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This requires the inclusion of the higher order corrections. In this work, we investigate in
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corrections. We pay particular attention to the renormalization of the mixing angles « and
B, which diagonalize the Higgs mass matrices and which enter all Higgs observables. The
implications of various renormalization schemes in next-to-leading order corrections to the
sample processes H* — W*h/H and H — ZZ are investigated. Based on our findings,
we will present a renormalization scheme that is at the same time process independent,
gauge independent and numerically stable.
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1 Introduction

The discovery of a new scalar particle by the LHC experiments ATLAS [1] and CMS [2] in
2012 and its subsequent confirmation as being the Higgs boson [3-6] marked a milestone
for particle physics. At the same time, it triggered a change of paradigm. The Higgs
particle, which formerly was the object of experimental searches, has itself become a tool



in the search for New Physics (NP). Although the Standard Model (SM) of particle physics
has been tested in previous and present experiments at the highest accuracy, there remain
many open questions that cannot be answered within this model. The SM is therefore
regarded as the low-energy description of some more fundamental theory that becomes
effective at higher energy scales. A plethora of NP models have been discussed, among
them e.g. supersymmetry (SUSY) as one of the most popular and most intensely studied
Beyond the SM (BSM) extensions. Supersymmetry requires the introduction of at least two
complex Higgs doublets. The Higgs sector of the Minimal Supersymmetric extension of the
SM (MSSM) [7-10] is a special case of the 2-Higgs-Doublet Model (2HDM) [7, 11, 12] type
II. While the parameters of the SUSY Higgs potential are restricted due to SUSY relations,
general 2HDMs allow for much more freedom in the choice of the parameters. They are
therefore an ideal framework to study the implications of an extended Higgs sector for Higgs
phenomenology at the LHC. This is reflected in the experimental analyses that interpret the
results in various benchmark models, among them the 2HDM. The precise investigation of
the Higgs sector aims at getting insights into the nature of electroweak symmetry breaking
(EWSB) and at clarifying the question whether it is based on weakly or strongly interacting
dynamics. Deviations in the properties of the discovered SM-like Higgs boson are hints
towards NP. In particular, the higher precision in the Higgs couplings measurements at the
LHC run 2 and in the high-luminosity option allows to search indirectly for BSM effects.
This becomes increasingly important in view of the null results of direct searches for NP
so far.! The precise measurements on the experimental side, however, call for precise
predictions of parameters and observables from theory. Accurate theory predictions are
indispensable not only for the proper interpretation of the experimental data, but also for
the correct determination of the parameter space that is still allowed in the various models,
and, finally, for the distinction between different BSM extensions.

With this paper we contribute to the effort of providing precise predictions for parame-
ters and observables relevant for the phenomenology at the LHC and future e*e™ colliders.
We investigate higher order corrections in the framework of the 2HDM. While 2HDMs are
interesting because they contain the MSSM Higgs sector as a special case, they also belong
to the simplest SM extensions respecting basic experimental and theoretical constraints
that are testable at the LHC. After EWSB they feature five physical Higgs bosons, two
neutral CP-even, one neutral CP-odd and two charged Higgs bosons. They represent an
ideal benchmark framework to investigate the various possible NP effects to be expected at
the LHC in multi-Higgs boson sectors. Finally, specific 2HDM versions also allow for a Dark
Matter (DM) candidate [15-21]. In the past, numerous papers have provided higher order
corrections to the 2HDM parameters, production cross sections and decay widths. Several
papers have dealt with the renormalization of the 2HDM (see e.g. [22-24]). In particular,
the renormalization of the mixing angles o and S is of interest. While « is introduced to
diagonalize the mass matrix of the neutral CP-even Higgs sector, the angle 8 appears in
the diagonalization of the CP-odd and the charged Higgs sector, respectively. These angles

'Recent hints like the diphoton excess at 750 GeV [13, 14] need further data for more conclusive inter-
pretations.



define the Higgs couplings to the SM particles and thus enter all Higgs observables like
e.g. production cross sections and decay widths. For the MSSM it was stated in [25] that a
renormalization scheme for the only mixing angle taken as an independent parameter from
the scalar sector, 3, cannot be simultaneously gauge independent, process independent and
numerically stable. In the 2HDM also « needs to be renormalized, which has important
consequences for the choice of the renormalization scheme. If the tadpoles are treated
in the usual way, which we call the standard approach (cf. 3.1.1), a process-independent
definition of the angular counterterms is prone to lead to gauge-dependent amplitudes and
consequently to gauge-dependent physical observables. This is the case e.g. in the scheme
presented in [23]. There are essentially two possibilities to circumvent the emergence of
this gauge dependence. Either one gives up the requirement of process independence and
fixes a and (8 in terms of a physical observable or one changes the treatment of the tad-
poles. As we will see, this will decouple the issue of gauge dependence from the definition
of 0o and 68 and allow for process- and gauge-independent angular counterterms leading
to manifestly gauge-independent amplitudes.

In this paper we study in detail the renormalization of the 2HDM Higgs sector with
the main focus on the investigation of the gauge dependence of the renormalization of the
mixings angles a and 3. We propose several schemes and compare them both to the ones
in the literature and amongst each other. In sample decay processes we investigate the nu-
merical differences and in particular the numerical stability of the various renormalization
prescriptions. Our results presented here will serve as basis for the further computation of
the one-loop electroweak corrections to all 2HDM Higgs boson decays.

The organization of the paper is as follows. In section 2 we introduce the model
and set up our notation. The following section 3 is devoted to the detailed presentation
and discussion of the various renormalization prescriptions that will be applied. Section 4
deals with the computation of the electroweak (EW) one-loop corrections to various decay
processes and the discussion of the gauge dependence of the angular counterterms. In
section 5 we present our numerical results. We finish with the conclusions in section 6.
The paper is accompanied by an extensive appendix to serve as starting point for further
investigations of the 2HDM renormalization.

2 Description of the model

We work in the framework of a general 2HDM with a global discrete Zy symmetry that is
softly broken. The kinetic term of the two SU(2);, Higgs doublets ®; and P2 is given by

2
Liin = Y _(Du®;)! (D'2;) (2.1)
=1
in terms of the covariant derivative
i< i
Dy =0+ 59 Z_:l W+ §g’BH , (2.2)



where 7¢ denote the Pauli matrices, W and B, the SU(2), and U(1)y gauge bosons,
respectively, and g and ¢’ the corresponding gauge couplings. The scalar potential that
can be built from the two SU(2);, Higgs doublets can be written as

A A
V = )1 4 md, | Baf* — miy(B] 02+ hoc) + T (D] 81) + T (2h0s)7
f f f f A5 T o2
A5 (2]01) (B5B) + Aa(@]22) (D)81) + T [(@]22) + hc] . (2:3)

The discrete Zy symmetry (&7 — —®1, P — Py) ensures the absence of tree-level Flavour
Changing Neutral Currents. Assuming CP conservation, the 2HDM potential depends
on eight real parameters, three mass parameters, mq1, mos and mqo, and five coupling
parameters Aj-\s. Through the term proportional to m?2, the discrete Zo symmetry is
softly broken. After EWSB the neutral components of the Higgs doublets develop vacuum
expectation values (VEVs), which are real in the CP-conserving case. Expanding about
the VEVs v; and vy and expressing each doublet ®; (i = 1,2) in terms of the charged
complex field <Z5?_ and the real neutral CP-even and CP-odd fields p; and 7);, respectively,

o, = Qﬁ_ d by = d); (2 4)
1= pitinitvi an 2= p2tinatv ’ ’
V2 V2

leads to the mass matrices, which are obtained from the terms bilinear in the Higgs fields
in the potential. Due to charge and CP conservation they decompose into 2 x 2 matrices
Mg, Mp and M for the neutral CP-even, neutral CP-odd and charged Higgs sector.
They are diagonalized by the following orthogonal transformations

(Zl> :R@)(f) , (2.5)
2
0
()-m(%)
2
+ +
@;i) = R(B) (gi) : (2.7)

leading to the physical Higgs states, a neutral light CP-even, h, a neutral heavy CP-even,
H, aneutral CP-odd, A, and two charged Higgs bosons, H*. The massless pseudo-Nambu-
Goldstone bosons G* and G° are absorbed by the longitudinal components of the massive
gauge bosons, the charged W* and the Z boson, respectively. The rotation matrices in
terms of the mixing angles ¢ = « and (3, respectively, read

¥ —sind
R() = cos sin . (2.8)
sind cosv

The mixing angle 3 is related to the two VEVs as

tan 8 = e , (2.9)

U1



with v} + v3 = v? ~ (246 GeV)?, while the mixing angle « is expressed through

2(Mg)12
(Mg)i1 — (Mg)a

tan2a = (2.10)

where (Mg);; (7,7 = 1,2) denote the matrix elements of the neutral CP-even scalar mass

matrix Mg. With
2

Mm2="12 (2.11)
SpCs
we have [23]
s98(M? — A3450?)

tan 200 = , 2.12
an=a c%(M2 — \v?) — S%(MQ — Aov?) (2.12)

where we have introduced the abbreviation
A345 = A3+ Mg+ As (2.13)

and used short-hand notation s, = sinx etc.
The minimization conditions of the Higgs potential require the terms linear in the
Higgs fields to vanish in the vacuum, i.e.

<§£>:<;;>:0’ (2.14)

where the brackets denote the vacuum. The corresponding coefficients, the tadpole pa-
rameters 177 and 75, therefore have to be zero. The tadpole conditions at lowest order are

given by
8‘/ T1 2 9 V2 )\1’0% )\3451)%
— V=== —m2,—= 02 2.15
<8<I>1 > o mip — Mig o + 9 + 9 (2.15)
oV T2 2 o U1 )\QU% )\345’0%
— 12 _ —m2 A 234571 2.16
<8<I>2 > s Moy — Mig . + 2 + 9 (2.16)

There are various possibilities to choose the set of independent parameters that
parametrizes the Higgs potential V. Thus, eqgs. (2.15) and (2.16) can be used to replace m?,
and m3, by the tadpole parameters T} and T. The VEV v can furthermore be expressed
in terms of the physical gauge boson masses My and Mz and the electric charge e. In the
following, we will choose the set of independent parameters such that the parameters can
be related to as many physical quantities as possible. Our set is given by the Higgs boson
masses, the tadpole parameters, the two mixing angles, the soft breaking parameter, the
massive gauge boson masses and the electric charge. Additionally, we will need the fermion
masses my for the Higgs decays into fermions which will be used for a process-dependent
definition of the angular counterterms.

Input parameters: mp, mg, ma, mg+, 11, 15, «, tan g, m%z, Ma/, M%, e, my .
(2.17)




3 Renormalization

In this section we will present the various renormalization schemes that we will apply in
the renormalization of the 2HDM and that will be investigated with respect to their gauge
parameter dependence and their numerical stability. We will use these schemes in sample
processes given by the EW one-loop corrected decays of the charged Higgs boson into a
W+ and a CP-even Higgs boson, H*¥ — W¥*h/H, and of the heavy H into a Z boson
pair, H — ZZ. The computation of the EW one-loop corrections leads to ultraviolet
(UV) divergences. In the charged Higgs decay we will furthermore encounter infrared
(IR) divergences because of massless photons running in the loops. The UV divergences
in the virtual corrections are canceled by the renormalization of the parameters involved
in the EW corrections of the process, while the IR ones are subtracted by taking into
account the real corrections. The renormalization of the above decay processes requires
the renormalization of the electroweak sector and of the Higgs sector. We will also compute
the EW one-loop corrections to the decays of H and A into 7 leptons, H/A — 77. These
processes will be exploited for a process-dependent definition of the angular counterterms,
which will be presented as a possible renormalization scheme among others. The corrections
to the decays into 7 leptons also require the renormalization of the fermion sector. Note,
that the renormalization of the CKM matrix, which we will assume to be real, will not play
a role in our renormalization procedure. We start by replacing the relevant parameters by
the renormalized ones and their corresponding counterterms:

Gauge sector: the massive gauge boson masses and the electric charge are replaced by

M2, — M3 + My, (3.1)
M2 — M} 4 6M3% (3.2)
e—> (1+dZ.)e. (3.3)
Equally, the VEV v, which will be expressed in terms of these parameters, is replaced by
v—v+ov. (3.4)
The gauge boson fields are renormalized by their field renormalization constants §7,
1
w* - <1 + 2(SZWW> W (3.5)
Z 1+ 30227 302 z
el e . (3.6)
v 502z 1+ 502, ~
Fermion sector: the counterterms to the fermion masses my are defined through
mf—>mf+5mf. (3.7)
The bare left- and right-handed fermion fields
fr/r = Prrf, with  Pr/r=(1F75)/2, (3.8)
are replaced by their corresponding renormalized fields according to
1. L/R
fr/r — (1+252f/ >fL/R. (3.9)



Higgs sector: the renormalization is performed in the mass basis and the mass coun-

terterms are defined through
mi — mi + omj

my — m3 + om3
m?% — m? +om?

2 2 2
My+ — M+ —|—5mH:|: .

