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Abstract. The topic of this paper are similarity solutions occurring in multi-dimensional Burgers’
equation. We present a simple derivation of the symmetries appearing in a family of generalizations
of Burgers’ equation in d-space dimensions. These symmetries we use to derive an equivalent partial
differential algebraic equation (freezing system) that allows us to do long time simulations and obtain
good approximations of similarity solutions by direct forward simulation. The method also allows us
without further effort to observe meta-stable behavior near N-wave-like patterns.
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1. INTRODUCTION

Patterns are abundant in partial differential equations and they often have an important implication
on the interpretation of the system’s behavior. A simple type of pattern are relative equilibria and
the possibly simplest, non-trivial relative equilibria in partial differential equations are traveling waves.
Traveling waves for example appear in the case of the nerve-axon-equations (e.g. in the Hodgkin-Huxley
system) and can be interpreted as the transport of information. From this interpretation, it is obvious,
that one is not only interested in the waves shape, but also, how fast it actually travels and how it
evolves in the first place, thus, how fast the information is actually passed on from its ignition.

One possibility to calculate this by a direct forward simulation, is the method of freezing, independently
introduced in [5] and [20], see also [4]. The method not only allows to capture traveling waves by
simple long-time simulations, but can also be used for other relative equilibria such as rotating waves
or scroll waves. In this article we show how the method can be used to do long-time simulations of the
multi-dimensional Burgers’ equation and how similarity solutions of Burgers’ equation can be obtained
in this way. We do not consider the most general and abstract version of the method but only consider
it in such generality as needed for the specific case of Burgers’ equation. We refer to the dissertation
[18] and also [4], which is based on [5] and [20] for more on the abstract method. But also note that as
in [20] and unlike [5], we include a time-scaling. This will be crucial for long time simulations and the
ability to observe meta-stable behavior in Burgers’ equation.

Burgers’ equation,

(1) U + (%UQ)I = VlUzz, < € R,

le-mail: jens.rottmann-matthes@kit.edu, phone: +49 (0)721 608 41632,
supported by CRC 1173 "Wave Phenomena: Analysis and Numerics’, Karlsruhe Institute of Technology

1



was originally introduced by J.M. Burgers (e.g. [6]) in 1948 as a model of turbulence. In [6] he
points out that the combination of the dissipative term vu,, and the nonlinear term wu, characterizes
the mechanism of producing turbulence. Equation (1) is one of the simplest truly nonlinear partial
differential equations and it is well-known that it produces shock solutions in the inviscid case (v = 0).
Therefore, it is also frequently used as a test equation for numerical schemes for conservation laws
and for shock-capturing schemes. We also consider the following multi-dimensional generalizations of
Burgers’ equation,

(2) ug + %div(a|u|p) =vAu, z€R%

where d > 1, a € R*\ {0}, v > 0 and p > 1 are fixed. The special case of p = 2 we call the d-dimensional
Burgers’ equation and we call the case p = % the conservative Burgers’ equation. Note that for d =1
and a = 1 both special cases reduce to the standard Burgers’ equation (1). Equation (2) with p = 2
appears as special cases of the multidimensional Burgers’ equation

(3) Qi + (il - V)il = v A,

which has applications in different areas of physics, see the review [2]. For example, if @y = v and @; = 0
for j =2,...,d, (3) leads to (2) with a = e;.

We use the symmetries inherent in (2) to split the evolution of the solution into a part that captures
the evolution of the profile and a part that captures the evolution of the solution in the symmetry
group. This transforms the Cauchy problem for the original partial differential equation (PDE) (2) into
an equivalent partial differential algebraic equation (PDAE), the so-called freezing system. Stationary
solutions to the freezing system PDAE are similarity solutions of (2), and they not only include the
profile of these but also the full information about the evolution of this profile in the symmetry group.
Moreover, if the similarity solutions are asymptotically stable, they can be obtained by a direct forward
simulation of this PDAE system. This has been proved rigorously in several cases, e.g. see [19].

From an analytic point of view, the most interesting scale of viscosities v in (1) is ¥ & 0. In this region
the solution to the Cauchy problem for (1) exhibits a metastable behavior in the sense, that it rapidly
approaches a similarity solution of the inviscid problem, namely an N-wave and then has a very long
transient until it finally reaches a true similarity solution of the parabolic problem, a so called viscosity
wave. This has first been observed numerically and analyzed in [10] and from a dynamical systems
point of view in [3] by means of the Cole-Hopf-transform. In both articles the authors have used correct
asymptotic similarity variables, which can explicitly be calculated for Burgers’ equation. In contrast to
[10] and [3], we take the point of view that in more complicated equations these similarity variables are
not known a priori and can only be obtained by a numerical calculation. In fact, our method does not
need this information but actually calculates a suitable choice of similarity variables on the fly. The
similarity variables obtained by our method may differ from the simple scaling variables used in [10]
and [3]. This is because we do not center the solution at 0 and, moreover, not only allow scalings, but
also a non-zero velocity in the similarity variables.

The plan of the paper is as follows. In Section 2 we use a transformation of the coordinates to write
the generalized Burgers’ equation (2) in a simple canonical form. For this simple form we then derive a
continuous family of symmetries inherent in the equation which can be used for the numerical calculation.
In Section 3 we show that the symmetry group obtained in Section 2 acts strongly continuous on various
function spaces. This allows us to calculate the generators of the group action on suitable function spaces.
In Section 4 we then make the ansatz that the evolution of the solution to (2) can be split up into an
evolution of the profile and an evolution along the group orbit to derive the equation in a co-moving
frame. This ansatz introduces new unknowns into the equation. For example in the case d = 2, p = %,
and a = e; in (2) this leads to the following under-determined PDE

vy =VAUV—vU, + ul((xv)m + (yv)y) + pove + pavy



for v, p1, pe2, and pg. We present two possible choices of phase-conditions to cope with these artificially
introduced degrees of freedom. The resulting equation is then the freezing PDAE and we show that
it is equivalent to the original problem. In the final Section 5 we present the numerical results of
several experiments. These show the ability of the method to calculate similarity solutions of the multi-
dimensional Burgers’ equation by direct forward simulation. With our method we are also able to
observe directly a meta-stable behavior of the solution not only in the 1d-case as in [10], but also for
the multi-dimensional Burgers’ equation with small viscosity in the vicinity of so called N-wave like
patterns. To our knowledge, this is the first time, this has been observed in the multi-dimensional case.
Closest to our approach is the article [20] where a variant of the method was introduced for different
examples, including the standard 1d Burgers’ equation. But note that in that article neither the gener-
alization to multi-dimensional problems or more general symmetries as in (2) were considered, nor the
long-time or meta-stable behavior was observed.

Throughout this article we use the following notations and spaces. We denote the Euclidean norm in
a finite dimensional space by | - | and inner products in R? we write as (-,-). For vectors x € R?, 2T
denotes the transpose, so that (z,y) = =y for all z,35 € R?. We interchangeably use the notations
%u = Op,u = Oju = u,, for the derivative with respect to x;. By Df we denote the total derivative
(or Jacobian) of a function f and D®f denotes the partial derivative 97 ... 954 f, where v € N is a
multi-index. For differentiable maps between manifolds, f : M — N, we denote by T}, f : Ty, M —
T ()N, v = Ty, f[v] the tangential of the map f at the point ug € M.

