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Zusammenfassung der Doktorarbeit

Die vorliegende Arbeit beschreibt die Entwicklung eines neuartigen Konzepts zur Her-

stellung von nano-porösen Blockcopolymer-Membranen mit modifizierbarer Oberflä-

chenchemie. Grundlage des Konzepts ist die modulare Synthese von amphiphilen Block-

copolymeren mit einer schaltbaren Verknüpfung. Bei der Verwendung solcher Block-

copolymere zur Membranherstellung kann im Anschluss der polare Block von der

Oberfläche der Membran entfernt werden. Anschließend lassen sich die gewünschten

Komponenten, entsprechend der jeweiligen Verwendung der Membran, wieder an die

Oberfläche anbinden.

In diesem Zusammenhang wurde zum ersten Mal die thermoreversieble hetero-Diels–

Alder (HDA) Chemie zur Herstellung von amphiphilen Blockcopolymeren verwendet.

Außerdem konnte die HDA-Reaktion erstmals dazu verwendet werden, wasserlösliche

Polymere in einem definierten Muster im µm-Bereich auf Oberflächen anzubinden.

Des Weiteren wurde HDA und lichtinduzierte Konjugationschemie in einem neuen

Kettentransfer-Agens (engl. chhain transfer agent, CTA) kombiniert, was die einfache

Herstellung von triblockterpolymeren in drei Schritten ermöglicht.

Die reversible Addition-Fragmentierung-Kettentransfer-(engl. reversible addition-

fragmentation chain transfer, RAFT) Polymerisationsmethode wurde benutzt, um die

jeweiligen Bausteinpolymere herzustellen. Zur Herstellung des hydrophoben Baustein-

polymers wurde ein Brom-funktionales RAFT-Agens in einer Copolymerisation von

Isopren und Styrol verwendet. Nach der Polymerisation wurde das Brom durch Cyclo-

pentadien (Cp) substituiert, um ein reaktives Dien an einer Endgruppe einzuführen. Zur

Herstellung der hydrophilen Bausteinpolymere wurden Triethylenglycol-methylether

Acrylat (engl. triethylene glycol methyl ether acrylate, TEGA), Hydroxyethyl Acrylat

(engl. hydroxyethyl acrylate, HEA) und Acrylsäure (engl. acrylic acid, AA) mittels eines

HDA fähigen RAFT-Agens polymerisiert.

Zur Untersuchung des thermischen Verhaltens der HDA Verbindung zwischen der

RAFT-Endgruppe der hydrophilen Bausteinpolymere und der Cp-Endgruppe des hy-
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drophoben Bausteinpolymers wurde ein Poly(Isopren-co-Styrol)-block-Poly(Triethyl-

englycol-methylether Acrylat) (P(I-co-S)-b-PTEGA) Diblockterpolymer mit niedrigem

Molekulargewicht (Mn = 16 000 gmol−1) hergestellt und ausführlichen Hochtemperatur-

Kernspinresonanzspektroskopie- (engl. high temperature nuclear magnetic resonance,

HT-NMR), Hochtemperatur-Größenausschluss-Chromatographie- (engl. high tempe-

rature size exclusion chromatography, HT-SEC) und Hochtemperatur dynamischer

Lichtstreuungs- (engl. high temperature dynamic light scattering, HT-DLS)-analysen

unterzogen. Desweiteren wurde ein P(I-co-S)-b-PTEGA Diblockterpolymer mit hohem

Molekulargewicht (Mn = 68 000 gmol−1) hergestellt und in einem makroskopischen

Spaltungsexperiment verwendet.

Um die Vielfalt der möglichen Membranmodifikationen weiter zu erhöhen, wurde ein

doppel-funktionelles RAFT-Agens entwickelt, welches in der Lage ist, α,ω-funktionelle

Polymere zu generieren, diewiederumdazu fähig sind, nacheinander effektive, thermisch-

und lichtinduzierte Konjugationsreaktionen einzugehen. Durch eine HDA Reaktion mit

Cyclopentadien kann die C=S-Doppelbindung der RAFT-Endgruppe geschützt wer-

den. Anschließend wird durch die lichtinduzierte Konjugationsreaktion ein zweiter

Polymerblock an das α,ω-funktionelle Polymer geknüpft. Nach der Entfernung der

Cyclopentadien-Schutzgruppe durch Erhitzen entsteht ein Diblockcopolymer, welches

sich mittels der wieder verfügbaren HDA fähigen RAFT-Endgruppe auf Cp-funktionelle

(Membran-)Oberflächen anbringen lässt. Zur Demonstration der Einsatzvielfalt des

doppel-funktionellen RAFT-Agens wurde ein amphiphiles Triblockquaterpolymer, Po-

ly(Isopren-co-Styrol)-block-Poly(Ethyl Acrylat)-block-Poly(Ethylenoxid) (P(I-co-S)-b-

PEA-b-PEO), hergestellt.

Nano-poröse Blockcopolymer-Membranen wurden durch Verwendung des P(I-co-S)-b-

PTEGADiblockterpolymermit hohemMolekulargewicht, mittels des Selbstorganisations-

und nicht-Lösungsmittel induzierten Phasenseparations- (engl. self-assembly and nonsol-

vent induced phase separation, SNIPS) Prozesses hergestellt. Jedoch waren die erhaltenen

Membranen sehr fragil und wiesen nur sehr kleine Poren auf. Deshalb wurde ein weiteres

Diblockterpolymer mit einem kleineren PTEGA-Block synthetisiert und der Membran-
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herstellung durch SNIPS unterzogen. Auf diese Weise ließen sich dickere Membranen

mit größeren Poren generieren.

Das Abspalten des polaren Blocks von der Oberfläche der Membran wurde durch

Eintauchen in 50 ◦C heißes Wasser erreicht. Die Morphologie der Membran wurde

durch das Verfahren nicht beeinflusst. Die Kinetik der Abspaltung wurde mittels NMR

Spektroskopie verfolgt.

Die Fähigkeit der hydrophilen Bausteinpolymere (PTEGA, PHEA und PAA) im wäss-

rigen Medium an Cp-funktionelle Oberflächen in einer poren-ähnlichen Umgebung zu

knüpfen, wurde durch Mikroabformung in Kapillaren (engl. micromolding in capillaries,

MIMIC) getestet. Die erfolgreiche, kovalente Bindung der Polymere in den entspre-

chenden Mustern der angewendeten Kapillarstempel wurde mit Wasserkontaktwinkel-

Messungen, Wasserdampfabscheidungs-Bilder, Röntgen-Photoelekronen-Spektroskopie

(engl. X-ray photoelectron spectroscopy, XPS), Rasterkraftmikroskopie (engl. atomic-

force microscopy, AFM) und Flugzeit-Sekundärionenmassenspektrometrie (engl. time-

of-flight secondary ion mass spectrometry, ToF-SIMS) nachgewiesen.





Abstract

The development of a new concept for the preparation of nanoporous block copolymer

membranes with adjustable surface chemistry is reported. The foundation of the concept

is the modular synthesis of amphiphilic block copolymers with a switchable linkage

between the individual blocks. After membrane formation, employing these kind of

block copolymers, the polar block on the surface of the membrane can be cleaved off

and new components with any desired functional group can subsequently be grafted

onto the surface.

In this context, the thermo switchable hetero Diels–Alder (HDA) chemistry was

used for the first time to prepare an amphiphilic block copolymer. Moreover, it was

accomplished to employ the HDA reaction for the grafting of water soluble polymers on

surfaces in defined patterns in µm scale. Furthermore, HDA and light induced ligation

chemistry was combined in a novel chain transfer agent (CTA), which enables the facile

preparation of triblock terpolymers within three steps.

The reversible addition-fragmentation chain transfer (RAFT) polymerization technique

was used for the preparaton of the building block polymers. A bromine functional RAFT

agent was employed for the copolymerization of isoprene and styrene, generating the

unpolar building block after substitution of the bromine with a cyclopentadiene (Cp)

moiety. A HDA capable RAFT agent was used to polymerize triethylene glycol methyl

ether acrylate (TEGA), hydroxyethyl acrylate (HEA) and acrylic acid (AA), yielding the

polar building blocks.

For the investigation of the thermal behavior of the HDA linkage between the RAFT

end group of the polar blocks and the Cp moiety of the unpolar block, a low molecular

weight (Mn = 16 000 gmol−1) poly(isoprene-co-styrene)-block-poly(triethylene glycol

methyl ether acrylate) (P(I-co-S)-b-PTEGA) diblock terpolymer was prepared and em-

ployed in detailed high temperature nuclear magnetic resonance (HT-NMR) spectroscopy,

high temperature size exclusion chromatography (HT-SEC) and high temperature dy-

namic light scattering (HT-DLS) analyses. Moreover, a high molecular weight (Mn =
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68 000 gmol−1) analogue of the P(I-co-S)-b-PTEGA diblock terpolymer was prepared and

subsequently subjected to a macroscopic cleavage experiment.

In order to further increase the variety of possiblemembranemodifications, a dual func-

tional RAFT agent, capable of highly efficient sequential thermal and photo induced liga-

tion, generating α,ω-functional polymers, was developed. AHDA reactionwith cyclopen-

tadiene can be used as protection of the reactive C=S-double bond. After photo ligation of

the α,ω-functional polymers with a second polymer block, the cyclopentadiene can be re-

moved at elevated temperatures and the HDA capable RAFT end group is accessible again.

Thus, the so generated block copolymers can be grafted onto a Cp-functionalized (mem-

brane) surface. To exemplarily demonstrate the versatility of the dual functional RAFT

agent, an amphiphilic triblock quaterpolymer poly(isoprene-co-styrene)-block-poly(ethyl

acrylate)-block-poly(ethylene oxide) (P(I-co-S)-b-PEA-b-PEO) was prepared.

Nanoporous membranes were generated from the high molecular weight P(I-co-S)-b-

PTEGA diblock terpolymer via the self-assembly and nonsolvent induced phase separa-

tion (SNIPS) process. The resulting membranes were very fragile and featured only small

pores. Thus, another diblock terpolymer with a smaller PTEGA block was synthesized

and subjected to membrane formation. In this way, thicker membranes with larger pores

could be generated.

Cleaving off the polar polymer from the surface of both generated membranes was

achieved by immersion in 50 ◦C hot water. Importantly, the morphology of the mem-

branes was not affected by the cleaving procedure. The kinetics of the reaction was

followed by NMR spectroscopy.

The ability of the generated polar polymer blocks (PTEGA, PHEA and PAA) to attach

to a cyclopentadienyl functional surface in aqueous media in a pore like environment was

tested by micromolding in capillaries (MIMIC) on silicon wafers. The successful covalent

functionalzation in the patterns of the applied stamps was confirmed via water contact

angle measurements, vapor deposition analysis, X-ray photoelectron spectroscopy (XPS),

atomic-force microscopy (AFM) and time-of-flight secondary ion mass spectrometry

(ToF-SIMS).
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1
Motivation and Aims

The access to clean water is of critical significance for every civilization. In industrialized

countries, porous filtration membranes play a key role in meeting the ever-increasing

demand for water.[1,2] Filtration membranes are utilized in urban water supplies to en-

sure viral clearance as well as in the pretreatment of seawater prior to desalination by

reverse osmosis.[3,4] Another increasingly established application is the use in bioreactors

for waste water treatment processes.[5] Besides the use in environmental applications,

membranes find use in many other fields, for example in biological processes such

as pharmaceutical separations, controlled release of therapeutic drugs or in biomedi-

cal engineering devices.[6] However, there are still challenges to overcome and future

applications to be developed. Membrane reactors (the use of membranes as catalyst

support) are one example of these future possibilities.[7] However, nonspecific adhesion

and deposition of solutes on the surface of the membrane (fouling) is an ever-present

problem for membrane processes.[8–10] Until now, the complete prevention of fouling has

not been achieved for any type of membrane.[11] Indeed, for each specific feed stream

encountering a membrane, the surface chemistry must be tailored accordingly.[12–14] The
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complexity of this matter is further demonstrated by studies showing that a moiety on

the surface of a membrane can reduce fouling for one feed stream, but reinforce it for

another.[15–17]

Stating the importance of tailored surface chemistry for filtration membranes, the

motivation and aim of the current thesis becomes clear. A novel concept for the prepa-

ration of recodable nanoporous block copolymer membranes via modular chemical

ligation is developed (see Figure 1.1). The fundamental concept of the strategy is the
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Figure 1.1 Concept for the preparation of nanoporous block copolymer membranes with feed
stream specific pore surface via modular ligation chemistry.

modular synthesis of an amphiphilic block copolymer with a cleavable linkage, i.e. the

reversible hetero Diels-Alder (HDA) reaction of a cyclopentadienyl (Cp) moiety with an

electron deficient C=S-double bond from a chain transfer agent (CTA).[18–20] The poly-

mer is employed in a self-assembly and nonsolvent induced phase separation (SNIPS)

procedure (see Section 2.2.1) to generate a nanoporous filtration membrane (membrane

type I). Subsequently, hot water (50 ◦C) is percolated through the membrane, inducing

the retro HDA reaction and cleaving off the hydrophilic polymer chains on the pore

surface. Thus, a prototype membrane with highly reactive Cp moieties on the surface
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is generated. Consequently, any kind of polymer or molecule containing a dienophile

(or even mixtures) can now be grafted onto the pore surface, generating a membrane

whose surface chemistry features are tailored to the feed stream employed when in use

(membrane type II). This method has the perspective to function as a new archetype for

the preparation of nanoporous block copolymer membranes with application prospects

in multiple areas.





2
Theoretical Background

The development of a modular strategy for the preparation of nanoporous block copoly-

mer membranes combines multiple topics of polymer chemistry. The current chapter

provides the theoretical background needed and describes the selection criteria for the

chosen methods.

2.1 Modern Radical Polymerization Techniques

The preparation of polymers with a specific molecular weight, a narrow distribution and

defined end groups is crucial for reaching the aims of the current thesis. According to

these requirements, anionic polymerization is the most powerful technique.[21] However,

anionic polymerization suffers from substantial restrictions such as a limited monomer

choice associated with the required demanding experimental conditions.[22] Within

the last decades, polymer chemists developed controlled radical polymerization (CRP)

techniques that benefit from fewer limitations regarding the monomer choice and

reaction conditions.[23] The International Union of Pure and Applied Chemistry (IUPAC)
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uses the term reversible-deactivation radical polymerization (RDRP) for these techniques.

In general, the control over the free radical polymerization (FRP) is gained by introducing

a fast reaction that reversibly traps the radicals in a dormant state, competitive to the

radical termination reactions (kt). It needs to be mentioned that radical termination

can never be completely suppressed, but in a contolled polymerization it is reduced to

a non-significant rate. A rapid exchange between dormant species and propagating

radical allows all polymer chains to grow simultaneously. A growing radical species

ideally reacts, within a few milliseconds, only with a few monomer units (depending on

the polymerization rate coefficient (kp)), before it is trapped again in the dormant state

for several seconds. The lifetime of growing chains during a polymerization is extended

from nearly a second (in FRP) to several hours. Moreover, the generated polymers can

be used for re-initiated chain growth in a subsequent polymerization. Besides these

living characteristics, the rapid exchange between dormant and active species results in

polymers with narrowly distributed molecular weight (typically a polydispersity index

(Đ ) below 1.5 is achieved) and high end group fidelity.

The most common CRP techniques, namely the nitroxide mediated polymerization

(NMP), atom transfer radical polymerization (ATRP), and reversible addition-fragmenta-

tion chain transfer (RAFT) polymerization, are described in more detail in the following

chapters.
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2.1.1 Nitroxide-Mediated Radical Polymerization

Although other attempts were reported previously in the patent literature,[24] the first suc-

cessfully conducted example of a CRP was reported by Georges in 1993.[25] Styrene was

polymerized in the presence of the stable free radical 2,2,6,6-tetramethyl-1-piperidynyl-

N -oxy (TEMPO), using benzoyl peroxide as initiator. A linear increase of molecular

weight with conversion and polydispersities below 1.3 were observed. The explanation

for this observation is the established equilibrium in NMPs (see Scheme 2.1). Nitroxide

O N
R

R
Pn O N

R

R
Pn

kda

ka

kp

kt

+

monomer

Scheme 2.1 Reaction equilibrium of the NMP process. Propagating radical chains are
reversibly trapped by combination with persistent nitroxide radicals, generating dormant
alkoxyamine species that are not affected by termination.

radicals react with the propagating chain radicals (Pn·) of the polymerization and gen-

erate a deactivated (dormant) alkoxyamine species. In order to suppress termination,

the equilibrium of this reaction needs to be shifted strongly to the side of the dormant

species. Therefore the deactivation rate coefficient (kda) needs to be significantly larger

than the activation rate coefficient (ka). As a result, the concentration of the growing

chain radicals is much smaller, compared to FRP. A termination reaction with two propa-

gating chains is less likely to occur and the fast exchange between dormant and growing

polymers induces the linear increase of molecular weight with conversion. Besides the

addition of a free nitroxide control agent to a conventional radical polymerization, NMP

can be induced via dissociation of a previously synthesized alkoxy amine as well. How-

ever, in order to effectively control the polymerization, the employed nitroxide radical has

to meet certain criteria. Most important, it should not initiate the growth of new polymer

chains nor react with itself. Moreover, the nitroxide radical should not induce any side re-

actions such as the abstraction of β-H atoms. The molecular structures of four commonly

used nitroxides in NMP are depicted in Figure 2.1. Initially, NMP required high tempera-

tures (up to 130 ◦C) and was limited to monomers that withstand the heat. Over time the
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Figure 2.1 Molecular structures of commonly used nitroxides for NMP.

development of nitroxides like 2,2,5-trimethyl-4-phenyl-3-azahexane-N -oxyl (TIPNO) or

4-(diethoxyphosphinyl)-2,2,5,5-tetramethyl-3-azahexane-N -oxyl (DEPN, also known as

SG-1) improved the selection of monomers and enabled polymerizations at more moder-

ate temperatures.[26–28] By lowering the bond dissociation energy of the alkoxyamine

with the introduction of significant steric bulky moieties to TEMPO derivatives such

as trans-2,6-diethyl-2,6-bis(1-trimethylsilanoxyethyl)-1-(1-phenylethoxy)piperidine-N -

oxyl (TEMPO-TMS), the temperature needed for a successful mediation could be reduced

to 70 ◦C.[29,30] Furthermore, NMP at ambient temperature was achieved via photo-induced

radical polymerization.[31,32] However, a major drawback of NMP is the long reaction

time compared to FRP, caused by the lower radical concentration.
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2.1.2 Atom Transfer Radical Polymerization

ATRP is based on a frequently used reaction in organic synthesis known as the atom

transfer radical addition (ATRA, see Scheme 2.2).[33] Organic halides (X) are transferred

X Mtm+1/Lz

XR

kdaka

kad

Mtm/Lz

R

Y

R

Y

R X

Y

Scheme 2.2 Mechanism of an ATRA reaction. L = ligand.

to transition metal (Mt) complexes, generating radicals (R·). After reacting with an

individual vinyl species the radical is terminated rapidly by back-transfer of the halide

from the transition metal complex. Although the possibility of a vinyl polymerization

was already stated in 1975 as a potential side reaction, it took 20 more years until Maty-

jaszewski and Sawamoto used this concept for CRP in 1995.[34,35] The key feature of ATRP

is similar to NMP, although achieved in a different manner. An equilibrium between

growing polymer chain radicals and reversibly halide (typically bromine) terminated

polymer chains (dormant species) is established by a transition metal mediated redox

system (see Scheme 2.3). Again, to achieve a good control over the polymerization,

X Mtm+1/LzPn XPn

kda

ka

kp

kt

+

monomer

Mtm/Lz+

Scheme 2.3 Reaction equilibrium of the ATRP process. Propagating radical chains are re-
versibly trapped by combination with a halide provided by a transitionmetal complex, generating
dormant polymer chains with a halide terminus that are not affected by termination.

the deactivation rate coefficient needs to be significantly larger than the activation

rate coefficient.[36] Therefore, the equilibrium has to be shifted strongly to the side of

dormant chains. Over time, many transition metals (Ti,[37] Mo,[38] Re,[39] Fe,[40] Ru,[35]

Os,[41] Rh,[42] Co,[43] Ni,[44] Pd[45]) were employed in ATRP. However, copper complexes
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proved to be most efficient and versatile.[46] To adjust the conditions for different types

of monomers, the initiator (an alkyl halide), ligands and solvent are chosen appropriately.

A major advantage compared to other CRP techniques was that since at the time of its

invention all necessary reagents were already commercially available. However for a

long time, ATRP also suffered from two major drawbacks, compared to the other CRP

techniques. It was much more sensitive towards oxidants, such as oxygen, and the

removal of employed transition metals from the produced polymers was sophisticated.

Modern modifications of ATRP such as the activator regenerated by electron transfer

(ARGET) alternative improved the control of polymerization and reduced the sensitivity

towards oxygen, as well as the amount of copper that is required, to a minimum.[47,48]

This is achieved by addition of an appropriate reducing agent that constantly regenerates

the oxidized catalyst species. Furthermore, an efficient and versatile method to remove

copper completely has been developed.[49] However, among other reasons presented in

the following section, ATRP was not employed in the current project because it cannot

provide good control for the polymerization of isoprene.[50] As explained in section 3.1,

isoprene is an important component for the hydrophobic polymer block.
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2.1.3 Reversible Addition-Fragmentation Chain Transfer

Polymerization

In 1998, researchers of the Commonwealth Scientific and Industrial Research Organiza-

tion (CSIRO) in Australia invented the RAFT polymerization.[51] They reported that FRP

can be controlled by the addition of dithioesters. At the same time a similar method was

developed by a French research group, using xanthates as control agents (MADIX).[52]

However, the RAFT concept is more general, includes xanthates in a broader sense and

is based on dithioester compounds - so called RAFT agents (see Figure 2.2). In general,

the moiety of the RAFT-agent which is bonded to the carbon of the C=S-double bond is

called Z-group (-OR for xanthates). The moiety which is connected with the sulfur of

the dithioester is termed R-group. Purpose and influence of these groups on the RAFT

process and employed structures are discussed later in this section.

