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Introduction

T he share of renewable energy sources (RES) is continuously increasing in today’s
electricity mix. Substantially driving factors are the ambitious goals in Europe as

proposed by the European Union (EU) as part of the Energy Union strategy (EC 2015c)
and by the national government in Germany (BMWi 2015a). By 2030, at least 27 % of
the electricity consumption is supposed to originate from RES on a European level (EC
2015a). However, the European Commission (EC) notes that both the supply and the demand
side are not sufficiently flexible to accommodate the increasing share of RES in current
markets (EC 2015a). Hence, the balance of supply and demand in the midst of RES cannot be
guaranteed at all times. This endangers security of supply and thus increases the probability
of blackouts. In this context, demand response (DR) provides a means to resolve imbalances
by fully integrating existing and new market players — including flexible demand, energy
service providers, and generation from RES (Strbac 2008; EC 2015a). Moreover, to increase
participation of flexible consumers in electricity markets, intermediaries such as aggregators
need to assume the role of energy service providers to contribute to a successful transition of
the energy system (EC 2015b).

Focusing on Germany, where distribution grid lines account for about 98 % of the power
grid lines and about 90 % of RES are connected to distribution grids (BMWi 2015a), dis-
tribution system operators (DSOs) are faced with new challenges of balancing fluctuating
generation from RES with an increasing consumption. However, current distribution grids
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were not designed with the integration of RES in mind. Instead, electricity is supposed to
flow from large centralized power plants located in transmission grids to consumers located
in distribution grids in a one-way and top-down manner. Nevertheless, RES can reverse
the flow of electricity, which then needs to be fed from low voltage distribution grids into
high voltage transmission grids, resulting in a paradigm shift towards a two-way bottom-up
electricity grid (SG-CG 2014a). As a result, RES can bring capacities of current distribution
grid resources, i.e., power lines and transformer stations, to their limits. Consequently, con-
gestions in such grid resources can endanger grid stability and security of supply. In order to
avoid or resolve critical grid situations in specific local areas in a short-term manner and in
turn ensure security of supply, DSOs need to perform a more active, decentralized, and local
grid management (BMWi 2015a). In this context, smart grids play a key role in transforming
current grids to allow for the monitoring and control of low voltage distribution grid levels
by means of information and communication technology (ICT) (Farhangi 2010). In smart
grids, DSOs can then make use of flexibility management, i.e., the combination of demand
flexibility and storage technology from consumers or prosumers, to support grid stability
through market-based approaches (SG-CG 2014a; SGTF 2015). In contrast, current grid sta-
bilization methods, such as the control reserve, represent costly emergency alternatives. The
2015 numbers for the cost of ensuring security of supply in Germany by means of redispatch
and control reserve measures amounted to a record high of about one billion euro (Braune
2016). To avoid unnecessary cost of emergency measures and intelligently exploit flexibility
of new, local, and so far inactive players on the demand side, the implementation of flexibility
management can profoundly support this goal. As highlighted by the EC,

[a] necessary step to achieve a successful and least-cost integration of renewables
is through well-functioning short-term electricity markets, running [...] right
up to the moment of consumption, which give full access to flexible technologies
(EC 2015a, p. 3).

In this spirit, the work at hand proposes a smart grid flexibility auction as such a market
mechanism to address the issue of ensuring short-term grid stability within distribution
grids. The flexibility auction can provide the means for the DSO to procure and in turn
utilize flexibility from aggregators in a short-term setting to avoid critical grid situations.
Aggregators bundle and act on behalf of consumers, producers, or prosumers as the combi-
nation of both in order to bring a critical mass of flexibility to the market. Moreover, the use
of the flexibility auction allows to reduce the cost of employing emergency measures.
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The main objective of this dissertation is the design, prototypical implementation, and
evaluation of a market mechanism that enables the DSO to allocate electric load flexibility
from aggregators in a local context in order to cope with the continuous integration of RES
into the smart grid.

This work employs the market engineering (ME) approach (Weinhardt, Holtmann, and
Neumann 2003), which allows to capture both the technical as well as economic requirements
and objectives for the flexibility auction. Moreover, the approach provides a structured
procedure to design and implement markets. Within the ME framework, this work in
particular focuses on the market microstructure, which defines the market mechanism with
bidding language, allocation, and pricing rules. In addition, the design of the flexibility
auction artifact is conducted in accordance with the design science research (DSR) paradigm
(Hevner et al. 2004). DSR targets the construction and evaluation of information technology
(IT) artifacts and allows to rigorously demonstrate the utility, quality, and efficacy of a design
artifact via well-executed evaluation methods (Hevner et al. 2004; Gregor and Jones 2007).

1.1 Research Outline

The central question of this dissertation is how a market mechanism for allocating flexibility
in context of the smart grid can be designed. Such a market mechanism not only needs to
satisfy classical economic requirements but also consider characteristics of domain-specific
nature. Consequently, the first research question aims at defining the characteristics of
load flexibility as well as desired economic and technical requirements and is formulated as
follows:

Research Question 1 ‹ Environmental Analysis › . What are the characteristics of
electric load flexibility, and what are resulting economic as well as technical requirements for a
mechanism to integrate this flexibility into the smart grid?

This research question is addressed by performing a literature review of domain-specific
and theoretical works. Based on the literature review and identified requirements, def-
initions for the fundamental concepts related to the smart grid and to mechanism design are
provided.
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Having established the fundamentals for the design of themarketmechanism, the following
research questions focus on the main contribution of this work. Consequently, the second
research question is concernedwith the design of amarketmechanism for allocating flexibility
in context of the smart grid.

Research Question 2 ‹ Design of an Electric Load Flexibility Auction › . Which
market mechanism meets the identified requirements for allocating flexible loads in the Smart
Grid?

This research question is addressed by firstly introducing auctions as a suitable mechanism
implementation. Subsequently, the main contribution of this work — the design of a smart
grid flexibility auction in a reverse combinatorial setting with unit prices and considering an
outside option — is introduced. More specifically, a formal definition of the novel auction
mechanism of this work is provided. Moreover, the flexibility auction constitutes a DSR
artifact. Furthermore, the sequence of the auction process is described and illustrated.

Based on the definition of the flexibility auction model, the third research question ad-
dresses the issue of in what fashion participating aggregators can specify their flexibility as
bids in the bidding language of the flexibility auction.

Research Question 3 ‹ Bidding Language › . Which bidding language can succinctly
express electric load flexibility offers in a market environment?

This research question is addressed by firstly reviewing existing literature. Based on the
existing literature, a bidding language that can capture pooled flexibility of aggregators in
a compact manner is designed. With both the auction model and the bidding language at
hand, the winner determination problem (WDP) is specified as a subsequent step.

To complete the flexibility auction mechanism, a pricing rule needs to be specified. The
pricing rule needs to ensure that the cost of the DSO are not unacceptably high, i.e., payments
to aggregators need to be minimal. Moreover, resulting prices need to be fair for aggregators
(bidders) in the sense that no losing coalition of aggregators can object the outcome of the
auction and propose a mutually beneficial outcome for both the aggregators and the DSO.
Accordingly, the following research question states the challenge regarding the pricing rule
to be addressed in this work.

Research Question 4 ‹ Pricing Rules › . Which pricing rules can reduce the cost for
the distribution system operator (DSO) and increase the perceived fairness of prices?
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In order to address this research question and to meet the identified requirements, several
pricing rules are applied to the flexibility auction model. While the classical pricing rules
such as pay-as-bid (PAB), k-pricing and Vickrey-Clarke-Groves (VCG) with the Clarke
pivot rule serve as a benchmark for evaluation purposes, the contribution in context of this
research question represents the application of core pricing to the reverse combinatorial
auction setting with unit prices and an outside option of the flexibility auction. Core pricing
in particular focuses on the perceived fairness of prices and ensures that the payments of the
DSO as the auctioneer are not prohibitively large as they may be under VCG with the Clarke
pivot rule (Day and Raghavan 2007).

Subsequently, the auction is implemented into a prototypical software system. The DSR
approach requires the application of rigorous methods to the evaluation of software artifacts.
Therefore, an experimental evaluation is performed. Simulation experiments constitute a
method for an experimental evaluation in the context of DSR (Hevner et al. 2004). Hence, the
following research questions deal with the evaluation of the proposed flexibility auction.

Research Question 5 ‹ Economic Evaluation › . What are the effects of different pric-
ing rules on DSO payments and price fairness?

This research question is addressed by conducting empirical simulation experiments,
based on real-world data for wind and solar generation as well as balancing energy prices.
Moreover, scenarios of varying complexity are defined and evaluated. The main evaluation
metric describes the payments of the DSO to winning aggregators in the auction, i.e., the
cost of the DSO, which are investigated with respect to different pricing rules. The goal is to
show the potential for cost reduction compared to today’s balancing cost by employing the
flexibility auction.

As the format of the proposed auction is of combinatorial nature, the WDP is NP-hard.
This also applies to several introduced pricing rules. Therefore, the empirical computational
hardness of the auction needs to be assessed for realistic problem instances in addition to the
economic evaluation. Therefore, the following research question deals with the computational
evaluation of the flexibility auction.

Research Question 6 ‹ Computational Evaluation › . What is the empirical compu-
tational hardness of the proposed market design?
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This final research question is addressed by measuring the empirical computational hard-
ness of the auction. The results of the analysis allow to reason about the real-world applica-
bility of the auction.

1.2 Structure

The outline of this dissertation is structured as illustrated in figure 1.1. The work is structured
into four parts. Part I provides the foundations for this work and introduces the basics on
smart grid and market design in chapters 2 and 3. An application of the market engineering
approach in context of the smart grid, which connects both previous introductory chapters,
is provided in chapter 4. Part II introduces the design of the smart grid flexibility auction
and constitutes the main contribution of this work. Within this part, chapter 5 introduces
the allocation rule and bidding language. Subsequently, chapter 6 presents the pricing rules.
Within part III, the implementation of the flexibility auction into a prototypical software
system as well as its evaluation are presented. Chapter 7 describes the simulation design
and metrics for evaluating the proposed artifact and research questions. In turn, chapter 8
presents and analyzes results of the simulation with regard to the definedmetrics and research
questions. Finally, part IV with chapter 9 concludes this work by summarizing the key
contributions and pointing towards further research challenges and open questions.
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2

Smart Grid Foundations

T oday’s electrical power system is an integral and one of the most effective parts of
modern society’s infrastructure and economy. In order to ensure security of supply,

generation, transmission, and distribution of electricity have traditionally been organized in
a highly integrated, centrally planned, unidirectional, and top-down manner. This is due to
the fact that electricity is not storable and thus requires that generation and consumption of
electricity be balanced at all times (Stoft 2002). However, the recent fundamental paradigm
shift towards decentralized and inherently intermittent generation of renewable energy
sources (RES) and distributed energy resources (DER) and the associated bi-directional flow
of electricity pose new challenges to ensuring security of supply in a technical, economic,
and sustainable way. This leads to the rise of the smart grid, the next-generation electric
power system as a means to help balance supply and demand by intelligently integrating RES
and flexible loads into power grids.

This chapter briefly introduces the current state and trends of today’s electrical power
system and gives insight into the nature and characteristics of the smart grid required for a
subsequent classification of the market mechanism.

The structure of this chapter is as follows: Firstly, current and future policy goals from
the perspectives of the European Union (EU) and Germany, respectively, are introduced.
Subsequently, the current electricity market structure with focus on the EU and Germany as a
prime example due to the prominent ongoing transition of the power system (Energiewende)



12 Chapter 2. Smart Grid Foundations

is introduced. Finally, the concept of the smart grid with its key components of relevance for
this work, that is flexibility, demand side management (DSM), and demand response (DR)
as well as aggregators, are described.

2.1 Energy Policy

Energy policy and related legislative decisions in Germany are influenced not only by national
activities, but also by EU directives affecting every EU member state. Thus, this section intro-
duces current goals of the EU and Germany and gives an outlook on ongoing consultation
processes.

2.1.1 European Policy

The basis for the EU energy policy is defined in article 194 (1) of the treaty on the functioning
of the European Union (TFEU), which places EU energy policy decisions under an obligation
to: “(i) ensure the functioning of the energy market; (ii) ensure security of energy supply in
the Union; (iii) promote energy efficiency and energy saving and the development of new and
renewable forms of energy; and (iv) promote the interconnection of energy networks ” (EC
2012a). Accordingly, the European Commission (EC) began the process of provisioning three
sequential energy packages, which are, among other EU directives, referred to in section 2.2.2.1
of this chapter. In addition, complementary agendas and legal frameworks with focus on
climate change and sustainability policies as well as security of supply were established. These
frameworks are subject of the following sections 2.1.1.1 and 2.1.1.2.

2.1.1.1 Current Situation

The establishment and implementation of a long-term secure, renewable, sustainable, and
competitive supply of electricity are themain objectives of EU energy policy. For this purpose,
the EU officially communicated its ambitious 20-20-20 targets in early 2008 with the main
goal of tackling important climate change and sustainability issues of carbon emissions,
renewable energy, and energy efficiency (EC 2008). Not only are these targets still relevant
andwell-known today, they also represent a consensus amongmember states to further reduce
greenhouse gas (GHG) emissions and increase the share of RES in the electricity consumption.
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In more detail, the main targets are: (i) the reduction of GHG emissions to at least 20 %
by 2020 compared to the levels of 1990, which is equivalent to a 14 % reduction compared
to 2005 levels. By 2050, GHG emissions must be reduced to at least 50 %; (ii) increasing
the share of RES in the EU energy mix to at least 20 % by 2020; and (iii) increasing energy
efficiency by 20 %. To realize the GHG reduction target, two approaches which are supposed
to work in parallel were established. Firstly, the Emissions Trading Scheme (ETS), a large-
scale CO2 emissions trading system originating from directive 2003/87/EC was set up (EPEC
2003b). A detailed description and analysis of its process, allocation rules, and results of
completed trading periods can be found in Ellerman and Buchner (2007) and Zhang and
Wei (2010). Secondly, emissions from industry, agriculture, buildings, and transport which
are not affected by the ETS were covered by a non-ETS target to reduce emissions known
as the effort sharing decision, i.e., decision 406/2009/EC (EPEC 2009a). The main idea of
the effort sharing decision is that each EU member state contributes to the GHG reduction
target according to its individual capability. In more detail, the individual extend of the
contribution is measured by the gross domestic product (GDP) per capita index (Harmsen,
Eichhammer, and Wesselink 2011).

Having recognized the importance of GHG reductions, the EU additionally promotes the
integration and use of RES with the renewable energy directive 2009/28/EC (EPEC 2009b).
This directive in particular tackles five main issues. Specifically, the directive establishes
mandatory national targets for 2020, renewable energy actions plans, cooperation mecha-
nisms, administrative, and regulatory reforms as well as sustainability criteria for biofuels
(Howes 2010).

Within the previous directives of the climate package, primary focus was unquestionably
on climate policy. At the same time, topics on security of supply and competitive electricity
prices came in second line. However, the security of supply directive 2005/89/EC (EPEC 2005)
specifies measures in its scope towards “safeguarding security of electricity supply so as to
ensure the proper functioning of the internal market for electricity and to ensure: (i) an
adequate level of generation capacity; (ii) an adequate balance between supply and demand;
and (iii) an appropriate level of interconnection between Member States for the development
of the internal market ”. Moreover, it requires member states to define stable, transparent,
and non-discriminatory policies compatible with an internal energy market (IEM).

For a more in-depth analysis of EU communications, decisions, directives, and their
chronology regarding climate policy, the inclined reader is referred to Oberthür and Palle-
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maerts (2010).

2.1.1.2 Latest Developments

In 2010, the EU recognized that its “existing strategy is currently unlikely to achieve all the
2020 targets” while short and long-term challenges continue to grow (EC 2010). For this
reason, a commitment towards a new Energy 2020 strategy for competitive, sustainable, and
secure energy was proposed. Building upon prior consultations, actions, and policy, five
priorities for the new energy strategy have been identified (EC 2010): (i) Advancing energy
efficiency in Europe to achieve the 20 % savings goal in 2020 and in addition ensuring long-
term energy and climate goals. Reinforced political commitment, new policies for buildings
and transport represent main concerns within this priority; (ii) building a fully integrated,
interconnected, and competitive European energy market to foster pan-European trade of
renewable energy. Main factors will be grid infrastructure investments and developments as
well as the construction of new interconnections between EU member states; (iii) allowing
consumers to benefit from a wider choice of suppliers and lower prices while ensuring the
highest level of safety and security possible. Raising awareness among consumer, building
“user-friendly” smart grids and smart meters as well as improving information on energy
bills shall serve as main action points; (iv) developing Europe’s capabilities to lead in en-
ergy technology and innovation by supporting large-scale development and demonstration
projects in several domains such as smart grids, smart cities or electricity storage, between
member states; and (v) improving the external partnerships of the EU energy market to
allow the participation of EU neighbors in the IEM, to promote the role of the EU in energy
efficiency and sustainability, and to facilitate international cooperation on nuclear-safety
topics.

More recently, notable progress has been made towards the three 20-20-20 targets (EC
2014a, 2015e). Meanwhile, the EC started to collect feedback on past individual as well as
global economic and environmental developments and subsequently to reflect on these and
its own views in 2014. Based on identified assets and drawbacks, a 2030 climate and energy
policy framework was developed (EC 2014a). The main principles of the 2030 framework
cover the GHG emissions target, a reformed ETS, an EU-wide renewable energy target,
measures for an improved energy efficiency, advances to further foster competition on the
IEM and securing energy supply. More particularly, a 40 % reduction of GHG emissions as
well as a share of at least 27 % of RES in the EU are significant objectives within the 2030
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framework (EC 2014a). Additionally, based on the energy efficiency directive (EPEC 2012), an
increased energy efficiency to at least 27 % by 2030 was set.

In accordance with the 2020 climate and energy package and the 2030 climate and energy
framework, several actions were proposed recently. In 2014, the energy security strategy
was set out to address short to long-term energy security concerns (EC 2014b). On a more
global level, the energy union package (EC 2015c) represents the most complete policy strategy
framework yet to propose the shift frommany national regulatory frameworks into an unified
framework. The energy union package identifies several dimensions required for greater
energy security, sustainability, and competitiveness. In its appendix, a roadmap which covers
all relevant actions for the coming years is specified (EC 2015d).

2.1.2 German Policy

The energy concept of the German federal government serves as a detailed foundation for
energy policy and strategy (BMWi 2010). In the following, the key interconnected goals of
the energy trilemma as well as parts of the German energy concept are introduced.

2.1.2.1 Energy Trilemma

Economic and political guidance and strategy in today’s energy sector in Germany rely on
the fundamental trade-off between three established key goals: competitiveness, security of
supply, and sustainability. In line with the strategy of the EC (EC 2006), the German Energy
Industry Act (§ 1 (1) EnWG) places the country in its preamble under an analogous obligation
to align economic and policy decisions with these goals. These goals or objectives are usually
illustrated as the energy policy objectives triangle, or following a more recently introduced
expression by Sautter, Landis, and Dworkin (2008), as the Energy Trilemma (cp. figure 2.1).

Ideally, all objectives should be considered for economic and policy assessments. However,
these policy objectives are often correlated to a certain degree. To some extend, there exists a
clear conflict of objectives for different players in the energy sector. For this reason, careful
balancing of these objectives is required to avoid counter-productive or negative effects of
the objectives on each other. For example, (i) increasing the share of sustainable generation
may implicate a decrease in security of supply as such generation is usually intermittent and
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Sustainability Security of Supply

Competitiveness

Figure 2.1: Energy Trilemma

thus not entirely reliable; (ii) a higher environmental sustainability or increase in security of
supply may result in higher prices for consumers; and (iii) a sole focus on competitiveness
may entail less devotion and effort towards the goals of security of supply and particularly
sustainability.

2.1.2.2 Energy Concept

Against the background of the energy trilemma and EU regulation, the German energy
concept aims towards a long-term secure, competitive, and sustainable energy supply (BMWi
2010). The following nine key fields of action for Germany are identified: (i) Cost-efficient
expansion and integration of RES by providing economically viable options for generation and
consumption sides. Among others, the most important challenges include on- and off-shore
wind generation, sustainability for biogas, and combining RES with heating and cooling
technologies; (ii) improving energy efficiency in private and industry domains through
appropriate economic incentives, information campaigns, and empowering self-awareness
of consumers; (iii) creating a more flexible energy mix without nuclear generation that
still includes a sufficient amount of balancing power; (iv) a faster grid expansion where
necessary to expedite the integration of RES into the grid. In particular, the generation of
offshore wind power and its transport from northern to southern Germany as well as the
integration of the national grid into the EU’s network are of utmost importance; (v) energy-
saving modernizing measures for buildings and energy-efficient building construction to
further reduce CO2 emissions. (vi) promoting electric mobility, with one million electric
vehicles on the road by 2030 and the long-term goal of using electric vehicles as storage
devices; (vii) research into RES, energy efficiency, storage technology, and synergies between
energy technologies; (viii) integrating and harmonizing energy supply within a European
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Figure 2.2: Electricity value chain with selected fields of competence (based on Hoitsch, Goes, and
Burkhard (2001) and Valocchi et al. (2008))

and international context. Required actions include the promotion of EU grid expansion and
the IEM as well as improving the ETS and energy efficiency; and (ix) ensuring transparency
and consumer acceptance when improving and extending the grid infrastructure by means
of detailed supply of information and participation processes.

2.2 Electricity Markets

Electricity markets have traditionally been managed with a high degree of technical and
economic integration. However, they have been confronted with several issues recently. On
the one hand, they are subject to significant governmental deregulation efforts, while on the
other hand, they are faced with new technical, economic, and environmental challenges. In
the following, this section provides an overview of the status quo and challenges concerning
electricity market participants, design, and regulation with focus on Europe and particularly
Germany.

2.2.1 Electricity Value Chain

The traditional market structure can best be described along the electricity value chain as
shown in figure 2.2. The electricity value chain itself focuses on power flow, i.e., delivering
electricity to the consumer (Valocchi et al. 2008). Electricity generation is performed by
generators, while electricity transmission is handled by the transmission and distribution
system. Ultimately, consumer devices and appliances utilize electricity (Stoft 2002).
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2.2.1.1 Generation

Electricity supply is typically ensured by a heterogeneous portfolio of different generators with
varying characteristics. These characteristics include available input resources, operational
cost, locality, scalability, and flexibility (Stoft 2002). Manifestations of these characteristics dif-
fer significantly per country, in particular due to availability of input resources, technological
advancements, and policy decisions. For example, while the the electricity generated from
renewable sources in Norway already represented 105.5 % of the gross electricity consumption
in 2013 (Eurostat 2015a), for countries such as France, this share only accounted for 16.9 %
(Eurostat 2015a) RES, as the country focuses more on nuclear power generation. Specifically,
nuclear energy is at a level with a 34.6 % share of gross inland consumption compared to the
available energy for final consumption (Eurostat 2015b, 2015c) and has a share of 48 % of the
total EU-28 nuclear power generation (Eurostat 2015c). However, the generation portfolio is
generally more diverse. In 2015, for example, Germany generated its electricity from coal
(42.2 %), RES (30.0 %), nuclear (14.1 %) and natural gas (8.8 %). This particular diversification
is illustrated in figure 2.3. The average electricity generation portfolio of OECD countries
in 2012 was composed of 32.1 % coal, 25.3 % gas, 18.1 % RES, 18 % nuclear, 3.6 % oil, 2.2 %
biofuels and 0.7 % waste as well as 0.1 % other sources (International Energy Agency 2015). In
most cases, capacities of these generators have been designed to take advantage synergies of
economies of scale and therefore reduce generation cost (Stoft 2002). As a result, four major
generation companies – EnBW, E.ON, RWE, and Vattenfall – have emerged in Germany.
These companies owned 80 % (80.7 GW) of the available capacity and 82 % (390.4 TWh) of
the total electricity feed-in in 2009 (Bundeskartellamt 2011). In addition, large generators are
often located near areas of high population density to take advantage of the physical laws of
power flow as electrical power always flows to the nearest point where it can be consumed
and cannot be directed to a specified location (Stoft 2002; Schweppe et al. 1988).

In light of the EU 20-20-20 targets and the promotion of the most recent 2030 framework,
which sets the target of the share of RES in the EU to at least 27 % (EC 2014a), electricity
generation portfolios are changing significantly. For example, the development of installed
electricity generation capacity and actual gross generation in Germany since 1991 is depicted
in figure 2.4. While the generation capacity in 1991 amounted to 126.1 GW, it increased by
50.2 % to 189.4 GW by the end of 2013. At the same time, actual electricity generation only
grew by 17.2 % from 540.2 TWh in 1991 to 633.2 TWh in 2013. Investments into solar andwind
generation as well as the discontinuation of all nuclear generation in Germany were promoted
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Figure 2.3: Gross electricity generation in Germany 2015 (Source: Data from BMWi (2016))

by major political decisions in recent years (Henning and Palzer 2014). These changes can
already be observed in the development of installed generation capacity since 2005 and have
peaked since 2011 to an all-time high today. The difference between installed capacity and
actual generation of wind and photovoltaic (PV) illustrates the stochastic nature of these
RES. Simultaneously, this also emphasizes the indispensable requirement to operate with an
advanced generation portfolio of base and peak load plants to ensure a continuous balance of
supply and demand. The base load is usually covered by nuclear and coal generation plants, as
they have greater ramping constraints that do not allow for short-term start up or shut down
phases. Additionally, base load plants are characterized by their low variable generation cost
(Stoft 2002). At the same time, peak loads which cannot be covered by RES such as wind or
PV are supported by gas or hydro generation plants with low ramping constraints but high
variable generation cost.

2.2.1.2 Transmission and Distribution

Transmission and distribution grids represent the backbone of electricity delivery to con-
sumers. Transmission lines transport electricity from large generators to transformer stations
in close proximity to areas of high population density or areas with large industry (Stoft
2002). Initially, electricity output from generators is either transported directly to trans-
formers or first transformed through converter stations from 380-500 kV to 220-380 kV
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Figure 2.4: Installed generation capacity and gross electricity generation since 1991 (Source: Data from
BMWi (2016))

in case of the usage of high voltage direct current (HVDC) transmission (Bahrman and
Johnson 2007). Electricity transport is carried out by means of extra-high voltage overhead,
undersea or underground cable or line systems (Stoft 2002; El-Hawary 2008). Voltage levels
in transmission grids range from 220 to 380kV. Subsequently, electricity is transformed to
lower voltage levels and fed into the distribution grid. Starting from this point in the grid,
electricity is distributed to consumers, i.e., transported either directly to large consumers
or to transformer stations which in turn convert incoming electricity to lower voltage levels
and thus allow electricity delivery to medium and smaller consumers, each with individual
requirements on different voltage levels (Stoft 2002). Distribution system voltage levels in
Germany encompass high (60-110 kV), medium (6-30 kV), and low voltage (230-440 V)
(Schwab 2009). The high-level transmission and distribution architecture and voltage levels
are illustrated in figure 2.5.

In Germany, transmission system operators (TSOs) and distribution system operators
(DSOs) are responsible for grid operation, maintenance, stability, and reliability. In particular,
TSOs provide ancillary services to ensure security of supply through measures such as
frequency and voltage control. In addition, the N-1 criterion requires transmission lines
to be deployed in parallel as well as at the same time to be operated at only half their
nominal capacity to improve failure resistance (Schwab 2009). Moreover, DSO have to ensure
adequate grid development. Specifically, they manage the connection of new consumer or
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Figure 2.5: Grid structure and voltage levels (based on EnBW AG (2015))

industry loads or, more recently, RES generation. Expected grid expansion investments
into German distribution grids amount to EUR 27.5 billion (dena 2012). Incurred grid
expansion and maintenance cost are usually allocated to consumers via additional grid
charges (Bundesnetzagentur and Bundeskartellamt 2014).

Both TSOs and DSOs are considered natural monopolies (Bundesnetzagentur and Bun-
deskartellamt 2014) as high investments in grid infrastructure are necessary. Consequently,
they remain under regulatory supervision from the German Network Agency. Namely, there
are four TSOs in Germany – Tennet TSO, 50Hertz Transmission, Amprion, and Transnet
BW – who each are responsible for a control zone. While the number of TSOs has remained
constant at four since 2006, the total number of DSOs increased from 876 to 884 in 2014
(Bundesnetzagentur and Bundeskartellamt 2014). As of the of 2013, the total length of under-
ground and overhead lines amounted to 34,885 km for TSOs and 1,763,083 km for DSOs. An
overview of key grid figures for Germany is presented in table 2.1.
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Table 2.1: Key figures of the electricity grid in Germany for 2013

Grid figures 2013 TSO DSO Total

Number of operators 4 804 808

Total circuit length [km] 34 855 1 763 083 1 797 938

Extra-high voltage 34 631 348 34 979

High voltage 224 96 084 96 308

Medium voltage 0 509 866 509 866

Low voltage 0 1 156 785 1 156 785

Number of total final consumers 664 49 934 777 49 935 441

Industrial and business 0 3 829 740 3 829 740

Households 0 46 105 037 46 105 037

Consumption [TWh] 41 469.6 510.6

Industrial and business 30.7 342.2 372.9

Households 0 126.1 126.1

Pumped storage 10.3 1.3 11.6

Source: Data from Bundesnetzagentur and Bundeskartellamt (2014)

As shown above, DSOs are responsible for over 95 % of the grid lines. Additionally,
about 90 % of RES generation is connected at distribution grid levels. This emphasizes the
importance of distribution grids for an efficient integration of RES. With this purpose in
mind, DSOs need to take a more active role in managing their grids than today, not only
because this task is becoming more and more complex but also as their responsibility in
ensuring security of supply is growing continuously (BMWi 2015b). In particular, this also
entails a more active role within market environments. A more detailed review focusing on
today’s and future electricity markets and related DSO activities is given at a later point in
this chapter.

2.2.1.3 Consumption

As illustrated in figure 2.6, within the ranking of final energy consumption by energy source
type in Germany of 2014, electricity consumption is ranked third with 509.51 TWh (21.2 %)
out of 2404.11 TWh, following only fuel with 711.79 TWh (29.6 %) and gas with 584.56 TWh
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Figure 2.6: Final energy consumption by energy source type Germany 2014 (Source: Data from BMWi
(2016))

(24.3 %) consumption (BMWi 2016). This again highlights the heterogeneous energy mix in
Germany, in this case for the consumption side, i.e., demand side.

Inmore detail, households and industry sectors account for the largest subset of consumers
in the electricity consumption since 1991. The development of these shares is depicted in
figure 2.7. While a growth in total consumption can be noted starting from 1993 until 2007,
consumption has been monotonically decreasing since 2010.

Typical usage of electricity at consumer level, i.e., net energy, encompasses appliances
and various other applications. Specifically, heating (space heating, water heating), work
(cooling, motion, information, and communication), light (lighting, laser) or other purposes
represent consumer utility to gain from electricity (Erdmann and Zweifel 2008).

Historically, electricity consumption, in particular by households, has been assumed to be
inelastic. In accordance with current law (§ 12 StromNZV), generation plants in Germany
are still scheduled based on synthetic load profiles for different consumer types. A load
profile represents simplified consumption values, which are used to forecast and balance
electricity. For industry, there exist profile types G0-G7, for households, profile type H0.
The fundamental assumption of load profiles is that a profile will be consumed on average.
Therefore, individual deviations are accounted for as their consumption will be flattened in
the actual consumption. The profile is communicated from DSOs to utilities, which have to
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Figure 2.7: Timeline of final electricity consumption per consumer type in Germany since 1991
(Source: Data from BMWi (2016))

procure generation capacities accordingly. Yet, larger industrial consumers equipped with
advanced metering infrastructure (AMI), i.e., smart meters, can detach themselves from
this standardized process and switch from synthetic load profiles to individually optimized
profiles and appear in a more autonomous role.

Since the late 1980s, research on creating incentives for consumers, which would encourage
them to become more active and adapt their demand to the current supply situation, have
appeared (Schweppe et al. 1988). More recently, DSM and DR approaches have gathered
pace in the research community. Especially in presence of RES, both DSM and DR present
the prospect of large benefits to balancing supply and demand (Strbac 2008). In addition,
measures from DSM can support improving energy efficiency, time of use (TOU) tariffs,
DR or spinning reserves (Palensky and Dietrich 2011). However, major challenges such as
coordination and inventive issues are still to be resolved (Strbac 2008; Ipakchi and Albuyeh
2009). In general, DSM and DR aim at the consumer’s flexibility. Engaging consumers in
DR and additionally exploring and exploiting their flexibility remain critical issues as well
(Petersen, Hansen, and Mølbak 2012; He et al. 2013). A detailed review of DSM, DR and
flexibility follows in a subsequent section.
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2.2.2 Market Structure

2.2.2.1 Liberalization

Global developments specific to energy market reforms can be referred to by several terms.
The most commonly used terms encompass deregulation, restructuring or liberalization (F. P.
Sioshansi 2006). While deregulation is considered amisnomer because complete deregulation
in the sector is regarded as not possible (Sioshansi and Pfaffenberger 2006), restructuring is
considered as a more suitable term (Hogan 2002). In context of the EU (EC 2012b) and the
remainder of this work, the synonymous term liberalization is used.

Liberalization efforts towards state-owned enterprise structures or regulated monopolies
in order to create open markets started in the 1980s (F. P. Sioshansi 2006). Before these efforts,
all functions of the electricity value chain, i.e., generation, transmission, distribution, and
retailing, were carried out by a single vertically integrated entity. Such an entity was then
unbundled, i.e., separated by function, in the interest of creating competition to achieve
positive effects for end consumers. Note that transmission and distribution grids are excluded
from unbundling as duplicating grid structure is considered economically inefficient (Stoft
2002). On the retail level, effects of unbundling include lower electricity prices as well as
better service levels given the freedom to choose any provider among a large set of alternatives
(EC 2012b).

In more detail, liberalization efforts for the electricity sector encompass, among others, the
following components (Joskow 2008): (i) Privatization of state-owned companies; (ii) verti-
cal separation, i.e., unbundling within the electricity value chain where economically more
efficient; (iii) horizontal restructuring, i.e., fostering competition, of the generation segment;
(iv) designation of an independent system operator (ISO) and independent regulator; (v) in-
troduction of a wholesale spot and an operating reserve market; and (vi) utilization of DSM
approaches. For an exhaustive list and a detailed explanation see Joskow (2008).

In Germany as well as in other EU member states, liberalization activities are based
on several successive legally binding directives, i.e., legislation, originating from the EC.
Liberalization efforts were constituted in 1996 in accordance with the TFEU in form of the
first energy package, i.e., liberalization directive 96/92/EC concerning common rules for
the internal market in electricity (EPEC 1997). The directive emphasizes the importance of
cross-border transmission capacities and trading between EU member states towards an
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IEM. In 2003, the directive was replaced by the second energy package, directive 2003/54/EC.
In context of this directive, the emphasis is on improving operations and competition within
the IEM by focusing on network, tarification, and cross-border market opening issues (EPEC
2003a). The third and most recent energy package, directive 2009/72/EC, again replacing the
second package, points out challenges of non-discriminatory network access in each member
state as well as requires improvements upon cross-border interconnections and access to
ensure security of supply. In addition, the importance of a well-functioning IEM to stimulate
investments into RES and to provide appropriate incentives and to ensure competitive prices
is highlighted (EPEC 2009c).

The first and second energy packages were implemented in Germany in 1998 and 2005,
respectively. With the most recent amendment to the German Energy Industry Act (EnWG)
in 2011, the requirements of the third energy package were put into German legislation.
According to the EU’s latest progress report on its IEM, the EU-wide transition to comply
with the unbundling requirements of the third energy package is almost complete. This
includes Germany, which has fully implemented grid restructuring measures along the
transmission and distribution levels (EC 2014c).