Since we are primarily interested in the approximation of localized (similarity) solutions, we consider
functions, vanishing at infinity in a suitable sense. Therefore, we consider the space of k-times continu-
ously differentiable functions with compact support,

CHR?Y) = {u € C¥(R?) : supp(u) C R? is compact},

and the space of k-times continuously differentiable functions vanishing at infinity,

CH(RY) = {u e C*(RY) : ‘ llim |D%u(z)| = 0 Vo € N% |a| < k} .
Tr|— 00

The space C§(R?) with norm ||ul|cr := maxg<j [|D’ul« is a Banach space. Another suitable choice

are the L*-Sobolev-spaces H*(R?) with the norm [[ull3x = 37, <4 [D¥ull72 which is a Hilbert space

for each k € N. In H*(R?) we also use the equivalent norm
(4) lull e 2= 1€l
where (£) = /1 + |£|? and

u(g) = (277)_d/2/ e‘”TEu(x) dx

Rd
is the Fourier transform of u (cf. [21, Ch.7]).
Acknowledgement We gratefully acknowledge financial support by the Deutsche Forschungsgemein-
schaft (DFG) through CRC 1173.

2. CANONICAL FORM AND SYMMETRIES OF GENERALIZED BURGERS’ EQUATION

In this section we first derive a standard form of the generalized Burgers’ equation (2). Then we
will calculate certain symmetries for this standard form. It is well-known and already appears in [9]
that Burgers’ equation (1) exhibits several symmetries. The system has often served as an example to
illustrate similarity methods, e.g. see [13, Ex. 6.1] where a five-dimensional Lie algebra corresponding
to the symmetries in Burgers’ equation is calculated and also similarity solutions are obtained. Here we
do not follow the abstract approach from [14] but rather directly supply suitable symmetries, which we
will later on use in our numerical method. For example, we ignore the shift equivariance with respect to
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time, which is of no use to us, since we are interested in the behavior of solutions to the corresponding
Cauchy problems.

1. Canonical Form. To write equation (2) in a standard form, we use the following lemma.

Lemma 2.1. Let M € R*? be invertible and identify M with the linear mapping in R?® it induces.
Furthermore let 1 < p < 0.

(1) If f : R — R is locally Lipschitz continuous, it follows for u € WHP(RY R) N L>(R?) with
fou€LP: fouoM € WHP(RY) and
(5) D(fouoM)(z)é =Df(u(Mz)) Du(Maz)ME
for almost every x € R? and all ¢ € RY.
(2) If u € W?P(RY), then uo M € W2P(R9) and
(6) Auo M)( Z 10Ok u(Mx) My, = tr(MTHess( )M)(Mz)
.5,k

for almost every x € R?,

The chain-rule immediately implies that (5), (6) hold for u € C?(RY). The LP-case considered in
Lemma 2.1 follows from [23, §2]. The above lemma shows that for X = CJ(R?) and Y = CZ(RY),
respectively X = L?(R%) and Y = H?(R?), a function
uweC([0,T);Y)NC'((0,T); X)
solves (2) if and only if
v € C([0,]alT);Y) NCH((0, |a|T); X),

given by

U(:L',t) :U(an7 ﬁt) :v(y,s), qg=a-— ‘a|61, Qa —I 2ﬂ
satisfies
(7) as“ + payl (Jv?) = |Z|Av

Here we say that a function solves (2) or (7) if the equalities hold for all ¢ as equalities in X. In the
sequel we incorporate the factor ﬁ into the viscosity v, so that we restrict to

8
Remark 2.2. A simple well-posedness result can be found e.g. in [15, §8 Thm. 3.5] in the sense that
for every initial data ug € H? there exists a unique strong solution. See also [15, § 7.2.5].

From now on we do not discuss the well-posedness of the problems, but require that the solution exists
and belongs to the function space at hand without further notice.

2.2. Symmetries for Burgers’ Equation. To motivate the ansatz, we remark that the nonlinear
operator F : u — vAu — ]%(|u|p)m1 is equivariant with respect to spatial translations in every direction
and with respect to rotations that leave the first coordinate axis fixed. Moreover, each of the summands
has a scaling property and we obtain a scaling symmetry by matching these. More precisely, we make
the ansatz

1
(9) u(z) = —v(M ' (z - b)),

«a
where a > 0, b € R?, and M € R%“ is some invertible matrix. Using the chain rule, respectively
Lemma 2.1, easily follows:
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Proposition 2.3. Let p > 1 be fived. For all u € C*(R?) (resp. u € H?>(R?) N L>(RY)) and v given
by (9), holds

1 _
(10) F(u) = ConSt(a,M,b)aF(U)(M Y =)
as an equality in C° (resp. L?) if and only if M = o?~* <(1) 22)7 where Q € O(d—1), and const (o prp) =
a?7?p,

Proof. The chain rule (resp. Lemma 2.1) implies for the left hand side of (10)

F(u)(x) :éutr(Hess(v)MfleT) (M~ (z—b))

1 _ —1 _ _ _
o o(M~ Yz — b))|p sgn(v(M ™z —b)))Dv(M " (z — b)) M e
for all z € R? (respectively for almost every € R? in the H?-case). Similarly, the right hand side of
(10) equals for all 2 € R? (resp. for a.e. x € R?)

1
const g, arp) — (v tr(Hess(v)) + [v[P~! sgn(v)aiv) (M~ (z —b)).
« I
Therefore, (10) holds as a pointwise equality for all z € RY (resp. for a.e. x € R?) if and only if

MIM-T = const(q, ar,p)I and M~1e; = apflconst(mM’b)el. These last two equalities are equivalent

é C%) with @ € O(d — 1). Finally note that for u €

H?(R%) N L>(R?) both sides of (10) belong to L?(R?) and since they are equal for a.e. * € R%, the
equality is an equality in L2. O

to const(a,arp = @27 and M = ap1<

Therefore, we consider the group G := (R; x SO(d — 1)) x R? whose elements we denote by g =
(o, Q,b), with components a € (0,00), Q@ € SO(d — 1), b € R%. The multiplication of two elements
(a1,Q1,b1), (a2, Q2,b2) € G is given by

(1,Q1,b1) ® (a2, Q2,b2) := (01042,@1@2,51 +aq (é 65)1) bz)-

The group G is a non-compact, path connected Lie-group with unity element 1 = (1, I4_1,0) and the
inverse of an element (o, Q,b) € G is given by (a,Q,b)"1 = (é,QT,—é ((1) QOT) b). Moreover, its
Lie-algebra (tangent space at 1) is
g=T,G=Rxso(d—1) xR%.
For later use we denote the left-multiplication by some element go = (g, Qo, bo) € G, by
Lgyy:G—G,g—goeg,

and the derivative (tangential) of Ly, at a point g1 = (a1,Q1,b01) € G is

10
(11) Tgl Lgo : TglG - Tgo'g1 Ga = Tgl Lgo/i = (QO/Lla QOIU'Qa Qo <0 QO) ,Uf3> .

From (11) we easily obtain the exponential map for G, i.e. the mapping exp : p € g — g(1) € G, where g
is the solution to the differential equation g'(t) = T1 Ly, g(0) = 1. For = (p1, p2, p3) = (a, S,v) € g
we have the formula

00 k
(12) exp(p) = (exp(a),exp(s),z (k _,1_ 1)! (8 aId,? + S) U)’

k=0
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where exp(a) is the standard exponential in R and exp(S) is the standard matrix exponential. Note

that by associativity Lg_o1 = Lg,-1 and therefore we have the identity

(13) (TyoLgy—1) " = TyLy,.