The fields are replaced by the renormalized ones and the field renormalization constants as

H 1+ 152 57 H
o (T e0%mHE 20%mn (3.14)
h 50Zna 14 507, h
GO 1+ 162 157 GO
N —i_IQ GOGO 2 IGOA (315)
G* 1+ 162 157 G*
( )%( )( ) @.16)
H 50Zp+g+: 1+ 50Zp+p=+ H

and the mixing angles by

a — a+da (3.17)
B —B+B. (3.18)

While the tadpoles vanish at leading order, the terms linear in the Higgs fields get loop
contributions at higher orders. Therefore, also the tadpole parameters 77 and 75 have
to be renormalized in order to fulfill the tadpole conditions eqgs. (2.14). The tadpoles are
hence replaced as

T — T+ 61 and Ty — T + 615 . (319)

3.1 Renormalization conditions

The finite parts of the counterterms are fixed by the renormalization conditions. Through-
out we will fix the renormalization constants for the masses and fields through on-shell (OS)
conditions. The renormalization schemes differ, however, in the treatment of the tadpoles
and of the mixing angles. We will describe two different approaches for the treatment of the
tadpoles. Both of them apply the same renormalization conditions for the tadpoles. They
differ, however, in the way the minimum conditions are applied when the mass countert-
erms are generated. As a consequence, the tadpole counterterms can either explicitly show
up in the mass counterterms or not. The latter case, that we will call ‘alternative tadpole’
or in short ‘tadpole’ scheme, has the virtue that the mass counterterms are manifestly
gauge independent, while in the former one, named ‘standard tadpole’ or simply ‘standard’
scheme, this is not the case. The authors of ref. [23] have combined the standard tadpole
scheme with the definition of the angular counterterms through off-diagonal wave function
renormalization constants. This ‘KOSY’ scheme, denoted by the initials of the authors,



leads to manifestly gauge-dependent decay amplitudes, as we will show. In the alternative
tadpole scheme not only this problem does not occur, but in addition, the angular coun-
terterms are explicitly gauge independent. If the angular counterterms are defined in a
‘process-dependent’ scheme via a physical process, the decay amplitude is gauge indepen-
dent irrespective of the treatment of the tadpoles. The only difference lies in the gauge
independence of the angular counterterms in case the alternative tadpole scheme is adopted.
In the following, the renormalization conditions of the various schemes will be introduced.

3.1.1 Standard tadpole scheme

We start by presenting the usual, i.e. 'standard’, approach in the renormalization of the
2HDM as also applied in [23, 24]. The gauge bosons are renormalized through OS condi-
tions, which implies the following counterterms for the masses,

SME, = Re STy (M2,) and §M% =Rex},(M2), (3.20)

where the superscript T' denotes the transverse part of the respective self-energy . In
order to guarantee the correct OS properties the wave function renormalization constants
have to be introduced as

ET 2
§Zyw = —Re aWiWQ(m (3.21)
927 ,(»?) 2%+
<5ZZZ 5ZZv> [ TR P2=M2 255 (3.22)
- T (pM2 onT 2 .
62z 62y 2Re72}j§ 2 75},9’ ) o

The electric charge is defined to be the full electron-positron photon coupling for OS ex-
ternal particles in the Thomson limit, implying that all corrections to this vertex vanish
OS and for zero momentum transfer. The counterterm for the electric charge in terms of
the transverse photon-photon and photon-Z self-energies reads [26]

sw 272(0)
cw MZ

T
5Za(0) — 1 8277(k2>
¢ 2 0k2

(3.23)

k2=0
where sy /ey = sin Oy / cos Oy and Oy denotes the Weinberg angle. Note that the sign in
the second term of eq. (3.23) differs from the one in [26] due to our sign conventions in the
covariant derivative of eq. (2.2). In our computation, however, we will use the fine structure
constant at the Z boson mass a(M2) as input, so that the results are independent of large
logarithms due to light fermions f # ¢. The counterterm §Z, is therefore modified as [26]

52D = 5700~ Aa(n) (3:24)
05T (k?) 21, (ME)
9 Z
Ba(M) = == | TR (329)
k2=0

where the transverse part of the photon self-energy Z% in eq. (3.25) includes only the light
fermion contributions. For the computation of the EW one-loop corrected Higgs decay



widths we also need to renormalize the coupling g, which can be related to e and the gauge

boson masses as
eMz

9= —F—
YT

so that its counterterm can be expressed in terms of the gauge boson mass counterterms

(3.26)

through
) 1 SMZ, M2
Y57, - s w_ 22 (3.27)
g 2(1 — M7 /My,) \ My, M7
Defining the following structure for the fermion self-energies
Zf(pz) = ﬁzﬁ(pQ)PL +p2?(p2)PR + mfszs(pZ)PL + mfZ?s(pQ)PR (3.28)
the fermion mass counterterms applying OS conditions are given by
omy 1 L Ls R
— = ;Re |¥7 b)) Dy + X5 . 3.29
= gRe [S0md) + SFn) + S (md) + S (md)] (329)
The fermion wave function renormalization constants are determined from
027" = —Rex /" (m3) (3.30)
0 $L/R R/L L/R R/L
—mi g aRe (5500 + 27w + 200 + 50 oo,

The OS conditions for the physical Higgs bosons yield the following Higgs mass countert-
erms

dm¥y = Re[Spu(miy) — 6Thn) , smj, = Re[Spn(mi) — 0Th] | (3.31)
om% = Re[Saa(m?%) — 0T a4l , om3e = Re[Spe g+ (m3ye) — 0T+ p+] . (3.32)

The appearance of the tadpole counterterms in egs. (3.31) and (3.32) can be understood by
recalling that the parameters m?; and m3,, which enter the mass matrices, can be replaced
by the tadpole coefficients 77 and T. Applying the shifts eq. (3.19) and rotating into the
mass eigenbasis yield the above conditions in the OS scheme. The relations between the
tadpole counterterms in the mass basis and 671 2 are given by

6T T
5Ty = — cos? 9 + —2 sin® ¥, (3.33)
(%] V2
0T T
OThnjan/Hemt = U—l sin® 9 + 0—2 cos® ¥, (3.34)
1 2

with ¥

{Oé for 6THH7hh (3 35)

,6 for 6TAA,HiHi

The tadpoles are renormalized such that the correct vacuum is reproduced at one-loop
order, leading to the renormalization conditions

(5T1 = T1 and (5T2 = T2 . (336)



The T} 2 stand for the contributions coming from the corresponding genuine Higgs boson
tadpole graphs in the gauge basis. For the wave function renormalization constants the OS

renormalization implies the following conditions

—Re BZHH(’CQ) 2R [ZHh(mh) 6TH}L]
0Zpm 0Zmn | _ = ler=my, KR (3.37)
6Zng 0Znp, B _QRe[EHh(m%I)*‘sTHh] —R % hn(k?) .
m2, —m2 € k2 2
H M) k2=m
“Re 9X 040 (k?) B Re[S50 4(m%)—0T 0 4]
0Zgogo 0Zgoa \ O k=0 " (3.38)
0Z a0 0744 2Re[EGOA(2)_6TGOA} “Re 62322(162) ‘
my k2=m?
ox (k2) Re EgiHi (m2 i)faTgiHi
<5ZGiGi 5ZGiHi> | Re o oo 2 | mfﬂ: | (3.39)
= B 5 . (3.
0Zg+rgr 0L+ g+ QRG[EGiHj;gOL T gy ] —Re BEHEZI;(]“ ) I
H _mHi

3.1.2 The KOSY scheme

We now turn to the renormalization conditions for the mixing angles. The renormalization
scheme chosen in [23], the ‘KOSY’ scheme, uses the standard tadpole scheme. For the
renormalization of the mixing angles it is based on the idea of making the counterterms da
and 6 appear in the inverse propagator matrix and hence in the wave function renormal-
ization constants, in a way that is consistent with the internal relations of the 2HDM. This
can be achieved by renormalizing in the mass basis (f1, f2)”, but temporarily switching to
the gauge basis (y1,72)7, and back again,

<f1> — R(9)T (“) — RO+ 69)T\/Z, (“)
f2 V2 V2

R(89)TR(O)T\/Z, R(¥ <“>:\/ <f1> (3.40)
72 f2
:\ﬁ
The fields f; and «; (i = 1,2) and the mixing angle 9 stand here for any of the field pairs in

the mass and gauge basis, respectively, defined in egs. (2.5)—(2.7), together with their cor-
responding mixing angle, i.e. (fi;7:;9) = (H, h; pi;a), (G°, A;n;; B) and (Gi,Hi;dﬁ-t;B).
With the field renormalization matrix \/Z in the gauge basis being a real symmetric ma-
trix the following parametrization of the field renormalization matrices in the mass basis
can be chosen [23, 24]

1+ 262 6C
ﬁ:R(aﬁ)T< T20%hn d )

6Cy 1+ 3624,

1+ 167 6Cy + 69
_ (TR0 0N o2 (3.41)
5Cr — 89 1+ 367y,

~10 -



The off-diagonal elements are identified with the off-diagonal wave function renormalization
constants in the mass basis. For the CP-even scalar sector we obtain

1

55222 = 6Cj, + da (3.42)
%52,95 = 6Cy — b (3.43)
and hence
da = 1(5203 —8Z8) (3.44)
5Cy = (5Z +0Z08) . (3.45)

The superscript ‘OS’ indicates the OS renormalization scheme for the wave function con-
stants. The counterterm dC}, will not be used again. While the mixing angle 5 diagonalizes
both the charged and the CP-odd mass matrices and we have altogether four off-diagonal
wave function constants in the charged and CP-odd Higgs sector, eq. (3.41) implies only
three free parameters to be fixed, namely §3, 6C'4 and 6Cx+. Consequently, one has to
choose three out of four possible conditions and not all scalar fields can be OS at the
same time. If we choose e.g. the OS renormalized 5280SA7 5ZOiHi and 5ZHiGi to fix
the counterterms, we ensure H* to be OS. This scheme can hence be used in the process
H* — W*h/H, where we have an external charged Higgs boson.? This yields the following
possible first set of counterterms,

58 = (6ZGiHi 6798 oe) (3.46)

scll) = i(éZSiGi 46298 14) (3.47)

scll) = 75Z 05, 4650 . (3.48)

Choosing on the other hand the set 52805 4> 5Zggo and 5Z?IISE o+ We get a second possible
set

6@ = i(azco L~ 0295) (3.49)

sC\7 = ;5Z§3igi +68@ (3.50)

5 — i(azAGo +6295,) . (3.51)

There are two more sets that can be chosen. However, we are not going to use
them and hence they will not be repeated here. Replacing the OS conditions given in
egs. (3.37), (3.38) and (3.39) in eqgs. (3.44), (3.46) and (3.49), respectively, yields the fol-

2Note that, aiming at OS renormalized fields, this scheme cannot be used in processes where both A
and HT are external fields without applying an additional finite rotation to render both fields OS.

- 11 -



lowing counterterms for the mixing angles o and

» 2 3 2y — 26T
50 Re[Zan(md) + Hh(ﬂ;h) Hh] (3.52)
2(m3; —mj)

Re[Sge g+ (0) + Ege gt (mFys) — 20T e ]

50 = — or 3.53
om?, (3.53)
2\ _
55 — _ Re[Eg04(0) + E;;;g(mA) 20Tgoa] (3.54)
A

As already mentioned and as we will demonstrate later in detail for the example of the
charged Higgs boson decay, the application of this renormalization scheme not only makes
a gauge-independent definition of the counterterms impossible, but more seriously, leads
to unphysical gauge-dependent decay amplitudes. The computation of the loop-corrected
amplitude in the general R¢ gauge shows that after including all counterterms but the ones
for the angles, there remains a residual gauge dependence that is UV-divergent. The angu-
lar counterterms must therefore reveal exactly the same UV-divergent gauge dependence
but with opposite sign. The counterterm da is found to have exactly this UV-divergent
&-dependent counterpart, needed to render the amplitude gauge independent. However,
in addition, da and 08 contain &-dependent finite terms, which reintroduce a gauge de-
pendence into the amplitude. To get rid of these finite gauge-dependent terms in J3, the
authors of ref. [24] suggest to drop the assumption that \/Z>f is symmetric, thereby yield-
ing additional renormalization conditions. These are then exploited to move the gauge
dependence of §3 into 6C f.3 While this scheme would in principle allow to eliminate the
gauge dependence of §3, it cannot be applied in processes that involve the renormalization
of a. The UV-divergent é-dependent counterterm do is needed to cancel the UV-divergent
&-dependent counterpart in the loop-corrected amplitude, that is encountered in the stan-
dard renormalization scheme. In practice, however, this procedure cannot be applied,
as it lacks an unambiguous prescription on how to extract the truly gauge-independent
parts from the loop-corrected amplitude and from the counterterms. The extraction of the
gauge-independent part is not straightforward as the loop functions Ag and By [27, 28]
which appear in the angular counterterms, can be rewritten in terms of higher n-point
scalar integrals that contain the gauge parameter £ besides additional gauge-independent
components.

3.1.3 Alternative tadpole scheme

We now present a renormalization scheme that fulfills the requirements for a possible
gauge-independent definition of the angular counterterms. It relies on the application of
the renormalization scheme worked out in ref. [29]. In appendix A we show in detail how
this scheme works and in particular we present its extension from the SM case [29] to the
2HDM. The generic diagrams contributing to the self-energies defined in this ‘alternative
tadpole’ scheme, called 3% in the following, are shown in figure 1. Besides the generic

3More specifically it is moved into 6C 4o and 6Cgo 4, that due to the non-symmetric y/Z; are now two
independent counterterms. For details, we refer the reader to the original reference.
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h/H

Figure 1. Generic diagrams contributing to the self-energy %24,

one-particle irreducible (1PI) diagrams depicted by the first two topologies in figure 1,
they also contain the tadpole diagrams connected to the self-energies through the CP-even
Higgs bosons h and H that are represented by the third topology. The application of the
tadpole scheme alters the structure of the mass counterterms and of the off-diagonal wave
function renormalization constants® such that now the loop-corrected amplitude including
all counterterms but those for the angles does not encounter a UV-divergent ¢ dependence
any more. Hence, also the angular counterterms can and even have to be defined in a
gauge-independent way by applying appropriate renormalization conditions.