SS

Z

R

Figure 2.2 General structure of a RAFT agent.

The control of the polymerization is based on the establishment of an equilibrium

between active and dormant species obtained by reversible transfer reactions (see Scheme

2.4). In the pre-equilibrium phase at the beginning of the polymerization, polymer chain

radicals add to the sulfur of the C=S-double bond of the dithioester of the RAFT agent

and form an intermediate radical. Now two options are available for the intermediate

radical to fragment. Either the addition is reversed, or the R-group of the RAFT agent

is expelled via β-scission, generating a macro RAFT agent. For a well controlled RAFT

polymerization the β-scission rate coefficient (kβ) is larger than the fragmentation rate

coefficient (kfrag). Thus, the R-group should be a better leaving group than the attached

polymer chain. Moreover, the expelled R-group radical has to be able to re-initiate

polymer chain growth. For an efficient fragmentation and re-initiation, the radical

formed after β-scission of the R-group should be slightly more stable than the radical

of the growing polymer chain. Otherwise the polymerization will either be inhibited

(i.e. R-group radical to stable to re-initiate) or the polymerization does not proceed in a
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Scheme 2.4 General mechanism of the RAFT process. The transfer reactions in the pre-
equilibrium and the main-equilibrium phase of the polymerization compete with the termination
reactions.

controlled manner (no β-scission fragmentation takes place, polymer chain radicals are

not transformed to dormant state). However, often the initial inhibition is overcome after

a while, when all RAFT agents have their R-group substituted by a polymer chain and

there is still sufficient initiator left in the polymerization mixture.[53] A series of R-groups

with different leaving abilities is depicted in Figure 2.3. After a certain time, all RAFT

CN

CN

O

O

O

O

~ > >> ~ > ~ >

Figure 2.3 Series of R-groups in order of leaving ability.

agents in the polymerization mixture carry polymer chains instead of the initial R-group

and the main-equilibrium is established. Now, after addition of a polymer chain radical

to a macro RAFT agent, the formed intermediate radical expels the two attached polymer

chains with equal probability. All polymer chains with a RAFT agent end group can be

considered as dormant species. For every growing chain that is trapped, another polymer

chain radical is released. For a well controlled RAFT polymerization the concentration

of growing chain radicals is equal to FRP conditions. This is a major advantage of RAFT
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compared to the CRP techniques described before. Moreover the technique is applicable

to a wide range of monomers. The vast majority of the generated polymers carries the

dithioester moiety at α- and the R-group at ω-position. Termination is not suppressed by

a low radical concentration, but by the implementation of the transfer reaction, or rather

the addition to the (macro) RAFT agent, which is a several magnitudes faster competing

reaction. The addition rate coefficient (kadd) strongly depends on the Z-group and has

to be adjusted respectively to the selected monomer.[54] Fast propagating monomers,

such as vinyl esters, require weakly stabilizing Z-groups such as O-alkyl in xanthates.

The use of strong stabilizing groups, like phenyl (Ph), inhibits the polymerization of

these type of monomers. In contrast, slow propagating monomers such as styrene or

methacrylates demand a good stabilization of the intermediate radical, otherwise the

addition rate coefficient is not sufficient large to compete with the termination reaction.

A series of common Z-groups with different stabilization abilities is shown Figure 2.4.

Me S NN O O~>> ~ > >N O>> >>

Figure 2.4 Series of Z-groups in order of stabilizing ability.

Besides inhibition and loss of control, the phenomena of retardation can be observed

for ill chosen RAFT agent/monomer combinations, especially at high CTA concentra-

tions. As an example, significant retardation occurs at the polymerization of acrylates

with dithiobenzoate esters, but not when dithioacetates or other alkyl dithioesters are

employed as transfer agent.[55,56] The origins of this effect were debated intensively and

are still point of ongoing discussion.[57–60] In principle, two hypotheses (based on simu-

lation results) are discussed how a lower total macroradical concentration can originate

and thus, induce a retardation. One of them is the slow fragmentation hypothesis which

relates to the observation that a too low fragmentation rate of the RAFT intermediate

radical leads to an accumulation of this species and, hence, to a rate retardation.[61]

The intermediate radical termination hypothesis states that such a rate retardation can

also be obtained by a higher fragmentation rate of the RAFT intermediate radical in
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combination with cross-termination events, resulting in the formation of (multi-arm)

dead species and thus lowering the total macroradical concentration.[62] Both hypotheses

have been tested for the relevant RAFT polymerization systems with a broad range of

analytical methods, including mass spectrometry,[63,64] size exclusion chromatography

(SEC),[65] nuclear magnetic resonance (NMR)[66,67] and electron paramagnetic resonance

(EPR) spectroscopy.[60,68–71] Yet, existing discrepancies prevent a clear confirmation of

one of the theories. For instance, although certain experimental studies[57,63] indicated

that the cross-termination should be a valiable reaction pathway, the expected amount

of dead multi-arm species is not observed in the obtained material of retarded RAFT

polymerizations. On the other side, the combination of EPR with spin trapping has

indicated that the lifetime of the RAFT intermediate radical species can be long while

the concentration of intermediate radicals measured by EPR is overestimated upon

consideration of slow RAFT fragmentation.[72,73]

To overcome this issue, several modified theories[74–76] were put forward, including

modeling efforts in which only small radical species are involved in the cross-termination

of the RAFT intermediate radical,[77–79] which was supported by experimental measure-

ments of Ting et al.[80] However, thioketone mediated polymerization was utilized by

Junkers et al. to demonstrate the viability of long living RAFT intermediate radicals even

if cross-termination events are observed.[81] Moreover, Junkers and Barner-Kowollik

highlighted the possible occurence of cross-propagation events that should be consid-

ered.[82] Furthermore, ab initio calculations were performed by Coote et al., indicating a

slow fragmentation for dithiobenzoate systems,[83,84] which is contrary to the findings

of Meiser et al. by EPR-based kinetic modeling.[74,75] However, Junkers et al. noted in

later studies that EPR data should be interpreted with care,[85] which is consistent with

the report that the discrepancy between ab initio calculations and experimental data

could be smaller than initially thought.[86]

RAFT agents with stability switchable Z-groups have been developed with the in-

tention to create an universal RAFT agent for fast and slow propagating monomers.[87]

However, block copolymers via sequential polymerization can only be prepared when

the slower propagating monomer (with more stable chain radicals) is polymerized first.
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An inverse order would not lead to block copolymers, because the formed intermediate

radical of the macro RAFT agents would always expel the more stable radical. Thus, the

polymer chains from the first polymerization with the less stable radicals would not be

able to re-initiate a polymerization.

The number average molar mass (Mn) of the generated polymers can be adjusted

and calculated by the ratio of RAFT agent to monomer and the conversion of the

polymerization (see Equation 2.1).[88]

Mn = conversion · nmonomer

nCTA
·Mmonomer +MCTA (2.1)

Limitations for high molecular weights are reached when the concentration of CTA

becomes so low that the transfer process cannot compete with the termination reaction

any more and FRP prevails. Comparison of the calculatedMn with experimental data

can indicate if a polymerization proceeds in a controlled fashion. Proof of control is

achieved when, in addition to consistent values of calculated and experimentalMn, a

linear evolution of Mn over the conversion is observed.

With the prospect of possible industrial application of the developed concept, RAFT

was found to be the most suitable CRP technique, due to the wide range of accessible

monomers, the rapid polymerization times and the convenient reaction conditions. An

additional advantage in relation to ligation of polymers is described in Section 2.3.
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2.2 Amphiphilic Block Copolymers

Amphiphilic block copolymers consist of at least one hydrophobic and one hydrophilic

block. Two general approaches are possible for the preparation of linked polymer blocks.

In the modular approach, pre-synthesized polymer building blocks are conjugated via ef-

ficient ligation techniques. A collection of conjugation methods employed in literature is

presented in Section 2.3. In the second approach, polymerization techniques with living

characteristics are used to polymerize several monomers sequentially. However, the

choice of monomers in the sequential approach is (in general) limited by their reactivity.

A chain extension is only possible when the precursor polymer is able to efficiently

initiate a polymerization with the subsequently employed monomer. As an example,

the preparation of a styrene and vinyl acetate block copolymer by using common RAFT

agents is not possible.[89] In comparison, the modular approach does not feature such

limitations. Thus, the range of monomer combinations and possible architectures is

higher.

Regardless of the preparation approach, the different nature in polarity of the chosen

monomer (or polymer) combination (which is essential to create amphiphilicity) can be

problematic because of the solubility. For a successful block addition all components

need to be in solution. Hence, the difference in polarity of the building blocks is limited.

However, some strategies were developed to prepare block copolymers with components

that are usually not soluble in the same solvent. One example is the successive aqueous

solution and aqueous emulsion RAFT polymerization. Charleux et al. employed it for the

preparation of poly(methacrylic acid-co-poly(ethylene oxide) methyl ethermethacrylate)-

block-polystyrene diblock terpolymers (see Scheme 2.5).[90] Both polymerizations can

be performed in one-pot, isolation and purification of the first block is not necessary,

making it a very feasible method for preparation of amphiphilic block copolymers.
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Scheme 2.5 Schematic representation of the one-pot synthesis of poly(methacrylic
acid-co-poly(ethylene oxide) methyl ether methacrylate)-block-polystyrene, P(MAA-
co-PEOMA)-b-PS, copolymers via successive aqueous solution and emulsion polymerizations.
Reprinted with permission from [90]. Copyright 2011 American Chemical Society.

Another option is the use of host-guest complexation with cyclodextrin (CD) to make

hydrophobic components water soluble.[91] The CD has a hydrophilic outer shell and

a hydrophobic inner cavity that can enclose other hydrophobic moieties and thereby

change their solubility. However, the approach is limited to hydrophobic monomers

that are suitable guests for CDs. Moreover, Ritter and barner-Kowollik showed that

due to the steric hindrance caused by the inclusion complex, the molecular weigt of the

hydrophobic blocks that can be achieved is limited.[92] An additional method to generate

block copolymers with a high amphiphilicity is to modify the polarity of a building block

after the block copolymer formation.[93]

In general, an array of different architectures can be realized for (amphiphilic) block

copolymers (see Figure 2.5). Linear AB, ABA, ABC, different star shaped or brush-like

polymers represent only some examples.
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linear AB linear ABA linear ABC

star I star II brush

Figure 2.5 Examples for possible block copolymer architectures. The colors white, gray and
black represent moieties with different polarities.

A characteristic property of all (amphiphilic) block copolymers is the tendency to self

assemble in supramolecular structures. The reason for this behavior is the propensity

of unlike polymers to separate in individual phases. However, the linkage between the

segments prevents a macroscopic phase separation. Thus, block copolymers undergo

microphase separation on the length scale of the constituting building blocks, creat-

ing supramolecular structures.[94,95] As the simplest representative, linear AB diblock

copolymers have been studied extensively. It was found that in bulk the materials

form spherical (S), cylindrical (C), gyroid (G), or lamellar (L) nanostructures, depending

on the volume fraction of the blocks (see Figure 2.6). Block copolymers with a more

Figure 2.6 Diblock copolymer morphologies accepted to represent the equilibrium ordered
states. Morphologies are shown in increasing red-block (decreasing blue) composition of a red-
blue diblock copolymer. (S) Spheres, (C) hexagonally packed cylinders, (G) gyroid, (L) lamellae.
Reprinted from [96] with permission from Elsevier.
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complex architecture can form even more sophisticated nanostructures. Already only

linear ABC triblock terploymers can form a myriad of structures.[97,98] For example,

Abetz et al. demonstrated by transmission electron microtomography analysis that

polystyrene-block-polybutadiene-block-poly(methyl methacrylate) (PS-b-PB-b-PMMA)

triblock terpolymers can form double helical structures, arrayed in a honeycomb board

perpendicular to the film plane (see Figure 2.7).[99] External stimuli, like an electric field,

Figure 2.7 TEMmicrographs of the SBM triblock terpolymer. OsO4-stained PB microdomains
appear in black. Two representative morphologies of the SBM terpolymer are shown in parts (a)
and (b). As schematically shown in the inset of part (b), the PS cylinders with the PB helical
microdomains are hexagonally packed in the PMMA matrix. 3D structures of the double helical
structures are displayed on top of the TEM image in part (a). Left-handed and right-handed
double helical structures were found and are shown by blue–red and green–yellow helices,
respectively. The spatial arrangements of the left- and right-handed helices are also shown in
part (b) by blue and yellow circles, respectively. Structural dimensions, e.g., the helical pitch,
d, diameter of the helix, D, etc., are demonstrated in the inset of (a). Reprinted from [99] with
permission from Royal Society of Chemistry.

can guide the orientation of the nanostrucures in a macroscopic dimension.[100]

In aqueous solution, amphiphilic block copolymers can form various kinds of ag-

gregates in order to achieve a state of minimum free energy (see Figure 2.8). At a low

concentration, the polymer chains exist as unimers. When a certain concentration of

polymer is exceeded (termed the critical micelle concentration, CMC), several unimers

will aggregate into colloidal sized particles (10 - 100 nm) called micelles.[101] The hy-

drophilic part of the amphiphiles forms a corona while the hydrophobic part in the
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micelle unimers

nanosphere

nanocapsulepolymersome

Figure 2.8 Aggregates formed by amphiphilic block copolymers in water. The black and dark
gray color imply a hydrophobic character of the polymer chain/material, the light gray implies
a hydrophilic character.

center is effectively protected from unfavorable interactions with the surrounding water

molecules. Micelles are in a dynamic equilibrium with unimers in solution and should

not be considered as solid particles.[102,103] However, due to the interactions between

the chains in the hydrophobic core, in some cases micelles can persist even when the

polymer concentration falls below the CMC, at least for some period of time.[104]

When phase separated structures with a solid core are formed, the term nanosphere

is used.[105] The solid core of the nanosphere can be generated in different ways. Either

another compound is chemically bound or adsorbed to the constituting polymer matrix,

or the hydrophobic polymer block itself has a considerable high molecular weight and

is the major component of the amphiphile.[106–109] Although the size of nanospheres
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is typically larger than the size of micelles (100 - 200 nm), for block copolymer based

nanoparticles a clear distinction between both forms is not always possible.[101]

Polymersomes and nanocapsules are vesicular systems in which a liquid reservoir is

surrounded by a polymer membrane or coating (see Figure 2.8).[107] In case of nanocap-

sules, a core of hydrophobic liquid is surrounded by a single layer of polymer, whereby

the hydrophilic part of the amphiphile forms the corona of the vesicle.[110] Typically the

size ranges between 100 and 300 nm. If the core of the particle is water and the surround-

ing coating consists of a polymer bilayer, the vesicle is referred to as a polymersome

(analog to liposomes).[111] The size of polymersomes can vary between 5 nm and 5 µm.

The self assembling nature of amphiphilic block copolymers in bulk and in solution

is the basis for the broad range of possible application areas, e.g. in drug delivery sys-

tems,[112,113] separation and filtration systems[114] and electronic materials.[115] Especially

in lithography applications, the selective removal of one of the polymer blocks (after

nanostructuring) is often required.[116] Thus, several strategies have been developed, e.g.

chemical etching[117], ozonolysis,[118] or degradation via UV radiation.[119] An example for

the utilization of such removal strategies is the preparation of nanoporous SiO2 gyroid

structures reported by the group of Thomas (see Figure 2.9).[120] First, a polystyrene-

Figure 2.9 Schematic illustration for the creation of well-defined nanoporous gyroid SiO2

from block copolymer templating. (a) PS-PLLA gyroid morphology (skeleton of double gyroid
structure with two identical networks (green and red)). (b) Gyroid-forming nanoporous PS
template after the removal of minority PLLA network. (c) PS/SiO2 gyroid nanohybrids via the
templated sol-gel process. (d) Nanoporous gyroid SiO2 after the UV removal of PS template.
Reprinted with permission from [120]. Copyright 2010 American Chemical Society.

block-poly(L-lactide) (PS-b-PLLA) block copolymer was used in a self-assembly process

to generate a gyroid structured film. Subsequently, the PLLA block was removed via

hydrolysis, obtaining a PS gyroid template. Then, the template was utilized in a sol-gel
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process to prepare a SiO2 gyroid network. In the end, the PS template was removed by

UV radiation.

However, either the method is limited to specific materials or relatively harsh reaction

conditions are required. The introduction of an efficiently cleavable junction between

the polymer blocks and the use of distinct differences in solubility (in case of amphiphilic

block copolymers) can remove such limitations and alleviate the required conditions.

Russell et al. synthesized a polystyrene-block-poly(ethylene oxide) (PS-b-PEO) block

copolymer with a triphenylmethyl (trityl) ether linkage, which can readily be cleaved

under acidic conditions, between the individual polymer blocks (see Figure 2.10 (a)).[121]

The block copolymer was used to generate thin films with highly ordered PEO cylinders

Figure 2.10 a) Chemical structure of cleavable PS-b-PEO (the dash line shows the point where
scission occurs); b) Scanning force microscopy (SFM) phase image (2 lm×2 lm) of PS-b-PEO thin
film (ca. 25 nm) containing KI (O/K = 64) on silicon wafer after solvent-annealing for 48 h. The
inset shows the corresponding Fourier transform. Reprinted from [121] with permission from
John Wiley and Sons.

(see Figure 2.10 (b)). Subsequently, the PEO block was removed by exposure of the thin
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film to TFA vapor and washing with methanol, yielding highly ordered nanoporous thin

films.

Another facile method for the preparation of highly orderen nanoporous thin films via

amphliphilic block copolymers was demonstrated by Theato et al (see Figure 2.11).[122]

This time the linkage of the synthesized PS-b-PEO block copolymer contained a photo-

cleavable moiety. After thin film annealing simply followed a very mild UV exposure

Figure 2.11 Photolysis of PS-b-PEO in solution (top). Schematic representation of the self-
assembly of photocleavable block copolymers and the subsequent removal of one domain
after UV irradiation (bottom). Adapted with permission from [122]. Copyright 2011 American
Chemical Society.

and successive washing with water, to generate the nanoporours PS films.

In this context and in course of the current thesis, a temperature triggered linkage, as

presented in Section 3.3, was added to the list of covalent but reversible conjugations of

amphiphilic block copolymers. The conjunction is stable at ambient temperature, while

elevated temperatures (starting above 45 ◦C) induce a shift of the reaction equilibrium

towards the initial building blocks.
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2.2.1 Self Assembly and Nonsolvent Induced Phase Separation

Process

For the preparation of block copolymer based nano structured membranes, the self as-

sembly and nonsolvent induced phase separation (SNIPS) process proved to be the most

successful methodology.[123–125] The fabrication protocol expands the often used mem-

brane fabrication procedure of NIPS with the thermodynamically driven self assembly

of block copolymers in solution. The first reported and most often used block copoly-

mer system is poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP).[125] Meanwhile,

many other polymer systems were introduced such as poly(isoprene)-block-poly(sty-

rene)-block-poly(4-vinylpyridine) (PI-b-PS-b-P4VP),[126,127] poly(styrene)-block-poly(2-

vinylpyridine)-block-poly(ethylene oxide) (PS-b-P2VP-b-PEO),[128] PS-b-PEO,[129] PS-b-

P2VP,[130] poly(styrene-co-isoprene)-block-poly(N,N -dimethylaminoethyl methacrylate)

(P(I-co-S)-b-PDMAEMA),[131] poly(tert-butylsytrene)-block-poly(4-vinylpyridine),[132]

and poly(trimethylsilylstyrene)-block-poly(4-vinylpyridine),[132] all in binary or ternary

solvent mixtures containing DMF, dioxane or THF. Figure 2.12 illustrates the general

procedure of the SNIPS process. First of all, the block copolymer is dissolved in an

organic solvent (or solvent mixture) which is miscible with water. The concentration

of polymer in solution typically ranges between 15 wt% and 20 wt%. The solution is

cast into a thin film on a substrate with a smooth surface (e.g. a polished glass plate).

Although any casting technique could be used, such as drop casting or dip coating,

the application of an doctor blade is most common. The reason for the success of this

technique is probably due to the fact that it is facile to reproduce and to upscale. After

the film casting, the solvent is allowed to evaporate for a predetermined time (usually

between 10 s and 2 min, depending on the employed solvent and polymer system). The

evaporation of the solvent creates an increase in polymer concentration at the interface

of air and solution. As a result, the block copolymers self assemble in the top layer of the

solution.[130,133] After the self assembly time, the substrate with the partially evaporated

film on top is immersed into a nonsolvent bath, which is typically water. The polymer

precipitates in a membrane micro structure with its hydrophilic blocks at the surface.
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Figure 2.12 Schematic of the SNIPS process. A An amphiphilic block copolymer solution
is drawn into a thin film by using a doctor blade (or another simple casting technique) on a
plain substrate (e.g a polished glass plate). B The solvent is allowed to evaporate in a controlled
manner for a predetermined time. At the interface of air and liquid the locally high concentration
of block copolymers induces nano structuring by self assembly (self assembly time). C The
substrate, with the thin film on top, is immersed in a nonsolvent bath (typically water). The
polymer precipitates and the nano structure is kinetically trapped. An asymmetric membrane
with a fine porous layer on top and a gutter layer beneath it is generated.

Due to the locally elevated concentration and previous self assembling, the top layer is

fine porous and highly selective. Since the lower part of the thin film contains polymer

at approximately the same concentration as that of the original solution, this portion of

the film precipitates in nonordered structures with large pores, similar to that seen in the

usual NIPS procedure.[123,125] Thus, an asymmetric membrane is generated combining

the high throughput of a thin selective layer with the mechanical stability of a thick

support/gutter layer. As an example, SEM images of three asymmetric membranes

prepared from P(I-co-S)-b-PDMAEMA via the SNIPS process are depicted in Figure 2.13.

