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Abstract
Beyond the conventional quantum regression theorem, a general formula for non-Markovian
correlation functions of arbitrary systemoperators both in the time- and frequency-domain is given.
We approach the problemby transforming the conventional time-non-localmaster equation into
dispersed time-local equations-of-motion. The validity of our approximations is discussed andwe
find that the non-Markovian terms have to be included for short times.While calculations of the
densitymatrix at short times suffer from the initial value problem, a correlation function has awell
defined initial state. The resulting formula for the non-Markovian correlation function has a simple
structure and is as convenient in its application as the conventional quantum regression theorem for
theMarkovian case. For illustrations, we apply ourmethod to investigate the spectrumof the current
fluctuations of interacting quantumdots contactedwith two electrodes. The corresponding non-
Markovian characteristics are demonstrated.

1. Introduction

Open quantum systems, which are of great importance inmany fields of physics, refer to a quantum systemof
primary interest coupled to an environment often called reservoir or bath [1–5]. The compositeHamiltonian
(Htot), in general, includes the system (HS), the bath (HB), and the coupling between the system and the bath
( ¢H ), i.e. = + + ¢H H H HS Btot . It is well-known that the system is described by the reduced density operator,
r rº( ) [ ( )]t ttrB tot , i.e. the partial trace of the total density operator rtot over the bath space. The corresponding
dynamics is determined by themaster equation

òr r t t r t= - - S -˙ ( ) [ ( )] ( ) ( ) ( )t H t ti , d , 1S
t

t

0

where the effect of the bath is described by the second termwith the self-energy tS -( )t . It contains the
memory effect in principle even forweak system-reservoir coupling. Equation (1) is thus the so-called time-non-
local (TNL)master equation describing non-Markovian dynamics.

As long as one knows the reduced density operator r ( )t , a single-time expectation value of an arbitrary
physical observable of the system, e.g., Ô, is simply obtained via rá ñ =( ) [ ˆ ( )]O t O tTr . However, it is not as easy
to calculate two- ormultiple-time correlation functions. Except for a small number of exactly solvable systems to
use the exact procedure [5–10], convenient calculation of the correlation function is possible using thewell-
known quantum regression theorem (QRT)which is valid in the Born–Markovian approximation [1–5, 11, 12].
It is not valid anymore for non-Markovian cases [5, 8, 9, 13, 14], due tomemory effects which break the time
translation invariance of the non-Markovian propagator.

The calculation of non-Markovian correlation functions for arbitrary systemoperators is a challenge and
long-standing problem. Stimulated not only by fundamental interest but also by great demand because of the
rapid progress in experiments which are able to access non-Markovian effects [15–17], there aremany efforts to
address this issue. For example,more than ten years ago, Shao andMarkri [18] presented an iterative path
integral algorithm for the numerically exact calculation ofmultitime correlation functions on the canonical
ensemble. By using the stochastic Schrödinger equation approach and theHeisenberg equation, rather than
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master equation, themethod derived byAlonso and deVega [19–21] is valid for zero-temperature environments
and/orHermitian system-environment coupling operators. Based on a generalized Born–Markov
approximation, Budini [22] derived a quantum regression theoremwhich is applicable for non-Markovian
Lindblad equations. Recently, Goan et al [23, 24] developed a scheme for the calculation of two-time correlation
functions of the systemoperators withmemory effects in terms of the ‘time-convolutionless’master equation.
Additionally some specific systems, such as the voltage fluctuation spectrumof the electron transport through a
single electron transistor [26, 27] and the noise spectrumof the electron current through quantumpoint contact
measuring the charge qubit [25], have been analyzed based on a real-time diagrammatic Keldysh
technique [29, 30].

In this work, we aim to derive a general formula for non-Markovian correlation functions of arbitrary
systemoperators in terms of the TNL-ME equation (1).Wewill consider weak system-reservoir coupling but
short time-scales where non-Markovian effects should dominate. Later wewill also analyze the relevant time
scales inmore detail. By using the fluctuation dissipation theoremof the bath correlator and introducing the
auxiliary density operator in the frequency domain denoted by f w( )t, , it is easy to transform the TNL-ME
equation (1) into an equivalent set of coupled time-local equations-of-motion (for short TL-EOMs, expressed in
equations (12) and (13)) [28], i.e. r rL=˙ ( ) ( )t t

 
, in the enlarged vector space with

r r f w f wº + -( ) [ ( ) ( ) ( )]t t t t, , , , T
. The corresponding propagator in this enlarged vector space satisfies time-

translation invariance and accordingly the correlation function can be treated similar to theMarkovian case. The
resulting equation takes a form very similar to the quantum regression theorem in a larger space

rá ñ = Pˆ ( ) ˆ ( ) { ˆ [ ( ) ( )]} ( )A t B A t0 Tr , 0 0 . 2B

 

Themost important feature of this approach is the initial condition r r=( ) ( )B0 0B
 

, where r ( )0


is the density
matrix which has been time evolved froma initial time  -¥t0 .We assumed that system and reservoir
decouple at the initial time  -¥t0 which is the standard assumption for the TNL-ME. In the followingwe
will derive equation (2) andwewill discuss in detail the range of validity using the diagrammatic expansion on
Keldysh contour [29]. This full non-Markovian description is applicable for both, fermionic and bosonic
systems. As an example, wewill discuss non-Markovian effects of the electronic reservoir on the current-
fluctuation spectrum in quantumdots (QDs).

The paper is organized as follows. In section 2, wefirst introduce the conventional TNL-ME forweak
system-reservoir coupling and then outline the equivalent TL-EOMs. Based onTL-EOMs,we get the formulas
for the two-time non-Markovian correlation functions both in the time-domain and in the frequency-domain
in section 3.We then implement the proposed scheme to study the current-fluctuation spectra of the electron
tunneling throughQDs in section 4. Finally, we conclude in section 5.

