
Adaptation to drought in rice - 

Dissecting the role of Jasmonates for the response to 

drought in rice using a mutant approach 

Zur Erlangung des akademischen Grades eines 

DOKTORS DER NATURWISSENSCHAFTEN 

(Dr. rer. nat.) 

Fakultät für Chemie und Biowissenschaften 

Karlsruher Institut für Technologie (KIT)-Universitätsbereich 

 genehmigte 

DISSERTATION 

von 

Rohit Dhakarey 

aus 

Agra, Indien 

Dekan: Prof. Dr. Willem Klopper 

Referent: Prof. Dr. Peter Nick 

Korreferent: Prof. Dr. Holger Puchta 

Tag der mündlichen Prüfung: 22. Juli 2016



This document is licensed under the Creative Commons Attribution –
Non Commercial – No Derivatives 3.0 DE License
(CC BY-NC-ND 3.0 DE): http://creativecommons.org/licenses/by-nc-nd/3.0/de/

https://creativecommons.org/licenses/by-nc-nd/3.0/de/


III 

Die vorliegende Dissertation wurde am Botanischen Institut des Karlsruher Instituts für 
Technologie (KIT), Botanisches Institut, Lehrstuhl 1 für Molekulare Zellbiologie im Zeitraum 
von April 2012 bis Juli 2016 angefertigt. Teile der experimentelle Arbeiten, die in dieser 
Arbeit beschrieben sind, wurden durch Rohit Dhakarey am International Rice Research 
Institute, Philippinen, und an der Universität von Newcastle (Großbritannien) durchgeführt. 





V 

Hiermit erkläre ich, dass ich die vorliegende Dissertation, abgesehen von der Benutzung der 
angegebenen Hilfsmittel, selbständig verfasst habe. 

Alle Stellen, die gemäß Wortlaut oder Inhalt aus anderen Arbeiten entnommen sind, 
wurden durch Angabe der Quelle als Entlehnungen kenntlich gemacht. 

Diese Dissertation liegt in gleicher oder ähnlicher Form keiner anderen Prüfungsbehörde 
vor. 

Zudem erkläre ich, dass ich mich beim Anfertigen dieser Arbeit an die Regeln zur Sicherung 

guter wissenschaftlicher Praxis des KIT gehalten habe, einschließlich der Abgabe und 

Archivierung der Primärdaten, und dass die elektronische Version mit der schriftlichen 

übereinstimmt. 

Karlsruhe, im June 2016 

Rohit Dhakarey





VII 

‘Look at the sky. We are not alone. The whole universe is friendly to us and 

conspires only to give the best to those who dream and work.’ 

- Dr. APJ Abdul Kalam





Acknowledgements 

Many people have contributed to the final outcome of this thesis, either direct or indirectly, 

so I really owe a lot to all of them. I would like to take this opportunity to express my 

gratitude to all those who offered me their help in any way during the entire course of my 

PhD studies. I would like to thank: 

 At the outset, Prof. Dr. Peter Nick, who accepted me as a doctoral student 
and provided me the opportunity to work at Botany Institute I, KIT, Karlsruhe. 
Many thanks for everything you taught me and for all the patience you’ve 
had along these years. Your systematic approach and goal-oriented attitude 
is always a source of inspiration for me. Meanwhile, I deeply appreciate all 
the time and attention you devoted, all the suggestions and ideas you 
provided while supervising me as well as the freedom granted to work on this 
project.

 Prof. Dr. Holger Puchta who agreed to be my co-examiner immediately and I 
really appreciate his time, devotion and expertise.

 Dr. Michael Riemann for his moral support during my stay in Germany, which 
is unforgettable. I would also like to thank him for always finding time in his 
insanely busy schedule to discuss my plans, results, problems and for 
indispensable suggestions and cooperation during my study and reviewing of 
the present manuscript. I never felt like I was lost in my work, and that was a 
because of his dedicated day to day supervision.

 Dr. Ajay Kohli for welcoming and funding my research work in his lab at 
International Rice Research Institute (IRRI), Philippines and giving me the 
opportunity to improve my research work and my knowledge on drought 
stress. I really learned a lot while I was there and it was really a great 
experience to get a glimpse of what his group does.

 Dr. R.K. Singh, who is my primary contact at IRRI. This PhD wouldn't have 
been possible without his constant advice and great support. I also thank him 

for all his efforts in arranging my field trips to IRRI.

 Dr Achim Treumann, Director, Proteomics and Proteome analysis facility, 
Newcastle University, UK for giving me an opportunity to work in his lab to 
learn the basics of proteome analysis and also for providing his excellent 
technical expertise for the root proteome analysis. 

IX



 Dr Amelia Henry, Drought Physiologist at IRRI for all her help and supervision

for the green-house studies and data analysis.

 Dr. Manish Raorane and Dr. Vaidurya Sahi, whose arrival in the lab made my

life much easier. Without their day to day help with data analysis, suggestions

and moral support - writing this thesis would have been more difficult. I also

would like to thank Dr Qiong Liu in helping me out with the better typesetting

of this thesis.

 Everyone in Dr. Kohli’s lab, at IRRI, for helping me out with the green house

cultivation of plants, sampling as well as making me feel welcome in the lab:

Dr Toshi, Ate Beng, Pabs, Weng, Francis, Ate Ellen and also Anshuman,

Shalabh, Manas and Prahlad, in the lab next door.

 All my other colleagues in the Botanical institute1 at KIT. It’s been great

working with all of you! I learned a lot and also had a lot of fun, namely

during our coffee and lunch breaks. Preshobha, Sahar, Junning, Marilena,

Lukas, Jonas and possibly other ones that I cannot remember right now.

 Finally to the almighty, who has given me the strength and endurance to

perform the best even in adverse situations.

 Last but not the least, my parents, my fiancé Aditi, my sister and brother-in-

law who have given me all the support and understanding.

 I am obliged to the Indian Council of Agricultural Research, German Ministry

of Scientific Research, Karlsruhe House of Young Scientist (KHYS) and the

Deutsche Akademischer Austausch Dienst (DAAD) for providing me with the

financial support to carry out my doctoral studies.

X



Contents 
1. Introduction ........................................................................................................................................ 1 

1.1 Definition of Drought .................................................................................................................... 1 

1.2 Drought endurance mechanisms in plants ................................................................................... 2 

1.2.1. Mechanisms related to drought avoidance .......................................................................... 2 

1.2.2 Mechanisms related to drought tolerance ............................................................................ 3 

1.2.3 Morpho- physiological changes associated with drought resistance .................................... 4 

1.3 Impact of Drought on Agriculture ................................................................................................. 7 

1.4 Rice as a Model Crop: Taxonomy, origin and cultivation .............................................................. 8 

1.4.1 Impact of drought stress on rice ............................................................................................ 9 

1.5 Why drought tolerant crops are required .................................................................................. 10 

1.6 Drought responses in Plants: Rice as an example ....................................................................... 13 

1.6.1 Biochemical, genomic & proteomic responses associated with drought tolerance ........... 14 

1.6.2 Role of Phytohormonal balance during drought stress tolerance: ...................................... 15 

1.7 Drought avoidance and tolerance strategies may be integrated ............................................... 18 

1.8 Various techniques used for plant gene expression studies and their major disadvantages .... 19 

1.8.1 Emergence of Proteomics .................................................................................................... 20 

1.8.2 Tandem Mass Tag (TMT) ...................................................................................................... 24 

1.9 Scope of the Study ...................................................................................................................... 26 

2. Material and Methods ...................................................................................................................... 28 

2.1 Plant growth and drought stress conditions for drought phenotyping and stomatal 

conductance ...................................................................................................................................... 28 

2.2 Greenhouse seedling-stage drought studies using mylar tubes for root architecture analysis . 28 

2.3 Experimental setup for the lysimeter study for calculating water use efficiency ...................... 29 

2.3.1 Plant growth and their management for calculating water use efficiency using lysimeter 31 

2.4 Plant materials, growth and stress conditions for proteomics, ABA measurement and 

transcript analysis experiments ........................................................................................................ 32 

2.4.1 Protein extraction, separation, tryptic digestion and TMT labelling ................................... 33 

2.4.2 Nano-LC–MS/MS analysis .................................................................................................... 35 

2.4.3 Protein identification ........................................................................................................... 35 

2.4.4 Functional annotation .......................................................................................................... 36 

2.4.5 Quantitative PCR .................................................................................................................. 36 

2.5 Measurement of endogenous ABA levels in shoot samples ....................................................... 36 

3. Results ............................................................................................................................................... 37 

XI



3.1. Description of the phenotypical and physiological responses of mutant versus wild type to 

drought stress. .................................................................................................................................. 37 

3.1.1 JA-deficient mutant cpm2 leaves showed less leaf rolling and wilting under drought stress

 ...................................................................................................................................................... 37 

3.1.2 The mutant cpm2 is able to sustain a rich root architecture and good biomass under 

moderate drought stress .............................................................................................................. 39 

3.1.3 Stomatal conductance, water use efficiency and abscisic-acid levels indicate improved 

drought tolerance in cpm2............................................................................................................ 44 

3.2. Description of the proteome profiles of mutant versus wild type as identified by TMT 

proteomics. ....................................................................................................................................... 48 

3.2.1 Assessing the function of jasmonate for the drought response in rice roots by proteome 

approach ....................................................................................................................................... 48 

3.2.2 Proteome analysis by TMT reveals unique and common drought regulated proteins ....... 49 

3.3. MapMan based ontological classification of proteins identified in WT and cpm2 roots .......... 52 

3.3.1 Energy Related Proteins: ...................................................................................................... 52 

3.3.2 Proteins involved in protein metabolism:............................................................................ 53 

3.3.3 Proteins from the miscellaneous category: ......................................................................... 53 

3.4. Cross-connection of these clusters according to functional complexes. ................................... 54 

3.4 1. Understanding of key enzymes invloved in JA synthesis in response to drought stress .... 54 

3.4.2: ROS detoxification proteins were found to be more abundant in the mutant .................. 58 

3.4.3 Under drought stress, cpm2 roots accumulate more cell organization and cell wall related 

proteins ......................................................................................................................................... 59 

3.5 Summary of the results: .............................................................................................................. 64 

4. Discussion .......................................................................................................................................... 65 

4.1. Phenotypic and morphological characterization provided cues for better drought adaptation 

in cpm2 .............................................................................................................................................. 65 

4.1.1. Less pronounced leaf rolling was perceived as a phenotypic signal of drought adaptation 

in cpm2 .......................................................................................................................................... 65 

4.1.2 Roots of cpm2 were better developed under both control and moderate drought stress. 66 

4.2. Better physiological modulation in cpm2 correlate with improved drought tolerance ............ 67 

4.2.1 Under drought, higher WUE in cpm2 leads to better canopy production........................... 68 

4.2.2 Lower stomatal conductance in cpm2 under drought: an effective water conservation 

strategy ......................................................................................................................................... 68 