The only difference in the applied process conditions for the individual membranes was

the varied self assemble time with 15 s (A, B) 30 s (C, D) and 45 s (E, F). Besides the

self assemble time, the employed solvents, the employed nonsolvent for precipitation
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and the polymer concentration, the morphology of the generated membranes is also

influenced by the rel. humidity, the temperature and the height of the casted film.

Figure 2.13 SEM images of membranes prepared via SNIPS processes from
P(I-co-S)-b-PDMAEMA. Images A, C, E show top views and B, D, F cross sectional
views of membranes prepared with self assemble times of 15 s (A, B) 30 s (C, D) and 45 s (E, F).
Reprinted from [131] with permission from WILEY.
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2.3 Modular Polymer Ligation Techniques

For a successful polymer conjugation, the employed reaction typically needs to be highly

efficient. In 2001, Sharpless introduced the term click chemistry and defined the criteria

a reaction needs to fulfill to be rightfully called a click reaction:

”The reaction must be modular, wide in scope, give very high yields, generate only

inoffensive byproducts that can be removed by nonchromatographic methods, and be

stereospecific (but not necessarily enantioselective). The required process characteristics

include simple reaction conditions (ideally, the process should be insensitive to oxygen and

water), readily available starting materials and reagents, the use of no solvent or a solvent

that is benign (such as water) or easily removed, and simple product isolation. Purification —

if required —must be by nonchromatographic methods, such as crystallization or distillation,

and the product must be stable under physiological conditions. […] Click processes proceed

rapidly to completion and also tend to be highly selective for a single product: we think of

these reactions as being ‘spring-loaded’ for a single trajectory”.[134]

Although Sharpless intended mainly to influence the synthesis of biologically active

molecules, the click concept had a much greater impact in polymer chemistry and ma-

terial science.[135] The reason for this is that the efficiency, combined with the lack of

side products and facile purification, proved to be a strong practical value for polymer

chemists. Only a few methods, such as precipitation, can be used to purify a polymer.

Especially the removal on unreacted polymer material is often impossible. Thus, the

modular click concept enabled the design an synthesis of complex macromolecular ar-

chitectures that would not have been achievable otherwise.[136] However, the undeniable

success also lead to a misuse of the term click.[137] Successful conjugations with polymers

were called click reactions, although the reactions often did not fulfill all the criteria, e.g.

they did not proceed in short time or required tedious purification procedures.

In the following, a selection of conjugation methods is given that were successfully

employed to generate irreversible and reversible linkages in polymer chemistry. Some

fulfill the click criteria, some do not and for others it depends on the reaction conditions.
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Since it was the method of choice, the (hetero)-Diels–Alder reaction is discussed in more

detail in a separate subsection (Section 2.3.3).

2.3.1 Irreversible Linkages

2.3.1.1 Azide-Alkyne Cycloaddition

The most prominent click reaction is the cooper(I)-catalized azide-alkine cycloaddition

(CuAAC).[138] Although the Huisgen 1,3-dipolar cycloaddition was reported 35 years

before,[139] it was not until Sharpless introduced the copper(I) catalyzed version in 2002

that this reaction became increasingly relevant for polymer chemistry and material

science.[140] Due to the mild reaction conditions, quantitative yields and tolerance to-

wards a wide range of solvents, it found application in various fields, such as drug

discovery, chemical biology and materials design.[141–146] However, the copper catalyst

leads to several problems, including denaturation of proteins, cytotoxicity and reduction

of the quantum yield of quantum dots.[147–149] Consequently, researchers were looking

for strategies to avoid copper. Bertozzi developed the strain-promoted azide-alkine cy-

cloaddition (SPAAC), where the (typically terminal) alkine is replaced with a cyclooctyne

derivative.[150] The intramolecular strain of the 8-membered ring lets the cyclooctyne

react readily with an azide without the need of a metal catalyst, reaching high yields at

ambient temperature.[151–153] A selection of frequently used cyclooctyne derivatives in

order of their reactivity towards azides is depicted in Figure 2.14. The SPAAC reaction
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Figure 2.14 Chemical structures of cyclooctyne derivatives frequently used in SPAAC in order
of their reactivity towards azides.

kinetics of cyclooctyne and fluorinated cyclooctyne are slower than the CuAAC. Diflu-

orinated cyclooctyne (DIFO) however, shows an equal reactivity towards azides as in
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CuAAC under the same conditions.[151] The dibenzocyclooctyne (DIBO) features approx-

imately the same reaction rate as DIFO.[153] By replacing a carbon atom of the ring with a

nitrogen, the reaction kinetics could be improved even further (aza-dibenzocyclooctyne,

ADIBO).[154,155] However, cyclooctynes are expensive and difficult to synthesize. Thus,

in some cases it is a better option to perform the CuAAC and subsequently remove the

copper (if necessary) completely via electrolysis.[49]

2.3.1.2 Thiol-Ene Reaction

The thiol-ene reaction is the most common thiol based conjugation method. The reaction

may proceed via two distinct pathways (see Scheme 2.6).[156,157] Either radical mediated
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Scheme 2.6 General scheme for thiol-ene reactions with examples for suitable enes, corre-
sponding to a radical or nucleophilic addition based conjugation.

or via a nucleophilic (Michael-type) addition.[158] The choice of the utilized ene is largely

responsible for the favored reaction path and thus the reaction conditions that should be

applied.[159] At this point it is important to note that whenever the radical based thiol-ene

reaction is shown to perform very well, at least one of the components (typically the thiol)

is a small molecule and used in excess. Barner-Kowollik and Du Prez demonstrated that

the radical based thiol-ene reaction is not able to conduct an efficient polymer-polymer

conjugation.[160] Besides alkenes, thiols are known to react readily with other functional

groups, including terminal alkynes (thiol-yne),[161] organic bromides (thio-bromo),[162]
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isocyanates (thio-isocyante)[163] and pentafluorostyrene groups.[164] Thus, thiol based

reactions are not very selective and susceptible to side reactions.

2.3.1.3 Nitrile Imine Mediated Tetrazole-Ene Coupling (NITEC)

In 1967 Huisgen and coworkers found that under radiation with UV light 2,5-tetrazoles

undergo a cycloreversion to form molecular nitrogen and a 1,3-dipole, which can react

in a pericyclic reaction with suitable dipolarophiles, including many double bonds (see

Scheme 2.7).[165] The resulting product exhibits fluorescence properties. Hence, it is
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Scheme 2.7 General scheme of a NITEC reaction. EWG = electron withdrawing group; Ar, Ar’
= general aromatic substituents.

possible to follow the conversion of the reaction via fluorescence spectroscopy. The

aromatic substituents of the tetrazole determine the wavelength of radiation that needs

to be applied to promote the reaction. Paul Lederhose et al. developed an aromatic

system which allows the reaction to proceed by application of visible light (410 - 420 nm)

and used it for block copolymer formation.[166] NITEC is a robust conjugation method

and neither sensitive towards oxygen, nor to water. Thus, it is applicable in biological

systems.[167]
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2.3.2 Reversible Linkages

2.3.2.1 Hydrogen Bonding

Hydrogen bonding is one of the most commonly employed supramolecular conjugation

methods.[168,169] It is based on the interaction between hydrogen bond donors (D) and

acceptors (A). Donor motifs are typically positive polarized hydrogen atoms that are

covalently bound to electronegative hetero atoms, such as nitrogen and oxygen. Corre-

spondingly, the acceptor motifs are negative polarized hetero atoms (again, typically

nitrogen and oxygen) with a lone pair of electrons. Prominent examples of hydrogen

bonding structures are ureidopyrimidinone (A-A-D-D arrangement), the thymine/di-

aminopyridine system (A-D-A/D-A-D arrangement) and the Hamilton-wedge/cyanuric

acid system (D-A-D-D-A-D/A-D-A-A-D-A arrangement)(see Figure 2.15). While the
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Figure 2.15 A Selection of hydrogen bonding structures, the hydrogen donor motifs are
coloredin red and the acceptors in green. A ureidopyrimidinone dimer (A-A-D-D). B thymine/di-
aminopyridine system (A-D-A/D-A-D). C Hamilton-wedge/cyanuric acid system (D-A-D-D-A-
D/A-D-A-A-D-A).

donor/acceptor arrangement of ureidopyrimidinone is forming dimers, the thymine/di-

aminopyridine system and the Hamilton-wedge/cyanuric acid system specifically con-

nect with their counterpart. Furthermore,the systems are orthogonal to each other.[170]

The strength of the linkage strongly depends on the number of hydrogen donor/acceptor

pairs. However, by addition of a polar protic solvent (e.g. methanol) or by increasing

the temperature, the conjugation can readily be cleaved.[171]



32 2 Theoretical Background

2.3.2.2 Metal Coordination

The use of metal complexes for polymer chemistry has been exploited extensively due

to the additional functional properties that can be imparted to polymers, such as con-

ductivity, catalysis, light emission, and gas binding.[172–174] The strength of the linkage is

depending on the choice of metal (its oxidation state), ligand and solvent.[175] The prepa-

ration of AB diblock copolymers, without the formation of AA and BB homopolymers

as side product, can be realized via subsequent coordination procedures.[176] Scheme 2.8

shows an example employing terpyridine functionalized polymers and Ruthenium. The
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Scheme 2.8 Strategy for the preparation of AB diblock copolymers via subsequent metal
complex coordination.

first polymer block is treated with Ru(III)Cl3, which results exclusively in the formation

of a monocomplex. Subsequently, the RuIII ions are reduced to RuII ions and the second,

terpyridine terminated polymer block is added, resulting in the formation of AB diblock

copolymers.

2.3.2.3 Inclusion Complexes

An inclusion complex is formed when a ”host” compound has a cavity in which a second

(”guest”) compound is located. The linkage between host and guest is based on van

der Waals’ interaction. In polymer science, cyclodextrins (CDs) are the best-known
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representatives of hosts.[177] They can form inclusion complexes with hydrophobic guest

molecules primarily in aqueous solution and found applications in various areas, such as

nano structures,[178] drug delivery,[179] self healingmaterials[180] or bioactivematerials.[181]

Over time, several guests were developed that are released from the cavity of the CD by

application of an external stimuli such as temperature, light or voltage.[182,183]

2.3.3 (Hetero) Diels–Alder Reactions

TheDiels–Alder (DA) reaction was first described in 1928 and corresponds to a pericyclic

[4+2] cycloaddition between dienes and alkenes or their hetero atom analogues (in this

context called ”dienophiles”).[184–186] It belongs to the most widely used reactions in

organic synthesis and was honored with the Nobel prize in 1950.[187–189] The driving

force of the reaction is that two of the π-bonds are transformed into two, energetically

more favorable, σ-bonds, resulting in unsaturated six-membered rings as conjugation

product (see Figure 2.16 A).[185,190] In order to explain why some diene/dienophile pairs

react readily, while others require high temperatures or do not react at all, the empiric

frontier molecule orbital (FMO) theory was developed. In this theory, only the FMO, i.e.

the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular

orbital (LUMO) are considered. For a successful reaction, the two overlapping molecular

orbitals (MO), which form the new σ-bonds between the corresponding c-atoms, need

to be in phase. For thermally allowed pericyclic reactions (such as the DA reaction is,

following the Woodward–Hoffmann rules),[191] the bond formation proceeds suprafacial

(on the same plane of the molecule). Thus, the HOMO of dienes and the LUMO of

dienophiles (or vice versa) are overlapping for the σ-bond formation (see Figure 2.16

B).[186,192] Therefore, efficient DA reactions require a small HOMO-LUMO gap. That

is the case for the combination of electron poor dienophiles and electron rich dienes,

(normal electron demand) or electron rich dienophiles and electron poor dienes (inverse

electron demand)(see Figure 2.16 C).[185] However, DA reactions with normal electron

demand are more common.
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Figure 2.16 A Formal scheme of a pericyclic [4+2] cycloaddition of a diene with a dienophile
resulting in an unsaturated six-membered ring. B MO diagram of the π-system from the
diene (left side) and the dienophile (right side). C FMO interactions in DA reactions with
normal electron demand (left side) and inverse electron demand (right side). EWG = electron
withdrawing group, EDG = electron donating group.

The concerted mechanism of the cycloaddition leads to a high stereospecifity, i.e. the

stereochemical information of the starting materials is transferred into the product.

However, in DA reactions that are able to form two diastereomers, both products are

formed (see as example the reaction of cyclopentadiene and maleic anhydride in Scheme

2.9).[186,192] Theendo adduct (representing the kinetic produkt) is often, but not always, the
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Scheme 2.9 DA reaction of cyclopentadiene and maleic anhydride with the resulting exo and
endo products.

major product. Bulky substituents can give direction to the generation of the sterically

and thermodynamically favored exo product.[185,193] This observation is often explained

with secondary orbital interactions but solvent effects, steric interactions, hydrogen
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bonds, electrostatic forces, and other effects can be argued as well.[194] For polymer

conjugations stereo- and diastereospecific control are irrelevant. Nevertheless, chiral

auxiliaries can be employed to enable enantioselective reaction control.[195]

Thermally allowed cycloadditions, including DA, are able to perform a cycloreversion

at elevated temperatures.[185] The retro Diels–Alder (rDA) temperature depends on

the employed reactants. Although the bonding/debonding on demand via DA/rDA

found applications in various fields, such as adaptable networks, protecting groups or

macromolecular architectures, only a few DA systems are known that can be cycled in a

reasonable temperature range (i.e. below the materials degradation temperature).[196]

The most commonly used DA system for bonding/debonding on demand is the pairing

of furan and maleimide moieties (see Scheme 2.10). A typical forward reaction proceeds
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Scheme 2.10 DA reaction of cyclopentadiene and maleic anhydride with the resulting exo
and endo products.

within hours at 60 ◦C to 80 ◦C or up to several days at ambient temperature. The rDA

reaction becomes favored at temperatures above 120 ◦C.[197–199]

The groups of Barner-Kowollik and Stenzel pioneered the utilization of dithioester

terminated polymers (prepared via RAFT polymerization) as dieneophiles in HDA re-

actions. In order to undergo an efficient HDA reaction, the employed RAFT agents

require a strong electron withdrawing Z-group. In this context, two CTAs, one with a

pyridinyl and one with a phosphoryl Z-group, were identified which are able to perform

a CRP and to quantitatively react with sorbic alcohol based dienes (see Scheme 2.11

A).[200] The HDA reaction proceeded at 50 ◦C within 2 - 24 h employing ZnCl2 (for the

phosphoryl Z-group) or trifluoroacetic acid (TFA, for the pyridinyl Z-group) as catalyst.

ZnCl2 coordinates onto the phosphoryl moiety, while TFA protonates the pyridinyl

moiety. In each case the electron withdrawing character of the Z-group, and therefore

also the reactivity of the C=S-double bond towards dienes, is increased. The introduction
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of cyclopentadiene (Cp) as reaction partner for the HDA-RAFT agents lead to even more

moderate reaction conditions (see Scheme 2.11 B). Reaction times of less than 10 min
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Scheme 2.11 RAFT-HDA reactions with sorbic alcohol (A) and cyclopentadiene (B) based
dienes.

for a polymer conjugation at ambient temperature were observed.[201] While solvent

polarity has no substantial effect on DA kinetics, reactions in water proceed significantly

faster due to hydrophobic interactions and thus a closer proximity of the reactants.[202]

It was demonstrated that a polymer conjugation in aqueous conditions, employing the

RAFT-HDA Cp pair as reaction partners, proceeds within 15 min at ambient temperature

without the need of any catalyst.[19] Thus, under the right conditions the Cp-RAFT-HDA

reaction can be rightfully termed click reaction. Even when the less reactive sorbic

alcohol moiety was used as diene, a complete polymer conjugation without catalyst was

observed after 4 h at ambient temperature in water. The potential of the RAFT-HDA

conjugation concept was demonstrated by the construction of various polymer architec-

tures, including block copolymers,[18] (multi-arm) star polymers,[203,204] and combs,[205]

or the Modifications of microspheres[206] and biosurfaces.[207]

Furthermore, the required temperatures for the rHDA reactions have been determined.

For the 3,6-Dihydro-2H -thiopyran rings, formed by HDA cycloadditions between sorbic

alcohol based diene functionalized PEO and RAFT agents with phosphoryl or pyridinyl

Z-groups, a complete disappearance of the HDA adduct in mass spectrometric analysis

was observed above 160 ◦C and 180 ◦C respectively.[208] When Cp was used as diene,

a complete cleavage was achieved at 100 ◦C.[209] However, following investigations

showed that the rDA (and temperature triggered linkages in general) temperature for
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polymer-polymer linkages is not just reliant on the employed diene/dienophile pair,

but also depends on entropic effects originating from the polymer chains.[171,210–212]

Thus, each new polymer system can have a different cleavage temperature, although the

conjugation method is always the same. When a precise knowledge about the cleaving

conditions is needed, investigations for each employed polymer system is inevitable.

The ability of bonding/debonding on demand was demonstrated by the generation of

a thermally reversible network, employing a trifunctional pyridinyl HDA-RAFT agent

cross linker and a biscyclopentadienyl poly(methyl methacrylate) polymer.[213] A source

of inspiration for the proposed concept in this thesis was the reversible grafting of

HDA-RAFT end group terminated polymers onto Cp functionalized silicon substrates

(see Scheme 2.12).[20] The grafting of the polymers onto the surface proceeded within
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Scheme 2.12 Reversible grafting of HDA-RAFT end group terminated polymers onto Cp
functionalized silicon substrates. Adapted from [20] with permission from John Wiley and Sons.

3 h at ambient temperature. The removal of the covalent bound polymer chains from

the surface was achieved by immersing the substrates in 90 ◦C hot toluene for 14 h.
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Subsequently, the same Cp-functionalized substrate was coated again with polymer,

analogue to the first grafting procedure, proving that the Cp functionality remained

intact after cleaving conditions.

Since it combines the most versatile CRP technique with the ability to reversibly

conjugate polymers without the need of any post-polymerization modifications, the

RAFT-HDA concept has the potential for a wide range of (industrial) applications. That

is also the reason why it is the conjugation method of choice for the realization of the

proposed concept in this thesis. The only limitations that have to be kept in mind is

the limited monomer choice accompanying the utilization of RAFT agents with strong

electron withdrawing Z-groups.

Light Activated Diels–Alder Reactions

Although DA reactions are always thermally triggered, it is possible to generate reactive

dienes or dienophiles via irradiation. An example is the light induced formation of

thioaldehydes from phenacyl sulfides, which can react as dienophile with corresponding

dienes (see Scheme 2.13). For the release of acetophenone and the generation of the
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Scheme 2.13 General reaction scheme for the photo activated HDA reaction of phenacyl
sulfides.

reactive thioaldehyde, radiation in the UV range (3̃55 nm) is necessary. This method was

successfully introduced in polymer chemistry.[214,215] However, the generated thioalde-

hyde is not just a good dienophile, but also reacts readily with nucleophiles.[216] Since

nucleophilic moieties are omnipresent in chemistry, the ligation method is on the one

hand very versatile yet on the other hand less specific.

Another light activated DA reaction is the photoenol technique. It is based on or-

tho-methyl benzaldehyde or ortho-methyl benzophenone derivates, which form ortho-

quino dimethanes (so-called photoenols) upon irradiation (see Scheme 2.14). The pho-
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Scheme 2.14 General reaction scheme for a photoenol reaction.

toenol species is a highly reactive diene, undergoing rapid DA reactions with electron

deficient alkenes, such as maleimide, fumarates or acrylates. If no suitable reaction

partner is accessible, the diene species returns to the non-activated species (starting

material) without forming any side products, making it a highly specific and versatile

ligation method. Although the cycloaddition behavior of photoenols was investigated

already in the early 70s,[217] the group of Barner-Kowollik just recently introduced their

application in the realm of polymer science.[218] The successful utilization of photoenols

includes the preparation of block copolymers,[219,220] single chain nanoparticles,[221] cyclic

polymers[222,223] or spatially resolved surface modification.[224–226]





3
Preparation of Amphiphilic Block

Copolymers Featuring a Reversible

Hetero Diels-Alder Linkage

The modular synthesis of amphiphilic block copolymers with a reversible linkage is the

key element of the presented concept of the new membrane preparation method. The

following sections* describe the development and synthesis of the respective building

blocks (Section 3.1 and Section 3.2), their ligation and the thermo-responsive behavior of

the linkage (Section 3.3), as well as a method for the preparation of amphiphilic triblock

terpolymers with a reversible linkage (Section 3.4).