2.Non-markovianmaster equation: TNL-MEversus TL-EOMs

2.1. Timenon-localmaster equation
The reservoir with infinite degrees of freedom is described by the non-interactingHamiltonian = å †H c cB k k k k

with the creation (annihilation) operator †ck (ck). The couplingHamiltonian between the system and the bath, in
general, is given by

¢ = ++ - + - ( )H Q F F Q , 3

where =+ -( )†Q Q and =- +( )†F F , with the operator of the central system Q and the operator of the bath F .
The coupling operator of the bath is defined as = å-F t ck k k and contains the coupling coefficients tk. The result
will be generalized for the case of coupling tomultiple reservoirs in the appendix B.Note that the following
derivations could be easily extended to the interactionHamiltonian of the form ¢ =H QX with setting =†Q Q
and = ++ -X F F as thefinal formalismof correlation function given in section 3.2. TheHamiltonian of the
small system is composed of the corresponding creation ( m

†a ) and annihilation (aμ) operators, i.e.
º m m( )†H H a a,S S which could includemany-body interaction terms.
Assumingweak system-bath coupling and performing Born but withoutMarkovian approximation, the

self-energy for the expansion up to second-order of the couplingHamiltonian is expressed as
t r t t r tS - = á ¢ ¢ ñt t- - -( ) ( ) [ ( ) [ ( ) ( )] ]( ) ( )t H t H, e , eH t H t

B
i iS S in theHB-interaction picture. The

corresponding diagram is schematically shown infigure 1(b). Here, á ñB stands for the statistical average over
the bath in thermal equilibrium. The explicit formalism for the self-energy in equation (1) thus reads

t t tS - = P -( ) [ ( ) ( ) ] ( )( )t Q t t• , , • , 4Q0


wherewe introduced the free propagator tP º t- -( ) ( )t , e t
0

i S with = [ ] H• , •S S , and

º -   ( ) ( ) ( ) ( )( ) ( ) ( )* t C t Q C t Q• • • , 5Q


2

New J. Phys. 18 (2016) 083038 J Jin et al



with the correlator of the bath

t t- = á ñ ( ) ( ) ( ) ( )( )C t F t F . 6B


Here á ñB stands for the statistical average over the bathwhich is assumed to be in thermal equilibrium.
Consequently, the TNL-ME equation (1) is explicitly given by ( = 1) [31–33],

òår r t t t r t= - - P -
+ -

˙ ( ) ( ) [ ( ) ( ) ( )] ( )( ) t t Q t ti d , , . 7S
t

t

Q
,

0
0



Note that equation (7) is derived assuming initial decoupling at  -¥t0 , r r r=( ) ( )t t Btot 0 0 and rB is the
equilibrium state of the bath.Obviously, the non-Markovian dynamics described by equation (7) is determined
by the superoperator t- ( )( ) tQ which contains thememory effect in the bath correlator t- ( )( )C t defined
by equation (6). If thefluctuation of the bath is consideredwhite noise corresponding to the delta function of the
correlator, e.g., t g d t- µ - ( ) ( )( ) ( )C t t with the constantly dissipative rate g ( ), the TNL-MEof
equation (7) immediately recast toMarkovianmaster equation. It is time-local with the time-independent
dissipative term and theQRT is valid verywell. However, the practical bath hasmore complicated fluctuations
and the bath correlator in general is not a simple delta or single exponential function but the expression of sum
overmany exponential terms as formally given by equation (31) containing thefinitememory time. Therefore,
the non-Markovian treatment is necessary.

Let us define the corresponding propagator P( )t t, 0 for equation (7) (equation (1))

r r= P( ) ( ) ( ) ( )t t t t, , 80 0

which satisfies theDyson equation [29] as shown infigure 1(a). This propagator does not satisfies time-
translation invariance, i.e. P ¹ P P( ) ( ) ( )t t t t t t, , ,0 1 1 0 . The conventional quantum regression theorem is thus
broken.

2.2. Time-local equations-of-motion
The key to the calculation of the non-Markovian correlation function, e.g., tá ñˆ ( ) ˆ ( )A t B , is how to expand the
master equation to an extend space r r


which preserves again time translation symmetry. This will allowus

to case the correlator into the formof the regression theorem equation (2).
We adopt themulti-frequency-dispersed scheme developed in [28] and define the bath correlator

equation (6) in the frequency-domain ( w ( )( )C ) as

ò
w
p

w= w

-¥

¥
 ( ) ( ) ( )( ) ( )C t C

d

2
e , 9ti

where w ( )( )C is directly related to the spectral density of the bath depending on the specific operator ( F ).
Correspondingly, the Liouville operator of equation (5) in the frequency-domain is (see equation (A.5))

w w wº -   ( ) ( ) ( ) ( )( ) ( ) ( )* C Q C Q• • • . 10Q


Furthermore, we introduce the auxiliary density operators in the frequency-domain defined by

òf w t w r t= - w t - - ( ) ( ) ( ) ( )( )( ) ( )t, i d e , 11
t

t
t

Q
i S

0



whichmeans f w =( )t, 00 is applicable for the initially decoupled system-reservoir with  -¥t0 as we
mentioned above. Taking the time derivatives of the auxiliary density operators, it is easy to recast TNL-MEof
equation (7) (equation (1)) in the form

òår r
w
p

f w= - -
+ -

˙ ( ) ( ) [ ( )] ( )t t Q ti i
d

2
, , , 12S

,



Figure 1.The diagrams of (a)Dyson equation and (b) the self-energywith the lowest-order contributions [29]. In (a), P0 is the free
propagator with P = - -( ) ( )t t, e t t

0 0
i S 0 , and the dashed line in (b) is the correlation function t- ( )( )C t of the bath expressed in

equation (6).

3

New J. Phys. 18 (2016) 083038 J Jin et al



f w w f w w r= - -  ˙ ( ) ( ) ( ) ( ) ( ) ( )( ) t t t, i , i , 13S Q

which are the so-called TL-EOMsdue to the involved time-independent dissipative coefficients. TL-EOMs of
equations (12) and (13) is the lowest-tier truncation of hierarchical equation ofmotion [28]which has the
linearity of the hierarchical Liouville space as demonstrated in [34].

Following the arrangement in [34]we introduce a vector composed of the reduced density operator and
auxiliary density operators, i.e.

r r f w f wº + -( ) [ ( ) ( ) ( )] ( )t t t t, , , , . 14T

TheTL-EOMs equations (12) and (13) can then be further compactedwith

r rL=˙ ( ) ( ) ( )t t . 15
 

Here according to equations (12) and (13),L can be formally written as

ò ò
w w

w w

L =

- - -

- - -

- - +

w
p

w
p

+ -

+

-

( ) ( )

( ) ( )

( )( )

( )

  

 

 

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

i i i

i i 0

i 0 i

, 16

S

Q S

Q S

d

2

d

2

wherewe introduced = [ ] Q• , • .
Apparently, equation (15) leads to r r= P( ) ( ) ( )t t t t, 0 0

  
with P = L -( ) ( )t t, e t t

0
0


. In this vector space, the

propagator satisfies the time-translation invariance, i.e. t tP = P P( ) ( ) ( )t t t t, , ,0 0

  
and the correlation

function in equation (2) can be calculated straightforwardly in a form similar to theMarkovian case based on the
quantum regression theorem.