Remark 2.4. The Lie group G can be written as a matrix Lie group. More precisely,

« O bl
(14) MG = RIFLI Mg =(,Q,0) = My= |0 aQ byg |,
0 0 1

where as before a > 0, Q € SO(d—1), b = (by,ba,...,bg) " € R? and we abbreviate bo.g = (ba,...,bg) " .
For g = (Q7Q7b)ag/ = (O/;Q/,b/) € (G holds

ao! 0 abl + by
./\/lg./\/lg/ = 0 aa/QQ’ aQb/Q;d +bog | = ./\/lg.g,7
0 0 1

and obviously M; = I;,; € R¥T14+1 5o that M is a group homomorphism from (G, ) to the matrix
Lie group (closed subgroup of GL(d + 1;R))

« O b1
Mg:={M=[0 aQ byqg| R (0,00), ( b ) eR%, Qe S0(d—-1)
0 0 1 b2:a

The corresponding matrix Lie algebra of Mg is

a 0 U1
(15) mg = de+1MG =<{m=|0 alg_14+85 wvoq| :a€R, <led) S Rd,S € 50(d — 1)
0 0 0 %

In this matrix setting the derivative of the left multiplication in Mg by some element Mg, with
go = (v, Qo,bp) € G of course is the left multiplication by a matrix:

Lmg, : Ma = Ma, Mg = L, Mg = Mgy Mg = Mgqeg-
The tangential of L M,, at the identity is easily calculated to be

TiMe = Tm,, Ma,

. a 0 vy aa 0 vy
Ty
o m=(0 al+S vag| = Mgm=10 aQa+aQS aQuaq
0 0 0 0 0 0
Finally, in this case the exponential map in M is simply given by the matrix exponential, and one
a 0 v
findsform= |0 al+S wv94 | € mg the formula
0 0 0
exp(a) 0 > ko ﬁakvl
(16) exp(m) = 0 exp(a)exp(S) Y5, mig(al + 8) v

0 0 1

Note that comparing the entries in (16) we again obtain formula (12) for the exponential map in G.



3. THE ACTION AND ITS GENERATORS

In the previous section we derived a continuous family of symmetries (Lie group) which basically com-
mutes with the nonlinear vector field F' from (8), see (10). In this section we now consider the analytic
properties of how these symmetries act on functions. We also calculate the generators of these actions.

From now on let the parameter p > 1 in the vector field F(u) = v Au+ %a% (|ul?) be fixed. We denote

by a the action of the symmetry group G on functions v : R¢ — R,
(17) (0, Q. Bo(x) = a((a, Q1)) () = a~v (a! 7@ (x - 1)) Vr e R,

where é denotes the augmented matrix @ = (é 8) for brevity. Obviously, a is a linear left action.
Furthermore, we denote by m the group homomorphism
(18) m:G— (Re,), m(a,Q,b) = a2,
First we show that the group action a of G is indeed a strongly continuous group action on C§(R¢) and
HF(R?).
Lemma 3.1. Let X = C§(R?) or X = H¥(R?). Let p > 1 be fived and the action a of G on functions
be given by (17). Then a: G x X — X, (g,v) — a(g)v is a strongly continuous group action, i.e.

(i) a(g) € GL(X) Vg€,

(i1) a(l) =idx,

(iii) alg e h) = a(g) oa(h) Vg,h € G,

(iv) limgq a(g)v=v Vve X.
Using the Banach-Steinhaus Theorem, Lemma 3.1 easily implies that a is continuous:
Corollary 3.2. The mapping a: G x X — X, (g,v) — a(g)v is continuous.
Proof of Lemma 3.1. Throughout the proof we always use g = (o, Q,b) € G. We begin with some
preliminaries. For v € CJ(R?) holds

1

(19) lla(g)vlloe = —llvlec,

and for v € S(RY) we obtain by using the transformation formula the equality

(20) latg)ol = [ = vQ;@me)Q

_ dr = pd—2 2
Ra a2 €z Q ||UHL25
which extends to all of L?(R?) by density of S(R?) in L?(R9).
Now let v be sufficiently smooth, e.g. v € S(R?), which is dense in both C§¥(R?) and H*(R?)) (e.g. [16,
§ 2.6]). For i € 1,...,d then follow with the chain rule

1 1 ~ 1 ~ 1
s l0(0. Q) = Du (07w - 0) Qe = gl
where we denote v;(z) = Dv(z)Q e;, so that inductively for every multi-index 8 € N¢ holds
1 ~
B - Bly(NOT B

(21) D?fa(a, Q.b)0] = — [alg) (D ()[QTe])
Here we abbreviate [@Teﬁ] = [@Tel, ... 7@‘%17 . @Ted], where each @Tei is repeated f;-times, |§| =
Zle $; as usual for multi-indices, and D!Ply is the 8’th total derivative of v. Because @ is an orthogonal
matrix and |e;| = 1 for all i = 1,...,d, the absolute value of the function D/#lv(-)(QTe?) is pointwise
bounded by
(22) DPly(z)(QTe?)| < const(|8]) Y |D"v(x),

v<|Bl
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where const(|8]) only depends on |3|. Now we are ready to prove (i). Linearity and invertibility are
obvious so that it remains to show boundedness in the respective spaces. First let v € C§(R?). Then
for g = (o, Q, b) € G follows

la(g)vllcx = m la(g) (Do ()[Q"e”])lloc

ax
|5\§k 0417\5‘

1 1 L5 2
< 2Bl (O T (4 — Tef
< (14 37) e [P (G0 -0

«

1 1
< (1 + W) aCOﬂSt(k)HUHCk,
where we used (21), (22), and (19). This implies

(23) la(9)llcrcy) < const(a, k),

where const(a, k) can be chosen independently of « for all « from a fixed compact subset of (0, 00) and
hence for all g from a fixed compact subset of G.

Now consider the boundedness in H*(R%). Let v € S(R?) and recall that the Fourier transform maps
S(RY) into S(R?) (e.g. [21, Thm. 7.4]). We first observe

e @) ©=ent [ oo (10T n) de= e a0,
so that we find for the || - || yx-norm (see (4))

la(g)ol e = a2@= / (€ [3(arQTE) [ de = a2 / (QaP2) 2 [5(2) [ dz
Rd Rd
< a®2(1 1 a2%) 0|3, = const(er, d, k)[[v]%..

Again the constant const(c, d, k) is uniformly bounded in compact subsets of G. Because S(R?) is dense

in H*(RY) and the norm || - ||z« is equivalent to the || - || zr-norm, the same estimate holds for any
v e HF and
(25) la(9)ll o) < const(a, k,d)

follows. This finishes the proof of (i).

By definition of the action a also (ii) and (iii) hold.

For the proof of (iv) we again first consider the C§-case:

Let v € CJ). For g = (a,Q,b) € G we then obtain the estimate

oz_lv(oz_p@T(ac —-b) - v(x))

la(g)v = v]joc = sup
z€RC

(26) <a ! sup ‘v(a‘pé—r(x— b))‘ + sup |v(z)]
lz|>R lz|>=R

+a™! sup ‘v(oprVT(x —-b) - v(a:)‘ + |t - 1| sup |v(x)].
lz|<R lz|<R
To show that [|a(g)v — v||ec — 0 as g — 1, let € > 0 be given. Since lim|,|_, [v(x)] = 0, there is R > 0,
so that the first two summands on the right hand side of (26) are smaller than e for all |o| < 1 and
11 —al < 1. Because v is uniformly continuous on compact subsets and a ?QT (z — b) — = uniformly
on {|z|] < R} as o« — 1,Q — I,b — 0, the third summand converges to zero as g — 1. Also the last
summand converges to zero as ¢ — 1, since a — 1 and v is uniformly bounded.
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Now let v € C¥ and B € N be some multi-index with 0 < |3| < k. Then we use (21) to estimate for
9=(,Q,b) G

|1DP ([a(g)v] - v)|| _ < \1 - a-plﬁ‘\ la(g)llar ey IPP10()[QT ][l
(27) +[la(g)llgreoy [DP()[QT €] — Do) [Tl
+la(g)D5v() — DPu () sc.