Besides the angular counterterms, also the mass counterterms, defined via OS con-
ditions become gauge independent in the tadpole scheme. This has been shown for the
electroweak sector in [30]. All counterterms of the electroweak sector have exactly the
same structure as in the standard scheme, but the self-energies ¥ appearing in egs. (3.20)—
(3.23) have to be replaced by the self-energies X% containing the tadpole contributions.
Note however, that there are no tadpole contributions for E?Z so that

ad,T
st =5ty (3.55)

Furthermore, due to the fact that the tadpoles are independent of the external momentum
the derivatives of the self-energies do not change,

ozt Xl

T = it for  axy=WW,ZZ vy, HH, hh,G°G°, GEG*, H*H* . (3.56)

The Higgs mass counterterms become

sm3 = Re[S§H (mE)] omj = Re[Ej3d(m3)] (3.57)

om? = Re[B%4(m%)],  dm¥e =Re[2%Bd L (m%L)]. (3.58)

“Note, that the application of the tadpole scheme also requires a change of all those vertices, where
tadpole contributions now have to be taken into account, namely wherever it is possible to add a neutral
scalar. This will be discussed later in the computation of the loop-corrected decay widths.
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And for the Higgs wave function renormalization constants we obtain

e P JRe[siiond)]
0Zun 6Zun \ Ok p2=m2, m—mj, (3.59)
5ZhH 5Zhh B _ZRG[E?‘?L(mH)] —Re azmd(kQ) '
m2,—m? k2 2 .2
H h k2=mj
Re g () _Re[zgg, )]
0Zcogo 0Zco _ ok? E2—0 m (3.60)
0Z qc0 0Z a4 Re [EggA(O)] axtad (k2)
22— —Re —44—
m, k2:m2
R Pt e () o Re[zit 0]
2 m2
(5ZGiGzl: 5ZG:tHj: - Ok k2=0 M+ (3 61)
(SZHini (SZHiHi 2R [EtGaiHi(O)] *Re 82333:[{:!:(’62) ‘
oz — ok
M+ kQZmiIi

keeping in mind that eq. (3.56) holds. Applying the same procedure for the definition of
the angular counterterms as in the standard scheme, but with the different treatment of
the tadpoles, the angular counterterms in the tadpole scheme read
Re [Stad(m?) + stad (i
2(my —my,)

Re [Ztc?:(gH:l: (0) + Etc?gHi (mHi )}

580 = — T (3.63)
R Etad 0 Etad 2
55 = e [SE8,( 2);; &8 (m?)] ‘ (3.64)
A

Compared to the standard scheme, the self-energies are replaced by the X4 and no tadpole
counterterms appear any more.

The application of the tadpole scheme not only allows for a gauge-independent defini-
tion of the angular counterterms but also requires it in order to ensure a gauge-independent
physical decay amplitude. Note that the counterterms (3.62)—(3.64) still contain a & de-
pendence and hence, a ¢-independent definition has yet to be found. In the MSSM, several
schemes for the renormalization of tan § have been proposed and used, see e.g. [25, 31-38].
The renormalization prescriptions have been discussed in detail in [25] with respect to their
gauge dependence, process independence and numerical stability (see also [39]). Renormal-
ization prescriptions making use of physical quantities like Higgs boson masses or physical
processes clearly lead to a gauge-independent prescription. However, they were found to be
numerically unstable in the former case, while the latter case may be viewed as unsatisfac-
tory, as the definition via a specific process makes tan § a non-universal, flavour-dependent
quantity [25]. Finally, DR prescriptions lead in the R¢ gauge to gauge independence of
dtan 8 in the MSSM at one-loop level, but not at two-loop level [25, 40]. We now present
a renormalization scheme that leads to {-independent da and §8 and also addresses the
problem of extracting the gauge-independent part unambiguously.
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On-shell tadpole-pinched scheme. The scheme we propose here combines the virtues
of the tadpole scheme with the unambiguous extraction of the truly gauge-independent
parts of the angular counterterms. It is based on the renormalization schemes presented
in [38] and in [41, 42].° The former defines the angular counterterms in a physical way as
residues of poles appearing in one-loop corrections, while in [41, 42] the pinch technique
(PT) [44-50] is used to extract the truly gauge-independent parts of the angular countert-
erms. Both methods lead to the same gauge-independent definitions of the counterterms.

Over the years the virtues of the PT have been discussed [51-56] and many times
compared to the background field method (BFM). In refs. [57-64] the BFM was advocated
in order to obtain gauge-invariant definitions of the counterterms, which, however, also has
its own drawbacks (see e.g. [50, 65]). In this work we apply the PT only in the definition
of the angular counterterms at one-loop level and not for the complete one-loop process, so
that we do not run into possible problems with regard to the PT. Also, note that for specific
examples it has been shown that the PT is connected to the BFM in case the Feynman
gauge is chosen for the background fields [66]. In fact, the one-loop PT Green’s functions
are identical to the conventional Green’s functions when calculated in the BFM with £ = 1.

One should emphasize that there is an important advantage from the field-theoretical
point of view to use the PT. While the BFM provides n-point functions that are manifestly
gauge invariant (i.e. they fulfill tree-level-like Ward identities), they are still gauge depen-
dent, since the n-point functions contain an explicit dependence on the background-field
gauge-fixing parameter (GFP). In contrast, the PT introduces no GFP-dependent poles
into the n-point functions and therefore contains no unphysical thresholds. This is impor-
tant when constructing resonant transition amplitudes as it leads to a correct treatment
of resonances. As shown in [53] an off-shell one-particle irreducible effective two-point
function obtained via the PT satisfies a number of field-theoretical requirements needed in
order to attribute physical meaning to the resummed propagator.

With the help of the PT it is possible to define the pinched self-energies X. The
self-energies are related to the tadpole self-energies evaluated in the Feynman gauge as

S(*) = )| + 207, (3.65)
where ¢ stands for the gauge fixing parameters £z, {w and &, of the Re gauge. Note,
that in order to apply the PT the tadpole scheme has to be used.® For better readability
we omitted the superscript ‘tad’ in ¥. The self-energy ¥244 in eq. (3.65) is an additional
contribution that is explicitly independent of the gauge fixing parameter . Applying [42]

5The renormalization of the mixing matrix in the scalar sector of a theory with an arbitrary number of
scalars was first discussed in ref. [43].

®In ref. [67] the renormalization of the singlet extended SM was investigated for the sample process H —
hh. Treating the tadpoles in the standard scheme the authors are left with a gauge-dependent mixed mass
counterterm dm? ;. The remainder of the loop-corrected decay amplitude, i.e. the NLO amplitude without
the counterterm dmj}, is gauge independent in this model, which is simpler compared to the 2HDM. In
their ‘improved on-shell scheme’ the authors suggest to adopt the Feynman gauge and a specific scale choice
to get rid of this gauge parameter dependence. The identification of the truly gauge-independent part would
require, however, the application of the pinch technique which relies on the application of the tadpole scheme.
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we arrive at the following counterterms

Re ([Zig(m3) + S mi)] ., + Dgimd) + Dl (m?) )
Jo = — (3.66)
2(my; —my)

Re ([25 7 (0)+ 388 o (m20)] Ty (0)+ T2 (m2)

3w = - oz, (3.67)
H

550 _ ([Eggfx(o) + S8 (m3)] o, + S (0) + Eg}&(mi))

e 2m124 : (3.68)

These angular counterterms are different from the ones obtained in the KOSY scheme, so
that the classification as an independent renormalization scheme is justified. The additional
contribution %20 has been given in [42] for the MSSM. We have derived the remaining

two contributions Eg%% and Egiin. Altogether we have
add [, 2 9255*&%*(1 2 m%} +m% 2.2 2 2.2 2
Sin(07) = o5 (P — {Bo(p smy,my) — Bo(p®;mz, m7)
32mcyy, 2
26y [Bo(w? miy, m3ps ) — Bo(w?s miy, miy)] | (3.69)

2 2

G°85_aCp_ m

Egi&(pQ) = 7357565 @ <p2 — 2‘4) [Bo(p2;m2z,m12q) - BO(pQ;mQZ,mi)] (3.70)
W

2 2
g SB—aCp— moyr4
yald L (p?) = ﬁmjrf = (pz— g ) [Bo(p?s miy, mir) — Bo(p*; miy, mz)],  (3.71)

where By is the scalar two-point function [27, 28].

px tadpole-pinched scheme. As indicated by the name, this scheme differs from the
OS tadpole-pinched scheme solely in the scale at which the self-energies, appearing in the
definition of the angular counterterms, are evaluated. The self-energies are evaluated at
the average of the particle momenta squared [68],

2 2
my +m
with (¢1, ¢2) = (H, k), (GF, HF) and (GY, A), respectively, and we will henceforth refer to
this scheme as the p,-scheme. When the self-energies are evaluated at p? the additional
self-energies ¥4 vanish, as can easily be seen from eqs. (3.69)-(3.71), and the pinched
self-energies are given by the tadpole self-energies ¥4 computed in the Feynman gauge, i.e.

E(p) = 0|, - (3.73)
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The angular counterterms then read

Sor = 3.74
“ " (3.74)
Re [EGiHi ( ;{i):|
50 = — 3.75
m, (3.75)
— m2

_Re[Zooa (7))

583 = — . : (3.76)
m

3.1.4 Process-dependent scheme

We will also investigate the renormalization of the mixing angles through a physical pro-
cess. Provided the alternative tadpole scheme is applied, this leads to a manifestly gauge-
independent definition of the mixing angle counterterms. In order to fix the respective
angular counterterm we will require the next-to-leading order (NLO) Higgs decay width,

in which the angle appears, to be equal to the leading order (LO) one, i.e.
Lyirg + Tet. =0 5 (377)

where I'yi+ denotes the contribution of all virtual one-loop corrections to the decay width
and T'c¢ the counterterm contributions. This implies (for NLO processes that do not
encounter real corrections, see below)

PNLO — pLO (3.78)

and allows to fix the angular counterterm via the decay process. This scheme has some
drawbacks, however, cf. [25]. Conceptually, it is not satisfying as the definition of the
mixing angles becomes non-universal and flavour dependent. From a calculational point of
view, it is involved as it requires the computation of loop-corrected three-particle vertices.
Another problem is related to the choice of the process that defines the counterterm. The
definition through a process receiving QED corrections that cannot be separated from
the rest of the EW corrections would entail real radiative corrections in the counterterm.
This is precluded, however, as this counterterm would inevitably depend on some detector
sensitivity AE via the photon phase space cut and thereby introduce a dependence on the
experimental setting. This forbids e.g. the definition of the angular counterterms appearing
in the loop corrected decay H* — W*h through the process H¥ — W*H. Finally, care
has to be taken to choose a process that is phenomenologically accessible. This eliminates
e.g. the choice of H — ZZ. With the 125 GeV Higgs boson being very SM-like and hence
coupling with full SM strength to the Z bosons, sum rules lead to a tiny coupling of the
heavy Higgs boson to massive gauge bosons and hence a very small H — ZZ decay width.
In this paper we choose, as proposed in [25], the decays H — 77 and A — 77 in order to
define 05 via the latter and d« via the former. In both decays the QED corrections form
a UV-finite subset of the full EW one-loop corrections.
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4 One-loop EW corrected decay widths

In this section we present the EW one-loop corrections to the processes’
H* - W*h  and W*H, (4.1)
H— ZZ,

H— 77 and A— 717.

The charged Higgs decays (4.1) will serve us to discuss in detail the renormalization of
the mixing angles a and ( in view of a gauge-independent definition. In this context,
the fermionic decays (4.3) will be used for a process-dependent definition of the angular
counterterms. Note that we could have equally well chosen h — 77 instead of H — 77.
The numerical implications of the different renormalization schemes shall be investigated
in the subsequent section. This will be done not only for the charged Higgs decays, but
also for another sample process, the heavy Higgs decay into a Z boson pair (4.2).

4.1 Electroweak one-loop corrections to H* — W*h/H

The decays of the charged Higgs boson into the charged W+ boson and a CP-even Higgs
boson ¢ = h or H,
H* - W*g, (4.4)

depend through the couplings on the mixing angle combinations

—cos(f —a) for p =h
JHEW*e = (4.5)
sin(f —«) for g = H
and the LO decay width is given by
FLO(H:N:_>W:I:¢) GFg%{iWi(i) )\3( 2 M2 2) (46)
= —— A" (MY, ,M5) .
8\@7rm§{i HE W T
with
Nz, y, 2) = (22 + y? + 22 — 22y — 222 — 2yz)% . (4.7)
The NLO decay width can be written as
PNLO — pLO 4 () (4.8)

The one-loop correction I'}) consists of the virtual corrections, the counterterm contribu-
tions and the real corrections. The counterterms cancel the UV divergences and the real
corrections the IR divergences encountered in the virtual corrections. The diagrams con-
tributing to the latter are depicted in figure 2 and show the pure vertex corrections (a) and
the corrections (b)-(e) to the external legs. The counterterm diagram is shown in (f). The
vertex corrections comprise the 1PI diagrams given by the triangle diagrams with scalars,
fermions and gauge bosons in the loops, as shown in the first two rows of figure 3, and the

~ 18 —



w w w

hH WH WH
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(d) (e) (f)

Figure 2. Generic diagrams contributing to the virtual corrections of the decays H* — W*h/H:
vertex corrections (a) and corrections to the external legs (b)-(e). Diagram (f) displays the coun-
terterm.

diagrams involving four-particle vertices (last four diagrams of figure 3). The corrections
to the external legs in figure 2 (b) and (c) vanish due to the OS renormalization of the
scalars, while the vanishing of the mixing contribution (d) is ensured by a Slavnov-Taylor
identity [70]® and the one of (e) by the Ward identity for an OS W= boson. The vertex
contributions with a photon in the loop lead to IR divergences that need to be canceled by
the real corrections. These are computed from the diagrams displayed in figure 4. They
consist of the proper bremsstrahlung contributions (a)-(c), where a photon is radiated from
the charged initial and final state particles, and the diagram (d) involving a four-particle
vertex with a photon. Note, that this last diagram leads to an IR-finite contribution. The
NLO contributions factorize from the LO amplitude, so that the one-loop corrected decay
width can be cast into the form

FNLO(Hi N Wi¢) — PLO [1 + Avirt + ACt + Areal ) (49)

The counterterm contribution A° is given in terms of the wave function renormalization
constants, the coupling and angle counterterms. For ¢ = h it reads

58—a
Cl—ar

At = 0Zww +0Z g+ gt +0Zpp+

(0Zce s — 5ZH,1)+25;] —2t5 o (66—06a), (4.10)

"The top quark loop corrections to H¥ — W¥h have been calculated in [69].