4.2.3 Higher ABA levels in cpm2 correlates with reduced stomatal conductance ....................... 69 

4.3. Functional context of the protein candidates as revealed by the TMT approach ..................... 69 

4.3.1 Metabolism related DEPs contributed to enhanced drought tolerance in cpm2 ................ 70 

XII



4.3.2 Better cellular homeostasis and increased nitrogen metabolism: cpm2 more tolerant 

against drought stress ................................................................................................................... 71 

4.3.3 Less cellular oxidative damage makes cpm2 more sustainable against drought stress. ..... 72 

4.3.4 Enhanced cell organization and augmented cell wall adaptations promoted drought 

tolerance in cpm2 roots ................................................................................................................ 73 

4.4 Models explaining for mechanisms of enhanced drought adaptation in cpm2 ......................... 75 

A. Importance to constrain OPDA to suppress drought induced senescence .............................. 75 

B. Cell wall rigidification could have improved mechanical penetrance of cpm2 root under

drought stress ............................................................................................................................... 75 

C. Growth-Defence tradeoffs: better plant performance in case of cpm2 ................................... 76 

4.5 Concluding Remarks:................................................................................................................... 77 

5. Outlook.............................................................................................................................................. 78 

6. References: ....................................................................................................................................... 79 

XIII





ABBREVIATIONS 

cpm2: coleoptile photomorphogenesis 2 

OA: Osmotic Adjustment 

WUE: Water Use Efficiency  

ABA: Abscisic Acid  

ABC: Ammonium bicarbonate 

SMC: Soil Moisture Content 

JA: Jasmonic Acid 

LOX: Lipoxygenases  

AOC: Allene Oxide Cyclase  

OPDA: 12-Oxo-Phytodienoic Acid  

OPR7: 12-Oxophytodienoate Reductase  

ILE: Isoleucine  

JAR1: Jasmonate Resistant 1 

COI1: Coronatine Insensitive 1 

TCA: Trichloroacetic Acid 

2-DE: Two-Dimensional Electrophoresis

LC-MS/MS: Liquid Chromatography Combined With Tandem Mass Spectrometry 

MS: Mass Spectrometry  

TMT: Tandem Mass Tag 

WW: Well-Watered 

DS: Severe Drought Stressed 

ROS: Reactive Oxygen Species 

DEP: Differentially Expressed Proteins 

Ψw: Water potential

XV





Zusammenfassung 

Phytohormone sind chemische Botenstoffe in Pflanzen, die unterschiedliche Reaktionen von 

Pflanzen, zum Beispiel auf Trockenstress, stark beeinflussen. Phytohormone unterstützen 

Pflanzen bei der Regulation von Wachstum und Entwicklung auch unter solchen ungünstigen 

Bedingungen. Eines dieser wichtigen Phytohormone ist die Jasmonsäure (JA). Über ihre Funktion 

für die Reaktion auf Trockenstress ist wenig bekannt, wie auch über die Vernetzung mit anderen 

Phytohormonen wie zum Beispiel Abscisinsäure (ABA), welche eine außerordentlich wichtige 

Funktion für Trockenstressadaptation hat. Im Vorfeld wurde bereits gezeigt, dass die 

Reismutante cpm2, die defekt in der Funktion eines Schlüsselenzyms der JA-Biosynthese, der 

Allenoxidcyclase (AOC), ist, weniger empfindlich für Salzstress ist. In der vorliegenden Studie 

wurden Veränderungen von physiologischen Eigenschaften und im Wurzelproteom von cpm2 

und Wildtyp (WT) Pflanzen analysiert. Die stomatäre Leitfähigkeit von cpm2 war unter 

Trockenstress geringer als im WT, was mit einer erhöhten Konzentration von ABA im Spross 

korrelierte. Unter Trockenstress wies cpm2 eine höhere Wassernutzungseffizienz (engl. water 

use efficiency, WUE) als der WT auf, was auch auf eine verbesserte Trockenheitstoleranz 

hinweist. Das Wurzelsystem von cpm2 war sowohl unter Kontroll- als auch mittelstarken 

Stressbedingungen besser entwickelt als im WT. Um festzustellen, ob Wurzeln von cpm2 und 

WT auf molekularer Ebene unterschiedlich auf Trockenstress reagieren, wurde das 

Wurzelproteom in einem Tandem Mass Tag (TMT) Ansatz untersucht. Auf Proteinebene wurde 

AOC ausschließlich im WT gefunden und war dort bei Trockenstress reichlich vorhanden, 

während AOC in cpm2 nicht detektiert wurde. Ein anderes Protein, OPDA Reductase 7 (OPR7), 

das auf AOC folgende Enzym im JA-Biosyntheseweg, akkumulierte in cpm2 unter Trockenstress, 

während die Menge im WT abnahm. Diese Ergebnisse weisen darauf hin, dass OPDA, eine 

Vorstufe von JA, und nicht JA selber unter Trockenstress akkumuliert. Die Analyse weiterer 

differentiell exprimierter Proteine zeigte, dass cpm2 unter Trockenstress einen aktiveren ROS-

Stoffwechsel und eine bessere ROS-Entgiftung aufweist. Außerdem waren in Wurzeln von cpm2 

Proteine häufig, die im funktionellen Zusammenhang mit Zellwandumbau und Zellwachstum 

stehen. Diese Ergebnisse zeigen, dass JA ein negativer Regulator der Trockenheitstoleranz ist, da 

sie für die Stressadaptation wichtige morpho-physiologische und molekulare Änderungen 

hemmt und Hemmung der JA-Biosynthese zu einer verbesserten Trockenheitstoleranz von Reis 

führen.
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Abstract 

The various adaptive responses of drought stressed plants are strongly influenced by 

chemical messengers called phytohormones, which help the plants to regulate growth and 

development also in adverse conditions such as drought. One such important 

phytohormone is jasmonic acid (JA). However, little is known about its direct involvement in 

drought response or about its cross-talk to other phytohormones such as abscisic acid 

(ABA), which is intricately involved in drought stress adaptations. Previously, it was shown 

that the rice mutant cpm2, impaired in the function of allene oxide cyclase (AOC), a key 

enzyme in JA biosynthesis, was less sensitive to salt stress. In the present study, 

comparative changes under drought in some physiological traits and in the root proteome 

of cpm2 and the wild type (WT) were analyzed. When the stomatal conductance in WT and 

cpm2 under drought condition was measured, cpm2 had lower stomatal conductance under 

drought stress as compared to WT and this also correlated with increased ABA levels in 

shoots. Under drought, higher Water Use Efficiency (WUE) in cpm2 as compared to WT also 

indicated improved drought tolerance. Importantly, roots of cpm2 were better developed 

under both control and moderate drought stress. To assess if the roots of cpm2 and WT 

respond differentially to drought at the molecular level, root proteome analysis was 

undertaken using Tandem Mass Tag (TMT) approach. At the protein level, AOC was unique 

to WT and highly abundant under drought. This confirmed the lack of AOC in cpm2. Another 

protein, OPDA reductase (OPR7) which is downstream of AOC in JA biosynthesis pathway 

became more abundant in cpm2 while its amount decreased in the WT in drought stress. 

These results suggest that OPDA, a precursor of JA, and not JA itself is accumulating in 

response to drought stress. Analysis of other differentially expressed proteins revealed 

more active ROS detoxification and metabolism in cpm2 under drought. In addition, a 

number of proteins involved in pathways related to cell wall remodeling and cell growth 

were also abundant in cpm2 roots. These results suggested that JA signaling might 

negatively influence drought tolerance by orchestrating a block on critical morpho-

physiological and molecular changes necessary for stress adaptation. Mutant analysis 

suggested benefits of blocking JA synthesis which might be useful for improving drought 

tolerance in rice.  
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1. Introduction

Plants are vital for the balance of nature and in humans’ wellbeing. Green plants, i.e., those 

synthesizing chlorophyll can manufacture their own food and give off oxygen in the 

phenomenon called photosynthesis during which water and carbon dioxide react chemically 

by the energy of light. For nearly all animals which cannot manufacture their own food, 

plants are the main source of food and metabolic energy. Rice (Oryza sativa) is the most 

important plant for human food security, as it is the staple food to more than half of the 

world’s population. In addition to that, it is a model crop species because of the knowledge 

of its genome and its synteny with other crops (Cotsaftis and Guiderdoni, 2005). Plants are 

sensitive organisms that cannot run away from unfavorable conditions. Because of this 

reason, it becomes imperative to look at the immense variety of responses with which plants 

can react to a continuously changing environment. Stress is usually defined as any form of 

external factor that exerts disadvantageous effect on the plant. Mostly, stress is measured in 

relation to overall plant survival, reduction in yield or growth (biomass accumulation), or the 

primary assimilation process (CO2 and minerals uptake), which are related to overall growth 

(Taiz and Zeiger, 2002). Drought is probably the most severe constraint for the productivity 

and quality of a crop among all environmental factors combined, compromising economic 

output and human food supply (Roche et al., 2009).  

1.1 Definition of Drought 

Drought can be expressed as a period of below-normal precipitation that limits plant/crop 

productivity by imposing a water deficit, and thus bringing a reduced water potential in the 

plant (Verslues et al., 2006). It is estimated that about 28% of the world’s soil is constantly 

affected by drought, and up to 50% is affected repeatedly because of the poor water holding 

capacity shallowness of fields, and other factors (Salekdeh et al., 2009).  

Drought is a normal, recurring feature of climate, although it is incorrectly considered as a 

rare and random event. It is different from aridity, which is rather limited to regions of low 

rainfall regions and is a permanent component of climate. Drought should be contemplated 

relative to some long-term average conditions of equilibrium between precipitation and 

evapo-transpiration (i.e., evaporation + transpiration) in a specified area. It is also linked to 

the timing (season of occurrence, delays in the start of the rains, occurrence of rains is 
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related to principal crop growth stages) and the efficacy (i.e., intensity of rainfall, number of 

rainfall events) of the rains (Wilhite and Glantz, 1985). 

Drought is a redolent term. It comes with implications of severe financial hardship among 

farmers in rich countries, to malnutrition and famine, among farmers in third world 

countries. If it prolongs, it can lead to major social turbulence, mass migration and 

desertification, not only leading to sense that the affected region is desolated by its former 

inhabitants, but also because over-used farm land may become so resourceless that it can 

no longer support human occupation even after the prolonged drought is over (Mueller et 

al., 2005). 

