen for the following measurements.  
Testing several cup configurations with pure Se solution, high interferences 
were observed on masses 75 and 77, which were assumed to be an indica-
tion for ArCl (40Ar35Cl, 40Ar37Cl) interferences induced by the use of HCl as 
reagent. The replacement of 0.2M HCl by 0.2M HNO3 significantly reduced 
the signals on Se masses, but did not decrease the interferences respectively 
the S/N (Appendix IV, Table IV-1). Therefore their origin from ArCl is unlikely. 
Instead they probably are caused by ArAr hydrides (Table 2), which could 
later be suppressed by CH4 and, if necessary, mathematically corrected 
(chapters 3.2.5 and 3.2.8.1). Signal reduction might have been caused by 
lower stability of Se(IV) in HNO3 than in HCl. It was therefore advantageous 
to retain HCl as process reagent and sample matrix, the Se(IV) stability was 
at optimum with a molarity of 2M HCl, which was maintained for the further 
analytical procedure (chapter 3.2.7). All data derived from these tests are 
listed in Appendix IV (Table IV-1).  

3.2.5 Methane injection 

As described in chapter 2.3.1, the high ionization potential and therefore 
low analytical sensitivity of Se as well as various sources of interferences 
remain challenging. Guo et al. (2013) reported a major extent reduction in 
the formation of hydrides, Ar dimers, metal oxides and double charged rare 
earth elements with supplementary injection of methane (CH4) into the 
plasma while measuring Se concentrations in biological samples using  
ICP-MS. Furthermore, the sensitivity concerning Se increased by factor 3. 
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Tests with CH4 injection in Se isotope analytics resulted in significant im-

provements of signal strength, stability and interference reduction, which is 

why this technique was applied in this study for Se isotope determinations 

(Figure 18).  

3.2.6 Hydride generation 

HG was used as sample introduction system instead of liquid injection 

(Figure 18). This technique has already been applied for Se isotope determi-

nations by Rouxel et al. (2002) and uses the characteristic of Se to form 

gaseous hydrides in its most reduced form Se(-II) when a sufficient presence 

of H
+
 is given. Se hydrides were generated according to Equation (11) (ac-

cording to Fitzpatrick et al., 2009): 

4 𝐻2𝑆𝑒𝑂3(𝑎𝑞) + 3 𝐻𝐶𝑙(𝑎𝑞) +  3 𝑁𝑎𝐵𝐻4(𝑎𝑞)  → 4 𝐻2𝑆𝑒(𝑔) + 3 𝐻3𝐵𝑂3(𝑎𝑞) +

3 𝐻2𝑂 + 3 𝑁𝑎𝐶𝑙(𝑎𝑞)    (11) 

As selenate (Se(VI)) does not take part in the reaction, each sample was pre-

reduced to a full transformation of Se into selenite (Se(IV)) by 4M HCl and 

diluted to 2M HCl afterwards, where selenite is stable in H2SeO3 molecules 

(Olin et al., 2005; Takeno, 2005). Sodium borohydride granulate (NaBH4) was 

solved in H2O (2.4 g L
-1

) and stabilized at pH 11 with 0.1M NaOH, 2M HCl was 

separately provided. A system of tubes connected to a peristaltic pump 

continuously merged sample, NaBH4 and HCl to produce Se hydrides accord-

ing to Equation (11). The tubing systems led the reagents into a loop (to 

provide sufficient reaction time) and afterwards into a gas-liquid separator 

(to separate gaseous H2Se from the residual sample and reaction products) 

(Figure 18).  

More common liquid sample injection systems need additional energy for 

the evaporation, which lowers the plasma temperature and therefore the 

ionization rates. As the low ionization rates of Se are a limiting factor, HG 

keeps the plasma temperature high and thereby enhancing Se ionization 

rates compared to liquid injection. Additionally residual matrix elements and 
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process reagents are filtered out by the HG process, which decreases the 

interference potential. Disadvantages such as the remaining transport of 

other hydride forming elements (As, Ge) and challenges concerning signal 

stability could be compensated by thorough sample purification, methane 

injections and accurate Ge correction. That is why on-line HG was chosen as 

the most suitable sample introduction system.  

3.2.7 Double Spike 

A variety of Se related processes during sample preparation and analytical 

measurement might induce artificial Se isotope fractionation in varying 

extents: (incomplete) ionization, reactive transport within the plasma, 

sorption, evaporation, incomplete Se recovery etc. In order to analytically 

separate these isotope fractionations from naturally occurring ones, the 

Double Spike correction method was applied (Compston and Oversby, 1969; 

Heuser et al., 2002; Rudge et al., 2009, Johnson et al., 1999; Zhu et al., 

2008b and others (Figures 14 and 15)). The Double Spike is a Se standard 

solution highly enriched in two selected isotopes of low natural abundance, 

in this case 
74

Se and 
77

Se (method after Zhu et al., 2008b). This solution must 

be added to the sample in a very early preparation stage and fully equili-

brated with the sample-Se. Assuming the Double Spike-Se is affected from 

artificial fractionation processes in an equal extent as the sample-Se, frac-

tionations taking place after Double Spike addition can be approximated and 

corrected mathematically. Prerequisite is the knowledge of the isotope 

composition of the Double Spike and its proportion within total-Se (Figure 19) 

(Compston and Oversby, 1969; Heuser et al., 2002).  By having a fixed and 

known 
74

Se/
77

Se isotope ratio in the Double Spike solution, the instrumental 

mass bias can be derived from the sample-Double Spike mixture, and subse-

quently from the sample. Afterwards this can be used to correct the instru-

mental output in order to get the original Se isotope composition of the 

sample, respectively its deviation from a certain standard, defined as δ
82

Se 

(Equation (6)) (Figure 19 - reduction and inversion). Based on this data 

processing (chapter 3.2.8), the instrumental output values were differenti-
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ated into an instrumental part (βinstr,Se) induced by analytics and sample 

preparation and into a natural part (βnat,Se) induced by the environmental 

processes aimed at. Figure 19 illustrates the Double Spike method. Further 

theoretical background is given e.g. by Compston and Oversby (1969) and 

Rudge et al. (2009).  

 

Figure 19:  Schematic diagram of the Double Spike technique for the 74Se/77Se Double Spike 

(modified from Rudge et al., 2009). 

The inversion calculations of the instrumental output signal (x) requires four 

Se isotopes in order to gain the original isotope composition of the Double 

Spike-sample mix (X) and the sample (N) (Figure 19). Based on the remarks 

in chapter 3.2.3, 
74

Se, 
77

Se, 
78

Se and 
82

Se were chosen for the inversion. 

According to Rudge et al. (2009), who set up a MATLAB based model on 

Double Spikes in several isotope systems, the optimum proportion of 
74

Se/
77

Se Double Spike with the minimum error probability was 52 % 
74

Se 

and 48 % 
77

Se. A Double Spike-/sample-Se proportion of 1:1 was calculated 

as the optimum with a relatively wide tolerance range. That is why moder-
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ate over- or under-spiking is less critical. Figure 20 shows the dependency of 

error dimension on the proportion of 
74

Se and 
77

Se within the Double Spike 

as well as the Se proportion of the Double Spike in the sample Double Spike 

mixture, exemplarily for inversion with 
74

Se, 
76

Se, 
77

Se and 
82

Se.  

        

 

Figure 20:  Graph of error dimension depending on the 74Se/77Se mix in the Double Spike and 

the Double Spike/sample mix; calculated with MatLab (provided by John Rudge, 

personal communication) (exemplarily for inversion with 74Se, 76Se, 77Se and 82Se). 
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The Double Spike solution was produced from 8.01 mg of enriched  

(99.1 ±0.2 %) 
74

Se powder and 17.07 mg of enriched (99.2 %) 
77

Se (both 

produced by Chemotrade, Germany) each separately taken up in 2 mL conc. 

HNO3 and heated up for 2 h at 95°C on a heating plate to ensure complete 

solution. Both 
74

Se and 
77

Se concentrates were diluted to 0.1M HNO3  

stock solutions with Se concentrations of 16.045 µg g
-1

 (
74

Se) respectively 

33.910 µg g
-1

 (
77

Se). To create a mixture meeting the requirements calculat-

ed by Zhu et al. (2008b) and Rudge (2013) (Figure 20), a Double Spike solu-

tion of 52 % 
74

Se + 48 % 
77

Se, which equals 324.64 g of 
74

Se stock solution 

and 141.35 g of 
77

Se stock solution, were weighted and mixed. The mixture 

was equilibrated overnight and diluted to a 10 ppm (10.004 µg g
-1

) working 

solution in 0.1M HNO3 matrix. The isotope composition of the Double Spike 

solution used in this study is given in Figure 21, its deviation from the opti-

mum distribution was due to slight impurities in the enriched Se isotope 

powder. Those are included into inversion calculations and therefore do not 

affect the correction mechanism significantly, as shown for lead (Pb) isotope 

analytics by Compston and Oversby (1969).       

 

Figure 21:  Se isotope composition of the Double Spike solution that is added prior to sample 

preparation to correct any instrumental mass bias and preparation caused “artifi-

cial” Se isotope fractionation (Chemotrade certificate, 2012). 
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Se species composition of the Double Spike 

Selenate and selenite are highly differing regarding their reactivity as well as 

the rate of oxygen exchange. Selenate is very stable and underlies an excep-

tionally low oxygen exchange, whereas selenite is very reactive and has high 

oxygen exchange rates (Kaneko and Poulson, 2012). That is why isotopic 

equilibration of Double Spike- and sample-Se requires Se to be available in 

the same species. To monitor Se species prevalence, their availability in the 

Double Spike was measured with IC. Selenate and selenite were the only 

species expected in the solution due to its purity, the HNO3 matrix and oxic 

conditions (Takeno, 2005). Because the IC column was not suitable for Se 

oxyanions, the determination was made qualitatively by comparison to high 

concentrated pure selenate and selenite solutions with additional doping of 

the Double Spike solution with selenite. To examine the stability of the 

Double Spike working solutions that were opened several times during 

experimental phases, two Double Spike solutions – both derived from the 

stock – were compared: one had been in use for 1.5 years (old), the other 

was freshly taken from the stock (new). Finding a compromise between 

resolving the disturbances by high nitrate concentrations due to HNO3 

matrix and low Se concentrations compared to frequent anions, dilution 

factors 2, 10 and 50 were tested. 

The results are given in Figure 22. They show that the very dominant – 

effectively the exclusive – species was selenite. No selenate peak was 

detectable, neither in the old nor in the new solution. This indicates the high 

stability of selenite in this matrix. On the other hand, the selenite peak could 

clearly be identified with the help of selenite doping and detected in the 

Double Spike solution as the only anion available despite of nitrate and 

chloride as process and matrix reagents. A difference between old and new 

Double Spike solution could not be detected, which indicates a high Se 

species stability. Based on this knowledge, standard- and sample-Se was 

fully transformed into selenite before Double Spike adding. Standards and 

samples were additionally pre-reduced together with the Double Spike as it 

was part of sample preparation anyway.  
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Figure 22:  Se species determinations in the Double Spike solution with IC – the highest peak 

was caused by nitrate from the HNO3 matrix, the only other peak was proved to be 

selenite by doping the Double Spike with pure selenite solution in high concentra-

tion. 

NIST3149 

NIST3149 is a standard certified on Se isotope composition commonly used 

within Se isotope analytics. It was used as the basis for method calibration, 

validation and δ
82

Se calculation of all samples measured. Two diluted 

NIST3149 solutions, differing in Se species (Se(VI) and Se(IV)) were produced 

from the NIST3149 stock solution (10,000 µg g
-1

, 10 % HNO3, solved from 

Se(0)). For Se(VI) 100 µg stock solution were diluted to 499.9 g 0.1M HCl. In 

pure Se solutions with no other counter ions but H
+
, weak HCl stabilizes 

Se(VI), which was assumed to be the dominant species in the stock solution 

due to its strongly oxidizing HNO3 matrix, as HSeO4
-
 or SeO4

2-
. For the 

NIST3149 in Se(IV) 100 µL stock solution were reduced to Se(IV) by adding 

5 mL 6M HCl and heating up at 95°C for 1 h. After cooling down it was 

diluted to 500 g 2M HCl, which stabilizes Se(IV) as H2SeO3(aq) (Dr. Kathrin 

Schilling, personal comment). The Se concentrations in the two NIST solu-

tions were 2.164 µg g
-1

 (Se(VI)) and 2.196 µg g
-1

 (Se(IV)).  
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Double Spike calibration 

The Double Spike solution can be calibrated by determining several Double 

Spike-NIST3149 mixtures with varying proportions (Dodson, 1963; Rudge, 

2009). Knowledge about the Se isotope composition of Double Spike (T) and 

NIST3149 (n) as well as the mixing proportion (λ) (Figure 19) enables a 

calculation of the mixture’s Se isotope composition, which then can be 

compared to the actual Se isotope composition measured and corrected. 

The Double Spike was well calibrated, if the calculated Se isotope composi-

tion of the Double Spike-NIST mixture (Equation (12), left side) equals its 

measured Se isotope composition (x) corrected by the instrumental mass 

bias (Equation (12), right side). Calculations can be performed with other 

isotope pairs as well, if their abundance is significantly above zero (Rudge et 

al., 2009). 

 λ ∗ T + (1 − λ) ∗ n = x ∗ e
−βinstr,Se∗ln (

m( Se74 )

m( Se)77 )

         (12) 

Five solutions with different Double Spike-NIST3149 ratios (λ = 0.5, 0.75, 1, 

1.25, 1.5) with Se concentrations of 10 ppb were made. The mixtures were 

equilibrated and evaporated at 70°C, afterwards taken up in 2M HCl, meas-

ured and processed with the inversion calculations described in chapter 

3.2.8.2. 

3.2.8 Data processing 

For the setup of the Se isotope analytics, standards were measured using 

90 cycles. Afterwards, all samples, standards and blanks were measured in 

40 cycles. Each cycle was corrected and inverted individually and averaged 

afterwards. The target ratio δ
82/76

Se was averaged using a 2*SD filter, which 

excludes all values exceeding the average ± the doubled standard deviation 

range.  
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3.2.8.1 Correction of isobaric interferences 

Isobaric interferences on Se and monitor masses were corrected in four 

steps. Firstly, the blank signals, secondly the Ar dimers, thirdly the hydrides 

and fourthly the Ge induced signals were subtracted from the output (raw) 

signals. All natural isotope abundances and masses used are provided in 

Appendix IV, Table IV-2.  

On peak zero subtraction 

As a first interference correction step the instrumental noise was corrected 

by subtracting blank signals (on peak zero). To include the instrumental 

fluctuations, blank samples were measured before and after each sample, 

the average signal of those two blanks was automatically subtracted by the 

Neptune software (bracketing). High background interferences such as ArAr 

were reduced to a minimum by this; the residuals were corrected as de-

scribed in chapter 3.2.8.1. Furthermore, trace impurities in Ar (e.g. Kr) and 

HCl (e.g. Br) were eliminated by on peak zero subtraction. For a valid trans-

ferability of blank signals on sample background signals, the HCl matrix had 

to be of exactly equal molarity. To ensure this, it derived from one batch for 

all samples, standards and blanks.    

ArAr corrections 

Ar has three stable isotopes, 
36

Ar, 
38

Ar and 
40

Ar, with varying abundances. 

Under plasma conditions, Ar tends to form dimers that interfere with sever-

al Se and monitor masses, in particular on mass 72 (
36

Ar
36

Ar), 74 (
36

Ar
38

Ar), 

76 (
36

Ar
40

Ar and 
38

Ar
38

Ar), 78 (
38

Ar
40

Ar) and 80 (
40

Ar
40

Ar). Any of the five 

masses must be corrected on ArAr interferences before any further calcula-

tions. As 
40

Ar
40

Ar is the most frequent and therefore most stable one, it is 

calculated first by using the signal intensity on mass 80 (Equation (14)) 

corrected by the 
80

Se fraction, calculated from 
82

Se (Equation (13)). The 

determination of the instrumental fractionation factor for Se necessary for 

the calculation of 
80

Se, βinstr,Se, is given in Equation (50).  
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𝑆𝑒80 (𝑐𝑎𝑙𝑐) = (
𝑁𝐼𝑆𝑇𝑎𝑏 𝑆𝑒80 / 𝑁𝐼𝑆𝑇𝑎𝑏 𝑆𝑒82

(𝑚( 𝑆𝑒)/𝑚( 𝑆𝑒))𝛽(𝑖𝑛𝑠𝑡𝑟,𝑆𝑒)8280 ) ∗ 𝐼(82)       (13) 

𝐴𝑟 𝐴𝑟(𝑐𝑎𝑙𝑐) = 4040 𝐼(80) − 𝑆𝑒80 (𝑐𝑎𝑙𝑐)      (14) 

Assuming natural abundances (index ab) of Ar isotopes and dimer preva-

lence, Ar dimers can be calculated on each mass (m) concerned (Equations 

(15), (17), (19) and (21)) and subsequently correct other masses on Ar 

dimers (Equations (16), (18), (20), (22), (23)).  

 
36

Ar
36

Ar on I(72): 

𝐴𝑟 𝐴𝑟(𝑐𝑎𝑙𝑐) =  𝐴𝑟 𝐴𝑟(𝑐𝑎𝑙𝑐) ∗
𝑛𝑎𝑡.𝑎𝑏 𝐴𝑟 𝐴𝑟3636

𝑛𝑎𝑡.𝑎𝑏 𝐴𝑟 𝐴𝑟4040  40403636                    (15) 

𝐼(72)𝑐𝑜𝑟𝑟𝐴𝑟𝐴𝑟 = 𝐼(72) − 𝐴𝑟36 𝐴𝑟36        (16) 

 
36

Ar
38

Ar on I(74): 

𝐴𝑟 𝐴𝑟(𝑐𝑎𝑙𝑐) =  𝐴𝑟 𝐴𝑟(𝑐𝑎𝑙𝑐) ∗
𝑛𝑎𝑡.𝑎𝑏 𝐴𝑟 𝐴𝑟3836

𝑛𝑎𝑡.𝑎𝑏 𝐴𝑟 𝐴𝑟4040  40403836                         (17) 

𝐼(74)𝑐𝑜𝑟𝑟𝐴𝑟𝐴𝑟 = 𝐼(74) − 𝐴𝑟36 𝐴𝑟38     (18) 

 

36
Ar

40
Ar  and 

38
Ar

38
Ar on I(76): 

(𝐴𝑟𝐴𝑟)(𝑐𝑎𝑙𝑐) =76 ( 𝐴𝑟 𝐴𝑟 + 𝐴𝑟 𝐴𝑟)3838 (𝑐𝑎𝑙𝑐) = 4036  

𝐴𝑟 𝐴𝑟(𝑐𝑎𝑙𝑐) ∗
(𝑛𝑎𝑡.𝑎𝑏 𝐴𝑟 𝐴𝑟+𝑛𝑎𝑡.𝑎𝑏 𝐴𝑟38 𝐴𝑟)384036

𝑛𝑎𝑡.𝑎𝑏 𝐴𝑟 𝐴𝑟4040  4040         (19) 

 𝐼(76)𝑐𝑜𝑟𝑟𝐴𝑟𝐴𝑟 = 𝐼(76) − ( 𝐴𝑟 𝐴𝑟 + 𝐴𝑟 𝐴𝑟)3838 (𝑐𝑎𝑙𝑐)4036               (20) 
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38
Ar

40
Ar on I(78): 

𝐴𝑟 𝐴𝑟(𝑐𝑎𝑙𝑐) =  𝐴𝑟 𝐴𝑟(𝑐𝑎𝑙𝑐) ∗
𝑛𝑎𝑡.𝑎𝑏 𝐴𝑟 𝐴𝑟4038

𝑛𝑎𝑡.𝑎𝑏 𝐴𝑟 𝐴𝑟4040  40404038     (21) 

𝐼(78)𝑐𝑜𝑟𝑟𝐴𝑟𝐴𝑟 = 𝐼(78) − 𝐴𝑟38 𝐴𝑟40     (22) 

 
40

Ar
40

Ar on I(80):  

𝐼(80)𝑐𝑜𝑟𝑟𝐴𝑟𝐴𝑟 = 𝑆𝑒(𝑐𝑎𝑙𝑐)80  (Equation (13))  (23) 

Hydride correction 

Se, Ge and ArAr are the critical compounds, tending to form hydrides that 

might remain stable in the plasma and therefore act as isobaric interfer-

ences (Table 2). Methane injection suppressed hydride formation to a 

minimum. The residuals were monitored using masses 81 and 83, and 

hydride correction was optional for high hydride abundances. Hydride 

formations were assumed not to be dependent on the isotope mass, and 

rates of Se and Ge were assumed to be comparable.  

The formation rate of Se and Ge hydrides (HR) was calculated using I(83) 

according to Equation (24). The hydride formation rate of ArAr was deter-

mined via I(81) according to Equation (25).  

𝐻𝑅𝑆𝑒𝐻/𝐺𝑒𝐻 =
𝑆𝑒𝐻82

𝑆𝑒82 =
𝐼(83)

𝐼(82)
      (24) 

𝐻𝑅𝐴𝑟𝐴𝑟𝐻 =
𝐴𝑟 𝐴𝑟40 𝐻40

𝐴𝑟 𝐴𝑟4040 =
𝐼(81)𝑐𝑜𝑟𝑟𝐻

𝐼(80)𝑐𝑜𝑟𝑟𝐴𝑟𝐴𝑟
      (25) 

I(81)corrH is given in Equation (36). The absolute fraction of interfering 

hydrides in the mass signal could then be calculated using HRSeH/GeH via 

Equations (26), (28), (30), (31), (32) and (34), the signals were corrected on 

hydride interferences according to Equations (27), (29), (33), (35) and (37).  
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72
GeH on I(73): 

𝐺𝑒𝐻 = 𝐻𝑅𝑆𝑒𝐻

𝐺𝑒𝐻

∗ 𝐼(73)72     (26) 

𝐼(73)𝑐𝑜𝑟𝑟𝐻 = 𝐼(73) −  𝐺𝑒𝐻74              (27) 

 
73

GeH on I(74): 

𝐺𝑒𝐻 = 𝐻𝑅𝑆𝑒𝐻/𝐺𝑒𝐻 ∗73 𝐼(73)𝑐𝑜𝑟𝑟𝐻     (28) 

𝐼(74)𝑐𝑜𝑟𝑟𝐴𝑟𝐴𝑟/𝐻 = 𝐼(74)𝑐𝑜𝑟𝑟𝐴𝑟𝐴𝑟 − 𝐺𝑒𝐻73    (29) 

 
76

SeH, 
76

GeH, 
36

Ar
40

ArH and 
38

Ar
38

ArH on I(77): 

𝑆𝑒𝐻 = 𝐻𝑅𝑆𝑒𝐻/𝐺𝑒𝐻 ∗76
(

𝑁𝐼𝑆𝑇𝑎𝑏 𝑆𝑒76 / 𝑁𝐼𝑆𝑇𝑎𝑏 𝑆𝑒77

(𝑚( 𝑆𝑒)/𝑚( 𝑆𝑒))𝛽(𝑆𝑒,𝑛𝑎𝑡)7776 )

(𝑚( 𝑆𝑒)/𝑚( 𝑆𝑒))𝛽(𝑆𝑒,𝑖𝑛𝑠𝑡𝑟)7776 ∗ 𝐼(77)𝑐𝑜𝑟𝑟𝐻     (30) 

𝐺𝑒𝐻 =76 𝐻𝑅𝑆𝑒𝐻/𝐺𝑒𝐻 ∗ (
𝑛𝑎𝑡.𝑎𝑏 𝐺𝑒76

𝑛𝑎𝑡.𝑎𝑏 𝐺𝑒73 ) ∗ 𝐼(73)𝑐𝑜𝑟𝑟𝐻    (31) 

(𝐴𝑟𝐴𝑟𝐻) = 𝐴𝑟 𝐴𝑟𝐻403677 + 𝐴𝑟 𝐴𝑟𝐻3838   

=
𝐼(81)𝑐𝑜𝑟𝑟𝐻

𝑛𝑎𝑡.𝑎𝑏 𝐴𝑟 𝐴𝑟𝐻4040 ∗ (𝑛𝑎𝑡. 𝑎𝑏 𝐴𝑟 𝐴𝑟𝐻40 + 𝑛𝑎𝑡. 𝑎𝑏 𝐴𝑟 𝐴𝑟𝐻)383836    (32) 

𝑰(𝟕𝟕)𝒄𝒐𝒓𝒓𝑯 = 𝑰(𝟕𝟕) − 𝑺𝒆𝑯𝟕𝟔 − 𝑮𝒆𝑯𝟕𝟔 − (𝑨𝒓𝑨𝒓𝑯)𝟕𝟕     (33) 

 

77
SeH on I(78): 

𝑆𝑒𝐻77 = 𝐼(77)𝑐𝑜𝑟𝑟𝐻 ∗ 𝐻𝑅𝑆𝑒𝐻/𝐺𝑒𝐻      (34) 

𝑰(𝟕𝟖)𝒄𝒐𝒓𝒓𝑨𝒓𝑨𝒓/𝑯 = 𝑰(𝟕𝟖)𝒄𝒐𝒓𝒓𝑨𝒓𝑨𝒓 − 𝑺𝒆𝑯𝟕𝟕      (35) 
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80
SeH on I(81): 

𝐼(81)𝑐𝑜𝑟𝑟𝐻 = 𝐼(80)𝑐𝑜𝑟𝑟𝐴𝑟𝐴𝑟 ∗  𝐻𝑅𝑆𝑒𝐻/𝐺𝑒𝐻 = 𝑆𝑒(𝑐𝑎𝑙𝑐)80  ∗ 𝐻𝑅𝑆𝑒𝐻/𝐺𝑒𝐻   (36) 

82
SeH on I(83): 

𝐼(83)𝑐𝑜𝑟𝑟𝐻 = 𝐼(82) ∗ 𝐻𝑅𝑆𝑒𝐻/𝐺𝑒𝐻     (37) 

Germanium correction 

As Ge is a very critical element with a variety of potential isobaric interfer-

ences, its instrumental fractionation factor was taken into account to in-

crease the precision of interference correction (Equation (38)). For high Ge 

contents related to Se (
73

Ge/
82

Se > 0.003) the particular Ge fractionation 

factor βinstr,Ge was calculated from I(72) and I(73)corrH, for low Ge contents 

(
73

Ge/
82

Se < 0.003) the calculation of βinstr,Ge was of low reliability and βinstr,Se 

was applied instead (Equation (50)). Ge was then corrected using Equations 

(39) and (40). 

𝛽𝑖𝑛𝑠𝑡𝑟,𝐺𝑒 =
ln (𝑛𝑎𝑡.𝑎𝑏( 𝐺𝑒/ 𝐺𝑒72 )/(𝐼(73)𝑐𝑜𝑟𝑟𝐻/𝐼(72)𝑐𝑜𝑟𝑟𝐴𝑟𝐴𝑟/𝐻))73

ln (𝑚( 𝐺𝑒)/𝑚( 𝐺𝑒))7273           (38) 

 
74

Ge on 
74

Se:  

𝐺𝑒 = 𝐼(73)𝑐𝑜𝑟𝑟𝐴𝑟𝐴𝑟/𝐻 ∗
𝑛𝑎𝑡.𝑎𝑏 𝐺𝑒/𝑛𝑎𝑡.𝑎𝑏 𝐺𝑒7374

(𝑚( 𝐺𝑒)/𝑚( 𝐺𝑒))𝛽(𝑖𝑛𝑠𝑡𝑟,𝐺𝑒/𝑆𝑒)7374
74        (39) 

 𝑰(𝟕𝟒)𝒄𝒐𝒓𝒓𝑨𝒓𝑨𝒓/𝑯/𝑮𝒆 = 𝑰(𝟕𝟒)𝒄𝒐𝒓𝒓𝑨𝒓𝑨𝒓/𝑯 − 𝑮𝒆𝟕𝟒                 (40) 

The corrected Se masses needed for inversion are given in Equations (33), 

(35) and (40) (bold equations) as summarized via Equations (41)-(43). In this 

analytical setup, the signal on mass 82 is effectively interference free after 

on peak zero correction and can therefore be defined as analogous to 
82

Se 

(Equation (44)).  
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𝑆𝑒 = 𝐼(74)𝑐𝑜𝑟𝑟𝐴𝑟𝐴𝑟/𝐻/𝐺𝑒
74                (41) 

𝑆𝑒 = 𝐼(77)𝑐𝑜𝑟𝑟𝐻
77     (42) 

𝑆𝑒 = 𝐼(78)𝑐𝑜𝑟𝑟𝐴𝑟𝐴𝑟/𝐻
78     (43) 

𝑆𝑒 = 𝐼(82)82     (44) 

3.2.8.2 Mass bias correction 

Inversion calculations were based on iterative circle calculations automati-

cally conducted by MS Office 2010 Excel with a maximum iteration number 

of 100 and a maximum change of 10
-9

. Key equations (bold) can only be 

approximated iteratively, because they directly depend on each other’s 

parameters. All natural isotope abundancies and masses used are provided 

in Appendix IV, Table IV-2. 

All corrected ratios measured (
74

Se/
78

Se, 
76

Se/
78

Se, 
77

Se/
78

Se, 
80

Se/
78

Se and 
82

Se/
78

Se) were iteratively reduced to separate the 
82

Se/
76

Se and 
82

Se/
78

Se 

ratios in the sample from the added Double Spike and thereby corrected on 

mass bias (Zhu et al., 2008b). The parameter names were chosen in analogy 

to Figure 19: 

βinstr,Se  instrumental fractionation factor 

βnat,Se  natural fractionation factor 

c [ppm] concentration 

m [amu] atomic mass 

M [g] Double Spike or sample mass 

ab relative isotope abundance 

indices 

T Double Spike 

x  Double Spike-sample mix (measured) 

X  Double Spike-sample mix (corrected by instrumental fractionation)    

n NIST3149 

N original sample   
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Equation (45) gives the calculation procedure of the 
74

Se/
77

Se ratio isotopi-

cally fractionated by the instrument including the Double Spike part and the 

sample part. It makes use of the knowledge on original Double Spike isotope 

composition and the natural isotope composition, approached by NIST3149 

and iteratively approximated to the natural sample isotope composition 

(Equation (46)). The factor Q74/77 hereby includes fractionations close to 

natural samples with differing isotope abundances using isotope systems 

that are frequent in natural samples (Equations (47)-(49)). The natural 

fractionation factor βnat,Se is given in Equation (56).  

( 𝑆𝑒/ 𝑆𝑒77 )𝑋 =
(( 𝑆𝑒/ 𝑆𝑒)𝑇+𝑄74/77∗( 𝑆𝑒/ 𝑆𝑒)𝑁)77747774

(1+𝑄74/77)

74         (45) 

(𝟕𝟒𝑺𝒆/ 𝑺𝒆𝟕𝟕 )𝑵 =
(𝟕𝟒𝑺𝒆/ 𝑺𝒆𝟕𝟕 )𝒏

(
𝒎( 𝑺𝒆𝟕𝟒 )

𝒎( 𝑺𝒆𝟕𝟕 )
)𝜷𝒏𝒂𝒕,𝑺𝒆

                    (46) 

𝑄74 =
((78𝑆𝑒/ 𝑆𝑒77 )𝑋−(78𝑆𝑒/ 𝑆𝑒77 )𝑇)

((78𝑆𝑒/ 𝑆𝑒77 )𝑁−(78𝑆𝑒/ 𝑆𝑒77 )𝑋)
                    (47) 

𝑄77 =
((82𝑆𝑒/ 𝑆𝑒77 )𝑋−(82𝑆𝑒/ 𝑆𝑒77 )𝑇)

((82𝑆𝑒/ 𝑆𝑒77 )𝑁−(82𝑆𝑒/ 𝑆𝑒77 )𝑋)
                                 (48) 

𝑄74/77 =
𝑄74+𝑄77

2
                                           (49) 

The instrumental fractionation factor βinstr,Se was calculated using Equa-

tion (50), the instrumental fractionation of all isotope ratios in the mixture 

can then be calculated using this factor (Equations (51)-(53)).  