8This requires the formulation of the gauge fixing Lagrangian in terms of already renormalized fields
when adding it to the bare 2HDM Lagrangian so that it need not be renormalized, cf. refs. [71, 72]. See
also [22] for details.
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Figure 3. Generic diagrams contributing to the vertex corrections in H* — W*h/H.
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Figure 4. Feynman diagrams contributing to the real corrections.

and for ¢ = H,

C—a
58—a

2(68 — bav)

ACt :(SZWw—f-(;ZHiHi +5ZHH_ ;
B—a

(0Zgep+ +6Znm) + 2599 + . (4.11)

As the expressions for the counterterm A and the virtual and real contributions AVt
and A in terms of scalar one-, two- and three-point functions are rather lengthy, we do
not display them explicitly here.
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type 1 11 lepton-specific  flipped
Ghrr | Ca/S3  —Sa/c3 —sa/cg Ca/Sp
gHrr | Sa/S cCa/cs ca/cp Sa/sp
garr | —1/tg tg tg —1/tg

Table 1. Neutral Higgs boson couplings to 7 leptons in different realizations of the 2HDM.

T T T T
H H [ H A/GO H
_______ T o~ N A O

>
T T T T
(a) (b) (c) (d)

T T T
H P H vz it

T T T

Figure 5. Generic diagrams contributing to the virtual corrections of H — 77: vertex correc-
tions (a) and corrections to the external legs (b)-(f) where ¢ = h/H. Diagram (g) displays the
counterterm.

4.2 Electroweak one-loop corrections to H — 77 and A — 71

The LO decay width for the process H — 77 reads

3
G 2 2 4 2\ 2
TEO(H — r7) = —FQZT\};HW (1 - TZ;T) : (4.12)
H

with the coupling modification factor gg,, in the 2HDM, which depends on the 2HDM
type. We give in table 1 the coupling factors for all neutral Higgs bosons to 7 leptons in
the different realizations of the 2HDM. For the decay A — 77 the LO decay width is

Grghr,mami [ 4m2
421 mi

A = 77) = : (4.13)
with g4, given in table 1. These two processes can hence be used to define the counterterms
for o and S.

The EW NLO corrections to H — 77 consist of the virtual corrections, the coun-
terterms and the real corrections. The generic contributions to the virtual corrections are
depicted in figure 5. The 1PI diagrams of the vertex corrections are shown in figure 6 and
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Figure 6. Generic diagrams contributing to the vertex corrections in H — 77.

consist of the triangle diagrams with scalars, fermions, massive gauge bosons and photons
in the loop. The corrections to the external legs in figure 5 (b), (d) and (e) vanish be-
cause of the OS renormalized H and 7, respectively. Diagram (c) is zero because of CP
conservation. Diagram (f) finally vanishes because of a Slavnov-Taylor identity. The real
corrections consist of the diagrams where a photon is radiated off either of the final state
7 leptons. We explicitly checked that all NLO corrections factorize from the LO width so
that the NLO decay width can be cast into the form

FNLO(H N 7_7_) — FLO 1 +Avirt JrAct JrAreal] ) (414)
For A°" we have

) dm,  OM?2

A = §Zpp + 5 2y + 025 4578 4220 oM O

9HrTT g mr MW

2
+ 2T 504 2garn 88 . (4.15)
9HrT

Note, that the pure QED contributions in AV and A can be separated from the weak
contributions in a gauge-invariant way and form a UV-finite subset by themselves. This
is important as it allows to define the angular counterterm via this process through the
purely weak NLO contributions, see also the discussion in section 3.1.4. Requiring the
following renormalization condition for the process-dependent definition of o,

TXO(H — 77) = TN (11 5 77) | (4.16)

weak
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A . A 'V/Z A

Figure 7. Generic diagrams contributing to the virtual corrections of A — 77: vertex correc-
tions (a) and corrections to the external legs (b)-(f), where ¢ = h/H. Diagram (g) displays the
counterterm.

and imposing this condition only on the weak part of the decay width we arrive at the
process-dependent counterterm definition
dg Smweak 6M§V

(SaH—>TT _ _gHJ 5ZHH + 9hrr 5ZhH +5ZTL7,_weak+5Z7}_%71weak+27 +2 T - )
2ghTT 9Hrr g ms MW

+2g407 68 + AREYE (4.17)

The superscript ‘weak’ indicates that in the respective counterterms and in the virtual

correction only the purely weak contributions are taken into account. For example for
Avirt,weak
H—T1t

photons are dropped.

this means that corrections stemming from diagrams in figure 6 that involve

The counterterm 0 tan 3 or 03, respectively, which is necessary in (4.17), can be defined
in a process-dependent scheme via the NLO decay A — 77 as outlined in the following.
Again the NLO contributions consist of virtual, counterterm and real diagrams.  The
generic ones for the former two are shown in figure 7 and the 1PI diagrams of the vertex
corrections are summarized in figure 8. The loops contain scalars, fermions, massive gauge
bosons and photons. The loops with photons induce IR divergences that are canceled by
the real corrections. The corrections to the external legs in figure 7 (b), (d) and (e) vanish
due to OS renormalization conditions, those in (c) because of CP invariance and those in (f)
because of a Slavnov-Taylor identity. Also in this process the pure QED corrections can be
separated from the remainder in a gauge-invariant way and form a UV-finite subset so that
the NLO decay width can be used for the process-dependent definition of the counterterm
48 through the requirement

TO(A — 77) = TNEO (4 5 77) . (4.18)

weak
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Figure 8. Generic diagrams contributing to the vertex corrections in A — 77.

With the factorization
FNLO(A N 7_7_) _ FLO 1 +Avirt —I—ACt _|_Areal (419)

and the counterterm

1 dg om SM?2
A = §Z44 — 6Z, ozL 4 oz8 oL o T W
Aa = 0da0a +02 +0Z0 + P T M2,
2(1 + ¢>
+ ( +gATT) 5/3 (420)
9ATT

we arrive by imposing the condition (4.18) at

—JArT 1 L k R,weak 69 5m7vyeak
OpATTT = —IATT 5744 — 8 Zgop + 025 weak 4 gzRweak | 979 4 97T
2(1 + 912477—) Garr G TT TT q m,
SM? -
ViR ATk (4.21)
w

Again the superscript ‘weak’ denotes the purely weak contributions to the respective coun-
Avirt,wcak
A—TT

corrections to A — 77 at NLO which are computed from the diagrams in figure 8 discarding

terterms and to the virtual corrections. Thus, is given by the purely weak virtual

those with photons in the loop.

4.3 The gauge (in)dependence of the angular counterterms

The question of gauge dependence in the standard scheme. In order to investigate
the question whether the angular counterterms can be defined in a gauge-independent way,
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we have calculated the one-loop corrected decay width for the charged Higgs decays in
the general R¢ gauge. When we apply the standard scheme, the computation of the NLO
amplitude Mg+ _,p+p, including all counterterms but the one for the angles - i.e. dcg_q is
set to zero - yields an amplitude that depends on the gauge parameters as follows,

Ascg_os2 - €*(p3)
tandard GR5Ce—aS3_o P1 p3 9
Mu S wEhINLO, € 6ey_a=0 = — 327T2(m§— md) [2My (1 = &w)aw
+M5(1 - ¢z)az] | (4.22)
where we have introduced the abbreviation (V = W, Z)
1 2 2
ay = ———— [Ao(my) — Ao(§vmy) (4.23)
(1= &v)m3, [Aolrmy v

in terms of the scalar one-point function Ay [27, 28]. With p; we denote the incoming
four-momentum of H* and with ¢*(p3) the polarization vector of the outgoing W* boson

with four-momentum p3 and

As 2m%2

(4.24)

v2sges
Note that ay is UV-divergent. This result shows explicitly what we have already stated
before: in the standard renormalization scheme, the NLO decay amplitude without the
angular counterterms has a residual UV-divergent gauge dependence. This can only be
canceled by the angular counterterms. Therefore, the counterterms cannot be defined in
a gauge-independent way. This gauge dependence is independent of the renormalization
scheme chosen for the angular counterterms. It is purely due to the treatment of the
tadpoles. Let us investigate what happens if we apply the KOSY scheme, which yields the
renormalization conditions eq. (3.52) and eq. (3.53) or eq. (3.54), respectively. Introducing
the UV-finite integral

Bvi(p*) = 5 [Bo(p®;miy,m3) — Bo(p*; éymiy, m3)] (4.25)

(1—&v)my,

in terms of the scalar two-point function By, we find the following gauge-dependent results
for the angular counterterms,

da = dale_y (4.26)

_ Ascg_aSg—a
3272(m%, — m3)

2
(1 gz)m{mni [ﬁZA(mJQq) - ﬂZA(m%)}

[2M{y (1 = &w)aw + MZ(1 = £2)ay]

oy | Bzez(miy) — 28za(mi)| — mi | Bzez(m?) - 28za(m})| }

gzcﬁ—asﬁ—a

=) s

{2m?;1i [ﬂWHi (m¥) — Bw = (m%)]

+m [5W5W(m12q) — 2By (M%{)} — mj, {ﬁmW(m%) — 2Bwh+ (m%)} }
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and

580 — 550)‘

¢=1

2
+ (1= &w) %{m% [5Wh(m%1i) - BWh(O)} (4.27)

2, [,BWH(mJ%Ii) _ ,BWh(m%{i)} +m% [BWH(O) - ﬁWH(m?qi)} } .

Here the symbol ‘ =1 represents the counterterm result obtained for £ = &y = &5 = 1.

The result for 63 looks similar with the appropriate mass replacements and Ew — &z.
The second line in eq. (4.26) has the appropriate structure to cancel the remaining UV-
divergent gauge dependence in the amplitude (4.22). However, the additional finite terms
in (4.26) and (4.27) proportional to the [-integrals defined above, reintroduce a gauge
dependence into the amplitude. In [24] it was argued that the gauge dependence of § can
be moved into the unphysical counterterm 6CY, see eq. (3.41). Yet, lacking a method to
define uniquely the gauge-dependent parts in the standard scheme, where the PT cannot
be applied, it remains unclear, how this could be accomplished. The situation is even worse
for dar, where we necessarily have to retain the gauge-dependent part proportional to the
UV-divergent Ap functions, but must move the rest into 6Cy. To summarize, this result
shows that not only is it impossible to arrive at a gauge-independent definition of da in
the standard scheme, but it also explicitly demonstrates that the KOSY scheme leads to
an unphysical gauge dependence of the decay amplitude, which cannot be disposed of in
a straightforward way. This is not only true for the charged Higgs bosons decays we are
discussing. In fact, the investigation of the origin of this gauge dependence shows, that
the standard tadpole scheme inevitably leads to gauge-dependent decay widths in case the
KOSY scheme is applied for the mixing angles.

If we define the angular counterterms via a physical process, however, namely through
the decay widths H — 77 and A — 77, compute the contribution of the counterterm
0cg—q, and extract the £&-dependent parts we obtain the following,

Ascp_ o83 - €*(ps3)
tandard _ 9A5Cs—aSp_oP1 "€ (P3 9
MHi%Wih’it?g, gc[g,a only — 327_[_2(7,”%[ — m%) [QMW<1 - éW)aW
+MZ(1—&z)az] . (4.28)

It is exactly the same as eq. (4.22) but with opposite sign, so that altogether the EW one-
loop corrected decay width is gauge independent and UV-finite as required. The standard
treatment of the tadpoles combined with a process-dependent definition hence leads to a
gauge-independent physical result, as it should. The counterterms, however, necessarily
contain a gauge dependence.

Gauge-independent angular counterterms. For the angular counterterms to be
gauge-independent the loop-corrected amplitude including all counterterms but the angular
ones must be independent of £. This can be achieved by treating the tadpoles according to
ref. [29], cf. the discussion in section 3.1.3. It means that in the counterterms eq. (4.10) and
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eq. (4.11), respectively, the self-energies 3 and the tadpole counterterms 67", contained in
the wave function constants, the scalar mass counterterms and the angular counterterms,
have to be replaced by 2% and §T = 0. Note, that the change to this tadpole scheme in
principle implies new vertices arising from constant tadpole contributions to the respective
original vertices, cf. appendix A. In the 2HDM, however, there is no quartic vertex between
two scalars, a charged Higgs and a charged gauge boson, h/H —h/H — H* —W T, where one
of the external h/H legs would carry the additional tadpole contribution. Therefore, the
process HT — W*h/H does not receive additional tadpole diagrams. The counterterms
oo, 0B, 0 Zngr, 6Zpn 0Zgoy and 0Zg+ g+ change however. With these modifications the
gauge-dependent part of the amplitude with the angular counterterms set to zero, becomes

d
M w=n|NLo, £,5¢5_ a0 =0 - (4.29)

The amplitude without the mixing angle counterterm is itself gauge independent, so that it
is possible to provide a gauge-independent renormalization of the angular counterterms.

a) Gauge-independent tadpole-pinched scheme. The pinch technique allows to ex-
tract from the Green’s functions the truly gauge-independent part. Combined with the
tadpole scheme this leads to manifestly gauge-independent angular counterterms. Choos-
ing the OS scale, they are given by egs. (3.66)—(3.71). In the p, scheme the formulae
simplify to (3.74)—(3.76). In the numerical analysis we will apply both choices.

b) Gauge-independent process-dependent definition of the angular countert-
erms. Another possibility to arrive at a truly gauge-independent definition of the angu-
lar counterterms is the definition via the physical processes H/A — 77, provided of course
that the framework of the tadpole scheme is applied.