The first summand on the right hand side of (27) converges to zero as g — 1, because |a(g)laL(co)

is uniformly bounded for g from a compact subset of G by (23) and the factor |D!lo(-)[QTe]|s is
uniformly bounded by (22). The second summand converges to zero as g — 1 again because of (23)
and since [QTe?] — [I €] in (RY)IA! (recall the abbreviation introduced above) and the |3|-multilinear
forms D|5|v(x) are bounded independently of x. Finally, also the third summand converges to zero as
g — 1 because of the C§-case, considered above. This proves (iv) for the C§(R9)-case.

For the HF-case it suffices to consider v € S(R?) because of estimate (25) and the density of S(R?)
in H¥(R?). Therefore, let v € S(R?) and let (g, )neny C G be a sequence with g, — 1 as n — oco.
Using (24) we find

2

1~ ~ —ib ~
latga)o = ol = [ (&%]air1oangTee e - 5(e) | de
R
The integrand converges pointwise to zero as n — oo and is bounded by

(28) 2(6)2F 225 (b Q) €)? + 2(6) 2 (€)>.

For ng with |a;, — 1| < 1 for all n > ng, both summands of (28) are uniformly integrable independently
of n > ng. Finally, for any given ¢ > 0 there exists R > 0, such that for all n > ng holds

[ 2 (a3 20(anQo? + 0?) de < e
|z|>R

Thus, the Vitali convergence theorem (e.g. [8, VI.5.6]) applies and yields
Jim_[la(gn)v = vl gx = 0.
(]

With the above definitions of G, a and m, and because of Lemma 3.1, we can rephrase Proposition 2.3
as follows:

Proposition 3.3. For all v € C2(RY) (resp. v € H?(RY) N L>(R?)) hold for all g € G
(29) F(a(g)v) = m(g)a(g) F(v),
as identities in C° (resp. in L?).

As before, let X = C§(R?) or X = H*(R?). For fixed v € X we denote by Tyav : TgG — T, X
the tangential of the mapping G 3 g — a(g)v € X at g € G, if it exists. The evaluation of Tyav at
p € TyG is denoted by Tyav[p]. To motivate that the set of all v € X for which the tangential exists is
actually a useful set, note that by Lemma 3.1 and the properties of the exponential map for each u € g
the mapping S, : t — a(exp(,ut)) defines a strongly continuous semigroup on X. Hence the generator is
a densely defined and closed operator on X. The generator coincides with the directional derivative of
the group action at 1 in the direction p. This motivates to consider for a basis €1, ..., €dim(g) Of g the
subset Y of X defined as

(30) Yy = {U € X :IThavle] = }%%(a(exp(ejt))v —v),j=1,.. .,dim(g)} .
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Using Lemma 3.1 and the results of [22, § 4], we obtain that Yj indeed is a dense subset of X, and Yy
becomes a Banach-space, when endowed with the norm

lollyo = llvllx + = sup  [[Taave]lx.
j=1,....dimg
Moreover, G acts continuously on (Yy, || - ||y,) and for fixed v € Y, the mapping
Gogr—algve X

is continuously differentiable. We summarize the above discussion in the following lemma.

Lemma 3.4. Let X = C¥(RY) or X = H¥(R?) and let Yy be defined by (30). Then Yy C X is a dense
subset and the action a, defined in (17) has the following properties:

(a) For fized g € G, the operator a(g) is a bounded linear operator on X and on Yp.
(b) For fized v € X, resp. v € Yy, the mapping G > g — a(g)v is continuous into X, resp. Yy.
(¢) For fized v € Yy, the mapping G 3 g — a(g)v € X, is continuously differentiable.

Example 3.5. For later use, we now explicitly calculate for d = 1, d = 2, and d = 3 spatial dimensions
for specific choices of bases €1, ..., €4im(q) Of g the generators v — Ty a vle;] of the semigroups (Sej (t))t>0
and the space Yy. As before, we may restrict the calculation to v € S(R?), which is dense in both, C(R?)
and H*(R?).
(i) For d =1 the symmetry group is G = (Ry x ) x R=Ry x R. As a basis {1, €2} of g =T1G =
R x R we choose
€1 = (1,0),e2 = (0, 1).
From formula (12) for the exponential map we obtain exp(eit) = (e*,0) and exp(eat) = (0,1),
so that together with (17) follow

e~tu(e1=PIt) — (1)

Trav|e] :}% ; =—v+(1—p)av,,
=) — (-
Tlay[€2] = }{% M = —v,.

Therefore, Yo ={v e X : v, € X, 2v, € X}.
(ii) For d = 2 we obtain G = (R x {1}) x R%. As basis of g = T;G = R x {0} x R? we choose

€1 =(1,0,0),e2 = (0,0,e1),e3 = (0,0, e3).
Similar considerations as in the 1-dimensional case lead to
Tiavle] = —v+ (1 —p)z' Vo,
Travles] = —vg,
Traves] = —vy,

and Yy = {v € X : vy, vy, 20, + yv, € X}
(iii) For d =3 we have G = (R4 x SO(2)) x R* and choose the basis

&1 = (1,0,0),e2 = (0, (g _01> 0),¢5 = (0,0,¢5-2),j = 3,4,5

of g =T1G =R x span{(9 ')} x R®. Analogous calculations as in the d = 1 and d = 2 case
now yield the generators
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Travlej] = —vg;_,, j=3,4,5

and Yy = {v € X : v, Uy, Uz, TUg + YUy + 20, 20y — YU, € X}, where we interchangeably write
Vg = Vg, Uy = Ug,, and U, = Vgy.

In the following we will often use the spaces C2,,,(R?) and H2 (R?), which are defined as

scal

(31) C2a(®?) = {v e R : Tyavlu] € CHRY) Vi € g}

and

(32) 2 (RY) = {v € H2(RY) : Tyavly] € L2(RY) Yu € g}.

Endowed with a suitable norm, these become Banach-spaces (respectively Hilbert-spaces). For concrete-

ness we choose in the case of one spatial dimension the norms [[v[lcz = [|vl[cz + [|zvs]lc, Tespectively

Hv||2HS2m = [[vl[}2 + llzve|[72. In the d = 2 case the norms [v]lez = [[v]e2 + [[T Vv]lo, respec-

tively [[v]|%. = |Jv[|%2 + |lz7 Vv||2,, are suitable. And in the d = 3 case, we choose |[v]|¢2 L=
scal sca

lvllez + |27 Vol + || — yv. + 20y |0, TESpectively ||1)H12L13ml = HUquz + [T Vv||%2 + —yv. + zvy||2L2.

Remark 3.6. It is easy to see that the generator of the scaling action, given by
T1av[(1,0,0)] = —v+ (1 —p)z' Vo= —v+ (1 —p)div(zv) +d(p — 1)v
in any space dimension, is in divergence form for all v € S(R?) if and only if
d+1
7

In contrast to this, the generators of the translation and rotation actions are always in divergence form.
This is precisely the case for the action of the symmetry belonging to, what we called, the “conservative
Burgers’ equation” in the Section 1. This observation is precisely the reason, why we called the case
p= % in (2) the conservative Burgers’ equation in the first place. Note that the “conservative Burgers’

equation” coincides with the “multi-dimensional Burgers’ equation” only in the case d = 1.

l=dp-1)ep=

4. FREEZING SIMILARITY SOLUTIONS

In this section we derive the equations for the numerical method of freezing similarity solutions in
generalized Burgers’ equation. In the first part we derive the equation (2) in new, time-dependent,
coordinates, based on the symmetries obtained in Sections 2 and 3. In the second part we augment this
new system with algebraic constraints to deal with the arbitrariness introduced by the new coordinates.
In the following we denote X = CJ(R?) and then Y; = C2_,(R%) or X = L?(R%) and then Y; = H2 (R%),
respectively.