𝜷𝒊𝒏𝒔𝒕𝒓,𝑺𝒆 =
𝐥𝐧 (

(𝟕𝟒𝑺𝒆/ 𝑺𝒆𝟕𝟕 )𝑿

(𝟕𝟒𝑺𝒆/ 𝑺𝒆𝟕𝟕 )𝒙
)

𝐥𝐧 (
𝒎( 𝑺𝒆𝟕𝟒 )

𝒎( 𝑺𝒆𝟕𝟕 )
)

                    (50) 

(78𝑆𝑒/ 𝑆𝑒77 )𝑋 = (78𝑆𝑒/ 𝑆𝑒77 )𝑥 ∗ (
𝑚( 𝑆𝑒78 )

𝑚( 𝑆𝑒77 )
)𝛽𝑖𝑛𝑠𝑡𝑟,𝑆𝑒            (51) 
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(82𝑆𝑒/ 𝑆𝑒77 )𝑋 = (82𝑆𝑒/ 𝑆𝑒77 )𝑥 ∗ (
𝑚( 𝑆𝑒82 )

𝑚( 𝑆𝑒77 )
)𝛽𝑖𝑛𝑠𝑡𝑟,𝑆𝑒            (52) 

(82𝑆𝑒/ 𝑆𝑒78 )𝑋 =
(82𝑆𝑒/ 𝑆𝑒77 )𝑋

(78𝑆𝑒/ 𝑆𝑒77 )𝑋
= (82𝑆𝑒/ 𝑆𝑒78 )𝑥 ∗ (

𝑚( 𝑆𝑒82 )

𝑚( 𝑆𝑒78 )
)𝛽𝑖𝑛𝑠𝑡𝑟,𝑆𝑒         (53) 

To calculate the isotope composition of the sample (without Double Spike 

fraction) (Equation (54)), 
82

Se/
78

Se was used. This isotope pair was hardly 

available in the Double Spike, but occurs predominantly in natural samples. 

It was necessary to include another factor (Q78) into the calculations to take 

particular abundances in the Double Spike – relative to natural ones – into 

consideration (Equation (55)).  

(82𝑆𝑒/ 𝑆𝑒78 )𝑁 = (82𝑆𝑒/ 𝑆𝑒78 )𝑋 +
(82𝑆𝑒/ 𝑆𝑒78 )𝑋−( 𝑆𝑒/ 𝑆𝑒)𝑇

7882

𝑄78
                        (54) 

𝑄78 = 𝑄74/77 ∗
(78𝑆𝑒/ 𝑆𝑒77 )𝑁

(78𝑆𝑒/ 𝑆𝑒77 )𝑇
             (55) 

The natural fractionation factor (Equation (56)) can be derived from the 

fractionation of 
82

Se/
78

Se in the sample (Equation (54)). The natural isotope 

abundance was hereby approached by NIST3149 and iteratively approxi-

mated to the original sample isotope ratios. The isotope ratios of the sample 

can thereby be calculated (Equations (57)-(63)).  

𝜷𝒏𝒂𝒕,𝑺𝒆 =
𝐥𝐧 (

(𝟖𝟐𝑺𝒆/ 𝑺𝒆𝟕𝟖 )𝒏

(𝟖𝟐𝑺𝒆/ 𝑺𝒆𝟕𝟖 )𝑵
)

𝐥𝐧 (
𝒎( 𝑺𝒆𝟖𝟐 )

𝒎( 𝑺𝒆𝟕𝟖 )
)

               (56) 

(74𝑆𝑒/ 𝑆𝑒77 )𝑁 =
(74𝑆𝑒/ 𝑆𝑒77 )𝑛

(
𝑚( 𝑆𝑒74 )

𝑚( 𝑆𝑒77 )
)𝛽𝑛𝑎𝑡,𝑆𝑒

                                          (57) 

(74𝑆𝑒/ 𝑆𝑒78 )𝑁 =
(74𝑆𝑒/ 𝑆𝑒78 )𝑛

(
𝑚( 𝑆𝑒74 )

𝑚( 𝑆𝑒78 )
)𝛽𝑛𝑎𝑡,𝑆𝑒

             (58) 



3.2  Development of analytical method for Se isotope determinations 

67 

(76𝑆𝑒/ 𝑆𝑒77 )𝑁 =
(76𝑆𝑒/ 𝑆𝑒77 )𝑛

(
𝑚( 𝑆𝑒76 )

𝑚( 𝑆𝑒77 )
)

𝛽𝑛𝑎𝑡,𝑆𝑒

                                                           (59) 

(78𝑆𝑒/ 𝑆𝑒77 )𝑁 =
(78𝑆𝑒/ 𝑆𝑒77 )𝑛

(
𝑚( 𝑆𝑒78 )

𝑚( 𝑆𝑒77 )
)𝛽𝑛𝑎𝑡,𝑆𝑒

                                                  (60) 

(80𝑆𝑒/ 𝑆𝑒77 )𝑁 =
(80𝑆𝑒/ 𝑆𝑒77 )𝑛

(
𝑚( 𝑆𝑒80 )

𝑚( 𝑆𝑒77 )
)

𝛽𝑛𝑎𝑡,𝑆𝑒

                                   (61) 

(82𝑆𝑒/ 𝑆𝑒77 )𝑁 =
(82𝑆𝑒/ 𝑆𝑒77 )𝑛

(
𝑚( 𝑆𝑒82 )

𝑚( 𝑆𝑒77 )
)

𝛽𝑛𝑎𝑡,𝑆𝑒

                                       (62) 

(82𝑆𝑒/ 𝑆𝑒76 )𝑁 =
(82𝑆𝑒/ 𝑆𝑒76 )𝑛

(
𝑚( 𝑆𝑒82 )

𝑚( 𝑆𝑒76 )
)𝛽𝑛𝑎𝑡,𝑆𝑒

                            (63) 

From the calculated original isotope ratios in the sample N, the relative 

abundance of 
77

Se was calculated using all ratios (Equation (64)). All other 

abundances could be derived from there (Equations (65)-(69)).  

𝑎𝑏 𝑆𝑒𝑁
77 =

1

((74𝑆𝑒/ 𝑆𝑒77 )𝑁+(76𝑆𝑒/ 𝑆𝑒77 )𝑁+(78𝑆𝑒/ 𝑆𝑒77 )𝑁+(80𝑆𝑒/ 𝑆𝑒77 )𝑁+(82𝑆𝑒/ 𝑆𝑒77 )𝑁+1)
      

 (64) 

𝑎𝑏 𝑆𝑒𝑁 =74 (74𝑆𝑒/ 𝑆𝑒77 )𝑁 ∗ 𝑎𝑏 𝑆𝑒𝑁
77                                           (65) 

𝑎𝑏 𝑆𝑒𝑁 =76 (76𝑆𝑒/ 𝑆𝑒77 )𝑁 ∗ 𝑎𝑏 𝑆𝑒𝑁
77                                               (66) 

𝑎𝑏 𝑆𝑒𝑁 =78 (78𝑆𝑒/ 𝑆𝑒77 )𝑁 ∗ 𝑎𝑏 𝑆𝑒𝑁
77                                                   (67) 

𝑎𝑏 𝑆𝑒𝑁 =80 (80𝑆𝑒/ 𝑆𝑒77 )𝑁 ∗ 𝑎𝑏 𝑆𝑒𝑁
77                 (68) 

𝑎𝑏 𝑆𝑒𝑁 =82 (82𝑆𝑒/ 𝑆𝑒77 )𝑁 ∗ 𝑎𝑏 𝑆𝑒𝑁
77           (69) 
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The isotope ratios could also be described by the commonly used δ, which is 

defined as the deviation of the sample from NIST3149 concerning a particu-

lar isotope ratio, expressed in ‰ (Equation (6)). Equations (70)-(73) give the 

calculations of δ for each isotope ratio. The δ
82

Se/
76

Se ratio (bold) is the one 

most commonly published in literature and used in this study (Equation 

(73)). It is analogous to Equation (6).  

𝛿 𝑆𝑒/ 𝑆𝑒 77 [‰] = (
( 𝑆𝑒/ 𝑆𝑒)𝑁

7774

( 𝑆𝑒/ 𝑆𝑒)𝑛
7774 − 1) ∗ 100074                 (70) 

𝛿 𝑆𝑒/ 𝑆𝑒 77 [‰] = (
( 𝑆𝑒/ 𝑆𝑒)𝑁

7778

( 𝑆𝑒/ 𝑆𝑒)𝑛
7778 − 1) ∗ 100078                     (71) 

𝛿 𝑆𝑒/ 𝑆𝑒 77 [‰] = (
( 𝑆𝑒/ 𝑆𝑒)𝑁

7782

( 𝑆𝑒/ 𝑆𝑒)𝑛
7782 − 1) ∗ 100082                                           (72) 

𝜹 𝑺𝒆/ 𝑺𝒆 𝟕𝟔 [‰] = 𝜹 𝑺𝒆𝟖𝟐 [‰] = (
( 𝑺𝒆/ 𝑺𝒆)𝑵

𝟕𝟔𝟖𝟐

( 𝑺𝒆/ 𝑺𝒆)𝒏
𝟕𝟔𝟖𝟐 − 𝟏) ∗ 𝟏𝟎𝟎𝟎𝟖𝟐            (73) 

Equation (74) gives the atomic weight of Se in the sample calculated via the 

isotope masses and abundances. 

𝑚(𝑆𝑒)𝑁

= 𝑚( 𝑆𝑒) ∗ 𝑎𝑏 𝑆𝑒𝑁 + 𝑚( 𝑆𝑒) ∗ 𝑎𝑏 𝑆𝑒𝑁 +7676 𝑚7474 ( 𝑆𝑒) ∗ 𝑎𝑏 𝑆𝑒𝑁
7777  

+ 𝑚( 𝑆𝑒) ∗ 𝑎𝑏 𝑆𝑒𝑁 +7878 𝑚( 𝑆𝑒) ∗ 𝑎𝑏 𝑆𝑒𝑁 +8080 𝑚( 𝑆𝑒) ∗ 𝑎𝑏 𝑆𝑒𝑁
8282      (74) 

The Se concentration of the sample can be calculated according to Equation 

(75). M(T) and M(N) are the weights of Double Spike and sample mixed at 

the beginning. 

𝑐(𝑆𝑒)𝑁[𝑝𝑝𝑚] =
(𝑐(𝑆𝑒)𝑇∗ 𝑀(𝑇)∗𝑎𝑏 𝑆𝑒78

𝑇)∗

𝑚(𝑆𝑒)𝑁
𝑚(𝑆𝑒)𝑇

∗𝑄78

𝑎𝑏 𝑆𝑒𝑁
78

𝑀(𝑁)
               (75) 
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4 Producing precise and valid 
Se isotope data by 
developing individual sample 
treatment methods 

The application of Se isotope analytics (chapter 3.2) to plant and phytoagar 

samples that were derived from Minimum Parameter cultivation setups 

(chapter 5) requires previous sample treatment. No methods regarding the 

demands of those matrices with reference to Se isotope analytics were 

published yet. That is why applied methods had to be adapted and new 

ones had to be developed in order to meet the challenges occurring with 

organic rich samples to gain precise and valid Se isotope data. Subject of 

chapter 4 is the evaluation of existing and new methods and, as a conse-

quence, the development of a comprehensive procedure for both sample 

types.   

4.1 Purity and cleaning procedures 

Trace element analytics in general and Se isotope analytics in particular 

require high purity of reagents, equipment and workspace to avoid Se as 

well as other critical contamination. As described in chapters 2.1.1 and 

2.3.1.1, Se has adhesive properties and therefore tends to stick onto surfac-

es in varying extents, dependent on Se species and surface material. Particu-

larly if Se amounts are at trace level, low contaminations can have high 

impacts on the reliability of the results. Especially the use of the Double 

Spike might lead to isotopic shifts even at low Se contamination level. This 

makes the avoidance of Se blanks and therefore sufficient cleaning proce-

dures essential. Furthermore the applicability of an open laboratory for 

sample preparation was tested. If no clean laboratory was needed, the 
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entire analytical process was simplified and therefore of improved applica-

bility for this and further studies.  

Within this study there was an exclusive application of suprapure grade 

acids. For the required solid chemicals, only the purest grade available was 

taken. In-house produced chemicals or those with lack of certified trace 

element contents were digested and tested on main and critical elements 

using ICP-MS. A list of all chemicals and reagents used is provided in Appen-

dix I. 

The choice of the material for liquid handling and sample storage is an 

important factor to ensure a working environment with very little contami-

nation. Thorough and individual cleaning procedures that remove contami-

nants, while not influencing surface properties, are additionally mandatory 

to retain high quality as well as a clean workspace. Perfluoroalkoxy alkane 

polymer (PFA) was the preferred material for acid and sample containers, 

because it has a repelling surface that ensures full sample recovery and no 

residuals. Furthermore it is both acid and heat resistant (>320°C) enabling 

cleaning with boiling acid (AHF, 2014). If the use of PFA material was not 

possible or applicable, glass (borosilicate or DURAN) was preferred, because 

it has a low adhesive affinity to Se and it is also resistant to heat and acid. 

Concentrated and double-distilled HNO3 was used for all cleaning proce-

dures, because – besides of general contaminant solution – it tends to 

oxidize Se and therefore easily mobilizes it from the surfaces. All PFA beak-

ers and quartz vessels were rinsed with H2O (Millipore), flushed with Muca-

sol (1 %), wiped out and rinsed again. Then they were stored in 5 % HNO3 in 

a PFA flange container and put on a heating plate (200°C) for five days. After 

cooling down the HNO3 was removed, each of the beakers was rinsed with 

H2O and stored in H2O for two more days. Afterwards they were dried at 

flying air. Scaling beakers, vacuum flasks and ceramic Büchner funnels used 

for cultivation experiments and phytoagar extraction were thoroughly 

rinsed with H2O, 5 % HNO3 and H2O again. Each Se species and concentra-

tion had its own equipment to minimize contamination.  

One-way polyethylene (PE) containers (Patho beakers, centrifuge tubes) 

were rinsed with H2O and dried before usage. Contamination from produc-



4.1  Purity and cleaning procedures 

71 

tion and storage (e.g. dust) could be removed by this. Se plays a minor role 

in this context. Multiway PE, polypropylene (PP) or polystyrene (PS) equip-

ment (magenta boxes, minicolumns, tweezers) tended to retain Se if exclu-

sively rinsed with H2O and did not tolerate HNO3 boiling. Magenta boxes and 

couplers were particularly affected by Se traces due to Se volatilization 

during plant cultivation and the affinity of organic volatile Se species to stick 

to plastic surfaces. They were rinsed several times with H2O and stored in  

5 % HNO3 for five days at room temperature. Afterwards they were thor-

oughly rinsed with H2O again and dried at flying air.  

Minicolumns were rinsed with H2O before first usage. After usage the 

packing material was fully removed. Thiol cellulose powder (TCP) could 

easily be flushed out with H2O, whereas AG1-X8 resin was dried at flying air 

for several days and then could simply be shaken out afterwards (packing 

materials described in chapter 4.4.1). The PE frits were blown out of the 

columns by compressed filtered air, and columns, frits and the adjacent caps 

as well as tips (if used) were rinsed separatedly with H2O several times. They 

were stored in 10 % of an ethanol-isopropanole mixture and mechanically 

shaken for 30 min. Afterwards they were rinsed with H2O and stored in 5 % 

HNO3 for five days, afterwards stored in H2O for another two days, rinsed 

again and dried at flying air. Detailed cleaning instructions for all materials 

used are provided in Appendix II.  

The entire sample preparation was performed in a laboratory hood, which 

was exclusively used for sample preparation and evaporation. It was cleaned 

thoroughly with detergents, 5 % HNO3 and H2O before and after every 

experimental series. A metal free heating plate (AHF) and particular equip-

ment was used. It remained within the hood during the experiments and 

cleaned according to chapter 4.1. Process steps outside the hood (digestion, 

shaking, centrifugation, fridge storage) were exclusively done in closed 

containers. 

To monitor the contamination potential of the work space, blanks were 

taken on a regular basis. For this purpose 1 % HNO3 in an open beaker was 

placed into the hood during preparation and evaporation phase (5-6 days). 

Afterwards it was measured for critical elements with ICP-MS. Table 4 shows 
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the hood blanks at three dates within the project timeframe compared to 

analytical blanks used in ICP-MS measurements in the ISO 1000 clean labor-

atory at AGW.  

Table 4:  Workspace blanks – 1 % HNO3 in hood for 5-6 days (separation procedure + 

evaporation of all samples) at three times during the experimental phase compared 

to analytical blanks (1 % HNO3) used in the ICP-MS clean laboratory at AGW/KIT  

(ISO 1000), both measured with ICP-MS 

Element 

concentrations 

[µg L-1] 

ISO 1000 

clean lab 

blank 

(n=10) 

workspace blanks (n=1) 

11/2012 10/2013 07/2014 

Na 2.24 ±0.81 25.8 37.3 20.1 

Mg 0.11 ±0.04 14.8 23.4 11.5 

Al 0.16 ±0.07 25.5 20.4 20.9 

Ca 2.20 ±0.86 89.5 261 106 

Cr 0.00 ±0.09 2.95 0.19 0.05 

Fe 0.09 ±0.00 46.5 17.3 15.3 

Co 0.00 ±0.03 0.02 0.02 0.00 

Ni 0.02 ±0.00 0.47 0.30 0.00 

Cu 0.03 ±0.01 1.44 2.03 0.80 

Zn 0.36 ±0.01 3.65 8.42 3.90 

Ge 0.00 ±0.01 <0.003 <0.003 <0.003 

As 0.00 ±0.00 0.08 <0.01 <0.007 

Se 0.04 ±0.00 <0.08 <0.06 <0.06 

 

As expected, the air in the exhauster within the open laboratory contains 

ubiquitary elements in measurable amounts, e.g. Ca, Fe, Zn. Regarding the 

accumulation time of 5-6 days, concentrations are low in comparison to the 

process blanks listed in Table 5. Exceptionally critical elements such as Ge, 

As and Se are in the range or marginally above the analytical blank used in 

the clean lab.  
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Table 5 shows process blanks from the three purification procedures de-

scribed in chapter 4.4. The blanks were processed through all purification 

steps, respectively, and measured on main and critical elements using  

ICP-MS afterwards. However, the blanks are an addition of reagent blank, 

equipment blank and workspace blank (chapter 4.1).  

Table 5:  Process blanks derived from purification methods (A), (B) and (C) measured with 

ICP-MS (raw data available in Appendix IV, Tables IV-6 to IV-8) 

Element concen-

trations 

[µg L-1] 

Method (A) 

(anion exchange) 

(n=6) 

Method (B) 

(thiol retention) 

(n=3) 

Method (C) 

(hydride separation + 

anion exchange) (n=2) 

Na 48.5 ±46.1 90.8 ±40.4 1.57 ±0.13 

Mg 5.65 ±3.34 23.9 ±0.45 3.39 ±0.76 

Al 9.41 ±5.44 21.3 ±6.11 3.18 ±0.18 

Ca 50.7 ±27.5 918 ±492 31.1 ±9.81 

Cr 0.45 ±0.12 0.32 ±0.02 8.80 ±0.31 

Fe 12.1 ±8.07 12.6 ±4.68 1.77 ±0.34 

Co 0.03 ±0.01 0.01 ±0.00 0.06 ±0.01 

Ni 0.48 ±0.43 0.35 ±0.05 38.2 ±5.14 

Cu 0.37 ±0.18 0.80 ±0.04 0.24 ±0.00 

Zn 6.24 ±2.93 58.5 ±28.1 1.94 ±0.80 

Ge 0.01 ±0.01 0.11 ±0.03 <0.003 

As 0.11 ±0.08 0.36 ±0.16 0.05 ±0.00 

Se 0.16 ±0.04 0.46 ±0.31 <0.1 

 

The comparably low blank level is a result of the thorough cleaning proce-

dures described in this chapter. Their necessity became obvious due to 

exceptionally high Se process blanks of up to 10 % of sample Se content  

(25-38 µg L
-1

) observed in reused columns within method (B) purification 

(Appendix IV, Table IV-7). Minicolumns were washed and rinsed thoroughly, 

but only H2O based and without frit removal. Se was probably adsorbed to 
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the column surfaces and retained in frit pores and interstices. They could be 

removed by treatment according to chapter 4.1. At first, magenta boxes 

were just thoroughly rinsed with H2O after usage. After a first reuse the 

accumulation of Se in phytoagar and plants of the Se free box was observed. 

About 5 % of the lowest concentration added was determined in plants and 

phytoagar samples (Appendix IV, Table IV-15). As no Se was added to this 

box, it probably originated from residuals adsorbed to the surfaces particu-

larly former volatile phases. Subsequently, pure H2O did not desorb them 

while extended exposure to HNO3 oxidized and remobilized the Se. This 

problem was not experienced again afterwards. 

Open laboratories are applicable for sample preparation for Se isotope 

analytics with some limitations. Ubiquitary element concentrations are 

elevated compared to clean laboratories, which especially applies for critical 

metals such as Fe and Zn. They must be kept within acceptable ranges by 

keeping adequate cleaning instructions, using suprapure reagents as well as 

monitoring hood and process blanks. For blank tolerance checks concerning 

the analytical method see chapter 4.5.1. The more important problem is the 

potentially high Se blank due to its adhesive properties and high impacts on 

Se isotope ratios by the Double Spike usage. Through adequate choices of 

material and cleaning procedures the Se blanks can be kept at a low level. 

HNO3 is the most suitable cleaning reagent, because it oxidizes and mobiliz-

es Se, therefore being able to desorb Se residuals from surfaces. Additionally 

it is suitable to solve and remove most critical metals to a high extent.  

4.2 Phytoagar treatment 

Phytoagar is a semi-solid growth medium of gelatinous consistency fre-

quently used in biological cultivation experiments and applied within the 

Minimum Parameter approach (chapter 5). It is free of nutrients and trace 

elements, consisting only of the organic molecules agarose (70 %) and 

agaropectine (30 %) (Duchefa, 2011) as well as the Se added. Raw phytoagar 

is a powder that dissolves in water at temperatures between 95 and 100°C, 
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forming a liquid solution. If this solution is cooled down to 30-40°C, it turns 

into a gelatinous and stable semi-solid mass. Phytoagar solution is pH 

neutral (pH 6.8-7). In this study, 0.4 % phytoagar was used. Its density at 

room temperature is very close to water (1.010 ±0.003 g cm
-
³ (n=3)).  

Phytoagar consists of a solid (phytoagar powder) and a liquid part (H2O) 

connected to each other. The solid part forms a lattice in whose interspaces 

the H2O molecules are integrated (Figure 23). This composition leads to an 

effectively solid growth medium in which the water molecules and the 

solved Se can move freely. According to Davies et al. (2010) there is no 

sorption to the solid part of the phytoagar, and diffusion within pure water 

and 0.4 % phytoagar is very similar – the diffusion coefficient in pure water 

is 2.27*10
-9

 m²s
-1

 compared to 2.25*10
-9

 m²s
-1

 in 0.4 % phytoagar (extrapo-

lated from Davies et al. 2010), making a difference of 0.71 %.  

 

Figure 23: ´ Scheme of organic lattice and connected H2O molecules of semi-solid phytoagar 

(Duchefa, 2011). 

The analytical methods for the determination of Se and matrix element 

concentrations, TOC, Se species and Se isotope composition require the 

availability of samples in aqueous form (chapter 3). To transform semi-solid 
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phytoagar into a liquid consistency, digestion after Kopp (1999) in analogy to 

chapter 4.3 and extraction of the liquid phase with vacuum filtration were 

compared. As sorption of Se to the solid lattice within the phytoagar was 

negligible (chapter 4.2) (Davies et al., 2010), it was assumed that the entire 

Se is related to the liquid phase. A vacuum filtration method was developed 

in order to filter out the Se containing liquid phase without changing the Se 

concentration, species or isotope composition. The setup contained a 

vacuum pump (1400 RPM, KNF) connected to a 100 mL filter flask associated 

with a 120 mL Büchner funnel, and 70 mm diameter membranes with 

0.45 µm pore width (Roth) (Figure 24). Therefore, the vacuum in the flask 

pulls out the liquid fraction from the phytoagar in the funnel, taken from the 

semi-solid stock and separated by filter. A full separation of liquid and solid 

phase was not possible. Because of this each sample was treated for a 

defined time period (15 min) and the extracted sample volume was tested 

on its suitability to represent the entire phytoagar in Se concentration, 

species distribution and isotope composition.  

To test reproducibility and validity of both methods tests were performed 

that included the addition of Se into hot liquid phytoagar (70°C) with various 

concentrations (100, 500, 1000 µg L
-1

) and species (SeO4
2-

, SeO3
2-

, org. Se) in 

analogy to the Minimum Parameter Experiments (MinPaX) (chapter 5.1). For 

digestion after Kopp (1999), 2 mL of the hot liquid phytoagar was pipetted 

and stored in 7.5M HNO3, which was later digested in analogy to chapter 

4.3. Because it was proved that the densities of water and liquid phytoagar 

are similar, significant errors due to wrong pipette volumes were improba-

ble. In contrast, the pipetting of solid phytoagar was highly inaccurate; 

therefore elevated errors were expected in the determination of Se after 

cultivation compared to the samples taken before. For vacuum filtration, the 

phytoagar was cooled down to room temperature after Se addition and 

treated afterwards as described above. As this method was designed for 

phytoagar at room temperature, no significant differences were expected in 

treating phytoagar after cultivation. After treatment, digests and extracts 

were examined for on Se concentration and Se recovery was calculated 

related to the Se previously added. To avoid contamination, individual flasks 
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and funnels were used for each concentration and species, and cleaned with 

5 % HNO3 followed by H2O (millipore) after and before any usage.  

 

Figure 24:  Simplified scheme of the experimental setup for vacuum filtration (not to scale). 

For organic destruction, 3 mL conc. HNO3 and H2O2 each were added the 

liquid extracts and heated up in closed beakers at 80°C for 24 h. Afterwards 

the mixture was evaporated at 70°C to approx. 500 µL, 3 mL HNO3 and H2O2 

were added again and it was evaporated at 70°C until dryness was reached.  

Figure 25 shows the Se recoveries derived from phytoagar doped with 

different Se concentrations and species in digestion after Kopp (1999) and 

vacuum filtration experiments. Table 6 lists the average Se recovery depend-

ing on initial Se concentration and species.  
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Figure 25:  Se recoveries dependent on Se concentration and species added using digestion 

after Kopp (1999) (a) and vacuum filtration (b). 

Digestion resulted in badly reproducible recoveries with deficits of an 

average 25.7 (±5.5) % and maxima of 42 %, probably due to evaporation and 

volatilization of Se during digestion. This does not only lead to inaccurate 

concentration determinations in phytoagar: According to Cappa et al. (2003) 

the isotope fractionation of hydrogen and oxygen is very high at evaporation 

processes. Therefore it probably has effects on Se isotope composition, 

especially with rates in the range measured. There is a slight species de-

(a) digestion after Kopp (1999) 

(b) vacuum filtration 
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pendence regarding selenate yielding higher recoveries than selenite and 

SeMet, probably because it is a thermodynamically stable molecule that 

does hardly transform into volatile species (Olin et al., 2005). Any significant 

dependence on concentration could not be detected.  

Vacuum filtration resulted in full Se recoveries (103 (±2.6) %) averaged on 

concentration and species. Slight species dependent differences can be 

explained with small variations in solute transport behavior. The diffusion 

coefficient (Equation (76)), which determines the solute transport speed in 

solution via 1
st

 Fick’s Law (Equation (77)), negatively correlates with the 

molecular size (which is proportional to the hydrodynamic radius R0), while 

the other parameters are species independent (Cussler, 1997). That is the 

reason why relative recoveries of more than 100 % were detected for the 

small oxyanions and values around 100 % for the larger organic molecule 

SeMet.  

𝐷 =
𝑘𝐵∗𝑇

6∗𝜋∗𝜂∗𝑹𝟎
                                                  (76) 

𝐽 = −𝐷
𝜕𝑐

𝜕𝑥
                  (77) 

D [m² s
-1

] diffusion coefficient 

kB [J K
-1

] Boltzmann constant 

T [K] temperature 

η [N·s·m
−2

] solvent’s dynamic viscosity 

R0 [m] hydrodynamic radius of the solute  

J [mol m
-2

 s
-1

] solute diffusion stream  

c [mol m
-3

] solute concentration 

x direction 

No dependence on concentration was detected. In any case, Se recoveries 

were all close to 100 % (96-109 %) with low scattering and very good repro-

ducibility (Table 6). Therefore vacuum filtration can be characterized as a 

precise method to determine Se concentrations in phytoagar, to monitor Se 

species stability in phytoagar during cultivation and to provide a basis for 



4  Producing precise and valid Se isotope data  

80 

further sample treatment with the aim of Se isotope determinations. Be-

cause of a relative recovery of 100% (Figure 25, Table 6) and the improbable 

sorption reported by Davies et al. (2010) no significant isotope effects were 

expected. Residual TOC was with 112.4 (±51.5) mg L
-1

 (n=3) (6 % of initial 

Corg) significant, but samples derived from inorganic Se species supplemen-

tation did not include Seorg as it applies for plants. For SeMet supplied 

cultivation batches, further organic destruction might be necessary to gain 

highly precise isotope values (raw data available in Appendix IV, Table IV-5).  

Table 6:  Se recoveries dependent from Se concentration and species added using digestion 

after Kopp (1999)* and vacuum filtration** (raw data available in Appendix IV, Table 

IV-3) 

Se species 
selenate selenite SeMet 

ave-

rage 

Se 

concen-

tration 

[µg L-1] 

100 500 1000 100 500 1000 100 500 1000 

Se 

recovery 

[%]* 

77.5 

±9.2 

84.8 

±7.6 

81.2 

±4.0 

58.3 

±1.5 

76.0 

±3.0 

72.0 

±4.1 

76.5 

±0.6 

70.3 

±4.5 

71.8 

±4.9 

74.3 

±5.5 

n* 2 2 2 2 2 2 2 2 2 18 

Se 

recovery 

[%]** 

103 

±0.6 

105 

±0.6 

108 

±0.2 

103 

±0.5 

109 

±0.3 

103 

±0.9 

101 

±2.5 

102 

±3.6 

97.7 

±1.9 

103 

±2.6 

n** 3 3 3 3 3 3 5 5 5 33 

 

The data presented shows that vacuum filtration of phytoagar is a very 

successful method for the determination of Se concentrations and species, 

because it provides full recovery, only small dependency on source species 

as well as species conservation. It is more reliable than digestion after 

Kopp (1999) that is characterized by high Se losses and bad reproducibility. 



4.3  Plant treatment 

81 

Additionally, vacuum filtration has a huge potential for the measurements of 

other trace elements or molecules in phytoagar as long as they do not tend 

to interact with its molecular grid. The applicability of purification methods 

on phytoagar extracts (chapter 4.4) will eventually show if vacuum filtration 

can be suitable for the treatment of samples with regard towards Se isotope 

determinations according to the analytical method applied (chapter 4.5). 