In the processes H/A — 77 no new diagrams are introduced when switching to the
tadpole scheme, while the counterterms do change. In the tadpole scheme the process-
dependent definition of dav and §5 through the requirement eq. (4.16) and eq. (4.18),
respectively, then indeed leads to gauge independence of both counterterms and hence also
of dcg_q, i.e.

5¢s tad, proc-dep _ 0. 4.30
( 3 ),5

We have seen in eq. (4.28) that the treatment of the tadpoles in the standard scheme
cannot lead to gauge-independent angular counterterms, although they are defined through
a physical process. In detail, this gauge parameter dependence stems from dc«, whereas 6
is gauge independent in the process-dependent definition also without applying the tadpole
scheme. Thus we have

5ﬂ§roc—dep _ 5ﬂgad, proc-dep -0 (431)
5a2ad, proc-dep -0 (4.32)
Ascg_nS5—
_d 5
bag ™ = _327r2(i”612: . TZ%) [2M5 (1 = &w)aw + M7 (1 = €z)az] . (4.33)

This result shows two important things: first, the process-dependent definition of the
angular counterterms leads to gauge-independent counterterms only if the tadpole scheme
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(a) (b) (c)

Figure 9. Generic diagrams contributing to the virtual corrections of the decay H — ZZ: vertex
corrections (a) and corrections to the external legs (b)-(d) where ¢ = h, H. Diagram (e) displays
the counterterm.

is applied. Second, eqgs. (4.31)—(4.33) demonstrate, that in a process-dependent definition
of the counterterms the difference between the application of the tadpole and the standard
scheme is a gauge-dependent expression that solely depends on Ag functions, which are
UV-divergent. As the 2HDM is renormalizable this implies that also in the amplitude
the difference in the application of the two schemes must be UV-divergent and must have
the same structure, since the divergences have to cancel. In conclusion, this means: the
definition of the angular counterterms via any physical process leads for any NLO decay
process to a gauge-independent result, independently of the treatment of the tadpoles.

In the following numerical analysis in section 5 we will apply all three types of renor-
malization schemes, the standard, the tadpole-pinched and the process-dependent scheme,
and compare them to each other. We will do this for the sample processes H* — W*h/H
and H — ZZ. In order to describe also for this latter process the implications of the
tadpole scheme, required for a gauge-independent definition of the angular counterterms,
we briefly repeat the ingredients of the EW one-loop corrections to H — ZZ.

4.4 Electroweak one-loop corrections to H —+ ZZ
The LO decay width for the process
H—ZZ (4.34)

is given by

Grg? 4AM?2
MOH = 22)= —L2HZZ (4 Am?2m2 +12mb), /1 — —Z
( ) 32\/57%1{( H amy 7) )

(4.35)
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Figure 10. Generic diagrams contributing to the vertex corrections in H — ZZ. The ghost
particles are denoted by U.

and depends on the mixing angles through the coupling factor
9HZZ = Ch—a - (4.36)

The NLO decay width consists of virtual corrections and the counterterm contributions
to cancel the UV divergences. There are neither IR divergences nor real corrections. The
generic diagrams for the virtual corrections and the counterterm are depicted in figure 9.
The 1PI diagrams contributing to the vertex corrections are given by the triangle diagrams
with scalars, fermions, massive gauge bosons and ghost particles in the loops, as shown in
the first three rows of figure 10, and by the diagrams involving four-particle vertices (last
four diagrams of figure 10). The corrections to the external leg in figure 9 (b) vanish due
to the OS renormalization of the H. The mixing contributions (c¢) and (d) vanish because
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F=1{lq} S={h,H,A G H* G*} U = {uz, uw+} V={Z,W*}

Figure 11. Additional vertex diagrams in the tadpole scheme contributing to the decay H — ZZ.

of the Ward identity for the OS Z boson. The counterterm amplitude is given by

ecg—aMw .
Miizz = 7@ C;W € (p3) - € (pa) (4.37)
W
59 Ocp_o OMZ  SMP 0 07 57
x |24 4 L Z W  SBa DEH L DPHH L 57,4
g Ch—a M7 2My, a2 2

where the e#* denote the polarization vectors of the outgoing Z bosons with four-momentum
p3 and py4, respectively. If the tadpole scheme is applied, the HZZ vertex is modified by
additional tadpole contributions, which lead to further diagrams, that have to be taken
into account in the computation of the decay width. They are shown in figure 11. As the
formula for the vertex corrections and counterterms in terms of the scalar one-, two- and
three-point functions are quite lengthy, we do not display them explicitly here.

5 Numerical analysis

For the computation of the NLO EW corrections to the Higgs decay widths described
in the previous section we have performed two independent calculations. Both of them
employed the Mathematica package FeynArts 3.9 [73, 74] to generate the amplitudes at
LO and NLO in the general R¢ gauge. To this end, the model file for a CP-conserving
2HDM was used, which is already implemented in the package. Additionally, all tadpole
and self-energy amplitudes, needed for the definition of the counterterms and wave function
renormalization constants, have been generated in the general R¢ gauge. The contraction
of the Dirac matrices and formulation of the results in terms of scalar loop integrals has
been done with FeynCalc 8.2.0 [75, 76] in one calculation and with FormCalc [77] in the
other. The dimensionally regularized [78, 79] integrals have been evaluated numerically
with the help of the C++ library LoopTools 2.12 [77].

For one of the two calculations the Python progam 2HDMCalc was developed that links
FeynArts, generates the needed counterterms dynamically from the 2HDM Lagrangian
by calling a Mathematica script and combines the LO, NLO and counterterms calculated
by FeynCalc into the full partial decay widths. These are then evaluated numerically by
linking LoopTools. Finally, the LO and NLO partial decay widths are written out for
all renormalization schemes of the mixing angles introduced above. The outcome of this
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program was compared to the results of the second independent computation. All results
agree within numerical errors.

In the following we specify the input parameters that we used for the numerical evalu-
ation. As explained in section 3 we use the fine structure constant « at the Z boson mass

scale, given by [80]
1
2

M7) = ——. 1
*(M2) = 155962 (5-1)
The massive gauge boson masses are set to [80, 81]

My = 80.385 GeV and Mz =91.1876 GeV . (5.2)

For the lepton masses we choose [80, 81]
me = 0.510998928 MeV , m, = 105.6583715 MeV , m, = 1.77682 GeV . (5.3)
These and the light quark masses, which we set [82]
my = 100 MeV , my =100 MeV , mg =100 MeV , (5.4)

have only a small influence on our results. In order to be consistent with the ATLAS and
CMS analyses, we follow the recommendation of the LHC Higgs Cross section Working
Group (HXSWG) [81, 83] and use the following OS value for the top quark mass

my = 172.5 GeV . (5.5)
The charm and bottom quark OS masses are set to
m. = 1.51 GeV and mp = 4.92 GeV (5.6)

as recommended by [81]. Omitting CP violation we consider the CKM matrix to be real,
with the CKM matrix elements given by [80]

Vd Vs Vb 0.97427 0.22536 0.00355
VerM = | Vea Ves Vo | = | —0.22522 0.97343 0.0414 | . (5.7)
Via Vis Vi 0.00886 —0.0405 0.99914

The SM-like Higgs mass value, denoted by mpy,,, has been set to [84]
mysw = 125.09 GeV . (5.8)

Note, that in the 2HDM, depending on the chosen parameter set, it is possible that either
the lighter or the heavier of the two CP-even neutral Higgs bosons can be the SM-like
Higgs boson.

The IR divergences in the computation of the NLO corrections to the process H* —
W+ H /h require the inclusion of the real corrections to regularize the decay width. This in-
troduces a dependence on the detector sensitivity AE for the resolution of the soft photons
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from the real corrections. We showed that this dependence is small [85]. For our analysis
we fixed the value to

AE =10 GeV . (5.9)

In the subsequently presented plots we only used 2HDM parameter sets that are not
yet excluded by experiment and that fulfill certain theoretical constraints. These data sets
have been generated with the tool ScannerS [86].” The applied theoretical constraints
require that the chosen CP-conserving vacuum is the global minimum [87], that the 2HDM
potential is bounded from below [88] and that tree-level unitarity holds [89, 90]. For consis-
tency with experimental data the following conditions have been imposed. The electroweak
precision constraints [91-97] have to be satisfied, i.e. the S,T,U variables [91] predicted
by the model are within the 95% ellipsoid centered on the best fit point to the EW data.
Indirect experimental constraints are due to loop processes involving charged Higgs bosons,
that depend on tan 8 via the charged Higgs coupling to the fermions. They are mainly
due to B physics observables [98-100] and the measurement of R, [101-104]. We have in-
cluded the most recent bound of mpy+ = 480 GeV for the type II and flipped 2HDM [105].
The results from LEP [106] and the recent ones from the LHC [107, 108]'° constrain the
charged Higgs mass to be above O(100 GeV) depending on the model type. In order to
check the compatibility with the LHC Higgs data ScannersS is interfaced with SusHi [110]
which computes the Higgs production cross sections through gluon fusion and b-quark fu-
sion at NNLO QCD. All other production cross sections are taken at NLO QCD [82]. The
2HDM decays were obtained from HDECAY [111, 112]. Note that in the computation of
these processes all EW corrections were consistently neglected, as they are not available
for the 2HDM. The exclusion limits were checked by using HiggsBounds [113-115] and
the compatibility with the observed signal for the 125 GeV Higgs boson was tested with
HiggsSignals [116]. For further details we refer to [117].

In our numerical analysis we investigate the applicability of the various proposed renor-
malization schemes. The goal is to find a renormalization scheme for the 2HDM, that is
process independent, gauge independent and numerically stable. All results that we show
are for the 2HDM type II.

5.1 Gauge dependence of the KOSY scheme

We start by analyzing the gauge dependence of the partial decay width, introduced through
the renormalization of the mixing angles a and § in the KOSY scheme. As an example
we choose the charged Higgs boson decay into the W boson and the light CP-even scalar
h corresponding to HSM, H* — W=*h. For the renormalization of 3 we use the charged
sector and call the renormalization scheme accordingly KOSY*. The corresponding angular
counterterm 631 is defined in eqs. (3.53), while dev is given by eq. (3.52). The size of the

9We thank Marco Sampaio, one of the authors of ScannerS, who kindly provided us with the necessary
data sets.
9The results reported in the recent ATLAS paper [109] have not been translated into bounds so far.
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gauge dependence will be quantified by
NLO NLO
T —Ten

AT, = (5.10)

ke
It parametrizes the deviation of the NLO partial decay width for an arbitrarily chosen
gauge parameter § in the R¢ gauge from the reference decay width chosen to be the NLO
width in the Feynman gauge, normalized to the reference value. For simplicity we only vary
the gauge parameter £y and set £z = 1. The 2HDM scenario Scenl that we investigate is
defined by the input parameters

Scenl: mpg+ =780 GeV, mypy =7T742.84 GeV, my = 700.13 GeV,

5.11
tan 8 = 1.46, a=—0.57, m3y = 2.076 - 10° GeV?2. (5.11)

Figure 12 shows the & dependence of our process, A?Wiwih, as a function of &y. The
kinks in the figure are due to threshold effects in the By functions entering the counterterms.
In detail, the kinks are given by the following parameter configurations and counterterms

Kink Ew Kinematic point Origin
1 0.2137 my+ ~my + VEwmw BYEAS)

2 0.60539 mp =V Ewmw + VEwmw oo
3 21.3491 mpyg ~ VEwmw +VEwmw oo
4 66.3763 my+ ~ mp + VEwmw 58

With a relative variation of the NLO width of up to 20% due to the change of the gauge
parameter, the figure clearly demonstrates the gauge dependence of the NLO decay width
in the KOSY scheme. The explicit calculation shows that for large values of &y the partial
decay width drops as —(m?%—m? ) In(&w). This explicit gauge dependence makes a practical
use of the KOSY scheme impossible as it leads to non-physical gauge dependences in the
decay widths.

5.2 The processes I'(H* — W*h/H) at NLO

We move on to the investigation of the size of the NLO corrections to the processes
H* — W*h/H and their dependence on the renormalization scheme. In our scenarios
h corresponds to the SM-like Higgs bosons. We define the quantity

FNLO _ FLO

AT = (5.12)

TLO ’

which measures the relative size of the NLO corrections compared to the LO decay width.
For the discussion of the H* — W*h decay we chose among the generated valid scenarios
again the one given by Scenl, but this time vary the charged Higgs boson mass. For
distinction, we call it Scen2 and it is given by

Scen2: mp+=(654...804) GeV, mpyg=742.84 GeV, m4="700.13 GeV,

5.13
tan 3=1.46, a=-0.57, mi,=2.076 - 10° GeV?2. (5-13)
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Figure 12. Gauge dependence of the decay H* — W*h within the KOSY® scheme. The 2HDM
parameters are given by Scenl defined in eq. (5.11).