2.2.2.2 Electricity Markets in Germany

Electricity markets in Germany can be classified into wholesale markets and ancillary services
as illustrated in figure 2.8 (Judith et al. 2011). While ancillary services cover short-term
balancing power, i.e., control (or operating) reserve, and other services to ensure security
of supply, wholesale markets consider long-term as well as short-term products. Moreover,
electricity market types can be distinguished by participants, e.g., the market for balancing
power provides a platform for TSOs and large generators while TSOs do not participate in
wholesale markets (Bundesnetzagentur and Bundeskartellamt 2014).

The wholesale market in Germany is segmented into interconnected over-the-counter
(OTC) and exchange markets with the European Energy Exchange (EEX) and the European
Power Exchange (EPEX SPOT). Within the OTC markets, bilateral contracts, or forwards,
are traded continuously. These contracts have a time horizon of up to 6 years. In combination
with similar products traded on the EEX futures market, these long-term products represent
the main share in today’s total trading volume (Bundesnetzagentur and Bundeskartellamt
2014). Moreover, these forward transaction usually are fulfilled financially, i.e., in general,



Chapter 2. Smart Grid Foundations 27

Electricity Markets

Wholesale

Over-the-Counter

Futures Market

⋅ Fowards/Options/

Structured Products

⋅ Financial and Physical

Settlement

Spot Market

Exchange

Futures Market
⋅ Futures/Options

⋅ Financial Settlement

Spot Market

⋅ Physical Settlement

Day-Ahead Market

⋅ Hourly Auctions

Intraday Market

⋅ Continuous Trading

Ancillary Services

Balancing Power

⋅ Frequency/Voltage Stability

⋅ Transmission Security

⋅ Black/Cold Start

Other Services

Figure 2.8: Structure of electricity markets with products and services in Germany (based on Judith
et al. (2011) and Stoft (2002))

a financial settlement is favored as opposed to a physical settlement by settling the cash
difference of the forward/future product and the spot market price (Bundesnetzagentur and
Bundeskartellamt 2014).

Nevertheless, trading on the EPEX SPOT markets remains fundamentally important as
resulting prices represent a reference point for OTC and EEX futures markets (Ockenfels,
Grimm, and Zoettl 2008). The interconnection between the markets becomes apparent as
buyers and sellers can negotiate and trade on both OTC and exchange markets at the same
time. Clearly, possibilities for arbitrage exist. Therefore, prices are similar, e.g., no buyer
would accept an offer from the OTC market if an outcome of an exchange market would
be more beneficial. However, prices might still deviate given different understandings and
availability of information and risk (Ockenfels, Grimm, and Zoettl 2008).

Besides the EEX futures market, the EPEX SPOT market consists of a day-ahead and an
intraday market. On the EPEX SPOT day-ahead market, a uniform price auction is held once
a day. Bids and asks for hourly products, standardized blocks or a combination of individually
selectable hours (i.e., custom blocks) must be submitted to be cleared at 12:00 p.m. the day
before the actual supply period (Bundesnetzagentur and Bundeskartellamt 2014). In contrast,
trading by auction on the EPEX SPOT intraday market for similar standardized or custom 15
minute blocks is continuous in order to allow for short-term corrections of power shortages or
surplus from contracted forwards/futures given the current power grid and market situation
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(BMWi 2015b).

Moreover, to procure power for the control reserve, TSOs can announce their demand on
the German control reserve market (Bundesnetzagentur 2011a; 50Hertz Transmission GmbH
et al. 2015). Products on the control reserve markets comprise the primary and secondary
control reserve as well as the minute reserve. They are designed based on technical and
regulatory requirements (Ockenfels, Grimm, and Zoettl 2008; Bundesnetzagentur 2011a).

Market Clearing Clearing on most EEX and EPEX SPOT markets is based on a sealed-
bid uniform price auction (Ockenfels, Grimm, and Zoettl 2008). The price and in turn
the generation dispatch is determined by the order of increasing marginal generation cost
represented by bids as well as availability and ramping constraints (Schweppe et al. 1988;
Stoft 2002). In particular, the price is set by the so-called merit order, which ensures that the
generator in the market with the lowest marginal cost is relevant for the price determination
(Erdmann and Zweifel 2008). With the increasing share of RES, a merit order effect which
captures the shift of expensive generators in favor of RES out of the market and therefore
resulting decreased wholesale prices, can be observed. An analysis of the merit order and
the aforementioned complex effect can be found in Sensfuß, Ragwitz, and Genoese (2008).
In contrast, clearing on the control reserve market is performed by means of a pay-as-bid
auction (Ockenfels, Grimm, and Zoettl 2008; Frontier Economics 2014).

Market Timeline As mentioned before, all markets are subject to a chronological order.
On the day-ahead market, the auction clears at 12:00 p.m., on the intraday market, clearing
is performed continuously. Moreover, trading on the intraday market is allowed up to 30
minutes before the actual supply period. This point in time is also referred to as gate closure.
Afterwards, TSOs take responsibility for balancing demand and supply using the control
reserve procured beforehand on the control reserve market. Finally, at a later point in time,
utilized control reserve is settled financially. This process is illustrated in the following
figure 2.9.

2.2.2.3 Latest Developments

Even though the previous section focuses on electricity markets in Germany, their design
and regulation is also influenced actively by European guidance. Therefore, this section first
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highlights current trends, i.e., (consultation) processes and communications, originating
from within the EU. Next, national efforts in Germany towards a new electricity market
design are emphasized.

Electricity Market Design in Europe The EU called for a major revision of the current
market design in mid-2015. According to the recent EU communication COM (2015) 340
(EC 2015a), Europe’s electricity system is undergoing profound changes with growing whole-
sale competition and cross-border electricity flow, while at the same time faced with the
integration of an increasing share of RES. The current market design needs to be adapted to
(i) fully integrate RES and promote their participation on par with conventional generation;
(ii) integratemore active players such as flexible demand, energy service providers, innovative
companies, and reliable intermediaries to facilitate consumer savings and security of supply;
(iii) support cross-border competition and power flow; (iv) provide the right (financial)
incentives for investments in light of RES; and (v) promote enabling technologies, e.g., smart
grids, smart metering, and self-generation as well as storage technologies (EC 2015a).

In essence, an updated market design needs to be more flexible and consumers should be
perceived as active as opposed to previously inactive. In particular, the concept of short-term
markets, which need to be at the core of a new energy market design, is highlighted. Here,
improved pricing mechanisms to foster DR, shorter trading intervals, and gate closure times
closer to real time are desiredmarket characteristics. Additionally, ensuring security of supply
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by leveraging (demand side) flexibility and storage technologies, represent best measures
towards an effective and efficient market design (EC 2015a).

Adjacent to the current process on a new energy market design, the EU additionally calls to
remove obstacles currently hindering consumers from benefiting from the energy transition
(EC 2015b). In particular, COM(2015) 339 postulates that all types of consumers need to
be able to control their consumption, lower their bills, and actively participate in markets.
However, current obstacles include (i) the lack of information on cost and consumption;
(ii) limited transparency in offers to be able to asses the market situation and opportunities;
(iii) increasing grid charges; and (iv) insufficiently developedmarkets for local energy services
and DR (EC 2015b).

Therefore, a strategy resting on three pillars to deliver a new deal for energy consumers
has been identified. Firstly, it demands to empower consumers to act by (i) providing better,
real-time information on consumption data; (ii) giving a wide choice of suppliers and energy
service companies (aggregators); (iii) realizing the value of flexibility through DR; and
(iv) increasing consumer participation through intermediaries (aggregators) and collective
schemes (communities) (EC 2015b). Secondly, promoting smart homes and networks should
simplify access to new retail markets and enable (automated) participation. A complete set
of EU technology and communication standards has already been delivered to support this
goal. Finally, smart meter data needs to be protected in terms of data security and privacy, yet
on the other hand needs to be available to metering, billing or other services in the market
given their value for a new energy market.

Electricity Market 2.0 in Germany In 2014, the German Federal Ministry for Economic
Affairs and Energy (BMWi) published its discussion paper (green paper) on designing an
electricity market for the energy transition in Germany (Energiewende) (BMWi 2015b).
Following a consultation period, the official outcome (white paper) was published in late
2015 (BMWi 2015a). Shortly afterwards, the initial drafts for the resulting laws were passed
by the federal cabinet (BMWi 2015c) and are expected to become effective in 2016.

As suggested by its name, electricity market 2.0, the current market design needs to be
refined and thus reformed. Security of supply remains central to an enhanced market design,
where the main goal is to efficiently integrate RES. Suggested measures for an enhanced
electricity market include, but are not limited to, (i) ensuring that price formation is not
restricted and can lead to price signals that can incorporate supply scarcity factors that
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may entail higher prices; (ii) paying particular attention to the accounting of suppliers and
retailers for a balanced grid by allocating cost resulting from positive or negative imbalances
to the responsible party; (iii) the integration of flexibility from generation, DR, and storage
technologies and therefore support grid stability; (iv) a continuous grid monitoring with
regard to security of supply; and (v) reducing of grid expansion cost; and (vi) a stronger
connection to the EU’s IEM (BMWi 2015a, 2015c).

Moreover, DSOs are confronted with new challenges and need to coordinate advanced
tasks and responsibilities in their grids. Specifically, the increasing share of generation
capacities from fluctuating RES in residential grids results in more complex power flows
in their own and eventually upper transmission grids. In turn, DSOs need to shift from
passive to a more active grid management and make use of markets to procure flexibility
or flexibility services from aggregators or consumers to cope with yet unseen critical grid
situations. Current market designs such as the spot market or control reserve market as
well as feed-in management or redispatch measures cannot accommodate these short-term
requirements and need to be extended or complemented by other markets that allow the
coordination of retailers, aggregators, DSOs, and possibly TSOs (BMWi 2015a).

2.3 Smart Grid

Smart grids facilitate monitoring and control of electrical power systems on a local level in
real time in order to ensure an efficient, robust, and sustainable grid operation in light of an
increasing share of decentralized and less predictable RES (DoE 2003). More specifically,

Definition 2.1 (Smart grid (US)). [A smart grid] is a fully automated power delivery
network that monitors and controls every customer and node, ensuring a two-way flow of
electricity and information between the power plant and the appliance, and all points in between.
Its distributed intelligence, coupled with broadband communications and automated control
systems, enables real-time market transactions and seamless interfaces among people, buildings,
industrial plants, generation facilities, and the electric network (DoE 2003).

More generally defined in the context of the EU and serving as basis for the remainder of
this work,
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Definition 2.2 (Smart grid (EU)). A smart grid is an electricity network that can cost
efficiently integrate the behaviour and actions of all users connected to it – generators, consumers,
and those that do both – in order to ensure economically efficient, sustainable power system
with low losses and high levels of quality and security of supply and safety (EC 2011).

In order to enable detailed supervision and control on low voltage distribution grid levels,
capabilities already present in the infrastructure of high and extra-high voltage grids and
therefore modern information and communication technology (ICT) are required (Farhangi
2010; Varaiya, Wu, and Bialek 2011). Hence, sophisticated methods need to transform a
“blind” and manually operated system into a complex system (Ipakchi and Albuyeh 2009).
This enables grid operators to improve overall efficiency by achieving a better balance of
supply and demand at all times. In particular, Sarvapali D. Ramchurn et al. (2012) argue that
for the successful realization of the full potential of smart grids, several key components of a
smart grid, i.e., (i) DSM; (ii) electric vehicles (EVs); (iii) virtual power plants (VPPs); (iv) the
emergence of prosumers; and (v) self-healing networks need to interact and be smart. That is,
novel algorithms and mechanisms, including from the field of artificial intelligence (AI), for
solving large-scale problems with heterogeneous actors in a highly uncertain and dynamic
environment are required (Sarvapali D. Ramchurn et al. 2012). Moreover, the historic rule
that flexible supply follows inflexible demand gradually changes more into a system with
both sides playing an active and flexible role as a result of DSM and DR measures (Strbac
2008).

2.3.1 Flexibility of Supply and Demand

It is central to electricity grid operation that supply and demand have to be balanced at all
times, given the core condition that electricity consumption is instantaneous and cannot be
stored efficiently without high losses as of today (Stoft 2002). Flexibility on both supply and in
particular the demand side is seen as a key enabler for a cost and economically efficient smart
grid that needs to accommodate an increasing share of volatile RES and mitigate potential
issues of an infrastructure that is becoming older every day (SGTF 2015). On a European
level, the EU Smart Grid Task Force (SGTF) defines flexibility as follows:

Definition 2.3 (Flexibility). On an individual level, flexibility is the modification of
generation injection and/or consumption patterns in reaction to an external signal (price signal
or activation) in order to provide a service within the energy system. The parameters used
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to characterize flexibility include: the amount of power modulation, the duration, the rate of
change, the response time, the location etc. [...] Flexibility can be provided by both supply and
demand on a large scale, for example by CCGT plants, industrial ad commercial consumers,
aggregated smaller household load, distributed generation, and energy storage (SGTF 2015).

That is, flexibility can be provided by both demand and supply side and covers voluntarily
or mandatory changes in consumption or generation of electricity from/to the power system
from their usual patterns in response to certain signals (SG-CG 2014a; SGTF 2015).

Supply Flexibility Until today, the supply side provides the flexibility to dispatch its gener-
ation plants according to forecast and real-time demand in order to ensure a stable voltage
and frequency in the grid. In particular, the flexibility is determined by the generation mix
and the electricity market structure (Ockenfels, Grimm, and Zoettl 2008). For example, base
load plants have restrictive ramping constraints as ramping in any direction may reduce the
lifetime of plant components and conflict with high investment cost (Stoft 2002). In more
detail, the value of a flexible supply resource can be determined by activation time, length of
reservation period, and capacity (Petersen, Hansen, and Mølbak 2012). Moreover, electricity
market interrelations need to be considered where for example the control reserve market
in Germany can contract plants that may be of use on the spot market (C. Weber 2010). In
particular in Germany, current supply flexibility resources for the control reserve encompass
the primary, secondary, and tertiary reserves, which are distinguished by their activation
time (Klobasa 2010). In more detail, the primary control reserve is used within 30 seconds,
the secondary control reserve is activated thereafter but within five minutes and the minute
reserve is accessed within 15 minutes (50Hertz Transmission GmbH et al. 2015).

Demand Flexibility Early research by Schweppe et al. (1988) already suggests that demand
should be more adaptive to current supply conditions by means of pricing strategies. These
strategies may flatten peak demand and in turn result in cheaper long-term contracting
as well as benefits for grid operators. Moreover, Schweppe, Daryanian, and Tabors (1989)
introduce the notion that electricity should be a service and suggest a taxonomy to classify
device flexibility in terms of thermal storage, devices that can or cannot be rescheduled as well
as are periodically used. More recently, Petersen, Hansen, and Mølbak (2012) define demand
flexibility as “the ability to deviate from the plan” and subsequently provide a taxonomy
focused on flexible demands smart grids which is comprised of three generic and domain
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Figure 2.10: Demand side flexibility categories (based on He et al. (2013))

specific flexibility models: buckets, batteries, and bakeries (Petersen et al. 2013). Specifically,
in hierarchical order of quality, i.e., in terms of less restrictive to most restrictive, the models
are defined as follows: (i) buckets, which integrate power and energy constraints, e.g., a heat
pump; (ii) batteries, which additionally impose a temporal constraint, i.e., a deadline by which
the battery must be charged (e.g., for EVs); and (iii) bakeries, which extend previous models
by a continuous and constant power consumption for a specified time interval (Petersen
et al. 2013). Similarly and in a more general fashion, He et al. (2013) classify the demand (or
load) mix of consumers into five hierarchical categories based on the degrees of flexibility
which can be expected from consumers as illustrated in figure 2.10: (i) storable load (e.g.,
heating or cooling); (ii) shiftable load (e.g., dryer or dish washer); (iii) curtailable load (e.g.,
lighting or computer); (iv) base load (e.g., standby or alarms); as well as (v) self-generation
(He et al. 2013).

In the following, the key concepts DSM and DR to foster new and inherent demand
flexibility are detailed. Both DSM and DR are intrinsically linked to flexibility (SGTF 2015).

2.3.2 Demand Side Management and Demand Response

Demand side management (DSM) refers to a portfolio of primarily utility-driven measures
that aim at improving the efficiency of the demand side (Palensky and Dietrich 2011; Strbac
2008). In particular, direct load control (DLC) or interruptible/curtailable load programs
represent the most prominent kind of programs where utilities can remotely control or shut
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down devices to compensate for fluctuations of demand and supply (Albadi and El-Saadany
2008).

Definition 2.4 (Demand side management). Demand side management (DSM) [...]
aims to reduce energy consumption and improve overall electricity usage efficiency through
the implementations of policies and methods that control electricity demand. Demand side
management (DSM) is usually a task for power companies / utilities to reduce or remove peak
load [...]. The commonly used methods [...] are: [a] combination of high efficiency generation
units, peak-load shaving, load shifting, and operating practices facilitating efficient usage of
electricity, etc. DSM is therefore characterized by a “top-down” approach [...] (SG-CG 2014a).

In contrast, demand response (DR) focuses on a bottom-up approach to change consumer
behavior and using consumer flexibility based on monetary and non-monetary incentives
yet follows the same goal of improving system efficiency (Strbac 2008; SG-CG 2014a). Often,
DSM and DR are used synonymously (Albadi and El-Saadany 2008; Faruqui, Hledik, and
Sergici 2010), however, in context of smart grids and the remainder of this work, the term DR
is more commonly used (Albadi and El-Saadany 2008; Strbac 2008; Siano 2014). Following
Albadi and El-Saadany (2008) and SG-CG (2014a), DR is defined as follows:

Definition 2.5 (Demand response). Demand response implies a “bottom-up approach”
(SG-CG 2014a) [and] can be defined as the changes in electricity usage by end-use customers
from their normal consumption patterns in response to changes in the price of electricity over
time. Further, DR can be also defined as the incentive payments designed to induce lower
electricity use at times of high wholesale market prices or when system reliability is jeopardized
(DoE 2006). DR includes all intentional electricity consumption pattern modifications by end-
use customers that are intended to alter the timing, level of instantaneous demand, or total
electricity consumption (International Energy Agency 2003).

More specifically, DR programs need to engage the flexibility of consumers in such a way
as to enable them to adapt their demand to the current supply situation. DR programs can be
classified into price-based, i.e., tariffs with real-time pricing, (extreme day) critical peak pric-
ing or time of use components, and incentive-based programs, i.e., market-based programs
that reward consumers based on their performance (Albadi and El-Saadany 2008).

Central to a successful employment of DR is the engagement and empowerment of the
flexible consumer. The choice and understanding of new options and markets and their
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functions together with the necessary tools, information, and knowledge will allow con-
sumers to actively participate in DR (Sarvapali D. Ramchurn et al. 2012; SGTF 2015). For
a comprehensive overview and discussion of DR programs and their benefits, the reader is
referred to Siano (2014).

2.3.3 Aggregator Concept

In order to benefit fromDRmeasures and/or the individual provision of flexibility, consumers
need to be able to participate in electricity market environments (Sarvapali D Ramchurn et
al. 2011). However, consumers from residential areas and small and medium-sized enterprises
(SME) are faced with entry barriers such as market rules, cognitive cost, transaction cost, and
risk (He et al. 2013). Moreover, a lack of incentives and regulatory issues hinder consumers in
market participation (EC 2015a). To fully enable consumers to deliver their flexibility potential
tomarkets in context ofDR, intermediaries, i.e., aggregators, which act on behalf of consumers
are required (EC 2015a). An aggregator first needs to procure critical mass of consumers
from small groups of residential, commercial or industrial consumers into a larger power unit
in order to enhance their value for the power system (Hashmi, Hanninen, and Maki 2011).
Thereafter, an aggregator can act, trade, deliver the pooled flexibility potential on markets.
Finally, the aggregator financially settles with its contracted consumers (Subramanian et
al. 2013; SGTF 2015). The role of an aggregator can be captured by different entities such
as supply companies, retailers, or new emerging service companies (He et al. 2013; SG-CG
2014a). Therefore, novel business models for incumbents as well as new service companies
need to be created. Furthermore, an aggregator can also fill the role of a balancing responsible
party (BRP), which plays a crucial role in ensuring system stability and security of supply
(SGTF 2015).

As of today, literature lacks a clear definition of an aggregator. Aggregators are sometimes
synonymously referred to as VPPs (Awerbuch and Preston 1997; Pudjianto, Ramsay, and
Strbac 2007; Asmus 2010; Sarvapali D. Ramchurn et al. 2012) or flexibility operators as well
as flexibility aggregators (SG-CG 2014b). In the context of this work, an aggregator is defined
as follows:

Definition 2.6 (Aggregator). An aggregator is a market participant which acts as an
intermediary between markets and consumers to (i) facilitate individual consumer participation
in DR; and (ii) maximize local flexibility potential, by pooling, or aggregating, a critical mass
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of heterogeneous supply and demand flexibility from consumers. The responsibilities of an
aggregator include consumer procurement, contracting, and settlement, trading on markets,
portfolio management, and complying with balancing requirements if needed.

The service provided by aggregators can be of particular utility for DSOs in order to ensure
security of supply depending on the current grid state (SGTF 2015). This work proposes
a market-based approach, which allows a DSO to ensure security of supply by procuring
demand flexibility in short-term critical grid situations.

2.3.4 Standardization

Smart grids are comprised of a heterogeneous and interconnected landscape in the value
chain from generators to industry or household appliances on different levels such as voltage
and (inter)nationality. Moreover, interests of various stakeholders on each level need to
be accounted for. Hence, in order to securely and robustly integrate all associated actors,
the EU SGTF assigned mandate M/490 on standardization to support the European smart
grid deployment to European Standardization Organizations (ESOs), i.e., CEN, CENELEC,
and ETSI in 2011 (EC 2011). In coordination with relevant stakeholders, ESOs formed the
Smart Grid Coordination Group (SGCG) to develop a framework consisting of a techni-
cal reference architecture, consistent standards as well as sustainable processes (EC 2011).
By the end of 2014, the SGCG delivered extensive and corresponding reports on (i) a set
of standards; (ii) methodologies (i.e., models, architectures, and flexibility management);
(iii) interoperability; and (iv) information security (SG-CG 2014b).

Concepts related to flexibility management are of particular relevance for the scope of this
work. Firstly, flexibility management introduces the flexibility concept which comprises a
range of methods that cover the flexibility of demand, RES, and storage technology with the
goal of integrating RES into and optimizing the efficiency of the power system (SG-CG 2014a).
The concept identifies functional, technical, and commercial use cases and architectures for
both possible dimensions of grid and market. Moreover, flexibility management introduces
the traffic light concept (TLC) which allows BRPs such as DSOs to maintain grid stability, i.e.,
the balance of supply and demand, in critical situations through marked-based coordination
and allocation of flexibility (SG-CG 2014a). The concept stems from a definition by the
German association of energy and water industries (BDEW) and is recommended to be
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implemented within a regulatory framework in each member state. The TLC framework is
explained in detail in a later section in this work.



3

Market Design

M arket design is the discipline that concerns itself with “the creation of a venue for
buyers and sellers, and a format for transactions. (A market as a ‘pure venue’ can be

seen in perhaps its clearest form in internet auctions, where some of the questions that arise
about the location of a market are almost purely conceptual)” (Roth 2002).

Moreover, Roth (2002) highlights the importance that the aforementioned creation process
should include a design element, rather than only a conceptual analysis. Hence, traditional
methods that build upon game theoretic models must be complemented with new methods,
guidelines, and frameworks that can deal with this additional complexity. Consequently,
he notes that “[...] in the service of design, experimental[,] and computational economics
are natural complements to game theory” (Roth 2002). In this context, the mechanism
design approach represents a central engineering element of market design (Parkes 2001;
M. O. Jackson 2003; P. Milgrom 2011). Mechanism design concerns itself formally with the
design of institutions which satisfy certain objectives and with the question of how these
institutions affect outcomes under the assumption that participating agents act strategically
and hold private information about their preferences (Parkes 2001). As noted by Roth (2002),
“[...] market design calls for an engineering approach” that goes beyond simple models and
theoretic insights. Moreover, the engineering process must represent a conscious undertaking
which ensures attention to detail of the underlying market mechanism and purpose (Roth
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2002). market engineering (ME) represents a prime example for this process (Weinhardt,
Holtmann, and Neumann 2003; Weinhardt and Gimpel 2007).

This chapter firstly introduces the holistic and integrated view of market engineering and
its derived forms agile market engineering and continuous market engineering. Secondly,
the mechanism design approach which is central to the proposed model in this work is
highlighted. Finally, an overview of auctions as a prominent example of market mechanisms
is provided.

3.1 Market Engineering

Following Weinhardt and Gimpel (2007), a market is defined as follows:

Definition 3.1 (Market). A market is a set of humanly devised rules that structure the
interaction and exchange of information by self-interested participants in order to carry out
exchange transactions at a relatively low cost (Weinhardt and Gimpel 2007).

In 2003, Weinhardt, Holtmann, and Neumann (2003) coined the term market engineering,
which describes a structured, systematic, and theoretically founded procedure of designing,
implementing, evaluating, and introducing markets. Market engineering can be defined
according to Weinhardt and Gimpel (2007) as follows:

Definition 3.2 (Market engineering). Market engineering is the process of consciously
setting up or re-structuring a market in order to make it an effective and efficient means for
carrying out exchange transactions (Weinhardt and Gimpel 2007).

This definition takes a more holistic approach as opposed to traditional market design,
which in terms of market engineering is part of the market microstructure (Weinhardt,
Schnitzler, and Luckner 2007). In order to consciously design markets, the market engineer-
ing framework, sometimes also referred to as the market engineering object, and market
engineering process are proposed as shown in figure 3.1. While the market engineering
framework depicts pivotal elements of a market that a market engineer is supposed to keep
in mind, the market engineering process structures the engineering process of a market
(Weinhardt and Gimpel 2007).

In more detail, the objective of a market engineer is to achieve a desired market outcome,
i.e., an allocation or payments, or performance, in a socio-economic and legal environment.
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Figure 3.1:Market engineering framework and process (Weinhardt, Holtmann, and Neumann 2003;
Neumann 2004; Gimpel et al. 2008)

3.1.1 Market Engineering Framework

Within the market engineering framework (Weinhardt, Holtmann, and Neumann 2003),
the socio-economic and legal environment encompasses applicable laws as well as social
norms which cannot be directly influenced. In order to accomplish this objective, the trans-
action object, market structure, and auxiliary services can be designed. The market structure
comprises the components microstructure, (IT) infrastructure, and business structure as
interdependent elements. The microstructure defines the market mechanism, e.g., bidding
language, allocation and pricing rule of an auction. Moreover, the (IT) infrastructure ad-
dresses technical system and information and communication technology (ICT) details.
Finally, the business structure deals with business and pricing models, e.g., trading fees. It
should be noted that the elements of the market structure cannot be designed independently,
given the strong interdependencies among them. Additionally, auxiliary services, e.g., deci-
sion support systems (DSSs), reputation systems or hidden market design elements (Seuken,
Jain, and Parkes 2010) adjacent to the market structure represent supporting elements for
participants. Auxiliary services and the aforementioned design elements transaction object
and market structure only indirectly effect the market outcome as the main link lies in the
exogenous behavior of participating agents. It is therefore critical to asses the impact of the
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market structure on agent behavior and anticipate it accordingly by means of theoretical
models from game theory, auction theory, and mechanism design (Weinhardt and Gimpel
2007; Gimpel et al. 2008).

3.1.2 Market Engineering Process

The market engineering process provides a structured procedure to design and implement
markets and serves as a basis for this work. The process consists of four stages: Environmental
analysis, design and implementation, evaluation (or testing), and introduction (Neumann
2004; Weinhardt, Neumann, and Holtmann 2006).

Firstly, the environmental analysis phase defines the environment, market segments and
participant characteristics, objectives, and strategies. Subsequently, requirements for the
transaction object and market structure are derived. Thereby, the environment is thoroughly
characterized, a fundamental step towards the success of market design. Within this work,
the environmental analysis is performed in section 4.2.

Secondly, the design and implementation phase covers the actualmarket design andmecha-
nism design process, based on previously identified requirements. The design process consists
of a conceptual design phase, followed by a less abstract embodiment and finally a concrete
yet prototypical implementation phase. Within the conceptual design and embodiment
phase, this work defines the auction process, mechanism, and bidding language in chapter 5.
Subsequently, pricing rules are introduced in chapter 6. A prototypical implementation is
introduced in chapter 7.

Thirdly, following the design and implementation phase, the evaluation phase stipulates
the testing upon the technical and economic mechanism requirements defined beforehand.
This phase of the market engineering process is performed in chapters 7 and 8.

Finally, the introduction phase launches the market into its operation cycle after possible
refinements are incorporated.

Alternatively, the market engineering process can be described in a slightly modified five
stage model: Environmental analysis, design, evaluation, implementation, and introduction
(Weinhardt and Gimpel 2007; Gimpel et al. 2008).
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3.1.3 Current Trends and Applications

In order to adapt to recent trends and developments in the (software) engineering domain
such as rapid, iterative, and test-driven development, enhancements of the market engineer-
ing process have been proposed (Block 2010; Kranz 2015). More specifically, Block (2010)
introduces agile market engineering, which suggests to bridge the gap between business
concepts and running markets by building “[...] on short, incremental market development
cycles and frequent user feedback in order to develop and to continuously refine and improve
the electronic market platform”. More recently, Kranz (2015) highlights “the importance
of continuity in operating, monitoring, and re-designing markets” and in turn advances
the original and agile market engineering process towards continuous market engineer-
ing, an approach which focuses on “[...] aspects of continuous operation, monitoring, and
refinement”.

In addition, both the market engineering framework and process have been recently
applied in several domains. For instance, the allocation of computing grid resources is
presented by Schnizler (2007) and Schnizler et al. (2008). Similarly, the coordination and
allocation of services in service value networks is described by Blau (2009). Moreover, several
types of forecasting and prediction markets have been studied by Luckner, Kratzer, and
Weinhardt (2005), Teschner, Stathel, and Weinhardt (2011), Teschner (2012), Kranz, Teschner,
and Weinhardt (2014), and Kranz (2015).

3.2 Mechanism Design

Mechanism design provides a profound and elegant framework that aims to design institu-
tions— or mechanisms —which determine decisions based on information about individuals
in the interest of achieving certain objectives (Myerson 1988). Individuals — or agents — are
assumed to be rational and self-interested, i.e., to hold private information and act strategi-
cally for the decision at hand. Using methods from game theory, the goal of a mechanism is
to provide incentives for agents not to communicate incomplete or untruthful information
but to instead truthfully reveal complete information about their preferences, allowing the
mechanism to determine an optimal system-wide solution (Parkes 2001).
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Definition 3.3 (Mechanism Design). The mechanism design problem is to compute an
optimal and socially desirable outcome based on private information on individual preferences
from rational and self-interested agents (Parkes 2001).

3.2.1 Agents, Games, and Strategies

Mechanism design is profoundly informed by game theory. Game theory provides methods
to study systems of self-interested agents in conditions of strategic interaction, i.e., at least
one agent has an impact on the strategy of at least one other agent (Rasmusen 2006; Parkes
2001). The following important concepts and definitions provide the foundation for methods
used in this thesis.

Commonly known in game theory as players in games (Rasmusen 2006), agents represent
individuals or users in mechanism design research (Nisan et al. 2007). An agent’s type
abstracts from private information about its utility for different outcomes and also defines
the preference structure of the agent. An agent’s strategy defines its complete and contingent
plan, which allows the agent to select different actions depending on every unique state of
the game (Parkes 2001; Rasmusen 2006). The set of all strategies of an agent is defined by its
strategy profile. An equilibrium is the combination of strategies chosen by each agent. It allows
the mechanism designer to observe what actions result from the agents’ plans, therefore to
study the outcome of the mechanism (Rasmusen 2006). Agents are assumed to be rational,
therefore only care about maximizing their utility (Nisan et al. 2007).

Definition 3.4 (Outcome). Let o ∈ O be an outcome in the set of all possible outcomes
O of a mechanism.

Definition 3.5 (Agent). Let agent i be the index of an agent in the set of agents I , where
agents are indexed i = 1, . . . ,N , with N = ∣I ∣.

Definition 3.6 (Agent type). Given agent i ∈ I , let agent i’s private information be
denoted by agent type θ i ∈ Θi , where Θi denotes the set of all potential agent types. Agent type
θ i determines agent i’s preferences over different outcomes o ∈ O.

Definition 3.7 (Strategy). Given agent i ∈ I , let s i(θ i) ∈ S i denote the strategy of agent
i given agent type θ i , where S i ⊆ S denotes set of all available strategies to agent i. A more
convenient notation implicitly assumes an agent’s type, therefore alternatively, let s i ∈ S i denote
agent i’s strategy given its type θ i .
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Definition 3.8 (Strategy profile). Given the set of agents I , let vector s(θ) = (s1(θ1),
. . . , sN(θN)) denote the strategy profile for all agents, containing all agent strategies. Implicitly
assuming an agents’ type, alternatively let s = (s1, . . . , sN) denote the joint strategies of all
agents, and s−i = (s1, . . . , s i−1, s i+1, sN) denote the strategies of all gents except agent i.

3.2.2 Utility and Preferences

Recall that agents in game theory are assumed to act rational. Agents therefore follow a
strategy to maximize their individual utility. They express their preferences over different
alternative outcomes, i.e., over their own strategy and the strategies of other agents, by means
of a utility function (Parkes 2001). In more detail, objectives of agents are compiled into
preference relations, i.e., a binary relation that allows a comparison between two alternatives.
It is the general assumption in microeconomic theory that individual preferences are rational
and therefore can be represented by a utility function (Mas-Colell, Whinston, and Green
1995). In other words, any rational agent possesses a utility function (Russell and Norvig
1995).

Definition 3.9 (Utility function). Given agent i ∈ I , its preferences over different out-
comes θ i and strategy profile s, let utility function u i(s, θ i) ∈ U denote the utility of agent i.
More clearly, utility function u i(⋅) determines agent i’s preferences over its own strategy and the
strategy of all other agents.

Example 3.1 (Utility function and preferences). Let outcomes o1, o2 ∈ O. Agent i’s
utility function defines a preference ordering ≻i with

o1 ≻i o2⇔ u i(o1, θ i) > u i(o2, θ i) (3.1)

That is, agent i strictly prefers outcome o1 over outcome o2 (Parkes 2001).

In game theory, preferences of agents are commonly assumed to be quasi-linear (Parkes
2001; M. O. Jackson 2003). Therefore, for quasi-linear preferences, an agents’ utility function
is denoted as follows:

Definition 3.10 (Quasi-linear preferences). Given agent i ∈ I and its preferences over
different outcomes θ i , let agent i’s utility from quasi-linear preferences

u i(o, θ i) = v i(o, θ i) − pi (3.2)
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where v i(o, θ i) is agent i’s value for an alternative outcome o and pi is agent i’s payment to the
mechanism (Parkes 2001; Nisan et al. 2007).

The assumption of quasi-linear preferences for agents also holds for the work at hand.
For a detailed discussion on quasi-linear preferences, the reader is referred to Mas-Colell,
Whinston, and Green (1995) and Parkes (2001).

3.2.2.1 Social Choice

The core of mechanism design is the implementation of social choices in a strategic setting,
where agents with private information about their preferences are assumed to act rationally
(Nisan et al. 2007). A social choice function is implemented by a mechanism in order to
select an optimal outcome o∗ given each possible combination of agent types and other
characteristics (Dasgupta, Hammond, and Maskin 1979). In other words, by aggregating the
preferences of all agents, a system-wide social choice is selected (Parkes 2001). For example,
in market-based environments, each agent has its own preferences, yet the outcome, i.e.,
the reallocation of goods and money, represents a single social choice. Auctions constitute
another prominent example, where the social choice is defined by the auction rules and yields
the identity of the winner(s) (Nisan et al. 2007).

Definition 3.11 (Social choice function). Given agent types θ = (θ1, . . . , θN) ∈ Θ,
social choice function f ∶ Θ1 × ⋅ ⋅ ⋅ ×ΘN → O selects an outcome f (θ) = o ∈ O from the strategy
profile s(θ) = (s1(θ1), . . . , sN(θN)).