* Parts of the current chapter are reproduced from M. Langer, J. Brandt, A. Lederer, A. S. Goldmann,
F. H. Schacher, C. Barner-Kowollik, Polym. Chem. 2014, 5, 5330–5338. - Published by The Royal
Society of Chemistry and permission granted: http://www.rsc.org/journals-books-databases/journal-
authors-reviewers/licences-copyright-permissions/#reuse-permission-requests (13.05.2016-10:18). M.
Langer designed and conducted all experiments unless otherwise stated, performed all NMR analysis,
and wrote the manuscript. J. Brandt performed the DLS and high temperature SEC experiments,
supervised by A. Lederer. A. S. Goldmann, F. H. Schacher, and C. Barner-Kowollik motivated and
supervised the project and contributed to scientific discussions.
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3.1 Matrix A: The Hydrophobic Building Block

For simplicity, the term ”Matrix A” replaces the term ”hydrophobic building block” in

the rest of the thesis. As Matrix A, a copolymer constituted of styrene and isoprene

was chosen. In radical polymerizations, isoprene is known to be incorporated into

the polymer backbone as three different isomers (1,2; 1,4 and 3,4).[227] The residual

vinyl groups of the 1,2 and 3,4 isomers of isoprene in the side chain can be used for

subsequent crosslinking after membrane formation. Thus, the mechanical stability

and the resistance against solvents of the generated membranes can be increased by

crosslinking. To be able to introduce the Cp moiety at the end group of the prepared

polymer, a bromine-functional RAFT agent (CTA-1) was designed and synthesized

(see Scheme 3.1). The newly developed RAFT agent is based on the well-known CTA

2-(((dodecylthio)carbonothioyl)thio)-2-methyl- propanoic acid (DMP, 2).[228,229] It is com-
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Scheme 3.1 Synthetic strategy for the preparation of Cp-functional Matrix A. Esterification:
DMAP, DCC, DCM, 0 ◦C; polymerization: bulk, 20 mol% isoprene, 80 mol% styrene, VAm-110,
110 ◦C; Cp-functionalization: NiCp2, NaI, P(Ph)3, dry THF, ambient temperature.
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posed of a trithiocarbonate with a tertiary R-group, able to control the polymerizations

of styrene and isoprene.[227,230] The facile preparation via a Steglich esterification involves

3-hydroxypropyl-2-bromo-2-methyl- propanoate (1) to introduce a bromine function-

ality at the R-group. The successful synthesis of the CTA was confirmed by 1H NMR

spectroscopy (see Figure 3.1, for more characterization details refer to Chapter 6). To
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Figure 3.1 1H NMR spectrum (500 MHz) of the Br-functional RAFT agent CTA-1 (DMP-Br)
in CDCl3 at ambient temperature.

verify the control afforded by the RAFT process leading to polymers with high end

group fidelity, kinetic studies were carried out for the copolymerization of styrene and

isoprene using CTA-1 (see Figure 3.2 and Table 3.1).
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Figure 3.2 A: Evolution of themolar mass andĐ versus conversion during the copolymerization
of styrene (80 mol%) and isoprene (20 mol%): [monomer]0 = 8.9mol L−1, [CTA-1]0 = 8.2mmol L−1,
[VAm-110]0 = 1.7mmol L−1, 110 ◦C. The theoretical molecular weights and DPs were calculated
from the CTA concentration and the conversion. B: SEC traces of the respective data points
from A. The SEC was calibrated with narrow PS standards.
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Table 3.1 The degree of polymerization (DP), the theoretical and the experimental molar mass
and Đ for several conversions during the copolymerization of styrene (80 mol%) and isoprene
(20 mol%): [monomer]0 = 8.9mol L−1, [CTA-1]0 = 8.2mmol L−1, [VAm-110]0 = 1.7mmol L−1,
110 ◦C. The theoretical molecular weights and DPs were calculated from Equation 2.1.

conversion DP Mn,theo [gmol−1] Mn,exp [gmol−1] Đ

5 % 53 5700 5700 1.39
8 % 89 9000 9100 1.35
11 % 124 12600 12000 1.33
17 % 184 18000 16000 1.31
20 % 220 22000 20000 1.30
24 % 257 25500 23000 1.26
51 % 557 54500 39000 1.26
53 % 575 56000 42000 1.27

The SEC traces corresponding to all the data points are depicted in diagramB of Figure 3.2.

With progressing conversion a linear increase of the experimental molecular weight can

be observed. The black line in the diagram A (Figure 3.2) is inserted to guide the eye. For

the calculation of the theoretical Mn Equation 2.1 is applied. As the molecular weight

of two different monomers needs to be considered, an average monomer molecular

weight (96.94 gmol−1), corresponding to the employed ratio of isoprene/styrene (20/80),

is used. Considering the inaccuracy of the SEC (about 10 %) and the PS calibration,

theoretical Mn is in good agreement with the observed values. In contrast to the Mn,

the Đ is decreasing from 1.39 to 1.27 with progressing conversion, which constitutes

further supporting evidence for a controlled polymerization. In combination, the linear

increase of the molar mass, the good agreement of Mn,theo and Mn,exp and low Đ values

are proof of a controlled copolymerization of styrene and isoprene.

Subsequently, two poly(isoprene-co-styrene) (P(I-co-S)) copolymers, one with lower

molecular weight (P1, Mn = 9200 gmol−1, Đ = 1.22, see Figure 3.3) and one with higher

molecular weight (P2, Mn = 50 000 gmol−1, Đ = 1.36, see Figure 3.3) were prepared.

The molar fraction of isoprene in the generated copolymers was determined via NMR

spectroscopy and resulted in 27 mol% for P1 and 24 mol% for P2. The reactivity ratios

found in literature for a copolymerization of isoprene and styrene vary between 1.3 and

2.02 for isoprene and between 0.42 and 0.53 for styrene.[231] Reactivity ratio values above
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Figure 3.3 SEC traces of polymers P1 and P2 before (P1a and P2a) and after (P1b and P2b)
Cp-transformation.

1.0 mean that the monomer radical prefers to react with a monomer of its own species

rather than with a monomer from the other species (meaning that isoprene radicals

prefer to react with isoprene monomer instead of styrene). For reactivity ratios below

1.0, the opposite is true (meaning that styrene radicals prefer to react with isoprene

monomer instead of styrene). Hence, it is consistent with theory that the percentage of

isoprene found in the polymer is higher than the percentage of the initial monomer feed.

The difference between the two polymers (27 mol% for P1 and 24 mol% for P2) derives

from the different conversions (30 % for P1 and 39 % for P2). Copolymerizations with

reactivity ratios divergent from 1.0, change the actual monomer feed with conversion. At

the beginning, isoprene is consumed faster than styrene. Hence, the fraction of isoprene

in the monomer feed decreases and it becomes less available. Thus, the consumption

rate of isoprene decreases with increasing conversion. As a result, the percentage of

isoprene in the obtained polymer is highest for low conversions and decreases with

progressing conversion. As an example, for a copolymerization with 100 % conversion
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the ratio of monomers observed in the polymer needs to be equal to the ratio of the

initial monomer mixture, regardless of the reactivity ratios.

Due to a smaller repeating unit to end group ratio and better solubility properties,

P1 was used for detailed NMR analysis and DLS experiments after ligation with a

low molecular weight hydrophilic block (please refer to Section 3.3). P2 was used for

macroscopic separation experiments and membrane formation via SNIPS (please refer

to Section 3.3 and Chapter 4).

The Cp-transformation of the Matrix A polymers was straightforward. In general,

two approaches for the substitution of bromine with Cp exist. The use of sodium

cyclopentadienyl (NaCp) as a source for nucleophilic Cp implicates a high reactivity of

the Cp-anion towards functional groups such as ester moieties.[232,233] Since two ester

moieties are present in the Matrix A polymers, the NaCp based approach for the Cp

transformation is not suitable. Nickelocene (NiCp2) as nucleophilic source, on the other

hand, is a mild and effective transformation that tolerates a wide range of functional

groups, including ester moieties.[234] Thus, it was the method of choice. Since it is known

that Cp groups undergo dimerization,[235] the comparison of the SEC traces before and

after the functionalization of the polymers P1 and P2 is essential (see Figure 3.3). The

SEC traces of both polymers do not show any side products due to dimerization. The

successful substitution of brominewith Cp can be verified by the proton signals appearing

between 6.5 ppm and 6.1 ppm associated with the vinyl protons of the Cp moiety in the
1H NMR spectra of polymer P1b (see Figure 3.4). Full conversion – and therefore close

to quantitative Cp transformation – was assessed by the successful conjugation of the

building blocks P1 and P2 with respective hydrophilic polymer blocks, verified via SEC

(please refer to Section 3.3).
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Figure 3.4 1H NMR spectra (500 MHz, CDCl3, ambient temperature) of polymer P1 before
(P1a) and after (P1b) the Cp-transformation in the relevant region (6.7 ppm–5.2 ppm) for Cp
protons.

3.2 Matrix B: The Hydrophilic Building Block

For simplicity the term ”Matrix B” replaces the term ”hydrophilic building block” in the

rest of the thesis. As selection criteria for Matrix B polymers the solubility characteristics

of the polymers are of major importance. In order to be suitable for the SNIPS process, the

polymer needs to be soluble in water and in the employed casting solution. Additionally,

in the process of the thesis other limitations emerged, caused by the choice of the RAFT-

HDA-concept as ligation method. It was found that HDA capable CTAs are sensitive

towards amide and aminemoieties, as present in themonomersN,N -dimethylaminoethyl

methacrylate (DMAEMA) and N -isopropyl acrylamide (NIPAM). Moreover, a polymer

with an acrylate backbone is required, since it was found that HDA–RAFT agents are

not able to undergo HDA conjugations when a methacrylate monomer is employed

in the RAFT polymerization (however, the reverse functions by using a Cp-terminal

poly(methacrylate) and a RAFT terminal poly(acrylate)). Thus, the three acrylates



3.2 Matrix B: The Hydrophilic Building Block 49

(triethylene glycol methyl ether acrylate (TEGA), hydroxyethyl acrylate (HEA) and

acrylic acid (AA)) shown in Scheme 3.2 were employed for the preparation of Matrix B

polymers via CRP using the phosphoric HDA-RAFT agent CTA-2. To verify the control

CTA-2
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Scheme3.2 Synthetic route for the preparation ofMatrix B polymers. Polymerization: dioxane
(ethanol for HEA), AIBN, 70 ◦C (60 ◦C for HEA).

afforded by the RAFT process, leading to polymers with high end group fidelity, kinetic

studies were carried out exemplarily for the polymerization of triethylene glycol methyl

ether acrylate (see Figure 3.5 and Table 3.2). The SEC traces corresponding to all the

data points are depicted in diagram B of Figure 3.5. The multimodal distribution of

the SEC traces with 2 % and 4 % conversion are due to the high resolution in the low

molecular weight area of the employed SEC system. Each peak corresponds to a single

polymer chain with a certain amount of monomer units. With progressing conversion a

linear increase of the detected molecular weight can be observed. The black line in the

diagram A (Figure 3.5) is inserted to guide the eye. For the calculation of the theoretical

Mn Equation 2.1 is applied. Considering the inaccuracy of the SEC (about 10 %) and the

PMMA calibration, the theoretical Mn is in good agreement with the observed values.
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Figure 3.5 A: Evolution of themolar mass andĐ versus conversion during the polymerization of
TEGA in dioxane: [monomer]0 = 3.9mol L−1, [CTA-2]0 = 30.2mmol L−1, [AIBN]0 = 5.2mmol L−1,
70 ◦C. The theoretical molecular weights and DPs were calculated from the CTA concentration
and the conversion. B: SEC traces of the respective data points from A. The SEC was calibrated
with narrow PMMA standards.
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Table 3.2 The degree of polymerization (DP), the theoretical and the experimental molar mass
and Đ for several conversions during the polymerization of TEGA in dioxane: [monomer]0 =
3.9mol L−1, [CTA-2]0 = 30.2mmol L−1, [AIBN]0 = 5.2mmol L−1, 70 ◦C. The theoretical molecular
weights and DPs were calculated from the CTA concentration and the conversion.

conversion DP Mn,theo [gmol−1] Mn,exp [gmol−1] Đ

2 % 3 900 1000 1.13
4 % 5 1500 1600 1.12
10 % 12 3000 3200 1.12
14 % 18 4200 4000 1.14
18 % 23 5200 4800 1.15
19 % 24 5600 5400 1.16
25 % 32 7200 6600 1.16
29 % 37 8400 7300 1.17
31 % 40 9100 7600 1.19

In comparison with the copolymerization of isoprene and styrene, theĐ is not decreasing

with progression of the conversion. However, the very low values between 1.1 and 1.2

further support the evidence of a controlled polymerization. In combination, the linear

increase of the molar mass, the good agreement of Mn,theo and Mn,exp and low Đ values

are proof for a controlled polymerization. Subsequently, a high and a low molecular

weight poly(triethylene glycol methyl ether acrylate) (PTEGA, P3: Mn = 6600 gmol−1,

Đ = 1.12 and P4: Mn = 35 000 gmol−1, Đ = 1.30), poly(hydroxyethyl acrylate) (PHEA, P5:

Mn = 1500 gmol−1, Đ = 1.09) and poly(acrylic acid) (PAA, P6: Mn = 4000 gmol−1 (NMR

calculation)) were prepared. The SEC traces of P3 and P4 can be found in Section 3.3.

For the SEC traces and NMR spectra of P5 and P6 please refer to Chapter 6 Figure 6.4 -

6.7. SEC analysis for PAA is not straight forward because the polymer tends to interact

with column material and is only soluble in very polar solvents. For P6 an aqueous

Na2HPO4 buffered system with a PSS Suprema column, with poly(hydroxymethacrylate)

copolymer network as solid phase, was employed. Because no narrow molecular weight

PAA standards were available at that time, the SEC analysis was conducted without

calibration. In order to avoid the problems associated with SEC analysis of PAA, it

possible to esterify the acid moieties of the polymer with methanol (yielding poly(methyl

acrylate)) and perform the analysis on an organic solvent based SEC system.[236] However,
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the combination of dRI and UV detector of the employed aqueous SEC system gives

evidence about the Đ . The Đ is defined as the mass average molar mass, divided by the

number average molar mass (Đ =Mw /Mn ).[237] Meaning, for a low Đ , number and mass

average distributions need to have similar values. Since the only UV active moiety of

P6 is the RAFT end group, the UV signal trace is equivalent to the number distribution

of the polymer. The dRI signal trace (mass distribution) is in good agreement with the

UV trace (see Figure 6.6), implying a low Đ and a high end group fidelity. The NMR

calculation for the molecular weight determination was performed by comparison of the

integral of the resonances from the RAFT end group with the integral of the resonances

from the backbone.

P3 was used for detailed NMR analysis and DLS experiments after ligation with P1

(please refer to Section 3.3). P4 was used for macroscopic separation experiments and

membrane formation via SNIPS (please refer to Section 3.3 and Chapter 4). The polymers

P5 and P6 (and P3) were used for grafting experiments on Cp-functional surfaces (please

refer to Section 4.3).
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3.3 Ligation and Cleavage of the Building Blocks

Among the three prepared hydrophilic polymer types, PTEGA was chosen as Matrix

B for the preparation of amphiphilic block terpolymers (see Scheme 3.3), because it is

soluble in a wide range of organic solvents and water, thus most suitable for the SNIPS

process. The conjugation reactions were performed in ethyl acetate in the presence of
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Scheme 3.3 Synthetic strategy for the preparation of amphiphilic block terpolymers. Conju-
gation: ethyl acetate, ZnCl2, ambient temperature.

ZnCl2 as catalyst at ambient temperature. The total concentration of polymers was kept

at 50 g L−1. The utilization of a catalyst is not mandatory for a successful ligation (please

refer to the high temperature size exclusion (HT-SEC) experiments described later in

this section). Nevertheless, it was found that the reaction rate, especially for the larger

building blocks, is more than seven times higher in the presence of ZnCl2. The SEC traces

of the generated poly(isoprene-co-styrene)-block-poly(triethylene glycol methyl ether

acrylate) (P(I-co-S)-b-PTEGA) terpolymers (P7: Mn = 16 000 gmol−1, Đ = 1.15; P8: Mn =

68 000 gmol−1, Đ = 1.32) and their respective building blocks (P1 and P3 respectively P2

and P4) are depicted in Figure 3.6. As expected, the resulting block copolymer P7 shows

a significant shift to lower elution volume, compared to the building blocks P1 and P3.

Moreover, the Đ value of P7 (Đ =1.15) is in between the values of the building blocks

P1 and P3 (P1: Đ = 1.22 and P3: Đ = 1.12). The low Đ value and the shift to a lower

retention volume indicate the successful conjugation and thus, close to quantitative
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Figure 3.6 A: SEC traces of the polar building block PTEGA (P3, dashed line,Mn = 6600 gmol−1
(PMMA calibration), Đ = 1.12), the non-polar building block P(I-co-S) (P1, dotted line, Mn =
9200 gmol−1 (PS calibration), Đ = 1.22) and the resulting block terpolymer P(I-co-S)-b-PTEGA
(P7, solid line,Mn = 16 000 gmol−1 (PS calibration), Đ = 1.15). B: SEC traces of the polar building
block PTEGA (P4, dotted line,Mn = 35 000 gmol−1 (PMMA calibration), Đ = 1.30), the unpolar
building block P(I-co-S) (P2, dashed line, Mn = 50 000 gmol−1 (PS calibration), Đ = 1.36) and the
resulting block terpolymer P(I-co-S)-b-PTEGA (P8, solid line,Mn = 68 000 gmol−1 (PS calibration),
Đ = 1.32).

Cp-transformation of the building block P1.[238,239] For the block terpolymer with higher

molecular weight (P8), the shift to lower retention volumes, compared to its building

blocks P2 and P4, is less pronounced than for polymer P7. This observation is associated

with the fact that high molecular weight polymers have a small elution volume and

small shifts in this area have a larger effect on the resulting molecular weight, compared

to the area of bigger elution volumes and low molecular weight polymers. Thus, the

shift of the block terpolymer P8 compared to its building blocks is in the expected range.

Furthermore, the Đ value of P8 (Đ = 1.32) is in between the values of the building blocks

P2 and P4 (P2: Đ = 1.36 and P4: Đ = 1.30). Again, low Đ values and the shift to lower

elution volumes indicate a successful and quantitative conjugation. In addition, P1,

P3 and P7 were analyzed via 1H NMR spectroscopy (see Figure 3.7). The spectrum of

the block terpolymer P7 is composed of the sum of the resonances from the individual

building block polymers P1 and P3. Comparing the integrals from the resonances of

the individual building blocks, the molar ratio of PTEGA and P(I-co-S) in the resulting

block terpolymer can be determined. In Table 3.3 the calculated ratios from both block

terpolymers and the content of isoprene is collated. For a determination of the amount
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Figure 3.7 1HNMR spectra (500 MHz, CDCl3, ambient temperature) of the non-polar building
block P1, the polar building block P3 and the resulting block terpolymer P7.

of vinyl groups in the side chains of the block terpolymer by calculating the ratio of

1,2 and 3,4 isomers, the signals of the respective resonances are of insufficient intensity.

The ratio of 1,4, 1,2 and 3,4 isomers present in polyisoprene prepared by RAFT using

DMP as CTA was published previously.[227] It can be expected that the control of the

polymerization with DMP-Br is very similar to DMP. Thus, the amount of vinyl side

chains has been calculated for both block terpolymers close to 2 mol%. This quantity

Table 3.3 Molar ratios of P(I-co-S)/PTEGA for the block terpolymers P7 and P8, isoprene
content of the building block P(I-co-S) and the respective block terpolymer. All values were
determined by comparison of the integrals (from the 1H NMR spectra of Figure 3.7) of the
individual components.

polymer molar ratio
P(I-co-S)/PTEGA

fraction of isoprene
in P(I-co-S)

[mol%]

fraction of isoprene in
the block terpolymer

[mol%]

P7(P1) 72/28 27 19
P8(P2) 75/25 24 18
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is expected to be sufficient for potential cross linking after the eventual membrane

formation.

Further inspection of the 1H NMR spectra of the polymers P1 and P7 in the region of

the vinyl moiety (6.7 ppm–5.2 ppm, see Figure 3.8) clearly indicates a strong decrease of

the resonances of the Cp moiety from polymer P1 after the HDA reaction. Consequently,
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Figure 3.8 Enlarged section of the 1HNMR spectra (500MHz, CDCl3, ambient temperature) of
the non-polar building block P1, the polar building block P3 and the resulting block terpolymer
P7 in the relevant region (6.7 ppm–5.2 ppm) for the HDA reaction. The dashed lines mark the
position of the resonances corresponding to the proton of the Cp moiety (left) and the resonance
of the protons of the HDA reaction product (right).

the block terpolymer P7 reveals a new resonance, corresponding to protons of the HDA

reaction product. The spectrum of P3 is added as well to prove that the new signal is

not associated with a resonance thereof.

In the following, the low molecular weight block terpolymer P7 was subjected to

detailed HT-NMR, HT-DLS and HT-SEC analysis, to examine the thermo responsive-

ness of the HDA linkage.[240] The conclusions thereof can also be assigned to the high

molecular weight block terpolymer P8, which is later on employed in the SNIPS pro-
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cess for membrane preparation (please refer to Chapter 4). The two resonances at 6.16

ppm and 5.72 ppm of the Cp moiety and the HDA reaction product are essential for

following the bonding and debonding of the hetero Diels-Alder linkage by HT-NMR

analysis. At ambient temperature, the equilibrium of the HDA reaction of P1 with P3

is completely shifted towards the HDA reaction product, i.e. the block copolymer P7.

However, by increasing the temperature the retro HDA reaction becomes favored and

the equilibrium shifts towards the reactants P1 and P3. To determine the temperature

when the equilibrium is completely shifted towards the initial building blocks, 1H NMR

spectra of the block terpolymer P7 were recorded while increasing the temperature

from 25 ◦C to 85 ◦C (see Figure 3.9). Information of the position of the equilibrium
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H

Figure 3.9 1H NMR spectra (400 MHz, toluene-d8–DMSO-d6, 1 : 1) of the block terpolymer
P7 at variable temperatures. The resonances of the Cp moiety are depicted on the left hand
side (6.2–6.0 ppm) and the resonances associated with the HDA reaction product are depicted
on the right hand side (5.85–5.6 ppm).

between the block terpolymer P7 and the reactants P1 and P3 is obtained by comparing

the intensities of the resonance of the Cp proton (6.2–6.0 ppm) and the resonance of
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the protons from the HDA reaction product (5.85–5.6 ppm). To ensure equilibrium

conditions for each temperature step, successive NMR spectra have been recorded until

the intensity arrangement of the current spectrum was identical with the one recorded

before. From 45 ◦C to 85 ◦C, the intensity of the resonance of the Cp moiety is increasing

continuously. Simultaneously, the intensity of the resonance corresponding to the HDA

reaction product is decreasing. The complete disappearance of the peaks at 5.85–5.6 ppm

at 85 ◦C and concurrent appearance of the resonance peak at 6.2–6.0 ppm indicate that

the equilibrium is completely shifted towards the building blocks P1 and P3. The drift

of the signals towards a lower field is due to the increasing temperature. The NMR

experiment was performed in a mixture of toluene-d8 and DMSO-d6 (1 : 1). This mix-

ture was used to ensure a moderate polarity to keep both building blocks in solution

after debonding. In addition, a high boiling point was preferred because the cleavage

temperature is relatively high.