4.3 Plant treatment 

Plant samples are challenging concerning destruction and homogenization 

due to their firm cell structure. The tissue mainly consists of cellulose, lignin, 

pectin, hemicellulose and water soluble components with varying fractions 

depending on the plant part (root, leave, stem). The composition of those 

compounds defines the degree of polymerization and therefore determines 

the stability of the tissue (Franck, 2005). Furthermore the ratio of organically 

bound Se significantly differs depending on the plant part. To gain reliable, 

valid results, organic compounds must be fully and equally destroyed within 

the entire plant. Finding an adequate method for minimization and homog-

enization is therefore a mandatory prerequisite for further treatment. 

Reduction of material losses during this procedure will be another require-

ment as the Minimum Parameter setups (chapter 5.1) provide low absolute 

sample amounts (Appendix IV, Table IV-14). Building on this, a digestion 

method must be implemented that ensures full recovery and full organic 

destruction, because valid preparation and analytics demand Se that is 

totally available as an inorganic compound (chapters 3.2 and 4.4). Addition-

ally, organic fractions in general might disturb those processes because of 

their selective interaction with Se and other sample compounds (Wa-

silewska et al., 2002; Zsolnay, 2003).    

After harvesting the cultivated rice plants (chapter 5.1), the fresh plant 

material was washed with H2O (millipore) and transferred to a 2 mL Eppen-

dorf cup containing a 5 mm diameter stainless steel bead. The cups were 

frozen with liquid nitrogen and directly transferred into the Tissue Lyzer, an 
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electric mill designed for small amounts of plant tissue (Qiagen, Venlo, 

Netherlands). After milling at 30 Hz for 60-120 s – until the tissue was 

powdered – the powder was lyophilized (Alpha 1-4 Freeze Dryer, Martin 

Christ, Osterode, Germany) for 24 h in the open Eppendorf cups and mor-

tared to a homogeneous powder afterwards.  

Bell et al. (1992) firstly described a widely applied, microwave based plant 

digestion method (Table 7). It was proved to be insufficient for Se isotope 

analytics due to high organic residuals and high contamination risks. There-

fore a digestion method designed for Se determinations in organic samples 

was implemented, which was based on a closed microwave system with two 

separated reaction chambers, the microwave beaker and a quartz vessel 

included therein (START 1500, MLS, Leutkirch, Germany) (Figure 26). The 

sample with 2 mL concentrated HNO3 was located inside the quartz vessel 

that had a loose lid on top, whereas 7 mL of diluted (8.6 %) H2O2 was poured 

into the beaker (Figure 26 (a)). It was closed, placed into a high pressure 

container, then heated up in the microwave slowly to 240°C and held for 

20 min (Table 7). 

Table 7: Technical parameters applied in tests of plant digestion methods according to Bell et 

al. (1992) and Kopp (1999) using the same sample amount of 0.1 g plant tissue 

Step Bell et al. (1992) Kopp (1999) 

Sample  

container 
PFA quartz 

Acid addition 
3 mL 65 % HNO3 + 2 mL 15 % H2O2 

inside PFA beaker 

2 mL 65 % HNO3 inside + 2 mL 

8.6 % H2O2 outside quartz vessel 

Heating step 1 3 min at 75°C (600 W) 1.5 min at 65°C (500W) 

Heating step 2 8 min at 130°C (700 W) 4.5 min at 130°C (500W) 

Heating step 3 10 min at 210°C (1000W) 3.5 min at 210°C (1000W) 

Heating step 4 12 min at 220°C (1000W) 3.5 min at 240°C (1000W) 

Heating step 5 n/a 20 min at 240°C (1000W) 

Ventilation 45 min 30 min 

Cooling down minimum 12 hours minimum 12 hours 
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The same procedure was used to clean the equipment between two diges-

tion batches. During digestion the plant tissue was oxidized by HNO3. CO2 

and NO were released to the gas phase within the quartz vessel. High 

pressure enabled CO2 and NO to leave the vessel by lifting the lid, which 

reduced the CO2 partial pressure inside and therefore increased mineraliza-

tion rates. NO was kept by the surrounding H2O2 in the PFA beaker and 

oxidized to HNO3 (Dr. Gernot Kopp, personal comment). This transformation 

of NO from gaseous to aqueous phase lowers the partial pressure in the PFA 

beaker and enables the use of higher temperatures without busting the 

technical pressure limits. Whereas CO2 and NO leave the quartz vessel at a 

critical pressure point and therefore reduce the pressure inside, the heavier 

volatile Se compounds remain in the quartz vessel and dissolve into the 

digest again at cooling (Figure 26 (b)). Further advantages of this method 

compared to Bell et al. (1992) are the lower blank by using quartz instead of 

porous PFA in sample contact as well as the lower amount of HNO3 reducing 

blanks and difficulties at further sample preparation steps.   

(a)         (b) 

Figure 26: Implemented digestion method after Kopp (1999) (a) preparation of digestion 

beakers. (b) Transport and transformation processes during digestion. 

The theoretical concept of this digestion procedure promises higher miner-

alization rates, higher Se recoveries and lower blanks than comparable 
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methods, but it was not systematically monitored on these factors yet 

(Kopp, 1999; Dr. Gernot Kopp, personal comment). In order to test reliability 

and validity, digestions with certified reference material (NISTSRM1567a) 

were performed. This reference material had a wheat flour matrix, which is 

closest possible to rice plant tissue used within this study. According to Tsai 

and Jiang (2011) the organic Se fraction of NISTSRM1567a was very high 

(0.9 ppm, 70-100 %), which makes it highly suitable for digestion efficiency 

tests. For each sample 0.1 g of NISTSRM1567a was weighted and digested 

according to Bell et al. (1992) and Kopp (1999) to evaluate potential differ-

ences. Se concentrations were determined in the solid plant tissue using 

energy dispersive x-ray spectrometry (EDX) and in the digest using ICP-MS 

(chapter 3.1.1). Those concentrations were then compared. The initial 

organic carbon content Corg in the solid plant tissue was measured as total 

carbon (C) (CSA 5003, Leybold-Heraeus) assuming that the entire C in the 

plant tissue was organically bound. The residual Corg in the digest was meas-

ured as TOC (chapter 3.1.2). Se recoveries, Corg residuals and mineralization 

rates were calculated according to Equations (78) to (80) from the absolute 

amounts of Se [µg] (a(Se)) and organic C [mg] (a(Corg)).  

𝑆𝑒 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 [%] =  
𝑎(𝑆𝑒)𝑑𝑖𝑔𝑒𝑠𝑡

𝑎(𝑆𝑒)𝑖𝑛𝑖𝑡𝑖𝑎𝑙
∗ 100             (78) 

𝐶𝑜𝑟𝑔 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 [%] = (
𝑎(𝐶𝑜𝑟𝑔)𝑑𝑖𝑔𝑒𝑠𝑡

𝑎(𝐶𝑜𝑟𝑔)𝑖𝑛𝑖𝑡𝑖𝑎𝑙
) ∗ 100                                             (79) 

𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 [%] = (1 −
𝑎(𝐶𝑜𝑟𝑔)𝑑𝑖𝑔𝑒𝑠𝑡

𝑎(𝐶𝑜𝑟𝑔)𝑖𝑛𝑖𝑡𝑖𝑎𝑙
) ∗ 100          (80) 

These results were compared to systematic digestion tests on organic 

destruction performed by Wasilewska et al. (2002). Afterwards cultivated 

and minimized plants were digested according to Bell et al. (1992) and Kopp 

(1999) and the same parameters were measured to test the transferability 

to the target samples. The influence of the minimization procedure de-

scribed above on the digestion efficiency was quantified as well. 
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Due to the wide error range of the certified value of NISTSRM 1567a, the 

used batch was again analyzed on Se and measured as 1.25 (±0.15) ppm 

(n=6) with EDX. The C content was 42.76 (±0.69) % (n=6), which was as-

sumed to be completely organically bound (raw data available in Appendix 

IV, Tables IV-4 and 5).  

Using the digestion method by Bell et al. (1992), the average Se yield for 

NISTSRM1567a was 0.94 (±0.06) ppm (n=31), which is on the lower bounda-

ry of the certified range. Relatively high Se residuals in the microwave 

beakers after digestion were expected. That is why they were determined 

by cleaning the beakers with boiling 7.5M HNO3 for 1 h, rinsing with H2O, 

boiling again with 7.5M HNO3 for 1 h and measuring the Se concentration in 

the second solution. Unreproducible Se residuals of up to 1.31 µg Se 

(131 µg L
-1

) were detected. The residual TOC concentrations were 

334.73 (±37.33) mg L
-1 

(n=9), which equals 7.83 % of the initial carbon 

content. As organically bound Se cannot be considered for further sample 

treatment and correction mechanisms (chapters 3.5 and 4.3), 8 % of the 

entire Se would be neglected within isotope composition measurements, if 

plant samples were digested like this. A spot test on Se species composition 

according to Bird et al. (1997) (chapter 3.1.4) even detected an organic Se 

fraction of 15.7 % being twice as high (Appendix IV, Tables IV-5 and 12). The 

isotope composition highly depends on the oxidation state and the molecu-

lar form (Johnson, 2004), which is why significant isotopic bias could result 

from such a high organic Se fraction. Additionally, analytic disturbances by 

organic molecules are likely (Wasilewska et al., 2002; Zsolnay, 2003). Diges-

tion after Kopp (1999) resulted in Se concentrations around 

1.01 (±0.08) ppm (n=9), which is in the centre of the certified Se range. All Se 

blanks measured were below 1 µg L
-1

, probably because the quartz vessels 

were easier to clean and the digest did not get in contact with the  

potentially Se contaminated microwave beaker. TOC residuals were 

30.51 (±18.91) mg L
-1

 (n=9) corresponding to 0.69 % of the initial Corg, which 

was quantified to 43.75 (±0.12) % (n=6). The variability was relatively high, 

but there was no sample with TOC residuals of more than 1.5 %. Wasilewska 

et al. (2002), who tested four digestion procedures for organic material, one 
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high pressure asher and three microwave based ones, characterized a TOC 

residual of <2 % in digests as fully mineralized. This was only reached for one 

of the methods checked at the same temperature of 240°C. Residual TOC 

was tested on the target plant samples with and without performing the 

minimization process described in chapter 4.3, using the digestion method 

after Kopp (1999). Without complete minimization a residual TOC of 

178.12 (±49.01) mg L
-1

 (n=9) (4.16 %) was measured. Results with minimiza-

tion were 57.01 (±28.12) mg L
-1

 (n=9) (1.29 %). This significant difference 

proves that the minimization process is necessary and reduces the potential 

error by further 68 % (raw data available in Appendix IV, Tables IV-4 and 5). 

The presented data shows that using digestion after Kopp (1999) reduces 

the potential error by 91 % related to Bell et al. (1992) and only when 

regarding residual TOC. Higher Se recoveries and lower Se blanks are further 

advantages of Kopp (1999). Therefore, this digestion procedure combined 

with thorough plant tissue minimization is an effective method for the 

reduction of organic residuals and the minimization of Se losses, making it 

suitable as sample treatment procedure for Se isotope determinations in 

plants.  

4.4 Purification 

As described in chapter 3.2.2 there is a variety of disturbing sample compo-

nents, especially isobaric interferences on Se masses. Therefore the target 

samples must be purified prior to Se isotope analytics. Three methods are 

predominantly described in literature and applied mainly for geological 

samples, but no systematic tests on their purification efficiency and limita-

tions were published. To provide a general aid finding the adequate purifica-

tion method depending on the sample matrix and to choose the suitable 

one for plant and phytoagar, those three methods were carried out and 

monitored according to their process steps. High concentrated multi-

element standard solutions as well as plant and phytoagar samples were 
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used. Se recovery, residual elements and residual organic compounds (as 

TOC) were determined as quality indicators.  

4.4.1 Methodical setup 

The three methods were firstly described by Ellis et al. (2003) (modified) 

(referred to as method (A)), Elwaer and Hintelmann (2008c) (modified) 

(referred to as method (B)) and Clark and Johnson (2008) (referred to as 

method (C)). Methods (A) and (B) are based on selective Se retention in 

flow-through columns (5 mL Minicolumns, Spectrum Labs) packed with 

different materials: (A) commercial anion exchange resin (AG1-X8, 100-

200 µm dry mesh size, BioRad) and (B) in-house produced thiol activated 

cellulose powder (TCP). In method (C) gaseous Se hydrides (H2Se) are gener-

ated from the liquid sample and the gas phase is separately trapped.   

Method (A) – anion exchange 

The anion exchange resin AG1-X8 – referred to as method (A) – consists of a 

styrene divinylbenzene copolymer lattice with quaternary ammonium 

functional groups (fixed phase), which is positively charged, saturated with 

chloride counter anions (mobile phase) (BioRad, 2011) (Figure 27).  
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Figure 27:  Molecular structure and retention/desorption mechanism in purification method 

(A) – selective outerspheric sorption of selenate (SeO4
2-) ions and subsequent de-

sorption by more competitive chloride (Cl-) ions. 

The use of AG1-X8 is applied among others for sample preparation of Fe, Cr 

and Se isotope determinations (Schoenberg and von Blanckenburg, 2005; 

Zink et al., 2010; Ellis et al., 2003; Clark and Johnson, 2008; Schilling et al., 

2011a+b) as well as for the separation of Cr, S, As and Se species in aqueous 

solutions (Zink et al., 2010; Druschel et al., 2003; Kim, 2001; Pohl and 

Prusisz, 2004; Ellis et al., 2003). However, none of the studies systematically 

tested it for purification of Se samples. Chloride anions (Cl
-
) have a particular 

affinity to the resin’s surface at low pH value, whereas at neutral pH, Se 

oxyanions sorb to the positively charged resin’s surface via hydrogen bridges 

(BioRad, 2011). Thereby the affinity of selenate is higher than that of sele-

nite, because selenate is totally available as double charged SeO4
2-

 at neutral  

pH, whereas selenite is up to 90 % available as single charged HSeO3
-
  

(Figure 28 (a)). Se can easily be desorbed by adding HCl providing an acid 

environment and Cl
-
 for exchange with SeO4

2-
 at the sorption spaces. Figure 

27 illustrates the resin’s organic structure as well as the sorption and remo-

bilization mechanisms. 
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Figure 28:  Abundances of selenate (a) and selenite (b) species dependent on the pH value 

(calculated with PhreeqC, wateq4f data base for a 0.01M matrix free Na2SeO4 (a) 

respectively Na2SeO3 (b) solution). 

About 50 g of the resin powder was transferred to a PFA bottle and washed 

successively with 100 mL methanol, 100 mL 1M NaOH and 100 mL 1M HCl 

(Dr. Kathrin Schilling, personal comment). In analogy to Ellis et al. (2003),  

1.2 mL of resin suspension were filled into a 5 mL minicolumn (Spec-

trumLabs), activated by passing 10 mL 6M HCl and neutralized by passing 
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H2O (millipore). The pH was monitored with indicator strips (VWR). The 

sample was brought into a neutral H2O matrix. 100 µL of a 0.25 mM K2S2O8 

solution were added to the sample and heated up for 60 min at 120°C to 

completely oxidize Se to SeO4
2-

. After cooling down, it was added to the 

column. Subsequently, 10 mL 0.1M HCl were added followed by H2O (milli-

pore) to remove retained matrix residuals (wash step). 5 mL 6M HCl were 

added to remobilize selenate via exchange with Cl
-
 (Se extract). As this 

procedure yielded improvable results in the first place, several modifications 

were separately tested to improve the success of the method: 

(a) after pouring the resin it was compressed with a stirring rod to pro-

vide continuous flow rates and more homogeneous chemical condi-

tions in all columns 

(b) the sample was taken up in 0.1M HCl to create slightly reducing and 

acidic conditions in order to keep competing anions in solution and 

therefore avoid the blocking of sorption spaces; furthermore the 

wash step was skipped to avoid the removal of Se prior to extrac-

tion  

(c) within the wash step, 0.1M HCl was replaced with H2O to avoid the 

removal of Se prior to extraction 

The original method by Ellis et al. (2003) and three variations were per-

formed with plant digests in small test series at four columns each, Variation 

I by only applying modification (a), Variation II by only applying modification 

(b) and Variation III by applying modifications (a) and (c) combined. After 

testing and evaluating those variations on Se recovery and residual matrix 

elements (chapters 4.3.3.2 and 4.3.3.3), Variation III was implemented as 

the most successful one and all experiments presented were carried out 

according to it, as described here.  

The 1.2 mL of the resin was compressed with a stirring rod after pouring into 

the column. Sample preparation was done in analogy to Ellis et al. (2003) as 

described above. By adding the sample to the column selenate was retained 

whereas most matrix elements passed through. The eluate derived from 
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sample addition was kept for Se and matrix concentration analysis (sample 

eluate). 20 mL H2O were added to wash out the matrix elements that were 

retained within the column. The eluate was kept for concentration analysis 

as well (wash eluate). In a next step, 5 mL 6M HCl in five steps of 1 mL were 

added to desorb selenate via exchange with Cl
-
, while selenate was remobi-

lized and collected separately. This eluate was kept for concentration and, 

for selected samples, for isotope analysis (Se extract). The aliquot provided 

for Se isotope analytics was evaporated to dryness at 70°C and diluted to 

2M HCl. Figure 29 illustrates the four steps of this procedure. The flow rates 

depended on the individual permeability of the resin and were on average 

0.52 (±0.08) mL min
-1

 (n=10). No obvious dependence of Se yield and matrix 

residuals on flow rates was detected. According to BioRad (2011) the capac-

ity is 1.44 meq per column (1.2 mL resin), which equals 56.8 mg Se, available 

as SeO4
2-

. A detailed instruction on purification according to method (A) is 

given in Appendix III. 

 

Figure 29:  The four steps of purification according to method (A) – optimized from Ellis et al. 

(2003): 1) Activation of packing material in the column, 2) retention of Se in the 

packing material, 3) removal of matrix elements and 4) extraction of Se from the 

packing material. 
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Method (B) – thiol retention 

Method (B) was based on selective Se retention in thiol activated cellulose 

powder (TCP) and set up by Elwaer and Hintelmann (2008c) for Se isotope 

determinations. It makes use of the exceptionally high affinity of Se to thiol 

groups (-SH) to form covalent bonds, which are broken by HNO3 afterwards. 

TCP was produced in the laboratory by controlled and catalyzed reactions of 

cellulose powder with thioglycolic acid (Figure 30).  

 

Figure 30:  Purification mechanisms in method (B): Activation of cellulose powder with 

thioglycolic acid (upper), binding of selenite to thiol groups as innerspheric com-

plex (central), extraction of Se from TCP with HNO3 (lower) (modified from Elwaer 

and Hintelmann, 2008c). 

This method was slightly modified with regard to sample matrices, analytic 

Se signal strength, qualitative reliability in TCP production and technical 

effort by the following measures: 

(a) The temperature at TCP production was reduced from 60°C to 

55°C. It turned out empirically that quality and drying ability of the 

TCP increased with the lower temperature. 
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(b) The reduction time of the samples before addition to the columns 

was increased to ensure full reduction in the presence of high ma-

trix element concentrations and residual HNO3 from digestion. 

Thereby, the temperature was declined to avoid volatile Se losses.   

(c) The flow rate was gravity driven instead of being operated by a 

vacuum system. It slowed down the speed by factor 4 which pro-

vided a longer reaction time of the sample with the TCP along with 

a lower technical effort and decreased risk of contamination.  

(d) The amount of concentrated HNO3 in the extraction step was in-

creased by factor 10 to 1 mL (total) in order to raise the Se recov-

ery. The Se signal suppression by HNO3 reported by Elwaer and 

Hintelmann (2008c) was experienced too, but avoided by evaporat-

ing the samples at 70°C and taking them up in the matrix needed 

for analytics. 

Those modifications were included into the implemented method based on 

Elwaer and Hintelmann (2008c) and used for all experiments as described 

here.  

For preparation of TCP, 5 g cellulose powder (SigmaAldrich, SigmaCell Type 

20) were weighted into a 250 mL PFA bottle and 30 mL conc. thioglycolic 

acid (98 %) (AppliChem), 15 mL acetic anhydride (98 %), 10 mL acetic acid 

(96 %) and 0.5 mL sulfuric acid (98 %) (Merck) were added. The mixture was 

shaken for 30 min, heated up in a water bath (E30U, Dinkelberg) for 24 h at 

55°C, shaken again for 30 min and heated up again for 24 h at 55°C. Then it 

was washed with H2O, filtered and dried at room temperature. The dry 

material was mortared to a fine homogeneous powder.  

The evaporated sample was diluted to 1.7 mL 6M HCl and fully reduced to 

selenite in a closed beaker by heating up on a hotplate for 90 min at 80°C. 

The sample was cooled down and diluted to 10 mL 1M HCl. Under acidic 

conditions selenite is totally available as H2SeO3 (Figure 28 (b)) and there-

fore affine to thiol binding (Figure 30) (Elwaer and Hintelmann, 2008c). 0.1 g 

TCP was filled into each column. The TCP was cleaned and conditioned by 

passing 2*2 mL H2O, 2 mL 6M HCl and 2 mL 1M HCl. Afterwards, the sample 

was added to the column, inducing selenite to form covalent bonds to the 
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reactive thiol (-SH) groups on the TCP surface (Figure 30). The eluate was 

kept for concentration analysis (sample eluate). 2 mL 6M HCl, 2 mL H2O and 

2 mL 1M HCl were added to the column to wash out the thiol affine matrix 

elements by forming chloride complexes. This eluate was kept for concen-

tration analysis as well (wash eluate). After the column was completely 

emptied, the Se containing TCP was transferred to a 50 mL centrifuge tube 

(VWR) and 500 µL concentrated HNO3 and 500 µL H2O were added. The tube 

was closed and heated up in a boiling water bath (100°C) for 20 min. After 

cooling down, 3 mL H2O were added; the tube was shaken and centrifuged 

for 10 min at 4000 RPM (Rotofix 32A, Hettich). The supernatant was kept in 

a separated PFA beaker, the process was repeated with the residual powder 

and both supernatants were combined. This sample was analyzed on its Se 

concentration and, for selected samples, on its Se isotope composition (Se 

extract). The aliquot for isotope determinations was evaporated at 70°C, 

repeatedly oxidized with 1 mL mixture of concentrated H2O2 and 0.5M HNO3 

(1:10) until the TCP was completely dissolved (Zhu et al., 2008b), evaporated 

to near dryness afterwards and diluted to 2M HCl. Figure 31 illustrates the 

purification steps within method (B). The flow rates were on average 

0.18  (±0.01) mL min
-1

 (n=10). No influence of the individual flow rate on the 

results was detected. According to Elwaer and Hintelmann (2008c) the 

capacity was 25 µg Se per 0.1 g TCP. A detailed instruction on purification 

according to method (B) is given in Appendix III. 



4.4  Purification 

95 

 

 

Figure 31:  The four steps of purification according to method (B) – optimized from Elwaer 

and Hintelmann (2008c): 1) Activation of packing material in the column, 2) reten-

tion of Se in the packing material, 3) removal of matrix elements and 4) extraction 

of Se from the packing material by a) transferring to centrifuge tube, b) addition of 

HNO3, c) boiling in water bath, d) addition of H2O, e) centrifugation, f) removal of 

supernatant (afterwards repetition of b) to f)). 
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Method (C) – hydride separation 

Method (C) makes use of the hydride generating property of Se. Like few 

other elements (e.g. As, Ge, Sb, Te) Se forms volatile H2Se molecules in its 

lowest oxidation state Se(-II) if H and reducing agents are sufficiently pre-

sent. This effect is widely applied in analytical chemistry (Campbell, 1992) 

and was, with some modifications, performed in analogy to on-line HG as 

sample introduction for Se isotope analytics (chapter 3.2.6). By adding 

strong reducing agents and H (NaBH4) to the Se containing sample, Se 

transfers into the gas phase, whereas non-hydride generating elements 

remain in the liquid phase. A gas-liquid separator enables a discharge of the 

gas phase, which is then introduced into a strongly oxidizing alkaline trap-

ping solution to transform Se into soluble aqueous anions again. Heating up 

the trapping solution leads to a full transformation to Se(VI) (Figure 32). A 

subsequent anion exchange according to method (A) (chapter 4.4.1) sepa-

rates Se from other by-trapped hydride generating elements and removes 

the alkaline matrix (Clark and Johnson, 2008).  

Method (C) was applied in analogy to Clark and Johnson (2008). Before HG, 

HNO3 digests, phytoagar filtrates or H2O matrices were diluted to 4M HCl. 

Samples containing hydrofluoric acid (HF) residuals should be evaporated in 

advance, because unlike HNO3 HF might inhibit HG (Welz and Melcher, 

1981; Welz, 1983). The samples were reduced by heating up at 80°C for 

90 min to convert all Se into Se(IV) as only Se(IV) leads to HG. After cooling 

down they were diluted to 2M HCl by adding H2O in the required amount. 

2M HCl keeps Se(IV) stable and is a suitable reagent for HG (Clark and 

Johnson, 2008) (chapter 3.2.6). All samples were taken up by the hydride 

system using a peristaltic pump (80 RPM) with an uptake rate of 4.1 mL min
-1

. 

The NaBH4 solution, which consists of 2.4 g L
-1

 NaBH4 granulates (Merck) and 

4 g L
-1

 NaOH (Merck), was continuously supplied with an uptake rate of 

2.8 mL min
-1

. Both solutions were mixed in a tubing loop, which gave suffi-

cient time for the reduction, HG and phase separation (chapter 3.2.6, Equa-

tion (11)). Both gaseous and liquid phase were introduced into a gas-liquid 

separator (FIAS 400, Perkin Elmer) in which Ar gas was added in order to 
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push the gaseous H2Se upwards and transport it into the trapping solution 

(Figure 32). The liquid sample matrix was discharged from the gas-liquid 

separator by pumping with 5.6 mL min
-1

. After taking up the sample solu-

tion, the probe was placed into 2M HCl, which was taken up for 60 sec 

(4.1 mL) in order to recover all Se retained within the hydride system. After 

taking aliquots for concentration analyses, the Se containing traps were 

heated up at 80°C for 60 min to convert all Se into Se(VI) and afterwards 

cooled down and purified in analogy to method (A) procedure (chapter 

4.4.1, Figure 29). Sample, wash and Se extract eluates deriving from (A) 

application were kept for analysis to trace matrix removal. Se extract eluates 

of selected samples were used for Se isotope analytics. A detailed instruc-

tion on purification according to method (C) is provided in Appendix III. 

 

Figure 32: Scheme of purification method (C) - HG and trapping for the separation of Se from 

the sample matrix. 
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4.4.2 Test matrices 

Various sample types and matrices were tested using purification methods 

(A)-(C). Punjab plants were digested after Bell et al. (1992), whereas culti-

vated plants and phytoagar were prepared as described in chapters 4.1 and 

4.2. SGR-1 reference (USGS) was organic and Se rich shale (25 % TOC, 

3.5 ppm Se (USGS)), which was tested on Se isotope composition by several 

studies and, among others, used for method validation in this study (chap-

ter 4.5.3). It was digested with a HF-HNO3-HClO4 approach modified from 

Layton-Matthews et al. (2013), Pogge von Strandmann et al. (2014) and Zhu 

et al. (2014). 200 mg of SGR-1 were weighted in a PFA beaker and 3 mL 

conc. HNO3 was added. The closed beaker was placed on a heating plate and 

heated up at 80°C for 16 h to destroy organic compounds. After cooling 

down, 3 mL conc. HF and 0.5 mL conc. HClO4 were added and the beaker 

was heated up at 80°C for another 76 h. The digest was evaporated to  

~100 µL at 70°C, 3 mL concentrated HNO3, 3 mL concentrated HF and 0.5 mL 

concentrated HClO4 were added and evaporated to ~100 µL again. This step 

was repeated three times. Afterwards precipitated fluoride compounds 

were solved again by adding 3 mL conc. HNO3. The sample was evaporated 

to near dryness at 70°C. Table 8 lists the sample matrices, their characteris-

tics and the availability of concentration measurements (Na, Mg, Al, (P), Ca, 

Cr, Fe, Co, Ni, Cu, Zn, Ge, As, Se) in aliquots taken during purification proce-

dure. The bold samples were additionally measured on Se isotope composi-

tion (chapter 4.5).  
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Table 8:  Sample types measured in purification steps within methods (A), (B) and (C) (* 

multielement = Ag, Al, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, In, K, Li, Mg, Mn, Na, Ni, 

Pb, Sr, Tl and Zn; ** Na (3.57 (±3.14) µg), Mg (9.71 (±4.24) µg), Al (4.74 (±5.70) µg), P 

(9.13 (±3.29) µg), Ca (27.3 (±16.4) µg), Fe (3.06 (±3.56) µg), Cr (20.4 (±15.9) ng), Co 

(1.48 (±1.59) ng), Ni (13.4 (±10.3) ng), Cu (28.5 (±16.0) ng), Zn (109 (±67.4) ng), Ge 

(0.72 (±0.62) ng), As (2.03 (±2.30) ng) and Se 0.81 (±0.03) (individual concentrations 

of the initial plant tissue from Punjab Plants are provided in Appendix IV – Table IV-6)) 

Sample type Origin 
Hydride 

trapping 

Sample 

eluate 

Wash 

eluate 

Extract 

eluate 

Pure Se 
Roth AAS Se 

standard 
(C) - - 

(A), (B), 

(C) 

Multielement 

ICP standard 

100 µg multiele-

ment* + 10 µg As, 

Ge and Se 

(Roth, Alfa Aeser) 

(C) 
(A), (B), 

(C) 

(A), (B), 

(C) 

(A), (B), 

(C) 

Punjab Plants 

Se rich wheat crops 

and Brassica**, 

digest aliquots 

(provided by E. 

Eiche) 

- (A), (B), 

(C) 

(A), (B), 

(C) 

(A), (B), 

(C) 

Extracted 

phytoagar 

containing long-

chain hydrocarbons, 

but poor in matrix 

elements 

(C) (C) (C) 
(A), (B), 

(C) 

Cultivated 

Plants 

16 days old rice 

plants in Minimum 

Parameter ap-

proach, poor in 

matrix elements 

(C) (C) (C) 
(A), (B), 

(C) 

Shale digest 

SGR1 reference 

material (Green 

River Shale) (USGS) 

(C) (C) (C) (C) 

 

Pure Se was chosen to examine the principal functionality and the extent of 

potential matrix influence on the Se recovery. With the ICP multi-element 

standard the matrix removal pathways as well as the influence of main 

elements and critical metals were intended to trace using exceptionally high 

concentrations. Punjab plants were used in order to give an impression in 



4  Producing precise and valid Se isotope data  

100 

how far the methods were applicable to plant tissue that was characterized 

by residual organic molecules and naturally ubiquitary anions such as phos-

phate, sulphate and nitrate. Phytoagar and cultivated plants derived from 

the cultivation experiments were taken to test and monitor the efficiency 

for target samples within this study. SGR-1 reference was included to have 

an additional environmental sample material in order to improve infor-

mation on universality of the methods. Furthermore this standard was 

measured on Se isotope composition by other research groups and was 

therefore used within the validation process (chapter 4.5.3).  

4.4.3 Data processing 

All element concentrations were corrected on process blanks, which were 

included in any purification batch together with maximum nine samples. 

Residual matrix element concentrations are given without blank correction 

to assess the suitability of method and laboratory conditions for the ac-

ceptable blank ranges for Se isotope analytics. Se recovery as well as remov-

al pathways were determined using a mass balance model approach. For 

that purpose all element concentrations (c) given in [µg L
-1

] were calculated 

to absolute amounts [µg] (a) regarding sample volumes (V) [L] according to 

Equation (81).  

𝑎 = 𝑐 ∗ 𝑉             (81) 

Se recovery [%] was calculated using the Se amount added (a(Se)added), 

which equals the amount in the initial sample, and the Se amount in the Se 

extract phase (a(Se)extract) according to Equation (82).  