For H* — W*H we chose Scen3 where the mass my is varied,

Scen3: mp: = 74554 GeV, mp = 594.55 GeV, my = (704...735) GeV,

5.14
tan 8 = 1.944 a = —0.458, m3y = 1.941 - 10° GeV?2. (5:14)

In figure 13 we show the relative NLO corrections for H* — W*h, ATH iWih, as a function
of the charged Higgs boson mass for various renormalization schemes. We denote them as

proc :  process-dependent
PE° pu tadpole-pinched, 550 () or 552) ('0) (5.15)
pOS“® :  on-shell tadpole-pinched, 581 or 55(2) |

KOSY®° :  gauge-dependent scheme, 6801 or 65 .

The process-dependent renormalization refers to the renormalization of « via the process
H — 77 and of 8 via A — 77. The process-dependent renormalization can be performed
by applying either the standard or the alternative tadpole scheme. The investigation of the
decay widths shows, however, that all decays discussed in this analysis, i.e. H¥ — W*h/H
and H — ZZ, are invariant with respect to a change of the tadpole scheme in the process-
dependent scheme.'! In the process-independent schemes we can choose to renormalize
B either through the charged sector, with the counterterm given by 31, or through the
CP-odd sector, with the counterterm given by 3. For the shown mpy+ range the LO
decay width varies from T = 0.0750 GeV at mpy+ = 654 GeV to TO = 0.1474 GeV at
myg+ = 804 GeV.

"Eor details on the cancellation of the contributions when changing from the standard to the alternative
tadpole scheme between the various building blocks of the NLO decay widths, we refer the reader to [118].
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Figure 13. Relative NLO corrections to H* — W=*h for various renormalization schemes as
defined in eq. (5.15), with the 2HDM parameters given by Scen2, eq. (5.13); left: with, right:
without the process-dependent renormalization.

In figure 13 (left) we show results for the process-dependent renormalization and for
some representatives of the process-independent schemes, the pOS?, the p$ and for compar-
ison also the KOSY® scheme. As can be inferred from the left plot, the process-dependent
renormalization leads to much larger NLO corrections than the other schemes. The NLO
corrections can increase the LO width by more than a factor of three. For the process-
independent renormalization schemes on the other hand, the NLO corrections are much
milder and vary between about —11 to 20% depending on the renormalization scheme and
the charged Higgs mass value (and discarding the unphysical KOSY scheme). This can
be inferred from figure 13 (right) which displays the results for the process-independent
schemes, where the 8 renormalization is performed both through the charged and through
the CP-odd sector.'? Provided that the same choice for the 3 renormalization is made, the
OS tadpole-pinched scheme, pOS, leads to results closer to the KOSY scheme than the p,
tadpole-pinched scheme. This is due to the fact that the KOSY and the pOS scheme use
the scale of the OS masses for the evaluation of the self-energies. Also note that the schemes
which rely on the CP-odd sector for the renormalization of 3, show a slightly weaker de-
pendence on the mass of the charged Higgs boson, as the latter enters the counterterm
68@ only through a few diagrams (namely the tadpole contributions). An important con-
clusion, which can be drawn from the plots, is that the process-dependent renormalization
scheme is not advisable due to the induced unnaturally large NLO corrections compared
to the results in the other renormalization schemes.

Discarding the numerically unstable process-dependent scheme and the unphysical
KOSY scheme, we can use the comparison of the results for p$ and p? and the comparison
of those for pOS® and pOS? to estimate the remaining theoretical uncertainty due to missing
higher order corrections, based on a change of the renormalization scheme for 8. In the
same way we can estimate the uncertainty based on a variation of the renormalization

121p all plots we show the gauge-dependent results of the KOSY scheme, however, only for 3 renormalized
via 68" in order to keep a clear presentation of the plots.
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Figure 14. Scatter plots for all parameter points passing the theoretical and experimental con-
straints. Left: the relative NLO corrections to H* — W*h as a function of the LO width. Right:
the NLO width compared to the LO width. Shown for various renormalization schemes: process-
dependent (blue), pOS tadpole-pinched (green), p, tadpole-pinched (red), KOSY*¢ (black).

scale by comparing the results for pOS® and p¢ or the results for pOS® and p¢. In the
investigated m g+ range from the lower to the upper end, the remaining uncertainty varies
between 1% and 11%, when estimated from the scale change, and from close to 0 to 18%,
when estimated from the change of the 5 renormalization scheme. Note also that the
results in the tadpole-pinched scheme, when evaluated at the OS scale, are less affected by
a change of the renormalization scheme for 65 than in the p, scheme. The renormalization
of 3 through the charged sector is less sensitive to the scale choice than 68, which uses
the CP-odd sector, as can be inferred by comparing p$ with pOS® on the one hand, and pg
and pOS? on the other hand. Taking these as indicators for theoretical uncertainties, one
might draw the conclusion that the pOS® scheme would be the best choice here. Finally,
we note that the kinks, which are independent of the renormalization scheme, are due to
the thresholds in the following counterterms and parameter configurations

Kink Kinematic point Origin
1 mpyg+ (66246 GGV) = mH(74284 GGV) — MW 5ZH=EH:F y 5ZGiH:F
2 mpg=+ (78051 GGV) = mA(70013 GeV) + MW 5ZHiH1,5ZGiH$

In figure 14 we show the relative NLO corrections for H* — W*h as a function
of the LO width for all generated scenarios compatible with the applied theoretical and
experimental constraints, on which we imposed the additional constraint that the NLO
width remains positive. We thus discarded all scenarios in which the relative negative
corrections in one of the renormalization schemes exceed 100%, a constraint which we
also imposed on the relative positive corrections. The colours indicate the results for
the process-dependent scheme, the p, tadpole-pinched schemes, the OS tadpole-pinched
schemes and the KOSY® scheme. The plot clearly demonstrates that for most of the
parameter points the process-dependent renormalization leads to relative NLO corrections
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Figure 15. Relative NLO corrections to H* — W*H for various renormalization schemes, with
the 2HDM parameters given by Scen3, eq. (5.14); left: with, right: without the process-dependent
renormalization. In the right plot the lines for KOSY* and pOS*€ lie on top of each other.

that are one order of magnitude above those obtained in the other schemes, and even
more for the points not shown in the plot yielding relative corrections beyond +100%.
Apart from the problem of a negative width at NLO in the case of negative corrections,
relative higher order corrections of 100% and beyond immediately call for the inclusion
or resummation of corrections beyond NLO. The tadpole-pinched (and also the KOSY)
schemes induce corrections of typically a few percent up to 50%. In figure 14 (left) we
excluded scenarios where the decays become almost loop-induced. This happens when the
tree-level width becomes small as the limit cg_, — 0 is approached, while the NLO width
is non-zero. Although in this limit also the NLO width tends towards zero, as can be seen
from the right plot in figure 14, the relative corrections cf. eq. (5.12) can become extremely
large. This is due to the fact that the LO width is proportional to c%_ o, While the NLO
width contains terms, which are linear in cg_, and hence approach zero more slowly than
the LO width. From figure 14 (right) it is apparent that the process-independent schemes,
however, are well behaved and numerically stable. In the process-dependent scheme the
NLO corrections are unnaturally enhanced as compared to the NLO results in the tadpole-
pinched schemes so that the use of this scheme is not advisable.

In figure 15 we show the relative NLO corrections for the process H* — W+ H with the
parameters given by Scen3, eq. (5.14). In the plotted m 4 range the LO decay width, which
does not depend on m 4, is given by I'"© = 4.0568 GeV. In the left plot we have included
the results for the process-dependent renormalization, for pOS®, p$ and KOSY®. The right
plot includes all renormalization schemes but the process-dependent one. The relative cor-
rections lie between about —7.70 to —7.97% in the investigated mass range.'® Altogether
the results for all schemes lie very close to each other, with the process-dependent scheme
deviating the most from the remaining schemes, although the difference in A" is of max-
imally 0.16% only. This behaviour can be understood by looking at the counterterm for

13The small m4 mass range is due to the fact that all other parameter points for this scenario are
excluded.
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Figure 16. Relative NLO corrections to H — ZZ for various renormalization schemes, with the
2HDM parameters given by Scen4, eq. (5.16); left: with, right: without the process-dependent
renormalization.

the NLO process, eq. (4.11). The contributions from the angular counterterms da and §f3
come with the factor 1/t3_,, which is numerically very small in the SM-like limit h = H SM,
Therefore any difference in the renormalization schemes for the angles will barely manifest
itself in the total NLO corrections. The zoomed in region in figure 15 (right) again shows
that the KOSY scheme is closer to pOS than to the other schemes and that the usage of
the OS scale in 65 is less sensitive to a change of the renormalization scheme, while the
renormalization of 3 via the charged sector is less sensitive to a scale change than the one
through the CP-odd sector.

5.3 The process I'(H — ZZ) at NLO

We now turn to the discussion of the NLO corrections to the heavy Higgs boson decay into
a pair of Z bosons, H — ZZ. The scenario we have chosen is given by

Sceng: mp+=659.16 GeV, mpy=(690...809) GeV, my=705.44 GeV,

9 5 , (5.16)
tan 5=1.24, a=-0.61, mip=2.045-10" GeV~.

In figure 16 we show the relative NLO corrections A" %47 for the decay H — ZZ as
a function of the heavier CP-even Higgs mass mpy for different renormalization schemes.
The LO width ranges from 0.2314 GeV to 0.3845 GeV in the plotted mpy range. The kinks
are due to

Kink Kinematic point Origin
1 mp(739.55 GeV) = my+(659.16 GeV) + My, 0Z i, 0 Zny
2 mH(796.63 GeV) = mA(7O5.44 GeV) + My 0,0 Zny

In the left plot the process-dependent renormalization is included. Additionally we show
representatives for process-independent schemes, the pOS?, the p§ and the KOSY*¢ scheme.
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Figure 17. Scatter plots for the relative NLO corrections to H — ZZ for all parameter points
passing the theoretical and experimental constraints as a function of the LO width; shown for var-
ious renormalization schemes: process-dependent (blue), pOS tadpole-pinched (green), p, tadpole-
pinched (red), KOSY (black).

Again the counterterm definition via tauonic heavy Higgs decays leads to much larger cor-
rections than the other schemes. In the investigated mass range it can increase the LO
decay width by more than a factor of two. The observed coincidence of the results for the
process-independent and process-dependent renormalization schemes at my = 690 GeV is
accidental. The relative corrections in the process-dependent renormalization start to in-
crease quickly again for different m g values. The NLO increase in the process-independent
schemes, on the other hand, ranges from about -3 to 17% in the investigated parameter
range. The right plot shows the same behaviour we have seen previously. The results in
the KOSY and in the pOS scheme are closer to each other than to the p, scheme. Further-
more, the change of the 8 renormalization scheme affects the pOS scheme less than the p,
scheme and the § renormalization through the charged sector is less sensitive to a change
in the renormalization scale than the one through the CP-odd sector. Overall, in the in-
vestigated mass range, the theoretical uncertainty due to missing higher order corrections
can be estimated to be of less than a percent to around 6% based on a scale change, and
it ranges from the permille level to about 4% when estimated from the change of the /3
renormalization scheme, discarding the numerically unstable process-dependent scheme.

Figure 17 shows the relative NLO corrections AI'"=4Z for H — ZZ as a function
of the LO width for all generated scenarios compatible with the applied theoretical
and experimental constraints. Again we excluded scenarios where the relative negative
corrections exceed 100%, a constraint which we also imposed on the relative positive
corrections. Furthermore, we discarded scenarios where the width becomes loop-induced,
i.e. where the LO width vanishes as compared to the NLO width. The colours indicate
the results for the various renormalization schemes. The plot clearly demonstrates the
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numerical instability of the process-dependent renormalization, which exceeds the relative
corrections in the other schemes by one and even up to two orders of magnitude when
including the scenarios with corrections beyond £100%. For the process-independent
schemes the relative corrections are typically of the order of a few percent to 40%,
discarding the region with loop-induced widths.

Altogether we conclude, that the choice of the KOSY scheme for the renormaliza-
tion of the angular counterterms is precluded due to its manifest gauge dependence. The
choice of the process-dependent scheme is not advisable, as it leads to very large relative
NLO corrections.'* The process-independent tadpole-pinched schemes lead to results that
are manifestly gauge-independent and numerically stable. Among these schemes the OS
tadpole-pinched scheme turns out to be more stable when changing the § renormalization
scheme than the p, scheme for our investigated scenarios.

6 Conclusions and outlook

We have investigated the renormalization of the 2HDM with special focus on the mixing
angles a and 8 which diagonalize the Higgs mass matrices. These angles are highly relevant
for the phenomenology of the Higgs bosons as they enter the Higgs boson couplings and
therefore all Higgs observables. We have shown that if the tadpoles are treated in the more
usual approach, which we called ‘standard tadpole’, a process-independent definition of
the angular counterterms leads to gauge-dependent decay amplitudes and thus to gauge-
dependent physical observables. Therefore, the counterterms da and 05 either have to be
defined through a physical process, or the treatment of the tadpoles has to be changed.
Following the ‘alternative tadpole’ scheme as proposed in [29] allows for a manifestly gauge-
independent definition of the masses and in particular of the mixing angles.

In this work we presented several distinct renormalization schemes and investigated
their implications by applying them to the NLO EW corrections in the decays H* — W*h,
H* — W*H and H — ZZ. It was explicitly shown that the scheme presented in [23]
leads to gauge-dependent decay widths. This scheme applies the standard tadpole scheme
and relates the angular counterterms to the off-diagonal wave function renormalization
constants. By using the alternative tadpole scheme together with the modified Higgs self-
energies obtained from the application of the pinch technique we introduced the ‘tadpole-
pinched’ scheme as a manifestly gauge-independent scheme for the angular counterterms.
We furthermore investigated the process-dependent definition of da and 65 through the
decays H — 77 and A — 77, respectively. In this scheme the angular counterterms are
gauge dependent when the standard tadpole scheme is applied, they are gauge independent
in case the alternative tadpole scheme is used. For the investigated decay processes and
scenarios, the process-dependent scheme turned out to lead to unnaturally large relative
NLO corrections. Based on the investigated parameter sets and decay widths this leads us
to the conclusion to propose the tadpole-pinched scheme as the renormalization scheme for

14This statement of course only holds for scenarios where the contributions from the angular counterterms
are not parametrically suppressed, in which case the NLO corrections obviously hardly depend on the
angular renormalization scheme.
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the mixing angles that is at the same time process independent, gauge independent and
numerically stable.