Having determined the cleavage temperature, further HT-NMR experiments have

been performed in CDCl3 in the presence of ZnCl2 as catalyst, using a NMR pressure

tube. Note that the different solvents employed slightly affect the resonances appearance

and position. In order to evidence that the bonding and debonding of the building blocks

P1 and P3 is reversible with temperature, 1H NMR spectra of the block terpolymer P7

were performed and cycled 4 times between 25 ◦C and 90 ◦C (see Figure 3.10). Again, the

regions of the resonance from the Cp proton (6.1–6.0 ppm) and of the protons of the HDA

reaction product (5.85–5.6 ppm) were investigated. The bonding/debonding behavior can

be observed over all 4 succeeding repetitions. For every cycle, in the region of the HDA

reaction product only the baseline can be detected at 90 ◦C, whereas the resonance of the

Cp moiety has full intensity, revealing complete transformation into the two separate

building blocks. Concomitantly, at 25 ◦C the resonance of the Cp moiety disappears for

each cycle, whilst the highest intensity of the resonance of the HDA reaction product

can be observed. It takes approximately 30 min until the equilibrium state is established

for the cleavage of the block terpolymer at 90 ◦C. Complete rebonding was achieved

after 24 h at 25 ◦C. The difference in reaction time, compared to the synthesis of P7 (16

h), can be explained by the absence of stirring of the reaction mixture in the NMR tube
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Figure 3.10 1H NMR spectra (400 MHz, CDCl3) of the block terpolymer P7 at alternating
temperatures in four heating/cooling cycles between 25 ◦C and 90 ◦C. The resonances of the Cp
moiety are depicted on the left side (6.1–6.0 ppm) and the resonances associated with the HDA
reaction product are shown on the right side (5.85–5.6 ppm). For better comparison, the starting
spectrum is depicted at the bottom and on top of the figure.

and thus the bonding reaction is diffusion controlled, leading to a longer reaction time

for the block terpolymer formation. In CDCl3 no drift of the signals towards lower field

at elevated temperatures was observed.

To further underpin the results of the HT-NMR experiments, HT-DLS analysis of

the block terpolymer P7 have been conducted. Since no pressure stable DLS cuvettes

were available, the choice of solvents was limited by their boiling points and their

ability to dissolve both individual building blocks as well as scattering properties. P7

was dissolved in a mixture of N,N -dimethylacetamide (DMAc, 80 vol%) and toluene

(20 vol%) in the presence of ZnCl2 as catalyst revealing the best possible conditions for

the HT-DLS measurements. For the block terpolymer P8 no suitable conditions were

found due to solubility issues. Representative examples of autocorrelation functions

and the resulting size distributions can be found in Section 6.5 (Figure 6.8 and 6.9,
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respectively). Unimers with a hydrodynamic radius (Rh) of close to 2.5 nm are detected

at 30 ◦C for the block terpolymer (please refer to Figure 3.11). When the sample is
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Figure 3.11 HT-DLS experiment of block terpolymer P7 in a mixture of DMAc (80 vol%) and
toluene (20 vol%) in the presence of ZnCl2 as catalyst. The green squares depict the average
radius of 5 subsequently measured values in the specified time interval. The experimental
standard deviation is close to 0.1 nm. Due to the fast and large change of the actual radius
when the sample is heated at 90 ◦C, no average radius is calculated for that temperature. The
red solid line displays the temperature evolution.

heated to 90 ◦C, the detected radius decreases to values below 2.0 nm, indicating that

the block terpolymer is cleaved into the individual building blocks, which form signif-

icantly smaller unimers. As soon as the temperature is decreased again to 30 ◦C, the

block terpolymer – and hence the corresponding unimers – start to reform and the

radius increases again continuously with time up to the initially recorded average size

(2.4 nm). To examine the reversible bonding and debonding behavior of the HDA linkage,

4 temperature cycles between 30 ◦C and 90 ◦C were performed (refer to Figure 3.12). At

90 ◦C, the system was allowed to equilibrate for 30 min until no further changes in Rh

were observed. Equally, at 30 ◦C, the depicted radius was measured after the equilibrium
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Figure 3.12 HT-DLS cycles of block terpolymer P7 in a mixture of DMAc (80 vol%) and toluene
(20 vol%) in the presence of ZnCl2 as catalyst. The green squares represent the average radius
of 10 subsequently measured values with an experimental standard deviation of 0.1 nm. The red
solid line displays the temperature evolution.

was established. For every temperature switch the expected change of the detected

radius can be observed. In contrast, the building block (P1) as reference exhibits a Rh

of approximately 1.6 nm and no significant change with varying temperature could be

observed. However, the respective radii for each cycle at 90 ◦C and at 30 ◦C vary more

than expected (90 ◦C: 1.5–1.7 nm; 30 ◦C: 1.9–2.3 nm). A possible explanation for this

observation is associated with the change of the actual ratio of the employed solvent

mixture during the measurement. Since sealed DLS cuvettes are not commercially

available and thus could not be used, a certain amount of solvent evaporates constantly

during the experiment (boiling point DMAc: 165 ◦C, boiling point toluene: 110 ◦C).

Therefore solvent had to be added continually, which possibly affected the experiment

and the data evaluation. The composition of the solvent mixture is influencing the

solubility of the polymers. A change in the ratio of toluene to DMAc can possibly lead

to small aggregates that affect the measured Rh averages. Additionally, the calculated
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Rh is indirectly proportional to the solution viscosity, consequently the data evaluation

depends on the solvent composition. In summary, the results of the HT-DLS experiments

clearly underpin the results of the HT-NMR analysis.

To further support the results of the HT-NMR and HT-DLS analysis, cycled HT-

SEC experiments were performed. The block terpolymer P7 was dissolved in 1,2,4-

trichlorobenzene (TCB; 5 g L−1) and the SEC-vial placed into the preheated autosampler

(90 ◦C). The sample was measured immediately in order to monitor the conjugated state

(see Figure 3.13, solid black line, 0 min). However, it must be noted that at this point the
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Figure 3.13 HT-SEC trace of P7 in TCB at 90 ◦C. The black solid line represents the measure-
ment immediately after the sample was placed into the autosampler (0 min), the dashed lines
indicate the mathematically fitted fractions of the polar block (P3), the non-polar block (P1)
and the block terpolymer (P7). The pink solid line represents the sum of all theoretical peaks.

completely bonded state cannot be monitored because the sample is subjected to 90 ◦C

for approximately 7–10 minutes during the analysis and before the differential refractive

index (dRI) detector is reached. Hence, debonding of the hetero Diels-Alder linkage

partially takes place. Consequently, three distinct distributions can be observed, i.e. the

block terpolymer and its two building blocks. The unpolar building block P1 shows a
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positive dRI signal at a retention time of close to 7.8 min (peak maximum), whereas the

polar block P3 shows a large negative dRI signal at approximately 8.6 min retention time

(peak maximum). The block terpolymer reveals a small negative signal at a retention time

of close to 8.1 min, overlapping with the building block signals. Calculated distributions

of the individual species are depicted as dashed lines. The assignments are based on

HT-SEC measurements of the particular building blocks. For validation, the sum of the

three calculated distributions is compared with the experimental data, showing a good

compliance. Next, the retro HDA reaction was allowed to proceed completely within

30 min at 90 ◦C in the autosampler. Subsequently, a new chromatogram of the same

sample was recorded, representing the debonded state (refer to Figure 3.14, black solid

line, 30 min) with maximum intensity (respectively in positive and negative direction)

of the building blocks. Again, calculated distributions are depicted as dashed lines.

7 8 9 10
-60

-50

-40

-30

-20

-10

0

10

20

30

 

 

si
gn

al
 / 

m
V

retention time / min

 P7, 30 min (experimental)
 P1 (calculated)
 P3 (calculated)
 P7 (calculated)
 Sum (calculated)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0

10

20

30

40 DArDA

ar
ea

 / 
a.

u.

cycle number

Figure 3.14 HT-SEC trace of P7 in TCB at 90 ◦C. The black solid line represents the mea-
surement 30 min after the sample was placed into the autosampler, the dashed lines indicate
the mathematically fitted fractions of the polar block (P3), the non-polar block (P1) and the
block terpolymer (P7). The pink solid line represents the sum of all theoretical peaks. The inset
diagram shows the evolution of the peak areas of the three calculated distributions, alternating
for every bonding/debonding cycle (P1 blue squares, P3 red dots, P7 green triangles).
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The distribution of the block terpolymer disappears completely. Next, the sample was

removed from the autosampler and kept at ambient temperature, whereas the HDA

conjugation of the building blocks proceeds within 5 days (without the presence of

any catalyst). This procedure was repeated 4 times, a collection of all HT-SEC traces

can be found in Figure 3.15. The signal intensities have been evaluated in detail by
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Figure 3.15 HT-SEC traces of P7 in TCB at 90 ◦C. The solid lines represent the measurements
immediately after the sample was placed into the autosampler. The dashed lines represent
the measurements 30 min after the previous measurement. The individual cycles have been
measured at intervals of 5 days.

deconvolution of the chromatograms to determine the peak areas. The results are

displayed in the inset diagram in Figure 3.14. The trend of the data clearly demonstrates

the expected effects: the peak area and thus the concentration of both building blocks

(P1 blue squares, P3 red dots) increases during the retro HDA reaction and it decreases

during the HDA reaction (the intensity of P1 is minor because of the low dn/dc value

and thus the changes in peak area are less pronounced). As expected, the observation

for the block terpolymer (green triangles) is inverse. The separation of the specific

polymers on the HT-SEC column is not purely entropically driven but also caused by
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enthalpic interactions (adsorption of polar polymers on the column material at high

temperatures with TCB as eluent was already observed in other experiments). Thus,

the observed retention time of the amphiphilic block terpolymer is in between the

constituting building blocks. In conclusion, the constant difference of the dRI signal

intensities of the building blocks between the measurements after 0 min and 30 min delay

in the autosampler at 90 ◦C for the respective cycles confirms again the temperature

dependent cleavage of the HDA linkage, here without the presence of any catalyst.

For the larger block terpolymer P8 HT-SEC measurements have been performed

as well. However, even when the sample was measured immediately after insertion,

only the distributions of the building blocks could be observed. This finding can be

explained by an entropy driven effect of reversible conjugated polymer systems.[210] The

larger chain length of P8 compared to P7 lowers the retro HDA reaction temperature.

Hence, the reaction proceeds faster in the 90 ◦C heated HT-SEC environment. Besides

this distinction, the linkage of both block terpolymers should behave alike. In order to

simulate the cleavage of Matrix B from a membrane, generated from P8, a macroscopic

separation study was performed. First, an aqueous dispersion of P8 was prepared. On

that account the block terpolymer was dissolved in THF and subsequently added to

water. Next, the THF was removed under reduced pressure. Then the dispersion was

heated for 30 min at 90 ◦C and subsequently cooled to ambient temperature (see Figure

3.16). At 90 ◦C the amphiphilic block copolymer P8 is cleaved, yielding its building

blocks P2* and P4*. P2* is not soluble in water and thus remains precipitated. P4* is

in principal soluble in water, yet has a lower critical solution temperature (LCST) at

70 ◦C. Above this temperature, P4 precipitates as a viscid liquid. Hence, the polymers

P2* and P4* aggregate and form a large macroscopic agglomerate (red arrow in Figure

3.16 B) at 90 ◦C. Cooling the mixture to ambient temperature dissolves P4* in water. In

contrary, P2* remains insoluble and forms again an aqueous dispersion. Finally, P2*

and P4* were separated via centrifugation. The obtained polymers were analyzed via

SEC and compared with the SEC traces of the original building blocks P2 and P4 and

the block terpolymer P8 (see Figure 3.17). The SEC traces of P2* and P2 are in good

agreement. However, for P4* the SEC trace shows a shoulder in the elution volume
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CA B
polymer
particle

Figure 3.16 Images of the macroscopic cleavage of the block terpolymer P8, into the building
block polymers P2* and P4*. A block terpolymer dispersion in water at ambient temperature. B
at 90 ◦C the building blocks are separated. Due to the LCST of P4, the building block polymers
P4* and P2* aggregate and form a macroscopic agglomerate (red arrow). C cooled to ambient
temperature, P4* dissolves in water, whereas P2* forms an aqueous dispersion.

region of P2. Most probably a small amount of P2* particles was not entirely separated

from the solution of P4*.

This in-depth study of the behavior of the temperature responsive HDA linkage,

employed for the synthesis of the amphiphilic block terpolymers P(I-co-S)-b-PTEGA,

indicates that it is suitable for the reversible membrane encoding concept. HT-NMR

showed that for temperatures above 45 ◦C the equilibrium starts to shift towards initial

building blocks. In case of surface ligation a small shift towards open linkage is enough
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Figure 3.17 SEC traces of the building blocks after macroscopic separation (A non-polar block
P(I-co-S), P2*, solid red line; B polar block PTEGA, P4*, solid red line), in comparison to the
original building blocks (P2 and P4) and the block terpolymer (P8).
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to detach reactants and exclude them from the reaction equilibrium. Hence, for following

membrane experiments mild conditions of only 50 ◦C can be employed to remove the

Matrix B polymers of the pore surface with percolation of water. The cycled HT-NMR,

HT-DLS and HT-SEC experiments proved that the Cp moieties are still reactive after

cleavage. Thus, it should be feasible to graft dienophiles onto the pore surface after the

initial Matrix B was removed from the membrane.

3.4 An Amphiphilic TriblockQuaterpolymer with a

Reversible Linkage

In order to further increase the variety of possible membrane modifications, a dual

functional CTA capable of highly efficient sequential thermal and photoinduced lig-

ation, generating α,ω-functional polymers, was developed.† The novel CTA enables

the possibility to graft diblock copolymer on a Cp functional membrane by a later ex-

plained strategy, increasing the options to tailor the surface chemistry. To exemplarily

demonstrate the versatility, an amphiphilic triblock quaterpolymer poly(isoprene-co-

styrene)-block-poly(ethyl acrylate)-block-poly(ethylene oxide) (P(I-co-S)-b-PEA-b-PEO)

was prepared.

The novel CTA combines the HDA capable CTA-2 with a photoenol moiety at its

R-group, able to undergo efficient light-induced ligation. Consequently, the polymers

obtained from this RAFT agent contain two orthogonally addressable end groups. The

resulting molecular structure thereof as well as the key steps of the synthetic route

are shown in Scheme 3.4. The first step of the CTA synthesis is the preparation of the

precursor molecule 4 by a Markovnikov addition of HBr to a vinyl benzyl photoenol (3),

which was previously prepared according to a literature protocol.[241] Since it provides a

† Parts of the current section are adapted with permission from M. Langer, J. O. Mueller, A. S. Goldmann,
F. H. Schacher, C. Barner-Kowollik, ACS Macro Lett. 2016, 5, 597–601. Copyright ©2016 American
Chemical Society. M. Langer designed and conducted all experiments unless otherwise stated and
wrote the manuscript. J. O. Mueller provided fumarate fuctionalized PEO and helped with synthetic
discussions. A. S. Goldmann, F. H. Schacher, and C. Barner-Kowollik motivated and supervised the
project and contributed to scientific discussions.
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Scheme 3.4 Synthetic strategy for the preparation of the dual functional CTA-3.

constantly low, yet sufficient, amount of HBr by reaction with ambient moisture, oxalyl

bromide was chosen as a source of HBr. Supplemental addition of water is not required.

In order to favor the formation of the desired Markovnikov product, SiO2 is added to the

mixture as surface catalyst.[242] Subsequent reaction of diethylphosphite (5) with NaH

and CS2 generates the phosphoric thiocarbonyl thio anion (6). Next, a substitution of

the bromine, from the previously synthesized precursor 4, with the thiocarbonyl thio

anion 6 yields the dual functional CTA-3 (yield 33%, 1H NMR see Figure 3.18, for more

characterization details refer to Chapter 6).
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Figure 3.18 1HNMR spectrum (500 MHz, CDCl3, ambient temperature) of the dual functional
CTA-3.

Subsequently, preparation of the (P(I-co-S)-b-PEA-b-PEO) triblock quaterpolymer

was targeted, utilizing the developed CTA-3 (see Scheme 3.5). First, the α,ω-functional

building block P9 is prepared via RAFT polymerization of ethyl acrylate. In a second

step, the phosphorus dithionyl ester end group is employed for the thermally triggered

HDA conjugation with the Cp terminated P1, affording the diblock terpolymer P10.

Finally, the third polymer block, fumarate functionalized poly(ethylene oxide), is at-

tached via the UV-light triggered photoenol reaction at λmax = 370 nm, affording the

triblock quaterpolymer P11.

For the preparation of the α,ω-functional polymer P9, ethyl acrylate was chosen

because it has a moderate polarity (compared to the polymers employed for Matrix A

and Matrix B in the previous sections) and is well suited for the analysis via ESI-MS. The

polymerization of P9 was conducted within 7 h in bulk at 70 ℃, using AIBN as initiator

(Mn = 1200 gmol−1, Đ = 1.24; for the SEC trace of P9 refer to Figure 3.21). A noteworthy

fact is the observation of strong inhibition and retardation effects for this polymerization.

Within the 7 h of polymerization only 4 % conversion were achieved, which is unusual
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Scheme 3.5 Synthetic strategy for the preparation of the triblock quaterpolymer poly(isoprene-
co-styrene)-block-poly(ethyl acrylate)-block-poly(ethylene oxide) via modular ligation.

for acrylates. NMR spectroscopy was used to follow the monomer conversion during the

reaction. An inhibition time of approximately 4 h was observed. Possible reasons for this

observations were already discussed in Section 2.1.3. The long inhibition time may be

assigned to the secondary R-group of the employed CTA-3. All other polymerizations

of acrylates, where CTA-2 (same Z-group, but tertiary R-group) was employed as RAFT

agent, did not show such a behavior. As an example, the preparation of P3 (triethylene

glycol methyl ether acrylate) was conducted within 3 h and achieved a conversion of 19 %.

Since both RAFT agents (CTA-2 and CTA-3) feature the same Z-goup, the observed

retardation (4 % conversion in 3 h) is due to the comparative high concentration of CTA

in the reaction mixture. However, neither inhibition, nor retardation had a negative

effect on the end group fidelity of the obtained polymer P9 and small molecular weight

for efficient NMR and ESI-MS analysis was pursued in any case.
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In order to evidence the orthogonally addressable reactivity of the thiocarbonyl thio

and photoenol group, reactions with small organic compounds were carried out. For

the HDA reaction of the thiocarbonyl thio moiety of the RAFT end group, Cp was

used as small molecule, resulting in polymer P9a (Mn = 1200 gmol−1, Đ = 1.30). The

reaction was conducted at ambient temperature in dichloromethane over night and

the polymer was recovered via precipitation in a mixture of acetonitrile/water (1/1,

v/v). Subsequently, a solution of polymer P9a and diethyl fumarate in acetonitrile was

exposed to UV-light (λmax = 370 nm) at ambient temperature for 2.5 h. Precipitation in a

mixture of acetonitrile/water (1/1, v/v) yielded the polymer P9b (Mn = 1500 gmol−1, Đ =

1.27). P9, P9a and P9b were analyzed via 1H NMR spectroscopy (for the complete NMR

spectra please refer to Figures 6.13, 6.14, and 6.15 in Section 6.5). The proton resonances

associated with the corresponding end groups of the polymers are depicted in the

magnified areas in Figure 3.19. For species P9 (top), the characteristic resonance appears
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Figure 3.19 Expanded 1H NMR spectra of the polymers P9 (top), P9a (middle), and P9b (bot-
tom) showing the respective characteristic proton resonances as shown on the left-hand side.
For a better overview, the color of the frame of each segment matches the color of the relevant
protons in the molecular structures, assigned to the corresponding resonances. The full NMR
spectra can be found in Figures 6.13, 6.14, and 6.15 in Section 6.5.

at 10.7 ppm, referring to the proton of the aldehyde group of the photoenol moiety.

Species P9a (middle) exhibits the same aldehyde resonance at 10.7 ppm, and in addition,

new resonances in the region between 6.5 and 6.0 ppm are present, corresponding to
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the protons of the formed HDA product with Cp. It should be mentioned that the

distinction between endo and exo-products of the Diels–Alder reactions is not critical

for polymer conjugations. Hence, only the structure of the endo isomer is shown. For

polymer P9b (bottom) the proton signal of the aldehyde moiety at 10.7 ppm disappears, as

expected after the quantitative photoinduced Diels–Alder reaction with diethyl fumarate.

Simultaneously, the resonances corresponding to the protons of the Diels–Alder adduct

with diethyl fumarate appear, having a chemical shift ranging from 3.4 to 2.8 ppm.