𝑆𝑒 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 =  
𝑎(𝑆𝑒)𝑒𝑥𝑡𝑟𝑎𝑐𝑡

𝑎(𝑆𝑒)𝑎𝑑𝑑𝑒𝑑
∗ 100          (82) 

In analogy to the Se recovery, the fraction removed from the column (re-

moval [%]) was calculated using the element amounts in the sample eluate 

(asample), wash eluate (awash) and Se extract (aextract) phase and the element 
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amounts added (in the initial sample) (aadded) according to Equations  

(83)-(85).  

𝑅𝑒𝑚𝑜𝑣𝑎𝑙 𝑏𝑦 𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛 [%] =  
𝑎𝑠𝑎𝑚𝑝𝑙𝑒

𝑎𝑎𝑑𝑑𝑒𝑑
∗ 100            (83) 

𝑅𝑒𝑚𝑜𝑣𝑎𝑙 𝑏𝑦 𝑤𝑎𝑠ℎ [%] =  
𝑎𝑤𝑎𝑠ℎ

𝑎𝑎𝑑𝑑𝑒𝑑
∗ 100                                                 (84) 

𝑅𝑒𝑚𝑜𝑣𝑎𝑙 𝑏𝑦 𝑆𝑒 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 [%] =  
𝑎𝑒𝑥𝑡𝑟𝑎𝑐𝑡

𝑎𝑎𝑑𝑑𝑒𝑑
∗ 100                                     (85) 

The deficit [%] that describes the amount retained in the column after 

extraction or lost during the process was calculated as a remainder using 

sample, wash and extract phase values compared to the amount added 

(Equation (86)). 

𝑑𝑒𝑓𝑖𝑐𝑖𝑡 [%] =  
(𝑎𝑠𝑎𝑚𝑝𝑙𝑒+𝑎𝑤𝑎𝑠ℎ+𝑎𝑒𝑥𝑡𝑟𝑎𝑐𝑡)

𝑎𝑎𝑑𝑑𝑒𝑑
                           (86) 

4.4.4 Removal pathways of critical elements 

The results of the ICP multi-element standard samples were used to exam-

ine removal pathways of individual matrix elements. They contained main 

and trace elements in equally high amounts and therefore show interfer-

ence potentials of single elements and their interactions within the system.  
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Method (A) – anion exchange 

Figure 33 shows the removal pathways of the elements using the ICP multi-

element standard and method (A).   

 

Figure 33:  Matrix element and Se ratios (related to initial Se in sample) determined in each 

step eluate of method (A) derived from the ICP multi-element standard and for Se 

only for plant digests (raw data available in Appendix IV, Table IV-6). 

The major load of 63-86 % of all elements determined – except As, Ge and 

Se – was removed in the sample eluate step indicating that it stayed in 

solution and did not significantly interact with the resin. The residual frac-

tion was washed out in the second step only using H2O to rinse the transport 

channels, which indicates that this fraction was not bound to the column, at 

most slightly adsorbed or retained in dead end pores or slower transport 

channels. There was no or negligible low matrix element fraction in the Se 

extract solution except for the one of Cr (10 %). It was assumed that the 

similar geochemical properties of chromate and selenate – with higher 

affinity of Se to the resin - cause the relatively high residuals. The material is 

therefore suitable and applied for Cr separation as well (Zink et al., 2010), if 
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Se concentrations are low. Arsenic was found by 5 % in the sample eluate 

indicating that the most oxidized As species, arsenate (H2AsO4
-
 and HAsO4

2-
 

at neutral pH), adsorbed to the resin due to its double negative charge 

analogous to selenate. Therefore AG1-X8 is suitable for arsenate applica-

tions as well and applied by several studies (e.g. Kim, 2001; Pohl and Prusicz, 

2004). However, As was removed by almost 70 % (7 µg) in the wash step 

indicating that there was another removal mechanism than anion exchange. 

A high amount of Fe (23 %, 23 µg) was found in the wash eluate as well, 

which in oxidizing environment tend to form ferric arsenate complexes (Gao 

et al., 2013). Due to their mainly positive charge they do not adsorb to the 

resin, but are longer retained in the column because of larger molecule size 

by precipitation as nanoparticles. The high deficits of Fe (13 %, 13 µg) and As 

(15 %, 1.5 µg) indicate longer retention within the packing material. Ge was 

removed by 10 % in the sample eluate, but no more in the wash and extrac-

tion phase, which indicates that the major fraction was still retained in the 

column. Pokrovsky et al. (2006) reported the extensive co-precipitation of 

Ge with iron oxy(hydr)oxides formed during Fe(II) oxidation or by Fe(III) 

hydrolysis in neutral solutions. This led to the formation of high Ge incorpo-

rations into solid Fe phases. Method (A) purification includes similar condi-

tions, which is why huge amounts of Ge might be retained as precipitates in 

dead end pores or tiny inactive flow channels within the column. Method 

(A) might cause problems if samples with high Cr, As and potentially Ge 

concentrations are used, as all of them are analytically critical elements 

(chapter 3.2.2). Plants usually contain all three elements only at trace level if 

they do not derive from contaminated sites.  

Se tends to co-precipitate with Fe as well (Zhang and Sparks, 1990), which 

might be a reason for the Se removal of 30 % in the wash step. Thus, Fe 

plays a major role for the success of the purification efficiency. Additional 

explanations for the high losses in the wash phase might be the incomplete 

oxidation to selenate leading to reduced sorption affinity as well as the 

block of limited sorption spaces by chromate and other oxyanions. Both 

hypotheses are unlikely, because Se species measurements on selected 

samples showed that Se was completely available as Se(VI) (Appendix IV, 
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Table IV-12). Furthermore, the detectable removal pathways in the natural 

plant samples were very similar despite of low As, Cr and Ge contents 

(Appendix IV, Table IV-6). Sorption space being a limiting factor is improba-

ble, because these were quantified as 1.44 meq for 1.2 mL resin suspension 

by BioRad (2011). This capacity by far exceeds the amount of potential 

oxyanions added (Appendix IV, Table IV-6). 

Method (B) – thiol retention 

Figure 34 shows the removal pathways of the elements using the ICP multi-

element standard and method (B).   

 

Figure 34:  Matrix element and Se ratios determined (related to initial Se in sample) in each 

step eluate of method (B) derived from the ICP multi-element standard and for Se 

only for plant digests (raw data available in Appendix IV, Table IV-7). 

All elements added were removed by >96 % in the sample eluate step, and 

by the residual few percent in the wash step. Exceptions were Cu, As and 

Ge. Cu was retained in the column by >70 %, but the dominant part (65 %) 

was removed in the wash step. According to Deratani et al. (1983) and 

Hultberg et al. (1997) Cu
2+

 has a high affinity to form Cu
+
 complexes with 
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thiol groups by redox reactions. Additionally, Cu is affine to form soluble 

(CuCl4)
2+

 complexes (Deratani et al., 1983). Probably, at presence of 1M HCl 

Cu prefers the formation of thiol-Cu complexes whereas other thiol affine 

metals (e.g. Cr, Fe, Co) already form soluble chloride complexes. At 6M HCl 

the chloride is more competitive regarding Cu than thiol groups, which 

induced the formation of mobile (CuCl4)
2+

. Arsenic was removed by less than 

50 % into the sample eluate and by a negligible amount into the wash 

eluate. Residuals of almost 10 % were found in the extraction phase. The 

major fraction of Ge, apart from some residuals in the extract, was retained 

in the column even after extraction. Aside from Se, Ge and As were reported 

to be affine to thiol groups as well and to form similar bonds (Elwaer and 

Hintelmann, 2008c). Therefore As and Ge might be partly remobilized 

together with Se during extraction. Arsenic was reported to have a lower 

thiol affinity than Se, explaining the removal of the main fraction in the 

sample eluate phase. According to Elwaer and Hintelmann (2008c) the 

affinity of Ge to the thiol groups was even higher than that of Se, why the 

dominant fraction probably stayed bound to the TCP. Se could almost be 

totally retained and extracted by about 80 % (Figure 34) with 1 % Se found 

in the sample and wash eluates together, indicating that the about 20 % left 

were still bound to the TCP after extraction. Intensifying the extraction 

process e.g. by stronger acids, prolonged boiling time or a third extraction 

process would probably increase the Se recovery, but also mobilize Ge and 

As from the TCP into the extraction solution and increase the TOC by cellu-

lose residuals. Eichhorn (2014) investigated the purification of As rich soil 

digests with method (B) and tested an increase of TCP amount to elevate Se 

recovery. This did not increase Se yields significantly, but led to higher 

retention of As and, as a consequence, to higher mobilization into the 

extraction phase.  

At presence of 1M HCl, Fe available as Fe
2+

 (Takeno, 2005), tends to form 

chloride complexes rather than binding to thiol groups or precipitation as 

oxyhydroxide (Deratani et al., 1983; method (A)). Therefore no remarkable 

Fe co-precipitation effects could be detected in contrast to method (A). 
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Method (C) – hydride separation 

Figure 35 shows the removal pathways of the elements using the ICP multi-

element standard and method (C).   

 

Figure 35:  Matrix element and Se ratios determined (related to initial Se in sample) in each 

step eluate of method (C) derived from the ICP multi-element standard and for Se 

only for plant digests (raw data available in Appendix IV, Table IV-8). 

For the multi-element solution with method (C) all matrix elements added 

were fully removed in the HG step, including hydride forming elements As, 

Ge and Se. Welz and Melcher (1984) performed comprehensive tests with 

hydride inhibiting elements regarding Se. They discovered that HG was very 

sensitive towards high concentrations of Fe, Co, Ni and Cu, which might 

suppress it to a minimum. One probable reason for the suppression is 

catalytic decomposition of the NaBH4, which is essential for HG, in the 

presence of Co(II), Cu(II), Fe(III) and Ni(II) (Kirkbright and Taddia, 1978). 

Additionally precipitation of those metals and subsequent capture and 

decomposition of H2Se might cause low Se recoveries (Welz and Melcher, 

1984). According to this study, the HG rates decrease exponentially from 

concentrations of 70-3,000 µg L
-1

 for Cu(II), 400-4,000 µg L
-1

 for Ni(II), 5,000-
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200,000 µg L
-1

 for Co(II), 3,000-4,000 µg L
-1

 for Fe(II) in the sample matrix. 

These ranges derive from experiments with 0.5M HCl respectively 5M HCl 

matrix, meaning that the maximum concentration for the setup in this study 

with 2M HCl will probably range in the center. However, the multi-element 

standard exceeded maxima with several of those metals as its concentration 

was 16,500 µg L
-1

 each. Higher acid (HCl) concentrations in the initial sample 

could reduce this negative effect, because those metals will stay in solution 

to a higher extent (Welz and Melcher, 1984). Welz (1983) showed an addi-

tional inhibiting effect caused by even low amounts of As(III). At an absolute 

As content of 1.1 µg As the HG rate drops to 20 % of its initial value with 

further decreasing tendencies. An amount of 10 µg As – as it was contained 

in the multi-element standard – could have impeded H2Se generation as 

well. Those mechanisms very likely caused the relatively low Se recovery 

with SGR-1, because it contains amounts of Fe and As that exceed the 

tolerable amounts by far. Additional inhibiting effects might be caused by HF 

residuals from digestion: HF was shown to suppress HG as well (Welz, 1983).  

For Se free plant digests doped with Se standard, on average 89 % of Se was 

recovered by HG. This fraction was then divided between sample eluate, 

wash eluate and Se extract during anion exchange (Figure 35). The largest 

fraction of 45 % was removed in the wash step. One probable reason for the 

limited Se recovery within anion exchange was the incomplete conversion 

into Se(VI) and therefore a reduced sorption affinity, as Se(IV) tends to 

adsorb as less stable outerspheric monodentate complex to the resin sur-

face (Zhang and Sparks, 1990). Another possible reason was the partly 

reduced functionality by the strong alkaline sample matrix. Improvements 

could be achieved through an additional oxidation step with K2S2O8 prior to 

anion exchange and/or a neutralization of the sample.  

Method (C) was shown to be efficient for samples with moderate amounts 

of matrix elements, but not for samples with high Fe, Co, Ni, Cu or As frac-

tions. For those samples a previous anion exchange step could be helpful as 

it will decrease metals to a minimum, so that HG will not be inhibited any 

more. In contrast, this method works very well for plant digests as all matrix 
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elements and residual organic compounds are filtered out (chapter 4.4.6) 

while keeping Se recovery in an acceptable range.  

4.4.5 Se recoveries 

At first, the method described by Ellis et al. (2003) was tested and resulted 

in comparably low and bad reproducible Se recoveries (Table 9) with high 

matrix residuals (Appendix IV, Table IV-6). As a consequence, optimization 

approaches were tested with plant digests. The first variation (I) regarded 

the resin that was poured into the column and settled by gravity in the first 

place. This might lead to inhomogeneous distribution, preferential flow 

paths and dead end pores. Therefore a heterogeneous chemical environ-

ment within the packing material could have caused the passing through of 

sample parts without any contact to the resin’s surface. In order to mitigate 

those issues the resin was compressed with a stirring rod after it was poured 

into the columns (modification (a)) resulting in a moderate success in repro-

ducibility, but lower Se recovery (Table 9). Another limitation of the method 

by Ellis et al. (2003) was the release of Se from the column in the wash step, 

which was a significant to huge fraction of up to 45 % (Figure 35, Appen-

dix IV, Table IV-6). In a second variation (II) the wash step was left out to 

keep Se in the column and the sample was taken up in 0.1M HCl instead of 

H2O to keep matrix elements in solution (modification (b)). This led to higher 

recoveries, but lower reproducibility (Table 9). In acidic conditions the 

prevalence of selenate within the Se fraction is more unlikely than in neutral 

ones, which reduces the sorption affinity (chapter 4.4.1). Fractions of matrix 

elements in the extraction solutions also grew. Another approach with the 

same intention was the replacement of 0.1M HCl by H2O within the wash 

step in order to avoid accidental remobilization of adsorbed Se by anion 

exchange with Cl
-
 (modification (c)). This modification was combined with 

(a) to Variation III, which is the most successful one regarding Se recovery 

and reproducibility (Table 9). Furthermore the residual matrix elements in 

the extraction solution stayed similar to the method by Ellis et al. (2003) and 
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Variation I. For that reason Variation III was used in method (A) in all further 

experiments.    

Table 9:  Se recoveries using original method described by Ellis et al. (2003) as well as three 

variations (I-III) regarding three modifications: (a) compression of poured resin, (b) 

leave out wash step, (c) replace 0.1M HCl with H2O in wash step (-inhomogeneous 

+homogeneous) (raw data available in Appendix IV, Table IV-9) 

Procedure Ellis et al. (2003) Variation I Variation II Variation III 

Modification no (a) (b) (a)+(c) 

Flow rate homogeneity – + – + 

Se recovery [%]  (n=4) 32.8 ±20.4 26.2 ±13.5 57.4 ±36.2 66.0 ±8.77 

 

Table 10 shows the Se recoveries dependent on sample matrix and purifica-

tion method. 

Matrix free solution containing 1 µg Se resulted in recoveries of 100 % 

within method (A). In contrast, multi-element solution doped with 10 µg Se 

reached recoveries of only 45 %. Thereby it was shown that the method 

works quite well in principle, but either suffers from matrix effects or is only 

suitable for low to moderate Se concentrations. Tests with plant samples 

digested according to Bell et al. (1992) and containing ~1 µg Se gained Se 

yields of only 40 % with bad reproducibility. Again, Se free plant digests 

doped with 1 µg Se standard gained full recovery. Those results imply that 

the initial Se species is of essential importance for Se retention. Samples rich 

of natural Se contain a high fraction of organically bound Se. This could be 

limiting for the validity of the method, as Double Spike must fully equilibrate 

for mass bias correction (chapter 3.2.7): this cannot be guaranteed for plant 

samples digested according to Bell et al. (1992). Seorg compounds are ne-

glected within this method, confirming the importance of a thorough diges-

tion procedure (chapter 4.3). However, using digestion after Kopp (1999) 

will increase the probability of valid plant sample treatment as suggested in 

chapter 4.3. Matrix effects of phytoagar seem to be more significant, be-

cause Se free phytoagar extracts doped with 1 µg Se only show average 
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recoveries of 49 % with bad reproducibility. It is hereby assumed that the 

well-connected long-chain hydrocarbons that are still available in solved 

form in the extracts might have changed or covered the active sorption 

surface of the resin. Phytoagar extracts were previously experienced to have 

adhesive properties (chapter 4.2). Thus, Se species and matrix residuals, 

especially organic compounds, play an essential role for the efficiency of 

method (A), which is investigated in detail within chapter 4.4.3. All in all, 

method (A) can be characterized as principally working with low to moder-

ate Se concentrations, but being highly sensitive on matrix composition.  

Within method (B), all sample matrices tested resulted in Se recoveries of 

72–89 % with generally good reproducibility. In contrast to method (A), no 

dependencies on Se concentration and species as well as on matrix ele-

ments or organic compounds could be detected. This implies a good reliabil-

ity and a universal applicability regarding Se recovery and the matrices 

tested including plant digests and phytoagar filtrates.  

For method (C) Se recoveries of HG – without subsequent anion exchange – 

are regarded in addition to the total Se recovery, because the latter was not 

detectable for multi-element standard (chapter 4.4.4) and not determined 

for pure Se solution. Pure Se solutions (1 µg) were recovered by average 

82 % with HG, whereas the value was even significantly higher und good 

reproducible with Se doped plant digests. In this case the digest HNO3 

matrix might have enhanced the hydride formation rates as reported by 

Welz and Melcher (1981). Unfortunately method (C) was not tested system-

atically with natural Se rich plant samples, but it can be assumed that the Se 

species plays a major role here as well. Fitzpatrick et al. (2009) stated that 

the HG reaction (Equation (11)) exclusively occurs with Se(IV). Nevertheless, 

plants digested after Kopp (1999) will meet this prerequisite with high 

probability. Se recoveries with Se doped phytoagar extracts were on a 

slightly higher level than plants after HG, on average 92 %. HNO3, added to 

phytoagar filtrates at the organic destruction step, might have had an 

enhancing effect in analogy to plant digests. After anion exchange, the Se 

recoveries of plant and phytoagar samples were on a similar level and 

additionally slightly higher than this of method (A) applied to Punjab plants. 
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This might be caused by Se being totally available in inorganic form in the Se 

doped plant and phytoagar samples, while being available as Seorg by aver-

age 8 % in Punjab plants (chapter 4.3). Using multi-element standard, Se 

yields were close to 0 %, and with SGR-1 they were at relatively low level as 

well. As already explained in chapter 4.4.4 high concentrations of diverse 

metals were probably responsible for high Se losses within HG (Welz (1983); 

Welz and Melcher (1984)).  

Table 10:  Se recoveries and external reproducibility tested with purification methods (A), (B) 

and (C) depending on sample matrices (*ICP multi-element standard containing  

100 µg Na, Mg, Al, Ca, Cr, Fe, Co, Ni, Cu, Zn and 10 µg As, Ge, Se, all other samples 

initially contained 1 µg Se; ** Se recovery after HG *** Se recovery after HG and an-

ion exchange) (raw data available in Appendix IV, Table IV-9) 

method 
(A) – anion 

exchange 

(B) – thiol 

retention 
(C) – hydride separation 

sample 

matrix 

Se 

recovery 

[%] 

n 

Se 

recovery 

[%] 

n 
Se recovery 

HG** [%] 

Se recovery 

total*** [%] 
n 

pure Se 

(Roth) 
100 ±0.8 3 72 ±1.1 3 82 ±5.6 n/a 2 

MS* (Roth) 45 ±7.0 8 79 ±13.9 7 0.05 ±0.01 n/a 2 

Se rich plants 

(Punjab) 
40 ±19.6 9 89 ±18.8 7 n/a 

Se free 

plants + 

doped Se 

99 ±1.9 3 74 ±1.0 3 87 ±7.3 53 ±20.1 10 

Phytoagar 

filtrate 
49 ±16.9 3 77 ±0.7 3 92 ±2.9 54 ±2.3 2 

shale  

(SGR-1) 
n/a n/a n/a 27 1 

4.4.6 Residues in purified samples 

Table 11 shows the matrix residuals in the extraction samples of method (A) 

and (B) as well as all sample matrices used.  
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Table 11:  Absolute contents of residuals [ng] in purified extraction sample using methods (A), 

(B) and (C) and ICP multi-element standard (MS), plant digest from the Punjab plants 

(pp), phytoagar (p) as well as plants (cp) from the cultivation experiments as matri-

ces; for (C) no experiments with Punjab plants were performed, but with SGR-1 

green river shale (USGS reference material). The tolerance test was performed to 

evaluate purification sufficiency for analytical purposes (chapter 4.5.1) (raw data 

available in Appendix IV, Tables IV-6 to IV-8) (Standard – not exceeding tolerance 

test; Cursive – slightly exceeding tolerance test (<200 %); Bold – significantly exceed-

ing tolerance test (>200 %)); *Fe exceeding caused by incidentally high blank, phy-

toagar extract only contained small traces 

[ng] n Cr Fe Co Ni Cu Zn Ge As 

(A)MS 9 
10640 

±1590 

223 

±483 
<0.02 

4.8 

±1.7 

18.5 

±14.7 

12.4 

±3.9 
<0.1 

44.9 

±27.8 

(A)pp 9 
1.9 

±2.3 

30.7 

±18.4 
<0.02 

1.7 

±1.1 

2.6 

±1.8 

58.3 

±41.3 
<0.1 <0.1 

(A)p 18 
1.1 

±0.8 

29.2 

±26.5 
<0.02 

0.1 

±0.9 

0.9 

±2.2 

10.5 

±18.3 
<0.1 0.6 ±0.5 

(A)cp 9 
0.5 

±0.5 

45.8 

±35.2 
<0.2 

0.0 

±0.1 

3.1 

±2.8 

124 

±180 
<0.1 0.4 ±0.4 

(B)MS 9 
7.8 

±7.2 

47.9 

±26.4 

1.31 ± 

0.50 

5.7 

±3.6 

5280 

±326 

81.7 

±43.6 

79.2 

±73.9 

2750 

±2360 

(B)pp 9 
0.8 

±2.3 

4.1 

±40.8 
<0.02 

1.1 

±0.9 

0.5 

±1.1 

248 

±248 
<0.1 0.7 ±0.8 

(B)p 18 
2.5 

±2.9 

137* 

±227 
<0.02 

1.6 

±1.0 

24.5 

±36.9 

34.5 

±193 
<0.1 5.4 ±1.1 

(B)cp 9 
0.3 

±1.3 

11.7 

±12.7 
<0.02 

0.2 

±0.6 

1.2 

±1.0 

37.8 

±57.7 
<0.1 4.3 ±1.0 

(C)MS 2 
34.7 

±1.2 

6.13 

±1.41 

0.41 

±0.20 

59.0 

±1.8 
<0.1 

6.2 

±0.7 
<0.1 2.8 ±0.0 

(C)p 2 
53.8 

±10.0 

15.5 

±5.32 

0.53 ± 

0.00 

112 

±57.8 

0.5 

±0.3 

11.1 

±0.2 
<0.1 <0.1 

(C)cp 2 
35.8 

±1.6 

32.1 

±11.8 

0.71 ± 

0.31 

174 

±48.3 

13.2 

±8.4 

9.0 

±1.7 

0.4 

±0.0 
<0.1 

(C)SGR-1 2 
25.5 

±6.6 

20.7 

±2.90 

0.46 ± 

0.10 

178 

±11.7 

5.2 

±5.2 

27.2 

±17.3 

0.3 

±0.0 
1.6 ±0.3 

toler-

ance 

test 

1 1.39 52.3 0.57 3.1 13.3 686 0.1 4.9 
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Matrix residuals are generally low regarding the initial matrix element 

concentrations as well as the laboratory blanks. Only few elements of 

particular samples significantly exceed the tolerance test, which was per-

formed to estimate the analytical sufficiency of matrix removal (chapter 

4.5.1) (Table 11). This applies for Cr, Fe, Cu, Ge and As in the multi-element 

standard solution, which was over-concentrated anyway to examine remov-

al pathways and therefore did not represent natural samples. Significant 

amounts of those elements are usually not available in plants and phytoagar 

as shown by residual concentrations in those, which are mainly caused by 

blanks in the open laboratory (chapter 4.1). Method (B) generally results in 

higher matrix element residuals than (A) and (C) due to the boiling extrac-

tion (chapter 4.4.1), which probably caused mobilization of impurities from 

the cellulose powder. However, any method supplies sufficient purification 

for Se isotope analytics as they generally do not exceed the tolerance test 

and will in no case reach critical concentrations for the on-line HG. Potential 

isobaric interferences such as Ge are on a very low level for any sample 

except the over-concentrated multi-element standard purified with method 

(B). Nevertheless matrix residuals must be continuously monitored. Espe-

cially samples with elevated Cr, Fe, Cu, Ge or As must be regarded on those 

residuals.  

Table 12 shows the TOC residuals in the Se extracts samples with methods 

(A), (B) and (C). 

Table 12:  Residual TOC concentrations in plant and phytoagar samples purified with method 

(A), (B) and (C) (raw data available in Appendix IV – Table IV-10) 

method (A) – anion exchange 
(B) – thiol cellulose 

powder 

(C) – hydride  

separation 

matrix TOC [mg L-1] n TOC [mg L-1] n TOC [mg L-1] n 

plants 7.8 ±1.8 3 19.9 ±4.7 3 <0.9 3 

phytoagar 73.0 ±32.0 3 49.9 ±25.4 3 <0.9 3 
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For samples highly enriched in organic compounds the TOC of the purified 

samples was measured in order to evaluate the removal efficiency of the 

methods and the residual analytical disturbance potential of the samples. 

The samples derive from cultivation experiments and therefore represent 

samples measured on Se isotope composition. TOC residuals in plants are 

generally low, but measurable within method (A) and (B) and on average still 

14 % respectively 35 % of the digest’s average TOC. The chromatographic 

methods offer pore space in which organic residuals might have been 

retained as well as surfaces to which they might have been adsorbed during 

purification. Afterwards they might have been extracted together with Se. 

The higher value for method (B) might be caused by cellulose from TCP 

mobilized during the extraction phase. Phytoagar extracts released in 

absolute numbers 5 to 10 times more TOC into the purified sample. Related 

to TOC in the initial phytoagar extracts, those fractions of 15-22 % were 

comparable to plant digests. The value for method (A) was significantly 

higher, which might be caused by higher reaction surface where the hydro-

carbons might have stuck to or were retained in. Another aspect might be 

the additional organic destruction with HNO3 boiling as extraction step in 

method (B) (chapter 4.4.1). TOC residuals in phytoagar could be reduced by 

an extended HNO3-H2O2 organic destruction step prior to purification. In 

samples purified with method (C) residual TOC could be detected neither in 

the plant digests nor in the phytoagar extracts.   

4.4.7 Method evaluation 

In principle, all methods are suitable to purify samples for Se isotope analyt-

ics regarding the criteria set in advance, namely Se recovery, matrix element 

residuals and TOC residuals. Particularly for methods (A) and (C) Se recovery 

was shown to be highly dependent on Se species availability, whereas 

method (B) yielded similar high values for any method tested. In most 

samples, Se recoveries were sufficiently high to measure Se isotope ratios as 

the Double Spike will correct mass bias induced by losses (chapter 3.2.7). 

However, for limited sample amounts or Se contents, the method should be 
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chosen addressing this criterion as well. Method (B) emitted higher impuri-

ties into the purified samples than (A) and (C), but all values were far below 

critical concentrations. Each method was characterized by particular ele-

ments that might become critical if available in certain concentrations. 

These are Cr for method (A), Ge, As and Cu for method (B) as well as transi-

tion metals (Fe, Co, Ni, Cu) and hydride generating elements (As, Ge) for 

method (C). In the open laboratory certain ubiquitary elements were slightly 

elevated compared to clean laboratories, e.g. Fe and Zn, but they should not 

cause analytical problems in the ranges measured (chapter 4.5). Organic 

residuals were found in significant amounts in purified samples from (A) and 

(B), but below the detection limit in samples from (C). Validation tests 

(chapter 4.5.3) will eventually prove if matrix element and TOC removal is 

sufficient for the respective method.  

4.5 Analytical quality control 

The actual suitability of the preparation (chapters 4.1 and 4.2) and purifica-

tion methods (chapter 4.4) for accurate, precise and valid Se isotope ratios 

was assessed by analytical quality monitoring on MC-ICP-MS. Three parame-

ters were checked independently: the presence of measurable isobaric 

interferences, the internal and external reproducibility as well as the validity 

of the Se isotope ratios measured.  

4.5.1 Isobaric interferences 

Matrix compounds become critical for Se isotope analytics, if they form 

interferences on masses that were used for Se isotope detection or monitor-

ing (72, 73, 74, 77, 78, 80, 81, 82 and 83, chapter 3.2.3). With the exception 

of Ge, potentially critical compounds are mass interfering only as hydride or 

oxide (Table 2). Due to the analytical setup (chapters 3.5.1 and 3.5.5), 

hydride formation in the plasma is suppressed to a minimum. The on-line 

HG system filters out non-hydride generating sample compounds and 
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therefore reduces the potential of metals to form mass interfering oxides. 

However, to exclude those influences and to test if samples were sufficiently 

purified, the elemental masses of each potentially critical hydride or oxide 

molecules were tested on signal intensity. Therefore masses 56 (
56

Fe
16

O), 57 

(
57

Fe
16

O), 58 (
58

Fe
16

O; 
58

Ni
16

O), 59 (
59

Co
16

O), 60 (
60

Ni
16

O), 62 (
62

Ni
16

O), 64 

(
64

Ni
16

O; 
64

Zn
16

O), 65 (
65

Cu
16

O), 66 (
66

Zn
16

O), 67 (
67

Zn
16

O) and 75 (
75

As
1
H) 

were determined. Additionally those masses, which tend to inhibit HG, but 

have no direct interference potential (Cr, Mn and Cu oxides), were meas-

ured: 50, 52, 53, 54, 55 and 63. Purified plant samples with highest residual 

concentrations regarding critical compounds were used in order to exclude 

interfering impacts on any sample type (Table 11). In the cultivated plant 

samples no Ge was expected. However, due to efficient mathematical Ge 

corrections (chapter 3.2.8.1) relatively high amounts are tolerated.  

For none of the masses tested significant signal-to-noise ratios compared to 

NIST3149 and on-peak-zeros could be observed. This reveals a certain 

tolerance for matrix residuals that were contained in the samples tested due 

to purification residuals and open laboratory blanks (Tables 4 and 5). The 

analytical setup suppresses critical residuals and therefore allows prepara-

tion in open laboratories and incomplete matrix removals. The actual extent 

of tolerance was not investigated, but it proved to be sufficient for plant and 

phytoagar matrices regarding all purification methods tested as the highest 

matrix element concentrations available did not indicate any limitations.   

4.5.2 Reproducibility 

Internal reproducibility means in this case the analytical ability to replicate 

an isotope ratio using aliquots of the same prepared sample in the same or 

different measurement runs. External reproducibility describes the ability to 

gain identical isotope results from the same sample, prepared and purified 

independently. Both tests were performed with phytoagar and plant material.  

For samples purified with method (B) the internal reproducibility was de-

termined independently for two plant samples (0.050 ‰ and 0.024 ‰) and 

two phytoagar samples (0.013 ‰, 0.004 ‰). Samples prepared with method 
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(C) showed internal reproducibilities in a similar range (plants: 0.040 ‰; 

phytoagar 0.051 ‰). Stating a NIST3149 reproducibility of 0.2 ‰ (chapter 

3.2.1), all samples are clearly within the standard internal reproducibility, 

meaning that no matrix impacts on internal reproducibility could be detect-

ed. This applies for all samples measured, presented in chapters 4.5.3 and 

5.6 (raw data in Appendix IV, Table IV-11).   