In order to complete the renormalization of the 2HDM, also the renormalization of
the soft-breaking parameter m?, has to be investigated. This parameter appears in the
couplings of the Higgs self-interactions and hence impacts the Higgs-to-Higgs decay widths.
The renormalization of m?, and the phenomenological investigation of the implications of
the higher order corrections for Higgs phenomenology will be the subject of a follow-up

paper.
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A The tadpole scheme in the 2HDM

In this section we will explain in detail the tadpole scheme, by applying it to the 2HDM, and
show how to derive the relations for the mass counterterms and the wave function renor-
malization constants. We will furthermore derive which additional vertices have to be con-
sidered when performing explicit calculations in this scheme. At the end of this appendix,
in A.2, we will give the complete list of rules for the application of the tadpole scheme.

A.1 Derivation of the tadpole scheme

We start by setting the notation and by presenting the standard scheme before we move
on to the derivation of the tadpole scheme in the 2HDM.

A.1.1 Setting of the notation and tadpole renormalization

The expansion of the two Higgs doublets ®; and ®2 about the VEVs, cf. eq. (2.4), leads to
the mass matrices that are obtained from the terms bilinear in the Higgs fields in the 2HDM
potential. Due to CP- and charge conservation they decompose into 2 x 2 matrices for the
neutral CP-even, neutral CP-odd and charged Higgs sector, respectively. As we have seen in
section 2 the minimum conditions of the potential require the tree-level tadpole parameters
T, and T5 to vanish. At lowest order they are given by egs. (2.15) and (2.16). These tadpole
conditions can be exploited to eliminate mi; and moo. Higher order corrections, however,
lead to non-vanishing tadpole contributions that have to be taken into account. Applying
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egs. (2.15) and (2.16) we arrive at the following mass matrices

o (T e (B 0)

14 T
—m12 + A345'U1U2 m12 ,Ul + )\21)2 O T;

2 T
M2 = (m%Z = ) A I (A.2)
n 5 2 b ’
V10U2 —V1V9 vy 0 =2

v2

2, Mt v3 —v L g
Mgi:<%_4+5) 2 w) (w0 (A.3)

V102 2 —V1V2 U% 0 7;
Here we have explicitly kept the tadpole parameters although they vanish at tree level. This
helps us to keep track of their non-vanishing contributions at higher orders when performing

the renormalization program. The mass matrices are diagonalized by the rotation matrices
R rotating the scalar fields from the gauge basis into the mass basis, cf. egs. (2.5)—(2.7),

D2 = R(a)"M}R(a) (A.4)
Dy = R(8)" MIR(B) (A.5)
D} = R(8)" M7 R(p) . (A.6)

The scalar mass eigenstates with the same quantum numbers, grouped into the doublets
(H,h), (G° A) and (GF,H*), mix at higher orders. The wave function renormaliza-
tion constants for the three doublets, introduced in egs. (3.14)—(3.16), also develop non-
vanishing mixing contributions and form 2 x 2 matrices with off-diagonal elements. In the
following we will use a generic notation and denote with ¢; and ¢2 the two scalars of the
same doublet. With this notation we then have for egs. (3.14)—(3.16)

(2)=va (o)~ (e ) (2). wn

with 5z 5z
5Z¢ ¢21¢1 ¢21¢2
— = ( oo 5Zuysy | (A.8)
2 2

For the diagonal mass matrices, from now on generically denoted by D?, we introduce the
counterterm matrix 5D§), which is a symmetric 2 x 2 matrix whose specific form will be

determined below. With these definitions the renormalized self-energy ﬁ)¢ becomes

& 2N _ zA:<i>1¢1(p2) ZA)¢>1¢>2 (pQ)
Es(p7) = | & b e )
Eepopn (D7) Ly (D7) (A.9)
57 87
= E¢(p2) — 5D§> + 7¢ (p2]12x2 - Di) + (p Toyo — D¢) 2¢>
The self-energy Y4 is a symmetric 2 x 2 matrix containing the 1PI self-energies of the
scalar doublet (¢1,¢2). We require OS renormalization conditions for the scalar Higgs
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Figure 18. Renormalization condition for the tadpoles: (a) in the gauge basis, (b) in the mass
basis.

fields, yielding the following conditions for the counterterm 6D3) and the wave function
renormalization constants §Z4, (i = 1,2)

Re [6D<21>i¢i] = Re [2@‘@ (mil)] (A.lO)
0Z,9: (%)
6Z4.6 = —Re | —2i20P) A.11
¢1¢z e |: apz :| p2:m2 ‘ ( )
2
6744 = ———Re |Dg.0.(m2 ) — D2 ] A.12
¢z¢j mil _ méj e |: ¢z¢] (m(f)j) ¢Z¢]i| ’ ¢ 7& J ( )

So far we have not specified 6D§. Its exact form depends on the treatment of the tadpoles
in the renormalization procedure and will be elaborated below. In order to guarantee the
correct minimization conditions for the Higgs potential also at one-loop order, the tadpoles
are renormalized as

T,=T,—6T; =0, i=1,2, (A.13)

where T} and T, are the sum of all one-loop tadpole contributions to the fields p; and po,
respectively, in the gauge basis. Applying the renormalization conditions we have for the
tadpole counterterms the conditions

o =1T; 1=1,2. (A.14)
In the mass basis we have
oT; 0T 20T — 84,71
) Ry [ O7F ) = 0T H T St} (A.15)
0Ty 6Ty, 5001 + oIy,
and
5TH = TH and (5Th = Th . (Alﬁ)

The renormalization conditions for the tadpoles are shown pictorially in figure 18.

A.1.2 Mass counterterms and wave function renormalization constants in the
standard scheme

Regarding the renormalization of the masses, the bare mass of each particle in the 2HDM
is split into a physical mass and a counterterm as specified in section 3. The VEVs v
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and vs or v, respectively, are fixed at one-loop level such that their values in the tree-level
mass relations for the scalars, derived by calculating explicitly eqgs. (A.4)—(A.6), lead to the
OS physical masses at one-loop level. The shift from the bare parameter to the physical
one-loop value is hence fully contained in the mass counterterms. In generic notation the
diagonalized bare mass matrices read

2 T10
s [Mg 0 0 (> O
D2, = ( o ) + RY (78 Tw) R, , (A.17)
¢27O

where the subscript 0 denotes the bare quantities and ¢ = « for the CP-even and ¢ =
B for the CP-odd and charged doublets, respectively. We have explicitly kept the bare
tadpole parameters to keep track of their renormalization. Taking the renormalization of
the tadpole parameters into account, as they are given in eq. (A.14), we arrive at the NLO
counterterm for the mass matrix

ST
D2 ~ omz 0 Lgr (w0 R, = om3 0 (T o0, |
¢ 0 (5m§)2 v 0 % 0 577”@2 5T¢1¢2 5T¢2¢2
(A.18)

where we have consistently neglected all terms beyond NLO. The explicit form of the T}, 4.
is found by using eq. (A.15) and applying the rotation to the mass basis,

3 3
§Top = MHH _ 32Spasm (A.19)
vsgeg vS2g
5Ty, = —22250=a 5 520C—a sy (A.20)
VS2p3 21825
3 _ .3
5Ty, = 220B—a gy, 2%~ %S sy (A.21)
UEDY! vsgeg
§Tgoco = Cﬁv‘“ 5Ty + Sﬁv‘“ 5T, (A.22)
T4 — _Sﬂv—a 5Ty + ch_a 5T, (A.23)
Casd + 5003 Sa55 — cac?
6Tan = %MH - %(m, (A.24)
0gra+ = %;Q(STH + 5 0y, , (A.25)
v v
ST ppr = _SﬁT*aaTH n CBU*“ 5Ty, (A.26)

cas% + Sac% 5Ty — saS% — Cq 3

C
Py Bsm, . (A.27)
’USﬁCﬁ USIgCB
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By inserting eq. (A.18) into the renormalization conditions (A.10)—(A.12) we get the follow-
ing field strength renormalization constants and mass counterterms in the standard scheme

6m§5i = Re [E¢i¢i (mél) - 6T¢i¢i] (A.QS)
0%g,4,(P%)
§Z40, = —Re [3}92 w (A.29)
pe=my .
2 . .
g )

These formulae can easily be generalized to the fermion and gauge boson sector. There,
however, no tadpole counterterms will be involved, as they are not part of the tree-level
mass relations. Still, tadpole terms have to be included in the calculations of fermion
and gauge boson self-energies. The counterterms introduced in egs. (A.28)—(A.30) are in
general gauge dependent, which is not a problem, as long as all gauge dependences cancel
in physical observables. Since the renormalized masses must be gauge independent, the
bare masses must be gauge dependent as well.

A.1.3 Mass counterterms and wave function renormalization constants in the
tadpole scheme

We have seen that in the standard tadpole scheme the correct vacuum is reproduced by
renormalizing the VEVs accordingly at higher orders. Derived from the gauge-dependent
loop-corrected potential, the VEVs themselves are gauge dependent. As the physical OS
masses are gauge independent, the counterterms and the bare masses, which are given in
terms of the VEVs, therefore become gauge dependent. In the tadpole scheme [29] the same
renormalization conditions as given in eq. (A.14) and eq. (A.16), respectively, are used. The
crucial point, however, is the inclusion of the minimization conditions of the potential such
that the mass and coupling counterterms can be defined in a gauge-independent way. This
is achieved in the following way: in the alternative tadpole scheme the bare masses are
expressed in terms of the tree-level VEVs. As the tree-level VEVs are gauge independent,
the bare masses do not depend on the gauge choice either. In order to still reproduce the
correct minimum at higher orders, the VEVs acquire a shift. This shift now affects the
counterterms and not the bare masses, as the latter are expressed in terms of the tree-level
VEVs. The gauge dependences related to the VEV shifts cancel those of the counterterms,
so that the counterterms become gauge independent themselves. Together with the gauge-
independent bare masses the OS renormalized masses are gauge independent as they should
be. The VEVs are hence shifted when going from LO to NLO as

v1 — v1 + 0vy and Vg — Vg + 0vy . (A.31)

We emphasize that vy 2 represent the tree-level values of the VEVs. The shifts dvy o are
fixed by the minimization, that is, by the tadpole conditions. The tadpole parameters
are given in terms of the VEVs, cf. egs. (2.15) and (2.16), so that a shift in the VEVs
corresponds to a shift in the tadpole parameters. Note that we apply the term ‘shift’
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here in order to describe the changes of the parameters due to the VEV shifts, and to
distinguish these from the counterterms for the chosen set of independent parameters.

The shifts in the VEVs are propagated into all parameters that depend on the VEVs.
These shifts are determined as follows: (i) Express the parameters in terms of v; and
vg. (ii) Perform the shifts eq. (A.31) of the VEVs. (iii) Apply the tree-level relations
between the VEVs and the various parameters to remove the redundant parameters m?,,
m3, and/or to simplify the expressions as convenient.

Thus, by shifting and subsequently applying the tadpole conditions egs. (2.15)
and (2.16) we obtain

v
T — 11+ <m%2v2 -+ )\111%) ovy + ( — TTL%Q + )\345’01’02) ovg =171 + 6T (A.32)
1
T — Ty + < — m%Q + )\3457)1112) ovy + <m%2zl + AQU%) ovg =To + 015 . (A.33)
2

Since the VEVs are determined order by order by applying the VEV shifts such that
the tadpole conditions (2.15) and (2.16) hold we identify on the right-hand side of both
equations the shift of the tadpole parameters induced by the shift of the VEVs with the
counterterms 677 and 07%. By comparing the coefficients of dv 2 in egs. (A.32) and (A.33)
with the elements of the CP-even mass matrix given in eq. (A.1l), the following relation
between the VEV shifts and the tadpole counterterms, that determine dvy 2 can be derived

o1 oy
= M? . A.34
<5TQ> PIT=0 <5U2> ( )

Rotation to the mass basis yields

5 e
R I I (A.35)
vy,

By applying the renormalization condition depicted diagrammatically in figure 18, the shift

can be interpreted as a connected tadpole diagram, containing the Higgs tadpole and its
propagator at zero momentum transfer,

- (0 O
Sop, = —5-i0Th, = — | 1 | (A.36)
mj, my, [ |
h; ®
where h; € {H,h} stands for the physical Higgs particles. For the consistent application
of the tadpole scheme the VEV shifts have to be applied wherever the VEVs appear

explicitly. As the calculation of the tadpole diagrams is usually performed in the mass
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basis, but the VEV shifts are introduced most conveniently in the gauge basis, we give the
relation between the two bases,

0T, 0T
oy m—{;ca - m—é‘sa
= . (A.37)
0T, 0Ty
dva m—gsa + mfé’ca

For the illustration of the implications of the tadpole scheme we consider a specific example,
namely the NLO effects of the VEV shifts on the CP-odd mass matrix given in eq. (A.2).
The application of the shifts requires the replacement of the tadpoles by T; + §7;, with the
0T; given in egs. (A.32) and (A.33), and the replacement of all occurring VEVs by v; 4 dv;
so that we have

LUAR 2 2090V —v10v9 — V20V
Mﬁ . M$+ w0y <m12 _)\5> 20U 10V2 — V2001
0 =2 V102 —v10v9 — V90V 2u10v1