4.1. Co-moving Frames and Similarity Solutions. The basic idea of the method is to split the
time evolution of the solution of the Cauchy problem for (8) into a part that treats the evolution which
mainly takes place in the group orbit of the profile and a part that takes the evolution of the profile in
the remaining directions into account. Formally, this is done by making the ansatz

(33) u(t) = a(g(a(t))v(o(t)),

where a is the left action of the symmetry group G, defined in (17), g is a smooth curve in the group
G, o is an orientation preserving diffeomorphism of two intervals, describing a scaling of time, and v is
a time dependent profile, taking values in Y.

A solution of the Cauchy-problem, whose evolution solely takes place in the group orbit, we call a
similarity solution. This is made precise in the next definition.
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Definition 4.1 (Similarity solution). We call u a similarity solution of uy = F(u) with profile v € Y7,
if there exists an open interval J C R, a differentiable map o : J — R with 6(t) > 0 for allt € J, and a
differentiable curve g € C*(c(J),G), such that u(t) = a(g(o(t)))v is a solution of uy = F(u).

The key for the freezing method is now the following Theorem 4.2, which relates the differential equations
satisfied by the two functions v and v from the ansatz (33).

Theorem 4.2. Let ug € Y7 and p € C([O,f);g), T >0 be given. Then there exist unique mazximally
extended solutions g € C*([0,7T); G) of

(34a) 9' (1) =TiLyry(1), ¢(0) =1,
and o € C([0,7):[0,T)) of
(34b) &(t) =m(g(a(t)), o(0)=0.

The function o : [0,T) — [O,f) is a diffeomorphism. Furthermore, the following statements hold true:
(i) If u € C([0,T);Y1) NCYH[0,T); X) solves the Cauchy problem for (8) with initial condition
u(0) = ug € Y1, then v : 7 a(g(r)"Hu(c=1(r)) belongs to C([0,T); Y1) N C*([0,T); X) and
solves
(35) vy = F(v) — Tyav[p], v(0) = up.

(i) Ifv e C([0,T); Y1)NCL([0,T); X) solves the Cauchy problem (35), then u : t — a(g(a(t))v(o(t))
belongs to C([0,T); Y1) NCL([0,T); X) and solves the Cauchy problem for (8) with u(0) = ug.

Proof. By (11), the differential equation for the first component of ¢ in (34a) decouples and can be
solved first. It follows that the solution for the first component exists globally in [0, f) In a subsequent
step, the remaining differential equations for the other components of g can be solved. More precisely,
knowing the first component of g in [0, f), the remaining ODEs become linear and hence the solution
g exists globally and belongs to Cl([O,f); G). In the next step, one uses that g is known and mo g €
C'([0,7), R, ). Therefore, (34b) has a unique maximally extended solution o € C*([0,T); [0,T)). Because
of the differential equation &(t) = m(g(o(t))) > 0 for all ¢ € [0,T) and o : [0,T) — 0,7) is a
diffeomorphism.
Proof of (i). The smoothness of v follows from Lemma 3.4 and the assumptions on u. Because a is a
group homomorphism, v(7) = a(g(7)~')u(c~!(7)) is equivalent to

(36) a(g(r))v(r) = u(o~1(r)) vre[0,T).

First consider the left hand side of (36). For h € R, h small, with 7+ h € [0, f) we find as equalities in
a(g(T + h))v(T +h)— a(g(T))v(T)
=a(g(T +h)) (v(r 4+ h) —v(7)) + a(g(t + h))v(r) — a(g(7))v(r)
= a(g(T + h)) (UT(T)h + 0(|h|)) + a(g(T)) (Q(Lg(.,-)—lg(’r + h))v(T) — a(Lg(T)—lg(T))’U(T)

)

= a,(g(T +h )UT(T)h + o(|h]) + a(g(T))Tlav(T) [Tg(T)Lg(.,-)—l (g’(T)h + 0(|h|))]
For the last equality one must use a chart of G at g(7) and a chart of G at 1. Note that the first o-term

in the last line belongs to X and the other one to Ty G. The above equalities show

(37 Jim - (alo(r + m)olr +h) — alg(r))o(r))

= a(g(T))’U-,-(T) + a’(g(T))T]la U(T> [Tg(r)Lg(T)*lg/(T)] )
where the limit exists in X. This is the derivative of the left hand side of (36) with respect to 7.



13
Differentiation of the right hand side of (36) at 7 yields by the chain rule the identities

(38) ur(07H(7)) - (H(m))) = m(g(r)~") F (u(o™} (7)),

&(o=1(7)) m(g(T))F(u

where we used (34b), (8), and that m is a group homomorphism.
Equating (37) and (38) and application of a(g(7)~") to both sides leads to

v (1) + Thav(r) [Ty Ly(ry-19' (1)) = alg(r) " )m(g(1) ™) F (u(o™'(7)))

as an equality in X. Using equation (34a) and the symmetry property, Lemma 3.3, then proves the
asserted equality (35).
Proof of (ii). For all t € [0,7T) let u be given by

(39) u(t) = a(g(a(t)))v(a(t)).

The asserted smoothness of u follows from Lemma 3.4 and we may differentiate (39) with respect to ¢
as in the proof of (i), which leads to

u(t) = a(g(U(t)))Tnav(U(t)) [Ty(ot ))Lg(o(t))*lg/( (t)o(t )] + G(Q(U(t)))vf(a(t))d(t)
(9(c
(9(c

(40) =a )(Tlav( ) [l ()] + v, (o )m
1)) F (v(o(t)))m(g(a(t))) = F(u(t)),

where we used the differential equations for g and o in the second equality, the PDE for v in the third
equality, and the symmetry property of F' (see Proposition 3.3) in the last equality. Equation (40) holds
as an equality in X for all ¢t € [0,T), what finishes the proof.

=a

O

Assume that w is a similarity solution in the sense of Definition 4.1, i.e.

(41) ult) = a(g(o (1))

for suitable functions o € C1(J,R), g € C'(c(J),G) and v € Y;. By writing the right hand side of (41) in
the form a(g(c(t))g(o(0))~)a(g(c(0)))v, we may assume without loss of generality that ug := u(0) = v.
When we differentiate (41) and use that u solves the PDE (8), we obtain

ue = F(a(g(o(t))r) = a(g(o(t)) Tran[Tyw) Ly -19'(@ () ().
With the symmetry property of F' from Proposition 3.3, this equality is equivalent to

(t)
0=F@)—Tiav|Tyou) Loomn-19 (ot .
(v) 1 [ g(a(t))Hg(a(t)) ( ())m(g(o(t)))
Under the assumption that Thavle;], j =1,.. dim(G) are linearly independent for any basis {e1, ..., €qim(a) }

of g, the function p := Tg(o-(t))Lg(a(t))—lg/(a(t))m must be independent of t. Therefore, the tuple
(v, ) € Y1 x g solves
0= F(v) — Tyav[p], and v = u.
By Theorem 4.2 (ii) the function u, given by u(t) = a(g(c(t)))v, where g(7) = exp(ur) for all 7 > 0
and ¢ solves 5(t) = m(g(c(t))), o(0) = 0, is a solution to the Cauchy-problem
us = F(u), u(0) = up.

By uniqueness of this solution, we find u(t) = a(g(o(t)))v = a(exp(uco(t)))v. Recollecting this discus-
sion, we obtain the following result.
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Proposition 4.3. A function u is a similarity solution of u; = F(u) with profile v = u(0) € Y7 for
which Tya v is injective, if and only if there is p = (Hvﬁz’ﬁg) €g=Rxso0(d—1) xR with

0= F(v) — Thav[yl.