1.2 Drought endurance mechanisms in plants 

Mechanisms that plants utilize to fight with drought can, more or less innately, be classified 

into 1) drought avoidance and 2) drought tolerance mechanisms. A complex combination of 

these defines drought resistance in its physiological context according to Levitt (1972). Each 

of these coping strategies is described in this section :  

1.2.1. Mechanisms related to drought avoidance 

Drought-avoiding plants have the capability to complete their entire life cycle without being 

getting severe water deficient. Some ephemeral plants have a shortened life cycle that can 

be completed during a short span of rainy season. Other plants exhibit adaptations to 

increase water uptake and reduce water loss and therefore avoiding the exhausting 

consequences of drought that other plants might feel (Verslues et al., 2006). Accordingly, 

evolving a more extensive root system is a drought-avoiding strategy. It is an almost 

universally accepted observation that the root:shoot ratio increases with drought stress. 

Greater increase in root weight may be due to a greater density or depth of roots (Turner, 

1979). Under drought stress, new root development extends more deeply into moist soil 

zones. As drought stress progresses, the upper soil layers usually dry first. Thus shallower 

roots are quite common in wet soils as compared to deeper roots systems in dry soils (Taiz 

and Zeiger, 1998). The possession of a deeper and thicker root system, which allows better 

access to water deep seated in the soil is considered important in determining drought 

resistance in rice (Price et al., 2002) and Arabidopsis thaliana (Xiong et al., 2006). Therefore, 
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greater root growth and improved morphological development can result in drought 

avoidance. DEEPER ROOTING 1 (DRO1) is a good example in this context. (Uga et al.,2013). It 

is a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated 

by auxin and it is involved in cell elongation in the root tip region that causes asymmetric 

root growth and downward curving of the root in response to gravity. Higher expression of 

DRO1 leads to an increase in the root growth angle, whereas roots grow in a more 

downward direction. It is also shown by introducing DRO1 into shallow-rooting rice cultivar 

by backcrossing enables the resulting line to avoid drought by increasing deep rooting. The 

resulting new line maintains high yield performance under drought conditions relative to the 

recipient cultivar. 

Evolvements in shoots also play a vital role in drought stress responses. At the start of the 

dry season, a desert plant Zygophyllum qatarense responds to drought stress with a leaf 

polymorphism in which it replaces the wet-season foliage with unifoliate, xeromorphic 

leaves. As the dry season continues, the plant ceases the extension in its leaf area 

substantially (Sayed, 1996). 

During drought stress, leaves of many plants frequently wilt (or roll, in the case of rice), and 

this response massively reduces the perception of radiation, thereby hampering the 

potential increase in leaf temperature arising from stomatal closure and inhibiting further 

development of leaf water deficit (Turner, 1979). Severe drought stress may lead to 

increased levels of abscisic acid (ABA) and subsequent leaf abscission, thereby limiting 

transpirational demand. Such developmental changes within a plant during drought stress 

are important morphological drought-avoiding adaptations that help the plant to maintain 

water potential at some functional level in the midst of potential water limitation (Blum 

2005). 

1.2.2 Mechanisms related to drought tolerance 

As drought stress progresses and becomes more intense, it becomes increasingly more 

difficult for the plant to avoid dehydration; and mechanisms that allow plants to withstand 

reduced water content become massively important. Drought tolerance can be defined as 

the ability of plants to continue to functionally active despite at lowered tissue water 

potentials. Drought-tolerating mechanisms often involve the maintenance of turgor by 



accumulation of solutes and/or desiccation tolerance by protoplasmic resistance (Jones et 

al., 1981). “Desiccation tolerant” plants can recover from a fully air-dried state (Vicre et al., 

2004) but when dehydrated, these plants are in a metabolically dormant, or cryptobiotic, 

state. Mesophytic plants, including all crop plants, lack the propensity to enter the 

cryptobiotic state. Moreover, mesophytes typically cannot recover from severe 

(approximately 50% or greater) decreases in their water content (Verslues et al., 2006). 

However, many plants such as resurrection plants have potential to tolerate significant 

water loss, while maintaining metabolic activity (Bartels et al., 2006). 

1.2.3 Morpho- physiological changes associated with drought resistance 

Plants face drought stress either when the water supply to roots becomes limited or when 

the transpiration rate becomes higher than the rate of uptake of water. It severely affects 

growth, development and ultimately the yield of rice plant. When drought stress progress, 

plants react by decreasing or ceasing their growth. This phenomenon is normal during 

limited supply of water, and hence it serves as a survival mechanism (Zhu, 2002). Plant 

growth and development decreases as a result of deprived root growth, with diminishing 

leaf-surface traits (shape, form, leaf pubescence and leaf color), which influences the 

radiation effect on the leaf canopy, delay in rate of normal plant senescence as it approaches 

maturity, and impediment of stem reserves (Blum, 2011). An increasing number of studies 

report early morpho-physiological changes in rice after exposure to drought stress. 

Drought stress leads to reduction in growth and development of rice (Tripathy et al., 2000; 

Manikavelu et al., 2006). Cell growth is severely impaired due to the reduction in turgor 

pressure under stress (Taiz and Zeiger, 2006). Drought stress affects both elongation as well 

as expansion growth (Shao et al., 2008) and hinder cell enlargement more than cell division 

(Jaleel et al., 2009). A common untimely effect is the reduction in biomass production 

(Farooq et al., 2010). Many studies report notable decrease in fresh and dry weights of 

shoots (Centritto et al., 2009) and roots (Ji et al., 2012) under drought. Reduced fresh 

shoot and root weights as well as their lengths eventually lead to reduction in the 

photosynthetic rate of physiology and biochemical processes of rice (Usman et al., 2013). 

1.2.3.1 Leaf traits affected by drought 

One of the acclimation responses of a plant is leaf rolling. It is used as an important criterion 

for scoring drought tolerance. Many species can reduce the quantity of radiation that they 

4 
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intercept when suffering from drought stress either by leaf rolling. This is a common stress 

response that occurs in many grasses and cereals such as rice (Oryza sativa) (Matthews et 

al., 1990).  

By rolling its leaves, there are two possible ways in which a plant in a dry environment can 

benefit. First, by reducing the effective leaf area damage caused by increased leaf 

temperature resulting from high levels of solar radiation incident on leaf surfaces can be 

minimized, so that less radiation is intercepted by leaf tissue (Begg, 1980). Second, by leaf 

rolling transpiration rates can be drastically minimized through the formation of a micro 

climate having both higher humidity and boundary layer resistance near the leaf surfaces, 

thereby conserving scarce water resources (Oppenheimer, 1960). 

1.2.3.2 Leaf Rolling and Stomatal Conductance 

Stomatal closure is a common response to drought stress; it reduces fluxes of both CO2 and 

water vapor (McCree & Richardson, 1987). With leaf rolling, transpiration varies among 

different plant species and is dependent on distribution of stomata and the degree and 

pattern of stomatal opening at low values of Ψw in rolled leaves. For instance, in rolled 

leaves of Andropogon gerardii and Spartina pectinata, adaxial stomata are closed 

(Heckathorn & Delucia, 1991) whereas they remain partially open in rolled leaves of Oryza 

sativa (O’Toole & Cruz, 1980). Open stomata with leaf rolling have an advantage compared 

with total stomatal closure. Instead of closing the stomata in response to stress, rolling can 

rather be used to adjust the microclimate surrounding the leaf surfaces, allowing water loss 

to be tuned and photosynthesis and growth to continue (Matthews et al., 1990). Diverse 

environmental factors influence water loss rates such as temperature, humidity, and wind 

speed which affect stomatal responses (Aphalo & Jarvis, 1993). Drying of soil also brings 

about severe reduction in stomatal conductance (gs), which is the rate at which water vapor 

evaporates from leaf surface via the stomata (Fort et al., 1997). Stomatal conductance and 

the net CO2 assimilation rate are significantly reduced in unirrigated Sorghum lines, in which 

leaf rolling prevails as compared with irrigated lines (Corlett et al., 1994). In the same 

manner, although non stressed Ctenanthe setosa plants have very low gs in contrast with 

other plant species, the gs value in rolled leaves is approximately one-twentieth as compared 

in unrolled leaves. Stomata progressively close as drought progresses, and is followed by 
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parallel reduction of net photosynthesis. Nevertheless, stomatal conductance is not only 

determined by soil water availability alone, but also by a complex interaction of internal and 

external to the leaf surface (Medrano et al., 2002). 

1.2.3.3 Effect of drought on root traits 

For increasing yield in crop plants under water stress, root traits have been claimed to be 

important. In rice, structure and development of root system primarily determines crop 

function under drought. Under mild drought stress, the root growth usually sustains while 

shoot growth is restricted. This is because of the fact that adjustment like, re-establishment 

of water potential gradient through osmotic adjustment and rise in loosening ability of the 

cell wall, lead roots to resume growth under low water potential. On the other hand, in 

leaves there is no such mechanism which leads to marked growth inhibition (Hsiao and Xu, 

2000). Root dry mass and length have been reported as good predictor of rice yield under 

drought (Fageria and Moreira, 2011; Feng et al., 2012). 

Extensive investigations on rice roots have led to identification of many root traits that 

provide drought resistance. Rice genotypes with deep, coarse root system with a higher 

branching and penetration ability as well as higher root to shoot ratio are reported as 

component traits of drought resistance (Wang and Yamauchi, 2006; Gowda et al., 2011). 

Coarse roots have a direct role in drought resistance since roots with larger diameter are 

related to penetration ability (Clark et al., 2008) and branching, in addition they have bigger 

xylem vessel radii and lower axial resistance to water flux (Yambao et al., 1992). Ability of 

deeper root growth and large xylem diameters in deep roots may help largely in root 

acquisition of water when ample water at depth is available. Small xylem diameters in 

targeted seminal roots save water deep in the soil for later use during crop maturation. 

Henry et al., (2012) suggested that reduced xylem-sap bleeding rates from roots, more 

coherent hydraulic conductivity with variation in soil moisture levels, more reactivity of root 

anatomy to drought, and higher levels of aquaporin expression are component traits for 

drought resistance in rice. Trait like xylem pit anatomy that leads to less leaky xylem also 

promotes plant productivity in water-limited environments without adversely affecting yield 

under adequate water conditions (Comas et al., 2013).Hence it makes lot of sense for plant 

scientists for a better understanding of the root physiology under drought thus enabling 

further insight of important traits that might influence crop productivity under stress and 
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hence contributing towards selection and development of drought resistant varieties, and 

thereby improving yield and promoting global food security. 

1.2.3.4 Drought and Water Use Efficiency (WUE) 

Water Use Efficiency (WUE) is defined as the ratio between dry matter produced and water 

consumed, measured either at whole-plant level or leaf area (Monclus et al., 2005). Abbate 

et al. (2004) showed that in wheat, WUE under limited water supply was greater than in 

well-watered conditions. They suggested a correlation exists between higher WUE with 

stomatal closure to reduce the transpiration. Similarly, in another study conducted on clover 

(Trifolium alexandrinum), WUE was shown to be increased due to lower water loss under 

drought stress, primarily by decreased transpiration rate and leaf area (Lazaridou and 

Koutroubas, 2004). Also, in Pinus ponderosa and Artemisia tridentata, WUE was not reduced 

due to drought stress but it rather increased, mainly due to a rapid reduction in stomatal 

conductance with increasing water deficit (DeLucia et al., 1989). Lazaridou et al. (2003) 

further reported that leucern (Medicago sativa) cultivated under water deficit conditions 

had higher WUE than that under irrigated conditions, for the same leaf water potential. 