External reproducibility was tested using Se free plant and phytoagar matri-

ces independently doped with NIST3149, then spiked, digested/extracted 

afterwards and finally purified with (A), (B) and (C) (chapter 4.5.3). Results 

are given in Table 13. External reproducibility with methods (A) and (B) 

applied are on a high level and by far exceed the NIST3149 reproducibility of 

0.2 ‰. (C) purified samples showed a much better external reproducibility, 

in which only plant samples spiked before digestion exceeded that limit. In 

any case, plant samples spiked before digestion had significantly higher 

external reproducibility than those spiked afterwards. Obviously small 

differences in Double Spike losses during digestion have exceptionally high 

impacts on the external reproducibility. In plant material spiked after diges-

tion an external reproducibility of 0.2 ‰ was detected using eight inde-

pendently prepared samples. This value being within the range of NIST3149 

regarding a relatively high number of reproductions confirms the reliability 

of the treatment and purification procedures concerning reproducibility. 

This applies for phytoagar as well, which external reproducibility was signifi-

cantly lower with 0.1 ‰, based on a lower number of reproductions as well.  

4.5.3 Validity 

Method validation is usually performed with certified reference materials 

having a comparable matrix to the target samples. For plant and phytoagar 

matrices, no reference material is certified on Se isotope ratios or even 

measured on that by external laboratories. For this reason an alternative 

validation test approximating reference conditions was set up. This test 

should include the target matrices as well as Se in a known and certified 

isotope composition. Therefore Se free plant tissue and phytoagar samples 
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were taken from the cultivation experiments (blank boxes, chapter 5.1) and 

doped with NIST3149 before and after plant digestion (in parallel setups) 

and directly after phytoagar vacuum filtration. After letting NIST3149- and 

Double Spike-Se equilibrate for 24 hours in closed beakers at room tempera-

ture, samples were purified according to chapters 4.3.2.1 to 4.3.2.3 and 

measured on Se isotope composition afterwards. As NIST3149 was also used 

as standard reference for δ
82

Se calculations, the target δ
82

Se to prove 

validity was 0 ‰. Figure 36 illustrates the validation test procedure. Ta-

ble 13 shows δ
82

Se values measured in the prepared plant and phytoagar 

samples dependent on the purification method as well as their external 

reproducibility.  

 

Figure 36:  Process scheme of validity tests in dependence on matrix, sample treatment 

procedure, purification method and date of Double Spike addition. 
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Table 13:  δ82Se and external reproducibility of validation test samples dependent on purifica-

tion method, sample matrix and date of Double Spike addition (*Double Spike add-

ed before digestion, elsewhere Double Spike added after digestion) (raw data and 

internal errors available in Appendix IV, Table IV-11) 

Sample matrix 
Purification 

method 

δ82Se [‰] 

(average) 

External 

reproducibility 
Repetitions (n) 

plant (A) 2.0 1.6 2 

phytoagar (A) 5.5 1.2 2 

plant* (B) 11.6 10.5 6 

plant (B) 25.5 5.7 6 

phytoagar (B) 28.4 7.9 2 

plant* (C) 0.6 0.7 2 

plant (C) 0.2 0.2 8 

phytoagar (C) 1.1 0.1 2 

 

Average δ
82

Se values measured in samples purified with (A) and (B) highly 

differed from the target value 0 ‰ for both plant and phytoagar, whereby 

(B) samples were even more deviating and worse reproducible than (A) 

samples. In contrast, (C) derived samples showed values between -0.2 ‰ 

and +2.1 ‰. Thereby plants yielded only slightly above 0 ‰ and phytoagar 

samples were significantly above the target value with average +1.1 ‰. In 

single cases, plant samples spiked before digestion had a δ
82

Se value closer 

to 0 ‰ than the ones spiked afterwards, but the majority had a higher 

distance to 0 ‰, and the external reproducibility was significantly higher as 

well (Table 13, Appendix IV, Table IV-11).  

Figure 37 shows the δ
82

Se values of the individual samples, NIST3149 and 

MH495 standards as well as their correlation with the instrumental fraction-

ation factor βinstr (chapter 3.2.8.2, Equation (50)). The correlation between 

those two parameters is obvious for (A) and (B) samples, but not significant 

for (C) samples as well as for NIST3149 and MH495 matrix free standard. 

This indicates that matrix effects are responsible for the correlation and, 

probably related to that, for the invalid δ
82

Se values.  
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Figure 37:  Individual δ82Se values in dependence on the instrumental mass bias factor βinstr 

for validation tests processed with purification methods (A), (B) and (C) and both 

plant and phytoagar matrices. For comparison, NIST3149 and MH495 matrix free 

Se isotope standards are added. The vertical line represents the target value 0 ‰ 

for the validation tests. The Double Spike was added after digestion/extraction re-

garding all samples except the ones marked with * in which it was added before 

digestion (raw data available in Appendix IV, Table IV-11).  

The correlation between βinstr and δ
82

Se for (A) and (B) samples along with 

the invalid results indicate that the instrumental mass bias correction, 

performed by the Double Spike, did not work properly. The calculation of 

βinstr is based on signals measured on masses 74 and 77 (chapter 3.2.8.2, 

Equation (50)), which could have been interfered during measurements. 

Furthermore the calculation of δ
82

Se could lead to incorrect results by 

interferences on all Se and monitor masses concerned (chapter 3.2.8). 

Significant amounts of TOC were measured in the (A) and (B) purified sam-

ples (Table 12). Organic compounds have a high potential to interfere the 

HG process and even form hydrides themselves (e.g. decalin, methylcyclo-

hexane) (Karadjova et al., 2006; Saito et al., 2008). The gaseous compounds 

formed might then be transported via the plasma into the detector and 

formed isobaric interferences on Se masses. This hypothesis is confirmed by 
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the results of method (C) derived samples that did neither contain detecta-

ble amounts of TOC nor show dependencies of δ
82

Se and βinstr or highly 

invalid results. Furthermore (B) tends to have higher TOC residuals and 

higher δ
82

Se deviations from 0 ‰ although there is no clear correlation 

between residual TOC and δ
82

Se or βinstr. Another reason for invalid δ
82

Se 

values could be the inhibition of full equilibration between sample- and 

Double Spike-Se by mass dependent interaction of Se with organic matter. 

Se tends to interact with organic compounds to differing extent and binding 

mechanism, which is dependent on the Se species (Wasilewska et al., 2002; 

Zsolnay, 2003). Differing addition date of sample-Se – in this case NIST3149 

– and Double Spike-Se could have let to differing interaction mechanisms 

and therefore incomplete equilibration though they were likely available in 

the same Se species Se(IV) (chapter 3.2.7). As a consequence, instrumental 

mass bias and artificial Se isotope fractionation during sample preparation 

could not be corrected properly. This hypothesis is confirmed by varying 

dependencies of δ
82

Se and Se recovery regarding the preparation step. Se 

recovery from HG only somehow correlates with the deviation of δ
82

Se from 

0 ‰, whereas the Se recovery of the anion exchange performed afterwards 

did not seem to have any influence on the precision (Figure 38). 

 

Figure 38:  Individual δ82Se values dependent on Se recoveries after HG and total Se recovery 

after HG and the subsequent anion exchange (AE) step in plant samples purified 

with method (C) (raw data available in Appendix IV, Table IV-11). 
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However, the deviation of δ
82

Se from 0 ‰ shows a clear matrix dependency 

within method (C) (Table 13), indicating plant and phytoagar specific inter-

ferences or interactions. Invalid results are probably caused by both organic 

isobaric interferences and incomplete Double Spike-/sample-Se equilibra-

tion. Their extent likely depends on the amount of TOC and the particular 

matrix structure. However, no direct correlation between TOC and δ
82

Se 

could be detected as only single samples were tested on their TOC residuals. 

Completing this data basis could provide insight into the role of TOC in Se 

isotope analytics. To find out about the particular role of organic isobaric 

interferences and to increase the precision, high resolution MC-ICP-MS 

measurements might be an approach. 

However, the entire sample preparation procedure including plant digestion 

after Kopp (1999), phytoagar vacuum filtration as well as purification ac-

cording to method (C) turned out to be suitable for Se isotope analytics. It 

facilitates the mass bias correction mechanism and produces valid results 

with good external reproducibility and a precision of 0.2 (±0.2) ‰ for plants. 

This precision is probably sufficient to detect Se isotope variations in plants, 

as Herbel et al. (2002) and Schilling et al. (2015) reported δ
82

Se differences 

in soil water and plant tissue of -1.1 ‰ respectively +2.4 and +3.2 ‰. Plant 

internal Se isotope variations have not been published yet. The precision of 

phytoagar should be increased for reasonable Se isotope determinations. As 

method (C) purification worked with a comparable efficiency to plant matri-

ces, TOC might be further reduced after vacuum filtration to gain more 

precise data (chapter 4.4). 

To validate the preferential purification method (C) with natural Se rich 

samples, SGR-1 reference material (USGS) was used. This material was not 

certified on Se isotope composition, but previous studies measured it with 

differing analytical setups (Table 14) and therefore provided a certain data 

basis that does not exist for any plant reference. Figure 14 and 15 provide 

information on the analytical methods used in these studies.   
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Table 14:  δ82Se values for SGR-1 standard reference material (USGS) reported by several 

studies and their external reproducibility (*conversion from MERCK S.A. Tritrisol (el-

ement standard solution) to NIST3149 scale after Carignan and Wen (2007), ** con-

version from MERCK S.A. Tritrisol (element standard solution) to NIST3149 scale af-

ter Layton-Matthews et al. (2006), *** calculated from reported value for δ82/78Se 

according to Stüeken et al. (2013)) 

study δ82/76Se [‰] 
external repro-

ducibility 
n 

Rouxel et al. (2002)* +0.54 0.37 not reported 

Layton-Matthews  

et al. (2006)** 
+0.62 0.32 3 

Schilling et al. (2011a) +0.2 0.1 4 

Mitchell et al. (2012) -0.2 0.05 11 

Stüeken et al. (2013)*** -0.09 0.28 26 

Pogge von Strandmann  

et al. (2014) 
+0.25 0.17 16 

 

δ
82

Se for SGR-1 ranges closely around 0 ‰ with a slight tendency to positive 

values and an overall range regarding study internal averages of -0.2 ‰ to 

+0.62 ‰. This range as well as the external reproducibility within the indi-

vidual studies is relatively high, which is probably caused by SGR-1 sample 

heterogeneities, but also differences in sample preparation, analytical 

setups and correction mechanisms. Although the methods presented in this 

study are adapted to plant and phytoagar samples, the preparation and 

measurement of SGR-1 is reasonable to examine the external reliability with 

regard to organic rich samples. For this purpose 200 mg of SGR-1 was 

digested with HF-HClO4-HNO3 on a hotplate as described in chapter 4.4.2. 

Afterwards it was purified according to method (C) (chapter 4.4.1) and 

measured on Se isotope composition.  

To create an internal Se isotope standard and to provide certified reference 

plant tissue for this type of analytics, the Se isotope composition of 

NISTSRM1567a (Wheat Flour, NIST) was additionally determined in this 

study. This reference was chosen for its reasonably high Se content as well 

as its high ratio of organically bound Se, making the validation applicable for 

all Se species supplied (chapter 4.3). 100 mg of NISTSRM1567a was digested 
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in analogy to the cultivated plant samples (chapter 4.3), purified according 

to method (C) (chapter 4.4.1) and measured within this study. Table 15 

contains the δ
82

Se values and the external reproducibility for SGR-1 and 

NISTSRM1567a reference materials.  

Table 15:  δ82Se values measured in SGR-1 and NISTSRM1567a reference materials, their 

external reproducibility and for NISTSRM1567a TOC and Se recovery after HG used 

as continuous quality monitoring parameter (raw data available in Appendix IV, Ta-

ble IV-11) 

Sample digestion δ82Se [‰] n 
TOC  

[mg L-1] 

Se recovery 

after HG [%] 

SGR-1 HF-HClO4-HNO3 0.74 1 n/a n/a 

NISTSRM1567a acc. Kopp (1999) 0.27 ±0.08 2 <0.9 97.8 ±1.3 

 

For SGR-1 only a single δ
82

Se value was available, but this one is within the 

error range of the studies previously published (Table 14). Therefore it is 

probable that purification method (C) works for SGR-1, although the Se 

recovery was relatively low (chapter 4.4.5). NISTSRM1567a showed a very 

good external reproducibility being within the analytical precision for 

NIST3149. Analytical quality monitoring parameters made up in chapter 

4.5.3 indicated high precision and validity due to no detectable TOC and 

high Se recovery after HG. Therefore the average δ
82

Se determined is 

reliable and suitable as internal reference and for further Se isotope studies 

on plants.  

 



 

125 

5 Determining the relation between 
Se isotope signatures and metabolic 
processes in plants 

Building on the solid and reliable methodical basis developed and described 

in chapter 4, the next task was to figure out the relationship between Se 

metabolic pathways in plants and Se isotope signatures left behind in the 

plant tissue and growth media. Numerous previous studies (chapters 2.1.4 

and 2.2) record the crucial role of pH value and redox potential in soils for 

the Se transport pathways in the Critical Zone and the uptake and accumula-

tion in different plant parts. The primary reason for their high influence is 

their determination of Se species availability and transformation. Se species 

underlie different patterns regarding uptake, transport, accumulation and 

volatilization into and within plants (chapter 2.2). To differentiate between 

those processes that in nature occur simultaneously, a Minimum Parameter 

setup was implemented based on a modified concept of Nothstein (2015). 

Transparent closed boxes were filled with phytoagar that serves as nutrient 

free growth medium to exclude the influence of soil components (sorption, 

binding to organic matter) and soil solution (competing ions, solved organic 

molecules). The phytoagar was doped with Se in varying species (SeO4
2-

, 

SeO3
2-

, SeMet), chosen according to their abundance within the Critical Zone 

and their relevance for plant uptake (chapters 2.1.4 and 2.2). The species 

each were added in varying concentrations (100, 500, 1000 µg L
-1

) regarding 

the optimum uptake rates derived from pre-studies covering a wide concen-

tration range (0-2500 µg L
-1

) (Nothstein, 2015). Sterilized seeds were planted 

under sterile conditions to avoid microbial influence. The boxes were air-

tightly closed afterwards and placed into a climate chamber. This concept 

was defined for short cultivation periods of total 16 days because of water, 

CO2, nutrient and space limitations. The first days and weeks were shown to 

be critical for Se uptake (e.g. Li et al., 2008; Nothstein, 2015), that is why this 
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time period was sufficient and enabled repetitions in a reasonable time 

frame. Seeds of Oryza sativa were used, which is the predominant sort of 

rice applied in agricultural systems. Rice plays an exceptionally important 

role in global nutrition as it is the staple food for more than 50 % of the 

world’s population and provided on average 19 % of nutritive energy and 

13 % of nutritive protein (CGIAR, 2013). Rice plants are reliable cultivates, 

even at minimum parameter conditions and without the supply of external 

nutrients. Furthermore Oryza sativa is a model plant. A huge amount of 

background knowledge on metabolic mechanisms of macro- (e.g. Yang et al., 

2014) and micronutrients (e.g. Arnold et al., 2015) as well as toxins (e.g. Pan-

pan et al., 2015) and physical stress factors (e.g. Glaubitz et al., 2015) has 

already been generated. The Se metabolism within Oryza sativa was investi-

gated by several studies as well, e.g. Terry et al. (1992), Zhao et al. (2010), 

Zhang et al. (2014) and extensively by Nothstein (2015). As mentioned in 

chapter 2.2.4, Terry et al. (1992) revealed the high quantity of Se volatiliza-

tion by Oryza sativa compared to a variety of other crop species. As volati-

lization plays an exceptionally high role in the biospheric Se cycle (Lin et al., 

2002), a plant with sufficiently high volatilization rate is advantageous to 

detect relevant process characteristics. However, there are still many 

knowledge gaps concerning plants in general and rice in particular (chapter 

2.2). Arnold et al. (2015) performed zinc and iron isotope studies with Oryza 

sativa cultivations grown under different redox conditions, which revealed 

varying isotopic signatures among the plant parts and thereby indicated 

different translocation and grain load mechanism of zinc and iron. Reasona-

ble and valuable results of other non-traditional stable isotope system 

applications indicate the suitability of Oryza sativa for Se isotope studies as 

well.   

According to chapters 2.2.2 and 2.2.3 there are characteristic Se transfor-

mation pathways for each Se source species. Figure 15 shows the simplified 

metabolic pathways that potentially occur. The individual paths underlie 

quantitative shifts depending on Se species distribution and Se concentra-

tion supplied as well as plant species. Based on that, potential pathway 

schemes for the box setup dependent on Se source species are illustrated in 
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Figure 39. Transformation processes are categorized with regard to their 

role for distribution patterns and their relevance for Se isotope fractionation 

(chapters 2.3.2 and 2.3.3). Thereby, reduction is the key process for isotope 

fractionation and volatilization retains isotope variations in plant tissue by 

selectively removing parts of the most reduced species Se(-II).  

 

Figure 39:  Hypothetical transport pathways of Se taken up by plants dependent on Se species 

available in the growth medium (qualitative image, arrows not to scale) (data from 

chapter 2.2, Figure 15).  

The prevalence and dominance of particular pathways depend on plant 

specific metabolisms reacting on Se availability and plant internal Se species 

distribution (chapter 2.2.3). Knowledge on these could therefore offer an 

insight into the history of Se accumulation within the plants including Se 

species availability, concentrations and environmental conditions. Predic-

tions on Se behavior as well as solution to Se related challenges could be 

developed based on this knowledge. Plant-internal processes can hardly be 

traced by variances in concentrations or species alone as those parameters 
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are only able to represent one moment in a dynamic system and are in 

practice difficult to map and hardly representative in single plants. In con-

trast, Se isotope signatures enable the differentiation between isotope 

fractionating and non-fractionating processes, whereby a mass balance 

model provides quantitative data on Se transport by uptake, translocation 

and volatilization. Previously published data on Se species distribution in 

plants illustrate the high potentials of Se isotope signatures in tracing Se 

pathways (chapter 2.2). 

According to Figure 11, supplied selenate tends to remain in this species 

within the plant to 60-80 %. The fraction left is majorly available as organic 

Se(-II) species reduced in three steps, Se(VI)->Se(IV)->Se(0)->Se(-II). Due to 

Se isotope fractionation in reduction processes and the enrichment of light 

isotopes in their products (chapter 2.3.2), the reduced fraction will very 

likely be isotopically lighter than the selenate fraction. Reduction and 

organic transformation of selenate is tendentially higher in the roots, while 

the residual selenate is transported to the shoots. That is why the roots will 

expectedly be depleted in 
82

Se compared to the shoots and the Se source. 

Volatilization will increase this difference as it takes place dominantly via the 

shoots within Oryza sativa (Terry et al., 1992) and exclusively concerns 

organic Se compounds (chapter 2.2.4). If volatilization plays a significant 

role, this might be detectable by enrichment in 
82

Se in the plant compared 

to the Se source.  Thereby the root-shoot difference in δ
82

Se will directly 

depend on the volatilization rate as well. As rising Se source concentrations 

might induce the volatilization of a higher fraction of the organic Se in order 

to overcome critical Se contents (Figure 39), higher concentrated setups 

might further enrich heavy Se in the shoots. In this case, a potentially rising 

importance and quantity of volatilization via shoots might mitigate the root-

shoot difference, but increase the source Se-plant difference in δ
82

Se.  

Supplied selenite will be majorly reduced after entering the plant (Fig-

ure 11), that is why plant-internal distribution will probably have no detect-

able Se isotope effect. After reduction, there are three main pathways for 

organic transformation with differing volatilization tendencies (Figure 39). 

They will probably shift with Se concentration supplied as well. In the sele-
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nite setups volatilization will determine Se isotope variations. As the major 

fraction remains in the roots after being taken up (Figure 11), volatilization 

via roots might play a significant role. Thereby, volatilization pathways 

depending on the plant part might be traceable. As Se will likely be available 

as a mixture of Se species only fully reduced Se (Se(-II)) will volatilize, the 

isotopically lighter fraction within the plant part will decrease by volatile 

emissions. Therefore higher volatilization rates might lead to enrichment in 

heavier isotopes regarding total Se.  

SeMet is already available as fully reduced species that only underlies 

enzymatic transformations and to some extent volatilization. This setup is 

applicable to examine if those processes themselves might induce isotope 

fractionation or if reduction is the only or very major process as assumed 

e.g. by Schilling et al. (2011b). It furthermore represents the SeMet incorpo-

ration as well as the SeMet -> MeSeMet -> DMSe pathway which is inherent 

in selenate and selenite setups as well and therein applies only for a certain 

fraction (Figure 39).  

5.1 Minimum Parameter Experiments (MinPaX) 

The general concept of the cultivation experiments derives from Nothstein 

(2015) differing in Se concentrations and species supplied. 8.8 g phytoagar 

powder (Duchefa) was added to 2.2 L H2O (millipore) to produce 0.4 % semi-

solid phytoagar growth medium. This mixture as well as 10 glass beakers 

(200 mL), 3 glass scaling beakers (100 mL), 3 stirring rods, 10 cleaned Ma-

gentaboxes (SigmaAldrich) (chapter 4.1) and a 500 mL bottle with H2O 

(millipore) were autoclaved at 120°C for 3 h for full sterilization. Ma-

gentaboxes each consisted of two equal parts (6x6x10 cm) combined with a 

coupler (Figure 41 (c)). After autoclaving, the hot (70°C) and liquid phytoagar 

was transferred into the glass beakers in 10 200 mL portions under a sterile 

bench. Sterile filtrated sodium selenate (Na2SeO4) standard (100 mg L
-1

 Se) 

was added to beaker 1 (200 µL), 2 (1000 µL) and 3 (2000 µL), sodium sele-

nite (Na2SeO3) standard (100 mg L
-1

 Se) to beaker 4 (200 µL), 5 (1000 µL] and 
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6 (2000 µL) and SeMet standard (100 mg L
-1

 Se) was added to beaker 7 

(200 µL), 8 (1000 µL) and 9 (2000 µL) and thoroughly mixed with sterilized 

stirring rods. Thereby phytoagar media with the target Se source concentra-

tions of 100, 500 and 1000 µg L
-1

 were made for each species (Figure 41 (a)). 

Beaker 10 was left Se free in order to provide a cultivation approach without 

Se uptake for plant growth and blank monitoring and for the validation tests 

(chapter 4.5.3). From each beaker 100 mL were transferred into a ma-

gentabox and 100 mL were kept for analysis. The phytoagar was cooled 

down for 2 hours until it formed a stable, semi-solid ground. 160 rice seeds 

(Oryza sativa japonica, cultivar nihonmasari) (provided by Dr. Michael 

Riemann, Botany Institute, KIT) were husked and sterilized by shaking for 

1 min in EtOH, followed by shaking 20 min in sodium hypochlorite (NaClO) 

with H2O (millipore) wash steps in between, and washed with autoclaved 

H2O (millipore). 16 of them were inserted in each of the 10 magentaboxes 

using continuously heat-sterilized tweezers. All magentaboxes were closed 

and placed into a climate chamber that was adjusted to subtropical climate 

during rice season, 8 h of sunlight at 28°C and 16 h of darkness at 22°C with 

1 h transition time each and 70 % humidity. After 16 days they were har-

vested and prepared according to chapter 4.3, whereby all plants of one box 

– respectively all roots and all shoots each – formed one sample. After 

proved to be Se free, the seed residuals were removed from each plant to 

not impact Se concentration determinations. Due to the generally low 

amount of sample (chapter 5.4) seeds might significantly influence the 

sample mass without contributing to Se amount or relevant processes. The 

initial phytoagar kept during preparation and the one after cultivation each 

was prepared according to chapter 4.2. Figure 40 shows the structural 

formulas of the Se species used. Figure 41 contains a scheme of the ten 

parallel setups (a) as well as an illustration (b) and a photograph (c) of the 

magentaboxes used for cultivation.  
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(a)  (b) (c)  

Figure 40:  Molecular structure of all three Se species used – (a) sodium selenate 

(Na2SeO4 x 10 H2O), (b) sodium selenite (Na2SeO3 x 5 H2O) and (c) selenomethio-

nine (SeMet) (C5H11NO2Se). 

 (a)  (b)   (c) 

Figure 41:  (a) Scheme of the experimental set up with varying Se species and concentrations 

(top view), (b) scheme of a magenta box with rice seedlings (Nothstein, 2015), (c) 

photograph of a magenta box with rice seedlings. 

Minimum Parameter Experiments (MinPaX) according to this approach were 

repeated five times within this study, referred to as MinPax I – V. The plant 

growth of MinPaX I and II was monitored every second day, whereas in 

MinPaX III-V the plant height was determined only after harvesting. The 

plant samples from all experiments were weighted in total after harvesting. 

Heights and masses were evaluated on their influence of Se uptake and 

accumulation. In MinPaX I and V roots and shoots of the plants were sepa-
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rately prepared and analyzed, whereas in MinPaX II, III and IV the entire 

plant was used. All plant tissue and phytoagar samples of MinPaX I-V were 

prepared according to chapters 4.2 and 4.3 and analyzed on their Se concen-

trations (chapter 3.1.1). Phytoagar samples from MinPaX IV and V were 

additionally analyzed on their Se species composition (chapter 3.1.4) after 

cultivation to monitor Se source stability. Selected plant samples of MinPaX 

V were prepared in analogy to chapter 4.3 and purified according to method 

(C) (chapter 4.4.1). Table 16 summarizes the derived samples and analyses 

depending on the experiment.  

Table 16:  Overview over cultivation experiments performed, samples derived from them and 

parameters analyzed (*purified with method (C)) 

experi-

ment 
plant samples 

growth 

monitoring 
Se conc. 

Se species 

composi-

tion 

δ82Se 

MinPaX I roots & shoots 

    

MinPaX II entire plant 

    

MinPaX III entire plant 
    

MinPaX IV entire plant 
  (phytoagar) 

 

MinPaX V roots & shoots 
  (phytoagar) (plants)* 
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Redox stability of the source Se species in the phytoagar is mandatory for 

species dependent evaluation of the Se uptake into plants. Due to sterile 

and oxic conditions in the boxes during the entire cultivation time (Noth-

stein, 2015) species stability is very likely. However, for MinPaX IV and V Se 

species were determined in the phytoagar extracts after cultivation using 

the method after Bird et al. (1997) (performed by Karen Viacava and Dr. 

Markus Lenz, FHNW Basel) (chapter 3.1.4).  

Se tends to form volatile compounds, e.g. induced by microbial or fungi 

activity (chapter 2.3.2). In case boxes or phytoagar were not fully sterilized, 

volatile losses might occur independent from plant activity. To evaluate the 

relevance of this factor, one “plant free” cultivation experiment was per-

formed, other conditions being equal to MinPaX. Se concentrations were 

measured afterwards to quantify potential deficits.  

5.2 Data processing 

The raw data of Se concentration, species and isotope determination were 

processed according to chapters 3.1.1, 3.1.4 and 3.2.8. From Se concentra-

tions determined, averages and standard deviations (± 1σ percentile) were 

calculated among MinPaX I – V for entire plants and between MinPaX I and 

V for roots and shoots. Averages represent general trends that can hardly be 

derived from single experiments due to the individual character of biological 

systems. Standard deviations thereby show the reliability of those trends. To 

quantify the major relevant processes, Se uptake, root-shoot translocation 

and volatilization, mass balance calculations were performed from recon-

structing mass flows between compartments according to the Se distribu-

tion measured after cultivation. The amount of volatile Se being in the 

boxes’ atmosphere (Seatm) was thereby calculated as a remainder from the 

balance of Se initially added (Seini), Se in the cultivated plant tissue (Secp) and 

Se in the phytoagar after cultivation (Sepac) (Equation (87)). Limitations are 

volatile losses not related to plants as well as errors inherent in Se determi-

nations (chapters 3.1.1, 4.2 and 4.3).  
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𝑆𝑒𝑎𝑡𝑚 = 𝑆𝑒𝑖𝑛𝑖 − 𝑆𝑒𝑐𝑝 − 𝑆𝑒𝑝𝑎𝑐                                              (87) 

Se transport between compartments 

To quantify Se transport pathways within the box the system was simplified 

by division into three Se containing compartments phytoagar (p), cultivated 

plants (cp) with subcompartments roots (r) and shoots (s) as well as the 

atmosphere (atm). Se transport processes were defined as Se transitions 

between compartments. Thereby uptake (U) was simplified as the transport 

from phytoagar to cultivated plants, translocation (T) as the transport from 

roots to shoots within the plants and volatilization (V) as the transport from 

plant into the atmosphere. This model underlies the assumptions of unidi-

rectional Se transport and a negligibly low amount of volatilization directly 

from the phytoagar Vp, which was confirmed by tests described in chapter 

5.3. The sources of volatilization (roots, shoots) cannot be differentiated 

within this setup. Based on Terry et al. (1992) the major fraction was as-

sumed to be volatilized via shoots. Figure 42 illustrates the scheme of 

compartments and transport processes.  
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Figure 42:  Mass balance model of MinPaX including compartments phytoagar (p), cultivated 

plants (cp) – with subcompartments roots (r) and shoots (s) – and atmosphere 

(atm) as well as examined transport processes uptake (U) (transport p -> cp), 

translocation (T) (transport r -> s) and volatilization (V)  (transport cp -> atm) (large 

blue arrows). Volatilization from phytoagar (p -> atm) (Vp), volatilization from 

roots (r -> atm) (Vr) and volatilization from shoots (s -> atm) (Vs) cannot be directly 

derived from this setup (small broken arrows). 

The Se contents [µg] initially in the phytoagar (pini) are referred to as cpini, 

the ones after cultivation (ac) as cpac and the Se contents in the cultivated 

plants (cp) are referred to as ccp respectively cr for roots and cs for shoots. 

The sum mass flows (Q) [µg (16 days)
-1

] of uptake (QU) and volatilization (QV) 

over the entire cultivation time were calculated according to Equations (88) 

and (89).  

𝑄𝑈 = 𝑐𝑝𝑖𝑛𝑖 − 𝑐𝑝𝑎𝑐                                                              (88) 

𝑄𝑉 = 𝑄𝑈 − 𝑐𝑐𝑝 = 𝑐𝑝𝑖𝑛𝑖 − 𝑐𝑝𝑎𝑐 − 𝑐𝑐𝑝                                    (89) 
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The calculation of the translocation mass flow QT is more complex and less 

reliable than QU and QV. It should include the Se fractions volatilized from 

roots and shoots (QVr and QVs) according to Equation (90), which is hardly 

possible within this setup.  

𝑄𝑇 = 𝑄𝑈 − 𝑐𝑟 − 𝑄𝑉𝑟 = 𝑐𝑠 + 𝑄𝑉𝑠                                                  (90) 

Equation (91) calculates QT under the assumption confirmed by Terry et al. 

(1992) that volatilization majorly derives from shoots. This is a reasonable 

approximation, but might cause errors particularly with higher Se concentra-

tions supplied (chapter 5.5).  

𝑄𝑇 = 𝑄𝑈 − 𝑐𝑟 = 𝑐𝑠 + 𝑄𝑉                                                                    (91) 

To compare the extents of accumulation within compartments as well as 

mass flows among them relative parameters were included. Therefore 

accumulation (plant (acp), roots (ar), shoots (as)) and uptake (u), transloca-

tion (t), volatilization (v) fractions related to the Se supplied were calculated 

according to Equations (92) to (99). Accumulated fractions thereby describe 

the extent of Se retention in system compartments, which might become 

important regarding nutrition and biofortification issues (chapters 2.1.2 and 

2.1.4). All fractions are percentages of the Se initially supplied, which is 

defined as 100 %.   