Moreover, in this case u(t) = a(exp(uo(t)))v, where o is given by

In((2p — 2p t+ 1)
o) =5 Dp,

which solves 6 = m(exp(no)) = 727 5(0) = 0.

Remark 4.4. Note that if p # %1 there exist no similarity solutions with a localized finite mass profile v
and nontrivial scaling p . That is, v and p satisfy v € H2RYNL®(RY), | Vo(z)|+|v(z)P < const|z|?,
Jrav(z)de #0, and p, # 0.

This follows since by Proposition 4.3 also the function u, given by u(t) = a(exp(po(t)))v has the decay
properties of v, so that Gau’ Theorem on the one hand shows

d

@t o u(z,t) de = 0.

On the other hand, p > 1 and p, # 0 imply a(t) = ((2p— Q)Hlt"‘ I)TI’Z # 1 by Proposition 4.3, so that

[ ety = [ o) ula) @0 (@ - b0) do = [ @ v dy.

Rd Rd Rd

Then [;, u(x,t)dz is constant if and only if dp —d = 1.

Also, we can look at this from taking the point of view of the solution in the co-moving coordinates, i.e.
v given by (33). Because of the divergence theorem and the assumption of localization (sufficiently fast
decay of |v(€)] and | Vv(§)| as |{] — oo) this satisfies the identity

& [ vends= [ (@) = Tuavlu) ) de = i)+ d=dp) [ ol

dr Rd Rd

Therefore, the mass of v satisfies under the above assumptions of localization the equation

(42) [ vteryag = s i [ e ) e

R4 Rd
Remark 4.5. The results from Theorem 4.2 and Proposition 4.3 are not restricted to Burgers’ type
equations, but hold for all evolution equations which possess a similar symmetry structure.

Example 4.6. We now continue Example 3.5 and explicitly state the co-moving equation (35) and the
reconstruction equations (34) for the cases of d = 1,2, 3 spatial dimensions. This is needed for the actual
implementation of the freezing method in the end.

To enhance readability of the equations, we as usual denote elements in G by g = (o, Q, b) with a € R,
Q € SO(d —1), b € R? and elements in g = T1G are denoted by u = (1, fi2, t3), where pu; € R,

fo = Zdimgo(d_l) ,uéSj € so(d — 1) with S1,...,Sdimso(a—1) @ basis of so(d — 1), py is identified with

j=1
(ud, ... ,,uglm(”(d*l)))—r e Rdim(so(d=1)) “and pz = Z?Zl phe; € RY. In particular, we have
dimso(d—1) d
(u170a0) = H1€1, (07/~‘L270) = ,u%€1+j7 (0707u3) = Zug’,el+dim50(d71)+j7
j=1 j=1

where €1, .. ., €4im ¢ is the canonical basis of g which was introduced in Example 3.5 in the cases d = 1,2, 3.
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For d = 1 we first assume that 7 > 0 and p € C([o, f), g) are given. The generators Ty a v]e;] and
Tyrav(es] are calculated in Example 3.5 (i) and inserting them into the co-mowving equation (35)
we obtain the explicit form

Ur = Vg — 5 ([0P) 4 pa (0 = D (@v)e + (2= p)v) + p3vs.

Moreover, the functions g and o can be obtained from the reconstruction equations (34a) and
(34b). With the help of (11) and (18) these take the explicit form

g = (‘by)/ = Ty Loy (Z;) = (gﬁ;) . a(0) =1, b(0) =0,
& =m(g(0)) = m(a(0),b(0)) = a(c)>"%, ¢(0) = 0.

From Theorem 4.2 (i) then follows that if v € C([0,7); Y1) N CL([0,T); X), a solution of the
original equation (8) is obtained by formula (33).

For the case d = 2 we proceed similar and obtain by using the generators calculated in Exam-
ple 3.5 (ii) the co-moving equation

vr =vAv— L([vfP) A+ pa(p = 1) ((20)e + (yv)y) + p1(3 = 2p)0 + p30, + (30,

Moreover, the reconstruction equations (34a) and (34b) become

/
/=) -nn ) = () 0 =20- ).
& =m(g(0)) = a(0)*"?, o(0)=0.
Similar considerations yield for d = 3 the co-moving equation
v = Av — S ([oP) + pa(p = 1) ((20)s + (yv)y + (20):) + (4 = 3p)v
+ 13 ((y0): — (20)y) + p3ve + p3vy + 50
and the reconstruction equations

' p vy

« « 1
0 -1 0 -1
gl = Q = TJng :u% (1 0 ) = N%Q <1 0 ) ’ Q (0) =\1],
b b 0
H3 apg

&=m(g(0)) = a(0)**", 0o(0)=0.

Note, that @ € SO(2) is of the form Q = (Z?ﬁéi)) ccs)ls?(%)) so that the differential equation
(45b) for @ yields the equations
4L cos(g) = —sin(6)¢/ = —pbsin(6), <L sin(@) = cos(@)s’ = b cos(9).

Therefore, ¢’ = u} completely describes the evolution of the Q-component of g and using this
equation, it is implicit that the solution to (45b) always stays on the Lie-group G.

4.2. Phase Conditions. Theorem 4.2 relates the Cauchy-problem for (2)

(46)

10
— _ 2 2 (1ylP) =-
ur =vAu ) (lu?) =: F(u),

u(0) = uy,

to the Cauchy-problem in the new, time-dependent coordinate system. Roughly speaking, we can
rephrase the result as follows:
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A function u € C([0,7T); Y1) N C([0,T); X) solves (46) if and only if the functions v € c([o, T) Yi)n
CL([0,7); X). p € C([0,7);9), g € C'(10,7);G), o € C'([0,T);[0,)) solve the system

vy = F(v) — Tyav[p(r)], v(0) = ug,
gr = TJILg(T) [M(T)]’ g(O) =1,

(U )T - m<g(7_))7 (0) 0

and the functions u and v, g, o are related by the identity u(t) = a(g(o(t)))v(co(t)).

Although (46) is a well-posed problem, e.g. in R? for initial data in H? (see Remark 2.2), the system (47)
is not well-posed, due to an ambiguity in the choice of p(7). More precisely, the variable p introduces
dim g additional degrees of freedom to the system. As is standard in the numerical freezing method,
see e.g. [5], we therefore introduce dim g additional algebraic equations, so called phase conditions, to
cope with this ambiguity. In this article we restrict to two specific choices of phase conditions, which
work very well in our numerical experiments in Section 5. We will actually use integral phase conditions
which were originally introduced by [7] for the numerical approximation of periodic orbits. Thus we are
limited to the case X = L? with Y; = HZ2, |, and we assume the well-posedness of the problem in these
spaces from now on. We note in passing that by using weighted integrals, it is not difficult to allow
similar phase conditions also for the X = CJ and Y; = C2 | case.

Type 1: Orthogonal phase condition

The idea of the orthogonal phase condition is, to require that the time-evolution of v is always L*-
orthogonal to its group orbit. This amounts to requiring

(47)

(48) 0= (v;,Thavle]), j=1,...,dimg,
where {€1,...,€dimg} is a basis of g. Inserting the v-equation of (47) into (48) yields
(49) 0= <T]1a’l)[€j},F(7)) _T]lav[/j‘D = q];?rth(v’u)’ j = 17"‘7dimg7

which we call the “orthogonal phase condition” and, in fact, is a linear equation for the algebraic variable
p if v is known. Assuming the invertibility of the matrix ((T]l avle;], Trav(e])j k=1... dim g) € Rdim g, dimg,

(49) can easily be solved for the algebraic variables p,

p= (<Tnav[€j]7 Tﬂav[ﬁk]>]‘,k:1...dimg)71<va[€j]’ F(v))j=1...dimg-

In principle it is possible to insert this formula directly into (47), but we rather supplement (47) with
(49), since we are anyway also interested in the actual value of u as an important constant of motion,
as already argued in the introduction.