However, early season drought stress in potato significantly reduced the water-use 

efficiency as it became evident through reduction in growth and biomass accumulation 

(Costa et al., 1997). Hence from above mentioned instances, it is well evident that drought 

tolerant species maintain higher WUE by reducing the water loss from their leaf surfaces. 

However, in cases when over-all plant growth was hindered to a much greater extent, WUE 

also reduced significantly. 

1.3 Impact of Drought on Agriculture 

Most detrimental effect of drought stress on crop plants is reduction in yield, as reported in 

rice (Brevedan and Egli, 2003), wheat (Triticum aestivum, Cabuslay et al., 2002), soybean 

(Glycine max,Kirigwi et al., 2004), and chickpea (Cicer aerietum,Khanna-Chopra and Khanna-

Chopra, 2004). Numerous United States Department of Agriculture (USDA) reports have 

recognized drought as the most frequent yield-reducing factor in arid and semiarid regions, 

although water deficit may occur even in high rainfall areas (Vamerali et al., 2003). 

Production of cereals and pulses in India was also reduced by about 30% in 1971 due to 



prevailing drought situation (Swindale and Bidinger, 1981). The USDA also reported that 

frequent droughts in years 1980, 1983, and 1988 significantly led to a decrease in maize and 

soybean yields in USA (Taiz and Zeiger, 1998). Similarly, a heat and drought wave of 2003 

caused significant reductions in net primary productivity and decrease in maize yield in both 

Eastern and Western Europe (Ciais et al., 2005). This information is enough to present 

drought as a potential source of disaster, especially as it affects almost every part of the 

world; and crops, such as rice, that feed much of the world’s population are easily affected 

by drought. 

Estimates show that drought individually lead to 17% potential yield loss in major crops 

when compared to other abiotic stresses (Ashraf et al., 2008). For example Bray et al., (2000) 

estimated that in annual crops 51-82 % yield reduction could be attributed to erratic and 

insufficient rainfall. Similarly, 24 million tons of maize is destroyed yearly in the tropics due 

to drought (Heisey and Edmeades, 1999).  

1.4 Rice as a Model Crop: Taxonomy, origin and cultivation 

Rice (Oryza sativa L.) is the staple food for more than half of the world’s population and 

hence is the most important crop (Todaka et al., 2012). It supplies 20% of the world’s dietary 

energy needs. It is also a good source of thiamine, riboflavin, niacin and dietary fibre (FAO, 

2004). 

It belongs to the genus Oryza within the Poaceae family. Amongst about 20 Oryza species, 

only two species (O. sativa and O. glaberrima) are cultivated. O. sativa (Asian rice) comprises 

the indica and japonica types. Oryza rufipogon sensustricto and Oryza nivara are the wild 

progenitors of Asian rice, which are thought to be native of South and Southeastern Asia- 

extending northwards into Southern China (Fuller 2011), whereas O. glaberrima (African 

rice) originated from the inland delta of the Niger river (Wopereis, 2009). 

Rice has been cultivated for more than 7,000 years (Yunfei et al., 2007). It is grown in more 

than a hundred countries, with a total harvested area of approximately 158 million hectares, 

producing more than 700 million tons annually (IRRI, 2014). Since rice is a semi aquatic plant, 

its production is water intensive (Wassmann et al., 2009). Almost 50% of the land used for 
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rice production is irrigated-34% of total rice cropped area is rainfed lowlands, 9% is rainfed 

uplands, and 7% flooded systems. Alone irrigated rice contributes 75% of the global rice 

production (IRRI, 2007). 

More than 90% of the world’s rice is grown and consumed in Asia, where 60% of the world's 

population lives. Rapid increase in human population throughout the world is demanding a 

corresponding increase in grain yield (Liang et al., 2010) and there is need to increase 

production by 50% till 2025 in order to feed this increasing population (Khush, 2001). For 

rice consuming countries there is need to produce 40%more rice by 2030 (Zhu et al., 2010). 

To achieve this ambitious goal of new improved rice varieties with better agronomic and 

physiological traits such as stress tolerance etc. should be developed. 

1.4.1 Impact of drought stress on rice 

Globally, nearly 80 million hectare of irrigated lowland yield 75% and similarly about 60 

million hectare of rainfed lowlands leads to about 20% of the rice production. Rice requires 

more water as compared to other crops, on an average about 2,500 liters of water is 

required to produce roughly 1 kg of rice (Bouman, 2009). Irrigated rice requires an estimated 

34-43% of the world’s total irrigation water. Water requirement for world agriculture is 

becoming increasingly scarce day by day due to uneven and uncertain rainfall, limiting 

groundwater resources, increased level of salts in soil solution and diversion of fresh water 

resources to match urban and industrial requirement. In the future, water availability might 

be more severely affected due to ongoing changes in global climate and melting glaciers. 

Because of its semi-aquatic ancestry, rice is extremely sensitive to water shortage. 

Drought is the most disastrous form of stress among abiotic stresses and it could lead to 

decrease in the yield by 15-50% depending on the vigor and period of stress in rice (Srividya 

et al., 2011). The global reduction in rice production due to drought stress averages 18 

million tons annually (Lakshmi et al., 2012). Rice is sensitive to drought stress but during 

reproductive growth even moderate stress can result in drastic reduction in grain yield (Venu 

Prasad et al., 2008). In the eastern states of India viz., Jharkhand, Orissa and Chhattisgarh, 

40% of the total rice production is affected by intense droughts valued at $650 million 

(Pandey et al., 2005) and poorest rice farmers are severely affected in these areas. In rainfed 
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areas, high yielding semi-dwarf rice varieties are not widely cultivated because of their poor 

adaptability to more stressful rainfed conditions (Pandey et al., 2000). Drought mitigation, 

through development of drought resistant varieties with higher yields adapted for water-

limiting environments will be a key for improvement of rice production and thus will ensure 

food security to 3 billion people in Asia. The development of such varieties requires a good 

knowledge of the physiological mechanisms and the genetic control of the traits contributing 

in drought resistance. 

Crop yield is dependent on specific climate conditions and is highly influenced by climate 

variations. Change in rice yield globally is shown in Fig. 1. The overall rice yield variation due 

to climate variability over the last three decades was estimated by Ray et al., (2015). It was 

concluded that about 53% of rice harvesting regions are endangered by the influence of 

climate variability on yield at the rate of about 0.1 ton/ hm2 per year and nearly 32% of 

change in rice yield is explained by year-to-year global climate variability (Fig. 2). With the 

worldwide reduction of water supplies for agriculture, the efforts to improve drought 

adaptation of rice and to screen resistant varieties are becoming increasingly important. The 

uncertainty of drought patterns and the degree of complexity of the response mechanism 

involved have made it difficult to characterize the component traits needed for improved 

drought performance, thereby limiting crop improvement to enhance drought resistance 

(Serraj et al., 2009). 

1.5 Why drought tolerant crops are required 

Apparently, the detrimental effects of drought stress disable farmers’ ability to produce high 

yield crops worldwide. Due to global climate change, predictions forecast an increase in the 

frequency and intensity of drought and its affected areas with arise in temperatures (Y Li et 

al., 2009; Dai, 2010). Likewise, rate of reduction in yield for major crops (barley, maize, rice, 

sorghum, soya bean and wheat) will increase as much as 50% in 2050 and almost 90% in 

2100 (Gornall et al., 2010). 
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Figure 1. Global map showing percentage rate of change in rice yield (Ray et al., 2013). 
Red areas show where yields are declining whereas the green areas show where rates of yield 
increase. 

Figure 2. Global rice yield variability due to climate variability over the last three decades (Ray et 
al., 2015). 
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Based on different models, estimates predict that increase in global drought has been 

overrated and that there has been small change in drought over the past 60 years (Sheffield 

et al., 2012). Hence, efforts targeted at improving agricultural adaptation to climate change 

undoubtly favor some crops and regions over others (Lobell et al., 2008). Without adequate 

adaptation measures, statistical crop models and climate change projections reveal that 

South Asia and Southern Africa are the probable two regions that will tend to undergo 

negative impacts on several crops, these regions are important to large food-insecure 

human populations (Lobell et al., 2008). 

 

By rigorously challenging the capacity to feed increasing human population which is 

expected to peak at 9 billion by 2050, drought is an important determinant of world food 

security (Borlaug, 2007; FAO, 2006, 2009, 2011). A significant increase in this population is 

expected to be contributed by developing countries (FAO, 2009). Predictions indicated that 

agricultural production and food sufficiency in many African countries would be affected, 

thereby affecting food security and aggravate malnutrition (Müller et al., 2010). Around 200 

million undernourished people live in sub-Saharan Africa (Rosenthal and Ort, 2012) and 

additionally 480 million African residents are projected to live in areas of scarce water supply 

by 2025 (UNFCC, 2006). 

 

Breeding or development of crop cultivars that can prevent drought associated hazards is 

therefore imperative. This would ensure sustainable increase in food production in drought-

prone or marginal areas and to feed increasing human population (Baulcombe, 2010). 

Interpreting the mechanisms of drought tolerance and breeding drought resistant crop 

plants has been a key goal of crop breeders and plant scientists (Xiong et al., 2006). 

However, improving the drought tolerance trait has been a difficult task for breeders 

worldwide (Pray et al., 2011). The reason being drought tolerance is a quantitative trait. 

There is insufficient understanding of specific traits linked to drought tolerance (Xiong et al., 

2006). In defiance of these, considerable efforts have been made in the isolation and 

functional analysis of genes contributing to yield and abiotic stress tolerance (Takeda and 

Matsuoka, 2008). Advantageous methods are being developed for identifying additional 

genes and variants of interest and implementing in practical crop improvement. 
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1.6 Drought responses in Plants: Rice as an example 

Drought is one of the major abiotic stresses that limit rice production and yield stability 

(Lanceras et al., 2004). Different physio-biochemical processes at cell and organism level are 

known to be associated with drought adaptation mechanisms which have been reported to 

be complex phenomena (Tripathy et al., 2000). 

 

Drought responses in rice expressed by roots, shoots and leaves depend on the timing of 

stress during plant growth (early, vegetative, intermittent or terminal drought), crop growth 

stage (seedling, vegetative or reproductive), drought severity level (mild or severe), edaphic 

properties and the target environment (Fukai and Cooper, 1995).  