𝑎𝑝𝑎𝑐  [%] =
𝑐𝑝𝑎𝑐

𝑐𝑝𝑖𝑛𝑖
∗ 100                                                   (92) 

𝑎𝑐𝑝  [%] =
𝑐𝑐𝑝

𝑐𝑝𝑖𝑛𝑖
∗ 100 =  𝑎𝑟 + 𝑎𝑠                                                             (93) 

𝑎𝑟  [%] =
𝑐𝑟

𝑐𝑝𝑖𝑛𝑖
∗ 100                                                  (94) 

𝑎𝑠 [%] =
𝑐𝑠

𝑐𝑝𝑖𝑛𝑖
∗ 100                                                    (95) 

𝑎𝑣 [%] =
𝑐𝑣

𝑐𝑝𝑖𝑛𝑖
∗ 100                  (96) 
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𝑢 [%] =
𝑄𝑈

𝑐𝑝𝑖𝑛𝑖
∗ 100                                   (97) 

𝑡 [%] =
𝑄𝑇

𝑐𝑝𝑖𝑛𝑖
∗ 100                            (98) 

𝑣 [%] =
𝑄𝑉

𝑐𝑝𝑖𝑛𝑖
∗ 100   (99) 

Serial reactive transports might underlie rate limiting steps, describing the 

slowest reaction(s) that determine the overall reaction speed if dependent 

on each other’s products. The accumulation and therefore oversupply of 

reagents favors the reaction of thermodynamically less stable molecules. 

Lighter isotopes are characterized by a slightly lower binding energy and 

therefore preferred in molecular transformations (Olin et al., 2005; Hoefs, 

2009). Rate limiting steps tend to induce isotope fractionation, but also 

appear as a key process in Se transport and accumulation. Therefore reveal-

ing Se rate limiting steps in plants for the individual species is of major 

relevance for this study. Figure 43 illustrates the phenomenon of rate 

limiting steps concerning the examined processes in the cultivation system.    

 

Figure 43:  Illustration of potential rate limiting steps for dominant Se transport pathways 

(simplified) (compartments defined in analogy to Figure 42).  
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Se isotope fractionation in plants 

For the quantification of isotope fractionation the Rayleigh model (Equa-

tion (100)) is widely applied for several stable isotope systems (e.g. Zeebe 

and Wolf-Gladrow, 2001) including Se (chapter 2.3.1).  

𝑅

𝑅0
=

( 𝑆𝑒/ 𝑆𝑒)𝑝
7682

( 𝑆𝑒/ 𝑆𝑒)𝑟
7682 = 𝑓(𝛼−1)                                                         (100) 

82
Se and 

76
Se are isotope abundances that were measured and calculated 

according to chapter 3.2.8. The indices p and r represent product and 

reactant of the reaction regarded. f (0 ≤ f ≤ 1) is the relative fraction of Se 

remaining in the reactant after the considered process. α is the fractionation 

factor (constant) that describes the isotope fractionation characteristics of 

the considered process. It is the target parameter calculated from the 

Rayleigh equation, from which the isotope fractionation Δ is derived (Equa-

tion (9)). The knowledge of Δ for particular processes enables the recon-

struction in natural environments.   

The Rayleigh model was applied by Mariotti et al. 1981 and Penning (2005) 

on carbon and nitrogen isotope fractionation by soil microbial processes in 

closed systems with limited amounts of the target element (Equations (101) 

and (102)). Detailed derivation from Rayleigh can be found therein. The 

index ri represents the initial status of the reactant before the reaction 

regarded, p the final status of the product.  

𝛿𝑝 = 𝛿𝑟𝑖 −  
𝛥∗𝑓∗ln (𝑓)

(1−𝑓)
  𝛥 = ln(𝛼) ∗ 1000  𝛼 =  exp (−

(1−𝑓)∗(𝛿𝑝−𝛿𝑟𝑖)

𝑓∗ln(𝑓)∗1000
  

 (101)  

𝛿𝑟 = 𝛿𝑟𝑖 + 𝛥 ∗ ln (𝑓)  𝛥 = ln(𝛼) ∗ 1000 𝛼 =  exp (
(𝛿𝑟−𝛿𝑟𝑖)

ln(𝑓)∗1000
)       (102) 

Due to similar framework conditions, the model was transferred to the 

cultivation system. For calculation of uptake specific α (αU) the isotope 

compositions of the phytoagar before (δpini) and after cultivation (δpac) were 
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used as initial (δri) and final status (δr) (Equations (101) and (102)). δpini 

hereby equals the Se isotope composition measured in the Se standard 

solutions supplied. The fraction remaining after uptake, fU, is defined as the 

Se fraction that was measured in the phytoagar after the cultivation period. 

αU was then calculated according to Equation (103). Calculations of Δ were 

performed according to Equation (9) respectively (101) and (102).  

𝛼𝑈 = exp (
𝛿𝑝𝑎𝑐−𝛿𝑝𝑖𝑛𝑖

ln(𝑓𝑈)∗1000
)                                                                      (103) 

𝑓𝑈 =
𝑐𝑝𝑎𝑐

𝑐𝑝𝑖𝑛𝑖
                                                         (104)

Using ΔU, the hypothetical isotope ratio of the cultivated plant (product) 

after Se uptake δcpini under exclusion of volatilization can be derived via 

Equation (105) with δcpini as δp according to Equation (101). 

𝛿𝑐𝑝𝑖𝑛𝑖 = 𝛿𝑝𝑖𝑛𝑖 −  
𝛥𝑈∗𝑓𝑈∗ln (𝑓𝑈)

(1−𝑓𝑈)
             (105) 

δcpini, subsequently used as δri (Equation (101)), enables the calculation of 

the fractionation factor for volatilization αV based on the assumption that 

uptake and volatilization, which in reality take place in parallel, can be 

approximated as having taken place one after the other. The isotope com-

position measured in plant tissue after cultivation (including volatilization) 

was referred to as δcp and defined as the status of the reagent after reaction 

δr (Equation (102)). fV is the fraction remaining in the plant after volatiliza-

tion, it is defined as the Se amount measured in the plant related to the 

amount taken up, according to Equation (107). Equation (106) was used to 

calculate αV.  

𝛼𝑉 = exp (
(𝛿𝑐𝑝−𝛿𝑐𝑝𝑖𝑛𝑖)

ln(𝑓𝑉)∗1000
)                      (106) 

𝑓𝑉 =
𝑐𝑐𝑝

𝑄𝑈
=

𝑐𝑐𝑝

(𝑐𝑝𝑖𝑛𝑖−𝑐𝑝𝑎𝑐)
                    (107)  
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The fractionation by translocation αT can only be approximated based on 

the assumption that volatile Se species are exclusively emitted via shoots, 

which is of limited validity particularly for higher concentrated Se supple-

mentations. The fractionation induced by translocation was thereby deter-

mined via the isotope fractionation induced by volatilization and transloca-

tion combined, αTV, which product the isotope composition in the shoots, 

δshoot, is. Using δshoot as δp and δroot as δr. The initial isotope composition δri 

cannot be directly measured, but calculated by rearranging Equation (102) 

to δri and then insert in Equation (101) and subsequently rearrange to α 

(Equation (108)). The fraction remaining fTV is thereby the Se amount re-

mained in the roots related to the amount in the entire plant (Equation 

(109)).   

𝛼𝑇𝑉 = exp (−
(𝛿𝑠ℎ𝑜𝑜𝑡−𝛿𝑟𝑜𝑜𝑡)

(ln(𝑓𝑇)+
𝑓𝑇∗ln(𝑓𝑇)

(1−𝑓𝑇)
)∗1000

)                      (108) 

𝑓𝑇𝑉 =
𝑐𝑟

𝑐𝑐𝑝
          (109) 

Within this setup and regarding the data given, the fractionation of translo-

cation under exclusion of volatilization was not possible.  

Against expectations, no reliable results on δpac were available for MinPaX V 

due to matrix specific instability and insufficient application of stabilization 

measures. After determining the Se concentration, phytoagar extracts were 

stored at 4 °C before organic destruction under unsterile conditions. This led 

to the formation of microbial cultures that probably changed Se composi-

tion or even formed volatile compounds, which might have impacted Se 

isotope composition significantly. Furthermore the precision of Se isotope 

determinations in phytoagar was with 1 ‰ by far lower than the one in 

plants and the data basis of validation was not comparably comprehensive. 

That is why δpac was not determined and concluded in mass balancing. For 

future applications, the phytoagar extracts must be treated immediately 

after extraction, at least concerning the destruction of organic compounds, 

and stored at -20 °C before purification. The precision must be improved. 
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However, isotope fractionation factors can be determined for uptake and 

volatilization in sum according to Equations (110) and (111). 

𝛼𝑈𝑉 =  −
(1−𝑓𝑈)∗(𝛿𝑐𝑝−𝛿𝑝𝑖𝑛𝑖)

𝑓𝑈∗ln (𝑓𝑈)
             (110)  

As all plants are exclusively products of their roots and shoots, δcp can be 

derived from δroots and δshoots (Equation (111)) as only isotope ratios of them 

were determined for MinPaX V.   

𝛿𝑐𝑝 =
𝑚𝑟

𝑚𝑐𝑝
∗ 𝛿𝑟𝑜𝑜𝑡 +  

𝑚𝑠

𝑚𝑐𝑝
∗ 𝛿𝑠ℎ𝑜𝑜𝑡              (111) 

From the available data, the isotope fractionation induced by translocation 

(including volatilization) could be determined according to Equations (108) 

and (109).  

5.3 Se source stability during cultivation 

Table 17 shows the results of Se species determinations in phytoagar ex-

tracts after cultivation. The total Se concentrations before and after cultiva-

tion as well as after sample transport to Basel are given as well as Se recov-

eries from the postal transport (1 week, room temperature) and from 

species dependent and total Se determination in Basel. Finally the fraction 

of the Se species initially added related to the sum of Se species determined 

is given to represent the average species stability.   
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Table 17:  Initial and final Se concentrations in the cultivation setups and fractions of the Se 

species remaining in its initial form (species measurements and data processing 

conducted by Lenz and Viacava, FHNW Basel (2014)) (n=2 – MinPaX IV and MinPaX 

V); 1)measured directly after vacuum filtration with ICP-MS 2)measured after 

transport (Karlsruhe – Basel) in Basel with HPLC-ICP-MS 3)total Se determined in Ba-

sel/total Se determined in Karlsruhe – effects of transport and sample preparation 

in Basel 4)sum Se species/total Se (Basel) – deficit is dominantly volatile species that 

emitted during sample preparation 5)concentration of initial Se species found in the 

sample/sum Se species detected (raw data available in Appendix IV, Table IV-12) 

Se species 

added 

Total  

source Se 

concentra-

tion  

[µg L
-1

]
1)

 

Total Se 

concentra-

tion after 

cultivation 

[µg L
-1

]
1)

 

Total Se 

concentra-

tion after 

cultivation 

[µg L
-1

]
2)

 

SeBasel/SeKA 

[%]
3)

 

Σ(species)/

SeBasel [%]
4)

 

initial Se 

species/ 

Σ(species) 

[%]
5)

 

selenate 119 ±0.9 3.6 ±0.2 11.2 ±2.3 303 ±46.7 n/a 

selenate 579 ±32.5 159 ±35.6 127 ±26.3 80.6 ±1.5 89.9 ±1.5 97.6 ±2.4 

selenate 1190 ±20.2 978 ±24.2 727 ±48.1 74.2 ±3.1 112 ±2.6 100 ±0 

selenite 114 ±3.5 76.4 ±17.4 34.9 ±1.5 48.7 ±13.0 31.9 ±13.3 96.0 ±4.0 

selenite 556 ±17.0 391 ±27.1 131 ±85.1 35.2 ±24.2 54.4 ±9.0 94.3 (n=1) 

selenite 1130 ±39.4 972 ±5.8 162 ±27.5 16.7 ±2.7 53.1 ±2.0 100 ±0 

SeMet 108 ±1.5 26.5 ±0.4 24.2 ±2.3 91.5 ±7.4 13.0 ±0.4 96.8 (n=1) 

SeMet 549 ±24.3 228 ±82.2 88.4 ±6.0 45.8 ±19.2 20.0 ±7.3 n/a 

SeMet 1090 ±55.3 394 ±18.9 190 ±21.9 48.7 ±7.9 27.9 ±0.8 98.8 ±1.2 

 

The reliability and significance of these results are limited in some respects. 

Comparing the Se amounts determined with ICP-MS at AGW and IC-ICP-MS 

respectively HPLC-ICP-MS at FHNW in Basel, high differences and Se deficits 

were detected regarding the total Se contents in the phytoagar extracts. The 

most likely reason was the accidentally long transport time from Karlsruhe 

to Basel due to service delay by the transport company. As mentioned in 

chapters 4.1 and 5.3.2.2, phytoagar extracts are unstable and serve as 

efficient growth medium and carbon source for microbial cultures as well, 

changing Se species composition or even cause volatile Se losses. Samples 

were unsterile after liquid vacuum extraction, and the absence of cooling 

might have favored microbial growth and thereby volatile losses that emit-

ted with opening sample containers. The laboratory coworkers from Basel 

confirmed this assumption as they reported a typical smell of volatile organic 
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compounds (Dr. Markus Lenz, personal comment) (Table 17 
3)

). Another 

limitation was the analytic facility that detected only selected Se species 

(chapter 3.1.4), neglecting a variety of residual Se species that might have 

formed during transport (chapters 2.1.4 and 2.2.4) (Table 17 
4)

). As all Se 

species supplied in the cultivation setups were detectable with the methods 

used (chapter 3.1.4), a recovery of the expected Se species related to the 

sum of all Se species measured was calculated and regarded as the most 

reasonable approach to quantify Se species stability during cultivation from 

the data available (Table 17 
5)

). Se yields of nearly 100 % for all species and 

concentrations as well as a good reproducibility indicate a certain stability of 

the species during cultivation. However, for reliable results this experiment 

should be repeated with improved framework conditions, particularly 

shortened transport time and cooling possibility.  

Table 18 shows the results of the “plant free” cultivation experiment per-

formed in order to monitor plant-independent volatile losses during culti-

vation.  
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Table 18:  Se concentrations measured in the phytoagar extracts before* and after** ”plant 

free“ cultivation in all boxes and their Se recoveries (as the same samples were used 

for the methodical setup of vacuum filtration, Seini values are equal to those in Table 

6 and Appendix IV, Table IV-3) 

Se species 

added 

Seini [µg L-1]* 

(n=3) 

Seac [µg L-1]** 

(n=1) 
Se recovery [%] 

average Se 

recovery 

species [%] 

selenate 103 ±0.7 104 101 
 

selenate 526 ±3.0 519 98.6 
 

selenate 1080 ±1.7 1080 100.5 100 ±1.0 

selenite 103 ±0.5 104 101.7 
 

selenite 544 ±1.7 542 99.7 
 

selenite 1020 ±9.3 1010 98.8 100 ±1.1 

SeMet 101 ±5.5 98.6 97.4 
 

SeMet 508 ±32.3 506 99.5 
 

SeMet 977 ±88.3 990 101 99.4 ±1.3 

Blank <0.1 <0.1 <0.1 
 

average 
  

99.9 ±1.2 99.9 ±1.2 

 

Se recoveries were close to 100 % with very good reproducibility among all 

Se species and concentrations tested. The results show that volatile losses 

independent from plants do not or to negligibly low extent occur during 

cultivation. However, one limitation of this experiment was the influence of 

microbial organisms located deep within the rice seeds possibly even after 

seed sterilization (Prof. Dr. George Alfthan, personal comment), which could 

not be resolved in this setup.   

5.4 Growth rates and phytomass production 

Figure 44 shows the average plant height development in MinPaX I and II 

differentiated regarding Se species and concentration. In MinPaX I the low 

concentrated batches of all species as well as the blank grew faster and to a 
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higher final height. The highest concentrations of all batches grew slower 

with smaller final plants and even stagnating or decreasing phases. All 

batches had an over-proportional growth rate in the last two days before 

harvesting. MinPaX II did not confirm this trend. Light tendencies of lower 

growth rates within higher concentrated batches and vice versa were 

recognizable, but in general all boxes show linear growth rates that are not 

significantly dependent on source species or concentration. The blank box 

with no Se added was located in the same range concerning growth, indicat-

ing that Se addition has no significant influence on plant growth in the 

species and concentration ranges supplied.   
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Figure 44:  Growth of plants depending on Se species and concentration in MinPaX I and 

MinPaX II cultivation batches (uncertainty ~0.1 cm (raw data available in Appendix 

IV, Table IV-13). 
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Figure 45 shows the average length of the plants (a) and their average 

phytomass (b) after harvesting depending on cultivation batch for all exper-

iments MinPaX I – V. Although individual deviations were detectable, the 

tendencies were similar in all cultivation experiments. The relatively high 

variations among MinPaX I – V and the small ones within the experiment 

indicate that random factors (quality of seed batch, position related to light 

source, plant individual development) caused differences in growth and 

phytomass rather than the Se source characteristic.  

 

 

Figure 45:  Average length and phytomass of plants after the cultivation period of 16 days in 

dependence of Se concentration and species within the different cultivation exper-

iments (raw data available in Appendix IV, Table IV-14). 

Figure 46 shows the relation between shoot length respectively phytomass 

and the Se fraction taken up during the entire cultivation period. No signifi-

cant correlation was detectable, neither for length nor for phytomass. This 

confirms the indications of Figures 44 and 45 that regarding this setup Se 

uptake does not significantly influence plant growth and vice versa.  
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Figure 46:  Relation between shoot length respectively phytomass after the cultivation period 

and the Se uptake depending on Se species supplied (raw data available in Appen-

dix IV, Table IV-14 and 15).  

Based on these results, the absolute Se content in the samples [µg] was 

preferred compared to mass related Se concentrations [µg g
-1

] for compari-

son among experiments and Se source characteristics.  

The absolute Se amount takes dilution effects into account, e.g. by higher 

individual plants and small differences in phytomass production induced by 
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slightly higher light exposition. Furthermore, mass balancing requires the 

absolute amount of Se in the compartments and transport pathways. How-

ever, shoot growth, differences in plant developments (e.g. toxicity symp-

toms) and phytomass were monitored and related to the Se accumulation 

and transport processes within all experiments.   

5.5 Se distribution and transport pathways 

Figures 47-49 illustrate the Se distribution within the system compartments 

as well as the Se transport flows depending on the Se concentration sup-

plied for the selenate setups. In the low concentrated approach of 100 µg L
-1

 

initial Se concentration high uptake rates of >90 % and subsequently high 

translocation rates of >80 % related to the Se supplied were detected 

(Figure 48 and 49). Se accumulated by >50 % within the shoots were meas-

ured, which is elevated by factor 3 compared to the root-Se (Figure 47). This 

confirms the results of previous studies performed on selenate supplied 

plant cultivation presented in chapter 2.2.2. The medium concentrated 

approach of 500 µg L
-1

 initial Se concentration follows this trend linearly 

with slight decreases in uptake and subsequently in translocation (Fig-

ures 47-49). The box with the highest Se concentration shows a drop in 

uptake in relative (Figure 49) and absolute numbers (Figure 48). Transloca-

tion subsequently falls down (Figure 49) with the result of changing propor-

tions of Se accumulation in roots and shoots. They are equally distributed 

with 10 % each (Figure 47). Under Se stress, translocation might be reduced 

due to toxic impacts on Se transport pathways or even actively minimized to 

protect the upper plant part. Se isotope signatures might reveal which 

mechanism caused the changing distribution.  

In contrast to previous studies (chapter 2.2.4), volatilization takes place on a 

relatively high level for selenate supplied setups compared to other species 

(Figures 50-55), which equals a fraction of >20 % for the low concentrated 

approach. A relative decrease with rising Se supplemental concentration 

was detected, but different from uptake and translocation it developed 
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linearly and with a lower slope (Figure 49). Volatilization might be a rate 

limiting process with a defined maximum reaction rate reached in the high 

concentrated setup. It therefore could cause backlogs to incorporation 

processes and contribute to the limitations of translocation. In this box 

volatilization further increased compared to the 500 µg L
-1

 setup, despite of 

absolute lower uptake and translocation. This indicates an active protection 

mechanism by the plant to avoid toxic Se levels, e.g. by shifts in the meta-

bolic pathways in advance of higher volatilization (chapter 2.2.4, Figure 12). 

In this case either a higher amount of selenate was transferred into volatile 

organic species, which increased the number of reduction processes, or a 

higher amount of already reduced organic Se was converted into volatile 

species. The first possibility might leave enriched δ
82

Se values especially in 

the shoots with a high difference to the roots as the isotopically lighter 

reduced Se species increasingly left the plant tissue. This is likely, because 

the lower Se fraction detected in the shoots within this setup (Figure 47) 

and the study by Terry et al. (1992) indicated a preferential volatilization 

pathway via shoots. Especially for selenate supply this is probable as the 

stability of this molecule will cause significant delays before being reduced 

and transformed, providing time to rush through the root system into the 

shoots. The second possibility could affect the roots as well, as a significantly 

higher fraction of Se is organically bound (Figure 11), and therefore shift the 

volatilization pathways in favor of the roots. In this case higher δ
82

Se values 

would be detectable in both plant parts. In any case Se isotope signatures 

could reveal the Se related processes being responsible for changing accu-

mulation patterns and transport flows in the high concentrated setup.  



5.5  Se distribution and transport pathways 

151 

 

Figure 47:  Distribution of Se fractions [% of Se added] within the cultivation system com-

partments according to Equations (92)-(96), for the selenate supplied setups (av-

erage of MinPaX I-V respectively I and V for roots and shoots) (raw data available 

in Appendix IV, Table IV-15). 

 

Figure 48:  Absolute Se transport [µg] (according to Equations (88)-(91)) as well as relative Se 

transport [arrow size] (according to Equations (97)-(99)) among the cultivation sys-

tem compartments for selenate supplied setups (average of MinPaX I-V respec-

tively I and V for translocation) (raw data available in Appendix IV, Table IV-15). 
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Figure 49:  Relative Se transport [% of Se supplied] (according to Equations (97)-(99)) depend-

ing on the initial selenate concentration (average of MinPaX I-V respectively I and 

V for translocation) (raw data available in Appendix IV, Table IV-15). 

Figures 50-52 illustrate the Se distribution within the system compartments 

as well as the Se transport flows depending on the Se concentration sup-

plied for the selenite setups. In the lowest concentrated setup, 60 % of the 

Se supplied was taken up and majorly stored in the roots (Figure 50), while 

10 % each were translocated and volatilized (Figure 52). This confirms 

previous studies on selenite uptake and translocation patters (chapter 

2.2.2). Uptake decreased to a high degree and almost linearly with rising Se 

source concentration to 23 %. In contrast, translocation and volatilization 

remained at a nearly constant level, whereby volatilization was slightly 

elevated particularly with higher initial Se concentration (Figure 52). This 

linear development indicates a rate limiting step at translocation having a 

direct consequence on volatilization (Figure 52). An exclusive direct limita-

tion is however unlikely as the major fraction of Se was located within the 

roots and furthermore organically transformed to a very high degree (chap-

ter 2.2.2). At least a significant fraction will volatilize via roots and therefore 

underlies no dependence on translocation. Usually organic molecules are 
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preferentially translocated in selenite supplied plants (chapter 2.2.2) and the 

formation of volatile compounds in any case requires reduction and organic 

transformation (Figure 12). As a consequence, the limitations of transloca-

tion and volatilization in parallel might be caused by a common prerequisite, 

reduction and organic transformation, instead of direct dependence. This 

rate limiting step might induce plant internal variations in δ
82

Se. Assuming 

that reduction and subsequent organic transformation exclusively occurs 

within the roots as indicated in chapter 2.2.2 and is limited according to Se 

source concentrations as assumed here, roots will be enriched in heavier Se 

isotopes related to Se source especially within higher concentrated setups. 

In contrast, shoots will be depleted in heavier isotopes related to the Se 

source. Amounts and pathways of volatilization will either reduce the 

isotopic root-shoot difference, if in analogy to selenate volatilization will 

majorly take place via shoots. In case it will occur majorly via the roots, δ
82

Se 

variations between roots and shoots will increase. The latter is more likely 

because root-shoot translocation and volatilization are both on a low level 

and the Se amounts in the roots are much higher than in the shoots. How-

ever, Se isotope signatures might help to reveal the volatilization pathway in 

selenite supplied setups.   

In general, Se isotope variations are expected to be much smaller than in the 

selenate boxes. As shown by previous studies (Figure 11), selenite is usually 

taken up in the inorganic form, but reduced and transformed very quickly 

and in major fraction minimizing detectable isotope variations. Furthermore, 

isotopic differences are not expected between organically bound Se and 

volatile organic Se species, as enzymatic processes without reduction were 

not reported to induce significant isotope fractionations yet (chapter 2.3.3). 

Differences are therefore only expected between the very small fraction of 

selenite and the major organic fraction. Volatilization only reduces the 

quantity of this major fraction and as the rates are relatively small this will 

probably not make a significant difference. However, Se isotope signatures 

might reveal the qualitative prevalence of certain volatilization pathways.   
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Figure 50:  Distribution of Se fractions [% of Se added] within the cultivation system com-

partments according to Equations (92)-(96), for the selenite supplied setups (aver-

age of MinPaX I-V respectively I and V for roots and shoots) (raw data available in 

Appendix IV, Table IV-15). 

 

Figure 51:  Absolute Se transport [µg] (according to Equations (88)-(91)) as well as relative Se 

transport [arrow size] (according to Equations (97)-(99)) among the cultivation sys-

tem compartments for selenite supplied setups (average of MinPaX I-V respective-

ly I and V for translocation) (raw data available in Appendix IV, Table IV-15). 
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Figure 52:  Relative Se transport [% of Se supplied] (according to Equations (97)-(99)) depend-

ing on the initial selenite concentration (average of MinPaX I-V respectively I and V 

for translocation) (raw data available in Appendix IV, Table IV-15). 

Figures 53-55 illustrate the Se distribution within the system compartments 

as well as the Se transport flows depending on the Se concentration sup-

plied for the SeMet setups. The lowest concentrated approach showed 

relatively high uptake rates of about 70 % with equal distribution among the 

plant parts (Figure 53). This is also confirmed by previous studies (chap-

ter 2.2.2). While the uptake remains nearly constant with higher concentra-

tion supplied, the translocation decreased by 30 % in the 500 µg L
-1

 setups 

and remained constant with increasing source concentration. The transfor-

mation into volatile species might be factor limiting translocation, but with 

little effect. However, generally homogeneous distribution among the 

compartments, small process variations among concentrations supplied, low 

volatilization rates as well as the low tendency to induce Se isotope frac-

tionation by enzymatic transformation only – SeMet is already available in 

Se(-II) and does not underly redox changes (chapter 2.2.2) – reduce the 

probability of insightful Se isotope variations deriving from the SeMet 

setups. Based on these prospects, those samples were not regarded for Se 
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isotope analytics, as due to schedule issues only selected ones could be 

analyzed.  

 

Figure 53:  Distribution of Se fractions [% of Se added] within the cultivation system com-

partments according to Equations (92)-(96), for the SeMet supplied setups (aver-

age of MinPaX I-V respectively I and V for roots and shoots) (raw data available in 

Appendix IV, Table IV-15). 

 

Figure 54:  Absolute Se transport [µg] (according to Equations (88)-(91)) as well as relative Se 

transport [arrow size] (according to Equations (97)-(99)) among the cultivation sys-

tem compartments for SeMet supplied setups (average of MinPaX I-V respectively 

I and V for translocation) (raw data available in Appendix IV, Table IV-15). 
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Figure 55:  Relative Se transport [% of Se supplied] (according to Equations (97)-(99)) depend-

ing on the initial SeMet concentration (average of MinPaX I-V respectively I and V 

for translocation) (raw data available in Appendix IV, Table IV-15). 

5.6 Se isotope signatures and fractionation 

Plant sample treatment, purification and analytical validation enabled the 

precise, accurate and valid determination of Se isotope ratios (δ
82

Se) in the 

plant compartments roots and shoots. The Se distribution within the closed 

box systems and the quantification of underlying processes uptake, translo-

cation and volatilization via mass balancing (chapter 5.5) provided the 

foundation to determine the process individual extent of isotope fractiona-

tion depending on Se source species and concentration. Table 19 lists the Se 

isotope ratios measured in roots and shoots of cultivation setups supplied 

with 500 µg L
-1

 and 1000 µg L
-1 

selenate as well as 500 µg L
-1

 and 1000 µg L
-1

 

selenite derived from MinPaX V. These samples were chosen regarding their 

potential to show effects of rate limiting steps and changes in Se distribution 

patterns (chapter 5.5). Sodium selenate and sodium selenite standard 

solutions were the exclusive Se source and therefore defined as p ini (chap-

ter 5.1). These solutions were evaporated in 4M HCl to equilibrate Se spe-
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cies of standard and Double Spike for the determination of their Se isotope 

ratios. Quality control parameters defined in chapter 4.5.3 are included. 

Table 19:  Se isotope ratios measured and calculated in the system compartments for for 

cultivation batches with selenate supplied in 500 and 1000 µg L-1 concentrations and 

selenite supplied in 500 and 1000 µg L-1 concentrations as well as quality indicators 

βinstr, Se recoveries and residual TOC contents. δ82Se values are given in relation to 

NIST3149 according to Equation (6). (*internal analytical error <0.1 for all samples, 

**fraction of Se recovered after HG and anion exchange, ***calculated from δroot 

and δshoot according to Equation (111)) 

Se concen-

tration and 

species 

supplied 

System 

com-

partment 

δ82Se 

[‰]* 
βinstr 

Se 

recovery 

total [%]** 

Se 

recovery 

after HG 

[%] 

TOC 

[mg L-1] 

500 µg L-1 

selenate 

Se source 

(pini) 
-1.96 -2.02 n/a n/a n/a 

root -3.19 -2.07 5.7 92.1 <0.9 

shoot -1.95 -2.03 77.5 99.4 <0.9 

plant*** -2.36 n/a n/a n/a <0.9 

1000 µg L-1 

selenate 

Se source 

(pini) 
-1.96 -2.02 n/a n/a n/a 

root -2.85 -2.04 47.3 87.6 <0.9 

shoot -1.11 -2.01 91.0 91.9 <0.9 

plant*** -1.76 n/a n/a n/a <0.9 

500 µg L-1  

selenite 

Se source 

(pini) 
-0.49 -2.03 n/a n/a n/a 

root -1.21 -2.03 64.4 95.4 <0.9 

shoot 0.28 -2.02 81.1 89.6 <0.9 

plant*** -0.37 n/a n/a n/a <0.9 

1000 µg L-1 

selenite 

Se source 

(pini) 
-0.49 -2.03 n/a n/a n/a 

root -1.00 -2.03 49.9 97.7 <0.9 

shoot -0.07 -2.01 66.8 96.1 <0.9 

plant*** -0.51 n/a n/a n/a <0.9 
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The δ
82

Se values determined in the plant samples covered a range of -3.2 ‰ 

to 0 ‰, which is characteristic for natural systems (Figure 14). βinstr shows 

stable values with low scattering and no detectable dependencies on δ
82

Se. 

Although total Se recoveries including HG and anion exchange underlay 

relatively high variations, Se recoveries of HG only were constantly on a high 

level above 88 %. This indicates a high precision of at least 0.4 ‰ for δ
82

Se 

according to Figure 38. No TOC could be detected in any sample deter-

mined. All of these parameters indicate high precision and validity for δ
82

Se 

values, making the data basis high extent reliable (chapter 4.5.3).  

