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Abstract: Human-Machine Interfaces in rehabilitation en-
gineering often use activity signals. Examples are elec-
trical wheelchairs or prostheses controlled by means of
muscle contractions. Activity signals are user-dependent
and often reflect neurological weaknesses. Thus, not all
users are able to operate the same control scheme in a
robust manner. To avoid under- and overstraining, the
interface ideally uses a control scheme which reflects the
user’s control ability best. Therefore, we explored typical
phenomena of activation signals. We derive criteria to
quantify the user’s performance and abilities and present
a routine which automatically selects and adapts one of
three control schemes being best suited.

Keywords: calibration; data quality; human-machine
interfaces; rehabilitation engineering.

1 Introduction
Human-machine interfaces (HMI) for controlling technical
devices in rehabilitation engineering often use electroen-
cephalography (EEG) [1] or electromyography (EMG) [2] to
obtain bioelectric signals. Normalization procedures [3]
andpattern recognition techniques [4] are used to estimate
control signals for devices like electrical wheelchairs [5] or
prostheses [6].

A common feature generated from biosignals is the
normalized activity signal (e.g. amplitude of a low-pass-
filter). Activity signals can also be derived from joystick
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axes [7], air pressure with sipping and puffing and posi-
tions of shoulders, tongue [8] or head [9].

To generate control signals, commercial systems use
robust threshold approaches [10], whereas experimental
systems use pattern recognition techniques [11]. A calibra-
tion is necessary to adapt the system to the user. Commer-
cial HMIs are adapted mostly by hand.

Ref. [12] presents a wheelchair control interface based
on the bilateral recording of myoelectric signals from left
and right ear muscle. The raw signals are rectified, filtered
and normalized to receive activity signals that correlate
with the strength of contractions. The ability to contract
the ear muscles is trainable and left and right ear mus-
cle can be activated independently. However, not only
training progress is user-dependent, but also extrema and
coactivations of the activation signals, dispersion of the in-
tended constant activations, difference betweenmeasured
and intended activation.

As the control abilities of users vary, users might not
only need adapted parameters but also individual control
schemes. However, there is only little knowledge about
user-specific selections of the control scheme.

Therefore, we propose a method to select a control
scheme based on activity signals from a calibration rou-
tine. We derive a rule set to assign each user one out of
three control schemes. Using benchmark exampleswe test
the method and discuss effects. We provide a real-world
dataset to prove functionality.

2 Material and methods

2.1 Calibration routine

If a user is not able to activate two signal channels
independently, coactivations occur and control schemes
based on difference signals fail. Polynomial regressions
approximate the nonlinear relationship of intended acti-
vation andmeasured coactivated signals. Therefore, bilat-
eral calibration routineswere proposed in [13, 14] to gather
data for model building: The user is asked to simultane-
ously hold activation levels in two signal channels. The
activation levels are the intended activations (intentions)
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y = (y1, y2). The calibration routine records the activation
of each channel according to Table 1 for
– single maximal activations of each channel,
– simultaneous maximal activation of both channels,
– single activations of each channel at 50% activation

level and
– simultaneous activations of both channels at 50%

activation level.

Each of the six calibration steps is described by the
membership to a class z = {B1, · · · , B6} and a vector of
intentions y = (y1, y2). The user-generated normalized ac-
tivation signals are x1 and x2. Table 1 shows the calibration
steps, the class membership and intended activations.

2.2 Selection of a control scheme

A control scheme estimates intentions by thresholds or
pattern recognition algorithms. We consider three differ-
ent control schemes:

A threshold-based control using one signal channel
to recognize intentions given by short/long activations.
Sequences comparable to the Morse code are assigned
to actions of the rehabilitation device (e.g. turning left
or right with a wheelchair). The advantage of the control
scheme is its simplicity. Even with coactivations and low
abilities of holding an activation level this control scheme
is applicable. Disadvantages are time lags in control.

If the user is able to generate better discriminable
activation patterns a classifier-based control can be
applied. A classifier ẑ = f (x1, x2; θ) is trained for the 6
classes Bi within a calibration B1, · · · , B6 and classifies the
signals at each time sample. Classes represent intentions,
the control scheme maps each intention to an action.
No activation in both channels corresponds to a neutral
state. Inputs of the classifier are the normalized activation
signals x1 and x2. The parameter vector θ is estimated
based on calibration data.

If the user is able to hold different activation levels
with both signal channels, a proportional control can be

Table 1: Intended activations and classes of the calibration steps.

Calibration step y1 y2 z

1: single x1 1 0 B1
2: single x1 (50%) 0.5 0 B2
3: single x2 0 1 B3
4: single x2 (50%) 0 0.5 B4
5: simultaneous x1 and x2 1 1 B5
6: simultaneous x1 and x2 (50%) 0.5 0.5 B6

applied. It determines two independent, time-continuous
control signals by the level of simultaneous activation
of both channels and the difference of both channels
(e.g. translational velocity and rotational velocity of a
wheelchair). To reduce the influence of unintended coac-
tivations, regression models ŷi = f i(x1, x2; θi) are used
to estimate the continuously valued intention of each
channel [13] with the constraints f 1(0, 0, θ1) = f 2(0, 0,
θ2) = 0. f 1 and f 2 are polynomial functions of second
degree and the parameter vectors θ1 and θ2 are estimated
by a least squares algorithm. Fluctuating activity signals
lead to incessantly changing velocities in the proportional
control.