 

During water scarcity, development of a deep root system capable to extract water from 

deeper soil layers (Gouda et al., 2012), may be a rice plant response under drought 

avoidance (Fukai and Cooper, 1995). Drought escape however is achieved by short growth 

duration genotypes that avoid the reproductive or terminal drought (Bing et al., 2006). 

Physiological mechanisms such as osmotic adjustment (Wei et al., 2014), or stomatal 

conductance (Price et al., 2002), along with biomass production and drought response index 

(DRI) are important traits for adaptation of rice to drought-prone sites (Xangsayasane et al., 

2014). Moreover, rice lines with better adaptation to drought responded with high levels of 

chlorophyll, soluble sugars and proline, while their malondialdehyde content is lower than in 

susceptible plants (Wei et al., 2014).  

 

Cytochrome P450 catalyzes many enzymatic reactions for various kinds of substrates, i.e., an 

oxidative, peroxidative, and reductive metabolism of endogenous and xenobiotic substrate. 

Specifically, plant P450 participates in various biochemical pathways for the synthesis of 

plant products including phenylpropanoids, alkaloids, terpenoids, lipids, cyanogenic 

glycosides and glucosinolates (Chapple, 1989).  

 

Tamiru et al., (2015) reported the characterization of dss1, a rice mutant showing dwarfism 

and reduced grain size. The dss1 phenotype is due to the effect of a non-synonymous point 

mutation recognized in DSS1, which is member of a P450 gene cluster located on rice 

chromosome 3 and corresponds to the previously reported CYP96B4/SD37 gene. (Zhang et 
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al., 2014) Hormone profiling showed that the accumulation of abscisic acid (ABA) and ABA 

metabolites, as well as significant decrease in GA19 and GA53 levels, precursors of the 

bioactive GA1 (Gibberellic Acid1) , in the mutant. Cytokinin and auxin contents in dss1 were 

not significantly different from wild-type plants. Consistent with the accumulation of ABA 

and metabolites, germination and early growth was also delayed in dss1, and this mutant 

also showed an enhanced tolerance to drought. Moreover, expression patterns of members 

of the DSS1/CYP96B gene cluster were regulated by drought stress and exogenous ABA. 

Apart from that, RNA-seq-based transcriptome profiling revealed that cell wall-related genes 

and genes involved in lipid metabolism were up- and down-regulated in dss1, respectively, in 

addition to others. All in together, these findings indicates that DSS1 mediates growth and 

drought stress responses in rice by playing a role in GA/ABA balance, and it is likely involved 

in lipid metabolism as well. 

 

1.6.1 Biochemical, genomic & proteomic responses associated with drought tolerance  

Biochemical studies have revealed that sugars (for example - raffinose family 

oligosaccharides (RFO), sucrose, sorbitol, and mannitol), amino acids (e.g., proline), and 

amines (e.g., glycine, betaine) accumulate under drought stress in different plant species 

(Seki et al., 2007). As soil becomes water deficit, its water potential becomes more negative. 

Deposition of solutes (osmolytes) in plant tissues leads to more negative water potentials, 

allowing them to retain water and avoid reductions in turgor. This drought-tolerating 

mechanism is known as osmotic adjustment (OA). By contributing in this way to maintain 

turgor pressure, osmolytes act as protectants for plants subjected to low water potential 

(Pandey et al., 2004). OA helps to maintain cell turgor, which permits cell enlargement and 

plant growth during water stress; and also allow stomata to remain at least partially open 

and CO2 assimilation to continue at water potentials that would be otherwise prohibited 

(Alves and Setter, 2004). OA by osmolytes has been shown to be a reason of improved 

productivity in wheat (Flower and Ludlow, 1987), sorghum (Sorghum bicolor), barley 

(Hordeum vulgare), and rice (Lanceras et al., 2004). In addition to acting as osmolytes to 

avoid decrease in turgor for a longer period of time, some of the accumulated solutes are 

thought to be active in stress-protective functions as free radical scavengers and stabilization 

of macromolecules during drought (Seki et al., 2007). 
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In many plants that are known to adapt to drought stress, a set of genes are transcriptionally 

activated, leading to accumulation of new proteins in seeds and vegetative organs and leads 

to better tolerance to drought. Proteins termed LEA (Late Embryonic Abundant), which were 

first reported in cotton (Gossypium hirsutum), are a set of proteins that accumulate in 

embryos late in seed development (Xu et al., 1996) where they are associated in countering 

desiccation tolerance in maturing seeds. These proteins are also reported to be found in 

vegetative tissues in response to exogenous ABA application, as well as osmotic and 

dehydration stress (Liang et al., 2006). At least six groups of LEA proteins have been 

categorized by virtue of the similarity in their constituent amino acid sequences; and group 

2, also known as the dehydrins, consists of proteins that are induced by dehydration-related 

stresses such as osmotic stress and drought (Wang, et al., 2006). An association between 

tolerance to drought stress and these groups of proteins has been observed in some crop 

plants. In blueberry (Vacinium spp.), the dehydrins were found to be accumulated in 

response to changes in ABA levels during drought stress (Panta et al., 2001). LEA genes when 

over-expressed in rice (Xiao et al., 2007), tobacco (Nicotiana tabacum) (Wang et al., 2006), 

and Arabidopsis thaliana (Figueras et al., 2004) led to better drought tolerance in transgenic 

plants. Although the specific roles of the LEA proteins are not known, it is however clear that 

they are regulated by ABA and cellular water loss. 

 

1.6.2 Role of Phytohormonal balance during drought stress tolerance:  

As sessile organisms, plants need to regulate their growth and development in order to 

respond to external stimuli such as water deficit conditions. These responses are 

orchestrated by plant growth regulators called as phytohormones. These are the compounds 

which are synthesized from various biosynthetic pathways and can act either at the site of 

their origination or can be transported elsewhere in the plant. Overall, plant hormone 

governs every aspect of plant development and their responses to biotic and abiotic stresses 

(Jurgens and Wolters, 2009). They often rapidly alter gene expression by inducing or 

preventing the degradation of transcriptional regulators via the ubiquitin – proteasome 

system (Estelle and Santner, 2010) . One of the most studied response of plants to abiotic 

stress, especially drought, is ABA signaling and ABA-responsive genes (Tuteja, 2007).  
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In addition, there is an increasing evidence to believe that other phytohormones such as 

jasmonic acid (JA) and its metabolically active derivatives (jasmonates) are also vital signaling 

molecules which participate in various plant responses during biotic and abiotic stresses 

(Wasternack 2007; Balbi and Devoto 2008). Moreover, a key position in Jasmonate hormonal 

network is executed by the plant hormone abscisic acid (ABA). Its role in the control of 

stomata closure and responses to abiotic stress is well known and extensively studied since 

decades (Mittler and Blumwald, 2015). Drought stress and/or high salinity results in higher 

levels of ABA in plants and leads to extensive changes in gene expression (Shinozaki and 

Yamaguchi-Shinozaki, 2007). ABA can be recognized by receptors in the plasma-membrane 

of guard cells or within the cytosol (Mittler and Blumwald, 2015). Subsequently signalling is 

activated and the concentration of Ca2+ in the cytosol tend to increase due to the 

functioning of calcium channels in the endoplasmic reticulum, which further lead to 

activation or inhibition of ion channels in the plasma membrane. Because of ion fluxes, 

water potential in the apoplast reduces and consequently water flows out of the cell 

resulting in a lower turgor of guard cells and closure of stomata. Because of this central 

function of ABA in the regulation of stomatal opening and closure and its control over 

mechanisms involved in stress adaptions it is very important in abiotic stress. However, 

usually alterations in one hormonal pathway influence the pathways of other hormones and 

conceivably other hormones, specifically those related to stress and growth responses, 

contribute to the plant’s overall response to the abiotic stress. Currently, one such 

extensively studied hormonal pathway is that of the jasmonates (Riemann et al., 2015). 

 

1.6.2.1 Participation of JA in drought stress responses 

The actual role of JA in drought stress remains controversial. In some investigations JA has 

been suggested to enhance drought tolerance but in others, it has been reported as a 

negative regulator that leads to substantial reduction in growth and yield. Basically, the 

perceived response is dependent on the nature of plant and tissue in query, severity and 

extent of drought stress and the quantity of JA applied (Kim et al., 2009). Hence, a lot of the 

controversy might actually exist resulting from the fact that studies were performed under 

different conditions, e.g. in various developmental stages, tissues, and with different stress 

regimes (Ismail et al., 2014). 
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1.6.2.2 Regulation of jasmonate biosynthesis 

Jasmonates are produced in plants via the octadecanoid pathway (Fig. 3), and are 

homologous to animal anti-inflammatory prostaglandins in structure and biogenesis 

(Creelman et al, 2002). Its biosynthesis and signaling pathways have been elucidated since 

the 1980s comprehensively which was reviewed by Wasternack and Hause (2013) on a large 

scale and big progress in knowledge about the JA pathway has been achieved in rice in the 

last decade (Dhakarey et al., 2016). JA biosynthesis takes place in two compartments, the 

chloroplast and the peroxisomes (Figure 3). It is initiated by a lipase which cleaves linolenic 

acid from a membrane lipid of the chloroplast membrane. Linolenic acid can serve as a 

substrate for either 9- or 13-LIPOXYGENASES (LOX), but 13-LOXs are required for the 

biosynthesis of JA. ALLENE OXIDE SYNTHASE (AOS) and ALLENE OXIDE CYCLASE (AOC) 

convert the product of 13-LOX, (13S)-hydroperoxyoctadecatrienoic acid (13-HPOT), which 

results in the formation of the intermediate 12-oxo-phytodienoic acid (OPDA). This 

compound has signaling activity by itself (Taki et al., 2005) , however, for the synthesis of JA 

it is transported from the chloroplast to the peroxisomes, where it is reduce by an enzyme 

called OPDA REDUCTASE (OPR) and subsequently goes through several steps of β-oxidation 

to shorten the side chain. The final product in the peroxisomes is JA, which can freely move 

to the cytosol. 

JA itself is presumably not an active signaling compound, and needs to be conjugated to the 

amino acid isoleucine (Ile) in a reaction catalyzed by the GH3 enzyme JASMONATE 

RESISTANT 1 (JAR1) to initiate signaling (Staswick et al., 2002). JA-Ile is recognized by its 

receptor CORONATINE INSENSITIVE 1 (COI1),(Xie et al., 1998) , an F-box protein forming an 

SCF complex, which operates as an E3 ubiquitin ligase . The hormone receptor complex 

recruits JAZ proteins, repressors of JA signaling, and catalyzes their poly-ubiquitination, 

which marks them for proteolytic degradation in the 26S proteasome (Chini et al., 2007). 