Table 20 shows the Se isotope differences between compartments and the 

isotope fractionation characteristics of Se uptake and translocation occurred 

within the same cultivation setups. The fractions remaining fU and fTV as well 

as the Se contents used for calculation were taken from the individual 

MinPaX V data.  

Table 20:  Se isotope differences and fractionation characteristics for uptake and translocation 

each including volatilization effects for cultivation batches with selenate supplied in 

500 and 1000 µg L-1 concentrations and selenite supplied in 500 and 1000 µg L-1 con-

centrations (δ represents the respective δ82Se) (raw data available in Table 19 and 

Appendix IV, Table IV-15) 

Process Parameter 

Se concentration and species supplied 

500 µg L-1 

selenate 

1000 µg L-1 

selenate 

500 µg L-1 

selenite 

1000 µg L-1 

selenite 

Uptake 

(incl. 

volatiliza-

tion) 

δcp- δpini  [‰] -0.40 0.20 0.12 -0.02 

fU 0.39 0.95 0.84 0.97 

αUV 0.9993 1.0002 1.0001 0.9999 

ΔUV [‰] -0.67 0.21 0.13 -0.02 

Transloca-

tion (incl. 

volatiliza-

tion) 

δshoot- δroot [‰] 1.24 1.74 1.49 0.93 

cr 0.14 0.25 0.34 0.17 

ccp 0.87 0.45 0.55 0.28 

fTV 0.16 0.56 0.61 0.62 

αTV 1.0035 1.0024 1.0019 1.0012 

ΔTV [‰] 3.51 2.34 1.92 1.19 

 



5  Determining the relation between Se isotope signatures and metabolic processes in plants 

160 

Isotope differences between initial and plant Se were relatively low in every 

system regarded. The 500 µg L
-1

 selenate box showed a low, but significant 

depletion in 
82

Se of plant tissue related to the Se source. The calculated 

fractionation -0.67 ‰ is less than the fractionation of -1.1 ‰ between Se 

source and plant reported by Herbel et al. (2002), but follows the same 

trend of slight depletion. Se uptake occurs via specific transport channels for 

selenate and selenite each and without changing molecular composition 

(chapter 2.2.2). Furthermore the molecules are too large to dissolve kinetic 

isotope fractionation caused by diffusion or dispersion (Hoefs, 2009). There-

fore uptake itself could unlikely cause isotope fractionation. As Herbel et al. 

(2002) took in situ plant samples from a wetland, the Se source available 

probably consisted of a Se species mixture and the plant might have taken 

up certain species preferentially, e.g. isotopically lighter Seorg when available 

as SeMet (chapter 2.2.2). In this study the Se sources were homogeneous 

regarding species. Rhizospheric processes changing pH and redox conditions 

could have taken place, e.g. organic acid chelation (e.g. Rauland-Rasmussen 

et al., 2008), and might have reduced minor fractions of selenate prior to 

uptake. However, as this fractionation was very small and the one in the 

other boxes not detectable despite of high analytic precision, Se isotope 

fractionation at uptake can be regarded as not significant. This indicates 

that, not as expected, volatilization does not play a major role regarding Se 

isotope variations. Emission of volatile species from the plants does not 

include redox changes and only reduces the lighter Seorg fraction (chap-

ter 2.2.4), which extent is not high enough to cause changes in isotope 

composition. Therefore volatilization pathways are hardly differentiable 

using Se isotope signatures in this setup. Gas phase trapping from the box 

and direct analyzation of the volatile species could on the other hand pro-

vide a deeper insight into volatilization characteristics. Se isotope variations 

between root and shoot were detected to be by far higher than the analyti-

cal precision reached for plant samples, which applies for all setups exam-

ined. Selenate setups underlay higher fractionation than selenite ones, 

which was caused by differing Se species composition between plant parts. 

Several studies previously showed that the organic Se fraction is much 
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higher in the roots than in the shoots. This particularly applies for selenate 

supplementation, as a small fraction is reduced to Seorg within the roots, 

whereas the fraction remaining selenate is translocated to the shoots 

(chapter 2.2.2). The reduction step prefers light isotopes that were thereby 

fixed in the root tissue, when remaining heavier isotopes move on to the 

shoots causing fractionation of +3.5 ‰ for the supplementation of 500 µg L
-1

 

Se (chapter 2.3). The lower fractionation at the 1000 µg L
-1

 setup was likely 

due to the lower translocation rate. An active mechanism to avoid Se trans-

location as suspected could not be observed in the data available. This 

mechanism might exist anyway, but not cause Se isotope fractionation. On 

the other hand, translocation rates might have been impacted directly by Se 

poisoning effects. Such effects were detected by Nothstein (2015) at sup-

plied concentrations above 1000 µg L
-1

 applying the same setup. The as-

sumption that volatilization was a rate limiting step for Se translocation in 

selenate supplied plants could not be confirmed. Figure 56 illustrates the 

processes that could have occurred and the Se isotope fractionation pre-

sumably induced by them.  
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Figure 56:  Se isotope fractionation and presumed underlying processes in the case of 

selenate supply (raw data available in Table 19 and Appendix IV, Table IV-15). 

The selenite setups showed a similar trend regarding translocation, but 

significantly less pronounced than detected in selenate supplied plants. 

However, translocation led to Se isotope fractionation of almost +2 ‰. In 

analogy to selenate, a certain fraction of selenite probably remained in this 

species and was preferentially translocated, whereas the reduced organic 

fraction mainly remained in the roots. These results differ from a study by 

Kahakachchi et al. (2004), who reported that selenite was quickly and by 

>90 % reduced and organically bound in the roots. Only a minor fraction was 

translocated, available as Seorg. Kahakachchi et al. (2004) studied Brassica 

juncea, which is characterized as secondary Se accumulator in contrast to 

the non-accumulator Oryza sativa examined in this study. Mounicou et al. 

(2006) showed that secondary accumulators contain up to 50 % water 

soluble organic Se forms that can easily be translocated (e.g. SeMet, also 

chapter 5.5). In contrast, non-accumulators include high proportions of Se 

bearing proteins, large molecules that consist of various soluble organic Se 
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species and tend to be incorporated into the plant tissue rather than trans-

located (chapter 2.2.3). Thereby Seorg rather remains in the roots within 

Oryza sativa and a significant fraction of selenite is translocated instead 

inducing enrichment in light isotopes in the roots. Nothstein (2015), who 

quantified Se species within Oryza sativa supplied with selenite, found on 

average 28 % Se that was still available as selenite in the shoots, compared 

to 7 % being selenite in the roots, the rest being Seorg. These findings con-

firm the assumption that significant amounts of Se were translocated as 

selenite as presumed from Se isotope fractionation. Thus, particular meta-

bolic pathways and the character of organic Se species can be detected in 

plants using isotope signatures, although these cannot directly differentiate 

between organic Se species. In the 1000 µg L
-1

 supplied box, the fractiona-

tion was with +1.2 ‰ significantly lower than in the 500 µg L
-1

 one, although 

translocation rates were nearly equal. Evaluating Se transport processes 

(chapter 5.5) a rate limiting step was revealed concerning translocation and 

volatilization. Reduction rates itself might have reached a limitation causing 

an accumulation of heavier selenite within the roots. Mechanisms involved 

in Se translocation itself might also have reached limits reducing the transfer 

of selenite and thereby enrichment of heavy isotopes in the shoots. Fur-

thermore, the formation rate of large organic Se compounds (e.g. Se bearing 

proteins) from soluble organic Se molecules (e.g. SeMet) could have been 

limited as well. This might have led to accumulation of soluble organic Se in 

the roots and, as these compounds tend to translocate (chapter 5.5), to a 

transfer into the shoots. Thereby the total organic Se fraction would have 

increased in the shoots and decreased in the roots, leading to a smaller 

difference in δ
82

Se compared to a lower Se concentration supplied. All of the 

reactions described might play a significant role in the occurrence of Se 

isotope variations. Figure 57 illustrates processes presumed to have taken 

place and the Se isotope fractionation detected.  
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Figure 57:  Se isotope fractionation and presumed underlying processes in the case of selenite 

supply (SeMet exemplarily represents soluble organic Se species, e.g. amino acids; 

Seorg represents large organic molecules tending to incorporation, e.g. proteins) 

(symbol keys in Figure 56) (raw data available in Table 19 and Appendix IV, Table 

IV-15). 

5.7 Potential applications 

Distribution of Se within plant compartments by trend confirmed previous 

studies presented in chapter 2.2.2 at low concentration supplied. However, 

this particular setup revealed the sensitivity of Se distribution and transport 

pathways on Se concentrations. Selenate, the species previously identified 

as the one with the highest potential for plant biofortification (Longchamp 

et al., 2015) and phytoremediation (Banuelos and Lin, 2005), underlies 

certain limitations concerning concentrations. Thereby volatilization via the 

shoots plays a key role that might become relevant for those applications. In 

contrast, selenite transport is already limited by uptake and inhibits translo-

cation that cannot exceed critical limits in the upper, edible plant parts. This 

phenomenon might be used to monitor and avoid Se excess in plant foods if 

cultivated on soils or with water highly enriched in Se. SeMet was shown to 

be taken up at similarly high rates in a wide concentration range and tends 
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to a homogeneous distribution within the entire plant tissue. This might be 

applied in long-term biofortification projects as a certain part is transported 

to the edible upper plant parts and the residual fraction is bound to the 

roots and thereby retained in the soil for subsequent plant cultivation. This 

retained fraction might serve as a continuous Se source within the soil. In 

contrast, supplemented selenate is either majorly removed from the fields 

with crop harvest or underlies leaching processes and can therefore unlikely 

be a predictable and long-term stable Se source (Alfthan et al., 2015). 

However, particularly higher concentrations revealed specific rate limiting 

steps that significantly influence Se transport and accumulation depending 

on the Se species supplied. Plant internal Se distributions and the processes 

inducing their extent and changes can be traced with Se isotope signatures. 

Root-shoot translocation leads to high isotope fractionation due to varying 

fractions of Se species stored in the roots respectively translocated to the 

shoots. Thereby translocation is the key process for monitoring Se accumu-

lation in edible plant parts and its species distribution therein. This in turn 

defines Se bioavailability and furthermore the potential of uptake, storage 

and volatile emission, which is crucial for phytoremediation applications 

(Banuelos and Lin, 2005). Transferring this knowledge to in situ plants, the 

determination of Se isotope signatures might enable the detection of rate 

limiting steps without complex and lengthy cultivation experiments or long-

term in situ monitoring. Thereby the causes of Se related problems, e.g. 

lacking accumulation in grains and fruits despite of high Se supplementation 

or Se excess in plants despite of moderate soil concentrations, could be 

indicated by determining a single state parameter. This makes Se isotope 

analyses a powerful tool to find solutions on Se related challenges, particu-

larly in agricultural systems. The interpretation of Se isotope signatures 

determined in in situ sampled plants must of course include influence 

factors beyond plant related processes (e.g. soil properties, soil solution 

chemistry, microbial activity). However, these factors control Se properties 

outside the plants. After entering the plant, Se underlies processes that do 

not significantly differ from those reflected in the Minimum Parameter 

approach.   
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6 Conclusions and outlook 

6.1 Evaluation of goals 

A major goal of this study was the evaluation of Se distribution as well as Se 

isotope variations in the soil-plant system. To separately examine plant 

related processes in that regard, a Minimum Parameter approach was 

developed. This excluded the influence of soil characteristics, nutrients and 

solutes as well as microbial activity. Basic prerequisites for the evaluation of 

Se distribution are reliable and standardized sample preparation procedures 

for plant and phytoagar tissue. Based on these, purification procedures were 

applied that separate sample-Se from matrix compounds. After develop-

ment, examination and assessment of diverse methods an innovative 

microwave digestion procedure was chosen for plant tissue preparation and 

a newly developed vacuum filtration method for phytoagar material. Both 

guaranteed full Se recovery. Organic destruction was fully enabled by 

microwave digestion, but limited for phytoagar filtration although being on 

a high level. This might be improved e.g. by longer reaction times or a 

different acid composition. Higher temperatures would very likely lead to 

uncorrectable Se losses. Future studies can build on these methods and use 

them as standard procedures for concentration measurements, isotope 

determinations or examination of other sample characteristics (e.g. molecu-

lar composition of phytoagar). The methods tested and optimized for 

sample purification all underlay characteristic strength and limitations. The 

efficiency of anion exchange depended on the matrix particularities to high 

extend. Thiol retention was robust and reliable with high Se recoveries for 

all matrices used. Both methods were able to reduce matrix elements to a 

minimum, but retained significant amounts organic compounds in the 

purified phases. Hydride separation enabled a full purification of samples 

from their organic matrices, but revealed limitations concerning high metal 

contents. Validation tests confirmed the high impacts of organic residuals, 
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yielding invalid results for samples treated with anion exchange and thiol 

retention. Hydride separation gained valid and reproducible results with a 

precision of 0.2 (±0.2) ‰ for plants and 1.1 (±0.1) ‰ for phytoagar. This 

study revealed the actual sensitivity of Se isotope analytics towards organic 

compounds. It therefore provides an exclusive method that is suitable for Se 

isotope analyses in plants and other organic rich samples. If available in 

samples, high metal impacts could be mitigated by previous anion exchange. 

Phytoagar precision might be improved by higher organic destruction rates 

prior to purification. For samples with no significant organic compounds, 

anion exchange might be the preferential purification method. In contrast, 

despite its reliably high Se recoveries among a variety of sample types thiol 

retention in general is hardly suitable for valid Se isotope determinations. 

High amounts of organic residuals that are mobilized from the cellulose 

powder will very likely lead to organic matrix effects even if the samples 

themselves do not contain significant organic fractions. However, this 

method might be used for pre-concentration of Se poor samples due to its 

high Se binding capacity as tested with a similar setup by Savard et al. 

(2006). 

The Minimum Parameter cultivation setup was proved to exclude detectable 

microbial activity and to keep Se sources stable during the entire cultivation 

period. Plant growth and development was neither significantly promoted 

nor retarded by the supplementation of Se, cultivation setups were highly 

reproducible regarding the individuality of biological organisms. The proce-

dure developed for organic sample treatment yielded sufficient analytical 

precision to detect plant internal Se isotope variations. From the methodical 

perspective this approach proved to be suitable for differentiated examina-

tion of Se related processes in plants. Se uptake and translocation in low and 

medium concentrated setups occurred in analogy to previously published 

studies. New insights into plant Se metabolism were gained concerning 

volatilization at all source concentrations as well as uptake, translocation 

and volatilization at the highest supplied Se concentrations among all 

species. Despite of high rates, uptake and volatilization did not induce 

detectable Se isotope fractionation. In contrast, high fractionations related 
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to translocation revealed plant internal Se species distribution, which turned 

out to shift with rising Se source concentrations supplied.  

In summary, this thesis provides a comprehensive, reliable method for 

organic sample treatment and valid Se isotope analyses in plants. Further-

more a cultivation setup was developed and evaluated meeting the de-

mands of differentiated process investigations and providing the opportuni-

ty of extensions to successive approximation to natural conditions. First new 

insights and approaches for the investigation of the Se cycle in plants using 

Se isotope variations were performed. Characteristic relations between 

single metabolic processes and isotope signatures were discovered. Howev-

er, to strengthen the reliability of those results, the experiments have to be 

repeated additionally including Se isotope determinations in phytoagar. This 

broader data basis is necessary due to the biological individuality of plants.  

6.2 Next steps 

The present thesis shows that the Minimum Parameter approach enables 

the differentiated examination of plant related processes via mass balancing 

and Se isotope determinations. Based on these, this methodical setup offers 

several possibilities for extensions.  

The trapping and analysis of the gas phase for Se concentration and Se 

isotope signatures could be a promising approach to investigate the volati-

lization process more thoroughly and to increase precision and reliability of 

the mass balance model. This was already applied for Se isotope applica-

tions in microbial, fungi and algae cultures (Johnson et al., 1999; Schilling et 

al., 2011b; Schilling et al., 2013) and might be transferable to plant cultures 

if volatilization rates are sufficiently high and the system remains sterile.   

The influence of soil composition and soil solution chemistry can be simulat-

ed by extending the Minimum Parameter approach on those components. 

Nothstein (2015) successfully developed and implemented cultivation 

experiments in equal boxes using optimum nutrient solution that included 

ubiquitary anions and cations as well as artificial soil consisting of quartz, 
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kaolinite and goethite. These setups could be used for Se isotope determi-

nations as well, although modifications in sample treatment and purification 

might be necessary. Further extensions might be the addition of Se fertilizer 

to simulate biofortification measures or the use of altered nutrient solution 

to simulate pH and redox changes that result from particular agricultural 

activity, which proved to be a critical factor in the Se cycle.  Plant species 

might be varied as well, e.g. dependent on the type of Se accumulator or 

related to their relevance for global food security.  

The Minimum Parameter setup and its extensions are very suitable to 

investigate the role of plants and their interaction with some factors, but it 

is limited in reflecting entire ecosystems. Inclusion of organic phases is 

hardly feasible, because microbial activity will lead to oxygen insufficiency 

and CO2 excess in the closed system, thereby changing framework condi-

tions. In addition to that it is impossible to grow plants to maturity for an 

investigation of their grains and fruits, which would be highly relevant with 

regard to nutrition issues. Closed box systems also do not allow interven-

tions during cultivation time, e.g. fertilizer addition or sampling. For this 

purpose greenhouse studies could serve as a transition to natural condi-

tions: they enable (to a limited extend) a controlled growth and the inclu-

sion of organic phases at the same time. Results derived from these setups 

could be verified in natural systems that are well known regarding their Se 

cycle like Se accumulated agricultural fields in Punjab (India) or wetlands 

suffering from Se excess in Kesterson Reservoir, California.  
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Appendix I – list of laboratory equipment 
and reagents used 

Abbreviations 

PE – polyethylene  

PP – polypropylene  

HDPE – high density polyethylene 

PTFE – polytetrafluoroethylene  

PC – polycarbonate  

PFA – perfluoroalkoxy alkanes  

p.a. – pro analysi (analytical grade) 

Instruments 

instrument model deliverer purpose 

heating plate 

(metal free) + 

controller 

T03-312 AHF, Tübingen heating, evaporation 

microwave system START1500 MLS plant digestion 

vacuum pump MWO 63/4 KNF Neuberger vacuum generation 

centrifuge Rotofix 32A Hettich centrifugation of TCP 

water bath E30U Dinkelberg Analytics continuous heating 

hydride generator FIAS400 Perkin Elmer 
purification method 

(C) 

phyto chamber n/a York International plant cultivation 

autoclave   

sterilization of 

cultivation equip-

ment 

sterile bench n/a Böttger 
cultivation prepara-

tion 

plant tissue mill TissueLyser Qiagen (Rentsch) 
grinding of plant 

tissue 

freeze dryer Alpha 1-4 Martin Christ drying of plant tissue 
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Laboratory equipment 

article material deliverer purpose 

general    

variable pipettes 0.1-10 

µL, 10-100 µL, 100-

1000 µL, 500-5000 µL + 

tips 

 BioHit mLine, VWR liquid handling 

dash bottle PFA AHF fill up, rinse 

flange containers (2 L) PFA AHF cleaning PFA beakers 

PFA beakers 7 mL, 17 

mL, 22 mL, 30 mL + 

screw cups 

PFA AHF 
sample treatment, 

storage, evaporation 

PFA beakers 30 mL, 60 

mL, 90 mL, 500 mL 
PFA AHF 

acid and water storage 

and pipetting 

water resistant pens  AHF PFA labelling 

centrifuge tubes 15 mL, 

40 mL 
PE VWR 

centrifugation, sample 

treatment 

Patho beakers 20, 50, 

100 mL 
PE VWR sample storage 

one way syringes and 

sterile syringe filters 

(0.45 µm) 

PE VWR filtration 

digestion    

microwave beakers + 

lids 
PFA MLS digestion 

quartz inlays (30 mL) + 

lids 
quartz MLS digestion 

phytoagar vacuum 

filtration 
   

Büchner funnels 120 

mL 
ceramic Roth 

phytoagar introduction 

and filtration 

filter flasks glass Roth liquid sample capture 

Guko cuffs rubber Roth 
connection flask-

funnel 

tubing ½ ‘’ PE Roth vacuum introduction 

paper filters cellulose Roth phytoagar filtering 
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purification    

column holder HDPE AGW (self-made) column holding 

minicolumns (5 mL) + 

lids + tip guards 
PP Spectrum Labs 

chromatographic 

purification 

minicolumn frits  

(0.45 µm) 
PE Spectrum Labs 

chromatographic 

purification 

wide neck bottles PE VWR 
cleaning of minicol-

umns and frits 

mortar + pounder agate VWR TCP grinding 

Nalgene bottle 250 mL HDPE AHF TCP production 

pH indicator paper (1-

14) 
paper VWR 

neutralization moni-

toring (method (A)) 

cultivation  

experiments 
   

Magenta boxes PC Sigma Aldrich cultivation 

Magenta box couplers PP Gentaur box connection 

volumetric flasks glass VWR 

production and 

quantification of Se 

doped phytoagar 

plant tissue  

preparation 
   

Eppendorf cups (safe-

lock) 
PP Eppendorf 

plant grinding and 

drying 

steel beds (5 mm) stainless steal Qiagen (Rentsch) 
plant grinding (tissue 

lyzer) 

scissors medium ceramic Kyocera plant minimization 

scissors small stainless steel SK Stahlwaren plant minimization 

scalpels stainless steel Braun plant part separation 
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Reagents 

reagent 
Quality / purity 

grade 
deliverer purpose 

general    

HNO3 
p.a., in-house 

double distilled 
Merck 

digestion, purifica-

tion, cleaning 

H2O2 suprapure Merck 
digestion, purifica-

tion (trapping) 

HCl suprapure Merck 
reduction, purifica-

tion 

ethanol 
p.a., >99.8 % 

(denatured) 
Roth 

cleaning of 

minicolumns and 

frits, sterilization of 

sterile bench + 

equipment 

isopropanol p.a., >99.5 % Roth 

cleaning of 

minicolumns and 

frits 

Se isotope 

analytics 
   

74Se/77Se Double 

Spike 
>99.8 % purity Chemotrade 

mass bias correc-

tion 

NIST3149 certified 

Se isotope 

standard 

n/a NIST 

method calibration, 

monitoring, 

validation 

digestion    

certified reference 

material NISTSRM 

1567a (Wheat 

Flour) 

n/a NIST 

validation of plant 

digestion methods, 

internal Se isotope 

standard 

certified reference 

material SGR-1 

(green river shale) 

n/a USGS 
validation of Se 

isotope analytics 

HF suprapure Merck SGR-1 digestion 

HClO4 normapure VWR SGR-1 digestion 
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purification    

AG1-X8 anion 

exchange resin 

(chloride form, 

100-200 µm mesh 

size) 

analytical grade BioRad 
purification 

(method (A)) 

cellulose powder 

(20 µm) 
n/a Sigma Aldrich production TCP 

thioglycolic acid Pure AppliChem production TCP 

sulphuric acid Suprapure Merck production TCP 

acetic anhydride Extrapure Merck production TCP 

acetic acid Suprapure Merck pProduction TCP 

NaBH4 granulate n/a Merck HG 

NaOH pellets Pure Merck 

purification 

method (C) 

(trapping) 

Mucasol detergent n/a Sigma Aldrich 
cleaning of PFA 

beakers 

cultivation 

experiments 
   

ethanol 
100 % (not 

denatured) 
VWR/promochem 

sterilization of rice 

seeds 

NaClO p.a. Merck 
sterilization of rice 

seeds 

Sterilium sterilizer n/a Hartmann 

hand sterilization 

before sterile 

bench work 

plant tissue 

preparation 
   

liquid N2 technical quality Air Liquide 
freezing (plant 

tissue preparation) 
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Appendix II – cleaning procedures 

Make sure that cleaning and drying spaces and surfaces are not exposed to 

Se! Always use millipore water (R = 18.2 Ω) when referred to H2O!  

5 % HNO3 

HNO3 p.a. (65 %) diluted 1:13 to H2O  

Relevant material characteristics 

PFA – tolerates boiling acid up to ~300°C, hydrophobic surface, slightly 

porous (ensures quantitative recovery of sample Se) 

Glass/quartz – tolerates boiling acid, hydrophilic surface, not porous (en-

sures low blanks) 

PE – tolerates diluted HNO3 only at room temperature, tends to retain HNO3 

(rinse properly!) 

Steel – might cause metal contamination (use sparsely and before purifica-

tion only!) 

Cleaning PFA beakers  

7, 17, 22, 30 mL – use for samples! (clean after any usage!) 

60, 90, 500 mL – use for acid and H2O storage only! (clean after laboratory 

session!) 

2 L flange containers – use for cleaning procedure only! 
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Cleaning procedure 

1. If solid residuals or scums, scrub with Mucasol and Q tip 

2. Rinse every beaker and lid individually three times with H2O 

3. Transfer beakers and lids to PFA container 

4. Fill container with 5 % HNO3, close container 

5. Put container on hotplate at 200°C, keep for 4 to 7 days 

6. Let container cool down for several hours 

7. Remove HNO3, fill container with H2O, keep several hours 

8. Remove H2O, wash every beaker and lid and the container individ-

ually three times with H2O 

9. Transfer beakers and lids to container, fill with H2O, keep for 1 day 

10. Remove H2O, rinse every beaker and lid individually three times 

with H2O 

11. Let beakers and lids dry (upside down), close beakers, store in 

closed and clean facility   

Cleaning quartz vessels  

Between two digestion batches – clean by using a complete “blank digestion 

batch” without samples 

After digestion session – clean with the same procedure as PFA beakers, 

wrap into Kimwipes after drying, store in closed and clean facility 

Be careful, especially lids are fragile! 

Cleaning microwave beakers (PFA) 

Between two digestion batches – clean by using a complete “blank digestion 

batch” without samples 

After digestion session – fill with 50 mL 32 % HNO3 (1:1 conc. HNO3/H2O), 

put on hotplate at 200°C and boil for 2 days, rinse with H2O, store with 

microwave equipment 
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Cleaning PE tweezer, ceramic scissors, scalpels  

Clean with ethanol and 5 % HNO3, rinse with H2O 

Cleaning glass graduated beakers, stir rods and other glass equipment 

1. Rinse with H2O, wipe out  

2. Fill beakers with 5 % HNO3, place smaller equipment into beakers 

3. Close beakers with watch glass dish, put on hotplate at 200°C for 4-

7 days 

4. Remove HNO3, rinse with H2O, let beakers dry upside down, store 

in closed and clean facility 

Cleaning magenta boxes (PE) 

1. Rinse boxes and couplers with H2O, wipe out  

2. Fill boxes with 5 % HNO3, place couplers in a large glass container 

with 5 % HNO3 

3. Cover boxes and glass container with watch glass dishes, keep at 

room temperature for 4-7 days 

4. Remove HNO3 from boxes, rinse with H2O, fill boxes with H2O, keep 

at room temperature for 1 day 

5. Remove H2O, rinse boxes with H2O, let boxes dry upside down 

6. Remove HNO3 from glass container, rinse couplers and glass con-

tainer with H2O, place couplers into glass container filled with H2O, 

keep at room temperature for 2 days, remove H2O from glass con-

tainer and rinse with H2O  

Cleaning minicolumns and frits (PE) 

1. If used with AG1-X8 resin, let fully dry 

2. Remove packing material 

3. Remove PE frit: push out of holder with rod or wire (paper clip) and 

remove from column with compressed air 
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4. Rinse columns (+cups and tips) with H2O (at least three times), col-

lect in container 

5. Collect frits in a (e.g. 60 mL) PFA beaker, fill with H2O, shake, re-

move H2O, repeat three times 

6. Fill both containers and PFA beaker with ethanol (30 %), isopro-

panole (30 %) and H2O (1:10) and shake for 30 min  

7. Fill both with H2O, shake, remove, repeat three times (until no 

more foaming visible) 

8. Fill both with 5 % HNO3, keep at room temperature for 4-7 days, 

remove HNO3, fill with H2O, keep at room temperature for 2 days, 

remove H2O, rinse individually with H2O 

9. Remove HNO3, rinse columns and frits individually, dry in clean en-

vironment 

Cleaning centrifuge tubes and PE sample containers (one-way) (PE) 

Rinse container and lid with H2O, dry in clean environment 
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Appendix III – purification procedure 
instructions 

Method (A) – anion exchange  

Preparation of packing material – add 50 g AG1-X8 (dry substance) to 

250 mL bottle (PFA/glass), wash successively with methanol, 1M NaOH and 

1M HCl (add to bottle, shake, settle, remove supernatant), store in 1M HCl 

Preparation of samples – evaporate aliquot at 70°C to near dryness, shortly 

oxidize organic samples with 100 µL conc. HNO3 + 100 µL conc. H2O2, evapo-

rate again to near dryness, dilute to 10 mL H2O, add 1 µL 0.25mM K2S2O8 per 

10 ng Se, heat up in closed beakers at 120°C for 90 min for full oxidation 

Preparation of columns – fill 1.2 mL AG1-X8 suspension into columns, clean 

and activate resin by passing 10 mL 6M HCl, pass H2O until eluate turns pH 

neutral 

Purification – add sample, pass 20 mL H2O (wash), extract Se with 5 * 1 mL 

6M HCl  

Method (B) – thiol retention 

Preparation of packing material – weight 5 g cellulose powder into 250 mL 

PFA bottle, add a mixture of 30 mL thioglycolic acid, 15 mL acetic anhydride, 

10 mL acetic acid and 0.5 mL sulphuric acid, cap bottle and shake for 30 min, 

let settle for 2 h, heat up for 24 h at 55°C, cool down, shake for 30 min, heat 

up for 24 h at 55°C, wash with H2O, filter and let dry at flying air, mortar to 

homogeneous powder 

Preparation of samples – evaporate aliquot at 70°C to near dryness, shortly 

oxidize organic samples with 100 µL conc. HNO3 + 100 µL conc. H2O2, evapo-
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rate again to near dryness, dilute to 2.5 mL 4M HCl, heat up at 80°C for 

90 min to full reduction, dilute to 10 mL 1M HCl 

Preparation of columns  – fill 0.1 g TCP into columns, condition TCP by 

passing 2 * 2 mL H2O, 2 mL 6M HCl, 2 mL 1M HCl (make sure column never 

dries out) 

Purification – add sample, pass 2 mL H2O, 2 mL 6M HCl, 2 mL 1M HCl (wash), 

transfer water saturated powder to 50 mL centrifuge tube (e.g. by flushing 

out with H2O), centrifuge at 4000 rpm for 10 min, remove supernatant, add 

500 µL conc. HNO3 followed by 500 µL H2O, heat up at 100°C for 20 min, 

cool down, add 3 mL H2O and shake tube, centrifuge at 4000 rpm for 

10 min, transfer supernatant to beaker, add 500 µL conc. HNO3 followed by 

500 µL H2O to residual TCP, heat up at 100°C for 20 min, cool down, add 

3 mL H2O and shake tube, centrifuge at 4000 rpm for 10 min, combine both 

supernatants (Se extract), remove residual TCP in extract by repeated 

oxidation with 1 mL 1:10 conc. H2O2 and 0.5M HNO3 

Method (C) - hydride separation 

Preparation of samples – dilute sample to 4M HCl (if containing HF, evapo-

rate at 70°C first), heat up at 80°C for 90 min to full reduction, dilute to 2M 

HCl 

Hydride generation – introduce sample and NaBH4 solution (2.4 g NaBH4 

pellets + 4 g NaOH pellets to 1 L H2O, pH 10-11) to hydride generator via 

peristaltic pump (80 RPM), trap gas phase in alkaline peroxide solution (5 mL 

1M NaOH + 1 mL 30 % H2O2), drain gas-liquid separator, take up 2M HCl for 

90 s after full sample uptake 

Anion exchange – heat up Se containing alkaline traps at 80°C for 60 min to 

full oxidation, apply method (A) 

(if sample contains high amounts of Fe, Co, Ni, Cu or As, apply anion ex-

change before hydride generation!) 