3.2.2.2 Pareto Optimality

An outcome selected by social choice function f is pareto optimal (or pareto efficient) if there
is no other outcome that would improve an agent’s utility without decreasing the utility of at
least one other agent (Parkes 2001).

Definition 3.12 (Pareto optimality). An outcome of social choice function f (θ) = o is
pareto optimal, if and only if

u i(o′, θ i) > u i(o, θ i) ⇒ ∃ j ∈ I ∶ u i(o′, θ i) < u i(o, θ i) (3.3)

∀o′ ≠ f (θ), θ ∈ Θ
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3.2.2.3 Nash Equilibrium

A strategy profile is a Nash equilibrium (NE) if no agent has an incentive to deviate from
its strategy, given that the other agents do not deviate (Nash 1950; Rasmusen 2006). A
NE is widely accepted in game theory and more often applicable than a dominant-strategy
equilibrium (Rasmusen 2006).

Definition 3.13 (Nash equilibrium). A strategy profile s = (s1, . . . , sN) is a NE if and
only if

u i(s i , s−i , θ i) ≥ u i(s′i , s−i , θ i) ∀u i ∈ U ,∀s′i , ≠ s i (3.4)

3.2.2.4 SocialWelfare

Social welfare is a global mechanism evaluation criterion. Therefore, it allows the compar-
ison of alternative mechanisms by comparing their outcomes. It determines a preference
aggregation over all participating agents and thus can be denoted as the sum of the payoffs
or utilities of all agents (T. W. Sandholm 1999). While several notions of social welfare exist
(Sen 1970; Arrow, Sen, and Suzumura 2011), this work applies the concept of utilitarian social
welfare, which denotes the sum of the utilities of all agents.

Definition 3.14 (Social welfare). Given a set of agents I and mechanism outcome o, let
social welfare sw(⋅) denote the aggregation of all participating agent preferences as

sw(o) =∑
i∈I
u i(o, θ i) (3.5)

3.2.3 Mechanism Implementation and Properties

Having established the basic concepts of agents, utility, preferences, and social choice, a
mechanism is defined as follows (Parkes 2001; Nisan et al. 2007):

Definition 3.15 (Mechanism). A mechanismM = (S 1, . . . ,SN ,m(⋅)) defines the sets
of possible strategies S i ⊆ S∀i ∈ I and an outcome function m ∶ S 1 × ⋅ ⋅ ⋅ × SN → O that maps
the strategy profiles to outcomes.
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That is, a mechanism defines the available strategies to each agent and the function to
determine the outcome, based on these strategy profile of all agents. In settings with quasi-
linear preferences, the outcome function o(s) can be split into a combination of a choice or
allocation function κ(s) ∈ O and a transfer or payment function ρ i(s) (Parkes 2001).

As noted in definition 3.3 before, the objective of mechanism design is to compute an
optimal social choice to a problem where rational and self-interested agents act with pri-
vate information and individual preferences. Consequently, agents follow a strategy that
maximizes their individual utility (Nisan et al. 2007). The concept of an equilibrium, i.e.,
an optimal strategy profile comprised of an optimal strategy for each agent, describes the
desired outcome of a mechanism (Rasmusen 2006). Hence, a mechanism implements a social
choice function if its equilibrium outcome, i.e., the outcome computed with equilibrium
agent strategies, correspond to the outcomes of the social choice function for all possible
agent preferences (Parkes 2001).

Definition 3.16 (Mechanism implementation). MechanismM = (S 1, . . . ,SN ,m(⋅))
implements social choice function f (θ) with outcome o∗ ∈ O, if m(s∗1 (θ1), . . . , s∗N(θN)) =
f (θ),∀(θ1, . . . , θN) ∈ Θ1 × ⋅ ⋅ ⋅ × ΘN , where strategy profile (s∗1 , . . . , s∗N) is an equilibrium

solution induced byM.

A mechanism, or the social choice function it implements, has several desired properties as
detailed in the following. While these properties are formally properties of the implemented
social choice function, they are often referred to as properties of the mechanism (Nisan
et al. 2007). Throughout the remainder of this work, this notion of mechanism properties is
adhered to.

3.2.3.1 Allocative Efficiency

A mechanismM is allocative efficient if it maximizes the total utility, or social welfare, over
all agents types. Note that the mechanism simply asks the agents to report their types. In
such a basic setting, agents have no reason, or incentive, to report their true types, since the
strategic manipulation of preferences may lead to a better individual outcome (Parkes 2001;
Nisan et al. 2007).
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Definition 3.17 (Allocative efficiency (AE)). Mechanism M = (S 1, . . . ,SN ,m(⋅))
with m(s(θ)) = o and reported agent types s(θ̂) is allocative efficient, if and only if

∑
i∈I
u i(o, θ̂ i) ≥∑

i∈I
u i(o′, θ̂ i) (3.6)

⇔ sw(m(s(θ̂))) = sw(o) ≥ sw(o′) (3.7)

∀s(θ̂) ∈ (S 1, . . . ,SN), o′ ∈ O

3.2.3.2 Incentive Compatibility

MechanismM is incentive compatible if it is rational for agents to report truthful information
about their types (preferences) in equilibrium. In particular, under an incentive compatible
mechanism, agents have no incentive to misreport their types to the mechanism in order to
increase their utility (Parkes 2001). An incentive compatible mechanism can also be referred
to as strategy-proof or truthful (Nisan et al. 2007).

Definition3.18 (Incentive compatibility (IC)). Given true agent types θ = (θ1, . . . , θN) ∈
Θ and reported type θ̂ i of agent i ∈ I , a mechanismM is incentive compatible if and only if

u i(m(θ i , θ−i)) ≥ u i(m(θ̂ i , θ−i)) ∀θ̂ i ∈ Θi (3.8)

3.2.3.3 Individual Rationality

A mechanismM is individually rational if no agent is worse off by participating in the
mechanism than by not participating. More specifically, participating agents always receive
non-negative utility which is greater or equal to their utility than under no participation
(Parkes 2001).

Definition 3.19 (Individual rationality (IR)). Given the utility u i(m(θ̂ i , θ̂−i)) of agent
i ∈ I if agent i participates and the utility u i(m(θ̂ i , θ̂−i)) if agent i does not participate. A
mechanismM is (ex-post) individually rational if and only if

u i(m(θ̂ i , θ̂−i)) ≥ u i(m(θ̂ i , θ̂−i)) ∀i ∈ I (3.9)

This definition holds for ex-post individual rationality, where agents must have knowledge
about the mechanism outcome. However, in mechanisms where agents must decide on
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participating or not before they know their preferences and hence are not able to observe
the outcome, the weaker concept of ex-ante individual rationality is more appropriate. Ex-
ante individual rationality, or interim individual rationality, uses the concept of expected
agent utility (Parkes 2001). However, a requirement for ex-ante individual rationality is the
knowledge of distributional information about the preferences θ̂−i of all other agents (Parkes
2001; Nisan et al. 2007).

Definition 3.20 (Ex-ante individual rationality). Given the expected utility of agent
i ∈ I if agent i participates, E(u i(m(θ̂ i , θ̂−i))), and the expected utility if agent i does not
participate, E(u i(m(θ̂ i , θ̂−i))), a mechanismM is ex-ante individually rational if and only if

E(u i(m(θ̂ i , θ̂−i))) ≥ E(u i(m(θ̂ i , θ̂−i))) ∀i ∈ I (3.10)

3.2.3.4 Budget Balance

Recall that for quasi-linear preferences, the outcome function o(⋅) can be split into a com-
bination of a choice or outcome function κ(θ̂) and a transfer or payment function ρ i(θ̂)
(Parkes 2001). In a (strong) budget balanced mechanism, no net transfers into or out of the
mechanism are required, i.e., payments are redistributed among the agents (Parkes 2001;
Nisan et al. 2007).

Definition 3.21 (Budget balance (BB)). Given mechanismM and outcome function
m(θ̂) = (κ(θ̂), ρ1(θ̂), . . . , ρN(θ̂)), a mechanismM is budget balanced if and only if

∑
i∈I
ρ i(θ̂) = 0 (3.11)

The combination of allocative efficiency and budget balance implies pareto optimality
(Parkes 2001). Additionally, the concept of weak budget balance allows net transfers from
agents to the mechanism, but not the reverse case, i.e., no net payments from the mechanism
to the agents (Parkes 2001; Nisan et al. 2007).

Definition 3.22 (Weak budget balance). Given mechanismM and outcome function
m(θ̂) = (κ(θ̂), ρ1(θ̂), . . . , ρN(θ̂)), a mechanismM is weakly budget balanced if and only if

∑
i∈I
ρ i(θ̂) ≥ 0 (3.12)
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3.2.3.5 Computational Complexity

The subject of complexity, or (in)tractability, considers both computational complexity and
communication complexity (Garey and Johnson 1979). In particular, two different levels of
a mechanism’s complexity can be distinguished. Firstly, the mechanism infrastructure and
secondly, the agents (Parkes 2001; Kalagnanam and Parkes 2004).

Computational complexity in mechanism design is concerned with the computational
resources required to compute the outcome of a mechanism (Parkes 2001). In mechanisms
that centrally determine an outcome, such complexity might break the usefulness of a mech-
anism due to its intractability (Dash, Jennings, and Parkes 2003). Moreover, computational
complexity covers the problem that agents are faced with the difficulty to determine optimal
or dominant strategies and to compute their preferences (Parkes 2001). As agents are assumed
to have limited computational power, calculating preferences for all possible outcomes or
determining equilibrium strategies might present a major limitation (Dash, Jennings, and
Parkes 2003). The challenge of lowering this complexity has led to the emerging fields of
research computational (or algorithmic) mechanism design (Dash, Jennings, and Parkes
2003; Nisan et al. 2007).

Communication complexity is concerned with the amount of information that agents have
to provide and subsequently report to the mechanism (Parkes 2001; Nisan and Segal 2006).
In order to reduce this complexity, providing compact and structured bidding languages
represents a promising approach (Parkes 2001; Kalagnanam and Parkes 2004; Endriss and
Maudet 2005; Goetzendorff et al. 2015). Ideally, a compact bidding language structure should
be exploited throughout the mechanism (Parkes 2001).

For the case of (combinatorial) auctions, both computational and communication com-
plexity play important roles (Nisan et al. 2007) and are covered in the remainder of this
work.

3.2.4 Direct-Revelation Mechanisms

As noted before, the mechanism design problem is to compute an optimal and socially
desirable outcome based on private information on individual preferences from rational and
self-interested agents. In order to achieve this goal, it is key to provide appropriate incentives
to agents so that they will choose their strategies as a function of their private information
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(Parkes 2001). In situations where agents clearly have best strategies, these strategies are
referred to as dominant strategies. Once the notion of dominant strategies is defined, the
concept of a direct mechanism and its characteristics can be devised appropriately.

3.2.4.1 Dominant Strategies

Given all possible strategies of other agents, a dominant strategy is the best response of an
agent to any available strategies other agents might choose (Parkes 2001). More specifically,
a dominant strategy will always maximize the agent’s expected utility, whatever strategies
other agents may pick (Rasmusen 2006). Note that in most games, no dominant strategy
exists and agents therefore must analyze each others’ actions to choose their own (Rasmusen
2006; Nisan et al. 2007).

Definition 3.23 (Dominant strategy). Given agent i ∈ I , i’s strategy s i and all strategies
of other agents s−i , s i is a dominant strategy, if and only if

u i(s i , s−i , θ i) ≥ u i(s′i , s−i , θ i) ∀s′i ≠ s i , s−i ∈ S−i (3.13)

3.2.4.2 Revelation Principle

It is important to first emphasize the significant difference of direct and indirect mechanisms.
A direct mechanism allows agents to simultaneously report their preferences only once
and subsequently computes an outcome. On the contrary, an indirect mechanism allows
agents to report several preferences and does not immediately determine an outcome but
presents agents with individual feedback instead. An agent can integrate this feedback into its
strategy afterwards and report updated preferences. For this reason, an indirect mechanism
is sometimes also referred to as an iterative mechanism (Parkes 2001; Nisan et al. 2007). The
design space for possible mechanisms is large, which poses the problem of determining the
best mechanism given individual design requirements. Using the revelation principle, an
important simplification towards this question can be made. The revelation principle as
detailed below states that it is sufficient to focus on incentive compatible direct-revelation
mechanisms (Kalagnanam and Parkes 2004). Throughout the remainder of this work, the
focus is therefore restricted to direct mechanisms.
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Definition 3.24 (Direct-revelation mechanism (DRM)). A direct-revelation mecha-
nismM = (Θ1, . . . , ΘN ,m(⋅)) restricts agent strategies S i = Θi∀i ∈ I , and has outcome
function m ∶ Θ1 × ⋅ ⋅ ⋅ ×ΘN → O which determines an outcome m(θ̂) = o based on reported
preferences from all agents θ̂.

That is, the only available strategy, or action, to an agent is to directly report its (true or
untrue) preferences θ̂ i = s i(θ i) (Parkes 2001).

If an agent reports true information about its preferences, the agent is said to have a truth-
revealing, or truth-telling, strategy (Nisan et al. 2007). If truth-revelation is a dominant-
strategy equilibrium, a mechanism is referred to as strategy-proof (Parkes 2001). The last
prerequisite to the revelation principle represents the definition of an incentive compatible
mechanism implementation, which states that the social choice function is computed in
equilibrium, i.e., the outcome function equals the social choice function (Parkes 2001).
Additionally, a mechanism is denoted as strategy-proof if truth-revelation is a dominant
strategy equilibrium, i.e., the mechanism is dominant strategy incentive compatible (Parkes
2001).

Definition 3.25 (Truth-revelation). Strategy s i ∈ S i of agent i ∈ I is truth-revealing if
and only if s i(θ i) = θ i ,∀θ i ∈ Θi

Definition 3.26 (Strategy-proof). A direct-revelation mechanismM is strategy-proof,
if and only if truth revelation is a dominant-strategy equilibrium.

Definition3.27 (Incentive compatible implementation). Given outcome functionm(θ),
an incentive compatible direct-revelation mechanismM implements social choice function
f (θ) = m(θ).

The well-known revelation principle (Gibbard 1973; Green and Laffont 1977; Myerson 1979,
1981) states that any direct or indirect mechanism can be transformed into an equivalent
incentive compatible direct-revelation mechanism with the same social choice function
(Parkes 2001). The major implication of this principle is that in order to find social choice
functions that can be implemented in dominant strategies, the focus can be restricted to the
set of direct-revelation mechanisms (Parkes 2001). Thus, it is sufficient to define functions
that map agent types to outcomes, based on the constraints that ensure that the mechanism
is incentive compatible (Kalagnanam and Parkes 2004).
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Definition 3.28 (Revelation principle). If any mechanismM implements social choice
function f (⋅) in dominant strategies, then the direct mechanism f is dominant strategy incentive
compatible, i.e., in a strategy-proof mechanism.

3.2.4.3 Vickrey-Clarke-Groves Mechanisms

Among the class of direct-revelation mechanisms, the Vickrey-Clarke-Groves (VCG) mecha-
nisms (Vickrey 1961; Clarke 1971; Groves 1973) are the only mechanisms that are allocative
efficient and strategy-proof for agents with quasi-linear preferences and general valuation
functions (Green and Laffont 1977; Parkes 2001). The VCG mechanisms represent a version
of the Groves mechanisms and are commonly referred to as such (Parkes 2001).

Recall that for quasi-linear preferences, the outcome function o(θ̂) can be split into a
combination of a choice or allocation function κ(θ̂) → K ∈ O and a transfer or payment
function ρ i(θ̂). The choice function in a Groves mechanism computes the selection, i.e.,
choice κ∗, which maximizes the total reported valuations over all agents:

κ∗(θ̂) = argmax
κ∈K

∑
i∈I
v i(κ, θ̂ i) (3.14)

The payment function in a Groves mechanism introduces the degree of freedom that defines
the class of Groves mechanisms by means of an arbitrary function on reported agent types or
a constant h i ∶ Θ−i → R:

ρ i(θ̂) = h i(θ̂−i) −∑
j≠i
v j(κ∗, θ̂ j) (3.15)

Groves mechanisms are allocative efficient and strategy-proof, i.e., truth revelation is a
dominant strategy for each agent, independent of the reported types of other agents (Green
and Laffont 1977). Therefore, reporting its true types θ̂ i = θ i aligns agent i’s incentives with
the goal of achieving allocative efficiency (Kalagnanam and Parkes 2004). Additionally,
Groves mechanisms are unique in the sense that they are the only allocative efficient and
strategy-proof mechanisms (Green and Laffont 1977). For detailed proofs, the reader is
referred to Green and Laffont (1977) and Parkes (2001).

The Vickrey-Clarke-Groves, or Pivotal or Clarke (Clarke 1971), mechanism represents
a special case of the Groves mechanisms. It maximizes the payments by the agents to the
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mechanism for all strategy-proof and allocative efficientmechanisms and is ex-post individual
rational as well as weakly budget balanced (Parkes 2001). The additional choice function of a
VCG mechanism is defined as

h i(θ−i) =∑
j≠i
v j(ρ∗−i(θ̂−i), θ̂ j) (3.16)

where ρ∗−i(θ̂−i) is defined as the optimal outcome without agent i (Clarke 1971):

ρ∗−i(θ̂−i) = argmax
κ∈K

∑
j≠i
v j(κ, θ̂ j) (3.17)

That is, function h i(θ−i) internalizes the externality imposed by agent i on all other agents
in the system (Kalagnanam and Parkes 2004). For a non-participating agent, the agents’
externality is assumed to be zero (Parkes 2001). Consequently, the payment function ρvcg,i(θ̂)
of a VCG mechanism is defined as follows (Kalagnanam and Parkes 2004):

ρvcg,i(θ̂) =∑
j≠i
v j(ρ∗−i(θ̂−i), θ̂ j) −∑

j≠i
v j(κ∗, θ̂ j) (3.18)

The VCG mechanism provides the foundation for proofs of the following impossibility
theorems in mechanism design.

3.2.4.4 Impossibility Results

Based on the characterization of Groves and the VCGmechanisms, mechanism design theory
has established a fundamental way of showing which economic constraints, i.e., AE, IC, IR,
andBB, can be realized for direct-revelationmechanisms. Nevertheless, not all constraints can
always be achieved simultaneously, introducing impossibility results for mechanism design.
These impossibility results are derived from showing a conflict between different mechanism
constraints and in turn generalizing the results by means of the revelation principle (Krishna
and Perry 1997; Parkes 2001).

Theorem3.1 (Hurwicz-Green-Laffont). There does not exist an efficient, budget balanced,
and strategy-proof mechanism implementation in an exchange for agents with quasi-linear
preferences (Hurwicz 1972; Green and Laffont 1977; Hurwicz and Walker 1990; Parkes 2001).
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That is, if AE andBB aremechanism constraints, a dominant-strategy solution is impossible
to find by means of the revelation principle (Parkes 2001). In a more general fashion, the
previous theorem of can be extended to include Bayesian-Nash implementation for the
additional condition of (intermin) individual rationality.

Theorem 3.2 (Myerson-Satterthwaite). There does not exist an efficient, weakly budget
balanced, (interim) individual rational, and Bayesian-Nash incentive compatible mechanism in
an exchange for agents with quasi-linear preferences (Myerson 1983; Parkes 2001).

Consequently, at most two of AE, IR, and BB constraints can be achieved in a market with
agents with quasi-linear preferences. A detailed list of possibility and impossibility results is
provided by Parkes (2001).



4

Markets for Smart Distribution Grids

T he goal of this chapter is to bring together previously discussed fields of smart grids,
market engineering, and market design in order to elaborate on the emerging necessity

of markets in smart grids. While the design space for markets in smart grids has a great
potential on several levels, the work at hand focuses on local, i.e., residential, markets which
are inherently positioned in distribution grids. As identified by policy makers, new and
updated markets which are able to reliably integrate (demand side) flexibility and renewable
energy sources (RES) in a more real time manner on such local levels are key to the success
of smart grids (EC 2015a; BMWi 2015a).

Central to ensuring security of supply in a distribution grid, the distribution system
operator (DSO) is confronted with new challenges in managing RES and flexible consumers.
In order to successfully meet the requirements imposed on the DSO, the DSO needs to
perform a more active grid management and make use of markets to procure flexibility or
flexibility services from consumers or intermediaries that manage groups of consumers, i.e.,
aggregators. Therefore, this chapter first discusses the role of the aggregator in the current
environment in section 4.1. For this purpose, an overview of current research approaches,
real world industry projects, and aggregator business models structured along the market
engineering framework in the spirit of Weinhardt (2012) is presented. All components
of the market engineering framework are mapped to current developments in research,
politics, and industry, followed by a classification of emerging projects within each framework
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element. Moreover, future research opportunities for each element in the market engineering
framework are highlighted. Subsequently, section 4.2 outlines the corresponding research
environment for the DSO. That is, the requirements for a market mechanism which can
be employed by a DSO to procure load flexibility from aggregators are identified. Finally,
existing market mechanisms are examined towards the identified requirements. Henceforth,
the role of the DSO remains central for the remainder of this work. Parts of this chapter are
adapted from the following previously published papers:

• David Dauer, Paul Karaenke, and Christof Weinhardt. 2015. “Load Balancing in the
Smart Grid: A Package Auction and Compact Bidding Language.” In Proceedings of
the Thirty Sixth International Conference on Information Systems. Fort Worth, TX.

• David Dauer, Frederick vom Scheidt, and Christof Weinhardt. 2016. “Towards Smart
Distribution Grids: A Structured Market Engineering Review.” In Proceeings of the
Second Karlsruhe Service Summit Research Workshop. Karlsruhe.

4.1 A Market Engineering Overview of Aggregators

New proposals for energy market designs on both national (BMWi 2015a) and EU level (EC
2015a) call for a better integration of the increasing share of RES as well as opening the market
to more actors in order to utilize their flexibility. In particular, DSOs and aggregators could
leverage flexibility from consumers to avoid more costly options such as using the control
reserve and to further generate revenue from new business models. Moreover, flexibility
products and services as well as other measures beneficial to the grid, and therefore beneficial
to security of supply, are necessary.

In the following, this section gives a structured overview and analysis of current research
approaches and real world industry projects in Germany regarding aggregators in distribu-
tion grids along the elements of the market engineering framework, which is introduced
in section 3.1 and illustrated in figure 3.1a. Moreover, all components of the market engi-
neering framework are analyzed and illustrated by examples. In addition, future research
opportunities are highlighted for each framework element.

It is important to note that this section broadens the focus from the perspective of the
market engineer to additionally highlight and incorporate the role of market intermediaries,
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or aggregators. Aggregators can also take the role of a market engineer, where their market
environment currently depicts a one-sided market, sometimes with a fixed price strategy.
Nevertheless, engineering a business structure and designing appropriate transaction objects
towards a market outcome still remains a valid and important task.

4.1.1 Economic and Legal Environment

Both on a European Union (EU) as well as on a national level, efforts towards achieving
ambitious energy targets, such as the EU 2030 targets (EC 2015a) or the exit from nuclear
power generation (BMWi 2015a), are driving changes to the current legal and economic
environment which governs energy markets. Most recently, the EU started working on
proposals for a new energy market design, which envisions a market design that should
allow innovative companies to provide for the electricity needs of consumers by using new
technologies, paradigms, products, and services (EC 2015a). The proposed framework should
not only deliver suitable EU-wide electricity markets that allow for new incentives to integrate
RES, but also to promote the coordination of energy policies as well as to ensure the security of
supply. Inmore detail, opening themarket tomore actors, therefore allowing access to flexible
demand and new electricity service providers, e.g., aggregators, remains a priority. Moreover,
it is encouraged to establish better flexible and integrated short-term markets to allow more
players on the supply and demand side to compete with conventional generators. In addition,
removing obstacles for consumers represents a further item on the EU’s agenda (EC 2015b).
In particular, obstacles such as the lack of information on cost and consumption, grid charges,
insufficient competition in retail markets and the absence of markets for residential electricity
services as well as demand response (DR) must be addressed.

In late 2015, German policy established measures that target the development of an ad-
vanced electricity market – the electricity market 2.0 (BMWi 2015a). In part driven by EU
policy, but mainly specific to national issues, the electricity market 2.0 draft tackles issues con-
cerning the improvement of market mechanisms, fostering the market participants’ flexibility,
as well as the integration into the EU’s internal energy market (IEM). Of particular interest
is that DSOs, faced with a growing integration of RES, are required to perform new tasks
such as feeding electricity back to higher voltage levels, expanding the grid, and monitoring
security of supply under new conditions. In order to ensure security of supply, the integration
and coordination of markets and distribution grids is of high significance (BMWi 2015a).
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Clearly, both EU and national agenda in Germany require actions to strengthen the role of
DSOs. By leveraging flexibility from consumers, more costly options in expectation such as
re-dispatching, balancing, or feed-in-management can be avoided. Above all, it is necessary
to use flexibility services and other measures beneficial to the grid and security of supply.

4.1.2 Market Outcome

Markets are designed to achieve a desired outcome, i.e., an allocation and pricing result. The
performance of a market can be measured based on the market structure and in particular
based on the agent behavior, i.e., their preferences and actions, as well as the market outcome
(Weinhardt, Holtmann, and Neumann 2003). Well-known global economic performance
criteria are social welfare and (allocative) efficiency (T. W. Sandholm 1999). Concerning
the design of markets for distribution grids, market efficiency is crucial in order to ensure
a continuous balance of supply and demand. Shortages on either side can result in costly
emergency measures. Considering system stability, incentives of agents should be aligned
with security of supply inmind to preventmarket failure. Moreover, the following suggestions
for outcome objectives of secondary nature represent promising, yet important goals towards
the success of local markets in smart grids.

• Consumer privacy needs to be protected in light of the large amount of high-resolution
data collected by smart meters. Suitable arrangements in the IT infrastructure can
support this outcome goal.

• Market mechanisms need to be efficient in terms of computational cost. Waiting times
for consumers regarding feedback needs to be kept at a minimum and basically not
perceivable whenever possible.

• In order to integrate consumers into such markets, entities such as aggregators are
required. These in turn will only operate given viable business models. Thus, a market
outcome needs to consider the (maximization of) revenue streams not only for the
market engineer but also for its participants.

These criteria can be achieved by designing the market structure and transaction object in
an adequate manner. Focusing on aggregators, the main market outcome is to allocate and
in turn provide balancing power to ensure grid stability by efficiently controlling small power
plants or to manage a pool of consumer batteries efficiently. For example, by connecting
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a small plant via Next Kraftwerke’s Next Box to a virtual power plant (VPP), consumers
can gain a share of revenue generated from the commercialization of balancing power by
offering flexibility to the market mechanism (Next Kraftwerke 2015b). Beegy Solar pursues a
similar approach, but focuses on solar generation while providing strong incentives such as
guaranteed savings (Beegy 2015).

4.1.3 Agent Behavior

Agent behavior results from the transaction object and market structure. Therefore, it is
not the goal of the market engineer to influence this behavior, but instead to analyze and
anticipate the behavior and characteristics of agents (Weinhardt, Holtmann, and Neumann
2003; Weinhardt and Gimpel 2007). In context of the smart grid, agents, or consumers,
are expected to offer their flexibility to a market or market intermediary, i.e., an aggregator
(Albadi and El-Saadany 2008). It is therefore key to identify flexibility among consumers.
Accordingly, Strbac (2008) describes flexibility as deferring or reducing loads over time.
He et al. (2013) classify consumer load types into storable, shiftable, curtailable, and base
load as well as self-generation. Similarly, Petersen, Hansen, and Mølbak (2012) and Petersen
et al. (2013) present a taxonomy for different quality levels of flexibility. Current research
approaches suggest DR programs (Albadi and El-Saadany 2008; Palensky and Dietrich
2011) that should incentivize consumers to shift their various load types. In addition, other
approaches to stimulate agent behavior might include:

• Gamification, i.e., using game design elements such as rankings in non-game contexts
(Deterding et al. 2011) to support the consumers’ value creation (Huotari and Hamari
2012). By stimulating consumer participation in smart grids, they are more likely to
offer their preferences on flexibility to the market or market intermediaries.

• Taking up the last point on user participation, hidden markets (Seuken, Jain, and
Parkes 2010) and market user interface design (Seuken et al. 2012) can influence and
mediate user behavior with the graphical user interface of a market. Hence, they
facilitate consumer participation.

• In light of the rising sharing economy (Belk 2007; Hawlitschek, Teubner, and Gimpel
2016), peer-to-peer (P2P) platforms present an opportunity to communicate and
share different transactions objects with close neighbors or friends. Communities
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can share generation capacity and increase self-consumption of their electricity. The
increased purchasing power allows larger generation provisioning while at the same
time decreasing grid fees (buzzn 2015).

When looking at real world examples of aggregators, the strategy of employing hidden
markets can be named. Seuken, Jain, and Parkes (2010) state that “the complexities of the
market must be hidden and the interaction for the user must be seamless” in cases where
users participate in markets in everyday life without being experts in the field. Since this is
clearly the case for a lot of potential consumers of, e.g., solar power plants and intelligent
energy management software, it makes sense not to inform consumers about the details
behind the aggregators’ business models. Private owners of small power plants probably
would not want to have to actively make decisions about when and how to sell their electricity
on the market. Instead they prefer to hand over the responsibility to a so-called aggregator
who acts and trades in their favor. Existing companies putting this approach into practice are
for example Next Kraftwerke, Caterva, LichtBlick, and Beegy. Some aggregators go as far as
positioning themselves as full-line providers which take care of the whole installation process,
connection to the grid, all legal formalities, and the constant monitoring and management.
This minimizes efforts and increases consumer participation.

4.1.4 Market Structure

Central to a functioning market structure are active market participants. Focusing on
distribution grids, strengthening the role of DSOs in markets and enabling the participation
of flexible users and aggregators, i.e., businesses that facilitate the participation of flexible
users in (new) markets, represent a key challenges (BMWi 2015b). New transaction objects
and market microstructures are emerging, while IT infrastructure considerations on privacy
and security need to be addressed.

4.1.4.1 Microstructure

Themarket microstructure describes themechanism under which resources are allocated and
priced. It consists of a market’s trading rules and systems, considers structural characteristics
of markets and researches into the process through which prices and volumes are determined.
Central elements of market microstructure are therefore the market model or auction type,
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the execution system, the trading mechanism, and the degree of transparency (O’Hara 1998).
Moreover, the form in which information is exchanged, i.e., the bidding language, is defined
in the microstructure (Weinhardt, Holtmann, and Neumann 2003).

Sarvapali D Ramchurn et al. (2011) present a decentralized mechanism to manage demand
in smart grids. The mechanism manages agents through a pricing mechanism that tries to
avoid peak loads. Höning and Poutré (2014) introduce a combination of an ahead market
and a last-minute balancing market. Their ahead market supports both binding ahead-
commitments and reserve capacity bids. Lamparter, Becher, and Fischer (2010) present a
market mechanism that incentivizes agents to reveal their true preferences, therefore allowing
an efficient solution for coordinating demand and supply. They note that the platform is
suitable even for single local energy exchanges. Moreover, Samadi et al. (2012) propose a
mechanism for demand side management (DSM) which aims at maximizing social welfare
of all agents while minimizing total generation cost.

When applying the microstructure element of the framework to aggregators (which can
be viewed as markets on their own), several differences to classical markets become visible.
First of all, the market mechanism corresponds to the general terms and conditions of the
respective aggregator. These terms and conditions basically define the rules of the trade, such
as the delivery of the product and the payment period. Furthermore, usually no auction type
can be specified since auctions are rarely utilized as opposed to fixed prices. Consumers do
not submit bids but rather inquire (customized) offers. As can be seen in table 4.1, some
examined companies offer customized products and services with individual pricing, while
others have a general fixed price product portfolio.

4.1.4.2 IT Infrastructure

Apart from the physical grid infrastructure, IT infrastructure, or information and commu-
nication technology (ICT), is considered to be a fundamental and at the same time critical
component in the smart grid as it is responsible for ensuring a reliable system operation.
Several issues that need to be addressed are as follows:

• Resilient cybersecurity systems that ensure data integrity, reliable data delivery and
communication, authentication, confidentiality protection, and monitoring as well as
performance stability throughout the infrastructure are necessary. Hardware-based as
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well as software-based solutions, e.g., firewalls and encryption mechanisms, respec-
tively, must ensure a reliable system operation (Moslehi and Kumar 2010). Encryption
and authentication solutions (Metke and Ekl 2010; Khurana et al. 2010), approaches
that extend current architectures with methods from trusted computing (Paverd, Mar-
tin, and Brown 2014) as well as complete system architectures (Moslehi and Kumar
2010) have been proposed.

• Following the previous claim, privacy issues arise from the vast amount of collected
data from smart meters. Most recently, Goel and Hong (2015) note that a breach of
data privacy is among the most prevalent threats to the operation and safety of the grid.
Prominent approaches include the anonymization of smart meter data. In particular,
by aggregating frequently measured smart meter data, billing, account management,
and marketing measures must still be possible (Efthymiou and Kalogridis 2010). Other
approaches include the encryption of individual measurements (Mármol et al. 2012).
Moreover, designingmechanisms that enhance privacy while at the same time ensuring
properties of market mechanisms such as allocative efficiency constitute an important
research direction at the interface of market microstructure and IT infrastructure
(Kessler, Flath, and Böhm 2015).

• Industry standards for ICT are required to integrate a heterogeneous landscape of
devices, e.g., intelligent appliances, smart meters or renewable generation, and to
facilitate the real-time information flow between them in a smart grid system (Gungor
et al. 2011). Moreover, technical issues such as low-latencies and limited bandwidth
must be addressed. An overview of current standardization efforts is provided in
Gungor et al. (2013).

When examining existing aggregators, the importance of the IT infrastructure becomes
evident. For VPPs for example, the communication between the distributed power plants
plays a crucial role and mostly happens via internet connection or mobile (GSM) commu-
nication. Besides, the communication between aggregator and consumers often is done
completely through IT means such as web portals and mobile applications. The individual
characteristics of each of the surveyed companies are summarized in table 4.1 below.
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4.1.4.3 Business Structure

Business structure in terms of Weinhardt, Holtmann, and Neumann (2003) concerns the
charges for accessing the market, as well as fees for using the communication means (e.g.,
for placing bids), and for executing orders. In other words, when examining the business
structure, the central question deals with how revenues for a market operator are generated.
Important revenue streams of current electricity markets include fees for connectivity and
trading. For example, the European Energy Exchange (EEX), charges its traders for the
connection to the exchange as well as for the trading itself. Different qualities of connection
– “internet”, “virtual private network (VPN)”, and “leased line” – are offered. The trading fees
consist of a fixed and a variable component, i.e., annual fees, technical fees and transaction
fees (EEX 2015). For future local markets, similar business structures are conceivable, since
current models have proven their value. However, the particular characteristics of local
markets have to be considered. Contrary to the existing wholesale markets, it is crucial for
local markets to integrate a large number of distributed consumers or agents. This can be
achieved by loosening the regulative restrictions regarding market participation. A logical
proposal would therefore be to decrease single payments that have to be made to get initial
access to the market. Instead, subscription models could be offered.

Looking at the business structure of emerging aggregators, the focus lies on their business
model. VPP operators and electric vehicle (EV) aggregators constitute examples of current
fields of research and already existing real world business models. Firstly, Asmus (2010) sees
VPPs to either become smart grid enablers by providing an ICT network or to expand the
sale of electricity towards other services such as heat, cooling, or lighting. Schulz, Roder, and
Kurrat (2005) present a business model for a VPP of combined heat and power (CHP) units,
yet note that as prices may not be able to compete with conventional plants, contract solutions
are necessary. Werner and Remberg (2008) highlight that the regulatory framework needs to
be considered in a deregulated market environment such as Germany. As recently shown
by Knorr et al. (2014), VPPs are not only technically capable of supplying all of Germany
with renewable energy, but are also able to offer ancillary services to the grid. Therefore
the fundamental prerequisites for (profitable) business models for VPPs are given. Further,
Pandžić et al. (2013) examine the case of a VPP consisting of a wind power plant, a quick
response conventional power plant and a pumped hydro storage plant. Their results indicate
that by participating in both the day-ahead and the balancing market, the coordinated
aggregate of generators performs (financially) better than independent generation units.
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Besides, the aggregation increases the overall operational flexibility.