After that MYC transcription factors are relieved from repression by JAZ proteins, and 

activate the transcription of early JA responsive genes amongst which are transcripts of the 

JAZ repressors and further transcription factors. Recently it became also obvious that not 

just the synthesis of JA-Ile, but that also the inactivation of JA-Ile is a possibility to adjust JA 

responses. Two major mechanisms to metabolize JA-Ile have been described: one operating 
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through CYTOCHROME P450s (CYP94 family) (Heitz et al., 2012) another one through 

AMIDOHYDROLASES such as IAR3 and ILL6 in Arabidopsis (Wideman et al., 2013). 

(Adapted from Dhakarey et al., 2016) 

1.7 Drought avoidance and tolerance strategies may be integrated 

Drought-avoidance and -tolerance mechanisms were first proposed by Levitt (1972) and 

since then our understanding of molecular and cellular events involved during drought stress 

has tremendously increased. It has become clear recently that many of the molecular events 

triggered by drought do not fit exclusively into avoidance or tolerance categories. For 

example, accumulated solutes may play a role as osmolytes which facilitates more water 

uptake by plants and as such constitute a strategy for drought avoidance. At the same time, 

solutes such as amino acids and sugars may in addition play a protective role against protein 

and membrane damage. Similarly, dehydrins can act as chaperone-like protective molecules 

Figure 3. Biosynthesis of JA and major enzymes involved. The biosynthesis occurs in 
chloroplasts (green) and peroxisomes (brown). In brief, after cleavage of linolenic acid 
from a membrane lipid it is converted to OPDA in three enzymatic steps. OPDA is a 
functional signaling compound, but can be transported to peroxisomes specifically 
where it is further metabolized to JA by the action of OPR and subsequent β-oxidation 
steps. For further explanations, refer to the text. Abbreviations: 13-LOX: 13-
lipoxygenase, 13-HPOT: (13S)-hydroperoxyoctadecatrienoic, 13-AOS: 13-allene oxide 
synthase, AOC: allene oxide cyclase, 12-OPDA: 12-oxo-phytodienoic acid, OPR: 
OPDA reductase, OPC-8:0: 3-oxo-2(2’(Z)-pentenyl)-cyclopentane-1-octanoic acid 
12-oxo-phytoenoic acid 
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(Close, 1997) (tolerance mechanism), while their hydrophilin activity (Reyes et al., 2008) 

support in retaining water (an avoidance mechanism). The role of ABA in ABA-regulated 

stomatal conductance and root growth (Liu et al., 2005) is important in avoidance; but, on 

the other hand ABA accumulation has been reported leading to synthesis of dehydrins (Xiao 

and Nassuth, 2006), which have important role to play during drought tolerance. 

 

1.8 Various techniques used for plant gene expression studies and their major 

disadvantages  

Plant species whose genomes have been sequenced are model tools to study the function of 

genes in important biological pathways. These model species include Arabidopsis (The 

Arabidopsis Genome Initiative, 2000), rice (International Rice Genome Sequencing Program, 

Goff et al., 2003), poplar (Tuskan et al., 2006), and soybean (DOE Joint Genome Institute, 

2008). 

Sequencing projects not only produces genomic sequences of model plants of interest but 

also leads to a large number of expressed sequence tags (EST) for many other crop plant 

species. With sequencing of the genomes representing model systems as well as crop plants 

(rice and soybean), plant science have hence entered a new era. However, this field now 

faces the challenge to provide applications for crop improvement. Many emergent tools now 

enable a large-scale, parallel, quantitative profiling of molecular states. The high-throughput 

gene function analysis technologies can identify candidate genes involved in growth and 

responses to the environment which also include genes involved in drought responses. In 

the post-genomic era, elucidation of the biological functions of these genes is among the 

greatest challenge. 

DNA microarray technology, which emerged more than a decade ago, has been applied to 

determine transcript abundance for many or all transcripts in a genome by comparing 

control and experimental treatments. These microarray data have been utilized for varying 

number of plant processes related to seed development, wounding responses, pathogen 

attack and environmental stress responses (Rabanni et al., 2003). Microarrays expression 

data also lead to new insights into physiological and biochemical pathways of drought 

tolerance and thus better lead to identification of novel candidate genes that can rapidly 

advance breeding for drought tolerance. Drought-inducible genes were identified in 



 

20 
 

Arabidopsis (Seki et al., 2001) on the basis of microarray and RNA gel blot analyses. Similar 

approaches were also used for identification of dehydration-inducible genes in sorghum 

(Pratt et al., 2005) and rice (Zhou et al., 2007). The major disadvantage of microarrays is that 

they depend on current genome annotations, which hinders the identification of novel 

transcripts. Also, there is no specific correlation between mRNA expression levels and their 

corresponding protein abundances (Gygi et al., 1999). Furthermore, it is impossible to 

deduce the functional state of a protein purely from expression level of its mRNA. 

 

1.8.1 Emergence of Proteomics 

Proteins constitute a crucial component of plant stress response machinery since they are 

important constituents of plant cell structure and metabolism (Kosova et al., 2011). Proteins 

are the products of genes and they complement the resulting phenotype as they act as 

direct regulators of the phenotype, i.e., they are the constituents of plant cell structure and 

actively function in metabolism of all cellular machinery. Proteome- the total of all proteins 

in a given tissue at a given time in a given condition—is uniquely variable. 

 

 Proteome is different from the genome, latter being only one for a given organism but there 

are infinite proteomes which depend on an organism’s growth and developmental stage, 

plant tissue, and cell type as well as on ambient growth conditions. Additionally, single gene 

can give rise to various protein products due to various mechanisms of posttranscriptional 

(alternative RNA splicing, RNA editing, etc.) and posttranslational modifications (PTMs—

phosphorylation, acetylation, methylation, ubiquitination, myristoylation etc.). Hence, the 

total number of explicit proteins synthesized by a given organism can be several orders 

higher or lower than the total number of genes encoded by a genome of the organism in 

question. Considering the great range of proteomes, a plant thus owns a dynamic tool to 

modulate its response to specific environmental conditions (Kosova et al., 2015). 

Thus, proteomics- study of proteome - allow global investigation of structural, functional, 

abundance, and interactions of proteins at a given time point. As an investigative technique 

proteomics has an advantage over other “omics” tools since proteins are the key players in 

majority of cellular events and are the final products of genes involved (Baginsky, 2009). In 

addition to its capability of complementing transcriptome level changes, proteomics can also 

detect translational and post-translational regulations, thereby providing new insights into 
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complex biological phenomena such as abiotic stress responses in plant roots (Salekdeh et 

al., 2002). 

 

1.8.1.1 Perspectives in Crop Plant Proteomics 

After the completion of genome sequencing project of model species such as dicotyledonous 

plant Arabidopsis thaliana, monocotyledonous crop plant rice (Oryza sativa ssp. japonica 

and ssp. indica), model grass Brachypodium distachyon, legume species soybean (Glycine 

max), cereal crops Zea mays and Hordeum vulgare and with recently released chromosome-

based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome 

(International Wheat Genome Sequencing Consortium [IWGSC], 2014),efforts have been 

targeted to link available transcriptomic data to the biological function and functional 

network of proteins (Hu et al., 2015). Moreover, while dealing with complex and dynamic 

plant proteomes, it becomes imperative to choose suitable proteomic approaches that lead 

to identification of proteins and their modification that may contribute to crop improvement 

(Baginsky, 2009). In the recent years, quantitative proteomic studies with the evolution of 

high resolution mass spectrometry instruments have been contributing to our better 

understanding of plant growth, development and plant interactions with the environment 

(Ghosh and Xu, 2014). This approach is particularly realistic for crop scientists as it may not 

only contribute for better nutritional value and yield, but also for a better understanding of 

mechanisms which lead to abiotic stress response of crops (Ghosh and Xu, 2014). 

 

1.8.1.2 Tools and techniques employed for plant proteomic analyses 

Development in high-throughput proteomics lead to better understanding of complex 

biological questions in various species. However, several technical challenges still hinder 

plant proteomics progress. For example better sample quality is one of the important factors 

for successful proteomic experiments and is difficult to obtain from plant tissues. An 

enriched level of oxidative enzymes and proteases in plant tissues make it extremely 

challenging to extract sta-ble protein mixtures. Moreover, secondary metabolites produced 

in plant cells often hinder with ensuing protein fractionation and downstream processes. 

Hence it is rather a difficult to extract fully representative protein classes from plant tissues. 
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Additional challenges come from the cell wall that is difficult to lyse. Use of TCA 

(Trichloroacetic acid)-acetone precipitation and phenol extraction method helped to get rid 

of the above problems to a certain extent (Isaacson et al., 2006). However, enhancements to 

certain experimental conditions are still important taking the consideration of the 

heterogeneity between species. Additionally, another major limitation to effective extraction 

of proteins is low protein content in plant cells. 

Protein extraction is usually subsequent by protein separation and identification that can be 

attained with the use of two-dimensional electrophoresis (2-DE) (Wittmann-Liebold et al., 

2006) or liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) 

(Fournier et al., 2007). Advantages of gel based separation techniques have been debated 

(Gygi et al., 2000) though when compared to the LC-based shotgun approach, both 

separation strategies are being widely employed carrying their own advantages and 

disadvantages. Gel based approaches are widely employed for their ease of use, 

reproducibility, wide molecular weight coverage, and identification of post-translational 

modifications. However, attentive manual editing is necessary in order to obtain high 

precision specifically for comparative proteomics. Moreover, narrow pI range coverage and 

lack of ability to identify low abundant proteins restricted the use of this technique for broad 

protein mapping (Gygi et al., 2000). Protein spots acquired after separation on a 2D gel are 

followed by trypsin digestion leading into peptides for subsequent protein identifications. On 

the other hand, LC-based separation approach requires digestion prior to separation in 

majority of the cases. This separation system covers a wide molecular weight ranging across 

identification of low abundant proteins (Fournier et al., 2007). 

Protein recognition followed by separation has mainly progressed with the developments in 

mass spectrometry (MS). It started firstly with the advances in soft ionization methods such 

as matrix assisted laser desorption ionization (MALDI) (Tanaka et al.,1988) or electrospray 

ionization (ESI) (Yamashita and Fenn, 1984) and secondly peptide fragmentation by collision-

induced dissociation (CID) in tandem MS (Stephenson and McLuckey, 1998) lead to excellent 

coverage. Peptides recognized through MS and MS/MS are searched against specific protein 

database to obtain a list of proteins. Recent developments in identification of qualitative 

changes like post-translational modifications permit making difference between identical 

peptide mass and its altered variants which are critical from biological perspective. With the 

advent of LC-MS based tagging approaches such as isotope-coded affinity tags (ICAT) (Gygi et 
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al., 1999a), stable isotope labeling by amino acids in cell culture (SILAC) (Ibarrola et al., 

2004), isobaric tags for relative and absolute quantitation (iTRAQ) (Ghosh et al., 2011, 

2013),Tandem Mass Tag (TMT) (Daylon et al., 2012) helped to investigate this field by 

relatively quantifying proteins or peptides at a global level. Introduction of statistically 

robust label free quantitative approach is also helping quantitative proteomics research to 

investigate large number of clinical samples (Wu et al., 2006). Therefore, with the available 

as well as ongoing developments in the MS field, proteomics is expected to provide us 

improved ways to excavate biological information. 