Type 2: Fixed phase condition

The idea of the fixed phase condition is, to require that the v-component of the solution always lies in
a fixed, dim g-co-dimensional hyperplane, which is given as the level set of a fixed, linear mapping, i.e.

(50) 0=1p(v) —r; = U), j=1,... dimg,

where ¢; € X*, j =1,...,dimg, are linearly independent elements of the dual of X and r; € R. A
standard choice, cf. [5], is the following: Assume that there is a “suitable” reference function @ given
and then one require that the v-component of the solution always satisfies

(51) 0= (Thaule;),v—1), j=1,...,dimg,

where {€1,...,€qim g} is a basis of g.
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Remark 4.7. The phase condition (51) can also be obtained by requiring that the v-component of the
solution is always better aligned in the L?-norm to % than to any other element of the group orbit of %,
i.e.

. . 2
(52) argmin, ¢ q|a(g)u — ’UHL2 =1.
A necessary condition for (52) is (51).

We now augment system (47) with one of the phase conditions (49) or (51) and obtain the PDAE system
of the numerical freezing method

(53a) vy = F(v) — Travlu(r)], o(0) = o,
(53b) 0= \II(U’ N)v

(53C) gr = T]ng(T) [N(T)L g(O) =1,
(53d) (p), = —— p(0) =0,

m(g(7))’
where W(v, ;1) is either W™ from (49) or ¥ from (50), and we denote p = o~

Remarks 4.8. (1) Note that the ordinary differential equations (53c) and (53d) actually decouple
from (53a) and (53b) and hence could be solved in a post-processing step.

(2) Observe that (53) consists of the PDE (53a) which has a hyperbolic-parabolic structure, coupled
to a system of ordinary differential equations (53¢) and (53d) and coupled to a system of algebraic
equations (53b). Moreover, in (53a) the hyperbolic part dominates for v << 1 and the parabolic
part dominates for v sufficiently large.

(3) For the choice (49) the system (53a), (53b) is a partial differential algebraic equation of “time-
index” 1 and for the choice (51) it is of “time-index” 2. Here we understand the index as a
differentiation index (see [12]).

5. NUMERICAL RESULTS

In this section we now present the result of several numerical experiments. We use a numerical second
order scheme that we develop in [17]. Here we do not go into the details of the numerical scheme but only
mention that it is based on a central method-of-lines system for hyperbolic conservation laws, adapted
from [11] to (53), and then fully discretized with an IMEX-Runge-Kutta time-discretization in the spirit
of [1] to cope with the different parts of the equation. For details we refer to [17].

To distinguish between the original coordinates and the coordinates of the freezing method, we always
denote original space by = € R? and the original time by ¢ and the original solution in these coordinates
is denoted by u, whereas ¢ € R? and 7 > 0 denote the space and time in the new coordinates and v is
the solution in these new coordinates.

5.1. 1d-Experiments. We choose the spatial step size A = 0.01 and the time step size A7 is a
CFL-based multiple of AE, see [17]. In all 1d-experiments we choose the initial condition given by

sin(2r), —% <z <0,
(54) uo(z) = ¢sin(z), 0<0<m,

0, otherwise.
Note that this belongs to H!(R) but not to H?(R). In our experiments we observed that the method
and our numerical scheme work just well also for piecewise continuous initial data. Moreover, if nothing
else is stated, we choose the fixed phase condition, where we choose the initial condition as a suitable

reference function. In case the solution evolves too far away from this reference function, we update it
with the current state of the solution.
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FIGURE 1. Plots of the time evolution for conservative 1d-Burgers equation (p = 2)
with viscosity v = 0.4 (a) in the scaled (computational) coordinates at different time
instances, (b) the evolution of the variables in the Lie-algebra and the evolution of the
original time as function of the scaled time ¢(7).

Variation of the parameter p. In our first series of computations we consider the behavior of the
freezing method for the Cauchy-problem for Burgers’ equation

w = 0.4u,, — %8:,3(|u\p), u(0) = g

where we choose different values for the parameter p. In Fig. 1 we show the results for the freezing method
for the conservative 1d Burgers’ equation (i.e. p = 2). One can very well observe that the solution to the
freezing PDAE (53a), (53b) stabilizes as 7 increases. Moreover, also the algebraic variables p; (scaling)
and us (spatial velocity) converge to constant values as 7 increases. We also calculate the solution to the
reconstruction equations (53c), (53d) and use these to obtain the solution u in the original coordinates,
given by formula (33) and shown Fig. 2. The time-instances are precisely ¢ = ¢(7) with the 7 from

- -_—
——1-66.3
—1=230.2
0.06 1=1027.5
1+ ——1=5197.2
= ———1=27210.8
—1=0 0.04
——t=0.7
t=2.0
s 0 ——t=4.6 —— N e . N
——1=10.3 243 0.02 — ] T t
t=243| [ t N 27210.8
10.3 0 jf
1 —F é‘_-@ 2000 -1000 5197.2
-40 40 0 x 1000 oggp 663

() (b)

FIGURE 2. Reconstructed solutions of the 1d-Burgers’ equation (p = 2) with viscosity
v = 0.4. Initial time interval [0,24.3] (a) and later time interval [66.3,27210.8] (b).
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t (reconstructed time)

F1GURE 3. Time evolution of 1d-Burgers’ equation with p = % and viscosity v = 0.4.

In (a) several time-instances of the numerical solution of the freezing method are shown,
(b) shows how the algebraic variables p; (scaling) and us (spatial velocity) depend on
the scaled time 7, and (c¢) shows the solutions from (a) in the original coordinates.

Fig. 1(a). As is well-known, in the original coordinates the solution stabilizes to the constant zero as
time tends to infinity. Note that the original time ¢(7) increases very rapidly with 7 (e.g. t(5) &~ 27210.8)
and one needs a very large time-domain if the solution is calculated in the original coordinates.

We repeat the above numerical experiment for the Cauchy problem

Ut = Ugy — %az“u‘%)v U(O) = Uo,

where we changed the parameter p to p = % The result of this computation is presented in Fig. 3. One
can nicely observe that the mass of the profile v in the new coordinates grows as 7 increases, which is
in accordance with Remark 4.4 and formula (42) since p < % and p1 > 0. Nevertheless, we can still
doe the freezing method calculations on a fixed bounded domain and obtain the solution in the original
coordinates from the reconstruction equations. The result is shown in Fig. 3(c).

We also repeat the experiment with p = g From Remark 4.4 and formula (42) we now expect that the
profile v in the co-moving coordinates decays to zero as 7 tends to infinity. The results of the simulation
with the numerical freezing method are shown in Fig. 4 and precisely reproduce this expectation. Note
that we actually only calculated until 7 = 4 in the scaled coordinates. But 7 = 4 corresponds to ¢t ~ 341,

t (reconstructed time)
u

— \ \
I \ 0.5
. ) 200

(b) (c)

&
o
|

FIGURE 4. Time evolution for the generalized 1d-Burgers equation with p = % and
viscosity v = 0.4. In (a) the solution of the freezing method at different time-instances
is shown, (b) shows the algebraic variables p and original time ¢ plotted as functions of
7. Finally, (¢) shows the solution from (a) in the original coordinates.
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and in the original coordinates the profile v(7 = 4), which is calculated on the fixed domain £ € [—5, 5]
corresponds to the solution in the original coordinates on the domain x € [—187.44,151.54]. Also note
that we have chosen a logarithmic scale for the time-axis in Fig. 4(c). We again see that, although there
is no true relative equilibrium of the equation u; = gz, — %830 (\u|%), the freezing method allows us to do
a calculation on a fixed bounded domain for a far longer time, than it would be possible for the original
problem.