Another promising use case for aggregator business models is the pooling and centralized
management of EVs. Ensslen et al. (2014) examine the business model of a smart charging
manager which aggregates load shifting potential offered by EVs and coordinates their
charging process. Their results from simulation experiments indicate considerable potential
for the profitable operation of their proposed business model. Moreover, they shows that
appropriate grid integration can avoid new peaks in electricity consumption due to increased
demand by electric mobility. Also, it explicitly mentions the possibility of the smart charging
manager to help DSOs avoid critical situations in distribution grids. Additionally, Jargstorf
and Wickert (2013) analyze the business case of providing balancing power on the German
market with pooled EVs as an example for vehicle to grid (V2G) services. Their simulation
reveals comparably low revenues per EV, leading to the argument that either larger units
are required or that other markets with lower entry barriers need to be addressed. Similarly,
Dallinger, Krampe, and Wietschel (2011) suggest that a pool size of 10 000 EVs is required
in order to balance in-pool individual driving behavior. The still relatively low penetration
rate of EVs hinders the profitability of business models regarding aggregated EVs. However,
depending on the future development of the EV market and market access requirements, they
might becomemore relevant in the future. Through integration into larger pools of consuming
and producing units, EVs can help stabilizing distribution grids in the near future. In this
context, Dauer et al. (2014) evaluate the economic potential of tariffs and coordinationmodels
for concurrent EV charging. Based on “concurrency factors”, they suggest that aggregators can
coordinate EV charging accordingly. Moreover, Kießling et al. (2015) introduce the concept
of aggregating EV flexibility and provide a functional architecture for the coordination of EV
flexibility. Moreover, they highlight the need for a communication architecture based on EU
standards.

A real world example for an actively operating and already profitable aggregator company
is the 2009 founded and Germany based Next Kraftwerke. Aggregating over 2600 power
plants – biogas, solar, wind, water, combined heat, and power and emergency generators – the
company has traded over 5.3 TWh on the spot and balancingmarket in 2015 (Next Kraftwerke
2015a). Next Kraftwerke has two major revenue streams. One is the price for the hardware
component “Next Box”, which consumers have to install in order to be connected to the
virtual power plant. This corresponds to a one-time connection fee from a market operator
point of view. The other revenue source is a share of the profits generated from trading
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activities (Next Kraftwerke 2015b). The joint venture Beegy has a slightly different focus
and business model. On the one hand, the company offers solar panels and the intelligent
management and monitoring thereof for private consumers while guaranteeing certain
financial savings (BEEGY Solar and BEEGY Care). Moreover, Beegy integrates existing
heat pumps and storage heaters and also offers batteries in a partnership with the battery
storage manufacturer ads-tec (BEEGY Solar + Powerstore). On the other hand, Beegy offers
services like energy management and monitoring and marketing of electricity and flexibility
for businesses and the housing industry. The revenue streams include the price for the
installation of solar panels or batteries and the BEEGY Gateway (i.e., a one-time connectivity
fee) as well as a yearly fee for monitoring, savings guarantee, and supplementary services
(subscription model) (Beegy 2015). In order to avoid high one-time cost that can deter
smaller consumers, companies like the VPP operator Caterva offer a subscription model
in addition to a purchase model. Here, consumers can rent a battery and thus become a
part of the VPP without having high investment cost. Experience shows that consumers
clearly prefer the subscription model (L. Weber 2015). This supports the above statement that
replacing one-time access fees by subscription fees can help aggregators to attract additional
consumers.

4.1.5 Transaction Object

The transaction object is the product or service traded between parties in a market. In the
case of markets available to actors on the distribution grid level, relevant transaction objects
are currently limited to retailers acting and trading on electricity wholesale markets (Judith
et al. 2011). In particular, while over-the-counter (OTC) products (futures) represent bilateral
contracts between generators and retailers (Growitsch and Nepal 2009), the exchange model
in Germany allows trading bid functions for individual hours and block bids for standardized
block hours in so-called spot markets (Erdmann and Zweifel 2008; Ockenfels, Grimm, and
Zoettl 2008). Grid operators do not interact with these markets. Due to policy requirements,
changed market structures and new technological options, these goods might be redesigned
and complemented by new ones (BMWi 2015b).

The early research of Schweppe et al. (1988) suggests to differentiate products, i.e., tariffs,
along temporal and spacial components. Similarly, Hayn, Bertsch, and Fichtner (2015)
develop a concept for quality of service (QoS) level indicators for (residential) electricity
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tariffs, which they define as a service. Moreover, Flath et al. (2015) perform an extensive and
structured analysis to derive new transaction objects. In particular, they suggest product
differentiation based on different levels of security of supply, tariff components and additional
use cases of power, such as for electric mobility. In line with this research, it becomes clear
that while electricity will remain a homogeneous good regarding its technical properties
like voltage and frequency, a product differentiation along non-functional quality attributes
of electricity services presents an emerging approach. In particular, temporal flexibility,
curtailment flexibility and reliability requirements constitute promising characteristics to
further raise efficiency not only on the local but global electricity market level. Schuller
et al. (2015) present a framework and design options for quality differentiated electricity
products and related services. They suggest that product differentiation can foster self-
selection of consumers and thus support activating the flexibility potential of DSM in smart
grids. R. Sioshansi (2012) and Flath (2014) evaluate different tariffs for EVs, e.g., time of
use (TOU) tariffs, and find that trade-offs between tariff complexity and efficiency are to
be accounted for. Existing aggregators in smart grids offer various sorts of transaction
objects, like hardware products for the connection and integration into the swarm, intelligent
management software and a wide range of different services. Table 4.1 shows an aggregated
overview of the types of offered transaction objects.

4.1.6 Market Overview

As detailed before, aggregator concepts and solutions from the industry exist already today.
The findings are summarized in table 4.1, structured according to the market engineering
framework. Here, due to their clear importance, the two aspects of improving grid stability
and generating additional revenues through the marketing of electricity and flexibility are
chosen as representatives for evaluating the market outcome. Regarding agent behavior, the
target consumers are divided into the two groups of private and industry consumers, where
the ownership of solar or wind generation units are further differentiated. With respect to
the microstructure, especially the availability of custom prices is of interest. When looking at
the (IT) infrastructure of aggregators, the three most relevant categories are internet access,
mobile access and the offering of a mobile application. With regards to the business models,
the revenue streams of the existing companies differ in particular and are therefore subdivided
into one-time fee (sale), subscription model, and brokerage fee. The latter is synonymous to
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the aggregators keeping a share of the generated revenue. Last, the particular transaction
objects are grouped into products and services.

Table 4.1: Overview of aggregator companies with products and services ( = Fulfilled,
= Not fulfilled or unknown)
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Market outcome
Ensure grid stability through efficient allocation
Generate revenues through flexibility marketing

Agent behavior
Private households
Industry consumers
Solar generation installed
Wind generation installed

Microstructure
Custom prices

(IT) infrastructure
Internet access required
Mobile (GSM) access available
Provides mobile application

Business structure
One-time sale
Subscription
Brokerage fee/shared revenue

Transaction object
Physical product
Service

Source: Own data from 2015/12.
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4.2 Environmental Analysis and RelatedWork

Having provided an overview of aggregators within the market engineering framework,
this section focuses on the DSO, which constitutes an aggregator’s potential counterpart
in future local markets. This section first elaborates on the idea and necessity for DSOs to
employ market mechanisms to ensure grid stability in critical and near real-time situations by
allocating flexibility from aggregators. Afterwards, requirements upon a market mechanism
for aDSO in context of the smart grid from an economic and technical perspective are defined.
Based on the identified requirements, relatedworkwith regard to existingmarketmechanisms
is identified and described. Subsequently, limitations with regard to the requirements are
highlighted.

4.2.1 The Need for Market-Based Allocation of Flexibility

Today’s regulatory framework in Germany leaves DSOs two options for a reliable and secure
grid management in light of an increasing share of RES. Firstly, DSOs can expand their grids
in the traditional sense, or secondly, DSOs can temporarily reduce the feed-in from RES.

Activities of regulatory and legislative nature on both the national level in Germany and
European level highlight the importance of a market-based allocation of flexibility from local
consumers to support the integration of RES. More specifically, the grand challenge of ef-
ficiently integrating RES from local levels into the smart grid requires flexibility management,
i.e., the combination of flexibility of demand and storage technology from consumers or
prosumers, to support grid stability. As highlighted in chapter 2 and section 2.3, in order to
avoid critical grid situations, calls for market-based coordination and allocation of flexibility
by DSOs have emerged (SG-CG 2014a; SGTF 2015; BMWi 2015a). Such market-based
approaches allow the integration of new, local, and so far inactive players which can provide
flexibility services (EC 2015a; SGTF 2015).

Particularly responsible for grid stability, DSOs in Germany are faced with new tasks and
challenges with the increasing share of RES. Such new responsibilities need to include the
short-term and market-based allocation of flexibility from local aggregators in critical grid
situations as current market designs do not allow the short-term coordination of retailers,
aggregators, and DSOs (BMWi 2015a). While this is an ongoing process, requirements for
DSOs in context of an updated electricity market scenario in Germany have already been
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formulated (BMWi 2015b, 2015a, 2015c). However, a detailed proposal and implementation
for such a market-based process remains unavailable as of today. This absence highlights the
relevance of this work.

The proposed market mechanism is supposed to represent an extension to the transforma-
tive process in the electricity grid, which should not only foster competition but also actively
integrate consumers or prosumers. In contrast to current market designs, the proposed mech-
anism needs to account for current (critical) local grid situations where existing flexibility
can represent a cost-efficient solution compared to emergency measures and nonessential
grid investments cost.

4.2.2 Traffic Light Concept

The traffic light concept (TLC) represents the suggested basis for the market-based allocation
of flexibility by DSOs in Germany and on a European level (SG-CG 2014a; SGTF 2015).
Using the TLC, DSOs can define different system states depending on potential critical grid
situations (SGTF 2015). In turn, a system state can enable DSOs to use mechanisms, such as
the procurement of flexibility, to maintain the balance of supply and demand (SG-CG 2014a).
Possible TLC states, which are visible to other market parties, constitute the red, yellow, and
green states.

Green State The green state of the TLC reflects a normally operating grid state. Existing
markets can competitively operate freely, i.e., the green state yields no restrictions for trading
on markets (SG-CG 2014a). Within this state, a DSO does not need to employ the mechanism
proposed in this work.

Yellow State The yellow state specifies a situation where a local critical grid state, which
typically does not affect higher transmission grids, exists or is about to exist. The DSO then
actively tries to resolve the critical situation by means of market-based allocation of flexibility
free from discrimination. The yellow state indicates to potential market participants that
there exists demand for local flexibility to stabilize the grid. Participation within the market
mechanism is clearly not mandatory. However, should the DSO not be able to resolve the
situation at hand while the critical situation remains, the TLC dictates the switch to the red
state (SG-CG 2014a).
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Red State The red state represents a last resort for the DSO to stabilize the grid to avoid a
blackout situation. By means of temporary and specific actions, the DSO can and needs to
engage in current market operations and override existing delivery contracts while at the
same time executing direct control over generation or demand units (SG-CG 2014a).

4.2.3 Classification in the Current Market Environment

The proposed mechanism can be classified as part of the yellow TLC state to be available to
the DSO in order to (i) ensure grid stability and guide the grid from the yellow to the green
TLC state and (ii) to avoid emergencymeasures needed in case a switch to the red TLC state is
required. In contrast to the existing control reversemarkets, the proposedmechanism focuses
on the local grid level where aggregators can bundle consumer and prosumer flexibility into
portfolios and market this flexibility accordingly in a cost-efficient manner. The local nature
of the mechanism is important as flexibility and their location denote important aspects
of future distribution grids (SG-CG 2014a; EC 2015a). Following the timeline of electricity
markets in Germany as illustrated in figure 2.9, the proposed mechanism can be integrated
after the operating reserve contracting is completed and in particular in short-term situations
before the scheduled supply period.

4.2.4 Requirements

In contrast to the existing control reverse markets, the proposed mechanism focuses on
the local grid level where aggregators can bundle consumer and prosumer flexibility into
portfolios and market this flexibility accordingly in a cost-efficient manner. The local nature
of the mechanism is important as flexibility and their location denote important aspects
of future distribution grids (SG-CG 2014a; EC 2015a). Following the timeline of electricity
markets in Germany as illustrated in

Requirement 1 (Allocative efficiency). A mechanism is allocative efficient if it maxi-
mizes the total utility over all agents, i.e., for the DSO and all other participants. That is, the
mechanism maximizes social welfare.

Allocative efficiency represents the main objective the mechanism needs to achieve. An
efficient allocation implies for the DSO that the best flexibility offers from aggregators have
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been chosen according to a predefined objective. The objective in this work is to efficiently
allocate flexibility from aggregators for minimum cost.

Requirement 2 (Incentive compatibility). A mechanism is incentive compatible if it is
rational for agents to report truthful information about their preferences. Under an incentive
compatible mechanism, agents have no incentive to misreport their preferences to the mechanism
in order to increase their utility.

Incentive compatibility ensures that aggregators truthfully report the flexibility from their
portfolios to the DSO. Not only is incentive compatibility (IC) a requirement for allocative
efficiency (AE), it also eliminates the need for aggregators to consider different strategies as
to which portfolios to report in order to increase individual revenue. However, IC cannot
always be ensured for all types of possible mechanisms. Moreover, IC should contribute to
grid stability, as it minimizes the contingency risk of aggregators for the DSO, e.g., due to
unavailable yet allocated flexibility.

Requirement 3 (Individual rationality). A mechanism is individually rational if no
agent is worse off by participating in the mechanism than by not participating. More specifically,
participating agents always receive non-negative utility which is greater or equal to their utility
than under no participation.

Individual rationality constitutes an important requirement for the mechanism employed
by the DSO. If individual rationality (IR) is not satisfied by the mechanism, the voluntary
participation of aggregators cannot be ensured as they are confronted with the risk of being
worse off than under no participation. Instead, aggregators would be better of offering their
flexibility to other businesses or mechanisms.

Requirement 4 (Budget balance). A mechanism is weakly budget balanced if no net
transfers into the mechanism, i.e., from an external subsidization, are required. That is, there
can be net payments by agents to the mechanism but not vice versa. Hence, payments are
redistributed among the agents.

Budget balance ensures an economically feasible business case for the DSO, as the mech-
anism must not be externally subsidized in order to be able to pay flexibility offers from
aggregators.

A mechanism for allocating flexibility from aggregators in context of the smart grid must
fulfill the following domain-specific requirements.
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Requirement 5 (Flexibility characteristics). A mechanism supports flexibility charac-
teristics (FC) if its allocation rule and bidding language account for domain-specific flexibility
characteristics. More specifically, the mechanism needs to account for flexibility (i) types (i.e.,
consumption or production); (ii) ranges (i.e., intervals); (iii) portfolios (i.e., bundles); and
(iv) valuations per unit (i.e., unit prices).

In detail, a flexibility type constitutes either consumption or production capability of an
individual consumer or a pool of aggregated consumers. For example, a consumer can
have consumption devices such as an EV, a washing machine, a (laundry) dryer, and other
appliances. At the same time, the same consumer can provide production capability from
devices such as solar panels on a rooftop or a stationary battery storage. Both consumption
or production activities can be offered in part or completely to an aggregator operate. With
a heterogeneous pool of consumers, an aggregator can then bundle many consumption or
production capabilities into an arbitrary number of flexibility portfolios which can be offered
to the market mechanism employed by the DSO. The heterogeneity within such a portfolio
allows the aggregator to specify flexibility ranges. That is, the aggregator can internally
determine minimum and maximum amounts for a given point in time that are available
for consumption or production and offer such range to the mechanism. Additionally, given
the different cost structures of flexibility types, an aggregator requires the ability to specify
flexibility valuations per unit within a flexibility portfolio. For example, offering generation
from solar panels can be perceived as less costly than generation from conventional generators.
Also, offering consumption from household appliances can represent an entirely different
issue given that a potential risk of (non-)fulfillment may need to be accounted for.

Requirement 6 (Compact bidding language). A mechanism supports a compact bid-
ding language (CBL) if the domain-specific bidding language allows an aggregator to express
a flexibility offer in a concise and succinct manner in order to reduce an aggregator’s internal
computational complexity as well as the communication complexity between the DSO and
aggregators.

More specifically, for an aggregator’s portfolio to be economically feasible, it may be
required that consumption or generation activities last a predefined amount of time. Reasons
may be of a manifold nature. For example, a minimum runtime may be required in order
to avoid battery deterioration and associated cost. Similarly, a minimum runtime may be
required given an aggregator’s internal cost structure for consumer flexibility management.



Chapter 4. Markets for Smart Distribution Grids 75

In addition, a linear cost structure would allow to omit the repeated specification of the same
monetary bid. While a standard bidding language requires a full expression of preferences, i.e.,
an aggregator would need to redundantly specify the same information multiple times over
the minimum runtime horizon, a compact bidding language can reduce this complexity.

Requirement 7 (Outside option). A mechanism supports an outside option (OO) if it
allows the DSO to fall back to an emergency alternative in case the requested flexibility cannot
be allocated from the provided flexibility offers.

Recall the initial statement that the DSO needs to ensure grid stability by using local
flexibility in a short-term scenario. However, due to the short-term nature and/or unfortunate
aggregator portfolio compositions, the DSO may not be able to allocate required flexibility
at all times. For this reason, an outside option is required which can ensure the balance of
supply and demand. Similar to the control reserve mechanism, an emergency outside option
is associated with higher cost, yet can ensure a stable grid.

Requirement 8 (Price fairness). A mechanism provides price fairness (PF) if the per-
ceived fairness of prices for both the DSO and aggregators is ensured.

More specifically, some pricing rules may result in situations where the DSO pays allo-
cated aggregators too much. For example, an aggregator’s received payment may exceed
its minimum requested monetary value for flexibility by far under a certain pricing rule,
resulting in unacceptably high payments, or cost, for the DSO. At the same time, some
aggregators which are not part of the allocation may exist. In some cases, these aggregators
may offer their flexibility for a lower compensation. Such aggregators would then object, or
block, the outcome of the mechanism as there exists a more beneficial allocation for both the
aggregators and the DSO. In order to adjust this imbalance and thus to improve the perceived
fairness of prices so that the blocking aggregators would not object, the pricing rules of the
mechanism need to enable fair and balanced prices.

The requirements are summarized in the following table 4.2.

4.2.5 RelatedWork

The work at hand applies rigorous methods from auction and mechanism design theory
to address problems in the smart grid domain. To position this research in these research
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Table 4.2:Market mechanism requirements

Requirement Origin Description

1 Allocative efficiency (AE)

Mechanism design
2 Incentive compatibility (IC)
3 Individual rationality (IR)
4 Budget balance (BB)

5 Flexibility characteristics (FC)

Domain-specific
6 Compact bidding language (CBL)
7 Outside option (OO)
8 Price fairness (PF)

communities, this section briefly surveys relevant contributions. That is, research approaches
which are closely related to the work at hand are investigated. Moreover, their limitations
regarding the previously identified requirements are highlighted.

Hobbs et al. (2000) describe an electricity auction which uses the Vickrey-Clarke-Groves
(VCG) mechanism for supply and demand bidding with the goal of efficiently allocating
resources in order to maximize social welfare. Bids can contain information on start-up cost,
minimum runtime, running levels, and maximum ramp rates. The authors formulate an
optimization problem where the goal is to maximize the sum of accepted demand bids minus
the sum of accepted supply bids. Based on the accepted bids, VCG prices are determined.
They show that in settings with high market concentration, there exists a risk of market
power being present and that the VCG scheme employed is vulnerable to collusion. However,
the proposed bidding language is not compact and the auction does not support flexibility
characteristics or fair prices. In addition, an outside option is not incorporated.

Penya and Jennings (2008) propose a reverse combinatorial auction for electricity which
determines an optimal outcome where the auctioneer maximizes its payoff. Bids are rep-
resented by demand or supply functions in a compact manner, yet do not allow to capture
flexibility characteristics. In order to prevent strategic bidding, prices are determined using a
VCG mechanism. Moreover, optimal clearing algorithms for their scenarios are introduced
to allow the winner determination to be solved in polynomial time. In addition, the bid input
is constrained to also mitigate worst case runtime scenarios. However, neither an outside
option nor a method for determining fair prices is considered.

Ausubel and Cramton (2010) propose an auction design for VPPs in order to facilitate
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electricity market entry, improve liquidity, and reduce market power in electricity spot
markets. The auction format is a simultaneous ascending-clock (forward) auction with
discrete rounds. The auctioneer announces available supply with an interval of valid prices.
Each bidder can submit a demand curve as a sealed bid. The pricing rule in their auction
design is either uniform pricing or pay-as-bid (PAB). However, the auction focuses on larger
(spot) markets and therefore does not consider flexibility characteristics or other domain-
specific requirements such as an outside option or price fairness.

Torrent-Fontbona, Pla, and López (2014) describe a multi-attribute combinatorial auction
in context of a manufacturing process where the goal is to minimize energy consumption
subject to resource price, delivery time, and consumed energy. The proposed bidding process
partly incorporates flexibility characteristics such as the ability to specify bids for task bundles.
However, they do not solve the winner determination problem (WDP) optimally but instead
propose a genetic algorithm, which cannot ensure AE. Moreover, by proposing a modified
VCG mechanism which reduces payments if a task is performed in worse conditions than
agreed, they forfeit IC but it could be argued that this denotes a small increase in prices
fairness.

Schnizler et al. (2008) propose a multi-attribute combinatorial exchange for computing
services. While the bidding language accounts for specific service characteristics, it does
not allow auction participants to specify bids in a compact representation. The auction
mechanism is AE, while IC, which is ensured through VCG prices, holds. However, a novel
approximated VCG mechanism is introduced which is computationally more efficient but
relinquishes the economic properties of AE and IC. Moreover, by employing k-pricing as
an additional pricing mechanism, the distribution of payments can be considered fair for
certain parameter specifications.

Table 4.3 highlights the limitations of the works described above. While several authors are
concerned with combinatorial electricity auctions, various gaps concerning domain-specific
flexibility requirements and pricing rules still exist and are addressed in the scope of this
work.
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Table 4.3: Summary of related work with requirement fulfillment ( = Fulfilled, = Partly fulfilled,
= Not fulfilled or unknown)

Requirement

Mechanism Design Domain-specific

Reference AE IC IR BB FC CBL OO PF

Hobbs et al. (2000)
Penya and Jennings (2008)
Ausubel and Cramton (2010)
Torrent-Fontbona, Pla, and López (2014)
Schnizler et al. (2008)
This work
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Smart Grid Flexibility Auction Model and

Allocation Problem

R ecall from the previously reviewed related work in section 4.2.5 that no market mech-
anism exists which supports the requirements identified in section 4.2.4. That is,

no market mechanism supports flexibility characterisitcs, a compact bidding language, an
outside option, and tries to improve the perceived fairness of prices. The current and the
following chapter address these limitations and introduce the smart grid flexibility auction for
allocating short-term flexibility in local distribution grids along the design science research
(DSR) framework. This chapter in particular contributes the central model and the allocation
problem, whereas the succeeding chapter focuses on different pricing rules for the auction.

As the proposed artifact constitutes an auction, section 5.1 firstly and briefly introduces
auctions as well as the underlying research method DSR, which guides the design of the
auction. Subsequently, the main contributions of this work are introduced. Therefore,
section 5.2 focuses on the formal auction model, section 5.3 describes and illustrates the
auction process and section 5.4 introduces the compact bidding language. Then, section 5.5
extends themodel definition. Finally, section 5.6 describes the winner determination problem
(WDP). Parts of this chapter are adapted from the previously published paper: David Dauer,
Paul Karaenke, and Christof Weinhardt. 2015. “Load Balancing in the Smart Grid: A Package
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Auction and Compact Bidding Language.” In Proceedings of the Thirty Sixth International
Conference on Information Systems. Fort Worth, TX.

5.1 Preliminaries

5.1.1 Auctions

Auctions are a widely used market mechanism for determining both resource allocations
and prices based on bids from auction participants (McAfee and McMillan 1987). Auction
participants can also be denoted as bidders, or buyers and sellers (P. R. Milgrom 2004). The
resource allocation, i.e., the winner determination in an auction, is specified by a set of
auction rules which can also restrict participation and bids (i.e., bid amounts or increments)
to the auction as well as enforce a certain behavior of auction participants (Wolfstetter 1999).
Auctions are used in various settings for many transactions. For example, auctions are
employed to sell private resources in (online) consumer environments. In addition, more
complex auctions can be found in corporate (e.g., financial markets, logistics, food industry),
technical (e.g., bandwidth or processing power allocation) and government (e.g., spectrum
rights) environments (Shoham and Leyton-Brown 2009). Today, auctions are mainly used
for reasons of (i) speed of sale; (ii) revelation of information about valuations of buyers; and
(iii) prevention of untruthful dealings between sellers and buyers (Wolfstetter 1999).

5.1.1.1 Standard Auction Types

There exists an infinite number of possible auction types as the auction mechanism and its
rules for allocation and pricing can be specified freely in accordancewith any situation at hand
(Shoham and Leyton-Brown 2009). A number of independent auction properties have been
identified in order to provide a holistic auction classification. In particular, auctions can be
(i) single or multi-dimensional; (ii) single-sided or double-sided; (iii) open-cry or sealed-bid;
(iv) first price or k-th-price; (v) single-unit or multi-unit; or (vi) single-item or multi-item
(Parsons, Rodriguez-Aguilar, and Klein 2011). Yet, four standard auction types which focus
on settings with one good for sale from one seller and multiple potential buyers are generally
used and investigated (Klemperer 2004). Such settings are called single-sided, as there is
only one seller on one side and multiple buyers on the other side of the market (Wurman,
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Wellman, and Walsh 2001; Shoham and Leyton-Brown 2009). The standard auction types
can be classified as follows (McAfee and McMillan 1987; Parsons, Rodriguez-Aguilar, and
Klein 2011; Klemperer 2004):

1. Ascending-bid auction. This auction is also referred to as the English auction. Begin-
ning with a starting price from the auctioneer, buyers submit successive bids which
are ascending in the bid price. The auction ends when only one bidder remains, who
is by definition the winner and has to pay the price of the final bid.

2. Descending-bid auction. This auction is also referred to as the Dutch auction. In
contrast to the English auction, the auctioneer sets a high start price and continues
to announce incrementally lower prices. The auction ends when a buyer calls out to
accept the current price.

3. First-price sealed-bid auction. This auction is also referred to as first-price auction.
Contrary to the ascending and descending-bid auctions, where bids are submitted
publicly (open-cry), bidders do not see the other bidders’ bids in sealed-bid auctions
as bids are submitted in a closed fashion. Once all bids are submitted, the bidder with
the highest bid wins.

4. Second-price sealed-bid auction. This auction is also referred to as second-price, or
Vickrey, auction. Analogous the the first-price sealed-bid auction, bids are submitted
in a concealed fashion. Also, the winner is the bidder with the highest bid. However,
the winning bidder does not pay the price of its own bid but rather that of the second-
highest bid.

While the four described auction types seem different, some equivalences exist (Krishna
2002). Firstly, theDutch auction is strategically equivalent to the first-price sealed-bid auction.
That is, bidding in a first-price sealed-bid auction is strategically equivalent to placing a bid
for the same amount in a Dutch auction for the same good. Secondly, there exists a weak
notion of equivalence between the English and the second-price sealed-bid auction. That is,
they are not strategically equivalent but have the same optimal strategy if values are private.
A detailed analysis on this notion is provided by Krishna (2002).

In contrast to single-sided auctions, double-sided, or double, auctions allowmultiple buyers
and sellers to exchange goods (Friedman and Rust 1993; Wurman, Walsh, and Wellman 1998).
The two common variations of double auctions are the periodic double auction, also referred
to as call markets (McCabe, Rassenti, and Smith 1990), and the continuous double auction.
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The underlying mechanism of both the periodic and continuous auction is the identical
with the exception that the periodic auction clears at predetermined time intervals whereas
the continuous auction clears matching bids immediately (Wurman, Walsh, and Wellman
1998). A comprehensive overview of double-sided auction can be found in Wurman, Walsh,
and Wellman (1998). Within the scope of this work, a single-sided auction is designed and
evaluated.

5.1.1.2 Reverse Auctions

In contrast to single-sided auctions where there is only one seller and multiple buyers, i.e,
forward auctions, an opposite setting models one buyer and multiple sellers, i.e., reverse
auctions. A forward auction can usually be transformed into a reverse auction by substituting
the words “seller” and “buyer” as well as negating all numbers related to bid prices and
amounts (Shoham and Leyton-Brown 2009). Hence, in a reverse auction, the buyer wants to
acquire one or more goods at the lowest possible cost. Sellers submit bids, i.e., asks, in which
they specify the minimum requested price they “ask” for a good (Sandholm et al. 2002).

Reverse auctions are commonly referred to as procurement auctions as they are employed
in procurement settings in various domains. For example, governments use procurement
auctions to sell access to public resources such as the electromagnetic spectrum (Shoham
and Leyton-Brown 2009; Cramton 2013). Moreover, procurement auctions can be found in
corporate (Bichler, Pikovsky, and Setzer 2005; Cramton, Shoham, and Steinberg 2006), supply
chain and logistics (Chen et al. 2005; Cramton, Shoham, and Steinberg 2006), electronic
market (Bichler, Kaukal, and Segev 1999), electronic services (Blau, Conte, and Dinther
2010), and computational (Brewer 1999; Bichler and Kalagnanam 2006) settings. The auction
designed within this work constitutes a reverse auction.

5.1.1.3 Multi-Unit Auctions

Multi-unit auctions represent an extension of single-unit auctions as there is no longer a
single good to allocate but rather multiple instances of the same good (Shoham and Leyton-
Brown 2009). While such an extension can normally be made by adjusting some part of
the auction mechanism, there are a few details regarding pricing rules, bid placement, and
tie-breaking that have to be considered (Parsons, Rodriguez-Aguilar, and Klein 2011; Shoham
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and Leyton-Brown 2009). Specifically, the problem of determining payments of bidders
given different bid amounts arises. Following the example in Shoham and Leyton-Brown
(2009), assume three goods are for sale with the best three bids requesting one unit. Then,
one good will be assigned to each bid. As each bid generally will have a different bid price,
the auctioneer has to determine the pricing for each bidder. Two pricing rules are emplyed,
namely the discriminatory pricing rule (“pay-your-bid” or “pay-as-bid”) where each bidder
pays its own bid, and the uniform pricing (non-discriminatory) rule where each bidder pays
the same price for the same amount of identical goods. The uniform price can either be the
lowest accepted price among the winning bids or the highest among the losing bids (Shoham
and Leyton-Brown 2009).

5.1.1.4 Combinatorial Auctions

In combinatorial auctions, sometimes referred to as package auctions (Ausubel and P. R.
Milgrom 2002; P. Milgrom 2007), bidders can place bids on an arbitrary number of combi-
nations of heterogeneous goods that can be either complements or substitutes (Cramton,
Shoham, and Steinberg 2006). Hence, bidders can express their complex preferences for
sets, or bundles of goods, supporting the underlying idea that the value of a bundle might be
different from the sum of the values of the single goods (Shoham and Leyton-Brown 2009).
This contributes to a potential increase of economic efficiency in combinatorial auctions
with a low risk for bidders at the cost of computational difficulty (Andersson, Tenhunen, and
Ygge 2000; De Vries and Vohra 2003).

Combinatorial auctions are widely studied and applied in practice. Initially proposed
for spectrum rights (C. L. Jackson 1976) and airport time slot allocation (Rassenti, Smith,
and Bulfin 1982), recent applications extend spectrum auctions (Cramton 2002, 1997, 2013),
and include treasury securities (Bikhchandani and Huang 1993; Ausubel et al. 2014) as well
logistics (Ledyard et al. 2002; Chen et al. 2005), transportation (Caplice 1996; Schmidt 1999;
Sheffi 2004), and industrial settings (Bichler, Pikovsky, and Setzer 2005; Bichler et al. 2006).
Moreover, emerging applications of combinatorial auctions can be observed in the context
of electronic markets (Brewer 1999; Bichler, Kaukal, and Segev 1999), grid services (Schnizler
et al. 2008), and electricity markets (Hobbs et al. 2000; Fabra, Fehr, and Harbord 2002;
Maurer and Barroso 2011; Torrent-Fontbona, Pla, and López 2014). An extensive overview of
combinatorial auctions from economic, optimization, and computer science perspectives
can be found in De Vries and Vohra (2003) and Cramton, Shoham, and Steinberg (2006).
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Thedesign of combinatorial auctions requires themarket engineer to solve several complex
problems, in particular those of bid expression, winner determination, payment, and strategy
(Nisan 2000; De Vries and Vohra 2003).

Bid Expression As bidders are allowed to bid on arbitrary combinations of bundles, issues
regarding valuation and communication complexity arise (De Vries and Vohra 2003). Valua-
tion complexity is related to the required amount of information on a bidder’s preferences
and the required complexity of bidders to internally compute and express these information
in form of bids (Parkes 2001). Communication complexity deals with the required amount
of communication between bidders and the auctioneer in terms of frequency and amount
(Parkes 2001; Nisan and Segal 2002; De Vries and Vohra 2003). In order to overcome these
complexities, De Vries and Vohra (2003) suggest the use of oracles and Boutilier and Hoos
(2001) proposes logical bidding languages, whereas the more common approach is to specify
a bidding language that encodes the bidder’s preferences in an efficient and compact manner
(Nisan 2000; Parkes 2001). Bidding languages in combinatorial auctions need to allow for
a more succinct and convenient way to express bids as an auction with m goods generally
requires a bidder to specify a valuation for each of the possible 2m − 1 non-empty subsets
(Nisan 2000, 2006). Common bidding languages range from standard atomic bids, OR-bids
or XOR-bids to more complex combinations of OR and XOR bids such as OR-of-XORs, XOR-
of-ORs or OR/XOR-formulae (Nisan 2006). A detailed analysis of these languages can be
found in Nisan (2000, 2006). De Vries and Vohra (2003) note that a computationally efficient
bidding language relies upon rules that either restrict the preferences or the combinations of
bundles that bidders can specify and bid on.

Winner Determination The problem of identifying the allocation of goods to bidders in
combinatorial auctions according to a predefined objective by the auctioneer, usually the
maximization of social welfare, is called the WDP (Shoham and Leyton-Brown 2009). The
challenge of determining such an efficient outcome is also referred to as the combinatorial
auction problem (CAP). CAP is generally formulated as a mixed integer problem (MIP)
(Rothkopf, Pekeč, and Harstad 1998; T. Sandholm 2002). For the single-unit case, the CAP is
formulated as follows (Shoham and Leyton-Brown 2009): Let I be the set of bidders and
G be the set of goods. The reported valuation of bidder i for a subset of goods, or bundles,
S ⊆ G, is constant and denoted as v̂ i(S). The decision variable indicating whether a bundle S
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is allocated to bidder i is given by x i(S), where x i(S) = 1 denotes that bundle S is allocated
to bidder i and x i(S) = 0 denotes that bundle S is not allocated to bidder i.