3.Non-markovian correlation function

3.1. Two-time correlation function
Using the vector of r ( )t


defined in equation (14), a single-time expectation value of the systemoperator Â can

be expressed as

r rá ñ = = Pˆ ( ) [ ˆ ( )] { ˆ [ ( ) ( )]} ( )A t A t A t t tTr Tr , , 170 0

 

with the initial condition being that system and reservoir decouple (f w  -¥ =( )t, 00 ), i.e.
r r=( ) { ( ) }t t , 0, 00 0


. Since time-translation invariance of the propagator has been restored, we can now follow
the derivation of theMarkovian correlation function based on the quantum regression theorem [4]. Therefore
the non-Markovian two-time correlation function in the vector space is given by

t rá ñ = Pˆ ( ) ˆ ( ) { ˆ [ ( ) ˆ ( )]} ( )A t B A t B0 Tr , 0 , 18
 

where the components of the density operators in the vector are now

r r f w f wº + -ˆ ( ) [ ˆ ( ) ˆ ( ) ˆ ( )] ( )t t t t, , , , . 19T

The initial state at t=0 is given by

r r f w f w= + -ˆ ( ) { ˆ ( ) ˆ ( ) ˆ ( )} ( )B B B B0 0 , , 0 , , 0 , 20


where r ( )0


is the densitymatrix which has been time evolved from a initial time  -¥t0 .
A similar equation has been derived using linear response theory in [34]. In this case all high-order

contributions in the self-energy have been considered and one should keep all hierarchical EOMs for the
numerical calculation of the correlation function [28, 34].

In this paperwe consider the lowest-order contribution forweak system-reservoir coupling. In terms of
equations (18)–(20) togetherwith the TL-EOMs equations (12) and (13), (see appendix A for the detail), we
finally get

ò òår

r

á ñ = P - P

´ P P -
+ -



ˆ ( ) ˆ ( ) [ ˆ ( ) ˆ ( )] { ˆ ( )

[ ( ) ˆ ( ) ( ) ( )]} ( )( )

A t B A t B t t A t t

Q t B t t t t

0 Tr , 0 0 d d Tr ,

, , 0 0, , 21

t

t

Q

, 0
2

0

1 2

0 2 0 1 2 1 1

0



with the steady-state r r r= P =( ) ( ) ( ) ¯t t0 0, 0 0 and r r r= P =( ) ( ) ( ) ¯t t t t,1 1 0 0 for  -¥t0 . Compared to
theMarkovian correlation function, the secondmodification in equation (21) arises from thememory effect and
it is the vertex corrections whichwill be further illustrated in the coming subsection based on a diagrammatic
representation.

4
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Similarly, it is easy to get theNMK-CF of á ñˆ ( ) ˆ ( )A B t0 as expressed in equation (A.9). In this vector space,
Non-Markovianmultiple-time correlation functions can be calculated
by V V V t rá ñ = P Pˆ ( ) ˆ ( ) ˆ ( ) { ˆ [ ( ) ˆ ( ) ˆ ( )] }A t C B A t C B0 Tr , , 0 1

 
 

.

3.2. Spectrumof the two-time correlation function
Since thewidelymeasured quantity in experiments is the spectrumof the correlation function (in Fourier space,
i.e. òº w

-¥

¥
[ ( )] ( ) f t t f td e ti ), wewill now calculate the spectrum for the stationary two-time correlation

function

w º á ñ = á ñ( ) [ ( ) ( ) ] { [ ( ) ( ) ]} ( )S A t B L A t B0 2Re 0 , 22AB

where the last identity is assumed to be =ˆ ˆ†
A B, and á ñ[ ( ) ( ) ]L A t B 0 is the Laplace transformation defined by

òº w¥
[ ( )] ( )L f t t f td e t

0
i . Based on either equation (21) directly or equation (18), we finally obtain (for the

detail derivation see the appendix A)

å

w r
w

w

w r

á ñ = P - P

´ -

~ ~

+ -

 

[ ( ) ( ) ] [ ˆ ( ) ˆ ¯ ] { ˆ ( )

[ ˆ ( ( ) ( )) ¯ ] ( )( ) ( )
   

⎪

⎪

⎫
⎬
⎭

L A t B A B A

Q B

0 Tr
i

Tr

, , 0 , , 23Q S Q S
,

 

where wP
~( ) and w

 ( )( )
  ,Q S
 are the counterparts in the frequency domain by Laplace transformation of

P( )t t, 0 (see equation (8)) and -  ( )( ) te t
Q

i S (see equation (5)), respectively. Explicitly, they are given by

w w wP = - - S
~ -( ) [ ( ) ( )] ( )i , 24S

1

and

w w w= - - -   ( ) [ ( ) ( ) ] ( )( ) ( ) ( )*   C Q C Q, • • • , 25Q S S S
   

with the frequency-domain of the self-energy (equation (4))

åw wS =
+ -

( ) [ ( ) ] ( )( )
 Q• , , • , 26Q S

,

 

and the frequency-domain of the bath correlation (see eauations (6) and (9))

òw
w
p w w

w=
¢

 ¢ +
¢

-¥

¥

+
( ) ( ) ( )( ) ( )C C

d

2

i

i0
. 27

It can be further give by

w w w= + L  ( ) [ ( ) ( )] ( )( ) ( ) ( )C C
1

2
i , 28

where the real part w ( )( )C is described by equation (9) and the imaginary part is

òw wL º w
p w w


-¥

¥ ¢
 ¢

( ) ( )( ) ( ) Cd

2

1 , with  denoting the principle value of the integral.

Similarly, the spectrumof the correlation function of á ñˆ ( ) ˆ ( )A B t0 , is given by equation (A.10). The formulas
equations (21) and (23) are themain contributions of the present work for the calculation of the non-Markovian
two-time correlation function of the systemoperators (denoted by Â and B̂) in time-domain and the frequency-
domain, respectively.

Note that the above for often relevantHermitian coupling operator, i.e. ¢ =H QX (see equation (3))with
=†Q Q and = ++ -X F F , equations (21) and (23) is simplified to

ò òår

r

á ñ = P - P

´ P P -
+ -

ˆ ( ) ˆ ( ) [ ˆ ( ) ˆ ( )] { ˆ ( )

[ ( ) ˆ ( ) ( ) ( )]} ( )

A t B A t B t t A t t

Q t B t t t t

0 Tr , 0 0 d d Tr ,

, , 0 0, , 29

t

t

Q

, 0
2

0

1 2

0 2 0 1 2 1 1

0

and

w r
w

w

w r

á ñ = P - P

´ -

~ ~[ ( ) ( ) ] [ ˆ ( ) ˆ ¯ ] { ˆ ( )

[ ˆ ( ( ) ( )) ¯ ]} ( )   

L A t B A B A

Q B

0 Tr
i

Tr

, , 0 , , 30Q S Q S
 

respectively, wherewe used = =- +Q Q Q and = +
+ -

  Q Q Q
   ( = ++ -  Q Q Q).