116
m2 ov ov 7)2 —V102 12 e 0
_ M2 [ 901 + o2 2 + U1
V1v2 \ V1 V2 —V1V2 U% 0 _T22(5U2

V3

(A.38)

Having applied the shifts, we can now use the tree-level relations again to eliminate the
last matrix in eq. (A.38), as the tadpole parameters vanish at tree-level. The rotation to
the mass basis is performed by applying the rotation matrix R(J3) which is defined as the
matrix diagonalizing the tree-level mass matrix Mg . We get

oT, o7, 0 0
Z)77 — Z)q7 + < GoGe GOA) — M (8651)1 + 055U2) (0 >

0Tcos 0T44 S2 1
N m7?4 0 $p0v1 — cgovy (A.39)
v \sgév; — cgdvy 2 (cgdvr + sgdva)

_ Dn " ADGogo ADgoA ?
ADGOA AD gy

where we applied the definition of Aj eq. (4.24) and the tree-level relation for the mass of
the pseudoscalar [12, 23]

2
m? = v? (mn — /\5> . (A.40)

U102

We furthermore applied the definition of the tadpole matrix in the mass basis, eq. (A.18).
In the last line we defined the terms ADgogo, ADgoy and AD 44 that contain all effects
of the VEV shifts on the physical mass matrix D,,. These shifts can be further evaluated.
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In order to do so, we introduce the coupling constants for the trilinear Higgs couplings [23]
2

—CB—aM
JHGOGO = —faH Ua 1 (A.41)
2
—SB_oM
IhGoGge = 75; b (A.42)
—1 S
gHAA = = (Cga(2m,24 —m¥) + ;;ﬂ (2m — 02A5)> (A.43)
_;1 o2 — m?2 Ca+522_2A A 44
ghaa = — 58—a(2m%y —mp,) + 525 (2mj, — v7A;5) (A.44)
= a2 —m? A.45
JHAGO = » (m3 —miy) (A.45)
ChR_
Ghaco = - (m —mj) (A.46)

By using the explicit form of the tadpole counterterm d7gogo given in eq. (A.22) the
vanishing Goldstone boson mass receives the shift contribution ADgogo

-1, . —188— —1 .
m%{—QzéTH 4P am,%—QuSTh
myy v my

—icg_
ADGOGO - (STGOGO == Z p—a

=i (igrgogo) <m21) (10TH) + i (igngogo) (mgz) (i6T})

= = (A.47)
=1 GO C:DH GO +Z GO C:>h GO
. _&---<= e _&---<=

In the second line we have used eqgs. (A.41) and (A.42). The last line is the diagrammatic
representation of ATzogo. It is given by two tadpole contributions from the CP-even Higgs
bosons to the neutral Goldstone boson self-energy. Analogously, we find for AD 4 4 by using
eqs. (A.24), (A.37), (A.43) and (A.44),

2

Asv 2m
ADgg =06Tas — SL (sgdv1 + cgva) + UAO (cgdvr + sgdva)
2B

=1 Sa+ —i .
=i <05_a (2m124 — m%{) + ;;; (2m%{ — v2A5) >m%{z§TH

+ Z%Z <85a (277734 — m,%) + C;H—B (Zm% — ’1)2A5) > %Z’(ST}L
| 25 | h (A.48)
.y —1 . .. —1 .
=1 ('LgHAA) (m2 ) (Z&TH) +1 (ZghAA) <m2> (l(STh)

H h

Q Q
=X | H +i '
A __e__.A A _ o4

The last line again reproduces the diagrammatic representation of the shift. The

shift is hence given by two CP-even tadpole contributions to the A boson self-
energy. The off-diagonal shift ADgoy finally can be cast into the form by applying
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egs. (A.23), (A.37), (A.45) and (A.46),

2
ADgos = Tgoa + =2 (5001 — cgovs)

—1Sg— —1 1ca— —1
=P (mi — m%{) —;MTH 4l (m124 - m%) —;iéTh
v m v

H my,
. —1 . . —1 .
— i (igraco) <2) (i6Th) + i (ignaco) (2) (i6Th) (A.49)
mH mh
® o
=1 0 1 H +1 0 1h
e M 4 e M 4

The diagrammatic representation in the last line reveals that the shift ADgoy consists of
two CP-even tadpole contributions to the off-diagonal GV A self-energy. It is straightforward
to derive the remaining shifts for the whole scalar sector. The total shift of the mass
matrices, which is given by the shifts AD, induced by the NLO shifts of the VEVs and by
the mass counterterms, then reads

om? 0 AD AD
5D§) _ ( mg, ) ) 1 ( P11 ¢>1¢2> 7 (A.50)
0 omg, ADy, g, ADyyg,

with the explicit form of the additional mass shifts (i = 1,2)
— 7 | . |

where (¢1,¢2) refers to the pairs (H,h), (G° A) and (GF, H*Y), respectively. Equa-
tion (A.50) makes evident that in the tadpole scheme the tadpole counterterms d77 and
0Ty, induced through the VEV shifts in eqs. (A.32) and (A.33), have become part of the
shift parameters ADy,, of the physical mass matrices of the scalar sector. They do not
appear explicitly as counterterms, in contrast to the standard scheme where §77 and 675
were considered as counterterms being explicitly part of D2, cf. eq. (A.18). Therefore,
in the tadpole scheme, the tadpole counterterms eqs. (A.19)—(A.27) do not belong to the
definition of the mass counterterms and wave function renormalization constants. With
the redefinition of the 1PI self-energy as

i, (07) = 1%, (0?) — iADg,g, (A.52)
we obtain by inserting eq. (A.50) in eq. (A.9) the following form of the renormalized self-
energy,

- m? 0 57} 87
Se(p?) =S80 - | + —2 (pPLaxe — D2) + (p*Laxe — D2) =52, (A.53)
0 omj3, 2 2

— 49 —



i (p?) = Q + -

Figure 19. Modified self-energy i¥'*d(p?) in the tadpole scheme, consisting of all 1PI self-energy
diagrams together with the one-loop tadpole diagrams, indicated by a gray blob.

And finally the counterterms and wave function renormalization constants in the tadpole
scheme read

5m§,i = Re [Etidi(mii)} (A.54)
aztad (pQ)
Pids
0L = — 0 (A.55)
pr=m,

574 = ——2Re |5t (m2) £ (A.56)

dip; — mi _m% € ib; m¢j > 2 J - .

i i

These results can be generalized to the gauge boson and fermion sectors. The application
of the tadpole scheme hence requires a redefinition of the self-energies as depicted dia-
grammatically in figure 19. In the gauge and fermion sectors this implies that the tadpole
diagrams of the scalar Higgs bosons that couple to the gauge boson and fermion, respec-
tively, have to be included in their self-energy. Furthermore, in the scalar sector the tadpole
counterterms drop out of the definition of the wave function renormalization constants and
mass counterterms.'®

The VEV shifts introduced in eq. (A.31) also have implications for the coupling con-
stants of the vertices. Let us consider the example of the Higgs H coupling to a pair of

ZHZ" bosons. Defining the needed coupling constants through the Feynman rules

HZFZY : iguzzg™” (A.57)
HHZ"Z" : ignnzz9"" (A.58)
we have
2 2
g uCg—q g
9HZZ = 26{2/{/ == 20‘2/{/ (Ca’l)l +Soﬂ)2) (A59)
P
JHHZZ = 55 - (A.60)
W

The shifts eq. (A.31) introduce a shift in the coupling constants. In order to perform this
shift consistently, the coupling constants must be expressed in terms of the VEVs v; and
vo. When doing so, care has to be taken, to differentiate between the angles o and S in
the sense of mixing angles and (3 in the sense of the ratio of the VEVs, cf. eq. (2.9), and

15Tn the gauge and fermion sectors they do not appear anyway as the mass matrices do not depend on
m2; and m3, that are traded for the tadpoles.
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« in the sense of the ratio of the 2HDM parameters'S given in eq. (2.12). The VEV shifts
only affect the latter two.

The quartic coupling obviously does not receive any shift, while gz~ contains 5 as
ratio of the VEVs so that it receives a shift. The angle « is a mixing angle here. At NLO
we therefore have to make the replacement

. . ig?
i9HzZ — 19HZZ + ﬁ(ca&n + 54009)

W
. 9
. 7 5TH 6Th
= igHz7 + 55 [(Ci +52)—5 + (SaCa — 5aCa)—y
CW mH mh
—1
=1 +1 — | 0T
9HZZ 9HHZZ <m%{> H (A.61)
Q Z

g
=ignzz + | ------

Z trunc

__ - tad
=9Hz7 -

The subscript ‘trunc’ means that all Lorentz structure of the vector bosons as well as the
Lorentz structure of the coupling has been suppressed here for simplicity. In the derivation
of this equation we have used eq. (A.37) and the explicit form of the quartic coupling
constant, eq. (A.60). The Feynman rule for the HZZ vertex in the tadpole scheme is then
given by

9%, 9" (A.62)

The above result can be generalized to the whole 2HDM. In the tadpole scheme ad-
ditional virtual vertex corrections have to be taken into account that manifest themselves
in form of tadpdole vertex diagrams. The rule to be applied here is, that all those 2HDM
trilinear vertices receive corrections, for which the resulting quartic coupling constant, con-
necting the original trilinear vertex to the CP-even Higgs from the tadpole, exists. In the
case above the vertex g7z exists, so that the vertex acquires a tadpole contribution with
H, but not with h, as the vertex g7z does not exist.

As a last example we look at the coupling between Wf, H*(p') and h(p), where p/(p)
denotes the outgoing (incoming) momentum of H* (k). The Feynman rule for the coupling

is given by
WEH h:  Figwegen 0+ ), (A.63)
with the coupling constant
IWwEHEL = 9652,(1 : (A.64)

Both angles in this coupling are true mixing angles, so that no VEV shift has to be applied.
Therefore, this vertex does not change in the tadpole scheme. This is in accordance with
the rule given above: there exists no vertex gy + g+, Nor gy + g+, that could connect a
tadpole with h or H to the trilinear vertex.

16Note that in all couplings but the trilinear and quartic Higgs self-couplings « has the role of a mixing an-
gle. Only in the Higgs self-couplings « partly appears in the sense of the ratio of 2HDM potential parameters.
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A.2 Rules for the tadpole scheme in the 2HDM

In this appendix we summarize all rules of the tadpole scheme for the 2HDM at NLO. The
general rules are:

Self-energies: the self-energies in the wave function renormalization constants and
counterterms change such that they contain additional tadpole contributions: X(p?) —
Etad(pQ)'

Tadpole counterterms: the tadpole counterterms in the scalar sector vanish: 675, —
0 (i,j=1,2).

Vertex corrections: in the virtual vertex corrections additional tadpole contributions
have to be taken into account if the resulting coupling exists in the 2HDM.

Explicitly, this means that the following counterterms are the same in the standard
and the alternative tadpole scheme:

Counterterms independent of the choice of the tadpole scheme:

Tadpoles: 0Ty, 0Ty,
Gauge sector:  0Zc,09,02ww,0277,0Z2~,0 2~z
Fermion sector: §Z&,, 621, (A.65)

Scalar sector:  0Z4,¢,

Vertices: AFFSs AFFV, ASSV s ASUU AUUV, AVV YV, AVvivy

for all possible combinations of fermions F, gauge bosons V, ghosts U, scalars S and
¢i; = H,h,G% A, G=, H* within the 2HDM.

The following counterterms and wave function renormalization constants depend on
the choice of the tadpole scheme. We give the relations between the standard tadpole
scheme, denoted by the superscript ’stand’, and the alternative tadpole scheme, denoted
by the superscript 'tad’. The subscript ‘trunc’ means, that all spinors, all Lorentz structure
of the vector bosons and the Lorentz structure of the coupling has been suppressed where
applicable.

Tadpole-scheme-dependent counterterms: gauge sector:

(6miy) = (0mp)* ™ il L B Fi| e b s (A.66)
’\/\/\/"W\/\ W\/‘\/\N\
trunc trunc
2 d 2 d Cl) CI)
((sz)ta :(5mz)stan +1 7 WH VA +1 VA ' h 7 (A67)
’\/\/\/‘W\/\ f\/\/\/W
trunc trunc
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Fermion sector:

(Omp)?d = (Gmp)ed —i| H —i| g h
BRSSP - — <
trunc trunc
(A.68)
Scalar sector:
(mg,) 2 = (5mg, ) e + 6T, — i 41 "H 5 —1i 41 "h "
T -0 trunc T T trunc
(A.69)
for all possible combinations of ¢; ; = H,h, A, H +,
(5Z¢i¢j )tad — (5Z¢i¢j)stand (A?O)
+ 2 oT, 7 Q i Q
eyl L PR SR B P |
¢ o v J ¢ J
! il il trunc il il trunc
where (Z)l 75 gf)j.

We encounter additional contributions to the vertices when changing from the standard
to the tadpole scheme. Below, the g denote the coupling constants, i.e. we have suppressed
the Lorentz structure of the vertex where applicable.

Triple scalar vertices:

Q, =« Q. 4
ig¢i¢j¢k - ig¢i¢j¢k+ '@""k::\ + '@""‘::\ (A.71)
‘171; trunc ¢; trunc

for all scalars ¢; j, = H, h, GY, A, G*, H*, wherever the resulting quartic couplings Apididih
and )\¢i¢j¢k[{ exist in the 2HDM.
Scalar-vector-vector vertices:

Q, U Q. v
196 ViVie — 196 V;Vi, T ¢~< + ¢< (A.72)
Vie trunc Vi trunc

for all scalars ¢; jr = H, h,G° A, G* H*, and gauge bosons Vik =7, Z, W=, wherever
the resulting quartic couplings Ay, v;v,n and Ag, v, v, g exist in the 2HDM.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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