CAP(I) =max
x
∑
i∈I
∑
S⊆G

v̂ i(S)x i(S) (CAP)

s. t. ∑
S⊇{g}
∑
i∈I
x i(S) ≤ 1 ∀g ∈ G (5.1a)

∑
S⊆G

x i(S) ≤ 1 ∀i ∈ I (5.1b)

x i(S) ∈ {0, 1} ∀i ∈ I , S ⊆ G (5.1c)

The objective of the combinatorial auction problem (CAP) is tomaximize the social welfare
over all bidders in (CAP). Constraint (5.1a) ensures that no overlapping bundles are assigned,
i.e., any good is assigned at most once. Constraint (5.1b) ensures that no bidder receives
more than one bundle, which represents an XOR constraint. Constraint (5.1c) defines that
no bundle can be partially assigned to a bidder. An extended version of the single-unit CAP
to a multi-unit CAP is provided by De Vries and Vohra (2003).

While a combinatorial auction contributes to an economically favorable allocation, the
CAP imposes computational difficulties (Shoham and Leyton-Brown 2009). Specifically, the
CAP is an instance of the weighted set packing problem (SPP) which is known to be NP-hard
(Lehnmann, Müller, and Sandholm 2006; Rothkopf, Pekeč, and Harstad 1998; Garey and
Johnson 1990; Karp 1972). In order to address this problem, several heuristic solutions to
approximate the CAP have been proposed (Fujishima, Leyton-Brown, and Shoham 1999; T.
Sandholm 2002; Andersson, Tenhunen, and Ygge 2000; Günlük, Ladányi, and De Vries 2005;
Sandholm and Suri 2003; Sandholm et al. 2005). Despite many of these algorithms promising
computational improvements, they often target specialized cases and do not always perform
better than generalized MIP solvers (Andersson, Tenhunen, and Ygge 2000; Günlük, Ladányi,
and De Vries 2005; Sandholm et al. 2005; T. Sandholm 2006). Hence, for an optimal winner
determination, MIP solvers are recognized as viable alternatives to solve the CAP (Lehnmann,
Müller, and Sandholm 2006). Solving the CAP in an optimal fashion also motivates truthful
bidding (T. Sandholm 2006).

Payment and Strategy In forward auctions, the amount each winner of a bundle has to
pay as well as the revenue of the auctioneer is determined by pricing rules (Nisan 2000).
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Consequently, in reverse auctions, pricing rules determine the amount the auctioneer, or
buyer, has to pay as well as the revenue of the bidders. With no strategic bidding, bidders
are assumed to report their true valuations to the auction. Otherwise, with strategic bidding
under consideration, pricing mechanism such as Vickrey-Clarke-Groves (VCG) can be
employed to ensure that bidders act non-strategically (Nisan 2000; Parkes 2001).

5.1.1.5 Multi-Unit Combinatorial Reverse Auctions

Multi-unit combinatorial reverse auctions are particularly common in procurement scenarios
(Sandholm et al. 2002). By combining the previously introduced auction formats, an extended
WDP can be formulated. Following Hsieh (2010), let i ∈ I be the set of agents and G be
the set of goods. The buyer that requests a set of goods is given by i = 0, all other bidders,
i.e., sellers, are given by i ∈ {1, 2, . . . ,N}. The number of requested goods is denoted as T
and the desired units for the t-th good as at0, where t ∈ {1, 2, . . . , T}. The bids of bidder
i > 0 are given by J i . The j-th bid submitted by a bidder i > 0 is represented by vector
e i , j = (a1i , j, . . . , ati , j, . . . , aTi , j, b i , j) where ati , j ≥ 0 denotes the offered quantity for the t-th
good and b i , j denotes the monetary value of the bid e i , j. The decision variable indicating
whether the j-th bid e i , j is allocated to bidder i is given by x i , j, where x i , j = 1 denotes that
bid e i , j is allocated to bidder i and x i , j = 0 denotes that bid e i , j is not allocated to bidder i.

RCAP(I) =min
x ,a
∑
i∈I
∑
j∈J i

b i , jx i , j (RCAP)

s. t.∑
i∈I
∑
j∈J i

ati , jx i , j ≥ at0 ∀t = 1, 2, . . . , T (5.2a)

∑
j∈J i

x i , j ≤ 1 ∀i ∈ I (5.2b)

x i , j ∈ {0, 1} ∀i ∈ I , j ∈ J i (5.2c)

The objective of the reverse combinatorial auction problem (RCAP) is to minimize the
overall cost over all bidders in (RCAP). Constraint (5.2a) ensures that the received quantities
ati , j must be greater than or equal to the requested quantities at0 of the buyer. Note that this
formulation assumes free disposal, i.e., surplus of the offered quantities can be disposed of
at no cost. Constraint (5.2b) ensures that no bidder is assigned more than one bid, which
represents an XOR constraint. Finally, constraint (5.2c) defines that no bid can be partially
assigned to a bidder.
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5.1.1.6 Electricity Auctions

Almost all of today’s electricity auctions are organized asmulti-unit auctionswith either a first-
price, i.e., uniform, or a pay-as-bid (PAB), i.e., discriminatory pricing rule (Fabra, Fehr, and
Harbord 2002; Maurer and Barroso 2011). Both the uniform and the discriminatory pricing
rule are subject to extensive discussions in literature as to which one is deemed a better fit for
electricity markets considering strategic criteria such as possible collusion among suppliers
(Kahn et al. 2001b, 2001a; Fabra, Fehr, and Harbord 2002; Cramton 2003). However, in order
to guarantee efficiency independent of industry players and market data, the Vickrey auction
should be a regulator’s choice (Fabra, Fehr, and Harbord 2002). Nevertheless, within these
auctions, bids usually include information about minimum supply prices from generators
as well as the available capacity at the named price. In addition, more complex two-sided
auctions can be found in several countries, e.g., the European Energy Exchange (EEX).
Such auctions broaden the focus from an electricity procurement setting towards a more
competitive setting which can also increase welfare (Maurer and Barroso 2011).

Auctions in context of the German control reserve markets, where the main objective is
to ensure security of supply, can be characterized as single-sided, multi-unit procurement
auctions. The procurement of balancing power by grid operators is performed in advance and
not in real-time (Müsgens, Ockenfels, and Peek 2014; Bundesnetzagentur 2011b). Generators
submit bids with information on their capacity price as well as their energy price. The
capacity price compensates the provisioning of the balancing power, whereas the energy
price is paid for actually retrieved balancing power. Auction winners are determined based
on the capacity price and are paid using the PAB rule. In case the provisioned and thus
available balancing power needs to be retrieved, previously determined winners are required
to increase or decrease generation or consumption of electricity and are paid according to
their energy price bid, again using the PAB rule (Müsgens, Ockenfels, and Peek 2014).

An extensive overview of electricity auctions which deals with procurement, exchanges,
and energy policy related aspects, market contexts, auction design and implementation issues
as well as investigates auction participants and the role of renewable energy sources (RES)
can be found in Maurer and Barroso (2011).



90 Chapter 5. Smart Grid Flexibility Auction Model and Allocation Problem

5.1.2 Research Method

The research in the work at hand follows the DSR approach proposed by Hevner et al. (2004).
The DSR paradigm – based on engineering and the sciences of the artificial (Simon 1996)
– is a problem-solving paradigm. It targets the construction and evaluation of information
technology (IT) artifacts, enabling organizations to address information-related tasks (Hevner
et al. 2004; Gregor and Jones 2007). IT artifacts are defined as constructs (vocabulary and
symbols), models (abstractions and representations), methods (algorithms andpractices), and
instantiations (implemented and prototype systems). The method, model, and instantiation
artifacts proposed in this research are: (i) a smart grid auction that constitutes an approach
for allocating load flexibility from consumers and prosumers via aggregators to address the
local grid load balancing problem; (ii) a compact bidding language that allows bidders to
express minimum and maximum amounts of electric flexibility (production or consumption)
along with unit prices in single bids for time periods of different size; and (iii) the prototype
implementation.

DSR relies upon the application of rigorous methods in both the construction and evalua-
tion of the design artifact. Therefore, the theories that inform the construction and evaluation
of the proposed artifact are described in the following. The utility, quality, and efficacy of
a design artifact must be rigorously demonstrated via well-executed evaluation methods
(Hevner et al. 2004). In this work, simulation experiments based on real-world data are
applied and provide evidence that load flexibility auctions can reduce distribution system
operator (DSO) cost and that procurement combinatorial/package auctions are well-suited
to address the grid load balancing problem. This chapter follows the structural guidelines for
presenting DSR proposed by Gregor and Hevner (2013). Table 5.1 summarizes the mapping
of the approach against the DSR guidelines.

The rationale for the selection of auction and game theory to inform the construction
of the artifact is as follows: The problem of balancing supply and demand by DSOs is in
fact a problem that is naturally addressed by a market. While the demand side is currently
rather inflexible (i.e., there are hardly any truly dynamic pricing schemes for consumers), the
supply side has been subject to energy exchanges for over a decade. However, these exchanges
consider large amounts of energy to balance supply and demand on a different grid level. In
contrast, the DSOs have to balance comparatively rather small amounts, though the timely
balance is not only a matter of economics, but also of grid stability. Mechanism design and
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Table 5.1:Mapping against design science research guidelines

Guideline (Hevner et al. 2004) Contribution

Design as an artifact The research outcomes (i) smart grid load flexibility auction;
(ii) compact bidding language; and (iii) prototype implemen-
tation constitute method, model, and instantiation artifacts.

Problem relevance The addressed research problem responds to the grand chal-
lenge of grid load balancing with the growth of fluctuating
wind and solar generation as well as with the emergence of
flexible loads.

Design evaluation Utility, quality, and efficacy of the design outcomes are
demonstrated in an experimental simulation study.

Research contributions The design artifacts and design construction knowledge ex-
tend and improve the knowledge of electricity market de-
sign.

Research rigor Auction theory is used for artifact construction and for de-
sign evaluation. Literature on simulation analysis informs the
evaluation of the artifact.

Design as a search process The discovery of an effective solution in the form of the pro-
posed smart grid auction and iterative improvements and
extensions in future work constitute the search process in
electricity market design.

Communication of the research The formal models and technical details inform technology-
oriented audiences, implications, and opportunities inform
management-oriented audiences.
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auction theory provide mature and rigorous methods to build and analyze market designs
(Nisan et al. 2007).

The evaluation of the proposed artifact is informed by the literature on simulation analysis.
The simulation of technical and economic systems is a well-established method to evaluate
complex artifacts and can be used to numerically analyze the artifact to estimate the true
systems characteristics (Kelton and Law 2000). The artifact is evaluated with respect to
both the estimated implications for smart grid coordination as well as the computational
complexity of different instantiations.

5.2 Auction Model

In the following, the smart grid load flexibility auction is described by first presenting relevant
fundamental model assumptions and definitions, followed by introducing the proposed
bidding language. Subsequently, theWDP is formulated. Different pricing rules are presented
in the next chapter.

5.2.1 Model Assumptions

The auction design rests upon fundamental and common assumptions of mechanism design
and auction theory (Krishna 2002; Sandholm et al. 2002). Agents are assumed to be risk
neutral, i.e., they strive to maximize their expected profits. Following definition 3.10, agents
are furthermore assumed to have quasi-linear utility. Moreover, valuations of bidders are
independently distributed, that is, a bidder’s information and value is independent of all other
bidders’ information. The buyer is assumed to have no budget constraints, i.e., the buyer is
always able to pay the sellers for all considered pricing rules. Furthermore, as demand has
to equal supply at all times, no free disposal is assumed. Moreover, a successful allocation
is perceived as a contract. That is, not delivering the allocated balancing power results in
strong penalties for the responsible party. Finally, agents are assumed to truthfully report to
the mechanism, that is θ = θ̂.
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5.2.2 Model Description

The model comprises the DSO, who needs to procure short-term balancing power from
aggregators. Therefore, the DSO represents the buyer in the proposed auction, whereas
aggregators represent sellers. Furthermore, the DSO needs to resort to an outside option
in case the requested balancing power cannot be allocated from participating sellers. All
auction participants are referred to as agents.

Definition 5.1 (Auction format). The auction (artifact) constitutes a procurement, or
reverse, combinatorial auction. Thus, in contrast to the forward case, the auctioneer represents
the buyer whereas the bidders represent sellers.

Definition 5.2 (Time). The auction format is characterized through discrete time slots.
Let T ∈ N denote the time horizon under consideration. Let t ∈ T = {1, 2, . . . , T} denote the
time slots. The time slots are of equal length. To ensure generalizability, the length of a time slot
is described by means of a time unit (TU).

The good, or product, in the auction is defined as follows: The product to be procured
is defined as balancing power for discrete time slots t ∈ T over time horizon T . Balancing
power can denote both positive or negative balancing power.

Definition 5.3 (Product). Let g ∈ G be the product in the set of all available products to
be procured. Let g = (g1, . . . , g t , . . . , gT) with g t ∈ R denote the product, i.e., balancing power,
requested for time slot t. For reasons of generalizability, the unit of balancing power is defined
as energy unit (EU). A concrete specification could resolve EU to, e.g., kW or MW.

Definition 5.4 (Agent). Following definition 3.5, the set of agents is defined as I , with
an agent in the set of agents denoted as i ∈ I . The number of agents participating in the auction
is given by N = ∣I ∣. Agents i ∈ I are differentiated into buyer and sellers as follows.

Definition 5.5 (Agent type). Following definition 3.6, let θ = (θ1, . . . , θ i , . . . , θN) ∈ Θ
denote all agents’ private information in the set of all potential agent types of all agents. Let
agent i’s private information, be denoted by agent type θ i ∈ Θi , where Θi denotes the set of all
potential agent types of agent i. Moreover, let θ−i = (θ1, . . . , θ i−1, θ i+1, . . . , θN) denote the set
of all agent types without agent i.

Definition 5.6 (Bundle). Let bundle S ⊆ G denote a subset of the available goods or
products and S i ⊆ G denote an awarded bundle to agent i.
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As noted in definition 5.3 the DSO requests balancing power. Hence, the DSO announces
the auction as the auctioneer in order to buy positive or negative balancing power. Note that
the DSO is not required to conduct the auction as an intermediary could be appointed for
this task. However, for reasons of simplicity, the DSO is assumed to conduct the auction for
the remainder of this work.

Definition 5.7 (Buyer). Following definition 5.4, let agent i ∈ {0} be the buyer for
balancing power in the auction. The buyer in this work is a single DSO.

Definition 5.8 (Auctioneer). The auctioneer i ∈ {0} in this work represents the buyer,
or DSO.

Note that outside of this work, the role of an auctioneer can also be assumed by a separate
external entity and need not necessarily be the DSO.

Addressing requirement 7, the DSO needs to ensure a balance of supply and demand at all
times. Therefore, in case less than the required balancing amount from aggregators can be
allocated, the DSO needs to be able to resort to other more expensive emergency solutions
that can guarantee the balance of supply and demand. In this work, such an emergency
solution is represented by an outside option as follows:

Definition 5.9 (Outside option). Letψt = (ψt+,ψt−) ∈ Ψ denote the positive and negative
(i.e., production and consumption) outside option amounts with ψt ∈ R2. Let ψt+ denote the
positive balancing power amount, i.e., outside option, allocated in case no less expensive bids
can be allocated for time slot t. Similarly, let ψt− denote the negative outside option amount
allocated. Exogenous prices for both positive and negative amounts from the outside option
prices are denoted as γt ∈ R2, i.e., γt = (γt+, γt−) ∈ Γ where γt+ and γt− represent the price for
positive and negative balancing power prices.

Note that the outside option is assumed to be available in unlimited quantities in the
remainder of this work.

Definition 5.10 (Outside option provider). The outside option is provisioned and sold
by separate agents r ∈R ⊆ (I ∖ {0}).

In order to ensure budget balance (BB), the outside option provider is explicitly modeled
as an agent, as payments therefore stay within the auction mechanism. Conforming to def-
initions 5.11 and 5.13, the cost of an outside option provider can be comprised of investment,
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trading, or power plant operation cost. An outside option provider offers its real cost and is
compensated based on a first-price/pay-as-bid procedure.

Sellers, represented by aggregators or outside option providers, act as balancing power
suppliers.

Definition 5.11 (Seller). Following definition 3.5, let agents i ∈ I ∖ {0} be sellers in the
auction.

Definition 5.12 (Bidder). Following definition 5.11, let agents i ∈ I ∖ ({0} ∪ R) be
bidders (i.e., aggregators) in the auction.

Moreover, bidders are characterized by having cost for provisioning their portfolio of
flexible consumers or loads for each t ∈ T .

Definition 5.13 (Cost). Let cost function for each bidder i ∈ I ∖ ({0} ∪R) be denoted
as c i ∶ Θ → R with

c i(θ) =∑
t∈T

cti(θ). (5.3)

Definition 5.14 (Valuation). Let valuation function for buyer i ∈ {0} ⊂ I be denoted as
v i ∶ G → R where

v i(g) = ∑
t∈T ,g t∈g

v ti(g t). (5.4)

Definition 5.15 (Bids and bid indices). The bidders place bids e j, for which the bid index
in the set of bid indices is denoted as j ∈ J = {1, 2, . . . ,M}. The number of bid indices M = ∣J ∣
is partitioned into subsets of bid indices of the bidders i ∈ I ∖ ({0} ∪R) such that

∀i ∈ I ∖ ({0} ∪R) ∃! J i (5.5)

with
⋃

i∈I∖({0}∪R)
J i = J ∧ ⋂

i∈I∖({0}∪R)
J i = ∅. (5.6)

Definition 5.16 (Allocation). Let X = {x j} j∈J i
denote whether a bidder i’s bid e j with

x j ∈ {0, 1} is allocated to bidder i (x j = 1) or not (x j = 0), i.e., whether positive or negative
balancing power could successfully be procured by the DSO from an aggregator, or bidder i.

Definition 5.17 (Allocation function). Let allocation function κ ∶ Θ → {0, 1}∣J ∣ deter-
mine an allocation based on the agent types Θ and outside option prices γ, that is κ ∶ Θ = X .
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Definition 5.18 (Auction pricing function). Let pricing function pi ∶ Θ → RN define
the price of bidder i ∈ I ∖ ({0} ∪R).

Definition 5.19 (Auction transfer function). Let transfer, or payment, function ρ i ∶
Θ → RN denote the positive or negative transfer for auction participants I . Note that due
to incentive compatibility (IC) considerations, the transfer function is identical to the pricing
function for all agents i ∈ I ∖ ({0} ∪R).

ρ i(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−pi(θ) −∑
t∈T
(γt+ψt

+ + γt−ψt
−) i = 0

pi(θ) i ∈ I ∖ ({0} ∪R)

∑
t∈T
(γt+ψt

+ + γt−ψt
−) i ∈R ⊆ I

(5.7)

5.3 Auction Process

Following the formal model description in section 5.2, this section illustrates main parts of
the process of the flexibility auction. Figure 5.1 shows the sequence of interactions by using
the example of a single aggregator with the DSO and the flexibility auction. More specifically,
the aggregator initially is assumed to constantly contract flexibility from consumers and
prosumers and to manage its portfolio accordingly. Note that this assumption constitutes a
precondition and is not in scope of this work. Following section 4.2.3, the auction is part of
the yellow traffic light concept (TLC) state. That is, the auction is not repeated but invoked
only when a critical grid situation is detected. For this reason, the DSO needs to continuously
monitor its local grid. In case a critical grid situation is detected, the DSO determines
the required amount of flexibility and initiates and announces the flexibility auction with
the identified flexibility demand. Aggregators are notified and can then submit their bids,
i.e., offers, for flexibility. Subsequently, the auction determines the optimal allocation and
sets prices, i.e., payments to aggregators, according to a predefined pricing rule. With the
information on winners and the amount of allocated flexibility from the flexibility auction,
the DSO then settles the payments with the aggregators, which are required to deliver the
allocated flexibility in return. In case the amount of allocated flexibility is less than the
announced required amount, the difference is fulfilled by means of an outside option. The
complete sequence of the auction process is illustrated in the following as anUnifiedModeling
Language (UML) sequence diagram (Rumbaugh, Jacobson, and Booch 2004).
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Figure 5.1: Process of the flexibility auction
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5.4 Bidding Language

Following section 5.2.2 and definition 5.15, the bids e j with j ∈ J each consist of several
atomic bids. Hence, for each t ∈ T , an atomic bid can be specified within a unique, distinct
bid e j. Within a bid e j, bidders do not have to explicitly declare an atomic bid for each t ∈ T .
Instead, the preceding atomic bid implicitly remains valid until succeeded by an atomic bid
with a subsequent time slot. An atomic bid allows the bidder to express the possible delivery
time of balancing power. Furthermore, bidders can indicate the type of balancing power, i.e.,
energy consumption or production. Moreover, minimum and maximum delivery amounts
can be specified. Finally, the monetary bid per EU can be expressed. These parameters
provide bidders with a compact yet flexible means to communicate aggregated consumer
load flexibility.

More formally, let e j consist of n atomic bids. Then, the n-th delivery start time of bid e j is
denoted by σ j,n ∈ T .

Definition 5.20 (Bid start time). Let σ j,n ∈ T denote the bid start time of the n-th
atomic bid in bid e j.

The n-th delivery direction of bid j is denoted by ϕ j,n ∈ {−1, 1}. Here, ϕ j,n = −1 denotes en-
ergy consumption (negative balancing capability) by the bidder and ϕ j,n = 1 energy production
(positive balancing capability) by the bidder.

Definition 5.21 (Bid direction). Let ϕ j,n ∈ {−1, 1} denote the bid delivery direction of
the n-th atomic bid in bid e j, where ϕ j = −1 denotes energy consumption by the bidder and
ϕ j = 1 energy production by the bidder.

Moreover, the minimum and maximum delivery amounts of the n-th start time (or atomic
bid) in bid j are specified by a j,n and a j,n.

Definition 5.22 (Bid amount). Let a j,n ∈ R≥0 denote the minimum bid delivery amount
and a j,n ∈ R≥0 the maximum delivery amount of the n-th atomic bid in bid e j.

Minimum and maximum delivery amounts constitute interval [a j, a j], which describes
the flexibility of a bidder with regard to the bid amount. Thus, a flexible bidder bids a j < a j
whereas a completely inflexible bidder bids a j = a j.
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The monetary bid (minimum requested price) per EU (production or consumption) of the
n-th start time in bid j is given by b j,n ∈ R≥0.

Definition 5.23 (Bid price). Let b j,n ∈ R≥0 denote the bid price of the n-th atomic bid in
bid e j. The bid price constitutes a unit bid price and is therefore defined by means of a monetary
unit (MU) per EU.

The composition of definitions 5.20 to 5.23 results in a complete, atomic bid which is
defined as follows:

Definition 5.24 (Atomic bid). Let bidder i’s n-th atomic bid of bid e j with j ∈ J i be
denoted as a 5-tuple

(σ j,n , ϕ j,n , a j,n , a j,n , b j,n) (5.8)

where σ j,n ∈ T is the n-th delivery start time, ϕ j,n ∈ {−1, 1} the n-th delivery direction, a j,n ∈
R≥0, and a j,n ∈ R≥0 the n-th minimum and maximum delivery amounts, and b j,n ∈ R≥0 the
n-th valuation per EU.

Note that the atomic bids of bid e j are subject to a logical AND constraint. Therefore,
bid e j can only be allocated in its entirety or not at all. This enables a bidder to specify
dependencies resulting of atomic bids, e.g., to ensure that consecutive atomic bids constitute
a minimum runtime. The bidders i ∈ I ∖ ({0} ∪R) can submit zero or more bids e j.

Definition 5.25 (Bid). Let bidder i’s bid e j with j ∈ J i . Bid e j is denoted as 5×nmatrix

e j ∶=

⎛
⎜⎜⎜⎜⎜⎜
⎝

σ j,1 ϕ j,1 a j,1 a j,1 b j,1
σ j,2 ϕ j,2 a j,2 a j,2 b j,2
⋮ ⋮ ⋮ ⋮ ⋮

σ j,n ϕ j,n a j,n a j,n b j,n

⎞
⎟⎟⎟⎟⎟⎟
⎠

(5.9)

where σ j,n ∈ T is the n-th delivery start time, ϕ j,n ∈ {−1, 1} the n-th delivery direction, a j,n ∈
R≥0, and a j,n ∈ R≥0 the n-th minimum and maximum delivery amounts, and b j,n ∈ R≥0 the
n-th valuation per EU.

Example 5.1 (Extensive bid). Given time horizon T = 4, suppose that bidder i = 1 wants
to submit a single bid with J i = {1}. The bidder has determined its optimal consumer
portfolio which allows to submit a bid as follows. The bid should include a possible positive
balancing power (supply) between 5 and 10 EU over the first two TU. Additionally, the
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a [EU]

t [TU]

a = ϕ1,t ⋅ a1,t = 5

a = ϕ1,t ⋅ a1,t = 10

a = ϕ1,t ⋅ a1,t = 0

a = ϕ1,t ⋅ a1,t = −5

1 2 3 4 5

-5

0

5

10

Figure 5.2: Bid amounts of extensive bid from example 5.1.

valuation per EU is set at 20 MU/EU. Therefore, σ 1,t = t, ϕ1,t = 1, a1,t = 5, a1,t = 10, and
b1,t = 20 ∀t ∈ {1, 2}, i.e., σ 1,1 = 1, σ 1,2 = 2, ϕ1,1 = 1, ϕ1,2 = 1, a1,1 = 5, a1,2 = 5, a1,1 = 10, a1,2 = 10,
b1,1 = 20, and b1,2 = 20. Moreover, the bidder offers negative balancing power (demand)
between 0 and 5 EU over the last two TU with a valuation of 30 MU/EU, i.e., σ 1,t = t, ϕ1,t = −1,
a1,t = 0, a1,t = 5, b1,t = 30 ∀t ∈ {3, 4}, i.e., σ 1,3 = 3, σ 1,4 = 4, ϕ1,3 = −1, ϕ1,4 = −1, a1,3 = 0,
a1,4 = 0, a1,3 = 5, a1,4 = 5, b1,3 = 30, and b1,4 = 30. Then, the submitted bid in its complete and
extensive form is specified as follows.

e1 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

σ 1,1 ϕ1,1 a1,1 a1,1 b1,1
σ 1,2 ϕ1,2 a1,2 a1,2 b1,2
σ 1,3 ϕ1,3 a1,3 a1,3 b1,3
σ 1,4 ϕ1,4 a1,4 a1,4 b1,4

⎞
⎟⎟⎟⎟⎟⎟
⎠

(5.10)

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 1 5 10 20
2 1 5 10 20
3 −1 0 5 30
4 −1 0 5 30

⎞
⎟⎟⎟⎟⎟⎟
⎠

(5.11)

Moreover, the bid is illustrated in figure 5.2. As noted before, the bid can only be allocated if
all atomic bids can be matched to demand.

Example 5.2 (Compact bid). Suppose bidder i = 2 wants to submit a single bid with
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a = ϕ2,t ⋅ a2,t = 5

a = ϕ2,t ⋅ a2,t = 10

a = ϕ2,t ⋅ a2,t = 0

a = ϕ2,t ⋅ a2,t = −5

1 2 3 4 5
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Figure 5.3: Bid amounts of compact bid from example 5.2. Grayed out bids reflect implicitly assumed
atomic bids.

J i = {2} given the same scenario specification as in example 5.1. The compact bid form
allows the omission of atomic bids with identical values in all but the delivery start time
element σ j. Thus, the preceding atomic bid implicitly remains valid until succeeded by an
atomic bid with a subsequent time slot. This is in particular highlighted in figure 5.3. The
resulting compact bid submitted by bidder i is therefore specified as follows:

e2 =
⎛
⎝
σ2,1 ϕ2,1 a2,1 a2,1 b2,1
σ2,2 ϕ2,2 a2,2 a2,2 b2,2

⎞
⎠

(5.12)

=
⎛
⎝
1 1 5 10 20
3 −1 0 5 30

⎞
⎠
⇔ e1 (5.13)

That is, bid e2 is equivalent to bid e1 from example 5.1.

For the remainder of this work, the compact form is utilized.

In the bidding language, bids e j are combined with logical XORs operators (⊕). This
describes the combinatorial nature of the auction and allows bidders to express bid alterna-
tives. Such alternatives capture the claim from requirements 5 and 6 that a bidder is faced
with a complex and heterogeneous smart grid consumer portfolio. In order to maximize
the allocation of contracted consumers to current DSO demand as well as to minimize the
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internal risk of changes in consumer behavior, a bidder needs to be able to take advantage of
a great number of possible consumer scheduling combinations.

Example 5.3 (Combinatorial bid). Given time horizon T = 10, suppose that bidder
i = 3 wants to submit two bids with J i = {3, 4}. In the first bid e3, a positive balancing
power (supply) between 5 and 10 EU for 20 MU/EU over the first 5 TU is offered, i.e., σ 3,1 = 1,
ϕ3,1 = 1, a3,1 = 5, a3,1 = 10, and b3,1 = 20. Furthermore, positive balancing power of 12 to
13 EU for 24 MU/EU beginning at t = 6 is offered, i.e., σ 3,2 = 6, ϕ3,2 = 1, a3,2 = 12, a3,2 = 13,
and b3,2 = 24. Alternatively, in the second bid e4, bidder i = 3 offers a constant supply of 0 to
2 EU for 10 MU/EU over the complete time horizon T . While bid e3 may represent power
supply from a number of combined heat and power (CHP) plants, the power source of bid
e4 may be a single battery storage. The submitted bid in its compact and combinatorial form
is then specified as follows and further illustrated in figure 5.4:

e3 ⊕ e4 (5.14)

=
⎛
⎝
σ 3,1 ϕ3,1 a3,1 a3,1 b3,1
σ 3,2 ϕ3,2 a3,2 a3,2 b3,2

⎞
⎠

⊕ (σ4,1 ϕ4,1 a4,1 a4,1 b4,1) (5.15)

=
⎛
⎝
1 1 5 10 20
6 1 12 13 24

⎞
⎠

⊕ (1 1 0 2 10) (5.16)

Definition 5.26 (Winning bid). Let bid price b∗i = ∑t∈T bt∗i and bid amount a∗i =
∑t∈T at∗i denote the winning bids and amounts of winning bidder i from the set of winners
W ⊆ I .

Clearly, the winning bid amount a∗i and price b∗i is influenced by outside option amounts
ψt and prices γt .

Definition 5.27 (Winning coalition). A winning coalition C ⊆ I is the result of an
allocation with C = {i ∈ I ∶ ∃ j ∈ J i ∶ x j = 1}.

Definition 5.28 (Demand). Let a0 = (a10, . . . , at0, . . . , aT0 ) denote the demand of flexi-
bility, i.e., balancing power, from buyer i ∈ {0}. Moreover, let g∗ = a0 denote the product that
completely fulfills the amounts of the demand.
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Figure 5.4: Bid amounts of combinatorial bid from example 5.3. Grayed out bids reflect implicitly
assumed atomic bids.

5.5 Utility Functions and SocialWelfare

Definition 5.29 (Buyer utility function). The utility function of buyer i with i ∈ {0}
is determined by buyer i’s valuation (v i) for balancing power requested for each t ∈ T , plus
the payments (ρ i) for allocated balancing power to bidders. Thus, the utility function of buyer
i ∈ {0} is given by:

u0(θ) = v0(g∗) + ρ0(θ) (5.17)

The valuation of buyer i represents its opportunity cost for having to fall back to an outside
option and is assumed to be fixed.

Definition 5.30 (Seller utility function). The utility function of seller i with i ∈ I ∖{0}
is determined by the payments received for providing positive or negative balancing power, less
the cost c i for provisioning, contracting, and managing its portfolio of flexible consumers or
loads for each t ∈ T . For an outside option provider, the cost can encompass investment, trading
or operational cost. Then, the utility function of a seller agent i is given by:

u i(θ) = ρ i(θ) − c i(θ) (5.18)
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Definition 5.31 (Social welfare). The social welfare is given by the sum of equations (5.17)
and (5.18) over all participating agents:

sw(θ) =∑
i∈I
u i(θ) (5.19)

= u0(θ) + ∑
i∈I∖{0}

u i(θ) (5.20)

= v0(g∗) + ρ0(θ) + ∑
i∈I∖{0}

(ρ i(θ) − c i(θ)) (5.21)

= ∑
t∈T ,g∗,t∈g

v t0(g∗,t) + ρ0(θ) + ∑
i∈I∖{0}

(ρ i(θ) −∑
t∈T

cti(θ)) (5.22)

= ∑
t∈T ,g∗,t∈g

(v t0(g∗,t) − ∑
i∈I∖{0}

cti(θ)) (5.23)

Note that the valuation of sellers is zero, as they will not deliver, i.e., start generating or
consuming balancing power, unless successfully allocated. In addition, the utility of the buyer
is given through its valuation for balancing power.

5.6 Winner Determination Problem

Given the bidding language, the WDP can be formulated. In the following, two versions of
the WDP are introduced. The first version of the WDP exclusively considers the allocation of
bids that match the requested delivery direction ϕtj (production or consumption) for a given
time slot t. Extending this conservative and restrictive approach, the second version of the
WDP relaxes the restriction on unidirectional bid acceptance to allow the matching of both
delivery directions (production and consumption) bids at the same time for a given time slot.
This bidirectional WDP approach represents the foundation for further evaluations.

In accordance with literature on combinatorial (reverse) auctions (Rassenti, Smith, and
Bulfin 1982; T. Sandholm 2000; Sandholm et al. 2002; T. Sandholm 2002; Cramton, Shoham,
and Steinberg 2006; T. Sandholm 2006; Hsieh 2010), the winner determination problem is
formulated as a MIP in the following.
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5.6.0.1 UnidirectionalWDP

Following definitions 5.20 to 5.23, let ϕtj, atj, atj, and btj be the direction, minimum/maxi-
mum amount, and monetary bid submitted in the jth bid that are valid in t (ϕtj, atj, atj, btj ∶
(σ j,n , ϕtj, a j,n , a j,n , b j,n , ) ∈ e j ∧ σ j,n =max({σ j,n ∶ σ j,n ≤ t})).

The amount of balancing power requested by the auctioneer for time slot t is denoted
as at0. The accepted delivery amount of bid j in time slot t is specified by atj ∈ R≥0. From
definition 5.9, the positive and negative amount of balancing power purchased using an
outside option are denoted as ψt+ and ψt− at prices γt+ and γt−, respectively.

As noted in definition 5.31, the valuation of the buyer is assumed to be fixed, and the cost
by the sellers are subtracted therefrom. That is, the social welfare is the difference of the
buyer valuation and the seller cost. Therefore, the WDP can be formulated as the following
minimization problem.

UWD(θ) = min
x ,a,ψ+ ,ψ−

∑
t∈T
∑
j∈J

btjatj + γt+ψt
+ + γt−ψt

− (UWD)

s. t.∑
j∈J

atj + ψt
+ − ψt

− = at0 ∀t ∈ T (5.24a)

∑
j∈J

atj ≥∑
j∈J

atjx j ∀t ∈ T (5.24b)

∑
j∈J

atj ≤∑
j∈J

atjx j ∀t ∈ T (5.24c)

∑
j∈J

ϕtjx jϕt0 ≥ 0 ∀t ∈ T (5.24d)

ψt
+ϕt0 ≥ 0 ∀t ∈ T (5.24e)

−ψt
−ϕt0 ≥ 0 ∀t ∈ T (5.24f)

ψt
+,ψt

− ≥ 0 ∀t ∈ T (5.24g)

∑
j∈J i

x j ≤ 1 ∀i ∈ I (5.24h)

x j ∈ {0, 1} ∀ j ∈ J (5.24i)

The objective of the WDP is to minimize the sum of accepted bids and of the outside
option for the buyer and is given in UWD. The commonly known WDP (Rassenti, Smith,
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and Bulfin 1982; T. Sandholm 2000; Sandholm et al. 2002; T. Sandholm 2002; Cramton,
Shoham, and Steinberg 2006; T. Sandholm 2006; Hsieh 2010) is extended by minimum
and maximum amounts, unit prices, a combination of balancing power production and
consumption potential, and a fixed price outside option. In order to guarantee a constant
balance of supply and demand, constraint (5.24a) ensures that the DSO’s requested balancing
power amount at0 is fulfilled in every time slot t. This constraint also includes the positive
and negative outside options ψt+ and ψt− as a backup solution. Moreover, constraint (5.24b)
limits the accepted amount atj to the minimum amount atj specified in each bid j ∈ J
for all t ∈ T . Similarly, constraint (5.24c) limits the accepted mount to the maximum
amount atj specified in each bid. Constraint (5.24d) ensures the delivery direction ϕtj, i.e.,
production or consumption, matches the requested delivery direction ϕt0. Correspondingly,
constraints (5.24e) and (5.24f) limit the delivery direction of the positive and negative outside
optionsψt+ andψt− to the requested delivery direction ϕt0. Moreover, constraint (5.24g) ensures
the non-negativity of an allocated outside option ψt+ or ψt−. Furthermore, constraint (5.24h)
models the XOR relation of the single bids and ensures that at most one bid can be accepted
per bider. Finally, constraint (5.24i) describes the binary structure of a bid allocation, i.e., a
bid j can either be allocated (x j = 1) or not (x j = 0).