5
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3.3.Discussion and comments
Nowwe are in the position to discuss the applicability and the range of validity of the presentNMK-CF formula
equation (21) (or equation (23)). For convenience, we consider the couplingHamiltonian ¢ =H QX , with the
operator of the bathX containing the coupling coefficient g, as an example. The resulting formula for non-
Markovian correlation function is given by equations (29) and (30). The bath correlator in equation (6) is recast
to

åt t h- = á ñ = g

=

¥
-( ) ( ) ( ) ( )†C t X t X e , 31B

m
m

t

0

m

where the second identity is written as a parametric decomposition such asMatsubara expansion [35, 36] or
pade approximation [37], with h µ gm

2 and g1 m representing the correlation time of the bath or the so-called
thememory time. For the present consideredweak system-reservoir coupling, the self-energy expressed in
equation (4) contains the lowest-order contribution (or thefirst-order contraction byWick theorem), e.g.,
S µ( ) ( )t C t . Let the index ‘l’ represent the number of contractions. The lowest-order contribution considered
in the self-energymeans l=1.

In the following discussionwewill not limit us to l=1, but consider arbitrary number of the contractions
such that the self-energy is exact. Based on the diagrammatic technique [29], we can obtain (see appendix C.1 for
details)

ò òr

r

á ñ = P +

´ P S -

ˆ ( ) ˆ ( ) [ ˆ ( ) ˆ ( )]

{ ˆ ( ) ( ) ( )} ( )

A t B A t B t t

A t t t t t

0 Tr , 0 0 d d

Tr , , 32

t

t

B

0
2

0

1

2 2 1 1

0

which is formally exact. The relevant diagrams are shown schematically infigure 2.Here,SB is the self-energy of
vertex corrections including the operator B̂ and contain all the unseparable diagrams aswell as the self-energyΣ
in the propagatorΠ. It is worth noting that equation (32) has the same form as equation (29) (or equation (21))
whereSB can be extracted andΣ is expressed explicitly in equation (4)which has the same order of the
magnitude toSB.

Wewill nowuse this formalism to discuss the range of validity of the non-Markovian correlation function.
As has been shown in [38], in general non-Markovian effects are of the same order has higher order contractions
in the self-energy. However, for the correlation functionwe have awell defined time scale and for short times
scales, the combination of non-Markovianmaster equation and lowest order self-energy can be valid.

Let usmake the Taylor expansion of the time-derivative of the correlation function, i.e. º á ñ( )
ˆ ( ) ˆ ( )

G t
A t B

t
I d 0

d

I

inHS—interaction, for small = +t 0 ,

= + + +
= =

( ) ( ) ( ) ( ) ( )G t G
G t

t
t

G t

t
t0

d

d

1

2

d

d
. 33

t t

I I
I

0

2 I

2
0

2 

Following the estimation of the order ofmagnitude of the self-energy in [38], we roughly get (see appendix C.2
for the detail)

å

å

å

r
g

r r
g

r r
g

~

+ +

+ + +

-

-

-

( ) [ ˆ ( ˆ ¯ )]

{ ˆ [ ( ) ˆ ¯ ( ˆ ¯ )]}

{ ˆ [ ( ) ˆ ¯ ( ˆ ¯ )]} ( )

G t Af Q B
g

A f Q B f Q B
g

t

A f Q B f Q B
g

t

Tr , ,

Tr , ,

1

2
Tr , , , 34

l

l

l

l

l

l

l

l

l

I
2

2 1

2

2 2

2

2 3
2 

where γ is the smallest decay rate gm of ( )C t in equation (31), r( ˆ ¯ )f Q B, , and ( )f Q are just the formal

expressions arising fromSB andΣ, respectively. Note that themagnitudes of r( ) ˆ ¯f Q B and r( ˆ ¯ )f Q B, , are nearly

Figure 2.The diagramof the two-time correlation function of the systemoperators tá ñˆ ( ) ˆ ( )A t B . SB is the self-energy for vertex
corrections.
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equal.We conclude that the expansion is valid for time gt 1 , even if only the lowest order contributions
l=1 are considered.

4. Currentfluctuations of the electron transport inQDs

For the demonstration of characteristic non-Markovian effects, we consider electron transport throughQDs
contactedwith two electrodes (left L and rightR). This is a typical fermionic open quantum systemwherewewill
consider the non-Markovian effects in the spectrum in high-frequency regime [26, 31, 39].

The couplingHamiltonian of equation (3) is specified by

å¢ = +
m

m m m m( ) ( )† †H a F F a , 35

with the systemoperator m
Q being m

†a (aμ) the creation (annihilation) operator of an electron of theμth-level of
the dot, and the operator of the reservoirs = åm a am=

† †F FL R, with = åam a m am
† †F t ck k k. The correlator of leadα in

the frequency-domain of equation (9) is thus w w w= Gam am a
 ( ) ( ) ( )C f with the spectral density of the reservoir

w p d wG = å -am am am( ) ( )* t t2 k k k k , the Fermi function of w w= =a a b w m
+

+ - a
( ) ( )

( ( ))
f f 1

1 exp
,

w w= -a a
-( ) ( )f f1 , and b = k T1 B the inverse of the temperature. For the studiedmodel, we consider

d=amn am mn
 ( ) ( )( ) ( )C t C t and symmetrical bias voltage m m= - = eV 2L R .
Assuming a Lorentzian spectrum centered around the Fermi energy of the lead [30, 31, 40, 42–44],

wG =am w m
G

- +
am

a
( )

( )
w

w

2

2 2 , with high cut-off frequency = Gw 100 with G = å Gam am, it leads to equation (27)

(equation (B.3)) [30, 44] w w w w= G » Gam am a am a
  ( ) ( ) ( ) ( )C f f and

w
p

b w m
p

b
p

p
w m

L =
G

Y +
-

- Y +
-

am
am a

a a

a

 ( )
( )

( )

( )

⎜ ⎟

⎧⎨⎩
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎫⎬⎭

Re
1

2
i

2

1

2

w

2 w
, 36

with Y( )x theDigamma function.
Here we focus on the investigation of the non-Markovian current fluctuations in the central dots, i.e.