1.8.1.2.1 Quantitative Proteomic: MS based strategies for relative and absolute 

quantification 

As discussed before, genome and transcriptome expression profiling do not accurately relate 

with proteome complexity (Maier, 2009), the direct and targeted measurement of global 

protein expression levels alone, better known as quantitative proteomics, can provide 

valuable information on biological processes in crop plants and hence could pave a way for 

crop improvement (Vanderschuren et al., 2013). In quantitative proteomics mainly protein 

separation is coupled with mass spectrometry (MS) or tandem mass spectrometry (MS/MS) 

leading to identification of protein species. In large scale proteomic studies, relative amounts 

- instead of absolute amounts - of the identified peptides or proteins are quantified, 

achieved by comparison of the same samples representing different conditions (Bantscheff 

M.et al., 2007). Relative quantification which is traditionally performed by 2-DE separation 

methods subsequently followed by staining and image analysis leads to visible differences in 

gel patterns through the differential staining comparison (Braisted et al., 2008). However, 

this cumbersome and sequential protocol is difficult to automate and suffers from high level 

of sensitivity and robustness (Abdallah et al., 2012).With the evolvement of MS-based 

proteomics, a relatively new toolbox has rendered available for quantitative analysis. 

Through shotgun proteomics(bottom-upstrategy) complex peptide fractions produced after 

protein proteolytic digestion can be better resolved using various fractionation strategies, 

which render high-throughput analyses of the proteome of an organelle and provide an 

overview of the major protein constituents (Liu H. et al., 2004). 
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1.8.1.2.2 Relative and absolute quantitation strategies: When and Why? 

Obviously, absolute quantitation would appear to be an ideal strategy compared to relative 

quantitation, reason being that the absolute peptide values from various samples could also 

be compared to identify relative protein changes. Relative proteomic quantitation is used 

very often as compared to absolute quantitation because expensive reagents and time-

consuming assay development and optimization are required for the absolute quantitation 

of each protein of interest. 

Experimental bias can affect the reason to choose relative or absolute quantitation 

protocols. One main source of bias is the mass spectrometer itself, which has a finite 

capacity to analyze and detect low-abundance peptides in samples with a high dynamic 

range. Moreover, the limited duty cycle of mass spectrometers impede the number of 

collisions per unit of time, which may lead to an event of under sampling of complex 

proteomic samples (Prakash et al., 2007). Variation in sample preparation between 

experiments or individual samples in single experiments could be additional source of bias. 

The greater the number of steps between labeling and sample combination- risk of 

introducing experimental bias becomes greater. For example, during metabolic labeling, 

proteins are labeled in live tissues or cells and then the samples are immediately combined. 

Since all subsequent sample preparation and analysis is performed using the combined 

samples, metabolic labeling has the least chance of experimental variation (Bantscheff et al., 

2007). On the other hand, samples which are individually processed and resolved in label-

free quantitation strategies have the major risk of sample variation and experimental bias 

(Megger et al., 2014). 

1.8.2 Tandem Mass Tag (TMT) 

TMT is a novel MS/MS-based quantitative method using isotopomer labels referred to as 

“tandem mass tags” (TMT) was recently developed (Thompson et al., 2003). Both techniques 

share many common features. (i) These reagents exploit N-hydroxy succinimide (NHS) 

chemistry that allows specific tagging of primary amino groups. (ii) They were devised to 

permit multiplexing of several samples by chemical derivatization with various forms of the 

same isobaric tag that emerge as single peak in full MS scans. (iii) The release of “daughter 

ions” in MS/MS analysis (between 126 and 131 Da for TMT) can be utilized for relative 

quantification. The cysteine reactive TMT (cys TMT) reagents perform selective labelling and 
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relative quantitation of cysteine-containing peptides from up to six biological samples 

(Abdallah et al., 2012). 

Since TMT tagged peptide pairs are isobaric, they co-elute during chromatographic 

separations and lead to more accurate quantification than conventional isotope labeling 

strategies (i.e. ICAT). Additionally, the MS signal of each peptide pair is not split into 

different peaks because of mass shifts thereby improving the sensitivity in the MS mode 

(Thompson et al., 2003). A particular benefit of isobaric mass tags is the multiplex abilities 

and thus increased throughput potential of this strategy. Commercially available isobaric 

mass tags (e.g., TMT*, iTRAQ*) are available that render the simultaneous analysis of 4, 6 or 

8 biological samples. Though the exact tags used are manufacturer dependent- but the basic 

components of all isobaric mass tag reagents is made up of 1) a mass reporter (tag) that has 

a unique number of 13C substitutions 2) a mass normalizer that has a definite mass that 

balances the mass of the tag to make mass of all tags equal. Isobaric mass tags also consists 

a reactive moiety that crosslinks to primary amines or cysteines (depending on the product 

used). These tags are devised so that the mass tag is cleaved at a specific linker region upon 

high-energy CID (HCD), giving rise to the different-sized tags that are then quantitatively 

analyzed by LC-MS/MS (Figure 4) . Isobaric mass tagging has also been adapted for use with 

protein labeling (similar to ICPL) (Thermofisher Scientific Ltd). 

        Figure 4 Strategy for experimental procedure using Thermo Scientific™ TMT 10plex Isobaric 
Mass Tagging Reagents Protein isolates from tissues are reduced, alkylated and digested 
overnight. Samples are labeled with the TMT reagents and then pooled prior to sample 
fractionation and clean up. Labeled samples are resolved by high-resolution Orbitrap LC-
MS/MS prior to data analysis to determine peptides and quantify reporter ion relative 
abundance. Source : Thermo Scientific

TM 
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1.9 Scope of the Study 

Since breeding for drought-tolerant rice is hard to achieve by conventional strategies, 

including marker-assisted selection - understanding of the molecular mechanisms underlying 

drought tolerance is therefore needed for successful, knowledge-based crop improvement 

(Milan et al., 2006). The valuable information gathered, about the role of JA at physiological 

and molecular level in drought stress, through the use of the mutant approach in this PhD 

project - could potentially serve as a valuable crude material for plant breeders to develop 

drought-tolerant crop plant varieties in future. Riemann et al., (2013) successfully isolated 

and characterized one such JA-deficient mutant called cpm2, which was successfully used in 

this study. Cpm2 (or coleoptile photomorphogenesis 2) has been described as a specific 

mutant of ALLENE OXIDE CYCLASE (AOC), carrying an 11 bp deletion within the first exon of 

this gene. Homozygous seedlings of the JA-biosynthesis mutant (cpm2) were compared to its 

corresponding wild type background rice cultivar (Nihonmasari), in drought stressed and 

well-watered condition, at the level of phenotype, physiology and molecular biology - in 

order to reveal more extensive knowledge about the involvement of jasmonates in drought 

response in rice.  

A targeted approach has been used by measuring some of the physiologically relevant traits 

and then by analyzing the root proteome of drought stressed and well-watered wild type 

and mutant cpm2 seedlings, in order to understand the possible molecular mechanisms 

underlying their physiological and molecular response. The proteomic approach has been 

previously described as quite promising. For instance, in barley it has identified proteins and 

their corresponding genes associated with metabolism, synthesis of osmoprotectants, and 

ROS (reactive oxygen species) scavengers (Guo et al., 2009).  

The study in this PhD project proceeded in the following four main stages using the 

genotypes mentioned above:  

1. Various physiological parameters related to roots, shoots and at the whole plant level

were observed by measuring the root architecture, stomatal conductance, water

uptake rate and the Water Use Efficiency (WUE). Shoot ABA levels were also

measured in order to relate ABA activity to stomatal conductance of the leaves.
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2. Root proteome profiling was performed on roots under well-watered (WW) and 

severe drought stressed (DS) samples. The TMT (Tandem Mass Tag) technique was 

used to label the total protein extract obtained from the root tissue. Root proteins 

differentially expressed between the two genotypes under WW and DS were 

analyzed by the MAPMAN software. The roots were chosen for performing the 

proteomics because of the widely believed fact that they are the first organs to sense 

a water shortage (Trachsel et al., 2010). It is also because of this reason, the root 

system is therefore generally considered as the most important organ with respect to 

improving crop adaptation to water stress (Vadez, 2014). 

3. A number of unique and differentially expressed proteins observed in proteomics 

data were further considered to be analyzed for their transcript abundances in order 

to ascertain a co-relation between transcript abundance and their corresponding 

protein levels. 

4. The results obtained from the first three approaches were analyzed and used to draw 

conclusions regarding the identified proteins involved in the higher drought tolerance 

of cpm2. Furthermore, the results were compared to previously published work on 

drought tolerance of cereals, and possible mechanisms/roles for the identified 

proteins were proposed and discussed in order to better relate them with observed 

physiological data. 
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2. Material and Methods 

2.1 Plant growth and drought stress conditions for drought phenotyping and stomatal 

conductance  

Oryza sativa L. ssp. japonica cv. Nihonmasari as the wild type (WT) and the cpm2, the 

mutant generated in the same cultivar (Riemann et al., 2013) were used in this whole study. 

After dehusking the caryopses, they were surface sterilized by incubating the seeds in 70% 

ethanol for 1 min and then washed briefly twice with double-distilled water. Then after, the 

seeds were incubated for 30 min in a sodium hypochlorite solution containing ~5% of active 

chlorine followed by five washing steps with sterilized double-distilled water. The seeds 

were sown on 0.5% phytoagar medium (Duchefa, Netherlands) and were kept for 14 d in a 

culture room (at 25 °C, continuous light of 120 μmol m–2s–1). 14 day old seedlings were then 

transferred to phytochamber (BBC York, Mannheim, Germany) and were left to grow for 

another 1 week under short-day conditions (10 h light at 28 °C, 280 μmol/m2s, 14 h darkness 

at 22 °C). Once a week plants were fertilized (Wuxal, “TopN” and “Super” fertilizers, Manna, 

Ammerbuch-Pfaffingen, Germany). Rice seedlings (aged 21 days) were subjected to drought 

stress in the phytochamber for 6 days withholding water and then subsequent phenotypical 

changes were photographed on 7th day after imposing stress. Stomatal conductance was 

measured on youngest fully-expanded attached leaves of each cultivars of same age with 3–

5 replicates with a portable-type Porometer (Decagon devices, USA) for 4 days after 

withholding water and for 2 days after rewatering. 

2.2 Greenhouse seedling-stage drought studies using mylar tubes for root architecture 

analysis  

Mylar tube experiment was conducted in the glasshouse at the International Rice Research 

Institute (IRRI), Los Baños, Philippines (Los Banõs, Laguna, 14°10’11.81”N, 121°15’39.22”E). 