To corroborate the results of NMR spectroscopy, detailed ESI-MS analyses were

performed (see Figure 3.20). The ESI-MS spectra of P9, P9a, and P9b are shown from top

to bottom in the diagram. For both reactions the m/z ratios of the resulting material are

shifted quantitatively (66.0470 for the Cp addition and 172.0736 for the diethyl fumarate

addition). No residual signals at the m/z values of the respective starting materials are

evident, implying full conversion of the reactants. The exact values for the theoretical

and experimental m/z ratios of the polymers P9, P9a, and P9b having four monomer

units are collated in Table 3.4.
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Figure 3.20 ESI-MS of polymer P9 (top), P9a (middle), and P9b (bottom) between m/z =
985−1235.
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Table 3.4 Theoretical and experimental m/z values for the building blocks P9, P9a, and P9b
having four monomer units, respectively.

polymer m/ztheo m/zexp ∆m/z

P9 889.3032 889.3025 0.0007
P9a 955.3502 955.3507 0.0005
P9b 1127.4238 1127.4242 0.0004

Although orthogonally adressable, it is important to perform the HDA reaction prior

to the photoaddition. The reverse order could lead to side reactions with the RAFT

end group, like step growth polymerization or single-chain folding. However, it was

already proven that the HDA reaction is reversible (please refer to Section 3.3). So the

HDA reaction with Cp could be used as protection of the C=S-double bond. After photo

ligation the Cp could be removed at elevated temperatures and the HDA capable RAFT

end group is accessible again. Thus, a reverse order of ligation steps is still possible or

the generated block copolymers could be grafted onto a Cp-functionalized (membrane)

surface.

Having successfully proven the orthogonal addressability of both end groups ofP9, the

conjugation with polymers was investigated as noted above (see Scheme 3.5). The conju-

gation with Cp terminal P1 proceeds within 24 h in ethyl acetate at ambient temperature

with ZnCl2 as catalyst, yielding the diblock terpolymer P(I-co-S)-b-PEA (P10). As the

third block, fumarate-functionalized poly(ethylene oxide) (PEO-fum) was employed as a

suitable counterpart for the subsequent photoenol ligation. The reaction was conducted

within 2.5 h of UV-light irradiation (λmax = 370 nm) at ambient temperature in dichloro-

methane, resulting in the amphiphilic triblock quaterpolymer P(I-co-S)-b-PEA-b-PEO

(P11). For NMR spectra of P10 and P11 please refere to the Figures 6.16 and 6.17 respec-

tively. The SEC traces of the generated polymers P9 (Mn = 1200 gmol−1, Đ = 1.24), P10

(Mn = 10 500 gmol−1, Đ = 1.26), and P11 (Mn = 12 500 gmol−1, Đ = 1.37) as well as the

SEC traces of the building blocks P1 (Mn = 9400 gmol−1, Đ = 1.24) and PEO-fum (Mn

= 3000 gmol−1, Đ = 1.04) are depicted in Figure 3.21. For both polymer conjugations

(P10 and P11), the elution volume of the products is shifted to lower values compared

to the corresponding precursor polymers (P1/P9 and P10/PEO-fum, respectively), in-
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Figure 3.21 SEC traces of building block P9 (Mn = 1200 gmol−1, Đ = 1.24, solid green line),
P10 (Mn = 10 500 gmol−1, Đ = 1.26, solid blue line), and P11 (Mn = 12 500 gmol−1, Đ = 1.37,
solid red line) as well as the traces of the building blocks P1 (Mn = 9400 gmol−1, Đ = 1.24,
dashed line) and PEO-fum (Mn = 3000 gmol−1, Đ = 1.04, dotted line).

dicating an increase of the respective molecular weight and thus a successful ligation.

Moreover, in the area of the low molecular weight polymers (for P9 close to 27.2 mL

and for PEO-fum approximately 25.8 mL elution volume) no significant residual signal

is observed. Although the molecular weight values obtained from the PS calibration of

the SEC is not accurate, it confirms that the sum of the relative molecular weights of the

starting polymers equals approximately that of the formed block copolymer. The ligation

of P1 (9400 gmol−1) with P9 (1200 gmol−1) results in P10 with a molecular weight of

10 500 gmol−1; the modular ligation of P10 (10 500 gmol−1) with PEO-fum (3000 gmol−1)

results in P11 with a molecular weight of 12 500 gmol−1. However, for both polymer

conjugation reactions an increase of dispersity was observed. In theory, the conjugation

of two narrowly dispersed polymers results in a decrease of Đ .[238] This discrepancy can

be explained by the fact that the theory assumes 100 % end group fidelity. Nevertheless,

as discussed in Section 2.1.3, termination is not completely suppressed in the RAFT
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process, and a small amount of chains carry the 2-cyanopropyl end group of the initiator

AIBN.

The newly developed CTA-3 increases the possibilities to tailor the surface chemistry

of generated filter membranes. Either amphiphilic triblock quaterpolymers could be

directly employed in the SNIPS process or a diblock copolymer could be grafted onto a

Cp-functional pore surface via the protection and re-generation concept of the HDA

RAFT end group with molecular Cp.





4
Membranes Generated via

Reversible HDA Chemistry

Due to the collaboration with the group of Prof. Dr. Felix Schacher (University Jena)

and the availability of the required instruments, all membranes, as well as the SEM

images, were prepared by Christoph Hörenz or Dr. Christian Pietsch. However, the

author stayed one month in Jena to investigate conditions for the SNIPS process himself.

4.1 Preparation of Membranes via SNIPS

Establishing suitable SNIPS process conditions for a new polymer system is not straight

forward. Many parameters such as the choice of the solvents for the casting solution,

the ratio of the used solvents, the concentration of polymer in the casting solution,

the temperature, the relative humidity and the self assemble time have pronounced

influence in the film formation behavior and membrane morphology. By trial and error,

conditions for a successful film formation, employing diblock terpolymer P8 in the
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SNIPS process, were found (see Table 4.1). The polymer (15 wt%) was dissolved in a

Table 4.1 Found SNIPS process conditions for the diblock terpolymer P8 generating the
membrane M1.

parameter conditions

solvent mixture THF/dioxane
solvent ratio 50/50 (wt%)
concentration of polymer 15 wt%
temperature 22 ◦C
rel. humidity 50 %
film casting gap 200 µm
precipitation bath water
self assembly time 360 s

mixture of THF (42.5 wt%) and dioxane (42.5 wt%). The solution was cast on a polished

sheet of glass using a 200 µm gap doctor blade and a Coatmaster 510 (Erichsen GmbH,

Germany). During the process the temperature was kept at 22 ◦C and the rel. humidity

at 50 %. After a self assemble time of 360 s, the glass sheet (with the cast film on top of

it) was immersed into a precipitation bath of deionized water, yielding the membrane

M1. The often used solvent mixture of DMF and THF did not lead to any film formation

with every applied solvent ratio and self assemble time. Instead, only the formation of

micelles was observed after the immersion of the glass sheet (with the cast film on top

of it) into the precipitation bath. A reason could be the high hydrophlilicity of PTEGA.

Only with the THF and dioxane mixture and an unusual long open time a successful

film formation was achieved.

Characterization via scanning electron microscopy (SEM) revealed an isotropic cross

section and a thickness of approximately 18 µm (see Figure 4.1-4.3). Although the

membrane appears very dense in the cross section, it was possible to purge water

through it.
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4 µm

17.65 µm

Figure 4.1 SEM image from the cross section of membrane M1 (magnification: 2.33 kX).

2 µm

Figure 4.2 SEM image from the cross section of membraneM1 (magnification: 6 kX).
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2 µm

Figure 4.3 SEM image from the top view of membrane M1 (magnification: 7 kX).

However, due to the small thickness of M1 the mechanical stability is very low,

exacerbating handling of the membrane without damaging it. Moreover, the small

pores and high density could prevent efficient cleavage of Matrix B from the surface of

the membrane. In order to improve the generated morphology, an additional diblock

terpolymer with a smaller PTEGA block composition was prepared. Therefore, a PTEGA

polymer (P12: Mn = 18 000 gmol−1, Đ = 1.16) with lower molecular weight, compared to

P4, was synthesized and subsequently conjugatedwithP2 to yield the diblock terpolymer

P13 (P13: Mn = 60 000 gmol−1, Đ = 1.33). For the corresponding SEC traces please refer

to Section 6.5, Figure 6.18. Thus, the fraction of PTEGA is reduced from 25 wt% (P8) to

17 wt% (P13). Again, suitable conditions for a successful film formation, now employing

diblock terpolymer P13 in the SNIPS process, were investigated (see Table 4.2). For

the preparation of membrane M2 the ratio of THF/dioxane was changed to 70/30 (wt%)

and the polymer concentration was increased to 20 wt%. Moreover, the self assembly
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Table 4.2 Found SNIPS process conditions for the diblock terpolymer P13 generating the
membrane M2.

parameter conditions

solvent mixture THF/dioxane
solvent ratio 70/30 (wt%)
concentration of polymer 20 wt%
temperature 22 ◦C
rel. humidity 50 %
film casting gap 200 µm
precipitation bath water
self assembly time 40 s

time could be reduced to 40 s. All other parameter were kept identical to the employed

conditions for membrane M1.

Characterization ofM2 via SEM showed that the morphology was successfully im-

proved (see Figure 4.4-4.6). The thickness increased to approximately 28 µm and signifi-

cantly larger pores were generated, the structure is less dense. Moreover, the morphology

from the top layer differs from the supporting substrate. The rather smooth surface is

punctuated with small (20-100 nm) holes (see Figure 4.6).
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10 µm

27.86 µm

Figure 4.4 SEM image from the cross section of membrane M2 (magnification: 1.47 kX).

2 µm

Figure 4.5 SEM image from the cross section of membrane M2 (magnification: 7.5 kX).
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600 nm

Figure 4.6 SEM image from the top view of membrane M2 (magnification: 20 kX).
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4.2 Cleavage of Matrix B from the Surface

To initiate the cleavage of Matrix B from the surface of the membranes, the membranes

were immersed in hot water. The applied temperature is of key importance for the

cleavage kinetics and the preservation of the membrane morphology. It was found that

above 60 ◦C the membrane morphology is not stable (see Figure 4.7). Pores merge and

4 µm

Figure 4.7 SEM image from cross section (left side) and the top view (right side) of membrane
M1 after immersion in water above 60 ◦C (magnification: 2 kX).

round particles form at the surface. Moreover, the diameter of the immersed membrane

pieces is shrinking in a macroscopic scale (a disk with 10 mm diameter to approximately

7 mm diameter).

Hence, the cleavage was performed at 50 ◦C. At this temperature the membrane

morphology proved to be stable. Comparison via SEM showed similar structures before

and after the cleavage of Matrix B from the surface (see Figure 4.8-4.10).
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3 µm

Figure 4.8 SEM image from the cross section of membraneM2 after cleavage process at 50 ◦C
(magnification: 2 kX).

1 µm

Figure 4.9 SEM image from the cross section of membraneM2 after cleavage process at 50 ◦C
(magnification: 7.5 kX).
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1 µm

Figure 4.10 SEM image from the top view of membraneM2 after cleavage process at 50 ◦C
(magnification: 18.15 kX).

To evidence the cleavage of Matrix B from the surface and follow the reaction kinetics,

parts of the membrane were dried, dissolved in CDCl3 and subsequently analyzed via

NMR spectroscopy. The integral of the PTEGA block signal around 3.31 ppm is monitored

in reference to the integral of the resonances of PS in the aromatic area, which are not

affected by the cleaving procedure. Figure 4.11 exemplarily shows the evolution of the

PTEGA resonance from the diblock terpolymer P8, over the membrane formation of

M1, to the kinetic data points of the cleaving conditions within 14 days. An interesting

circumstance is the fact that after the SNIPS process the fraction of PTEGA is already

decreased to 71 %, implying that polymer chains with a high fraction of Matrix B stay

in solution and do not participate in the membrane formation. The difference in ppm

between polymer and membrane resonances in the diagram appears to be significant,

yet is negligible in absolute numbers (0.0006 ppm) and probably due to the temporal

distance of the measurements. Under cleaving conditions the integral of the PTEGA

resonance continuously decreases with time.
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Figure 4.11 Enlarged section of the 1H NMR spectra (500 MHz, CDCl3) of polymer P8 (green
line), the membrane M1 (dashed line) and the kinetic samples from the cleavage process of M1
(from light to dark blue) in the region for the relevant PTEGA resonance around 3.31 ppm.

A kinetic plot of the PTEGA fraction for both membranes (M1 andM2) is depicted

in Figure 4.12. The 100 % starting point represents the corresponding integral of the

PTEGA resonance after membrane formation. For both membranes (M1 and M2) under

cleavage conditions, the fraction of PTEGA decreases with time until a minimum level

is reached. However, membrane M2 reaches a lower minimum (27 %) in half the time (7

days) compared to membrane M1 (41 % in 14 days). This phenomenon can be explained

by the different morphology of the membranes. The larger pores of M2 facilitate the

removal of free PTEGA polymer chains, contrarily the dense structure and small pores

of M1 support re-attachment reactions, thus slowing down the cleaving process. In

both cases the PTEGA fraction does not approximate 0 %. This can be explained by

the fact that with the SNIPS process a certain amount of diblock terpolymer chains are

completely incorporated into the membrane framework. Otherwise the thickness of the

framework structures would be limited by the chain length of the employed Matrix A
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polymers, which is not the case. Only the Matrix B polymers directly on the pore surface

of the membranes can be removed. Thus, the minimum fraction of PTEGA, reached

under cleavage conditions, is dependent upon the incorporated amount of Matrix B

polymers. Again, the difference betweenM1 andM2 is due to the different morphology.
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Figure 4.12 Evolution of the fraction of PTEGA for the membranes M1 (squares) and M2
(triangles) during the cleavage procedure. The dashed lines represent the individually achieved
minimum at 41 % (M1) and 27 % (M2).

In summary, the cleavage of Matrix B from the surface of the membranes is achieved

by immersion of the membranes in 50 ◦C hot water. It was observed that at higher

temperatures the morphology is not stable. The pores were closed and round particles

were found all over the surface. In addition, it was found that the rate of the cleavage

depends strongly on the morphology of the employed membrane. In a dense framework

with only little pores the removal of the hydrophilic polymer blocks after cleavage is

hampered, whereby the entire process is slowed down.
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4.3 Grafting Hydrophilic Blocks onto Cp-Functional

Surfaces by Micromolding in Capillaries

In order to test the ability of the Matrix B polymers P3, P5 and P6 to attach on a Cp

functional pore surface, the polymers were employed to generate polymer patterns onto

Cp functional silicon wafers by micromolding in capillaries (MIMIC).* The capillaries

mimic the pores of a membrane.

The general concept of the preparation of surfaces patterned with Matrix B poly-

mer brushes is depicted in Scheme 4.1. Silicon wafers activated with piranha solution

were coated with 11-bromoundecyl trichlorosilane. Subsequently, the bromine was

substituted with Cp. MIMIC was employed to pattern the surfaces with three different

polymers (P3, P5 and P6). The bromine functionalization of activated silicon wafers with

11-bromoundecyl trichlorosilane proceeded within 45 min in toluene at ambient temper-

ature. Cp functional surfaces were prepared with NaCp from the bromine terminated

surfaces by substitution with Cp in THF at ambient temperature overnight. The success-

ful surface functionalizations were evidenced by water contact angle measurements (see

Figure 4.13). The contact angle increases from <10° for the activated silicon wafer to 88°

A B C

Figure 4.13 Pictures of the water contact angle measuremts for A the activated silicon wafers
(<10°), B the Br functional surfaces (88°) and C the Cp functional surface (71°).

for the Br functional surface. After Cp substitution the surface becomes slightly more

* Parts of the current section are adapted with permission from B. Vonhören, M. Langer, D. Abt, C.
Barner-Kowollik, B. J. Ravoo, Langmuir 2015, 31, 13625–13631. Copyright ©2015 American Chemical
Society. B. Vonhören and M. Langer wrote the manuscript. M. Langer synthesized and characterized
the polymers, B. Vonhören conducted the experiments and characterizations on the silicon wafers.
D. Abt performed the Tof-SIMS measurements. C. Barner-Kowollik and B. J. Ravoo motivated and
supervised the project and contributed to scientific discussions.
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Scheme 4.1 General concept for the preparation of polymer patterned surfaces via MIMIC.

hydrophilic, which leads to a small decrease in the contact angle to 71°. The change

in hydrophobicity is a good indication for the successful substitution. XPS analysis

were performed to further support the results of the water contact angle measurements.

The appearance of a bromine signal (Br 3d, 71 eV) in the XP spectrum provides further

evidence of the successful attachment of the bromosilane to the activated silicon wafer

(please refer to Figure 6.19 in Section 6.5). Furthermore, the bromine signal vanishes

after the substitution with Cp (Figure 6.19).
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Finally, the three polymers P3, P5 and P6 were grafted onto the Cp surfaces in a

patterned fashion by MIMIC. To this end, aqueous solutions with low polymer con-

centrations (30 g L−1) were prepared, each of them containing one of the polymers.

Subsequently, poly(dimethylsiloxane) PDMS stamps with different line patterns were

placed on the Cp SAMs, and a small drop of polymer solution (5 μL) was placed at the

open end of the capillaries (Figure 4.14).
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Figure 4.14 Illustration of the MIMIC procedure. 5 μL aqueous polymer solution are placed
at the open end of the PDMS stamp capillaries.
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In the MIMIC process, the filling of the capillaries is not always straightforward.

Depending on the viscosity of the solvent and the interfacial free energies of the stamp

and the surface, the rate of filling can be low.[243] Certain combinations of stamp, surface

and solvent completely hamper the filling process. It is especially difficult if water is the

solvent of choice. In the present study, oxidized PDMS stamps were used to increase

the fill rate. Oxidizing the stamps with ozone leads to an increase in the density of

silanol groups on the surface of the stamp. Hence, the stamps become significantly

more hydrophilic. Although the Cp functional surface is quite hydrophobic (static

contact angle of 71°), the capillaries were filled within a few seconds with the aqueous

solutions, when oxidized PDMS stamps were employed. In case of the plannedmembrane

functionalization, the hydrophobic pores can be purged by application of pressure. In

aqueous media the HDA reaction proceeds very fast without the need of any catalyst.[19]

After a reaction time of 90 min the PDMS stamp was removed from the surface and the

silicon wafer was cleaned by rinsing with water, ethanol, and acetone and sonication in

water. The patterned areas were approximately 1.0 cm × 0.5 cm in size.

The polymer patterned surfaces were comprehensively analyzed by a set of surface

analytical methods. Due to the hydrophilic character of the three polymers, the water

contact angles of the modified surfaces decrease after the polymer deposition (52° for

P3 (PTEGA), 56° for P5 (PHEA) and 40° for P6 (PAA) ; see Figure 4.15, inset). Since

BA C

Figure 4.15 Microscopy pictures of the water condensation experiment and pictures of the
water contact angle measurement. A: P3, PTEGA, 52°; B: P5, PHEA, 56°; C: P6, PAA, 40°.

the contact angles (and thus the hydrophobicity) of the Cp functional surface and the

polymer coated surfaces differ by 15−31°, water should preferably condense on the

polymer brushes. The optical microscopy images in Figure 4.15 display the expected
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phenomenon and are a first strong indication that patterned polymer surfaces were

obtained. For P3 and P5 the result is similar, single water drops are aligned in rows. In

case of P6, the most hydrophilic polymer, the water forms a continuous film where the

polymer brushes are grafted onto the surface.

Further characterization of the samples by AFM was challenging. Contamination

(such as dust particles) and measurement artifacts disturbed most experiments. High-

quality AFM images were obtained only for P6 (see Figure 4.16). The observed average

height of the brushes was close to 1 nm, which corresponds to a grafting density close

to 0.14 chains nm−2.[244] The pattern of the brushes exhibits a high spatial resolution in

accordance with the applied stamp pattern and only a small number of defects could be

observed, which derive from unfilled capillaries.

50 µm

Figure 4.16 AFM height image (10 mm2) of P6 (stamp pattern, 5 μm contact area spaced by
3 μm).
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The atomic composition of the samples was investigated by XPS. The carbon signal

spectra of the Cp functional surface exhibits a single peak at 285 eV, which is characteristic

for aliphatic and aromatic bound carbon (see Figure 4.17, A). Carbon signals with higher
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Figure 4.17 C 1s high-resolution scans of XPS measurements of the Cp functionalized silicon
wafer (A) and of the three different polymers (B: P3, PTEGA;C: P5, PHEA;D: P6, PAA) patterned
via MIMIC on Cp functionalized silicon wafers.

binding energies, which would indicate the presence of oxidized carbon species, were not

observed. In contrast, all samples with polymer brushes exhibit pronounced additional

peaks for oxidized carbons at binding energies of >285 eV (see Figure 4.17, B-D).[245]

The additional signals of the sample covered with P5 (PHEA, C) are characteristic for

ester moieties (286.6 and 289 eV) and alcohols (286.6 eV). The sample with P6 (PAA,

D) brushes shows a signal at 289 eV corresponding to the carbon atoms of the acid

group. The surfaces patterned with P3 (PTEGA, B) brushes reveal the same signals as

the PHEA brushes at 286.6 and 289 eV. However, the carbon signal at 286.6 eV is more

pronounced, since PTEGA contains more C−O single-bond carbon atoms than PHEA.

For all three polymers, the signals of the oxidized carbon species, compared to the C−C

signal at 285 eV, are lower than what would be expected from the molecular structure.
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The discrepancy is associated with the low thickness of the polymer layer. The observed

carbon signal originates not only from the polymer brushes but also from the underlying

Cp-alkyl layer, which contains only aromatic and aliphatic carbon moieties.

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging of the generated

surfaces further supports the results described above. Signals detected at 26.0 u for all

three different samples with P3, P5 and P6 brushes could be assigned to the secondary

ion CN−, which results from the R end group of the RAFT polymers. The observed

fragment patterns generated with ToF-SIMS imaging correspond well to the negative

patterns of the applied stamps, polymer stripes with a width of 15 μm spaced by 5 μm (see

Figure 4.18). In addition, further characteristic fragments (PO2
−, PO3

−, CO2
−, S−, SH− ,

and OHCH2CH2
+) for the respective RAFT polymers could be detected in a micropattern

that corresponds to the stamp used for MIMIC (please refer to Section 6.5 Figures 6.20−

6.24).