á ñ˙ ( ) ˙ ( )Q t Q 0 with =˙ ˆ ( )Q e N t

t

d

d
and = åm m mˆ †N a a . Since it satisfies the charge conservation of

= - +˙ ( ) [ ( ) ( )]Q t I t I tL R , the corresponding spectrum is expected to be closely related to the noise spectrumof
the transport current a ( )I t in the reservoirα. Actually, the current-fluctuation spectrum in the central dot can
be easily obtained in terms of the corresponding charge fluctuation defined by w = á ñ( ) { ˆ ( ) ˆ ( ) }S N t N 0N , via
the relation of w w w= á ñ =( ) [ ˙ ( ) ˙ ( ) ] ( )S Q t Q S0 e Nc

2 2 . The spectrumof the chargefluctuation w( )SN is given

by the formula equation (23)with appropriately replacing = =ˆ ˆ ˆA B N .

4.1. SingleQD
Let usfirst study the simplestmodel of electron transport through a spin-less one-level QD in the sequential
tunneling regime, m e m> >L R, described by theHamiltonian e= †H a aS . Two states are considered in the dot,
the empty state ( ñ∣0 ) and the single-electron occupied state ( ñ∣1 ), which leads to = ñá∣ ∣a 0 1 . For the spectrumof

the chargefluctuation w = á ñ( ) { ˆ ( ) ˆ ( ) }S N t N 0N calculated by equation (23), the result agrees completely with
that given in [26] based on diagrammatic technique.

The numerical result is shown infigure 3. It depicts non-Markovian features (solid-line) compared to the
Markovian results (dashed-line) (a) for chargefluctuation and (b) for currentfluctuation, respectively. For low
frequency regime at w m e< -a{∣ ∣}min corresponding to the long time limit, the results based on both non-
Markovian andMarkovian treatments are consistent due to the disappearance of non-Markovian effect.With
increasing the frequency higher than the energy-resonance, i.e. w w e mº -a a∣ ∣ 0 , it enters the non-
Markovian regimewhere the non-Markovian characteristic occurs in the spectra, showing steps at w w» a0 in
the currentfluctuation spectrum (see figure 3 (b)). This is consistent with the noise spectrumof the transport
current through the reservoirs studied in [10, 31, 39].

The non-Markovian feature showing steps at wa0 in w( )Sc provides the information of the energy structure
in the central dot. The heights of the steps contain the information of the tunneling rate as demonstrated in the
following. For the studied single-level dot in the regime of m e m> >L R, the stationary population of the empty

and single-electron occupied states are, r = G
G

¯00
R and r = G

G
¯11

L , respectively. Considering the spectrum in the

positive frequency regime (w > 0), it corresponds to the energy absorption processes. Accordingly, when the
dot is in the empty state ñ∣0 with probability r̄00, the electrons in the right reservoir absorb the energy, i.e.
m w e+ =R and tunnel to the dot, which leads to the step at w e m= -∣ ∣R R0 with the height of
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r» G = G
G

¯hR R00
R
2

.When the dot is in the occupied state ñ∣1 with probability r̄11, the electrons in the dot absorb

the energy, i.e. e w m+ = L and tunnel to the left reservoir, which leads to the step at w m e= -∣ ∣L L0 with the

height of r» G = G
G

¯hL L11
L
2

. The ratio of the heights in the positive frequency regime thus is

w» G G >( ) ( )h h: : ; 0 . 37L R L R
2 2

Similarly, in the reversed regime (w < 0) corresponding to the energy emission processes, we get
r¢ » G = G G

G
¯hL L00

L R and r¢ » G = G G
G

¯hR R11
L R . Namely

w¢ ¢ » <( ) ( )h h 1; 0 , 38L R

which is insensitive to the tunneling rate. These analytical solutions of equations (37) and (38) are consistent
with the numerical results shown infigure 3(b) (dashed–dotted-line) for asymmetrical coupling G = G2L R as an
example.

We further consider the single level in the dotwith spin-dependence as described by theHamiltonian,
e= å +m m m m=   ˆ ˆ†H a a Un nS , , where =m m mˆ †n a a and = åm m= 

ˆ ˆN n, . The involved states in the dot are ñ∣0 ,

 ñ∣ ,  ñ∣ , and ñ º   ñ∣ ∣2 denoting the empty, two single-occupation spin states, and the double-occupation
spin-pair state, respectively. In this state-basis, we have = ñá  +  ñá ∣ ∣ ∣ ∣a 0 2 and = ñá  -  ñá ∣ ∣ ∣ ∣a 0 2 .
To demonstrate theCoulomb interaction effectmore transparently, we fix the dot level with spin-degeneracy,
e e e= =  , and consider spin-independent coupling strength, G = G = Ga a a  , (a = L R, ). The
corresponding spectrumof the current fluctuationswith different Coulomb interaction is shown in figure 4.
Besides the steps at the energy-resonance wa0, we alsofind the steps induced byCoulomb interaction at
w e mº + -a a∣ ∣UU . The different Coulomb interactionmodifies the positions and the heights of the steps in
the spectrum. In the positive high frequency limit at w w w> { }max ,LU RU , the currentfluctuation spectra
nearly approach the same value due to the absorption of enough energy to open all the tunneling channels.

We identify the regimes as (i)weakUwith m e e m> + >U,L R and (ii) strongUwith
e m e m+ > > >U L R. Infigure 4, forU=0, the ratios of the heights of the steps both in the positive and
negative parts are the same as spinless single level. However, compared tofigure 3, themagnitude of the
spectrum is doubled due to the two-energy levels (spin-up  ñ∣ and spin-down  ñ∣ ) involved in the transport.
After the similar derivation in spinless single-level dot as demonstrated above, the ratios of the heights of the
steps for the positive (denoted by h) and negative (denoted by ¢h ) frequencies in the spectrum are given by,
respectively

= G G G G G G ( )h h h h: : : : : : , 39RU R L LU L R R L R L
2 3 2 3

¢ ¢ ¢ ¢ = G G G G ( )h h h h: : : : : : , 40RU R L LU L R R L

for (i)weakU (the short-dashed-line infigure 4), and

= G G G G G ( )h h h h: : : : : : , 41RU R L LU L R R L L
2 2 2

Figure 3.The spectra of charge and current fluctuations in (a) and (b), respectively, for the single level quantumdot under the non-
Markovian (black solid-line) andMarkovian (red dashed-line) treatments with symmetrical coupling G = G = G0.5L R . The blue
dashed–dotted-line in (b) is non-Markovian result for asymmetrical coupling G = G2L R for the confirmation of equations (37) and
(38). The typical non-Markovian feature shows step at w e m= -a a∣ ∣0 in the spectra. The other parameters are (in unit of
G = G + GL R): e = 1, =k T 0.1B , and m m= - = =eV 2 6L R .
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¢ ¢ = ( )h h: 1 : 1, 42R L

for (ii) strongU (the dotted–dashed-line infigure 4). Since the stationary double occupation is not allowed for
strongU, there are noCoulomb-induced steps in the negative part of the spectrum.