5.6.0.2 BidirectionalWDP

In order to allow for a more flexible allocation of balancing power from aggregators, the
previously introduced version of the winner determination problem in UWD, which requires
bid directions ϕtj to match the requested direction ϕt0 for all t ∈ T , is extended by relaxing
the relevant constraint from 5.24d. Henceforth, a requested direction ϕ0 can be matched
with a combination of positive or negative balancing power amount bids from aggregators.
Therefore, for each time slot t, the accepted bid amount atj is split up into bidirectional
components atj+ and atj− which denote positive and negative balancing power accepted for
each t ∈ T . For the remainder of this work, the following bidirectional version of the WDP
is used.

Analogous to section 5.6.0.1, let ϕtj, atj, atj, and btj be the direction, minimum/maxi-
mum amount and monetary bid submitted in the jth bid that are valid in t (ϕtj, atj, atj, btj ∶
(σ j,n , ϕtj, a j,n , a j,n , b j,n , ) ∈ e j ∧ σ j,n =max({σ j,n ∶ σ j,n ≤ t})).

The amount of balancing power requested by the auctioneer for time slot t is denoted as
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at0. Extending the previous WDP, the accepted positive and negative delivery amounts of
bid j in time slot t are specified by atj+ ∈ R≥0 and atj− ∈ R≥0 (atj+atj− = 0). The positive and
negative amount of balancing power purchased using an outside option are denoted as ψt+
and ψt− at prices γt+ and γt−, respectively.

WD(θ) = min
x ,a+ ,a− ,ψ+ ,ψ−

∑
t∈T
∑
j∈J
(btjatj+ + btjatj−) + γt+ψt

+ + γt−ψt
− (WD)

s. t.∑
j∈J
(atj+ − atj−) + ψt

+ − ψt
− = ϕt0at0 ∀t ∈ T (5.25a)

∑
j∈J

atj+ ≥∑
j∈J

atjx jϕtj ∀t ∈ T (5.25b)

∑
j∈J

atj− ≥ −∑
j∈J

atjx jϕtj ∀t ∈ T (5.25c)

∑
j∈J

atj+ϕtj ≤∑
j∈J

atjx j ∀t ∈ T (5.25d)

−∑
j∈J

atj−ϕtj ≤∑
j∈J

atjx j ∀t ∈ T (5.25e)

∑
j∈J

atj+ϕtj ≥ 0 ∀t ∈ T (5.25f)

−∑
j∈J

atj−ϕtj ≥ 0 ∀t ∈ T (5.25g)

ψt
+,ψt

− ≥ 0 ∀t ∈ T (5.25h)

∑
j∈J i

x j ≤ 1 ∀i ∈ I (5.25i)

x j ∈ {0, 1} ∀ j ∈ J (5.25j)

Since the load flexibility auction is a procurement auction, the objective is to minimize
the cost of accepted bids in addition to the cost of the outside option in WD. As before, the
general WDP is extended by minimum and maximum amounts, unit prices, a combination
of power production and consumption potential, and a fixed price outside option.

Constraint (5.25a) ensures that the DSO’s requested balancing amount at0 is fulfilled in
every time slot t ∈ T . In particular, balancing is now allowed in between bids from aggrega-
tors. That is, larger and potentially less expensive bids can be allocated and immediately be
counterbalanced with bids containing an opposing bid direction. This allows for a possibly
cheaper and more flexible allocation of bidders, with the purpose avoiding to resort to the
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outside option. In addition, constraints (5.25b) to (5.25e) limit the accepted balancing power
amounts to the minimum and maximum bid amounts, atj and atj, in the bids j ∈ J for all
t ∈ T , in accordance with the offered delivery direction ϕtj. Moreover, constraints (5.25f) and
(5.25g) restrict the purchases of the DSO to the offered direction ϕ j of bids from aggregators.
Furthermore, constraint (5.25h) ensures that the accepted outside option amounts ψt+,ψt−
are non-negative. Finally, constraint (5.25i) models the XOR relation of the single bids and
ensures that at most one bid can be accepted per bidder while constraint (5.25j) is the binary
variable that captures whether bid j is allocated or not.



6

Smart Grid Flexibility Auction Pricing Rules

F ollowing the model of the flexibility auction introduced in the previous chapter 5, this
chapter focuses on different pricing rules that can be applied in the auction. Firstly,

section 6.1 introduces pay-as-bid (PAB) as the classical pricing rule employed in auctions.
Secondly, section 6.2 provides details on the pricing rule k-pricing. Thirdly, section 6.3
introduces the application of Vickrey-Clarke-Groves (VCG) with the Clarke pivot rule to
the flexibility auction. Finally, section 6.4 introduces the novel contribution of core pricing
to a combinatorial reverse auction scenario as applied in the flexibility auction. Parts of
this chapter are adapted from the previously published paper: David Dauer, Paul Karaenke,
and Christof Weinhardt. 2015. “Load Balancing in the Smart Grid: A Package Auction and
Compact Bidding Language.” In Proceedings of the Thirty Sixth International Conference on
Information Systems. Fort Worth, TX.

6.1 Pay-as-Bid

The pay-as-bid (PAB) rule represents the most basic pricing rule for pricing in auctions and
is commonly employed in first-price auctions, in particular in financial, non-financial, and
procurement settings (Rothkopf and Harstad 1995). In the traditional forward setting, the
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highest bidder wins and pays the value of his bid (Krishna 2002). This rule is also referred to
as a discriminatory pricing rule. More formally,

pi(θ) = b∗i . (6.1)

In comparison to VCG mechanisms, PAB pricing has the benefit that it can avoid low rev-
enue outcomes in forward auctions (or high buyer payments in reverse auctions). Section 6.3
elaborates on the limitations of VCG mechanisms. Moreover, it discourages shill bidding
and collusive strategies (Ausubel and P. R. Milgrom 2002).

However, the PAB pricing rule requires to deal with strategic behavior of bidders, as there
exist several incentives to misreport preferences in order to improve the individual auction
outcome. For example, Day and Raghavan (2007) note that in sealed-bid combinatorial
auctions, a PAB rule encourages bidders to submit bids that just about ensure an efficient
outcome. Yet, uncertainty among bidders can lead to lower bids which in turn can result in
inefficient auction outcomes. For a characterization on solutions to the bidders’ strategic
problem, the inclined reader is referred to Bernheim and Whinston (1986).

In the following, the PAB pricing rule serves as a best case benchmark for the distribution
system operator (DSO), as it is assumed that bidders truthfully report their bids. Hence, the
payments from the DSO to aggregators can be assumed to be minimal.

Definition 6.1 (Pay-as-bid pricing). From definition 5.26, let b∗i and a∗i denote the
winning bid and amount of winning bidder i. Then, the payment for bidder i is given by

pPAB
i (θ) =∑

t∈T
bt∗i at∗i (6.2)

That is, under PAB pricing in the reverse auction setting at hand, bidder i ∈ I ∖ ({0}∪R)
receives exactly its offered price for its allocated amounts.

6.2 k-Pricing

The k-pricing rule represents an approach which aims at distributing welfare in sealed-bid
double-sided auctions between sellers and buyers according to factor k (Satterthwaite and
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Williams 1989, 1993). That is, prices are determined depending on the difference of the bids
from both a seller and a buyer. More specifically, given the valuation of buyer i = 1 as bid b1
and the reservation price of seller i = 2 as offer b2, the payment of the buyer to the seller is
determined as

p1(θ) = kb1 + (1 − k)b2, (6.3)

where k ∈ [0, 1] if and only if b1 ≥ b2 (Satterthwaite and Williams 1989). Otherwise, no
allocation would exist and the price would be 0. While k = 0 or k = 1 represent a unilateral
price determination for the seller or buyer, respectively, a value of 0 < k < 1 indicates that both
seller and buyer influence the price determination. Under the assumption of truthfulness,
the most equitable price setting is given for both sides with k = 0.5. That is, the final price is
located exactly midway between the valuation and reservation price.

Obviously, the advantage of of k-pricing lies within its ability to account for fairness and
revenue considerations given the flexibility to set k. Moreover, considering computational
runtime, k-pricing determines prices in polynomial time. However, similar to PAB pricing,
k-pricing is vulnerable to strategic manipulation from bidders. That is, a trade-off between
this limitation and the advantages of k-pricing is required (Stößer, Neumann, and Weinhardt
2010). k-pricing has been successfully applied in market-based settings, e.g., for double-sided
combinatorial exchanges (Schnizler et al. 2008) or for distributed scheduling in grid markets
(Stößer, Neumann, and Weinhardt 2010).

In context of the reverse auction setting in the work at hand, it is assumed that the opposite
side compared to the double-sided auction scenario is represented by the outside option.
Hence, the reservation price of the buyer is given by the outside option prices γt+ and γt−.
From definition 5.26, let b∗i and a∗i denote the winning bid and amount of winning bidder
i and from definition 5.9, let γt+ and γt− the prices for both positive and negative balancing
power for time slot t ∈ T .

Definition 6.2 (k-pricing). The payment a bidder i receives under the k-pricing rule is
given by

pKP
i (θ) = k∑

t∈T
f (γt∗+ , γt∗− ) + (1 − k)∑

t∈T
bt∗i at∗i (6.4)

with

f (γt∗+ , γt∗− ) =
⎧⎪⎪⎨⎪⎪⎩

γt∗+ ϕt0 > 0
γt∗− ϕt0 < 0.

(6.5)
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6.3 VCG

The VCG mechanisms allow to set aside strategic considerations on determining optimal
bidder strategies as the VCG mechanisms with the Clarke pivot rule are incentive compatible,
i.e., strategy-proof. (Green and Laffont 1977). Therefore, the best strategy of each player
is to report its true valuations to the auction mechanism. Moreover, the family of VCG
mechanisms also maximizes social welfare, i.e., the mechanism is allocative efficient for
quasi-linear utility functions. Additionally, the mechanism is ex-post individual rational and
weakly budget balanced as described in section 3.2.4.3 (Nisan et al. 2007; Shoham and Leyton-
Brown 2009). There is no other mechanism satisfying these properties in a combinatorial
setting (Green and Laffont 1977). As shown in section 3.2.4.3, the VCG mechanisms are a
family of mechanisms because there is a freedom of selecting the function which determines
the payments of agents. In these direct mechanisms, the agents’ payments do not depend on
their declarations (bids) and they are paid the sum of every other agent’s declared valuation
for the mechanism’s choice (Nisan et al. 2007; Shoham and Leyton-Brown 2009). That is,
prices reflect the externality imposed on other participants by a given agent. The general
functioning of VCG mechanisms is described in section 3.2.4.3. In the following, VCG is
described for the load flexibility auction introduced in section 5.2. Subsequently, this section
elaborates on the limitations of the VCG mechanisms.

6.3.1 Definition

Following definition 5.26, let b∗i and a∗i denote the winning bid and amount of winning
bidder i. In addition, let WD∗(⋅) denote the optimal solution to WD.

The VCG payments a bidder i ∈ I ∖ ({0} ∪R) receives are defined as

pi = h i(θ−i) − (WD∗(θ) −∑
t∈T

bt∗i at∗i ). (6.6)

The function h i(⋅) is independent bidder i’s bids and the possibility of different functions
explains why VCG is a family of mechanisms. The term WD∗(θ) −∑t∈T bt∗i ati denotes the
valuations of all bidders except i of the efficient outcome plus the price for using the outside
option for the optimal allocation. For the Clarke pivot payment, h i(⋅) is defined as the
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valuation of all other participants of an outcome when agent i does not participate, i.e.,

h i(θ−i) =WD∗(θ−i). (6.7)

Hence, the payment that bidder i ∈ I ∖ ({0} ∪R) receives is calculated as

pi(θ) =WD∗(θ−i) − (WD∗(θ) −∑
t∈T

bt∗i at∗i ) (6.8)

=∑
t∈T

bt∗i at∗i − (WD∗(θ) −WD∗(θ−i)). (6.9)

That is, prices reflect the externality imposed on other participants by a given agent.

Note that the winning bid is empty and the WD∗(⋅) terms cancel for non-winning bidders
and are therefore zero. The buyer pays

p0(θ) = − ∑
i∈I∖({0}∪R)

pi(θ) −∑
t∈T
(γt+ψt

+ + γt−ψt
−). (6.10)

That is, VCG payments are only applied for the bidder side. Moreover, payments are
bounded by the outside option prices γt as these are available for all t ∈ T . Therefore, every
bidder can at most receive a payment of

pi ,max =∑
t∈T

γtmaxat∗i (6.11)

where
γtmax =max({γt+, γt−}) ∀t ∈ T . (6.12)

This follows from the observation that the product of winning bids and amounts cannot
exceed the optimal value of WD, i.e.,

∑
t∈T

bt∗i at∗i ≤WD∗(θ), (6.13)

since they are part of a sum that gives the resulting value. Then,

pi(θ) ≤WD∗(θ) − (WD∗(θ) −WD∗(θ−i)) =WD∗(θ−i) (6.14)
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With
WD∗(⋅) ≤∑

t∈T
γtmaxat∗i (6.15)

this yields
pi(θ) ≤∑

t∈T
γtmaxat∗i . (6.16)

6.3.2 Limitations

As shown before, the VCG mechanisms for determining pricing in combinatorial auctions
have the advantage of being the only mechanisms that are efficient and dominant-strategy
incentive compatible (Green and Laffont 1977). That is, winners are selected with the objective
tomaximize the combined value of allocated bundles and it is the dominant strategy of bidders
to truthfully bid their valuations for each bundle of goods.

However, there exist several well-known limitations of the VCG mechanisms (Ausubel
and P. R. Milgrom 2002; Ausubel and P. Milgrom 2006; Rothkopf, Teisberg, and Kahn 1990;
Rothkopf and Harstad 1995), e.g., low revenue, fairness, and disqualification problems as
well as the possibility of shill-bidding and collusion. These limitations are illustrated along
the following examples.

Revenue The first limitation as noted by Ausubel and P. R. Milgrom (2002) represents that
generated seller revenues can be very low or zero in forward auctions.

Example 6.1 (Revenue in forward auctions). Following Day and Milgrom (2008), con-
sider an auction scenario with two identical goods for sale and three bidders which bid their
true valuations, i.e., the maximum price they are willing to pay, as shown in table 6.1 as
follows: Notice that the outcome of the auction determines bidders 2 and 3 as winners. VCG
with the Clarke pivot rule assigns the payments of bidders 2 and 3 to

pi = v̂ i − (CAP(I) −CAP(I−i))⇔ (6.17)

p2 = p3 = 10 − (20 − 10) = 0. (6.18)

Hence, the revenue for the seller would be 0, while it could be at least 10 as any bidder would
pay 10 for the bundle AB.
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Table 6.1: Bids resulting in low seller revenue

Bundle

Bidder A B AB

1 0 0 10

2 0 10 10
2 10 0 10

3 0 10 10
3 10 0 10

Table 6.2: Bids resulting in high buyer payments

Bundle

Bidder A B AB

1 10 0 0
2 0 10 0
3 0 0 30

In reverse auctions on the other hand, the low revenue problem can be referred to as the
high payments problem as buyer payments can be too high.

Example 6.2 (Payments in reverse auctions). Consider an auction scenario with two
goods to procure and three bidders with their reported valuations, i.e., the minimum price
they request, in table 6.2 as follows: Notice that the outcome of the auction determines
bidders 1 and 2 as winners since the goal of the buyer is to minimize its cost. VCG with the
Clarke pivot rule assigns the payments to bidders 1 and 2 to

pi = v̂ i − (CAP(I) −CAP(I−i))⇔ (6.19)

p1 = p2 = 10 − (20 − 30) = 20. (6.20)

Hence, the buyers pays∑i∈{1,2} pi = 40 in total. However, the losing bidder i = 3 would have
sold the item for 30. Therefore the buyer pays too much.

Fairness A direct implication of the low revenue problem is that the outcome is not a
core allocation (Day and Raghavan 2007). This in turn implies that there exists an outcome
provided by a coalition of bidders and the seller which is favorable but was rejected, yet could
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be formed through a renegotiation, i.e., collusion, among the corresponding coalition of
the seller and bidders. Such a favorable outcome could have been between non-winning
bidders who are willing to pay more than the winning bidders and the seller. In particular in
auctions that involve the public sector, such an outcome can be perceived as unfair (Day and
Raghavan 2007; Day and Cramton 2012). Following the previous example 6.2 with table 6.2,
note that while the buyer pays 40 in total, bidder 3 would object to this outcome due to it
being unfair as a renegotiation could produce a more favorable outcome for both the buyer
and bidder 3. That is, the buyer would pay less in total and bidder 3 would be allocated.
Another notion of fairness is introduced by Ausubel and P. R. Milgrom (2002), which refers
to the effect of a discriminatory pricing rule on the outcome where two bidders may have to
pay different prices for the same allocation based on the same bids. However, the notion by
Day and Raghavan (2007) is followed henceforth.

Disqualification The VCG mechanism with the Clarke pivot rule provides incentives for
sellers to exclude qualified buyers, known as the disqualification problem (Day and Milgrom
2008).

Example 6.3 (Disqualification problem). Following example 6.1 and table 6.1 therein,
notice that by disqualifying bidder 3, the outcome of the auction determines either bidder
1 or 2, according to a predefined tie-breaking rule, as winner. Assuming bidder 1 wins, the
price bidder 1 has to pay is set to

pi = v̂ i − (CAP(I) −CAP(I−i))⇔ (6.21)

p1 = 10 − (10 − 10) = 10. (6.22)

Therefore, the seller has raised the VCG price from 0 to 10 and in turn its own revenue.

Shill Bidding By misrepresenting their valuations and identity and therefore participating
as multiple entities (“shills”) in the auction, bidders can lower their payments in forward
auctions (Ausubel and P. R. Milgrom 2002) and increase their revenue in reverse auctions.
As this drawback is not of relevance for this work, an example is omitted but can be found in
Day and Milgrom (2008).
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6.4 Core Pricing

Core pricing aims at tackling the central issue associated with VCG mechanisms: Low seller
revenue in forward auctions (or high buyer payments in reverse auctions) and the associated
perceived fairness of prices (Day and Raghavan 2007). This section first introduces core
pricing for the combinatorial forward auction case. Subsequently, a novel application of core
pricing as a pricing rule in the flexibility auction is introduced.

6.4.1 Definitions

Core pricing, sometimes also referred to as a core-selecting auction or mechanism (Day and
Cramton 2012), was introduced in recent years (Day and Raghavan 2007) to mitigate the
limitations of VCG as identified in section 6.3.2. In particular, the goal of core pricing is
to increase the perceived fairness of prices and to determining adequately large payments
for bidders. Such payments need to prevent any coalition of losing bidders to propose a
mutually beneficial outcome for both the bidders and the seller, thereby also addressing the
low seller revenue problem (Day and Raghavan 2007). In addition to the properties of VCG,
namely ex-post individual rationality and allocative efficiency, core pricing introduces the
“core” property to combinatorial auctions, which ensures that the previously mentioned
mutually beneficial renegotiations do not occur, i.e., that there exists no bidder who would
be willing to pay more. Note that core pricing does not provide dominant-strategy incentive
compatibility as VCG does. Instead, VCG prices are used as a baseline and core prices are
determined in such a way as to minimize the deviation from incentive compatibility (Day and
Milgrom 2008). That is, while not being incentive compatible, core pricing aims at providing
incentives for bidders to reveal their bids truthfully by adjusting their payments to be as near
to VCG as possible. However, incentives for manipulation can be considered minimal in
larger markets, where the information on bidders and their preferences is not necessarily
known (Day and Raghavan 2007). Before being able to describe how the mechanism works,
it is essential to extend the auction model definitions of section 5.2.2 and therefore establish
several other fundamental notions based on Day and Raghavan (2007) as follows:

Definition 6.3 (Payment). Let p = (p1, . . . , pi , . . . , pN) ∈ R denote the vector of pay-
ments for all bidders i ∈ I . Furthermore, let pVCG = (pVCG

1 , . . . , pVCG
i , . . . , pVCG

N ) denote the
VCG payment vector and pCORE = (pCORE

1 , . . . , pCORE
i , . . . , pCORE

N ) denote the core payments
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of all bidders i ∈ I . Moreover, pτ = (pτ1 , . . . , pτi , . . . , pτN) denotes the payment vector for all
bidders at algorithm iteration τ (Day and Raghavan 2007).

That is, the payment vector defines the payments from bidders to the seller in forward
auctions. In the case of the load flexibility auction, which constitutes a reverse auction, the
payment vector defines payments from the seller to bidders.

Definition 6.4 (Outcome). Following definition 3.4, let o ∈ O denote the outcome, i.e.,
an allocation x ∈ X and payment vector p, of a combinatorial auction (Day and Raghavan
2007).

Definition 6.5 (Coalition). Following definition 5.27, let Co denote the set of winning
bidders determined by a feasible solution to the auction’s winner determination problem (WDP),
i.e., outcome o ∈ O (Day and Raghavan 2007; Day and Cramton 2012).

Definition 6.6 (Blocking outcome and coalition). An outcome o is called blocked if
there exists an alternative outcome o′ which generates strictly more revenue for the seller and for
which every bidder in the corresponding coalition Co′ weakly prefers the alternative outcome o′

to o. If such an alternative outcome o′ exists, the corresponding coalition Co′ is called a blocking
coalition (Day and Raghavan 2007).

Definition 6.7 (Core outcome). An outcome o which is not blocked is said to be a core
outcome (Day and Raghavan 2007).

Definition 6.8 (Bidder-Pareto-optimal outcome). A core outcome o is called bidder-
Pareto-optimal if no other core outcome exists which is weakly preferred by every bidder in the
corresponding coalition Co (Day and Raghavan 2007).

That is, given an efficient allocation and payment vector p, there exists no alternative
payment vector p′ which is also in the core, such that p′ ≤ p (Day and Cramton 2012).

6.4.2 Pricing Rule

Based on the fundamental concepts of core pricing, themechanism of a core-selecting auction
is described in the following. A core-selecting auction determines the allocation identical to
VCG, i.e., it maximizes social welfare. However, contrary to VCG with the Clarke pivot rule,
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Table 6.3: Bidder valuations for core pricing

Bundle

Bidder A B AB

1 28 0 0
2 0 20 0
3 0 0 32
4 14 0 0
5 0 12 0

payments are chosen differently, i.e., so that they are in the core. That is, VCG payments are
effectively corrected and thus substituted for core payments when the VCG payments are
not in the core. Specifically, payments are chosen in such a way that no one can be made
better off without making someone else worse off. Following Day and Cramton (2012), this
process can be illustrated with the subsequent simple yet exhaustive example.

Example 6.4 (Core pricing). Following Day and Cramton (2012), consider an auction
with two goods and five bidders with their reported valuations in bids as shown in table 6.3.
Notice that the outcome of the auction determines bidders 1 and 2 as winners with VCG
payments

pVCG
i = v̂ i − (CAP(I) −CAP(I−i))⇔ (6.23)

pVCG
1 = 28 − (48 − 34) = 14 (6.24)

pVCG
2 = 20 − (48 − 40) = 12. (6.25)

The constraints defined by the bidders’ reported valuations v̂(⋅), which in turn define the
core, are shown in the following figure 6.1. Notice that in particular the lower bounds of
the constraints are given considering that bidder 4 would always object a payment of bidder
1 for less than 14 on good A, therefore p1 ≥ 14. At the same time, bidder 5 would block if
the payment of bidder 2 would be less than 12, hence p2 ≥ 12. Similarly, bidder 3 needs
the payments of bidders 1 and 2 to be larger than his bid in order not to block, therefore
p1 + p2 ≥ 32. The upper bounds of the constraints are identical to the bids. Recall that
pVCG = (14, 12) and note that this vector is not in the core as bidder 3 would pay more for
both goods, i.e.,∑i∈{1,2} pVCG

i = 26 ≤ 32 = v̂3(AB). Now, to unblock bidder 3 and therefore
ensure that the payments are in the core, the auctioneer determines a corrected payment
vector which would be located at any point on the line segment from (14, 18) to (20, 12).
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Good A

Good B

28

v̂1(A)

20 v̂2(B)

14

v̂4(A)

12 v̂5(B)

32

32

v̂3(AB)

17

15

Pay-as-Bid

VCG

BPOC The Core

Figure 6.1: Core pricing example (based on Day and Cramton (2012))

Such a corrected payment vector is also referred to as bidder-Pareto-optimal (BPO) core
payments. In figure 6.1, the point with the minimum distance from pVCG (also referred to
as VCG-nearest or equitable bidder-Pareto-optimal (EBPO) core payments), i.e., (17, 15), is
chosen and substitutes the initial VCG payments pVCG.

The underlying approach that can guarantee EBPO core payments is a process presented
by Day and Raghavan (2007), which is referred to as the core constraint generation (CCG)
algorithm. The goal of CCG is to determine EBPO core payments as an alternative to VCG
payments using a two-stage process. For that purpose, CCG takes an iteratively generated
payment vector pτ and thereby first determines by using amodifiedWDPwhether there exists
an alternative auction outcome o′ which is weakly preferred over the current outcome o by
some bidder and generates strictly more revenue for the seller. If such an alternative outcome
exists, then based on the corresponding blocking coalition Co′ to which such a bidder belongs,
a constraint resulting from the violating payment vector pτ , is used to determine EBPO core
payments relative to all coalitions found though iteration τ as a second step. More formally,
the most violated core constraint, i.e., blocking coalition, if any, is found by extending the
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WDP CAP using the following mixed integer problem (MIP) formulation.

The objective of SEPτ is to maximize the social welfare over all bidders, where all winning
bidders are discounted by their opportunity cost from the original allocation. Here, v̂∗i (S i)
denotes the winning bid of bidder i within the set of winnersW with awarded bundle S i
resulting from CAP. Assuming payment pτi for bundle S i in CAP, to be willing to win bundle
S′i in coalition C, a coalitional contribution of qi(S′i , pτi ) = v̂∗i (S′i)− v̂∗i (S i)+ pτi of bidder i is
required. That is, the opportunity cost for the currently winning coalition,∑i∈W(v̂∗i (S i)−pτi ),
have to be taken into account in SEPτ. More specifically, a bidder i would not voluntarily
join a coalition where his surplus would be less than the opportunity cost.

z(pτ) =max
x ,ζ
∑
i∈I
∑
S⊆G

v̂ i(S)x i(S) − ∑
i∈W
(v̂∗i (S i) − pτi )ζτi (SEPτ)

s. t. ∑
S⊇{g}
∑
i∈I
x i(S) ≤ 1 ∀g ∈ G (6.26a)

∑
S⊆G

x i(S) ≤ 1 ∀i ∈ I ∖W (6.26b)

∑
S⊆G

x i(S) ≤ ζ i ∀i ∈W (6.26c)

x i(S) ∈ {0, 1} ∀i ∈ I , S ⊆ G (6.26d)

ζ i ∈ {0, 1} ∀i ∈ I (6.26e)

A core constraint violation has been found if the sum of payment vector pτ in the current
iteration τ is less than the optimal solution z(pτ) to SEPτ. Then, EBPO core payments, i.e.,
the minimum payments in the core which satisfy the core constraints found, are calculated
as defined in ωτ(є). The objective of EBPOτ is to determine minimum payments in the core
subject to minimizing the maximum deviation from VCG payments, which is given by δτ .
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ωτ(є) =min
δ
∑
i∈W

pCORE,τ
i + єδτ (EBPOτ)

s. t. ∑
i∈W∖Cτ′

pCORE,τ
i ≥ z(pτ′) − ∑

i∈W∩Cτ′
pτ′i ∀τ′ ≤ τ (CORE)

pCORE,τ
i − δτ ≤ pVCG

i ∀i ∈W (6.27a)

pCORE,τ
i ≤ v̂∗i (S i) ∀i ∈W (6.27b)

pCORE,τ
i ≥ pVCG

i ∀i ∈W (6.27c)

Here, pCORE,τ
i denotes the interim core payment vector in iteration τ. Core constraints

resulting from SEPτ extend the constraint space in CORE for each iteration τ′ ≤ τ. Deviations
are kept sufficiently small by a small enough value of є. The optimal solution of EBPOτ yields
updated payments pCORE,τ

i which are used in the next iteration. This iterative process is
repeated until no further constraints can be found using SEPτ, i.e., while z(pτ) > ωτ−1(є)
with the initial setting ω0(є) = ∑i∈W pVCG

i .

In summary, the entire core constraint generation process is described in algorithm 6.1.
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Algorithm 6.1: Core Constraint Generation (CCG) (Day and Raghavan (2007))

1 W , v̂∗(S)← solve the winner determination problem CAP to find winnersW and winning bids

v̂∗(S);
2 foreach i ∈W do

3 pVCG
i ← compute VCG price v̂∗i (S i) − (CAP(I) − CAP(I−i));

4 p1 ← pVCG;

5 ω0(є)← ∑i∈W pVCG
i ;

6 τ ← 1;
7 while true do

8 Cτ ← solve the core constraint separation problem SEPτ ;

9 if z(pτ) > ωτ−1(є) then
10 add constraint∑i∈W∖Cτ pCORE,τ

i ≥ z(pτ) −∑i∈W∩Cτ pτi to EBPOτ and solve EBPOτ ;

11 pτ+1 ← pCORE,τ from EBPOτ ;

12 else

13 p ← pτ ;
14 break;

15 τ ← τ + 1;

6.4.3 Application to the Load Flexibility Auction

As the load flexibility auction constitutes a reverse auction, the principle of core pricing is in
the following firstly illustrated for an exemplary reverse setting. The subsequent example
constitutes a novel use case and should provide a clear understanding of the differences
between (forward) core pricing and the reverse case.

Example 6.5 (Reverse core pricing). Consider a reverse auction where a single buyer
wants to procure two goods and five bidders report their valuations in bids, i.e., the minimum
price requested, as shown in table 6.4. In the given scenario, the goal of the auction is to
minimize cost for the buyer. Therefore, the outcome of the auction determines bidders 1 and
2 as winners with VCG payments

pVCG
i = v̂ i − (RCAP(I) − RCAP(I−i))⇔ (6.28)

pVCG
1 = pVCG

2 = 10 − (20 − 30) = 20. (6.29)
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Table 6.4: Bidder valuations for reverse core pricing

Bundle

Bidder A B AB

1 10 0 0
2 0 10 0
3 0 0 32
4 20 0 0
5 0 20 0

While PAB prices are clearly the prices that result in the least cost for the buyer (∑i∈{1,2} pi =
20), they do not ensure incentive compatibility (IC) and hence facilitate that sellers could
misreport their true valuations in order to game the pricing mechanism. Such incentives do
not exist with VCG mechanisms. With VCG, the buyer has to pay∑i∈{1,2} pVCG

i = 40 in total.
The following figure 6.2 shows the constraints defined by the bidders’ reported valuations v̂(⋅)
which in turn define the core. Notice that in particular the upper bounds of the constraints
are given considering that bidder 4 would always object a payment to bidder 1 of more than
20 on good A, therefore p1 ≤ 20. At the same time, bidder 5 would block if the payment
to bidder 2 would be more than 20, hence p2 ≤ 20. Similarly, bidder 3 needs the payments
to bidders 1 and 2 to be less than his bid in order not to block, therefore p1 + p2 ≤ 32. The
lower bounds of the constraints are identical to the bids. Recall that pVCG = (20, 20) and
note that this vector is not in the core as bidder 3 would request less for both goods, i.e.,
∑i∈{1,2} pVCG = 40 ≥ 32 = v̂3(AB). Therefore, to unblock bidder 3 and therefore ensure that
the payments are in the core, the auctioneer determines a corrected payment vector which
would be located at any point on line segment from (12, 20) to (20, 12). Such a corrected
payment vector for the buyer is also referred to as BPO core payments. In figure 6.2, the
point with the minimum distance from pVCG (also referred to as EBPO core payments), i.e.,
(16, 16), is chosen and substitutes the initial VCG payments pVCG of the buyer to the bidders
(sellers).

In the following, the concepts of core pricing are applied to the load flexibility allocation
problem introduced in chapter 5. Furthermore, the core pricing mechanism, i.e., CCG
with the core constraint separation problem (SEP) and the problem of determining EBPO
core prices, is extended in order to support the specified requirements of the load flexibility
auction. In particular, the contributions in this section encompass
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Good A

Good B

10

v̂1(A)

10 v̂2(B)

20

v̂4(A)

20 v̂5(B)

32

32

v̂3(AB)

16

16

Pay-as-Bid

VCG

BPOC

The Core

Figure 6.2: Reverse core pricing example

• the extension of SEPτ to support the reverse auction format of the load flexibility
auction as well as to support an outside option and unit prices,

• the extension of EBPOτ to allow unit prices as well as support the reverse auction
format,

• the extension of the core constraint generation algorithm to support unit prices in the
reverse auction format.

Recall from definition 5.1 that the load flexibility auction constitutes a reverse auction.
Additionally, as described in section 6.4 and as shown in example 6.2, VCG mechanisms can
result in unacceptably high buyer payments in reverse auctions. Hence, in accordance with
requirement 8, this section proposes the novel application of core pricing to a specific reverse
auction format, which constitutes the load flexibility auction in this work.

Based on the previous definition of reverse core pricing, the core constraint separation
problem which yields the most violated core constraint, if any, is defined as follows: In
accordance with definition 5.26, let b∗i and a∗i denote the winning bid and amount of winning
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bidder i from the set of winnersW ∈ I . In addition, let WD∗(θ) denote the optimal solution
to WD and WD∗(θ−i) the optimal solution to WD without bidder i. From definition 6.3, pτi
denotes the payment vector of bidder i at iteration τ.