CN
_

CN
_

CN
_

P3 P5 P6

Figure 4.18 ToF-SIMS images of the three polymers P3, P5 and P6 patterned via MIMIC on
Cp functional silicon wafers (stamp pattern, 5 μm contact area spaced by 15 μm).

In order to rule out that the polymers are only physically adsorbed, a negative control

experiment was performed. A solution of P6 was applied via MIMIC on a bromine-

terminated surface. No patterned water condensation could be observed (please refer

to Figure 4.19), confirming that the polymers are indeed covalently bound to the Cp

functional surface and do not simply adsorb in an unspecific manner.

In an additional side project, the different protein repellent character of the generated

surfaces were investigated. Thus, the patterned surfaces were submerged in a solution

of rhodamine-labeled peanut agglutinin (PNA; 50 μg mL−1) in 4-(2-hydroxyethyl)-1-



96 4 Membranes Generated via Reversible HDA Chemistry

Figure 4.19 Microscopy picture of the water condensation from the negative control experi-
ment.

piperazineethanesulfonic acid (HEPES) buffer (20 mM HEPES, 150 mM NaCl, 1 mM

CaCl2, 1 mMMnCl2, pH 7.5) for 20 min and subsequently washed with HEPES buffer and

distilled water. PNA was chosen because it was already available in the laboratory. The

analysis of the generated samples by fluorescence microscopy provided clear evidence

that the fluorescent protein preferably adheres to the areas without polymer coating

(see Figure 4.20, the bright stripes). This experiment with rhodamine-labeled PNA is not

only supporting the evidence of the generation of patterned polymer surfaces, but also

shows that the surface chemistry is modified, by the grafting of the polymers onto the

surface, in a way that fouling of PNA could be strongly reduced.

After demonstrating by a variety of analytical methods that patterned polymer surfaces

can be prepared by MIMIC, it can be stated that the employed polymers can likely be

used to be grafted onto the Cp functional pore surface from the membranes generated

in Section 4.2.
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A

100 µm

B

100 µm

C

100 µm

Figure 4.20 Fluorescence microscopy images of the polymer patterned (A: P3, B: P5, C: P6)
sufaces after exposure to a solution with rhodamine-labeled PNA. Fluorescence of rhodamine-
labeled PNA (bright lines) occurs only between the stripes of the polymer brushes (stamp pattern,
5 μm contact area spaced by 20 μm).





5
Summary and Outlook

Nanoporous block copolymer membranes become increasingly important for various

applications such as waste water treatment, pharmaceutical separations or in biomedical

engineering devices, to mention only a few. Besides the morphology (pore size, pore

distribution and thickness) of the membrane, and its stability against mechanical stress

and organic solvents, the surface chemistry (e.g. the polarity or the presence of certain

functional groups) is key factor for every application.

Tailoring the surface chemistry of a given membrane is not straight forward. Thus, the

current thesis describes the development and realization of a concept for the preparation

of nanoporous block copolymer membranes with adjustable surface chemistry. An es-

sential element of the concept is the modular synthesis of amphiphilic block copolymers

with a switchable linkage between the individual blocks. After membrane formation,

employing these kind of block copolymers, the polar block on the surface can be cleaved

off and new components with the appropriate functional group can then be grafted onto

the surface.
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For the generation of the desired amphiphilic block copolymers with switchable link-

age, the employed building block polymers were prepared via the RAFT technique. For

the unpolar building block, a bromine functional RAFT agent was used to copolymerize

styrene and isoprene. Subsequently, the bromine was replaced with cyclopentadiene to

introduce a highly reactive diene at one end group of the polymer. For the preparation

of the polar building blocks, a HDA capable RAFT agent was employed. As a result, the

generated polymers can be used in conjugation reactions without the need of any post

polymerization modification. Utilized monomers were triethylene glycol methyl ether

acrylate, hydroxyethyl acrylate and acrylic acid.

In order to examine the thermal behavior of the HDA linkage, a low molecular

weight poly(isoprene-co-styrene)-block-poly(triethylene glycol methyl ether acrylate)

(P(I-co-S)-b-PTEGA) diblock terpolymer was prepared and subjected to detailed HT-

NMR, HT-SEC and HT-DLS analysis. Moreover, a high molecular weight analogue of

the P(I-co-S)-b-PTEGA diblock terpolymer was prepared and subsequently employed in

a macroscopic cleavage experiment.

A dual functional CTA capable of highly efficient sequential thermal and photo induced

ligation, generating α,ω-functional polymers, was developed in order to further increase

the variety of possible membrane modifications. A HDA reaction with cyclopentadiene

can be used as protection of the C=S-double bond. After photo ligation of the α,ω-

functional polymer with a second block, the cyclopentadiene can be removed at elevated

temperatures and the HDA capable RAFT end group is accessible again. Thus, the

so generated block copolymers can be grafted onto a Cp-functionalized (membrane)

surface. To exemplarily demonstrate the versatility of the dual functional CTA, an

amphiphilic triblock quaterpolymer poly(isoprene-co-styrene)-block-poly(ethyl acrylate)-

block-poly(ethylene oxide) (P(I-co-S)-b-PEA-b-PEO) was prepared.

For the preparation of nanoporous block copolymer membranes the high molecular

weight analogue of the P(I-co-S)-b-PTEGA diblock terpolymer was employed in the

SNIPS process. The resulting membranes were very fragile and had only small pores.

Thus, another diblock terpolymer with a smaller PTEGA block was synthesized and
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subjected to membrane formation. In this way, thicker membranes with bigger pores

could be generated.

Cleaving off the polar polymer from the surface of both generated membranes was

achieved by immersion in 50 ◦C hot water. This way, the morphology of the membranes

was not affected by the cleaving procedure. The kinetics of the reaction was followed by

NMR spectroscopy. It was found that the removal of the polar block from the surface of

the membranes proceeds faster and to a larger extend for the second membrane, with

the larger pores.

The ability of the generated polar polymer blocks (PTEGA, PHEA and PAA) to attach

to a cyclopentadienyl functional surface in aqueous media in a pore like environment

was tested by micromolding in capillaries on silicon wafers. The successful covalent

functionalzation in the patterns of the applied stamps was confirmed via water contact

angle measurements, vapor deposition pictures, XPS, AFM and ToF-SIMS.

In summary, the current thesis indicates that the developed concept for the preparation

of nanoporous block copolymer membranes with feed stream specific pore surfaces

via modular ligation chemistry should work in principle. However, until now it was

not possible to graft any polymer or molecule onto the surface of the membranes

with cleaved off hydrophilic block. The reason for this circumstance is not clear. A

possible explanation could be that by simple immersion in the reaction mixture, the

employed reactants in aqueous solution cannot migrate into the membrane because

of its hydrophobic nature. Inserting the membranes in a flow cell, in order to purge

the reaction mixture through it, was not possible since the membranes became very

brittle after the cleaving of the hydrophilic block. Already during the insertion, damages

such as fractures or large holes could not be avoided. A solution to that problem

could be to increase the amount of isoprene in the hydrophobic block, to reduce the

brittleness, and additionally increase the thickness of the membranes, to make them

mechanically more stable. Therefore it may be necessary to exchange PTEGA with

another hydrophilic block. An alternative explanation could be that after the cleavage

procedure, the cyclopentadiene moieties are not accessible anymore. This would imply

that the moieties migrate into the inner, hydrophobic framework of the membranes. In
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this case, a possible solution could be the use of an amphiphilic triblock terpolymere for

the membrane formation, consisting of one hydrophobic block, a small hydrophilic block

in the middle and a large hydrophilic block. Then, the switchable HDA conjungation

should be placed between the two polar blocks. Thus, after cleavage of the large polar

block the reactive moieties would stay accessible on the surface of the membrane

within a small hydrophilic layer of the middle block. A proposal for such a polymer

is depicted in Figure 5.1. The hydrophobic block is generated via copolymerization of

isoprene and styrene, employing a photoenol functionalized trithiocarbonate as CTA.[246]

The hydrophilic middle block is prepared by ATRP with a furan protected maleimide

containing ATRP initiator.[247] Subsequently the meleimide is deprotected and used for

the conjugation with the hydrophobic block via photoenol reaction. Afterward, the

residual bromine from the hydrophilic block is substituted with Cp. Now, the second

hydrophilic block can be attached with the familiar RAFT-HDA chemistry.
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Figure 5.1 Structure of the proposed amphiphilic triblock terpolymer with a switchable linkage
between two hydrophilic blocks.
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Experimental Section

6.1 Materials

3-hydroxypropyl 2-bromo-2-methylpropanoate,[248] 2-(((dodecylthio)carbonothioyl)thio)-

2-methyl propanoic acid (DMP),[249] triethylene glycol methyl ether acrylate (TEGA)[250]

vinyl benzyl photoenol (2-methyl-6-((4-vinylbenzyl)oxy)benzaldehyde),[241] fumarate

end-capped poly(ethylene glycol),[251] 2-cyanopropan-2-yl(diethoxyphosphoryl)methane-

dithioate (CTA-2)[252] and sodium cyclopentadiene (NaCp)[253] were synthesized accord-

ing to literature protocols. TEGA was stored in the freezer, NaCp in a glove box. 2,2′-

Azobis(2-methylpropionitrile) (AIBN) was recrystallized in methanol and stored in the

freezer (-21℃). Isoprene (99 %, Abcr), styrene (99 %, Merck), ethyl acrylate (99 %, Merck),

hydroxyethyl acrylate (99 %, Abcr) and dioxane (99 %, Abcr) were passed through a col-

umn of basic alumina (aluminum oxide 90 active basic, 0.063-0.2 mm, Merck) to remove

the inhibitor and used immediately afterwards. Acrylic acid was distilled and stored

in the freezer. Cyclopentadiene was cracked and distilled (169 ℃) from dicyclopentadi-

ene and used immediately. Diethylphosphite (98 %, Acros), 4-(dimethylamino)pyridine
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(DMAP) (99 %, Aldrich), N,N ′-dicyclohexylcarbodiimide (DCC) (99 %, Abcr), HCl (32 %,

Acros), NaHCO3 (99 %, VWR), NaH (60 % with petrol ether, Aldrich), MgSO4 (99 %,

Carl Roth GmbH and Co. KG), 2,2’-Azobis(N -butyl-2-methylpropionamide) (VAm-110)

(Wako), carbon disulfide (99.9 %, Acros), triphenylphosphine (99 %, Abcr), nickelocene

(99 %, Abcr), NaI (99 %, Acros), oxalylbromide (98 %, Acros), silica gel (Geduran Si 60,

40-63 μm, for column chromatography, Merck), diethyl fumarate (97 %, Alfa Aesar),

zinc chloride (98 %, Fluka), triethylamine (99 %, Acros) and dry THF (99 %, Acros) were

used as received from the supplier. Dichloromethane (DCM), ethyl acetate, acetonitrile,

n-hexane, methanol and tetrahydrofuran (THF) were all analytical grade and purchased

from VWR.

6.2 Characterization Methods

Size Exclusion Chromatography (SEC)

SEC measurements were performed on a TOSOH Eco-SEC HLC-8320 GPC System, com-

prising an autosampler, a SDV 5 μm beadsize guard column (50 × 8 mm, PSS) followed by

three SDV 5 μm columns (300 × 7.5 mm, subsequently 100 Å, 1000 Å and 105 Å pore size,

PSS), and a differential refractive index (dRI) detector using tetrahydrofuran (THF) as the

eluent at 30 ℃ with a flow rate of 1mLmin−1. The SEC system was calibrated using nar-

row poly(styrene) standards ranging from 266 to 2.52 106 gmol−1, respectively with nar-

row poly(methyl methacrylate) (PMMA) standards ranging from 800 to 1.82 106 gmol−1.

Calculation of the molecular weight proceeded via the Mark-Houwink-Sakurada (MHS)

parameters for poly(styrene) in THF at 30 ℃, i.e., K = 13.63 10-3 mLg−1, α = 0.714. For

PMMA the corresponding MHS parameters were employed: K = 129.8 10-3 mLg−1, α =

0.688.
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SEC measurements of PAA were performed on a SECcurity GPC System - Polymer

Standards Service (PSS) GmbH, Mainz - Agilent Technologies 1260 Infinity, comprising

an autosampler, a Suprema 5 μm bead-size guard column (8 × 50 mm, PSS) followed by a

mixed bed PSS Suprema linear S 5 μm column( 8 x 300 mm), and a dRI and UV detector

using Na2HPO4 · 2H2O buffer (11.88 g L−1) as eluent at ambient temperature with a flow

rate of 1mLmin−1.

Nuclear Magnetic Resonance (NMR) Spectroscopy

NMR measurements were conducted on a Bruker AM500 or a Bruker Ascend 400 (for

the high temperature measurements) spectrometer at 500 or 400 MHz, respectively,

for hydrogen nuclei. Samples were dissolved in CDCl3, DMSO-d6 or toluene-d8 using

residual solvent peaks for shift correction. Abbreviations used in the description of the

materials’ syntheses include singlet (s), doublet (d), triplet (t), quartet (q), and unresolved

multiplet (m).

Electrospray Ionization-Mass Spectrometry (ESI-MS)

Mass spectra were recorded on a Q Exactive (Orbitrap) mass spectrometer (Thermo

Fisher Scientific, San Jose, CA, USA) equipped with an HESI II probe. The instrument

was calibrated in the m/z range 74-1822 using premixed calibration solutions (Thermo

Scientific). A constant spray voltage of 4.7 kV and a dimensionless sheath gas of 5 were

applied. The capillary temperature and the S-lens RF level were set to 320 ℃ and 62.0,

respectively. The samples were dissolved with a concentration of 0.05 g L−1 in a mixture

of THF and MeOH (3:2) containing 100 μmol of sodium triflate and infused with a flow

of 5 μLmin−1.
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High Temperature Dynamic Light Scattering (HT-DLS)

The HT-DLS experiments were carried out with a DynaPro Nanostar (WYATT Tech-

nology Corporation, USA) operating at a laser wavelength of 658 nm and observing

the fluctuations of the scattered light at an angle of 90 °. For the analysis of the retro

HDA and HDA reactions a solvent mixture of 80 vol% DMAc (with 2.75 g L−1 ZnCl2 as

catalyst) and 20 vol% toluene was used and the concentration of the polymers (HDA-

terpolymer and building block as reference) was 25 g L−1. The hydrodynamic radius

was determined at 30 ℃ and 90 ℃ taking into account the solution viscosities at the

respective temperatures (measured with a rolling ball viscometer (Anton Paar, Austria)).

Good experimental accuracy could be achieved by averaging 5 to 10 measurements – of

each 10 to 25 single acquisitions – for each data point.

High Temperature Size Exclusion Chromatography (HT-SEC)

The HT-SEC experiments were conducted employing a PL-GPC 220 high temperature

chromatograph (Agilent Technologies, USA) comprising an autosampler, a ResiPore col-

umn (Agilent Technologies, USA) and a built-in dRI detector, using 1,2,4-trichlorobenzene

(TCB) as eluent at a flow rate of 0.9mLmin−1. All components were set to the tempera-

ture of 90 ℃. A calibration with polymer standards has not been performed since the

analysis was only used to derivemolecular weight independent data. The chromatograms

were deconvoluted in Microsoft Excel®. First a chromatogram of the block terpolymer

P7 after the retro HDA reaction (i.e. complete debonding) was recorded. Gauss functions

were fitted to both peaks in order to describe them mathematically. The functions can

be used for simulating chromatograms of mixtures of P1 and P3 in any desired ratio (an

overlay of two Gauss functions was used for P3 to take into account the asymmetrical

peak shape). The peaks were subsequently fitted to chromatograms of P7 after a partial

retro HDA reaction (not complete debonding) by varying the parameters that control

the area of the peaks, yet keeping the parameters for peak position and width constant.

To obtain an optimum mathematical fit, a further Gauss peak was added for describing

the distribution between the peaks of P1 and P3, which results from the presence of
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the block copolymer P7. Due to the concentration sensitivity of the dRI detector the

peak area of the simulated peaks can be correlated to the (weight) concentration of the

corresponding polymers in the mixture. Hence, it is possible to track the change of the

concentration of the individual components P1, P3, and P7 over multiple cycles of the

HDA/retro HDA experiment.

Scanning Electron Microscopy (SEM)

Samples for SEM were prepared as follows: Top view: Membrane slices were cut, placed

on a glass surface and dried in vacuum for 6 h. Cross-sectional view: Membrane slices

were deep-frozen in liquid nitrogen, broken, placed on a glass surface and also dried in

vacuum for 6 h. Finally, the samples were coated with gold (≈8 nm) using a BAL-TEC

SCD005 sputtering device (Balzers, Liechtenstein). SEM measurements were performed

on a Zeiss (LEO) 1530 Gemini FESEM operating at 8 to 10 kV using an InLens detector.

Water Contact Angle

Water contact angles weremeasured by the sessile dropmethod on a DSA 100 goniometer

(Krüss GmbH Wissenschaftliche Laborgeräte, Germany).

X-ray Photoelectron Spectroscopy (XPS)

XPS measurements were performed with an Axis Ultra DLD (Kratos Analytical Ltd, UK).

A monochromatic Al Kα source (hν = 1486.6 eV) at 10 mA filament current and 12 kV

filament voltage source energies was used. The pass energy was set to 20 eV for high

resolution scans and to 160 eV for survey scans. The charge neutralizer was used to

compensate for sample charging. All measurements were carried out in the “hybrid

mode”. The data was evaluated with CasaXPS (version 2.3.15, Casa Software Ltd, UK)

and the spectra were calibrated to aliphatic carbon (C1s = 285 eV).
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Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS)

ToF-SIMS was conducted with a TOF.SIMS5 instrument (IONTOF GmbH, Münster, Ger-

many), equipped with a Bi cluster liquid metal primary ion source and a non-linear

time-of-flight analyzer. For best spectral resolution, the Bi source was operated in the

“bunched” mode providing 0.7 ns Bi3+ ion pulses at 25 keV energy and a lateral resolution

of approximately 4 μm. The short pulse length allowed high mass resolution to provide

chemical assignments of the complex mass spectra of the immobilized organic layers.

Images larger than the maximum deflection range of the primary ion gun of 500 ×

500 μm2 were obtained using the manipulator stage scan mode. Primary ion doses were

kept below 1011 ions·cm−2 (static SIMS limit). Spectra were calibrated on C+, CH+, CH2
+,

and CH3
+; or on C-, CH-, and CH2

-, respectively.

Lateral refinement was obtained conducting either the “burst alignment mode” or “de-

layed extraction” mode of the primary ion source. The “burst alignment mode” with

100 ns pulse width provides a highly focused ion beam to allow sub-μm resolution due

to avoiding chromatic aberration of the Bi primary ion beam due to pulse bunching.

“Burst aligment” mode provides nominal mass resolution only. The “delayed extraction”

mode is also based on 100 ns primary ion pulses, but here the secondary ion extraction

is not quasi-static but instead pulsed with a time delay relative to the impact of the

primary ions. Therefore, the lateral resolution is comparable to the “burst alignment”

mode but the spectral resolution is no longer dependent on the primary ion pulse width.

Mass resolution, (expressed in m/дm) is for “bunched” mode in the order of 8000, and

for delayed extraction in the order of 4000.

Atomic Force Microscopy (AFM)

AFM imaging was performed using a Nanowizard 3 from JPK Instruments operated in

tapping mode with Veeco RTESP-Tapping Mode Etched Silicon Probes. The AFM was

typically operated with a setpoint of 0.900 V and a scan rate of 1.00 Hz with a resolution

of 512 x 512 pixels. The data was analyzed with Gwyddion (version 2.22).
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Optical and Fluorescence Microscopy

For fluorescence microscopy imaging an Olympus BX 53 microscope was operated

with an Olympus XC 10 camera and a X-Cite® Series 120Q by Lumen Dynamics as the

irradiation source. Data processing was carried out with the software OLYMPUS Stream

Start 1.8. Images were taken at 50-fold magnification with an exposure time of 50 ms.
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6.3 Employed Devices and Methods

Employed UV-Lamp for the Photoenol Reaction

The employed UV-lamp is a compact low-pressure fluorescent lamp (Cleo PL-L, Philips

Deutschland GmbH) emitting at 370 nm ± 50 nm, 36 W). The emission spectrum is

depicted in Figure 6.1. The measured radiation energy at the distance (d = 60 mm) of the

samples is 11.99 mW cm-2.
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Figure 6.1 Emission spectrum of the employed UV-lamp.
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Membrane Preparation

Membranes were prepared via the SNIPS process. A 20 wt% solution of P13, in a

mixture of dioxane (24 wt%) and THF (56 wt%), was cast with a 200 μm doctor blade

onto polished (with chloroform and iso -propanol) glass sheets using a Coatmaster 510

(Erichsen GmbH, Germany). A picture of the setup is shown in Figure 6.2. The film

casting was performed in a climate chamber from PlasLabs to control both relative

humidity (50 %) and temperature (22 ℃) during the process. After a self-assemble time

of 40 s, the glass sheet (with the cast film on top of it) was immersed into a precipitation

bath of deionized water, yielding the filter membranes. If not used immediately, the

membranes were stored in deionized water at ambient temperature until further usage.

doctor blade

glass plate

polymer solution

Figure 6.2 Setup of the film casting via a doctor blade with the Coatmaster 510.

PDMS Stamp Preparation

PDMS stampswere prepared bymixing poly(dimethylsiloxane) and curing agent (Sylgard

184, Dow Corning) in a 10 to 1 ratio and casting this mixture on a patterned silicon

master. The PDMS mixture was cured at 80 ℃ overnight. Patterned stamps were cut

out with a knife and put into a UV ozonizer (PSD-UV, Novascan Technologies Inc.) for
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55 min prior to use. If not used immediately, the PDMS stamps were stored in distilled

water.