4.2. Coupled doubleQDs
Now let us consider the electron transport through the systemof two coupledQDs described by the
Hamiltonian e e= + + + W +ˆ ˆ ( )† † † †H a a a a Un n a a a aS l l l r r r l r l r r l , whereU is the interdot Coulomb

interaction, =m m mˆ †n a a and = åm m=
ˆ ˆN nl r, . The involved states of the double dot are ñ∣0 for the empty double

dot, ñ∣L for the left dot occupied, ñ∣R for the right dot occupied, and ñ º ñ∣ ∣LR2 for the two dots occupied. Here,
we assume atmost one electron in each dot. In this space, we have = ñá + ñá∣ ∣ ∣ ∣a L R0 2l and

= ñá - ñá∣ ∣ ∣ ∣a R L0 2r . The description of the involved states in this double dots is quite similar to that in the
single dotwith spin-dependence studied above. However, the essential difference is that the states of ñ∣L and ñ∣R
are not the eigenstates of the systemHamiltonianHSwhich have the intrinsic coherent Rabi oscillation
demonstrated by the coherent coupling strengthΩ. The corresponding Rabi frequency denoted byΔ is the
energy difference between the eigenstates (e), e.g., e eD = - = W+ - 2 for the degenerate double-dots system
considered here.

The current-fluctuation spectrum for the coupled double dots is numerically displayed infigure 5. Similar to
the singleQD, the spectrumhas the feature of a energy-resonance step at w e m= -a a∣ ∣0 and theCoulomb
interaction induced step at w e m= + -a a∣ ∣UU as shown infigure 5 (a). Here, we only illustrate the positive-
frequency part of the spectrumdue to the similar or less information involved in the negative-frequency regime.
It is worth noting that the step behavior reflects the eigenstate energy structure of the dots, say, e rather than

Figure 4.The current-fluctuation spectrum in theQDwith different Coulomb interaction for symmetrical coupling
G = G = G0.5L R . It displays the non-Markovian steps occurring at not only wa0 (denoted by the dashed arrows), but also
w e m= + -a a∣ ∣UU induced byCoulomb interaction. The other parameters are the same as infigure 3.

Figure 5.The charge-fluctuation spectrum in the coupled quantumdots (a)with different Coulomb interaction for the interdot
coupling W = 2 and (b)with different interdot coupling for strongCoulomb interactionU=15. The inset in (a) is the spectra
comparison between the symmetrical and asymmetrical coupling for W = 2.5 andU=0. The inset in (b) is the diagramof the
transport setup for the electron transport through the coupled double quantumdots. The other parameters are (in unit of
G = G + GL R): e e= = 0l r , =k T 0.1B , G = G = 0.5L R , and m m= - = =eV 2 5L R .
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el r, . Besides the same step behavior as in the singleQD, of particular interest is the signal of the coherent Rabi
oscillation of the coupled double dots in the current-fluctuation spectrum.

Interestingly, the emergence of the coherent signal of the Rabi oscillation is nearly determined by the
strength of theCoulomb interactionU. For weakCoulomb interaction in the regime of
m e e m> + >  U,L R, such asU=0 (solid-line) and = GU 2 (dashed line) infigure 5(a), no signal at the
Rabi frequency w = D occurs in the spectrum.While in the double-dot Coulombblockade regime, either
e m e e m+ > > + >+  -U U,L R or e m e m+ > > > U L R, the current-fluctuation spectrum always
shows a peak at the Rabi frequency w = D as shown infigure 5(a)with = GU 6 (short-dashed–dotted-line) and
= GU 15 (dashed–dotted-line). Although the coherent signal peak appears for asymmetrical couplingwith

G = G4L R shown in the inset offigure 5(a), it is quite weak compared to that induced byCoulomb interaction.
Thismeans the coherent Rabi oscillation information in the current-fluctuation spectrum is sensitive to the
dynamical blockade channel. This characteristic of Rabi coherence signal is also consistent withMarkovian
treatment studied in [45], where the symmetrical currentfluctuation spectrumwas considered.

Furthermore, by increasing the coherent coupling strengthΩ, we find that the coherent signal of the Rabi
oscillation ismoved to the high-frequency regimewith strong non-Markovian effect as shown infigure 5(b).
Simultaneously, the peak of the coherent signal in the spectrum gradual increasesmonotonically and sharply
increases at the resonance regimewhere the Rabi frequency approaches the bias voltage, i.e.D = W = eV2 , as
shown infigure 5 (c). This arises from the interplay between theRabi resonance and the lead-dot tunneling
resonance, i.e. e m=W = =( ) ( )eV 2L R, , combinedwith strong non-Markovian effect. Itmay suggest that
this resonant regime is good for the observation of the coherent signal in the current-fluctuation spectrum
experimentally. Beyond the resonance regime, the systemwill enter into the cotunneling regimewhich is beyond
the present approach andwe have to recur tomore advanced approaches such as the hierarchical equations of
motion [28, 34, 41, 46] and the real-time diagrammatic technique [29, 30] for the consideration of higher-order
contributions in the self-energy.

5. Summary

In summary, using the frequency-dispersed technique by transforming the typical TNLmaster equation into
equivalent TL-EOMs, we established an efficient formula for the two-time non-Markovian correlation function
of arbitrary systemoperators in open quantum systems. The key to the calculation of the non-Markovian
correlation function is how to restor an effective time-translation symmetry to the propagator.Wefind that this
corresponds to the vertex corrections as further demonstrated by the real-time diagrammatic technique. The
final result has an elegant structure and is as convenient to apply as thewidely used quantum regression theorem
for theMarkovian case.

We applied the presentmethod to study the current-fluctuation spectra in the interacting singleQD and
coupled double dots, respectively, contacted by two electrodes. The typical non-Markovian effect have been
demonstrated.We found that the non-Markovian step behavior in the current-fluctuation spectrumof the
singleQD is consistent with that in the noise spectrumof the transport current through the leads. The sharp
peak of the coherent Rabi signal in the double dots occurs at the resonance regimewhere the eigenenergy levels
are comparable to the chemical potential in the leads under the applied bias voltage. From this current-
fluctuation spectrum covering the full-frequency regime, the information of the energy structure of theQDs, the
tunneling rate aswell as the Coulomb interaction and even the coherent Rabi signal can be extracted directly.