The formulation of SEPτSG builds upon WD, and thus also has the objective to minimize
the cost of accepted bids and the cost of the outside option. Assuming payment pτj for bid e j
in WD, to be willing to win bid e j′ in coalition C, a coalitional contribution of

qi(e j′ , pτj) =∑
t∈T
(btj′atj′ − btjatj) + pτj (6.30)

is required for bidder i ∶ j, j′ ∈ J i . That is, the opportunity cost for the currently winning
coalition,

−∑
i∈W
(∑
t∈T

bt∗i at∗i − pτi ) = ∑
i∈W
(pτi −∑

t∈T
bt∗i at∗i ) (6.31)

have to be taken into account in SEPτSG for each bidder which is selected as part of a blocking
coalition resulting from SEPτSG. More specifically, a bidder i would not voluntarily join a
coalition where his surplus would be less than the opportunity cost. Therefore, each bid from
a winning bidder is corrected by his opportunity cost in case the winning bidder is part of a
blocking coalition.
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z(pτ) = min
x ,ζ ,a+ ,a− ,ψ+ ,ψ−

∑
t∈T
∑
j∈J
(btjatj+ + btjatj−) + γt+ψt

+ + γt−ψt
− (SEPτSG)

+ ∑
i∈W
(pτi −∑

t∈T
bt∗i at∗i )ζτi

s. t.∑
j∈J
(atj+ − atj−) + ψt

+ − ψt
− = ϕt0at0 ∀t ∈ T (6.32a)

∑
j∈J

atj+ ≥∑
j∈J

atjxτjϕtj ∀t ∈ T (6.32b)

∑
j∈J

atj− ≥ −∑
j∈J

atjxτjϕtj ∀t ∈ T (6.32c)

∑
j∈J

atj+ϕtj ≤∑
j∈J

atjxτj ∀t ∈ T (6.32d)

−∑
j∈J

atj−ϕtj ≤∑
j∈J

atjxτj ∀t ∈ T (6.32e)

∑
j∈J

atj+ϕtj ≥ 0 ∀t ∈ T (6.32f)

−∑
j∈J

atj−ϕtj ≥ 0 ∀t ∈ T (6.32g)

ψt
+,ψt

− ≥ 0 ∀t ∈ T (6.32h)

∑
j∈J i

xτj ≤ 1 ∀i ∈ I ∖W (6.32i)

∑
j∈J i

xτj ≤ ζτi ∀i ∈W (6.32j)

xτj ∈ {0, 1} ∀ j ∈ J (6.32k)

ζ i ∈ {0, 1} ∀i ∈ I (6.32l)

Constraint (6.32a) ensures that the requested balancing amount at0 is fulfilled in every
time slot t ∈ T . In addition, constraints (6.32b) to (6.32e) limit the accepted balancing power
amounts to the minimum and maximum bid amounts, atj and atj, in the bids j ∈ J for all
t ∈ T , in accordance with the offered delivery direction ϕtj. Moreover, constraints (6.32f)
and (6.32g) restrict the purchases of the buyer, i.e., the DSO, to the offered direction ϕ j of
bids from aggregators. Furthermore, constraint (6.32h) ensures that the accepted outside
option amounts ψt+,ψt− are non-negative. Constraint (6.32i) models the XOR relation of the
single bids and ensures that at most one bid can be accepted per bidder. Notice that this
constraint is limited to all bidders except for the winning bidders. For the winning bidders, a
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new constraint (6.32j) is introduced which ensures that in case a winning bidder is selected
to be part of a coalition resulting from SEPτSG, he will be compensated his opportunity cost
accordingly. Constraints (6.32k) and (6.32l) represent the binary variables which capture
whether bid j is allocated or not and whether or not to consider the opportunity cost in
(SEPτSG), respectively.

A core constraint violation has been found if the sum of payment vector pτ and the
outside option in the current iteration τ is less than the optimal solution z(pτ) in SEPτSG, i.e.,
z(pτ) < ∑i∈W pτi + (∑t∈T γt∗+ ψt∗+ + γt∗− ψt∗− ). The blocking coalition Co′ is given by all bidders
i ∈ I where ∃ j ∈ J i ∶ xτj = 1.

Then, EBPO core payments, i.e., the minimum payments in the core which satisfy the core
constraints found, are calculated as defined in ωτ(є). In contrast to EBPOτ, the objective
of EBPOτ

SG is to determine maximum payments in the core with the secondary objective to
minimize the maximum deviation from VCG payments, which is given by δτ.

ωτ(є) =max
δ
∑
i∈W

pCORE,τ
i − єδτ (EBPOτ

SG)

s. t. ∑
i∈W∖Cτ′

pCORE,τ
i ≤ z(pτ′) (CORESG)

− ( ∑
i∈W∩Cτ′

pτ′i +∑
t∈T

γt∗+ ψt∗
+ + γt∗− ψt∗

− ) ∀τ′ ≤ τ

pCORE,τ
i + δτ ≥ pVCG

i ∀i ∈W (6.33a)

pCORE,τ
i ≥∑

t∈T
bt∗i at∗i ∀i ∈W (6.33b)

pCORE,τ
i ≤ pVCG

i ∀i ∈W (6.33c)

Here, pCORE,τ
i denotes the interim core payment vector in iteration τ. Core constraints

resulting from SEPτSG extend the constraint space in CORESG for each iteration τ′ ≤ τ.
Constraint (6.33a) ensures that deviations are kept sufficiently small by a small enough
value of є. Moreover, constraint (6.33b) ensures a winning bidder’s payment is at least as
large as under a PAB pricing rule, which selects the minimum requested price for a given
allocation. Therefore the lower bound of the core prices is set to the value of its winning bid,
∑t∈T bt∗i at∗i . Similarly, constraint (6.33c) ensures that the payment is at most as high as the
VCG payments. The optimal solution of EBPOτ yields updated payments pCORE,τ

i which are
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used in the next iteration. This iterative process is repeated until no further constraints can
be found using SEPτSG, i.e., while z(pτ) < ωτ−1(є) + (∑t∈T γt∗+ ψt∗+ + γt∗− ψt∗− ) with the initial
setting ω0(є) = ∑i∈W pVCG

i .

In summary, the entire core constraint generation process for a reverse auction is described
in algorithm 6.2.

Algorithm 6.2: Core Constraint Generation (CCG) (based on Day and Raghavan (2007))

1 W , b∗i ← solve the winner determination problem WD(θ) to find winnersW and winning bids

b∗i ;
2 foreach i ∈W do

3 pVCG
i ← compute VCG price b∗i − (WD∗(θ) −WD∗(θ−i));

4 p1 ← pVCG;

5 ω0(є)← ∑i∈W pVCG
i ;

6 τ ← 1;
7 while true do

8 Cτ ← solve the core constraint separation problem SEPτSG;

9 if z(pτ) < ωτ−1(є) + (∑t∈T γt∗+ ψt∗+ + γt∗− ψt∗− ) then
10 add constraint∑i∈W∖Cτ pCORE,τ

i ≤ z(pτ) − (∑i∈W∩Cτ pτi +∑t∈T γt∗+ ψt∗+ + γt∗− ψt∗− ) to
EBPOτ

SG and solve EBPOτ
SG;

11 pτ+1 ← pCORE,τ from EBPOτ
SG;

12 else

13 p ← pτ ;
14 break;

15 τ ← τ + 1;
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Implementation and Evaluation
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Simulation Design

T his chapter empirically analyzes properties of the flexibility auction by means of a
simulation-based evaluation following the definition of the auction and pricing mecha-

nisms in chapters 5 and 6. Given the underlying complexity of electricity and power markets,
large test-bed scenarios or analytical methods as proposed by the market engineering (ME)
approach constitute problematic or even impossible evaluation methods given complex phys-
ical requirements of building real-world electricity grids. However, alternative evaluation
methods such as simulation-based analysis exist, which allow to abstract from and model
complex real-world systems and gain insight into such systems. Hence, simulation serves as
an appropriate method to evaluate the proposed flexibility auction.

In the following, this chapter first elaborates on themethodology and concept of simulation
in section 7.1. Section 7.2 defines the metrics which are used to analyze the simulation results.
Subsequently, section 7.3 describes the simulation model for the flexibility auction. Based
on the simulation model, the relevant settings consisting of input data and parametrization
are defined in section 7.4. Finally, section 7.5 describes the technical implementation of the
simulation.
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7.1 Preliminaries

Simulations allow to model real-world or other systems using information technology (IT)
and in turn to study characteristics and parameters of the model in a less complex and less
detailed fashion. Moreover, simulations enable to evaluate these models numerically and over
time (Banks 1998; Kelton and Law 2000). In the work at hand, the system of the flexibility
auction is comprised of the economic environment, agents, and the actual marketmechanism.
More specifically, the economic environment can be seen as a local part of the the power
system, or smart grid. The agents in the work at hand are the distribution system operator
(DSO) as well as aggregators. The flexibility auction constitutes the market mechanism.

One of the main advantages of simulation is the possibility to control and adapt any
parameter and input variable specific to the problem. This not only allows the comparison of
different simulation settings but also to investigate the effects of changing a specific parameter
on the system (Banks 1998). Moreover, simulations are less expensive compared to field
experiments as no real payments to participants are required (Kelton and Law 2000). The
ability to model heterogeneity is an additional benefit of simulation studies. Instead of being
restricted to real-world constraints such as firm sizes, such constraints can be chosen in an
arbitrary fashion (Axtell 2000). In scope of smart grids, heterogeneity plays an important role.
On the local level, solar generation capacities can vary from rooftop to rooftop. Similarly,
battery storage or electric vehicle (EV) capacities and cost are heterogeneous given the wide
consumer model choice. In addition, consumer behavior and rationality cannot be assumed
to be identical. Hence, the frequency a consumer can offer its potential flexibility to an
aggregator, which in turn can market this flexibility to the proposed auction in the work at
hand, needs to reflect such heterogeneity.

In contrast, simulations face some limitations. Firstly, simulations are less detailed and
less complex, therefore do not identically represent real-world systems. In addition, sim-
ulation results need to be interpreted carefully (Banks 1998). Furthermore, the outcome
of a simulation depends on the chosen set of input parameters and defined assumptions.
Therefore, a sensitivity analysis can help to ensure the robustness of a simulation (Kelton and
Law 2000).

In summary, simulations represent a helpful tool for market-based problems. While they
are not completely applicable to all problems, they often represent an efficient way to evaluate
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systems or market designs. In the following, different simulation models are characterized
and general simulation steps are outlined.

7.1.1 Simulation Characteristics

Simulation models can be characterized along three dimensions (Kelton and Law 2000).
Firstly, a simulation can be either discrete or continuous, i.e., the state variable which con-
tains information about the system’s environment or outcome changes with respect to time.
Secondly, a simulation can be either static or dynamic, i.e., represent a specific point in time
or model systems where time plays no role, or evolve over time. Lastly, a simulation can be
either stochastic or deterministic. This means that the simulation does or does not include
probabilistic components.

In context of market-based settings, simulations are, among others, often characterized as
discrete and stochastic in nature. For example, agent-based simulations constitute dynamic
and stochastic simulations, whereas Monte Carlo (MC) simulations represent simulation
models of static and stochastic nature. More specifically, the static and stochastic nature of
MC simulations allows the empirical evaluation of computationally hard problems (Kelton
and Law 2000). MC simulations in market-based settings, also in the domain of electricity
markets, are widely used, e.g., by Gode and Sunder (1993), Wen and David (2001), Cai and
Wurman (2005), and El-Khattam, Hegazy, and Salama (2006).

7.1.2 Simulation Steps

A simulation study generally follows a structure process consisting of the following steps
(Banks 1998; Kelton and Law 2000). Firstly, in the problem definition, a clear understanding
of the problem at hand as well an appropriate and clear formulation are established. Addi-
tionally, assumptions are formulated and evaluation metrics are defined. Secondly, the model
conceptualization step defines the simulation model in an abstract or mathematical fashion.
This step includes to define the environment, the agents and their behavior as well as their
interactions with each other and/or the environment. Thirdly, the model implementation
requires the (i) implementation, (ii) verification, and (iii) validation of the conceptual model.
That is, the model is translated into a software artifact either using common frameworks or
built as an individually customized software artifact. Afterwards, the artifact is verified, e.g.,
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by means of unit testing, and validated, e.g, by using existing theories of expected outcomes.
Fourthly, the execution and evaluation step requires to define and describe simulation settings,
i.e., the simulation parametrization and relevant input data. Within this step, multiple simula-
tion runs are performed in order to account for the stochastic nature of a simulation. Finally,
the output data of the simulation is analyzed using statistical methods, e.g., by computing
descriptives such as means or variances.

7.2 Problem Definition

As noted in section 7.1.2, the first step when using simulation as an evaluation method is to
formulate the problem definition and evaluation metrics for the system at hand. Here, the
system of the flexibility auction consists of of the economic environment, agents, and the
actual market mechanism with different pricing rules.

7.2.1 Cost and Pricing Rules

The application of different pricing rules directly impacts DSO payments to winning aggre-
gators whereas the contracted outside option price remains constant for each pricing rule.
Following research question 5 and definitions 5.9, 5.10, 5.19 and 5.29, the primary metric cλ

is therefore given by the payments to winning bidders and the cost for the contracted outside
option, formally as follows:

cλ = ρλ0(θ). (7.1)

The metric depends on the pricing function λ ∈ {PAB,KP,VCG,CORE} as defined by the
pricing rules in chapter 6.

The benchmark for measuring the DSO’s savings is given by the outside option for the
full flexibility demand. Following definitions 5.9, 5.10 and 5.28, the benchmark metric is
therefore given by

Υ =∑
t∈T
( f (γt+, γt−, ϕt0)at0) (7.2)
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with

f (γt+, γt−, ϕt0) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

γt+ ϕt0 > 0
γt− ϕt0 < 0
0 otherwise.

(7.3)

The determined prices for the different pricing rules are compared to investigate possible
differences among the applied pricing rules. Therefore, different ratios are compared. In
detail,

1. the ratio of the core payments pCORE
i to themonetary bid values∑t∈T bt∗i at∗i (Core/Bid),

2. the ratio of the Vickrey-Clarke-Groves (VCG) payments pVCG
i to the monetary bid

values∑t∈T bt∗i at∗i (VCG/Bid),

3. the ratio of the k-pricing payments pKP
i to themonetary bid values∑t∈T bt∗i at∗i (K/Bid),

4. the ratio of the k-pricing payments pKP
i to the VCG payments pVCG

i (K/VCG),

5. the ratio of the k-pricing payments pKP
i to the core payments pCORE

i (K/Core),

6. the ratio of the VCG payments pVCG
i to the core payments pCORE

i (VCG/Core).

7.2.2 Computational Tractability

The winner determination problem (WDP) of the flexibility auction represents an instance
of the set-packing problem and is therefore NP-hard (cp. section 5.1.1.4). As VCG and the
core constraint separation problem (SEP) solve a modified WDP, these pricing rules are
likewise NP-hard. Hence, it is crucial to investigate the empirical computational hardness as
proposed in research question 6. More specifically, the duration ξ for computing the winners
of the action as well as payments under different pricing rules is measured.

7.3 Simulation Model

The simulation constitutes a Monte Carlo simulation. That is, a simulation with the same
parameter configuration is repeated a predefined number of times with different random
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seeds. This technique is common in simulation to obtain robust results (Kelton and Law
2000).

The simulation model is composed of an environment with a predefined number of
aggregators and one DSO, which initiates the flexibility auction. Simulation input data
is partly based on real-world data. The flexibility demand describes the products of the
flexibility auction. Once the auction is announced, aggregators submit their flexibility to the
DSO, which constitutes the auctioneer. Subsequently, the winner determination problem is
solved optimally and pricing rules determine payments from the DSO to aggregators.

The flowchart of the simulation is illustrated in figure 7.1. The complete simulation starts
by configuring what and where to log the simulation output to. Afterwards, the simulation
control draws the main simulation seed as well as a random seed for each set of parameters
according to the specified number of runs. The set of parameter configurations is built
in the subsequent step. Moreover, the simulation loads input data from a local database.
Having finished all preparations, the simulation control begins starting individual simulation
runs consecutively. Within a run, the DSO, or auctioneer, uses the previously loaded input
data to randomly draw its demand for flexibility. This demand is immediately known to
all aggregators. Aggregators randomly determine their flexibility, which is based on an
exemplary minimum runtime constraint to indicate an aggregated (non-)availability of a
portfolio. Having collected all bids, the DSO proceeds to solve the auction’s WDP and to
determine prices according to a number of pricing rules. All information is subsequently
logged for evaluation purposes. Finally, the simulation run is repeated for each remaining
parameter configuration.

Following section 5.2.2, the simulation considers a time horizon T with discrete time
slots t ∈ T = {1, 2, . . . , T} of equal length. The set of all participating agents is given by
i ∈ I where i ∈ {0} is the buyer, i.e., DSO, and all other agents represent sellers. Specifically,
bidders, i.e., aggregators, are given by i ∈ I ∖ ({0} ∪R). The DSO announces its demand
a0 = (a10, . . . , at0, . . . , aT0 ) and aggregators i ∈ I ∖ ({0} ∪R) can submit bids e j ∀ j ∈ J i for
their pooled flexibility. Given the bids, the DSO solves WD to determine the winners of the
auction and subsequently determines prices given different pricing rules.
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Figure 7.1: Activity diagram of the simulation flow
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7.3.1 Market Mechanism

The flexibility auction constitutes the market mechanism. The flexibility auction is a reverse
combinatorial multi-unit auction with an outside option. In detail, the DSO as the auctioneer
i = 0 announces the products a0 that describe the required flexibility demand and collects
voluntary bids from aggregators as bidders. The auction is announced as necessary given
the yellow traffic light concept (TLC) state, i.e., does not constitute a multi-round auction.
More specifically, strategic implications of multi-round auctions are not in the scope of this
work.

Following chapter 6, four distinct pricing rules are evaluated with the market mechanism.
While pay-as-bid (PAB) pricing and k-pricing constitute polynomial pricing rules, i.e, are
computationally tractable, VCG and core pricing are NP-hard. Therefore, the pricing rules for
VCG pricing and core pricing as well as theWDP are solved optimally using the a commercial
mathematical programming solver Gurobi 6 (Gurobi Optimization 2015).

7.3.2 Bidder Structure

Thebidder structure can be characterized by the dimensions (i) number of bidders, (ii) bidder
flexibility, and (iii) bidder heterogeneity as follows.

7.3.2.1 Number of Bidders

The number of bidders determines the size of the market. Within a local setting and given
that aggregators represent a currently emerging entity in smart grids, the number of bidders
is kept deliberately small to model realistic conditions. That is, groups consisting of 5 to 30
aggregators are evaluated.

7.3.2.2 Bidder Flexibility

While each individual contracted consumer or prosumer of an aggregator possesses an
individual flexibility, for the purpose of this simulation, the combined flexibility is subject to
certain assumptions for reasons of simplicity.
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t = 1 t = T

Figure 7.2: Bidder flexibility for l = 2 from example 7.1. Marked time slots reflect active time slots.

Firstly, the flexibility in time of an aggregator is given by a minimum runtime constraint.
Specifically, the less constrained an aggregator, the more flexible it is, as it can provide a
greater amount of bids to the DSO which in turn impacts possible allocations. In contrast,
the larger the runtime constraint, a lower number of bids can be determined.

Definition 7.1 (Bidder flexibility). Let l i ≤ T , l i ∈ N denote agent i’s flexibility.

The minimum runtime constitutes the flexibility of an aggregator. Given a time horizon T ,
an aggregator has

T − l i + 1 (7.4)

possible start times for bids. Note that the number of possible placements is applied to a
single bid and that an aggregator can submit an arbitrary number of bids with different
flexibility placements. The following example illustrates the process of the minimum runtime
constraint. For this purpose, consider a time horizon of 45 minutes and a granular time slot
length of 5 minutes. Then, a DSO can announce the flexibility auction with T = 45

5 = 9 time
slots, i.e., products.

Example 7.1 (Bidder flexibility for l = 2). Suppose the flexibility of an aggregator i, i.e.,
its minimum runtime, has been determined to be l i = 2. Then, the bids of aggregator i
require that at least l i consecutive time slots are identical for the same bid amounts and
monetary value. The number of possible flexibility placements is 9− 2+ 1 = 8. The beginning
of the flexibility is determined endogenously and is from this point on forward assumed to
start at t = 1 for reasons of simplicity. Figure 7.2 illustrates the flexibility of aggregator i with
l i = 2.

Example 7.2 (Bidder flexibility for l = 7). Suppose the flexibility of an aggregator i has
been determined to be l i = 7. Then, the bids of aggregator i require that at least l i consecutive
time slots are identical. The number of possible flexibility placements is 9 − 7 + 1 = 3. Hence,
aggregator i can submit only up to 3 bids assuming constant amounts. Figure 7.3 illustrates
all possible flexibility placements of aggregator i with l i = 7.
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t = 1 t = T

t = 1 t = T

t = 1 t = T

Figure 7.3: Bidder flexibility for l = 7 from example 7.2. Marked time slots reflect active time slots.

The flexibility in volume of an aggregator, i.e., the amount of consumption or production
for a given time slot which can be provided, is influenced by themarket share of an aggregator,
which is given by a heterogeneity factor described in the following.

7.3.2.3 Bidder Heterogeneity

Recall that an aggregator portfolio can consist of a heterogeneous consumer or prosumer
population. This in turn reflects on the ability of the aggregator to provide a certain amount
of flexibility to the market. In order to capture this heterogeneity and provide a structure
depending on the current electricity market structure with few large and many small utilities,
aggregators are distinguished by their amount of balancing flexibility. To this end, Zipf ’s law
(Axtell 2001) is leveraged. More specifically, Zipf ’s law allows to instantiate an empirically
valid yet parsimonious model for modeling heterogeneity in (firm) size (Axtell 2001) and is
defined as follows:

Definition 7.2 (Bidder heterogeneity). Given heterogeneity level d ∈ R with 0 ≤ d ≤ 1
and the total requested amount of flexibility from definition 5.28 a0, the φ-th largest of n firms,
i.e., aggregators, assumes maximum bid size a j of

a0 ⋅ (
1
φd
/

n

∑
η=1

1
ηd
) (7.5)

Note that for d = 0, bid sizes are uniformly distributed, i.e., every aggregator provides the
same amount of flexibility. Hence, bids can also be referred to as homogeneous. For d →∞,
the largest bidder assumes the entire quantity. Figure 7.4 illustrates the distributions for a
small and large number of aggregators.
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Figure 7.4: Exemplary distributions of bid sizes under Zipf’s law for 5 and 15 aggregators

7.3.3 Bidding Process

An aggregator can submit up to 2T −1 bids in theory. However, this upper boundary is limited
by the aggregator’s flexibility, which is given by a minimum runtime constraint as described
before. Hence, depending on the flexibility, the amount of bids submitted by an aggregator
can be substantially below the theoretical upper boundary. In context of the simulation in
the work at hand, an aggregator is assumed to submit exactly

⌈T
l i
⌉ + 1 (7.6)

bids. That is, a bid for every possible location in time is submitted. For example, following
example 7.2, an aggregator i with a minimum runtime of l i = 7 with a time horizon of T = 9,
i.e., the products to bid on, submits ⌈9/7⌉ + 1 = 3 bids.

As defined by the bidding language in definition 5.25, the parameters start time, direction,
minimum, and maximum delivery amount as well as a monetary value constitute a bid. The
start time is given by the minimum runtime. The direction is chosen stochastically between
generation and production. In order to determine the minimum and maximum bid amounts,
the requested flexibility amount and bidder heterogeneity are considered. More specifically,
the maximum amount is endogenously given by and scaled to the current flexibility demand
and corrected by the aggregators market share, i.e., its heterogeneity as given by definition 7.2.
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The minimum amount is set to exactly half of that amount. Moreover, the monetary value in
terms of integer values is drawn randomly from a uniform distribution between [1,min γt]
where γt denotes the minimal outside option price over all time slots. More technically, a
single bid is generated and then split according to the minimum runtime constraint, which
results in the number of bids as given by equation (7.6).

Recall from chapter 6 that PAB, k-pricing, and core pricing are not incentive compatible.
Therefore, for the purpose of the simulation, it is further assumed that the submitted bids
represent the truthfully reported monetary value of the bidders.

7.4 Simulation Settings

This section describes the exogenously specified simulation input data and parametrization.
By using exogenous data and parameters, the simulation can be evaluated frommany different
perspectives which underlines and supports the validity and robustness of the model.

7.4.1 Input Data

Real-world data sets integrated in the simulation are (i) market data for solar and wind
feed-in from the year 2014, (ii) data for balancing energy prices for 2014. These data sets are
described in the following.

7.4.1.1 Wind and Solar Data

In order to generate the DSO’s demand for flexibility, either wind or solar generation data
from the European Energy Exchange (EEX) transparency market data repository for the year
2014 is used (EEX 2014). The data for both generation types has a similar structure. More
specifically, the data for each generation type is available as ex-ante and ex-post time series
data, which describe the expected and the actual metered power values, respectively. A data
set contains information on the connecting area, which describes which grid operator area
contains the generation unit. Moreover, information on the time of the data is provided.
Depending on the ex-ante or ex-post nature of the data, either the expected or the actual
wind or solar energy values are provided.
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Figure 7.5: Deviations between ex-ante and ex-post wind and solar generation for the area of EnBW
in Q1/2014 (Source: Data from EEX (2014))

In context of this simulation, deviations from the current generation schedule that result
in demand for flexibility are modeled using the ex-ante and ex-post wind or solar generation
data. Following Feuerriegel, Riedlinger, and Neumann (2014), the difference between ex-
ante forecast and ex-post realized feed-in within the connecting area of EnBW in southern
Germany constitute the basis for the demand for flexibility. That is, the difference between the
ex-ante and ex-post wind or solar feed-in in time slot t is denoted as δt . Figure 7.5 illustrates
the deviations between forecast and realized wind and solar generation for the connecting
area of EnBW in Q1/2014.

Comparing both wind and solar feed-in, the deviations in solar feed-in reach a much
larger extend in volume than in wind feed-in. In contrast, the frequency of deviations in
wind feed-in is comparably larger than in solar feed-in. That is, for both feed-in types,
weather characteristics can be observed. In the following, the auction is assumed to run for
deviations exceeding a specific threshold only, as smaller discrepancies may be resolved in
more cost-efficient manners by grid operators or are resolved independently due to stochastic
consumer behavior. To this end, the deviations δt are filtered to determine the flexibility
demand from definition 5.28 as follows:

a0 = δt ⋅ 1(∣δ t ∣≥δ) (7.7)

where δ denotes the 10% quantile of the data. Figure 7.6 illustrates the filtered feed-in data
which serves as the input for the simulation. More specifically, from the year 2014, a week is
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(b) Solar deviations

Figure 7.6: Filtered deviations between ex-ante and ex-post wind and solar generation for the area of
EnBW in Q1/2014 (Source: Data from EEX (2014))

randomly picked to select the demand for flexibility.

7.4.1.2 Balancing Energy Prices

In the same way as wind and solar data serve as real-world input data for flexibility demand,
prices for the outside option are based on real-world balancing energy prices. These prices
can occur in today’s electricity market environment when deviations need to be balanced
after the gate closure for trading as described in section 2.2.2.2. As wind and solar data are
considered for the grid region of EnBW, balancing energy prices are sourced from the same
area and for the same year (TransnetBW GmbH 2015). Figure 7.7 shows the balancing prices
for the corresponding time period. As balancing prices can sometimes reach extreme peaks
in either positive or negative directions, both the original and a filtered time series within
the limits of [−500, 500] kW are shown. The balancing energy prices are randomly picked
from the corresponding time period for wind or solar generation.

7.4.2 Parametrization

In order to analyze different scenarios, the simulation parameters are varied along multiple
dimensions. Firstly, the bidder structure is described. More specifically, the number of
bidders and the bidder heterogeneity are varied. The number of bidders is set from 5 to 30
and the heterogeneity from 0 to 1.0 in discrete steps. The second dimension is given by the
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(b) Filtered balancing prices in limits [-500,500]

Figure 7.7: Balancing energy prices for the area of TransnetBW in Q1/2014 (Source: Data from
TransnetBW GmbH (2015))

Bidder Structure

Demand Structure

Product Structure

Figure 7.8: Simulation evaluation space

product structure. In more detail, the product structure defines the number of products, i.e.,
time slots. Given a time horizon of 45minutes, this period is fragmented into either 15 minute
or granular 5 minute time slots. This results in either 45/15 = 3 or 45/5 = 9 products. Thirdly,
the demand for flexibility is drawn either from real-world wind or solar data, resulting in the
demand type dimension. These dimensions constitute the evaluation space as illustrated in
figure 7.8.

In addition, for every parameter configuration in the evaluation space, all pricing rules as
defined in chapter 6 are evaluated in a further evaluation dimension. The k-pricing rule is
parametrized with k = 0.5 to favor neither the demand nor the supply side.

Moreover, a full factorial simulation is conducted. That is, only one parameter from the
evaluation space is varied while the other stay the same (Kelton and Law 2000). Random
parameters for every simulation run include the aggregator’s flexibility (minimum runtime),
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Table 7.1: Deterministric simulation parameters

Parameter Range

Number of bidders (N) {5, 10, 15, 20, 25, 30}
Bidder heterogeneity (d) {0, 0.5, 1.0}
Number of products (T) {3, 9}
Pricing rule {PAB, k-Pricing, VCG, Core Pricing}
Flexibility demand source {Wind, Solar}

Table 7.2: Random simulation parameters

Parameter Range Distribution

Bidder flexibility (l i) [1, T] ⊂ N Uniform
Bid type (ϕ j) {−1, 1} ⊂ Z Uniform
Monetary bid value (b j) [1,mint∈T γt] ⊂ N Uniform
Flexibility demand (a0) Day/Time from real-world data sets Uniform

its bid type (consumption or generation), the bid price and the DSO’s demand for flexibility.
The complete deterministic and random simulation parameters are shown in tables 7.1
and 7.2. A large number of possible parameter combinations and their interdependencies in
the context of simulation can result in extreme results. For this reason, each simulation run
based on a single parameter combination is repeated 100 times in order to reduce statistical
noise and improve the robustness of the results. That is, the permutations of the deterministic
parameter values result in 96 simulation experiment runs. With each run repeated 100 times,
the total number of simulation experiment runs results in 7200. Within each run, the prices
are calculated for all pricing rules in order to avoid an artificial increase of simulation runs
to 28800. After each simulation experiment run, the cost for the DSO for different pricing
rules are calculated.

7.5 Simulation Implementation

The third step within a simulation constitutes the model implementation. The model is
transformed into a software artifact bymeans of existing frameworks or customized andmore
effective implementations. Currently, no existing frameworks support the implementation
of combinatorial auctions with all relevant aspects of solving the WDP, generating bids or
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determining prices with different pricing rules. Hence, the simulation is implemented as a
custom software artifact using Python 2.7.11 (Python Software Foundation 2015) as part of
the Anaconda distribution (Continuum Analytics 2016). Moreover, given the large number
of possible simulation runs, the software artifact is implemented to support parallelization,
i.e., to run on multiple cores.

Figure 7.9 illustrates the class diagram for the simulation. Note that for reasons of com-
pactness, function arguments and types are omitted. The main class Simulation represents
the entry point and is either launched directly with a complete configuration for all runs
or as a child process of Cluster with a specific configuration range for a subset of runs. A
Simulation launches an AuctionProcessor which initiates a Scenario and generates
the parameter configuration. Moreover, an AuctionProcess prepares the HDF database,
which can store data for logging purposes in a table format. A Scenario loads and caches
wind and solar data from a local database. Additionally, it generates the set of bidders, their
bids as well as the demand for flexibility. Furthermore, balancing prices are loaded from
a local database. With a Scenario at hand, the WDP as a mixed integer problem (MIP)
is generated in Wd and solved using the optimization engine Gurobi (Gurobi Optimization
2015). Based on the solution of the WDP from Wd, the pricing is calculated and solved using
KPricing, VcgPricing, and CorePricing. PAB prices is calculated directly within Wd.
After each run, the results are written to the local database created in a Scenario.

While the implemented model has been partly verified using unit tests, the external
validation of the model represents a task which needs to be completed in further research as
no comparable implementations with similar characteristics exist as of yet.
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Figure 7.9: Class diagram of the simulation architecture
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Simulation Results

B ased on the previously introduced simulation model and implementation of the flex-
ibility auction, this chapter presents, analyzes, and interprets the obtained results.

Technically, all simulations are performed on an 64-bit Intel® Xeon® server with 6 cores,
with each at core operating at 1.73 GHz. The availablememory amounts to 12 GB.The running
system constitutes the server version of Ubuntu 14.04.3 LTS. Further system components
include Python 2.7.11 from the Anaconda distribution 4.0.0 and the state-of-the-art linear
optimization solver Gurobi 6.5.1 (Gurobi Optimization 2015; ContinuumAnalytics 2016). The
process of analyzing the simulation experiment data is supported by an evaluation pipeline.
That is, the simulation experiment data is written into a table-like HDF5 database (The HDF
Group 2015). Subsequently, the data is read into the statistics software R 3.2.4 (R Core Team
2016). RStudio 0.99.893 (RStudio Team 2015) is used as a graphical user interface (GUI) for
R. Based on scripts written in R and RStudio, the graphics and tables are generated.

Recall the simulation evaluation space as described in section 7.4.2 and shown in figure 7.8.
The remainder of this chapter is structured accordingly as follows: Firstly, section 8.1 analyzes
the simulation experiment results from an economic perspective for all simulation runs for
the bidder structure dimension. Secondly, the product structure is analyzed in section 8.2 .
Thirdly, section 8.3 investigates the demand structure. Subsequently, the technical results con-
cerning the empirical computational tractability of the simulation are analyzed in section 8.4.
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Finally, section 8.5 concludes this chapter by discussing and reflecting on the simulation
experiment results.

8.1 Bidder Structure

This section analyzes the characteristics of the bidder structure, i.e., the number of bidders,
the bidder flexibility as well as bidder heterogeneity.

8.1.1 Number of Bidders

Table 8.1 shows median, mean, and standard deviation of the distribution system operator
(DSO) cost as a function of the number of bidding aggregators. Moreover, the difference
(∆) from the preceding experiment (i.e., line) for median, mean, and standard deviation are
shown.

For an increasing number of bidders, the mean DSO cost decreases. However, the high
volatility of the flexibility demand from wind and solar as well as outside option prices
result in large standard deviations from EUR 17 242.97 to EUR 21 124.17. Yet, the median
also decreases with an increase of bidders and remains comparatively low. For 30 bidding
aggregators, more than 50 % of the simulation experiments show DSO cost at or below
EUR 3413.30.

Table 8.1: DSO cost in EUR as a function of the number of bidding aggregators

N Median Mean Sd ∆Median ∆Mean ∆Sd

5 5009 13 009.43 21 124.17 - - -
10 4053 10 801.55 17 738.99 −956 −2207.88 −3385.18
15 3779.17 10 492.72 17 638.07 −273.83 −308.82 −100.93
20 3607.50 10 156.26 17 671.43 −171.67 −336.46 33.36
25 3482.17 9996.67 17 271.50 −125.33 −159.59 −399.93
30 3413.30 9844.99 17 242.97 −68.87 −151.68 −28.53

[5,30] 3875 10 717.29 18 195.95 - - -

Figure 8.1 illustrates the DSO cost as a function of the number of bidding aggregators. As
before, the results comprise all simulation experiments. The values are represented by box
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Figure 8.1: DSO cost in EUR as a function of the number of bidding aggregators

plots. A box contains 50 % of all data points and line within the box denotes the median.
Moreover, the box is limited by the lower and upper quartiles. More specifically, 25 % of all
data points reside above, and 25 % below the box. Within figure 8.1, the resulting cost for
the DSO for all number of bidders lie below EUR 14 909.13 for 75 % of the experiments. The
vertical lines above and below extending a box, also referred to whiskers, denote 1.5 times the
interquartile range. That is, the interquartile range is given by the difference of the 75 % and
25 % quantile. Single dots above and below whiskers denote outliers. Despite the extreme
nature of outliers as illustrated in figure 8.1, where values greater than EUR 200 000 can be
observed, their effect on mean DSO cost is limited given their limited occurrence. The DSO
cost can be described as reaching a convergence based on the mean values for more than 20
bidders. Hence, it can be concluded that the flexibility auction is scalable with regard to the
number of bidding aggregators.

Table 8.2 shows the median, mean, and standard deviation as a function of the pricing
rule over all experiments. Moreover, the difference (∆) from the preceding experiment
(i.e., line) for median, mean, and standard deviation are shown. The mean cost for the
DSO is situated within the interval of EUR 6239.50 to EUR 13 479.10. Based on the most
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conservative pricing rule, pay-as-bid (PAB), k-pricing leads to an increase of mean cost by
EUR 7239.60. Compared to k-pricing, the use of Vickrey-Clarke-Groves (VCG) leads to a
decrease of median and mean prices by EUR 1308.75 and EUR 1850.93, respectively. Core
pricing additionally reduces the median and mean cost under a VCG regime by EUR 58.90
and EUR 105.77, respectively. The smaller decrease of core pricing can be explained due to the
fact that core pricing represents an improvement upon VCG prices for DSO in terms of lower
cost. In addition, it can be concluded that VCGoften leads to prices that are already in the core
and do not need to be improved upon and therefore can be considered as perceived fair. The
standard deviations lie between EUR 10 369.49 and EUR 22 001.52 over all experiments.