To select an appropriate control scheme three criteria
are definedwhich are also useful for amedical supervisor:

Q1 describes the ability of the user to generate discrim-
inable activation signals for the classifier-based control
scheme. Therefore, we calculate the minimal accuracy of
a class for the used classification algorithm

Q1 = min
j

(︂(︂
1
Nj
· N(ẑ = Bj ∩ z = Bj

)︂)︂
. (1)

Q2 quantifies whether the generated signals match the
intended activations and describes the ability of the user
to generate predetermined activation signals. For a robust
estimation of themean value, themedian operator is used.
x̃j, i is the median of the xi values of all datapoints with
class label Bj. yj, i is the intended activation for channel i
of all datapoints with class label Bj:

Q2 = exp
(︂

−4
(︂
max
j,i

(︀
x̃j,i − yj,i

)︀)︂)︂
(2)

The factor −4 is selected empirically to achieve a smooth
course of the criterion. Q3 quantifies the dispersion of the
generated signals. It describes the ability of the user to
hold an activation level. For a robust estimation of the
dispersion the interquartile range is used. x̃0.75, j, i is the
upper quartile und x̃0.25, j, i the lower quartile of the xi
values of all datapoints with class label Bj:

Q3 = exp
(︂

−4
(︂
max
j,i

(︀
x̃0.75,j,i − x̃0.25,j,i

)︀)︂)︂
(3)

(4) shows the rules for the selection of an appropriate
control scheme.

(Q1 > τ1) ∧ (Q2 > τ2) ∧ (Q3 > τ3) → proportional

(Q1 > τ1) ∧ ¬ ((Q2 > τ2) ∧ (Q3 > τ3)) → classifier
¬ (Q1 > τ1) → threshold (4)

The thresholds τ1, τ2 and τ3 are selected empirically.
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2.3 Datasets

We simulated three benchmark datasets which represent
three states of user performance: Figure 1(A) shows the
calibration data of a user with low performance. The data
of the calibration steps is overlapping and the dispersion
of single classes is high. Figure 1(B) shows the calibration
data of a user with medium performance. The dispersion
of the classes is high but the classes are discriminable.
Figure 1(C) shows the calibration data of a user with high
performance. The datapoints of the calibration steps are
building small clusters near to their intended activations.

In [14] real-world datasets in a bilateral calibration
routine were recorded with antagonistic forearm muscles.
Three datasets are generated by one user with varying
sensor placements for 12 intentions. Figure 1(D–F) show
subsets of the datasets. The subsets correspond to the
intended activations of Table 1. The data is preprocessed,
i.e. outliers of the calibration steps were already deleted.

3 Results
Analyses were performed with MATLAB and Gait-CAD
[15]. Table 2 shows Q1, Q2, Q3 and the control scheme
selection for the simulated and the real-world datasets

with τ1 = 0.9, τ2 = 0.15 and τ3 = 0.5. The thresholds are
empirically selected.

The assessment by the criteria conforms to the de-
scription of the benchmark datasets. For dataset 1, Q1
and Q3 are below their respective thresholds. Thus, the
calibration steps are not discriminable and the dispersion
of at least one calibration step is high. The threshold-based
control scheme is selected. This evaluation coincides with
the visual inspection of dataset 1. With the threshold-
based control scheme, the user is at least able to apply sev-
eral movements even if it takes time. In a classifier-based
or a proportional control scheme, the estimated intentions
are fluctuating due to the high dispersion in classes and
the overlap of different classes. Also for dataset 2,Q3 is be-
low its threshold. Since the calibration steps are discrim-
inable, the classifier-based control scheme is selected. In
this control scheme, the user is able to hold a movement.
In the proportional control scheme the velocities are fluc-
tuating due to the high dispersion in classes. For dataset 3,
all criteria are above their thresholds. The proportional
control scheme is selected.

The real-world datasets look similar to dataset 3which
is appropriate for the proportional control scheme. But the
proximity of calibration steps (e.g. B4 and B6 in dataset 4
or B1 and B5 in dataset 5) leads to a rapid change of
velocities by small fluctuations of activation signals in
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Figure 1: (A)-(C): Simulated datasets representing different levels of user performance. (D)-(F): Parts of the real-world datasets from [14].
Only the calibration steps are used which would have been recorded from the proposed calibration routine.
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Table 2: Results for simulated (1–3) and real-world (4–6) benchmark
datasets. Values below τ-thresholds are bold.

Dataset Q1 Q2 Q3 Selection

1 0.556 0.6672 0.2222 threshold
2 0.956 0.2207 0.3065 classifier
3 1 0.3005 0.6583 proportional

4 1 0.064 0.7579 classifier
5 1 0.0372 0.5945 classifier
6 1 0.1742 0.6995 proportional

a proportional control scheme. The calibration steps of
the real-world datasets 4, 5 and 6 are discriminable, their
dispersions are low and so Q1 and Q3 are above their
thresholds. For datasets 4 and 5,Q2 is below its thresholds.
That means the data of the calibration steps is different to
the intended signals and the proportional control scheme
is not appropriate for the user. Instead the classifier-based
control scheme is selected. Only for dataset 6 the propor-
tional control scheme is selected.

4 Discussion and outlook
The automatic control scheme selection helps to find a
control scheme that fits to the user’s performance. Thus,
frustration of the user by under- or overstraining can be
avoided. The interpretability of the proposed criteria as
user performance allows the use in studies and medical
investigations. The user performance over several calibra-
tions can be followed and changes in neurological and
physiological weaknesses can be quantified. Without our
criteria, the information about user performance is lost
by using the data just for training a model to estimate
intended activations.

The proposed criteria are able to represent different
phenomena of activation signal calibration data. The us-
age of the criteria for selecting an appropriate control
scheme has been demonstrated with the help of three sim-
ulated and three real-world datasets. The method is cur-
rently used to prepare a study regarding user performance
evaluation.
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