Different phase conditions. In all the experiments performed so far, we have chosen the fixed phase
condition given by (51). We now compare the results we obtain with the freezing method by using the
fixed phase condition with the results we obtain when we use the orthogonal phase condition. We again

-5
1 65 10
—— Orthogonal Phase, 7=5 ignhggfhna' Phase
0.8t - = -Orthogonal Phase, =10 1 5 Ixe ase
’ Fixed Phase, =5 =
Fixed Phase, =10 /\ Tl 4
0.6 ;3 | 5
> \ i 3
0.4r :‘v \ i l-ﬂll
[ 52
/ 1 =
0.2F / \ | 1
/ . ,
0-5 0 5 -5 0 5
¢ 3
(a) (b)

FIGURE 5. Comparison of the final states for different phase conditions. In (a) the so-
lutions obtained with the freezing method for the orthogonal and fixed phase conditions
at 7 = 5 and 7 = 10 are shown. The solutions for the same phase conditions do not
change from 7 =5 to 7 = 10. In (b) we plot the actual difference of |v(&,5) — v(&, 10)].

consider the conservative Burgers’ equation, i.e. p = 2, and choose the viscosity v = 0.4. In Fig. 5 we
show the solution to the freezing method obtained with the fixed phase condition at 7 =5 and 7 = 10
and also the solution obtained with the orthogonal phase condition at the same time-instances 7 = 5 and
7 =10. In Fig. 5(a) these are plotted in one diagram and the solutions with the same phase conditions
but at different time-instances virtually do not differ and, therefore, seem to be constant rest states. The
difference of the solutions to the same phase condition but at different times is shown in Figure 5(b).
As is obvious from Fig. 5(a), these steady states do depend on the choice of the phase condition and,
moreover, we even obtain different limits for the algebraic values. In the fixed phase condition case
we obtain p; = 1.665 (scaling) and ps = —2.117 (translation), in the orthogonal phase condition case
we obtain pu; = 1.524 and pus = —1.931. Nevertheless, the solution in the original coordinates at the
latest common original time is plotted in Fig. 6 and shows only a very small difference between the two
different choices of phase conditions as plotted in Fig. 6(b) and Fig. 6(c).

Metastable behavior. Our method directly enables us to observe the metastable behavior in Burg-
ers’ equation with small viscosity which was first numerically observed and analyzed in [10] and later
discussed from a dynamical systems point of view in [3]. Our results are presented in Fig. 7 for viscosity
v = 0.01. Note that there is a very long transient, when the solution pretty much looks like an N-wave
(see Fig. 7(a) until 7 ~ 200=t ~ 10*!) and then in a final stage converges to the true similarity solution,
which is a viscosity wave. This convergence can also be observed by looking at the time evolution of the
algebraic variable p, which evolves slowly first and finally stabilizes to a constant value.
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FIGURE 6. Difference of the solutions obtained at ¢t = 5.581 - 10'° via the freezing
method with orthogonal and fixed phase condition. In (a) the two different solutions
are shown, (b) and (c) shows there difference.
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FIGURE 7. Time evolution for 1d-Burgers’ equation, with viscosity v = 0.01 in the
scaled (computational) coordinates (a) and the evolution of the algebraic variables p
and of the original time as function of the scaled time ¢(7).

5.2. 2d-Experiments. We also apply the method to the two-dimensional generalized Burgers’ equa-
tions

Oy = VAU — %8m(|u\p).

Again we use the numerical scheme introduced in [17]. Moreover, we choose the orthogonal phase
condition, which is slightly more efficient than the fixed phase condition.

Metastable behavior. First we consider the conservative 2-dimensional Burgers’ equation, i.e. p = %
with very small viscosity v = 0.05. For the actual computation with the freezing method we choose the
computational domain ¢ € [—5,5] x [—5, 5] and no-flux boundary conditions. The spatial step sizes are
A& = A& = = and the time step size A7 is CFL-base multiple of these, see [17]. In Fig. 8(a) we
present contour plots of the solution at different time instances and one observes that rapidly a pattern
evolves which resembles the 1d pattern of an N-wave. This pattern exists for a very long time until the
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FiGURE 8. Time Evolution of the 2d-Burgers’ Equation in co-moving coordinates for
v = 0.05. In (a) we plot the contour lines at different time instances (in the scaled
time) and in (b) we show the solution at the final time 7 = 140 (= t ~ 4.3 - 10°3).

“negative blob” vanishes and a final steady state is reached. This happens approximately at 7 = 110
(=t = 1.69 - 10*2). A plot of this final state is shown in Fig. 8(b). Fig. 9 shows that this profile indeed
is a steady state: The difference of the solution to the freezing method at 7 = 80 (=t = 2.60 - 103!) and
7 =110 (=t = 1.69 - 10*2) is plotted in Fig. 9(a). Note that there is a large negative area where the
solutions differ the most (actually their values differ by approximately —0.37). This area corresponds to
the “negative blob” which vanishes as 7 increases (Fig. 8(a)). When comparing the solutions at 7 = 110
(£t = 1.69 - 10*2) and 7 = 140 (=t = 4.27 - 1053), this spot indeed has vanished and the difference of

v(=80)-v(=110) v(r=110)-v(7=140)

5 5 1.2 108
t(r)
= 0.1 = 1 1 N
2 2 40
2 2 05 0.8 10
VN 0 &
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0 . . -0.1 0 .‘. 04l }L; (¢, -velocity) 10%°
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-1 0
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0
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5 5 L B
5 0¢ (newx) 5 5 0 ¢ (newx) 5 x10 0 50 100 0 50 100
T
(a) (b) (c)

FIGURE 9. Convergence to relative equilibrium: In (a) and (b) we plot the difference
of the solutions to the freezing equations for different times 7. In (c) the evolution of
the evolution of the algebraic variables and the original time is shown.
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FIGURE 10. Freezing method for u; = 0.4 Au— 29, (|u|2): (a) shows the initial condi-
tion, (b) the steady state obtained at 7 = 5, and (c¢) shows the evolution of the algebraic
variables and original time as functions of 7.

these two solutions is only of order 10~%. Also the algebraic variables, shown in Fig. 9(c), slowly evolve
until 7 &~ 110, when they finally stabilize.

Variation of the parameter p. We finally consider the long-time behavior of Burgers’ equation with
fixed viscosity v = 0.4 and vary the parameter p. For the experiments we choose the initial condition

sin(2r)sin(y), —5 <x<0,0<y<m,
ug(z,y) = ¢ sin(x)cos(y), O0<z<m —F<y<73,
0, otherwise,

which is depicted in Fig. 10(a).

For the conservative Burgers’ equation, i.e. p = %, we again observe the convergence to a steady state
of the freezing equations and hence to a relative equilibrium. In Figure 10 we plot the final state of
the calculation at 7 = 5 which corresponds to t & 4436.7. Note that the final state has a non-constant
&o-velocity, which is due to the fact that the function does not have a center of mass along the &;-axis.
For the standard 2d-Burgers’ equation, that is p = 2, we obtain that the solution (v, ) of the freezing
method does not converge to a localized steady state but the total mass of v decays as predicted by
Remark 4.4. Nevertheless, it is possible and does make sense to compute the solution to the original
equation by using the freezing method on a fixed computational domain. The final state at 7 = 5
(=t = 11) and its reconstruction to the original coordinates are shown in Fig. 11.
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