Table 8.2: DSO cost in EUR as a function of the pricing rule

Pricing Rule Median Mean Sd ∆Median ∆Mean ∆Sd

Pay as Bid 2098.67 6239.50 10 369.49 - - -
k-Pricing 5565.58 13 479.10 22 001.52 3466.92 7239.60 11 632.03
VCG 4256.83 11 628.17 18 838.89 −1308.75 −1850.93 −3162.63
Core Pricing 4197.93 11 522.40 18 677.57 −58.90 −105.77 −161.32

Figure 8.2 shows the DSO cost as a function of the pricing rule over all experiments. It can
be observed that for 75% of all experiments the cost for theDSO are belowEUR 15 584.25 over
all experiments and pricing rules. All pricing rules produce outliers above EUR 100 000.00,
with only PAB producing a data point slightly above that boundary. The outliers can be
explained to result from the highly volatile input data for flexibility demand and outside
option prices.

In order to allow for a comparison of the resulting cost for the DSO, table 8.3 shows
the mean cost for the DSO, the benchmark value for the outside option, their difference
(∆) as well as the resulting relative savings of the DSO over all simulation experiments.
The benchmark value for the outside option results from the assumption that all flexibility
demand would be procured from the outside option. Relative savings are calculated by
putting the difference of the actual cost and theoretical outside option cost in relation to the
outside option cost. The difference between the actual cost and the theoretical benchmark
ranges from EUR6692.92 to EUR 13 932.52. This corresponds to savings between 33.0 % and
69.0 % over all simulation experiments. While PAB produces the highest saving, it cannot be
assumed that bidding aggregators would continue to submit their true valuations. Therefore,
the savings would decrease as aggregators would learn that they could get a higher reward
by falsely reporting their valuations. K-Pricing leads to savings of 33.0 %, yet is subject to
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Figure 8.2: DSO cost in EUR as a function of the pricing rule

the same incentive compatibility issue. Core pricing can slightly increase the savings for the
DSO compared to VCG from 42.0 % to 43.0 %. However generally speaking, the savings
constitute substantial reductions upon a price taker regime in which the DSO would simply
rely on an outside option.

Table 8.3: DSO cost in EUR in comparison to outside option

Mean

Pricing Rule Cost DSO Outside Option ∆ Relative Savings

Pay as Bid 6239.50 20 172.02 13 932.52 0.69
k-Pricing 13 479.10 20 172.02 6692.92 0.33
VCG 11 628.17 20 172.02 8543.86 0.42
Core Pricing 11 522.40 20 172.02 8649.62 0.43

Table 8.4 shows the results of a linear regression analysis over all simulation experiments.
The DSO’s cost represents the dependent variable. The regression shows the influence of
the parameters number of bidders (N), bidder heterogeneity (d), number of products (T),
flexibility demand source (wind, solar) on the total cost of the DSO. All parameters have
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a significant influence on the DSO’s cost. In more detail, the number of bidders and the
number of products have a negative effect on the cost, whereas all other parameters, i.e.,
bidder heterogeneity and the flexibility demand source, have a positive effect on the DSO’s
cost. Details on these parameter are given in the following sections.

Table 8.4: Linear regression analysis results for DSO cost

Dependent variable:

Total DSO cost

Number of bidders (N ) −106.241∗∗∗

(11.506 )

Bidder heterogeneity (d) 602.839∗∗

( 240.691 )

Number of products (T) −270.307∗∗∗

(32.756 )

Flexibility demand source 14 371.240∗∗∗

( 196.537 )

Constant 6711.473∗∗∗

( 336.077 )

Observations 28 784
R2 0.161
Adjusted R2 0.160
Residual Std. Error 16 672.060 (df = 28 779)
F Statistic 1376.554∗∗∗ (df = 4; 28 779)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

8.1.2 Bidder Flexibility

Table 8.5 shows the values for median, mean, and standard deviation of the number of
accepted bids as a function of bidder flexibility over all experiments. The number of accepted
bids for all bidders represents a set of successfully cleared bids. The median lies between
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2 and 4 and is decreasing with an increasing value for the bidder flexibility level l . That
is, the more constrained the bidder’s flexibility, the less of the bidder’s bids are allocated.
Similarly, the values for mean and standard deviations lie within 2.74 to 6.75 and 1.86 to 5.85,
respectively. They decrease with an increasing limitation of the flexibility. In other words,
a greater flexibility results in a greater number of allocations on average. More specifically,
mean and standard deviation values support this notion, in particular for l = 1.

Table 8.5: Number of accepted bids as a function of bidder flexibility

Flexibility l Median Mean Sd

1 4 6.75 5.85
2 3 3.39 2.20
3 3 3.19 2.11
4 2 2.74 1.86

Table 8.6 shows the results of a linear regression analysis over all simulation experiments
focused on the bidder perspective. The number of allocations represents the dependent
variable. The regression shows the influence of the parameters number of bidders (N),
bidder heterogeneity (d), bidder flexibility (l) and number of products (T) on the number
of allocations for all bidding aggregators. All parameters have a significant influence on
the number of allocations, supporting the statement regarding the decreasing effect of the
flexibility level from the previous paragraph. That is, the number of bidders and the bidder
heterogeneity have a positive effect on the number of allocations. On the contrary, the bidder
flexibility number of products have a negative effect on the number of allocations. However,
recall that the greater the flexibility level, the less flexible an aggregator actually is, as the level
represents a minimum runtime constraint.

Figure 8.3 illustrates the number of allocations as a function of a bidder’s flexibility par-
titioned by the number of participating bidders. This allows a more in-depth view on the
number of participating bidders. In all simulation experiments, the number of allocations
increases for flexibility level l = 1. However, the number of allocations remains below 10 for
75 % of the experiments for all other flexibility levels l ≠ 1. In line with the previous regression
analysis, it is obvious that in particular a larger number of bidders and a low flexibility level
are beneficial to the number of allocations. In particular, note that flexibility level l = 1 can
be explained as a bids based on this flexibility often act as a fill-in for larger bids to support
the overall allocation.
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Figure 8.3: Number of accepted bids as a function of a bidder’s flexibility partitioned by the number
of participating bidders
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Table 8.6: Linear regression analysis results for number of bidder allocations

Dependent variable:

Number of accepted bids

Number of bidders (N ) 0.219∗∗∗

(0.003 )

Bidder heterogeneity (d) 1.898∗∗∗

(0.030 )

Bidder flexibility (l ) −0.524∗∗∗

(0.022 )

Number of products (T) −0.932∗∗∗

(0.010 )

Constant 8.559∗∗∗

(0.080 )

Observations 20 745
R2 0.556
Adjusted R2 0.556
Residual Std. Error 3.037 (df = 20 740)
F Statistic 6491.885∗∗∗ (df = 4; 20 740)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

8.1.3 Bidder Heterogeneity

Table 8.7 shows theDSO cost in EUR as a function of the pricing rule partitioned by bidder het-
erogeneity for all simulation experiments. That is, for each heterogeneity level d ∈ {0, 0.5, 1},
the DSO cost are shown for all pricing rules. A heterogeneity level denotes that the requested
amount of flexibility demand is distributed among all bidders according to definition 7.2. The
mean values for a heterogeneity level d range from EUR 5962.60 to EUR6670.71 for PAB,
from EUR 13 291.43 to EUR 13 772.39 for k-pricing, from EUR 11 325.26 to EUR 12 123.78 for
VCG and from EUR 11 255.96 to EUR 11 910.06 for core pricing. The standard deviation is
considerably higher with ranging from EUR9730.31 to EUR 22 594.35 over all heterogeneity
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levels and pricing rules. Given that no substantial changes for median, mean, and standard
deviation for each pricing rule can be observed, it can be concluded that the auction is robust
with regard to different heterogeneous market structures.

Table 8.7: DSO cost in EUR as a function of the pricing rule partitioned by bidder heterogeneity

Heterogeneity Level d Pricing Rule Median Mean Sd

0

Pay as Bid 2077.67 5962.60 9730.31
k-Pricing 5487.17 13 291.43 21 648.22
VCG 4202.00 11 435.33 19 024.71
Core Pricing 4164.00 11 401.07 18 993.01

0.5

Pay as Bid 2080.00 6085.13 10 000.37
k-Pricing 5584.75 13 373.44 21 755.85
VCG 4152.00 11 325.26 18 027.45
Core Pricing 4112.02 11 255.96 17 954.25

1

Pay as Bid 2163.00 6670.71 11 300.11
k-Pricing 5604.33 13 772.39 22 594.35
VCG 4454.00 12 123.78 19 434.28
Core Pricing 4345.65 11 910.06 19 065.90

Figure 8.4 shows the DSO cost in EUR as a function of the pricing rule partitioned by
bidder heterogeneity. In more detail, 75 % of all simulation experiments yield DSO cost
less than EUR 15 584.25. More specifically, for PAB, 75 % of all experiments result in cost
less than EUR 7180.00, whereas VCG and core pricing yield cost less than EUR 13 783.33 and
EUR 13 696.13, respectively, for 75% of the simulation experiments. Note that no considerable
effect can be observed among the heterogeneity levels. In line with previous results, this
underlines the robustness of the auction model regarding homogeneous or heterogeneous
market structures.

Table 8.8 shows values for themean and standard deviation of the pricing ratios partitioned
by bidder heterogeneity for all simulation experiments. The mean ratios lie within the
interval of [1.01, 5.25] for a homogeneous aggregator population (d = 0) and in the interval
of [1.07, 5.39] for a heterogeneous aggregator population. In more detail, while ratio of VCG
prices to the bids is always more than 3 times higher, the ratio of core prices to the bids are
about 2.95 to 3.10 times higher. K-Pricing performs considerably worse as the resulting prices
lead to 5.25 to 5.39 times higher payments to aggregators compared to the submitted bids on
average. However, compared to VCG or core pricing, k-pricing only leads to mean ratios of
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Figure 8.4: DSO cost in EUR as a function of the pricing rule partitioned by bidder heterogeneity

1.85 to 2.04. The ratio of VCG to core pricing shows that core pricing can improve about 7 %
upon VCG prices.

8.2 Product Structure

Recall from section 7.4.2 that the product structure is divided into a short-termandmedium/long-
term horizon. That is, in the following, the effect of 3 or 9 products that indicate flexibility
demand is investigated.

Table 8.9 shows the values for median, mean, and standard deviation for the DSO cost in
EUR as a function of the pricing rule partitioned by the number of products for all simulation
experiments. The median for 3 products lies in the interval of EUR 2205.00 to EUR4508.50
and within the interval of EUR 1972.67 to EUR 5279.42 for 9 products. Compared by pricing
rule, the cost for the DSO are in general less with more products available. This can be
explained from the fact that with the same time horizon divided into more granular products,
a more cost-efficient allocation becomes possible. In comparison by pricing rule, PAB yields
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Table 8.8: Pricing ratios partitioned by bidder heterogeneity

0 0.5 1

Ratio Mean Sd Mean Sd Mean Sd

Core/Bid 3.10 4.53 3.02 4.33 2.95 4.11
VCG/Bid 3.13 4.56 3.08 4.39 3.11 4.33
K/Bid 5.25 8.06 5.33 8.40 5.39 8.93
K/VCG 1.85 1.66 1.88 1.70 1.88 1.79
K/Core 1.88 1.80 1.94 1.99 2.04 2.56
VCG/Core 1.01 0.10 1.02 0.19 1.07 0.43

mean reductions in DSO cost of 14.39 % under a more granular product structure. Similarly,
k-pricing results in mean reductions of 16.29 %, VCG in reductions of 12.56 % and core
pricing in reductions of 12.78 %. For each number of products, the relation among the pricing
rules remains as before, i.e., PAB yields the lowest prices and k-pricing the highest prices.
In addition, core pricing always reduces DSO prices compared to VCG prices for median,
mean, and standard deviation values.

Table 8.9: DSO cost in EUR as a function of the pricing rule partitioned by the number of products

Number of Products Pricing Rule Median Mean Sd

3

Pay as Bid 2205.00 6723.48 10 686.33
k-Pricing 6002.50 14 674.70 24 528.37
VCG 4508.50 12 408.02 19 409.22
Core Pricing 4459.50 12 309.63 19 215.67

9

Pay as Bid 1972.67 5756.05 10 021.19
k-Pricing 5279.42 12 284.82 19 076.24
VCG 4057.50 10 849.18 18 220.81
Core Pricing 3980.41 10 736.04 18 092.63

Figure 8.5 shows the DSO cost in EUR as a function of the pricing rule partitioned by
the number of products. For 3 products, the cost lie below EUR 17 331.75 in 75 % of the
simulation experiments, while for 9 products, 75 % of the experiments yield cost of less than
EUR 14 552.13 over all pricing rules. Contrarily, more than 75 % of experiments result in cost
of more than EUR 518.00 for 3 products and in cost of more than EUR456.67 for 9 products.
In all experiments, extreme outliers can be observed, yet due to their limited occurrence,
their effect on mean cost is limited.
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Figure 8.5: DSO cost in EUR as a function of the pricing rule partitioned by the number of products

Table 8.10 shows values for themean and standard deviation of the pricing ratios partitioned
by the number of products for all simulation experiments. The mean ratios lie within the
interval of [1.02, 5.36] for 3 products and in the interval of [1.05, 5.29] for 9 products. For both
numbers of products, the standard deviation for the ratio of k-pricing to bids is substantially
larger than for all other ratios. Additionally, while the mean ratio for core pricing and VCG
to bids over all experiments is about 2.83 to 3.29, k-pricing yields ratios of 5.29 and 5.36 to the
bids. The ratio of VCG to core pricing shows that core pricing can improve 2 % upon VCG
prices for 3 products and 5 % for 9 products. Moreover, the mean ratio of k-pricing to core
pricing for both 3 and 9 products, i.e, 1.86 and 2.04, shows that core pricing can substantially
improve upon prices resulting from the k-pricing regime. Therefore, the lower prices of core
pricing result lower payments towards aggregators and hence lower total cost.
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Table 8.10: Pricing ratios partitioned by the number of products

3 9

Ratio Mean Sd Mean Sd

Core/Bid 3.25 4.99 2.83 3.64
VCG/Bid 3.29 5.05 2.94 3.81
K/Bid 5.36 8.86 5.29 8.12
K/VCG 1.82 1.71 1.91 1.72
K/Core 1.86 1.89 2.04 2.33
VCG/Core 1.02 0.16 1.05 0.35

8.3 Demand Structure

This section investigates the effect of the type of generation data used on the cost for the DSO
as well as also on resulting prices. As described in section 7.4.1.1, wind and solar data both
constitute the basis for the demand for flexibility by the DSO.

Table 8.11 shows the values for median, mean, and standard deviation for the DSO cost
in EUR as a function of the pricing rule partitioned by the flexibility demand source for
all simulation experiments. The median, mean, and standard deviations for wind data
are considerably lower compared to those for solar data. The median values for all prices
rules using wind data lie in the range of EUR 1079.00 to EUR 3334.17 and in the range of
EUR6051.17 to EUR 2192.67 for solar data. The mean values are between EUR 1878.02 and
EUR4827.32 for wind and between EUR 10 600.98 and EUR 22 130.88 for solar data. Such
substantial difference can result from the volatility which can be observed in both data sets
but to a greater extend in solar deviations. In particular, deviations of the amount between
ex-ante and ex-post data for solar generation span a much wider range compared to wind
generation. Hence, the amount of flexibility demand increases and results in more cost for
the DSO. For each flexibility demand source, the relation among the pricing rules remains as
before, i.e., PAB yields the lowest prices and k-pricing the highest prices. In addition, core
pricing always results in lower prices for the DSO compared to VCG prices for median, mean,
and standard deviation values.

Figure 8.6 illustrates the DSO cost in EUR as a function of the pricing rule partitioned
by the flexibility demand source. In 75 % of the simulation experiments, the DSO cost are
less than EUR 28 244.96. Particularly for wind data, 75 % of the experiments yield cost less
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Table 8.11: DSO cost in EUR as a function of the pricing rule partitioned by the demand source

Demand Source Pricing Rule Median Mean Sd

Wind

Pay as Bid 1079.00 1878.02 2539.36
k-Pricing 3334.17 4827.32 5379.08
VCG 2192.67 3729.39 4983.30
Core Pricing 2159.11 3692.88 4958.93

Solar

Pay as Bid 6051.17 10 600.98 13 060.57
k-Pricing 14 018.75 22 130.88 28 099.56
VCG 11 583.00 19 526.94 23 669.74
Core Pricing 11 489.86 19 351.92 23 464.27

than EUR6041.75. Note that even the outliers do not exceed a value of EUR 100 000, whereas
experiments based on solar data yield substantially more outliers.

Table 8.12 shows values for themean and standard deviation of the pricing ratios partitioned
by the flexibility demand source for all simulation experiments. The mean ratios are located
within the interval of [1.03, 5.89] for wind data and in the interval of [1.04, 4.76] for solar
data. The standard deviation values are between 0.23 and 8.74 for wind and between 0.32 and
8.17 for solar data. Core pricing and VCG can result in substantially lower prices compared
to k-pricing for wind and solar data. However, no considerable difference can be observed
between wind and solar data for lower DSO cost of core pricing over VCG.

Table 8.12: Pricing ratios partitioned by the demand source

Wind Solar

Ratio Mean Sd Mean Sd

Core/Bid 3.01 4.24 3.03 4.40
VCG/Bid 3.10 4.35 3.12 4.50
K/Bid 5.89 8.72 4.76 8.17
K/VCG 2.08 1.73 1.66 1.68
K/Core 2.18 2.22 1.73 2.02
VCG/Core 1.03 0.23 1.04 0.32
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Figure 8.6: DSO cost in EUR as a function of the pricing rule partitioned by the demand source

8.4 Computational Tractability

Table 8.13 shows median, mean, standard deviations, and maximum runtimes for WD, k-
pricing, VCG, and core pricing with SEPτSG and EBPOτ

SG, as well as the total computation
time partitioned by the number of bidders. Within the simulation experiments, no time
limit is imposed on the solver, which is used to solve WD, VCG, and core pricing. The solver
therefore always computes the optimal solution. On average, the winner determination and
pricing rules require no more than 10 seconds for N = 5. With N = 10, the same observation
holds, except for SEPτSG, which constitutes a 6.19 time increase of mean runtime compared
to N = 5. In general, the mean observed empirical computation time increases with N , in
particular for core pricing with SEPτSG. This can be explained as solving SEPτSG may require
several iterations. Moreover, runtimes for VCG prices also increase with N , which can be
explained since calculating VCG prices requires the repeated solving of WD without each
winning bidding aggregator. Hence, both problems contribute mainly to the mean total
runtime.

In addition, table 8.13 also shows that there exist several instances that require a substan-
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tially increased computation time. For example, while the maximum runtime of SEPτSG of
742.265 s for N = 5 constitutes a 89.32 time increase of the mean of 8.321 s, the maximum
runtime of SEPτSG of 33 314.917 s already constitutes a 265.218 time increase of the mean
125.613 s. This result is intuitive, as an increasing number of bidders results in an increasing
number of submitted bids. In turn, more bids extend the DSO’s space to determine the
optimal combination of aggregators to support the demand for flexibility. Moreover, more
bidders potentially allow for more alternatives for blocking coalitions, which need to be
resolved by core pricing. In contrast, EBPOτ

SG runtimes are close to zero for all N . This is
because EBPOτ

SG is not a mixed integer problem (MIP) and therefore faster to solve.

Figure 8.7 shows the runtimes a function of the number of bidding aggregators on a
logarithmic y-scale. For k-pricing, 75 % of the simulation experiments yield a runtime of less
than 0.003 67 s. Similarly, the runtimes of EBPOτ

SG of core pricing are less than 0.004 24 s for
75 % of the simulation experiments. In contrast, the runtimes for all over problems, i.e., WD,
VCG, and core pricing with SEPτSG, require considerably more computation time. While the
computation time over all number of bidders N takes less than 22.097 53 s for VCG in 75 %
of the experiments, solving SEPτSG consumes 48.024 93 s in 75 % of the experiments.

8.5 Discussion

The results of the experimental simulation study provide evidence for the efficacy and useful-
ness of the proposed flexibility auction artifact in different settings along the bidder structure,
product structure, and demand structure.

The cost of the DSO decrease with an increasing number of participating and bidding
aggregators over all simulations. This result is intuitive, as more aggregators are inherently
able to offer more flexibility from their prosumer portfolios to the auction. Investigating the
pricing rule that can be applied, PAB results in the lowest payments of the DSO to winning
aggregators. However, PAB is not incentive compatible and encourages aggregators to game
the auction mechanism as soon as they realize that they can directly influence the outcome.
In context of this simulation study however, it is assumed that bidders truthfully report their
valuations in all scenarios. Hence, the cost for the DSO under PAB remain low. K-pricing,
which allows to initially introduce a fairness component to the pricing mechanism, results
in the highest prices over all experiments. In contrast, VCG prices, which are incentive
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Figure 8.7: Runtimes a function of the number of bidding aggregators

compatible but can result in high DSO payments, result in less cost on average than k-pricing.
Core pricing, which aims at proving the perceived fairness of prices, results in lower cost
for the DSO compared to VCG prices. In terms of savings compared to a scenario where
the auction would not be in place and the DSO’s demand for flexibility would need to be
acquired solely by means of an outside option (e.g., control reserve), k-pricing results in
33.0 % savings of DSO cost, VCG in 41.5 % and core pricing in 42.1 % savings of DSO cost.

Investigating the bidder structure with the focus on the bidder flexibility, the simulation
experiments show that from the perspective of the bidding aggregators, bids with more flexi-
bility substantially increase the number of accepted bids. Specifically, individual allocations of
bids that reflect the highest temporal flexibility level (l = 1) are almost twice as high compared
to the second highest flexibility level (l = 2). The reason for the considerably higher allocation
of those bids can be explained as these bids often act as a fill-in for larger bids to support
the overall allocation. Focusing on bidder heterogeneity, the results support the conclusion
that the proposed flexibility auction is robust with regard to different homogeneous and
heterogeneous market structures as no substantial changes can be observed.
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Within the dimension of the product structure, the cost of the DSO decreases with an
increasing number of products. This can be explained as more products constitute a more
granular fashion to match supply and demand of flexibility more efficiently. Over all pricing
rules, a more granular product structure yields mean reductions of the DSO cost from 12.56 %
to 16.29. In addition, the simulation provides evidence from the mean pricing ratios that
core pricing produces substantially more reductions to DSO payments compared to VCG
and k-pricing under a more granular product structure.

The DSO cost also considerably increase for different sources of the DSO’s demand for
flexibility. Comparing deviations in real-world wind data to deviations in solar data, the
simulation shows that the DSO’s cost are driven by the extend of the volatility in each data
set. More specifically, mean cost based on demand from deviations in solar data are about 5
times higher compared to demand from deviations in wind data.

The computational evaluation shows that PAB and k-pricing can be calculated in polyno-
mial time in under 0.02 seconds. However, the problems of winner determination, VCG, and
core pricing can represent a computational challenge. The empirically measured runtime is
driven by the number of participating bidding aggregators. Bidders submitting more bids
extend the solution space for the winner determination problem. Moreover, more bidders
can potentially form more blocking coalitions, which requires to run more iterations to solve
the core pricing problem.

In summary, the experimental simulation study shows the utility, quality, and efficacy of
the proposed flexibility auction artifact. Moreover, the results show the robustness of the
design against various parameter sensitivities. These results therefore provide evidence for a
practical applicability of the flexibility auction.
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Table 8.13: Runtimes in seconds

N Problem Median Mean Sd Max

5

WD 0.028 0.590 1.284 19.223
k-Pricing 0.001 0.001 0 0.003
VCG 0.079 1.901 4.560 59.191
Core Pricing (SEP) 0.203 8.321 35.253 742.264
Core Pricing (EBPO) 0 0 0.001 0.005
Total 0.311 10.813 41.098 820.686

10

WD 0.066 1.004 1.837 21.830
k-Pricing 0.002 0.002 0.001 0.006
VCG 0.388 6.751 11.970 142.745
Core Pricing (SEP) 1.323 50.994 221.920 4176.995
Core Pricing (EBPO) 0 0.002 0.007 0.258
Total 1.778 58.753 235.735 4341.834

15

WD 0.097 1.678 8.505 327.110
k-Pricing 0.002 0.002 0.001 0.007
VCG 0.735 15.247 34.209 940.554
Core Pricing (SEP) 2.550 125.613 953.880 33 314.917
Core Pricing (EBPO) 0 0.004 0.043 1.736
Total 3.384 142.545 996.639 34 584.323

20

WD 0.167 2.113 6.476 159.502
k-Pricing 0.003 0.003 0.002 0.020
VCG 1.331 27.117 86.298 2645.325
Core Pricing (SEP) 3.100 165.706 655.918 14 221.596
Core Pricing (EBPO) 0 0.004 0.005 0.070
Total 4.601 194.942 748.699 17 026.512

25

WD 0.191 2.238 3.593 53.653
k-Pricing 0.004 0.003 0.002 0.009
VCG 1.938 38.095 108.133 3537.687
Core Pricing (SEP) 3.472 266.518 1170.812 26 494.964
Core Pricing (EBPO) 0.001 0.005 0.012 0.316
Total 5.605 306.860 1282.553 30 086.629

30

WD 0.257 2.692 4.686 75.336
k-Pricing 0.005 0.004 0.002 0.013
VCG 2.391 54.341 148.534 4454.737
Core Pricing (SEP) 3.714 353.174 1597.822 33 589.721
Core Pricing (EBPO) 0 0.006 0.027 1.051
Total 6.368 410.217 1751.071 38 120.859



Part IV

Finale





9

Conclusion and Outlook

T o conclude the research at hand, this chapter first presents a summary of this work and
recapitulates the key contributions in section 9.1. Then, section 9.2 discusses limitations

of the proposed flexibility auction and provides an outlook on future research to complement
the research of this thesis.

9.1 Summary and Contribution

Distribution system operators (DSOs) are presented with yet unseen challenges by the in-
creasing share of renewable energy sources (RES) and ambitious goals on a European and
German level regarding the integration of RES into power grids. One key issue is to maintain
the balance of supply and demand at all times to ensure security of supply. To align the
fluctuating generation from RES with consumption in a short-term manner, the flexibility
potential of the demand side needs to be activated and integrated into electricity markets.
In order to address this problem, market-based solutions are desired (EC 2015a). In line
with this rationale, this work contributes the vision of the smart grid flexibility auction as a
means for DSOs to procure flexibility from consumers via aggregators. The flexibility auction
can provide a step towards more sustainable and efficient distribution grids, which in turn
support the success of the smart grid.
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Chapter 1 described the topic of the work at hand and provided a structured overview of
the thesis. In addition, it formulated the research questions guiding this work. Chapter 2
introduced the current state and trends of today’s electrical power system and gave insight
into the nature and characteristics of the smart grid. Chapter 3 provided an overview of
market design with market engineering (ME) and mechanism design. This was required
for a subsequent classification of the market mechanism. Bringing together both previously
introduced domains of the smart grid and market design, chapter 4 elaborated on the appli-
cation of ME to smart grids. In addition, an environmental analysis was provided to address
the requirements for market-based allocation flexibility in smart grids (research question 1).
Moreover, related work was presented. Based on these fundamentals, requirements upon
the market mechanism were formulated. These requirements served as a basis for further
research in this work.

Chapter 5 introduced the main contribution of this work — the novel smart grid flexibility
auction — as a reverse combinatorial auction with unit prices and an outside option (research
question 2). Auction theory was used to design the smart grid flexibility auction as a design
science research (DSR) artifact. The bidding language was formulated to allow for a compact
representation of aggregator flexibility (research question 3). Furthermore, the allocation
problem was formulated to attain an efficient allocation. Chapter 6 derived several pricing
rules applicable to the flexibility auction (research question 4). To this end, pay-as-bid (PAB),
k-pricing, and Vickrey-Clarke-Groves (VCG) with the Clarke pivot rule were applied to this
domain-specific setting. In order to address the high buyer payments problem as well as
the fairness of prices for sellers, core pricing was applied to the flexibility auction. The core
pricing rule adapts VCG payments with the Clarke pivot rule, which can be considered unfair
by a coalition of losing aggregators (bidders), to eliminate the possibility of such a coalition
to object the auction outcome and to propose a mutually beneficial outcome for both the
aggregators and the DSO (seller). Therefore, no losing aggregator exists which would offer its
flexibility for less than any other winning aggregator. Moreover, the high buyer payments is
addressed by determining adequately large payments that remain in the core of the auction
while minimizing their distance to VCG payments.

Building upon the fully specified smart grid flexibility auction, chapter 7 was concerned
with the design of a simulation model and its implementation into a prototypical software
system for rigorous evaluation purposes. Within the simulation, scenarios of varying com-
plexity along the dimensions of bidder structure, product structure, and demand structure
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were defined. Moreover, metrics for evaluation purposes were defined. Chapter 8 provided
the analysis and discussion of the simulation experiment results from an economic and
technical point of view. The economic analysis showed the potential of the DSO to reduce
balancing cost (research question 5). More precisely, the analysis over all simulation experi-
ments demonstrated that k-pricing results in savings of 33 % when comparing the auction
outcome to potential outside option cost. In addition, VCG with the Clarke pivot rule and
core pricing result in savings of 42 % and 43%, respectively. Moreover, the results showed that
the flexibility auction is scalable with regard to the number of bidding aggregators and robust
to different heterogeneities of market share in the aggregator population. On an individual
aggregator level, the simulation experiments showed that a greater flexibility in terms of
time results in a greater number of allocations on average. Investigating the granularity of
the announced products, the results revealed that the cost of the DSO can be reduced by
14.39 % on average when dividing the time horizon of the auction into 5 minute time slots as
opposed to 15 minute time slots given a 45 minute time horizon. Furthermore, the volatility
in the real-world data for deviations in wind or solar generation impacts the cost of the DSO.
More specifically, using wind data, average DSO cost are substantially larger compared to
using solar data. In addition, the technical analysis showed that the empirical computational
hardness of the proposed flexibility auction given different bidder structures is high (research
question 6).

9.2 Outlook

Having presented the main contributions of the smart grid flexibility auction in this thesis,
future research opportunities that can complement this work are discussed in the following.

Bidding Language The introduced bidding language is designed to allow for a compact
representation of an aggregator’s preferences for electric load flexibility in a smart grid
scenario. However, there can be scenarios in which a different degree of complexity for
the bid formulation may be more beneficial to bidder requirements. For example, when
individuals such as prosumers can become bidders, the bidding language may need to be
simplified to account for their limited expertise and bounded rationality. Hence, future work
has to consider the trade-off between expressiveness and complexity of bidding languages
and to refine the proposed bidding language if necessary.
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Mechanism Design The simulation experiments in this work assume that auction partici-
pants truthfully report their preferences on their flexibility to the flexibility auction. This
assumption may not hold in real-world scenarios unless the mechanism is incentive compat-
ible. Following Schnizler (2007) and Blau (2009), future work has to evaluate the effect of
manipulating bidders with the auction as well as consider mechanism implementations that
ensure incentive compatibility.

Moreover, alternative approaches of pricing rules to face the limitations of VCG need to
be addressed. For example, deferred-acceptance auctions (Milgrom and Segal 2014, 2015;
Dütting, Gkatzelis, and Roughgarden 2014) maintain strategy-proofness while at the same
time sacrificing efficiency to address the low revenue problem in forward auctions or high
buyer payments problem in reverse auctions. However, existing analysis for these auctions is
limited to single-minded bidders. Hence, future work building upon the flexibility auction
needs to investigate the application of different pricing rules to the problem of procurement
of electric load flexibility.

Furthermore, the strategic aspect of repeated interaction is excluded from the scope of
this work. Future research needs to evaluate the impact of multi-round auctions on agent
strategies and behavior. In addition, intelligent agent behavior, e.g., learning agents, can be
applied to further simulation experiments.

Simulation The simulation experiments are partly based on empiric real-world data which
serve as input for the demand for flexibility as well as the outside option prices. Future
simulation experiments need to extend the use of real-world data to support the validity of
the smart grid flexibility auction. For example, the current bid generation process produces
synthetic bids. For more realistic results, bids can be based on data resulting from empirically
obtained valuations. To this end, surveys among consumers and prosumers need to be
conducted. Results of such surveys allow to consider realistic bidding strategies in the
simulation experiments.

Additionally, the demand for flexibility is currently based on deviations observed in solar or
wind generation time series. Instead, actual measured critical values of transformer stations
or grid lines on a local level could represent a promising extension to the work at hand.
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Computational Hardness The results of the simulation experiments show that the empiri-
cal runtime of the non-polynomial pricing rules represent a computational challenge for a
large number of auction participants. Hence, further research needs to consider computa-
tional aspects of solving the winner determination problem (WDP) as well as determining
prices more quickly. Such research can be conducted in two directions. Firstly, the underlying
linear programs can be optimized or different solver techniques such as constraint program-
ming can be applied (Rossi, Beek, and Walsh 2006). Secondly, heuristics can be developed.
For example, Goetzendorff et al. (2015) present the TRIM and REUSE heuristics for core
pricing in order to find solutions to the WDP more quickly. In addition, Bünz, Seuken, and
Lubin (2015) present an algorithm that outperforms the core constraint generation (CCG)
algorithm. The increase in runtime is shown experimentally for several large combinatorial
auction problems. In general, heuristics in particular need to consider mechanism design
properties and the requirements defined for the flexibility auction.

Smart Grid This work focuses on economic aspects of the flexibility auction and hence
abstracts from the technical properties and constraints of power networks. Future research
needs to allow for incorporating technical constraints for local distribution grid areas. For
example, power flow calculations and a locality component can be integrated to the balancing
capabilities within the WDP. Moreover, throughout this work, flexibility is limited to the
dimensions of amount and time of electricity consumption and production. Given the
additional existing dimensions of flexibility such as rate of change, response time or location,
further research can be complemented by considering these ample dimensions of flexibility.

Moreover, regulatory considerations are excluded from this work. In more detail, current
regulation in Germany would not allow DSOs to introduce the proposed flexibility auction
due to clear unbundling restrictions. However, proposals to loosen such limitations are
currently being discussed (BMWi 2015b, 2015a). As soon as new legislation comes into force,
this work can reflect upon and integrate proposed changes into the flexibility auction.

Hidden Market Design In the context of this work, it is assumed that auction participants
are aggregators which pool and market individual consumer or prosumer flexibility. While
aggregators possess specialized and domain-specific expertise to act on a market such as the
flexibility auction, individual entities may be faced with large obstacles. Such obstacles may
include interaction cost and cognitive cost. The research of Seuken, Jain, and Parkes (2010)
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proposes hidden market design as an attempt to “[...] find new techniques and approaches
towards designing and building ‘hiddenmarkets’ for non-sophisticated users [and to] find the
right trade-off between hiding or reducing some of themarket complexities whilemaximizing
economic efficiency attained in equilibrium”. In line with this challenge, future research on
the flexibility auction has to consider abstracting from the compact bidding language and
provide graphical user interfaces (GUIs) as intermediaries which take the user’s cognitive
cost into account and support truthful preference elicitation.

Decision Support Systems Decision support systems (DSSs) ideally represent a means to
facilitate and to strengthen individual consumer or household participation in the flexibility
auction. Hence, further research needs to be complemented by the design of (intelligent)
DSSs. Such DSSs need to support direct market interaction as well as hidden markets.
Moreover, they should avoid information overload and consequently display and query
information from users in efficient ways. By means of learning algorithms based on artificial
intelligence (AI), such interfaces could adjust themselves to individual user preferences and
behavior such as recent interaction or electricity usage. In addition, algorithms need to
account for non-stationary behavior and determine the right point in time to inquire the
user about updated information on their preferences.
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