Protein Adsorption

Micropatterned polymer surfaces were covered with tetramethylrhodamine labeled

peanut agglutinin (50 μg mL-1) in HEPES buffer (20 mM HEPES, 150 mM NaCl, 1 mM

CaCl2, 1 mM MnCl2, pH 7.5) for 20 min. Next, the substrates were carefully washed with

HEPES-buffer and ultrapure water by exposing the surfaces for 5 min in beakers with

the corresponding wash solutions and gentle shaking. After drying the substrates in a

slow stream of Ar, the samples were analyzed by fluorescence microscopy.
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6.4 Synthesis Protocols

Synthesis of 3-((2-bromo-2-methylpropanoyl)oxy)propyl 2-

(((dodecylthio)carbonothioyl)thio)-2-methylpropanoate

(DMP-Br; CTA-1)

DMP (3.12 g, 8.56 mmol), DMAP (0.11 g, 0.86 mmol) and 3-hydroxypropyl 2-bromo-2-

methylpropanoate (3.85 g, 17.1 mmol) were dissolved in DCM (20 mL) and cooled to

0 ℃ using an ice bath. After addition of a solution of DCC (1.77 g, 8.58 mmol) in DCM

(10 mL), the cooling bath was removed and the mixture was stirred overnight at ambient

temperature. Subsequently, the white precipitate was filtered off, the solution was diluted

with DCM (70 mL), extracted with 0.5 M aqueous HCl (2×100 mL) and washed with

saturated NaHCO3 solution (1×100 mL). The organic layer was dried over MgSO4 and

concentrated under vacuum. The crude product was purified by column chromatography

on silica with n-hexane/ethyl acetate (19:1, v/v, Rf 0.23) as solvent and subsequently

dried under high vacuum to give a yellow liquid (3.08 g, 63 %). 1H NMR (500 MHz,

CDCl3) δ (ppm): 4.22−4.18 (m, 4H, b), 3.26 (t, J3 = 7.4 Hz, 2H, e), 2.04−1.99 (m, 2H, c), 1.93

(s, 6H, a), 1.69 (s, 6H, d), 1.70−1.62 (m, 2H, f), 1.40−1.33 (m, 2H, g), 1.33−1.20 (m, 16H, h),

0.86 (t, J3 = 6.9 Hz, 3H, i). 13C NMR (125 MHz, CDCl3, depicted in Figure 6.3) δ (ppm):

221.64 (C=S), 172.90, 171.49, 62.33, 62.13, 55.88, 66.68, 36.97, 31.91, 30.74, 29.63, 29.62,

29.55, 29.45, 29.34, 29.10, 28.96, 27.83, 25.36, 22.69, 22.65, 14.12. ESI-MS: m/z calculated

for C24H43BrO4S3 [M + Na]+, 593.14; found, 593.17.

Copolymerization of Styrene and Isoprene (P1a, P2a)

Copolymerization of styrene and isoprene (P1a, P2a). The polymerizations were con-

ducted in the bulk in a pressure stable flask. Styrene (80 mol%), isoprene (20 mol%),

the RAFT agent CTA-1 and the initiator VAm-110 were placed in the flask and the

polymerization mixture was purged 45 min with N2 to remove oxygen. To obtain P1a,

the ratio of monomer/CTA/initiator was 300/1/0.2 and for P2a the ratio was 1500/1/0.2.

After purging, the reaction mixture was immersed in an oil bath (110 ℃) to start the
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polymerization. The reaction time for P1a was 8.5 h and 24 h for P2a. Afterwards the

polymerizations were quenched via rapid cooling and exposure to air. Subsequently, the

polymers were recovered by repeated precipitation in cold methanol and dried under

vacuum. P1a: 30 % conversion, Mn = 9100 gmol−1(PS calibration), Đ = 1.19. P2a: 39 %

conversion, Mn = 49 000 gmol−1(PS calibration), Đ = 1.32.

Nucleophilic Substitution of Bromine with Cyclopentadienyl

(P1b, P2b)

The following procedure is valid for both polymers. Polymer P1a: under inert atmo-

sphere, 3 g P1a (0.33 mmol), 0.54 g triphenylphosphine (2 mmol), 0.76 g NiCp2 (4 mmol)

and 0.90 g NaI (6 mmol) were dissolved in 75 mL dry THF and stirred over night at

ambient temperature. Afterwards 200 mL DCM were added and all solids were removed

via centrifugation. Subsequently, the solution was concentrated under vacuum and

precipitated in methanol. The obtained polymer was dissolved again in THF and then

passed through a column of basic aluminum oxide. Repeated precipitation in methanol

and drying under vacuum provided a clean yellow polymer (P1b: Mn = 9200 gmol−1(PS

calibration), Đ = 1.22; P4b: Mn = 50 000 gmol−1(PS calibration), Đ = 1.36).

Polymerization of Triethylene Glycol Methyl Ether Acrylate (P3,

P4, P12)

Dioxane (P3: 8.35 mL; P5 and P12: 25 mL), triethylene glycol methyl ether acrylate

(P3: 6.53 mL, 7.12 g, 32.6 mmol; P4 and P12: 19.56 mL, 21.32 g, 97.70 mmol), AIBN (P3:

8.2 mg, 50 µmol; P4 and P12: 7.1 mg, 43 µmol) and CTA-2 (P3: 70.6 mg, 0.25 mmol;

P4 and P12: 61.1 mg, 0.22 mmol) were placed in a Schlenk-flask and the polymeri-

zation mixture was degassed via three consecutive freeze-pump-thaw cycles. Next,

the flask was placed in a 70 ℃ oil bath to commence the polymerization. After 3 h

(for P3; for P4 2.25 h and P12 1 h) the reaction was stopped via rapid cooling and

exposure to air. The polymer was obtained by repeated precipitation in n-hexane (P3:
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19 % conversion, Mn = 6600 gmol−1(PMMA calibration), Đ = 1.12; P4: 37 % conver-

sion, Mn = 35 000 gmol−1(PMMA calibration), Đ = 1.30; P12: 20 % conversion, Mn =

18 000 gmol−1(PS calibration), Đ = 1.16).

Polymerization of Hydroxyethyl Acrylate (P5)

Ethanole (9.5 mL), hydroxyethyl acrylate (9.5 mL, 9.60 g, 82.71 mmol), AIBN (45.3 mg,

275 μmol) and 2-cyanopropan-2-yl(diethoxy-phosphoryl)methane-dithioate (155.1 mg,

551 μmol) were placed in a round-bottom flask and the polymerization mixture was

purged 45 min with N2 to remove oxygen. Next, the flask was placed in a 60 ℃ oil bath

to commence the polymerization. After 5 h the reaction was stopped via rapid cooling

and exposure to air. The polymer was obtained by repeated precipitation in n-hexane

(7 % conversion, Mn = 1500 gmol−1 (PS calibration), Đ = 1.09).

Polymerization of Acrylic Acid (P6)

Dioxane (25 mL), acrylic acid (13.7 mL, 14.39 g, 199.6 mmol), AIBN (82.0 mg, 499 μmol)

and 2-cyanopropan-2-yl(diethoxy-phosphoryl)methane-dithioate (280.8 mg, 1.00 mmol)

were placed in a round-bottom flask and the polymerization mixture was purged 60 min

with N2 to remove oxygen. Next, the flask was placed in a 70 ℃ oil bath to commence

the polymerization. After 4 h the reaction was stopped via rapid cooling and exposure

to air. The polymer was obtained by repeated precipitation in ether (30 % conversion,

Mn = 4000 gmol−1 (NMR calculation)).
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Synthesis of the Amphiphilic Block Terpolymers (P7, P8, P13)

Equimolar amounts of P1b and P3 (respectively P2b and P4 or P12) were dissolved in

ethyl acetate (total concentration: 50 g L−1 polymer) and a catalytic amount of ZnCl2

(5 g L−1) was added. The reaction mixture was stirred for 16 h over night (respectively

two days for P8 and P13) at ambient temperature. Next, the solvent was removed under

reduced pressure and the polymer was dissolved again in THF. Subsequently, the polymer

was precipitated in water to remove the residual catalyst (P7: Mn = 16 000 gmol−1(PS

calibration), Đ = 1.15; P8: Mn = 68 000 gmol−1(PS calibration), Đ = 1.32; P13: Mn =

60 000 gmol−1(PS calibration), Đ = 1.33).

Macroscopic Separation of the Building Blocks from the

Amphiphilic Block Terpolymer (P2b*, P4*).

To form an aqueous dispersion, 20 mg of the block copolymer P8 was dissolved in a

small amount of THF and then precipitated in 7 mL water. The THF was removed under

reduced pressure. The dispersion was subsequently heated to 90 ℃ for 30 min and then

cooled to ambient temperature. Subsequently, the white solid (P2b*) and the aqueous

solution (P4*) were separated via centrifugation. The water was removed under reduced

pressure and both polymers were dried under vacuum.

Synthesis of the RAFT-Agent Precursor

2-((4-(1-Bromoethyl)benzyl)oxy)-6-methyl Benzaldehyde (4)

Vinyl benzyl photoenol (645 mg, 2.556 mmol) and 6 g of dry silica were placed in a

flask and suspended in 12 mL of dichloromethane. The reaction mixture was cooled

to −21 ℃, and 0.344 mL (522 mg, 3.834 mmol) of oxalyl bromide dissolved in 3 mL

of dichloromethane was added drop wise. After stirring for 3 h at −21 ℃, 1 mL of

triethylamine was added, and stirring was continued overnight at ambient temperature.

Afterward, the silica was removed by filtration, and the dichloromethane solution was

washed consecutively with aq. NaHCO3 (25 mL), water (25 mL), and brine (25 mL). The



6.4 Synthesis Protocols 117

organic layer was dried over MgSO4 and concentrated under vacuum. The crude product

was purified by column chromatography on silica with n-hexane/ethyl acetate/triethyl

amine (19:1:0.5, v/v) as solvent and subsequently dried under high vacuum to give a

yellow oil (342 mg, 40 %). 1H NMR (500 MHz, CDCl3, see Figure 6.10) δ (ppm): 10.73 (s,

1H, a), 7.52−7.32 (m, 3H, g, h, d), 6.89 (d, J3 = 8.3 Hz, 1H, e), 6.84 (d, J3 = 7.5 Hz, 1H, c),

5.23 (q, J3 = 6.9 Hz, 1H, i), 5.15 (s, 2H, f), 2.99 (s, 3H, b), 2.06 (d, J3 = 6.9 Hz, j). 13C NMR

(125 MHz, CDCl3, see Figure 6.11) δ (ppm): 192.30 (s, 1C, a), 162.29 (s, 1C, h), 143.38 (s,

1C, d), 142.31 (s, 1C, m), 136.54 (s, 1C, j), 134.54 (s, 1C, f), 127.67 (s, 2C, k), 127.30 (s, 2C,

l), 124.63 (s, 1C, e), 123.75 (s, 1C, b), 110.45 (s, 1C, g), 70.25 (s, 1C, i), 49.07 (s, 1C, n), 26.89

(s, 1C, c), 21.64 (s, 1C, o). ESI-MS: m/z calculated for C17H17BrO2 [M + Na]+, 355.0310;

found, 355.0306.

Synthesis of the Dual Functional RAFT-Agent

1-(4-((2-Formyl-3-methyl phenoxy)methyl)phenyl)ethyl

(Diethoxyphosphoryl) Methane Dithioate (CTA-3)

Under Ar atmosphere, a solution of diethyl phosphite (1.1 mL, 1.18 g, 8.529 mmol) in

1 mL of dry THF was added slowly to a suspension of NaH (206.75 mg, 8.615 mmol)

in dry THF (9 mL). After being refluxed for 5 min, the reaction mixture was cooled to

−83 ℃, and carbon disulfide (2.6 mL, 3.3 g, 43.43 mmol) was added. The solution was

allowed to warm to ambient temperature and stirred for an additional 2 h. After cooling

to −21 ℃, a solution of 4 (2.8 g, 11.39 mmol) in 5 mL of dry THF was added to the reaction

mixture, and stirring was continued overnight. Subsequently, 20 mL of dichloromethane

was added, and the resulting precipitate was filtered off. The solvent was removed under

reduced pressure, and the residue was purified by column chromatography on silica

using n-hexane/ethyl acetate (6:4, v/v) as eluent. After drying under high vacuum a

pink oil was received (1.3 g, 33 %). 1H NMR (500 MHz, CDCl3) δ (ppm): 10.72 (s, 1H, a),

7.52−7.32 (m, 3H, g, h, d), 6.88 (d, J3 = 8.4 Hz, 1H, e), 6.84 (d, J3 = 7.5 Hz, 1H, c), 5.21 (q,

J3 = 7.1 Hz, 1H, i), 5.14 (s, 2H, f), 4.32−4.16 (m, 4H, k), 2.58 (s, 3H, b), 1.73 (d, J3 = 7.1 Hz,

j), 1.39−1.31 (m, 6H, l). 13C NMR (125 MHz, CDCl3, see Figure 6.12) δ (ppm): 226.92 (d,
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1C, p), 192.22 (s, 1C, a), 162.17 (s, 1C, h), 142.22 (s, 1C, d), 140.14 (s, 1C, m), 136.10 (s,

1C, j), 134.44 (s, 1C, f), 128.19 (s, 1C, k), 127.65 (s, 1C, l), 124.53 (s, 1C, e), 123.62 (s, 1C,

b), 110.34 (s, 1C, g), 70.15 (s, 1C, i), 64.78 (s, 1C, q), 48.12 (s, 1C, n), 21.51 (s, 1C, c), 20.13

(s, 1C, r), 16.30 (s, 1C, o). ESI-MS: m/z calculated for C22H27O5PS2 [M + Na]+, 489.0935;

found, 489.0937.

Synthesis of Poly(Ethyl Acrylate)(PEA, P9)

Ethyl acrylate (7.5 mL, 6.885 g, 8.77mmol) the RAFT-agent (CTA-3) (213.9 mg, 0.46 mmol)

and the initiator AIBN (15.1 mg, 91.0 μmol) were placed in a flask and purged with Ar for

45 min. Subsequently, the reaction mixture was placed in a 70 ℃ hot oil bath and stirred

for 7 h. The polymerization was stopped by cooling with liquid nitrogen and exposure

to atmosphere. The polymer was recovered by 3 times precipitation in a methanol/water

mixture (1/1; v/v) and dried under high vacuum (4 % conversion, Mn = 1200 gmol−1(PS

calibration), Đ = 1.24).

Reaction of P9 with Cyclopentadienyl (P9a)

25 mg (22.7 μmol) polymer P9 and 7.5 μL (5.9 mg, 89.2 μmol) cyclopentadiene were

dissolved in 0.8 mL dichloromethane and stirred over night. Subsequently the solvent

was removed under reduced pressure and the polymer was recovered via precipitation

from THF into a mixture of acetonitrile/water (1/1, v/v) and dried under high vacuum

(Mn = 1200 gmol−1(PS calibration), Đ = 1.30).

Reaction of P9a with Diethyl Fumarate (P9b)

31.2 mg (26 μmol) polymer P9a and 50 μL (52.6 mg) diethyl fumarate were dissolved in

6 mL acetonitrile and the solution was purged with Ar for 15 min. Subsequently, the

reaction mixture was exposed to UV-light for 2.5 h. Next, 6 mL water was added to

the solution and the polymer was recovered via centrifugation and dried under high

vacuum (Mn = 1500 gmol−1(PS calibration), Đ = 1.27).
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Synthesis of the Diblock Terpolymer P(I-co-S)-b-PEA (P10)

271.8 mg (30.2 μmol) P1, 50 mg (45.5 μmol) P9, and 6.2 mg (45.5 μmol) ZnCl2 were

dissolved in ethyl acetate and stirred for 24 h. Precipitation in methanol and dry-

ing under high vacuum yielded the diblock terpolymer P(I-co-S)-b-PEA (P10; Mn =

10 500 gmol−1(PS calibration), Đ = 1.26).

Synthesis of the TriblockQuaterpolymer P(I-co-S)-b-PEA-b-PEO

(P11)

43 mg (4.3 μmol, 1.0 eq) diblock copolymer (P10) and 86 mg (43 μmol) fumarate end-

capped PEO were dissolved in 8.6 mL dichloromethane and purged with Ar for 15 min.

Subsequently, the reaction mixture was exposed to UV-light (370 nm) for 2.5 h. Next,

the dichloromethane was reduced under vacuum to a volume of approximately 1 mL

and 3 mL THF were added to the solution. To this mixture 5 mL of water was added and

the organic solvents were removed under reduced pressure. The precipitated polymer

was recovered via centrifugation and the procedure was repeated. Subsequent drying

under high vacuum yields the pure triblock quaterpolymer P(I-co-S)-b-PEA-b-PEG (P11;

Mn = 12 500 gmol−1(PS calibration), Đ = 1.37).

Preparation of Br Functional Surfaces

Silicon wafers were first cleaned by sonication for 3 min in pentane, acetone and water.

Next, the wafers were activated in piranha solution (H2SO4(conc.):H2O2(30 %) = 2:1) for

30 min, rinsed with copious amounts of water, dried in a stream of Ar and transferred

into a solution of 11-bromoundecyltrichlorosilane (0.1 vol% in toluene (analytical grade)).

After stirring the solution for 45 min at room temperature, the samples were taken out

and rinsed with dichloromethane, ethanol and water and dried in a stream of argon.
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Preparation of Cp Functional Surfaces

Sodium cyclopentadienide (0.8 g) was dissolved in dry THF (30 mL) and the Br func-

tionalized silicon wafers were immersed. The solution was stirred overnight at ambient

temperature. Afterwards, the samples were taken out, sonicated in water (10 min) and

rinsed with water, ethanol and acetone and dried in a stream of argon. The Cp functional

wafers were stored in a schlenk tube, if not used immediately.

Preparation of Polymer Patterned Surfaces

Aqueous solutions of the three polymers (P3, P5 and P6) were prepared. The concen-

tration for all solutions was set to 30 g L−1. Oxidized PDMS stamps were placed on Cp

functional silicon wafers and 5 μL of polymer solution was poured at the open end of

the capillaries with a pipette. The surfaces were placed in a sealable petri dish with a

wet tissue to provide a humid atmosphere, which prevents the aqueous solution from

evaporating before the reaction is over. After 90 min the samples were taken out of the

petri dish and the stamp was removed from the Cp SAM while holding the surface in

a beaker with water. Next, the samples were washed with water, ethanol and acetone,

sonicated and dried.

Non patterned surfaces were prepared for XPS and contact angle measurements.
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6.5 Additional Figures
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Figure 6.3 13C NMR spectrum (125 MHz) of the Br-functional RAFT agent CTA-1 in CDCl3
at ambient temperature.
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Figure 6.4 SEC trace of P5, measured in THF (Mn = 1500 gmol−1 (PS calibration), Đ = 1.09).
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Figure 6.5 1H NMR spectrum (500 MHz) of the polymer P5 in CDCl3.
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Figure 6.6 SEC trace of P6, measured in Na2HPO4 buffer. The good overlap of the RI- (mass
distribution) and the UV-signal (number distribution) indicate a small Đ .
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Figure 6.7 1H NMR spectrum (500 MHz) of P6 in D2O at ambient temperature.

 acquired autocorrelation function
 fit

Figure 6.8 Exemplary autocorrelation function from the DLS measurements of the block
terpolymer P7 in 80 % DMAc and 20 % toluene (containing 2.75 g L−1 ZnCl2) at 30 ◦C. The
black line depicts the experimentally recorded function, whereas the green line shows the
mathematical fit with excellent agreement.
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Figure 6.9 Exemplary experimental size distribution obtained from the DLS measurements of
the block terpolymer P7 in 80 % DMAc (containing 2.75 g L−1 ZnCl2) and 20 % toluene at 30 ◦C
as a result of the fit depicted in Figure 6.8.
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Figure 6.10 1H NMR spectrum (500 MHz, CDCl3) of the CTA precursor 4.
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Figure 6.12 13C NMR spectrum (125 MHz, CDCl3) of the CTA-3.
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Figure 6.14 1H NMR spectrum (500 MHz, CDCl3) of the building block P9a.
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Figure 6.18 SEC traces of the polar building block PTEGA (P12, dashed line, Mn =
18 000 gmol−1 (PS calibration), Đ = 1.16), the unpolar building block P(I-co-S) (P2, dotted line,Mn

= 50 000 gmol−1 (PS calibration), Đ = 1.36) and the resulting block terpolymer P(I-co-S)-b-PTEGA
(P13, solid line, Mn = 60 000 gmol−1 (PS calibration), Đ = 1.33).
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surface.
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Figure 6.20 Characteristic fragments of P3 (PTEGA) detected in the negative ion mode (stamp
pattern: 5 μm contact area spaced by 15 μm).

Figure 6.21 Characteristic fragments of P3 (PTEGA) detected in the positive ion mode (stamp
pattern: 5 μm contact area spaced by 15 μm).
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Figure 6.22 Characteristic fragments of P5 (PHEA) detected in the negative ion mode (stamp
pattern: 5 μm contact area spaced by 15 μm).

Figure 6.23 Characteristic fragments of P5 (PHEA) detected in the positive ion mode (stamp
pattern: 5 μm contact area spaced by 15 μm).



132 6 Experimental Section

Figure 6.24 Characteristic fragments of P6 (PAA) detected in the negative ion mode (stamp
pattern: 5 μm contact area spaced by 15 μm).
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ARGET activator regenerated by electron transfer
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ATRP atom transfer radical polymerization
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Cp cyclopentadienyl

CRP controlled radical polymerization

CSIRO Commonwealth Scientific and Industrial Research Organiza-
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TEMPO 2,2,6,6-tetramethyl-1-piperidynyl-N -oxy

TFA trifluoroacetic acid

THF tetrahydrofuran

ToF-SIMS time-of-flight secondary ion mass spectrometry

UV-Vis ultraviolet-visible
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