Appendix IV – raw data 

202 

Appendix IV – raw data 

List of abbreviations in sample IDs 

pini phytoagar initial 

  pac phytoagar after cultivation 

 cp cultivated plants 

  cpr cultivated plants - roots 

  cps cultivated plants - shoots 

  I to V MinPaX 

   1 to 10 Repetition or box 1 selenate 100 µg L
-1

 

  

2 selenate 500 µg L
-1

 

  

3 selenate 1000 µg L
-1

 

  

4 selenite 100 µg L
-1

 

  

5 selenite 500 µg L
-1

 

  

6 selenite 1000 µg L
-1

 

  

7 SeMet 100 µg L
-1

 

  

8 SeMet 500 µg L
-1

 

  

9 SeMet 1000 µg L
-1

 

  

10 no Se supplied 

WF Wheat Flour NISTSRM1567a reference 

 MS multielement standard 

PP Punjab plants 

VT validation test (Se free matrix + NIST-Se) 

cp cultivated plants 

p  phytoagar 

 c clean and condition 

 e eluate 

 w  wash 
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Se Se extract 

 A, B, C purification method 

S  supernatent (after B - centrifugation) 
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Se Se extract 
 A, B, C purification method 

S  supernatent (after B - centrifugation) 
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Appendix IV – raw data 

List of abbreviations in sample IDs 

pini phytoagar initial 
  pac phytoagar after cultivation 

 cp cultivated plants 
  cpr cultivated plants - roots 
  cps cultivated plants - shoots 
  I to V MinPaX 

   1 to 10 Repetition or box 1 selenate 100 µg L-1 

  
2 selenate 500 µg L-1 

  
3 selenate 1000 µg L-1 

  
4 selenite 100 µg L-1 

  
5 selenite 500 µg L-1 

  
6 selenite 1000 µg L-1 

  
7 SeMet 100 µg L-1 

  
8 SeMet 500 µg L-1 

  
9 SeMet 1000 µg L-1 

  
10 no Se supplied 

WF Wheat Flour NISTSRM1567a reference 
 MS multielement standard 

PP Punjab plants 
VT validation test (Se free matrix + NIST-Se) 
cp cultivated plants 
p  phytoagar 

 c clean and condition 
 e eluate 
 w  wash 
 

204

Ta
bl

e 
IV

-1
:  

Se
 s

ig
na

l o
pt

im
iza

tio
n 

m
ea

su
re

s 
fo

r S
e 

iso
to

pe
 a

na
ly

tic
s 

w
ith

 H
G

-M
C-

IC
P-

M
S 

– 
pl

as
m

a 
te

m
pe

ra
tu

re
 (~

RF
 p

ow
er

), 
gu

ar
d 

el
ec

tr
od

e 
ac

tiv
at

io
n 

an
d 

HN
O

3 
vs

. H
Cl

 a
s a

 p
ro

ce
ss

 re
ag

en
t 

 
 

RF
 9

50
W

, g
ua

rd
 o

n 
RF

 1
20

0W
, g

ua
rd

 o
ff

 
RF

 1
20

0W
, g

ua
rd

 o
n 

RF
 1

35
0W

, g
ua

rd
 o

n 

Cu
p 

ID
 

Se
t o

n 
m

as
s 

Si
gn

al
 [V

] 
N

oi
se

 [V
] 

S/
N

 [-
] 

Si
gn

al
 [V

] 
N

oi
se

 [V
] 

S/
N

 [-
] 

Si
gn

al
 [V

] 
N

oi
se

 [V
] 

S/
N

 [-
] 

Si
gn

al
 [V

] 
N

oi
se

 [V
] 

S/
N

 [-
] 

L2
 - 

1 
74

 
 

 
 

0.
01

22
8 

0.
00

05
4 

 
0.

03
81

1 
0.

00
18

1 
 

 
 

 
L2

 - 
2 

74
 

 
 

 
0.

01
25

2 
0.

00
05

9 
 

0.
03

80
8 

0.
00

17
0 

 
 

 
 

L2
 - 

av
er

ag
e 

74
 

0.
04

45
2 

0.
00

18
5 

24
.0

39
96

 
0.

01
24

0 
0.

00
05

7 
21

.9
07

24
 

0.
03

80
9 

0.
00

17
5 

21
.7

43
15

 
0.

05
97

2 
0.

00
27

1 
22

.0
53

18
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

L1
 - 

1 
76

 
 

 
 

0.
20

61
3 

0.
08

40
1 

 
0.

71
37

6 
0.

30
02

5 
 

 
 

 
L1

 - 
2 

76
 

 
 

 
0.

19
71

3 
0.

07
37

8 
 

0.
71

48
2 

0.
30

14
7 

 
 

 
 

L1
 - 

av
er

ag
e 

76
 

0.
76

43
3 

0.
29

69
2 

2.
57

42
4 

0.
20

16
3 

0.
07

89
0 

2.
55

56
6 

0.
71

42
9 

0.
30

08
6 

2.
37

41
7 

1.
04

52
0 

0.
43

76
3 

2.
38

83
0 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

C 
- 1

 
77

 
 

 
 

0.
11

58
6 

0.
00

48
3 

 
0.

36
58

1 
0.

02
62

4 
 

 
 

 
C 

- 2
 

77
 

 
 

 
0.

11
97

4 
0.

00
51

5 
 

0.
35

90
5 

0.
02

62
4 

 
 

 
 

C 
- 

av
er

ag
e 

77
 

0.
43

92
0 

0.
05

52
7 

7.
94

58
9 

0.
11

78
0 

0.
00

49
9 

23
.6

05
35

 
0.

36
24

3 
0.

02
62

4 
13

.8
11

29
 

0.
53

18
0 

0.
03

26
0 

16
.3

13
88

 

H
1 

- 1
 

78
 

 
 

 
0.

39
05

1 
0.

02
50

2 
 

1.
12

84
2 

0.
09

95
5 

 
 

 
 

H
1 

- 2
 

78
 

 
 

 
0.

38
25

5 
0.

02
75

2 
 

1.
12

78
0 

0.
09

68
2 

 
 

 
 

H
1 

- 
av

er
ag

e 
78

 
1.

30
84

3 
0.

09
54

6 
13

.7
07

01
 

0.
38

65
3 

0.
02

62
7 

14
.7

11
52

 
1.

12
81

1 
0.

09
81

9 
11

.4
89

29
 

1.
80

60
8 

0.
14

22
7 

12
.6

94
66

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

H
2 

- 1
 

82
 

 
 

 
0.

13
50

8 
0.

00
55

8 
 

0.
42

30
8 

0.
01

70
6 

 
 

 
 

H
2 

- 2
 

82
 

 
 

 
0.

14
61

2 
0.

00
55

2 
 

0.
43

08
6 

0.
01

59
1 

 
 

 
 

H
2 

- 
av

er
ag

e 
82

 
0.

48
76

6 
0.

01
71

2 
28

.4
84

64
 

0.
14

06
0 

0.
00

55
5 

25
.3

22
29

 
0.

42
69

7 
0.

01
64

8 
25

.9
01

36
 

0.
69

76
4 

0.
02

50
6 

27
.8

38
95

 



Appendix IV – raw data   

203 

Se Se extract 
 A, B, C purification method 

S  supernatent (after B - centrifugation) 
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Appendix IV – raw data 

List of abbreviations in sample IDs 

pini phytoagar initial 
  pac phytoagar after cultivation 

 cp cultivated plants 
  cpr cultivated plants - roots 
  cps cultivated plants - shoots 
  I to V MinPaX 

   1 to 10 Repetition or box 1 selenate 100 µg L-1 

  
2 selenate 500 µg L-1 

  
3 selenate 1000 µg L-1 

  
4 selenite 100 µg L-1 

  
5 selenite 500 µg L-1 

  
6 selenite 1000 µg L-1 

  
7 SeMet 100 µg L-1 

  
8 SeMet 500 µg L-1 

  
9 SeMet 1000 µg L-1 

  
10 no Se supplied 

WF Wheat Flour NISTSRM1567a reference 
 MS multielement standard 

PP Punjab plants 
VT validation test (Se free matrix + NIST-Se) 
cp cultivated plants 
p  phytoagar 

 c clean and condition 
 e eluate 
 w  wash 
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Appendix IV – raw data 

List of abbreviations in sample IDs 

pini phytoagar initial 
  pac phytoagar after cultivation 

 cp cultivated plants 
  cpr cultivated plants - roots 
  cps cultivated plants - shoots 
  I to V MinPaX 

   1 to 10 Repetition or box 1 selenate 100 µg L-1 

  
2 selenate 500 µg L-1 

  
3 selenate 1000 µg L-1 

  
4 selenite 100 µg L-1 

  
5 selenite 500 µg L-1 

  
6 selenite 1000 µg L-1 

  
7 SeMet 100 µg L-1 

  
8 SeMet 500 µg L-1 

  
9 SeMet 1000 µg L-1 

  
10 no Se supplied 

WF Wheat Flour NISTSRM1567a reference 
 MS multielement standard 

PP Punjab plants 
VT validation test (Se free matrix + NIST-Se) 
cp cultivated plants 
p  phytoagar 

 c clean and condition 
 e eluate 
 w  wash 
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Table IV-2:  Isotope abundances and masses of Se, Ge, Ar and Ar hydrides  
(according to Berglund and Wieser, 2011) 

Selenium Germanium 

Isotope Mass 
Abundance 
NIST3149 

Abundance  
Double Spike 

Isotope Mass Abundance 

74Se 73.9224767 0.00888927 0.52276057 72Ge 71.9242500 0.2731 
76Se 75.9192143 0.09355991 0.00528783 73Ge 72.9234595 0.0776 
77Se 76.919148 0.07620204 0.47068008 74Ge 73.9211784 0.3672 
78Se 77.9173097 0.23744616 0.0003192 76Ge 75.9214029 0.0783 
80Se 79.9165221 0.49669584 0.00089221 

   82Se 81.9167003 0.08720677 6.0113E-05 
   

Ar Dimers  Ar Hydrides 
Isotope Mass Abundance  Isotope Mass Abundance 
40Ar40Ar 79.9247662 0.99598915  40Ar40ArH 80.9325913 0.99598915 
40Ar38Ar 77.9251153 0.00063199  40Ar38ArH 78.9329404 0.00063199 
40Ar36Ar 75.9299294 0.00336495  40Ar36ArH 76.9377544 0.00336495 
38Ar38Ar 75.9254644 4.0102E-07  38Ar38ArH 76.9332894 4.0102E-07 
38Ar36Ar 73.9302785 2.1352E-06  38Ar36ArH 74.9381035 2.1352E-06 
36Ar36Ar 71.9350925 1.1369E-05  36Ar36ArH 72.9429176 1.1369E-05 

 

Table IV-3:  Phytoagar treatment – Se concentration using digestion after Kopp (1999) and 
vacuum filtration 

digestion after Kopp (1999) Se in digest [µg L-1] 
Se species Se added to phytoagar [µg L-1] I II    average 
selenate 100 96.0 59.1    77.5 ±18.5 
 500 499 348    424 ±75.6 
 1000 891 732    812 ±79.7 
selenite 100 55.4 61.3    58.4 ±3.0 
 500 410 350    380 ±29.7 
 1000 801 639    720 ±81.2 
SeMet 100 75.3 77.7    76.5 ±1.2 
 500 396 306    351 ±45.1 
 1000 815 620    718 ±97.5 

vacuum filtration Se in extract [µg L-1] 
Se species Se added to phytoagar [µg L-1] I II III IV V average 
selenate 100 102 103 103 n/a n/a 103 ±0.7 
 500 522 530 528 n/a n/a 526 ±3.0 
 1000 1070 1080 1080 n/a n/a 1080 ±1.7 
selenite 100 102 103 107 n/a n/a 103 ±0.5 
 500 544 542 547 n/a n/a 544 ±1.7 
 1000 1010 1020 1040 n/a n/a 1030 ±9.3 
SeMet 100 96.4 96.1 97.4 110 107 101 ±5.5 
 500 478 482 485 573 525 508 ±32.3 
 1000 915 901 896 1140 1030 977 ±88.3 
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List of abbreviations in sample IDs 

pini phytoagar initial 
  pac phytoagar after cultivation 

 cp cultivated plants 
  cpr cultivated plants - roots 
  cps cultivated plants - shoots 
  I to V MinPaX 

   1 to 10 Repetition or box 1 selenate 100 µg L-1 

  
2 selenate 500 µg L-1 

  
3 selenate 1000 µg L-1 

  
4 selenite 100 µg L-1 

  
5 selenite 500 µg L-1 

  
6 selenite 1000 µg L-1 

  
7 SeMet 100 µg L-1 

  
8 SeMet 500 µg L-1 

  
9 SeMet 1000 µg L-1 

  
10 no Se supplied 

WF Wheat Flour NISTSRM1567a reference 
 MS multielement standard 

PP Punjab plants 
VT validation test (Se free matrix + NIST-Se) 
cp cultivated plants 
p  phytoagar 

 c clean and condition 
 e eluate 
 w  wash 
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Table IV-4:  Initial Se in NISTSRM1567a measured with EDX and Se concentration after using 
digestion after Bell et al. (1992) compared to Kopp (1999) 

  EDX   digestion after Bell et al. (1992)  digestion after Kopp (1999)  
sample No. Se in solid [ppm] Se in digest [µg L-1] Se in solid [ppm] Se in digest [µg L-1] Se in solid [ppm] 

1 1.36 9.79 0.98 9.65 0.97 
2 1.29 6.12 0.61 9.83 0.98 
3 1.39 7.53 0.75 9.99 1.00 
4 0.98 7.78 0.78 8.54 0.85 
5 1.21 7.86 0.79 9.67 0.97 
6   8.48 0.85 9.59 0.96 
7   9.28 0.93 10.0 1.00 
8   9.35 0.93 7.50 0.75 
9   8.87 0.89 11.0 1.10 

10   9.02 0.90 11.2 1.12 
11   8.04 0.80 11.4 1.14 
12   9.02 0.90 11.4 1.14 
13   8.44 0.84 10.9 1.09 
14   8.60 0.86 10.9 1.09 
15   9.58 0.96     
16   9.75 0.98     
17   9.78 0.98     
18   13.6 1.36     
19   9.36 0.94     
20   9.82 0.98     
21   10.8 1.08     
22   8.64 0.86     
23   10.5 1.05     
24   8.98 0.90     
25   10.6 1.06     
26   10.7 1.07     
27   12.4 1.24     
28   10.3 1.03     
29   8.00 0.80     
30   9.14 0.91     
31   9.78 0.98     

average 1.25 ±0.15 9.35 ±1.02 0.94 ±0.06 10.1 ±0.81 1.01 ±0.08 
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Appendix IV – raw data 

List of abbreviations in sample IDs 

pini phytoagar initial 
  pac phytoagar after cultivation 

 cp cultivated plants 
  cpr cultivated plants - roots 
  cps cultivated plants - shoots 
  I to V MinPaX 

   1 to 10 Repetition or box 1 selenate 100 µg L-1 

  
2 selenate 500 µg L-1 

  
3 selenate 1000 µg L-1 

  
4 selenite 100 µg L-1 

  
5 selenite 500 µg L-1 

  
6 selenite 1000 µg L-1 

  
7 SeMet 100 µg L-1 

  
8 SeMet 500 µg L-1 

  
9 SeMet 1000 µg L-1 

  
10 no Se supplied 

WF Wheat Flour NISTSRM1567a reference 
 MS multielement standard 

PP Punjab plants 
VT validation test (Se free matrix + NIST-Se) 
cp cultivated plants 
p  phytoagar 

 c clean and condition 
 e eluate 
 w  wash 
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Fehler! Kein Text mit angegebener Formatvorlage im Dokument. 

Table IV-5:  Initial organic C content in NISTSRM1567a measured with CSA and TOC residuals 
in treated phytoagar and plant samples 

CSA 

 

Sample C [ppm] 
NISTSRM1567a – 1  43.3 
NISTSRM1567a – 2 41.4 
NISTSRM1567a – 3 43.9 
NISTSRM1567a – 4 42.6 
NISTSRM1567a – 5 42.6 
average 42.8 ±0.69 

digestion after Kopp (1999)  (WF – Wheat Flour NISTSRM1567a) 

 
weight  

[mg] 
TOC  

[mg L-1] 
average 
[mg L-1] 

average  
(blank substracted) 

[mg L-1] 

Cabsolute 

[mg] 
Cinitial 
[mg] 

Cresidual  
[%] 

Blank 0 5.5 5.5 ±0.0 - 
   

  
5.5 

     
  

5.4 
     

WF1 106 8.0 8.0 ±0.0 2.5 ±0.0 0.03 45.5 0.06 

  
8.0 

     
  

8.0 
     

WF2 108 77.4 76.3 ±0.7 70.8 ±0.7 0.71 46.1 1.54 

  
75.8 

     
  

75.7 
     

WF3 102 64.1 62.0 ±1.4 56.5 ±1.4 0.57 43.5 1.30 

  
61.5 

     
  

60.4 
     

WF4 103 51.2 51.2 ±0.0 45.7 ±0.0 0.46 44.2 1.03 

  
51.1 

     
  

51.2 
     

WF5 104 20.1 20.1 ±0.0 14.6 ±0.0 0.15 44.6 0.33 

  
20.1 

     
  

20.1 
     

WF6 104 25.2 25.1 ±0.1 19.6 ±0.1 0.20 44.3 0.44 

  
25.1 

     
  

24.9 
     

WF7 102 39.5 39.6 ±0.1 34.1 ±0.1 0.34 43.4 0.78 

  
39.7 

     
  

39.5 
     

WF8 105 31.1 30.8 ±0.2 25.3 ±0.2 0.25 44.8 0.57 

  
30.5 

     
  

30.7 
     

WF9 100 10.9 10.9 ±0.0 5.4 ±0.0 0.05 42.9 0.13 

  
10.8 

     
  

10.9 
     

average 36.0 ±18.9 30.5 ±18.9 0.31 ±0.19 44.4 ±7.9 0.69 ±0.42 
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List of abbreviations in sample IDs 

pini phytoagar initial 
  pac phytoagar after cultivation 

 cp cultivated plants 
  cpr cultivated plants - roots 
  cps cultivated plants - shoots 
  I to V MinPaX 

   1 to 10 Repetition or box 1 selenate 100 µg L-1 

  
2 selenate 500 µg L-1 

  
3 selenate 1000 µg L-1 

  
4 selenite 100 µg L-1 

  
5 selenite 500 µg L-1 

  
6 selenite 1000 µg L-1 

  
7 SeMet 100 µg L-1 

  
8 SeMet 500 µg L-1 

  
9 SeMet 1000 µg L-1 

  
10 no Se supplied 

WF Wheat Flour NISTSRM1567a reference 
 MS multielement standard 

PP Punjab plants 
VT validation test (Se free matrix + NIST-Se) 
cp cultivated plants 
p  phytoagar 

 c clean and condition 
 e eluate 
 w  wash 
 

209

Fehler! Kein Text mit angegebener Formatvorlage im Dokument.   

NISTSRM1567a digestion after Bell et al. (1992) (WF – Wheat Flour NISTSRM1567a) 

 
sample weight  

[mg] 
TOC  

[mg L-1] 
TOC (blank substracted)  

[mg L-1] 
Cinitial [wt.%] 

Cinitial 
[mg] 

Cresidual  
[%] 

Blank 0 8.8 - 
   

WF1 100 313 304 42.8 42.8 7.11 
WF2 100 300 291 42.8 42.8 6.80 
WF3 100 351 343 42.8 42.8 8.01 
WF4 100 410 402 42.8 42.8 9.39 

average 
 

344 ±37.3 334 ±37.3 
  

7.83 ±0.87 

       
Cultivated plant digestion after Kopp et al. (1999) (CP – cultivated plants from MinPaX  

(complete minimization with Tissue Lyzer)) 

 
sample weight  

[mg] 
TOC 

[mg L-1] 
TOC (blank substracted) 

[mg L-1] 
Cinitial [wt.%] 

Cinitial 
[mg] 

Cresidual  
[%] 

Blank 0 8.8 - 
   

CP1 1200 5.2 <blank 0.21 2.48 -1.42 
CP2 1200 9.0 <blank 0.21 2.48 0.08 
CP3 1220 8.1 <blank 0.21 2.53 -0.25 
CP4 1110 7.6 <blank 0.21 2.30 -0.52 

average 
 

7.5 ±1.1 <blank 
  

<0.04 

       
Cultivated plant digestion after Kopp et al. (1999) (CP – cultivated plants from MinPaX  

(incomplete minimization)) 

 
sample weight  

[mg] 
TOC  

[mg L-1] 
TOC (blank substracted) 

[mg L-1] 
Cinitial [wt.%] 

Cinitial 
[mg] 

Cresidual  
[%] 

Blank 0 8.8 - 
   

CPI1 100 88.9 80.1 43.8 43.8 1.83 
CPI2 70 205 196 43.8 30.6 6.40 
CPI3 100 238 229 43.8 43.8 5.23 
CPI4 100 216 208 43.8 43.8 4.74 

average 
  

178 ±49.0 
  

4.55 ±1.36 
       

 
Residual TOC in phytoagar (P) extracts (vacuum filtration) 

  
TOC  

[mg L-1] 
TOC (blank substracted) 

[mg L-1] 
   

P1  253 262    
P2  394 403    
P3  304 313    

average   326 ±51.5    
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List of abbreviations in sample IDs 

pini phytoagar initial 
  pac phytoagar after cultivation 

 cp cultivated plants 
  cpr cultivated plants - roots 
  cps cultivated plants - shoots 
  I to V MinPaX 

   1 to 10 Repetition or box 1 selenate 100 µg L-1 

  
2 selenate 500 µg L-1 

  
3 selenate 1000 µg L-1 

  
4 selenite 100 µg L-1 

  
5 selenite 500 µg L-1 

  
6 selenite 1000 µg L-1 

  
7 SeMet 100 µg L-1 

  
8 SeMet 500 µg L-1 

  
9 SeMet 1000 µg L-1 

  
10 no Se supplied 

WF Wheat Flour NISTSRM1567a reference 
 MS multielement standard 

PP Punjab plants 
VT validation test (Se free matrix + NIST-Se) 
cp cultivated plants 
p  phytoagar 

 c clean and condition 
 e eluate 
 w  wash 
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List of abbreviations in sample IDs 

pini phytoagar initial 
  pac phytoagar after cultivation 

 cp cultivated plants 
  cpr cultivated plants - roots 
  cps cultivated plants - shoots 
  I to V MinPaX 

   1 to 10 Repetition or box 1 selenate 100 µg L-1 

  
2 selenate 500 µg L-1 

  
3 selenate 1000 µg L-1 

  
4 selenite 100 µg L-1 

  
5 selenite 500 µg L-1 

  
6 selenite 1000 µg L-1 

  
7 SeMet 100 µg L-1 

  
8 SeMet 500 µg L-1 

  
9 SeMet 1000 µg L-1 

  
10 no Se supplied 

WF Wheat Flour NISTSRM1567a reference 
 MS multielement standard 

PP Punjab plants 
VT validation test (Se free matrix + NIST-Se) 
cp cultivated plants 
p  phytoagar 

 c clean and condition 
 e eluate 
 w  wash 
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Table IV-9:  Se concentrations measured in purified samples of methods (A) (including 
modifications), (B) and (C) for all matrices used (values for multi-element  
standard and Punjab Plants included in Tables IV-6 to IV-8) 

Modifications (performed with Punjab Plants (PP)) 
Se [µg L-1] Ellis et al. (2003) Variation I Variation II Variation III 
PP1 118 43.8 66.5 92.2 
PP2 30.0 21.3 208 96.6 
PP3 31.2 83.1 24.5 99.8 
PP4 31.0 19.2 68.6 134 
Average (n=4) 52.5 ±32.6 41.9 ±21.6 91.8 ±58.0 106 ±14.0 

Se only (initial 1000 ng Se) 
Se [µg L-1] (A) (B) (C) - after HG (C) - after HG+AE 
Se_1 199 107 132 n/a 
Se_2 200 105 115 n/a 
Se_3 203 109 

  
Average 50.1 ±0.4 107 ±1.6 124 ±8.3 

 
Se free cultivated plants (cp) + doped Se (1000 ng) 

Se [µg L-1] (A) (B) (C) - after HG (C) - after HG+AE 
Se_cp_1 193 114 138 21.6 
Se_cp_2 199 111 133 24.9 
Se_cp_3 203 110 166 50.4 
Se_cp_4 

  
166 56.4 

Se_cp_5 
  

125 118 
Se_cp_6 

  
156 152 

Se_cp_7 
  

131 39.3 
Se_cp_8 

  
137 70.8 

Se_cp_9 
  

139 106 
Se_cp_10 

  
143 108 

Average 198 ±2.8 111 ±1.5 143 ±11.7 74.8 ±37.2 
Se free phytoagar (p) + doped Se (1000 ng) 

Se [µg L-1] (A) (B) (C) - after HG (C) - after HG+AE 
Se_p_1 131 114 159 94.4 
Se_p_2 115 116 149 86.7 
Se_p_3 48.4 114 

  
average 98.2 ±24.9 115 ±1.2 154 ±4.9 90.5 ±3.9 

Reference materials used for validation (chapter 4.5.3) (WF-Wheat Flour NISTSRM1567a) 
Se [µg L-1] (A) (B) (C) - after HG (C) - after HG+AE 
WF1 n/a n/a 161 114 
WF2 n/a n/a 165 96.1 
SGR-1 n/a n/a n/a 45.1 

Table IV-10:  TOC residuals measured in purified plant and phytoagar samples of  
methods (A), (B) and (C) 

 TOC in plant digests [mg L-1] TOC in phytoagar extracts [mg L-1] 
purification method A B C A B C 
I 10.5 12.9 <0.9 52.8 57.3 <0.9 
II 7.4 20.1 <0.9 121 80.5 <0.9 
III 5.6 26.8 <0.9 45.2 11.8 <0.9 
average 7.8 ±1.8 20.0 ±4.7 <0.9 73.0 ±32.0 49.9 ±25.4 <0.9 
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9 SeMet 1000 µg L-1 
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VT validation test (Se free matrix + NIST-Se) 
cp cultivated plants 
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 c clean and condition 
 e eluate 
 w  wash 
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Table IV-12:  Se species determined in a plant digest (according to Bell et al. 1992), in the 
oxidized and reduced samples added to columns of methods (A) and (B) and their 
respective Se extracts as well as in phytoagar after cultivation (n.q.: not quantifia-
ble though visible peak; - : no visible peak) 

  Ion Exchange (Bird et al. 1997) 
Ion Pair  

(Bird et al. 1997) 
 

Sample Details  selenate selenite unknown Inorg.Se Org. Se Share organic 

  
[ppb] [ppb] [ppb] [ppb] [ppb] [%] 

PP7 Plant digest (Bell et al., 1992) 311 116 427 183 34.1 15.7 
AO1 

Oxidized with K2S2O8 
150  -  150 n/a n/a n/a 

AO4 131  -  131 n/a n/a n/a 
BR1 

Reduced with 4M HCl 
 -  63.7 <0.1 n/a n/a n/a 

BR4  -  27.7 <0.1 n/a n/a n/a 
APPSe1 

Method (A) Se extract 
68.1  -  68.1 n/a n/a n/a 

APPSe4 104  -  104.4 n/a n/a n/a 
BPPSe1 

Method (B) Se extract 
 -  135 134.7 n/a n/a n/a 

BPPSe4  -  67.3 67.3 n/a n/a n/a 
 

Sample Species added selenate selenite unknown selenite SeMet total 

  
[ppb] [ppb] [ppb] [ppb] [ppb] [ppb] 

IVpac1 selenate n.q. - - - - 13.5 
IVpac2 selenate 87.4 - 4.8 - - 101 
IVpac3 selenate 889 - - - - 775 
IVpac4 selenite - 3.9 2.9 n.q. - 36.4 
IVpac5 selenite - 85.9 12.4 70.1 - 216 
IVpac6 selenite - 104 - 105 - 190 
IVpac7 SeMet - - 3.4 31.8 6.6 26.6 
IVpac8 SeMet - - 12.0 n.q. n.q. 94.5 
IVpac9 SeMet - - 60.8 - 60.1 212 
Vpac1 selenate n.q. - - - - 8.8 
Vpac2 selenate 136 - - - - 154 
Vpac3 selenate 743 - - - - 679 
Vpac4 selenite - 15.1 - 2.2 23.3 33.4 
Vpac5 selenite - 14.9 14.3 n.q. - 46.0 
Vpac6 selenite - 68.6 - 77.0 - 134 
Vpac7 SeMet - - 2.9 1.9 0.7 21.9 
Vpac8 SeMet - - 22.5 n.q. - 82.4 
Vpac9 SeMet - - 45.7 17.1 4.1 168 
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Table IV-13:  Determination of plant growth during cultivation time for MinPaX I and II (uncer-
taincy ~0.1 cm) (data on single plant survey within boxes available on request) 

MinPaX I Average length of plants [cm] (16 = harvest) 
days from seed 5 7 9 12 14 16 
selenate100 0.5 0.6 1.1 4.5 4.2 14.3 
selenate500 0.4 0.9 2.3 4.2 4.8 11.4 
selenate1000 0.5 1.0 1.6 3.0 2.3 6.3 
selenite100 0.4 1.2 3.1 7.4 9.3 15.6 
selenite500 0.4 1.3 2.4 5.7 5.6 10.8 
selenite1000 0.4 1.1 2.2 3.5 3.4 10.4 
SeMet100 0.5 1.3 3.2 6.3 7.6 13.9 
SeMet500 0.3 0.7 1.7 4.5 5.2 11.6 
SeMet1000 0.4 1.0 1.7 3.4 3.7 9.5 
Blank box 0.4 0.7 1.9 4.9 6.4 14.6 
              
MinPaX II   
days from seed 5 7 10 12 16   
selenate100 0.8 1.5 2.3 3.3 6.7   
selenate500 0.9 2.2 5.2 7.9 12.1   
selenate1000 0.9 1.9 3.9 6.2 10.1   
selenite100 0.9 2.3 5.0 7.2 10.8   
selenite500 0.9 2.0 4.4 6.6 10.3   
selenite1000 0.3 1.3 2.7 4.0 9.4   
SeMet100 0.9 2.1 4.7 7.8 10.0   
SeMet500 0.7 1.5 3.3 5.3 11.2   
SeMet1000 0.8 1.7 3.3 5.1 8.6   
Blank box 0.8 1.9 5.2 8.8 12.8   
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List of abbreviations in sample IDs 

pini phytoagar initial 
  pac phytoagar after cultivation 

 cp cultivated plants 
  cpr cultivated plants - roots 
  cps cultivated plants - shoots 
  I to V MinPaX 

   1 to 10 Repetition or box 1 selenate 100 µg L-1 

  
2 selenate 500 µg L-1 

  
3 selenate 1000 µg L-1 

  
4 selenite 100 µg L-1 

  
5 selenite 500 µg L-1 

  
6 selenite 1000 µg L-1 

  
7 SeMet 100 µg L-1 

  
8 SeMet 500 µg L-1 

  
9 SeMet 1000 µg L-1 

  
10 no Se supplied 

WF Wheat Flour NISTSRM1567a reference 
 MS multielement standard 

PP Punjab plants 
VT validation test (Se free matrix + NIST-Se) 
cp cultivated plants 
p  phytoagar 

 c clean and condition 
 e eluate 
 w  wash 
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