Experimentally, themeasurement of current-fluctuation spectrum can be realized via the detector such as a
quantumpoint contact or single electron transistor coupled to the dots for the realization of the real-time single-
electron tunneling through the dots [47, 48]. It is worth noting that the previous studies havewidely focused on
the low frequency limit which can be accessible in the current experiments [45, 49]. Althoughmore difficult,
experimental progress has also beenmade towardmeasuring the noise spectrumof electron transport in the
high-frequency regime [50–53].We expect the present results to be tested in the near future.
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AppendixA. The detail derivation of the two-timeNMK-CF expressed in equations (21)
and (23)

In this appendix, we give a detailed derivation of the non-Markovian two-time correlation function given by the
equation (21). For the calculation of the steady state as the initial condition of correlation function, the stationary
solution of auxiliary density operators f w f wº ¯ ( ) ( ), 0 are given by equation (11)

òf w w r= - w

-¥

¯ ( ) ( ) ( ) ( )( ) ( )t ti d e . A.1t
Q

0

1
i

1
S 1

Updatedwith the initial condition of (see equation (20)), r r r f w f w= = + -ˆ ( ) ˆ ( ) { ˆ ¯ ˆ ¯ ( ) ˆ ¯ ( )}B B B B0 0 , ,
 

for
equation (13), we get the formula of the auxiliary density operators

òf w f w w r= w w -  - - - ˆ ( ) ˆ ¯ ( ) ( ) ˆ ( ) ( )( ) ( )( ) ( ) t B t t, e i d e . A.2t
t

t t
Q

i

0
2

i
2

S S 2 

Inserting it into equation (12) yields

ò òår r t t r t
w
p

f w= - + S - - w

+ -

- ˆ̇ ( ) ˆ ( ) ( ) ˆ ( ) [ ˆ ¯ ( )] ( )( ) t t t Q Bi d i
d

2
, e , A.3S

t
t

0 ,

i S 

which has the solution

ò òår r
w
p

f w= P - P w

+ -

- ˆ ( ) ( ) ˆ ¯ ( ) [ ˆ ¯ ( )] ( )( )t t B t t t Q B, 0 i d ,
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2
, e . A.4

t
t

, 0
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i S 2 

Here, we used the initial condition r r r= =ˆ ( ) ˆ ( ) ˆ ¯B B0 0 .With the use of equation (A.1) and the relation (see
equations 9 and 10)

ò
w
p

w =w  ( ) ( ) ( )( ) ( )  t
d

2
e , A.5t

Q Q
i

based on equation (18), wefinally get theNMK-CF expressed by equation (21).We could directly get the
spectrumof the correlation function in the frequency domain by a Laplace transformation based on
equation (21). An alternative way is that we first obtain the stationary solution of auxiliary density operators in
equation (A.1)which reads (r r r= P =( ) ( ) ( ) ¯t t t t,1 1 0 0 with  -¥t0 )

f w
w r

w
=

 - +
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
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Then, we transforme equation (A.3) into the frequency-domainwith the relation
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The result is

åw r w r
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 [ ( )] ˆ̃( ) ˆ ¯ [ ˆ ( ( ) ( )) ¯ ] ( )( ) ( )
   B Q B

i
, , 0 , . A.8Q Q

1

,

 

Finally, according to the first identity of equation (18)which suggests r wá ñ =[ ( ) ( ) ] [ ˆ ˆ̃( )]L A t B A0 Tr , we get the
formula of theNMK-CF in the frequency-domain as expressed in equation (23).

Similarly, the correlation function of á ñˆ ( ) ˆ ( )A B t0 is given by
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in the time-domain and
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   
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in the frequency-domain.
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Appendix B. The two-time correlation function formultiple coupling

For simplicity so far, we showed the derivation of theNMK-CF for a single-operator coupling formalism as
expressed in equation (3). Realistically, the couplingHamiltonian is given by themultiple-operator coupling
formalism, i.e. ¢ = +m m

+ -H Q F h.c. aswe illustrated in section 4. Thefinal formulas of equations (21) and (23)
can be generalized by simply replacing the operators Q and ( )Q with m

Q and 
m

( )Q , respectively, and further

adding the sumofμ. Thus, the formalism presented in sections 2 and 3 aswell as appendix A are the same but
adding the symbolμwith the summation. Especially we pay attention on the final formula ofNMK-CF in the
time-domain of equation (21), where ( )Q expressed in equation (5) should be replaced by

åt t t- º - - -
n

mn n mn n
   
m

( ) [ ( ) ( ) ] ( )( ) ( ) ( )* t C t Q C t Q• • • , B.1Q


with t t- = á ñmn m n
 ( ) ( ) ( )( )C t F t F B

 , and the counterpart in the frequency-domain expressed in equation (10)
should be replaced by

åw w w= - - -
n

mn n mn n
   
m

( ) [ ( ) ( ) ] ( )( ) ( ) ( )*   C Q C Q, • • • , B.2Q
   

with (see equation (27))

òw
w
p w w

w

w w

=
¢

 ¢ +
¢

= + L

mn mn

mn mn



-¥

¥

+


 

( ) ( )

[ ( ) ( )] ( )

( ) ( )

( ) ( )

C C

C

d

2

i

i0
1

2
i . B.3 



For instance, theNMK-CF of equation (23) is generalized to

å

w r
w

w

w r

á ñ = P - P

´ -

~ ~

m
m

+ -

 
m m

[ ( ) ( ) ] [ ˆ ( ) ˆ ¯ ] { ˆ ( )

[ ˆ ( ( ) ( )) ¯ ]} ( )( ) ( )
   

L A t B A B A

Q B

0 Tr
i

Tr

, , 0 , . B.4Q Q
, ,

 

AppendixC.Diagramdescription

C.1. The derivation of formal exact two-time correlation function in equation (32)
The two-time correlator of two operators Â and B̂ acting in theHilbert space of the systemof interest is given by

rá ñ =ˆ ( ) ˆ ( ) [ ( ) ( ) ˆ ( ) ˆ ( )] ( )A t B t U t t AU t BU t0 Tr , , 0 0, . C.1T 0 0 0

The functions ¢( )U t t, are the unitary time evolutions ¢ = ò ¢¢ ¢¢
¢( ) { }( )U t t, e t H ti d

t

t
tot and r ( )tT is the density

matrix of the total system. The operator  is the time ordering operator.We assume that we canwrite this
densitymatrix for t0 as a direct product of the reduced densitymatrices of the system and the bath, which is valid
for the limit  -¥t0 ,

år r r= Ä ñá ¢
¢

¢( ) ( ) ( )∣ ∣ ( )t t t s s , C.2T B
ss

ss0 0 0

år rá ñ = Ä ñá ¢
¢

¢
ˆ ( ) ˆ ( ) [ ( ) ( )∣ ∣ ( ) ˆ ( ) ˆ ( )] ( )A t B t t s s U t t AU t BU t0 Tr , , 0 0, , C.3B

ss
ss0 0 0 0

år r= á ¢ ñ
¢

¢ ( ) ∣ { ( ) ( ) ˆ ( ) ˆ ( )}∣ ( )t s t U t t AU t BU t sTr , , 0 0, , C.4
s s

ss B B
,

0 0 0 0

where ñ{∣ }s is a basis set for the central system. By changing to the interaction picture (operators and states
marked by tilde) the equation can be further simplified. Therefore, we introduce theHamiltonian

= +H H HS B0 and the unitary time evolution ¢ = ò ¢¢ ¢¢
¢( ) { }( )U t t, e t H t

0
i d

t

t
0 . The time evolution in the

interaction picture is ¢ = ¢ ¢ =~ ò ¢¢ ¢ ¢¢
¢( ) ( ) ( ) { }( )U t t U t t U t t, , , e t H t

0
i d

t

t

. An operator in the interaction picture is
given by =˜( ) ( ) ˆ ( )†A t U t t AU t t, ,0 0 0 0 and an expansion of the exponential functions ¢˜ ( )U t t, yields an expansion
in the couplings ¢H

ò ò

ò ò

= + ¢ ¢

- ¢ ¢ +

˜ ( ) ˜ ( ) ˜ ( ) ˜( ) ˜ ( ) ˜ ( ) ˜( ) ˜ ( ) ˜ ( ) ˜ ( ) ˜( )

˜ ( ) ˜ ( ) ˜ ( ) ˜( ) ( )

U t t A t U t B U t A t B t t H t A t H t B

t t H t H t A t B

, , 0 0 0, 0 d d 0

d d 0 , C.5

t t

t t

0 0
0

1
0

2 1 2

0
1

0
2 2 1

1

1


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ðC:6Þ

which leads to

å rá ñ =
¢

¢
¢

ˆ ( ) ˆ ( ) ( ) ( ˜ ( ) ˜( )) ( )A t B t t A t B0 , , 0 . C.7
s s

ss
ss

I

,
0 0

Each dot in a diagramdenotes a couplingHamiltonian ¢H . The ¢ ( ˜( ) ˜( ))t A t B, , 0ss 0 superoperator is the full

time evolution of the densitymatrix including the two operators Â and B̂. By usingWicks theorem the trace
over the bath decays into two point functions represented by a contraction between the dots. Sowe canwrite

ðC:8Þ

Here, åB which is the self-energy for vertex corrections contains all the unseparable diagrams and
equation (C.8) is still exact.We can rewrite this equation in algebraic form as

ò ò

r

r

á ñ = P P

+ P S P

~

~ ~

ˆ ( ) ˆ ( ) { ˜ ( ) ( ) ( ) ˜ ( ) ( )

˜ ( ) ( ) ( ) ( ) ( )} ( )

A t B A t t B t t

t t A t t t t t t t t

0 Tr , 0 0 0,

d d , , , . C.9
t

t
B

I
0 0

0
2

0

1 2 2 1 1 0 0
0





Using the relation of r r= P( ) ( ) ( )t t0 0, 0 0 and r r= P( ) ( ) ( )t t t t,1 1 0 0 , equation (C.9) immediately recast to
equation (32) in the Schrodinger picture.

C.2. The derivation for equation (34)
We introduce rº P( ) ( ) ˆ ( ) t t , 0 0B B with r=( ) ˆ ¯ B0B , and the auxiliary density operator describing the vertex
contribution

ò ò r= P S -S ( ) ( ) ( ) ¯ ( ) t t t t t t td d , , C.10B

t

t
B

0
2

0

1 2 2 1
0

with =S ( ) 0 0B apparently. Sincewe are interested in the discussion of the order of themagnitude roughly, it is
more convenient in theHS-interaction picture. The corresponding time-derivation equations are

ò t t t= S -˜̇ ( ) ( ) ˜ ( ) ( ) t td , C.11B

t

B
0



ò t t t= S - +S S˜̇ ( ) ( ) ˜ ( ) ˜ ( ) ( ) t t f td , C.12B

t

B B
0



with ò r= S
¥˜ ( ) ( ) ¯f t t tdB t B1 1

 . Then the time-derivation of the two-time correlation function (see
equation (C.9)) reads

º
á ñ

= + S( )
ˆ ( ) ˆ ( ) { ˆ [ ˜̇ ( ) ˜̇ ( )]} ( ) G t
A t B

t
A t t

d 0

d
Tr . C.13B B

I
I

TheTaylor expansion of the time-derivative of the correlation function for small = +t 0 is

= + + +
= =

( ) ( ) ( ) ( ) ( )G t G
G t

t
t

G t

t
t0

d

d

1

2

d

d
. C.14

t t

I I
I

0

2 I

2
0

2 

With equations (C.11) and (C.12), we get

r

r

= + S + S

+ S + S +

( ) [ ˆ ˜ ( )] { ˆ [ ( ) ˆ ( )] ¯}

{ ˆ [ ˙ ( ) ˆ ˙ ( )] ¯} ( )

G t Af A B t

A B t

Tr 0 Tr 0 0

1

2
Tr 0 0 . C.15

B B

B

I

2 

 

 
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Using the estimation of the order ofmagnitude presented in [38], we roughly get

å

å

å

å

å

g
r

r
g

r

r
g

r

g

g

~

S ~

S ~

S ~

S ~

-

-

-

-

-

˜ ( ) ( ˆ ¯ )

( ) ¯ ( ˆ ¯ )

˙ ( ) ¯ ( ˆ ¯ )

( ) ( )

˙ ( ) ( ) ( )

f
g

f Q B

g
f Q B

g
f Q B

g
f Q

g
f Q

0 , , ,

0 , , ,

0 , , ,

0 ,

0 , C.16

B
l

l

l

B
l

l

l

B
l

l

l

l

l

l

l

l

l

2

2 1

2

2 2

2

2 3

2

2 2

2

2 3









where γ is theminimumdecay rate γ of ( )C t in equation (31), r( ˆ ¯ )f Q B, , and ( )f Q are just the formal
expression arising fromSB andΣ, respectively. Inserting equation (C.16) into (C.15), wefinally get
equation (34).
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