Soil from the IRRI upland farm was dried in a greenhouse, sieved (6mm), steam sterilized, 

and packed to a bulk density of 1.2g cm–3 in 5-cm diameter mylar tubes to a depth of 40cm. 

All tubes were closed at the bottom with a layer of cotton cloth to allow water flow to the 

soil, and then inserted inside an outer tube of opaque PVC painted white that had a water-

impermeable sealed bottom (Figure 5A). Well grown WT and cpm2 homozygous seedlings 

were sown in mylar tubes after growing them for 14 days in a culture room (at 25 °C, 
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continuous light of 120 μmol m-2s-1). Soil moisture treatments of control (100% field 

capacity), dry-down to 75% of field capacity (75% SMC) and dry-down to 50% of field 

capacity (50% SMC) were applied. For the control and drought stress (DS) treatments, tubes 

were soaked for 2 hours, and then allowed to drain overnight before planting. For the 75% 

and 50% SMC treatment, half of the required water volume was added to the top of the 

tube and half to the bottom, in order to have a continuous water column in that low-

moisture treatment Five replicates per genotype were used for this study. Tubes were 

weighed three times per week to monitor transpiration, at which time control tubes were 

watered to maintain 50 % Soil Moisture Content (SMC), 75% SMC and 100% SMC (field 

capacity) throughout the experiment. The respective target weights for each of the SMC 

were calculated using stoichiometric methods. Unplanted controls for each treatment were 

included to monitor evaporation from the soil surface. After harvesting the root material, 

roots were washed and stored in 75% ethanol until scanning and analysis for root 

architecture study using WinRhizo (Régent Instruments, Quebec, Canada).  

  

Figure 5. Root Architecture study was performed using mylar tubes in green house conditions.       
A. WT and cpm2 plants were sown in mylar tubes B. Excision of root material and subsequent 
washing was performed prior to Winrhizo measurements. 

2.3 Experimental setup for the lysimeter study for calculating water use efficiency  

Lysimeter experiment was conducted in the glasshouse at the International Rice Research 

Institute (IRRI), Philippines (Los Banõs, Laguna, 14°10’11.81”N, 121°15’39.22”E) for 

measuring Water Use Efficiency (WUE). The experiment was performed in lysimeters made 

up of PVC cylinders 95 cm in height and 20 cm in diameter lined with plastic sheet filled in 

with soils that was brought from upland and lowland fields at IRRI. Before filling these 

A B 
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cylinders, an upland soil (mollisol) was autoclaved, air-dried and sieved and a lowland soil 

was made free of debris and maintained saturated. The cylinders were then filled with 25 kg 

of dry upland soil (bulk density 1.1 g cm–3) that was well compressed manually to a height of 

75 cm: 5 L of water was also added into each cylinder to compact the soil furthermore 

before filling the lowland soil at top. Wet lowland soil was then filled on top of the upland 

soil, leaving a space of 5 cm at the top of the cylinder. A total of 30 lysimeters were then 

placed inside a concrete tank (1.35m depth, 3.5m width and 6.8m length) within the 

glasshouse. Within the lysimeter facility, the cylinders were moved using a cylinder-lifting 

system that consisted of an electric motor (Shopstar Electric Chain Hoist, Columbus McKinon 

Corp., Amherst, NY, USA) attached to a custom-built gantry crane that rolls along the top of 

the cement tank walls (See Figure 6). Each cylinder was lifted one at a time and placed on a 

weighing balance (KERN SCE-3.0, Kern and Sohn GmbH, Balingen, Germany) and 

simultaneously imaged with a digital camera (PowerShot G7, Canon, Tokyo, Japan) that was 

fixed at a distance of 1m from the balance. A black curtain was attached to the moving crane 

that was positioned behind the balance to provide a black background for the plant images.  

screen
Weighing 

balance

Camera
Computer

Electrical

hoist

 

Figure 6. Illustration of the IRRI lysimeter facility used in this study. Water uptake was monitored by 

weighing of lysimeters using an electrical hoist suspended by a custom gantry crane. Lysimeter 

weights and digital images of shoots were acquired simultaneously to calculate Water Use Efficiency 

(WUE). 
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2.3.1 Plant growth and their management for calculating water use efficiency using 

lysimeter  

Well grown WT and cpm2 homozygous seedlings were sown in lysimeters after growing 

them for 14 days in a culture room (at 25 °C, continuous light of 120 μmol m-2s-1). The 

lysimeters were arranged in an alpha-lattice design and complete fertilizer, NPK (14 : 14 : 

14), was applied at a rate of 5.4 g per lysimeter ,1 day after transplanting for proper plant 

establishment. Plants were top-dressed with 3 g per lysimeter of ammonium sulfate at 24 

days after sowing (DAS) and 4 g of ammonium sulfate was later applied at 30 DAS. Thinning 

was conducted 7 days after transplanting, leaving one plant in each cylinder. Weeds were 

manually removed regularly. Drought stress was imposed to plants in the drought stress (DS) 

treatment starting at 32 DAS in the experiment by draining water from the lysimeters 

through three holes that were drilled near the bottom of the lysimeters and by withholding 

any further addition of water to those lysimeters. All lysimeters were then well covered with 

polythene sheets sealed around the base of each plant to minimize direct evaporation, in 

order to ensure that only water loss from the cylinder by transpiration was measured. All the 

lysimeters labelled as control were kept well-watered using the target weight which was 

established by measuring the lysimeters at day 36 and the DS lysimeters were kept 

unwatered for the rest of the duration of experiment. Experiment was continued for about 4 

weeks after draining the lysimeters and the lysimeters were weighed three times a week 

(Mondays, Wednesdays and Fridays). Well-watered conditions were maintained in the 

control treatment by adding water as needed every other day. 

Digital imaging for plant shoot growth analysis was also performed as described in Kijoji et 

al. (2012) in order to estimate leaf area for the plants growing in all lysimeters. This leaf area 

was later normalized using image J (NIH, USA) with water uptake/day to calculate WUE 

(Figure 7). 
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2.4 Plant materials, growth and stress conditions for proteomics, ABA measurement and 

transcript analysis experiments 

The sampling material for these experiments were raised in the greenhouse at International 

Rice Research Institute (IRRI), Philippines (Los Banõs, Laguna, 14°10’11.81”N, 

121°15’39.22”E) during the 2014 and 2015 dry season. WT and cpm2 seedlings were grown 

in 0.5% phytoagar as described above for 14 days and afterwards well-grown seedlings were 

transferred to 20 cm pots filled with soil (brought from upland farms of IRRI) and were kept 

in the greenhouse. All the plants were kept well-watered for another 1 week after which the 

plants were separated into two categories ‘control’ and ‘stressed’ plants. The control plants 

were kept well-watered and their roots were sampled at day 22 and in parallel rest of the 

plants were stopped watering for initiating moderate and severe stress condition. For 

sampling drought stress samples, soil water potential in the drought stressed treatment was 

monitored by tensiometers (Soil moisture Equipment Corp., CA, USA; one per replicate) and 

root samples for these stress treatment were harvested when soil moisture content (SMC) 

reached 30% and 15% respectively for moderate and severe stress and were immediately 

frozen in liquid nitrogen. 

 

 

Figure 7. Calculation of water use efficiency using Lysimeters at IRRI facility. Digital imaginery   for 

non-destructive monitoring of leaf area for calculating Water Use Efficiency (WUE) 
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2.4.1 Protein extraction, separation, tryptic digestion and TMT labelling 

For total protein extraction, frozen rice root samples (100 mg) from two genotypes (WT and 

cpm2) were washed with distilled water to remove soil and other debris. Subsequently, they 

were pulverized with liquid nitrogen into fine powder to which 0.7 mL of Tris–Cl buffer (pH 

8.0) was added ( for overview see figure 8). After subsequent protein extraction using the 

method as described in Raorane et al. (2015a), protein samples were then run through SDS-

PAGE under denaturing conditions as per the Laemmli method (Laemmli 1970). 

Subsequently protein bands were cut and collected from the three independent replicate 

gels manually and were excised into smaller pieces. These gel pieces were washed twice 

with 50 µL of 50 % acetonitrile (ACN)/50 % 200 mM ammonium bicarbonate (ABC) for 

duration of 5 min and were shrunk with 100 % ACN until they appeared white; the gel pieces 

were then dried for 5 min in a concentrator (miVac, Genevac, UK). Afterwards, the gel pieces 

were made to rehydrate at room temperature in 15 µL of 50 mM ABC (37°C for 4 min). An 

equivalent amount (15 µL) of trypsin solution (Promega, USA; 20 ng/µL in 50 mM ABC) was 

then added, before the gel pieces were incubated at 37°C for at least 16 h. After performing 

the tryptic digestion, the digests from gel pieces were extracted by using 0.1 % formic acid in 

50 % ACN. All of the extracts were then dried in a concentrator. On each liquots, TMT 

labeling was performed with TMTs with respective reporters of m/ z = 126.1, 127.1, 128.1, 

129.1, 130.1, and 131.1 provided by Thomson (Th) in 40.2 µL CH3CN. After subsequent 

incubation at room temperature, 8 µL hydroxylamine 5 % (w:v) was added in each tube and 

mixed for 15 min. These aliquots were then subsequently combined, and each pooled 

sample was vacuum evaporated. The subsequent sample was then dissolved in 1894 µL 

H2O/TFA 99.9 %/0.1 % prior performing the LC–MS analysis. 
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Figure 8 : Strategy for TMT labelled LC-MS/MS analysis for comparative proteome analysis of  
drought stressed rice roots of cpm2 and corresponding WT. Samples were collected to extract total 
proteins. After total protein extraction was digested with trypsin, the peptides were labeled with 
the TMT reagent and pooled. Pooled peptides were fractioned using the reversed-phase HPLC 
system, then individual fractions were analyzed using LC-MS/MS. MS raw data were processed 
using the swissprot protein database. Identified proteins with one or more than one peptide with 
MASCOT scores greater than 40 were immediately accepted. Single peptides with MASCOT scores 
less than 40 were deleted from the analysis to avoid false positives. The MSU TIGR v7.0 locus 
identifiers of the remaining proteins were retrieved using the ID mapping tool in UniProtKB 
(www.uniprot.org) for input into MAPMAN. 

Exp 2
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2.4.2 Nano-LC–MS/MS analysis  

For nano-LC- MS/MS analysis, each digested peptide mixture (5 µL) was introduced into the 

mass spectrometer through high-performance liquid chromatography by using a 1200 series 

binary HPLC pump (Agilent, CA, USA) and a FAMOSTM well-plate micro-autosampler (LC 

Packings). The sample was loaded into a 2cm×75 µm i.d.trap column packed in-house with 

C18 resin (Magic C18AQ, 5 mm, 200 A˚ ;Michrom, Bioresources, CA, USA) for each analysis. 

This trap column was connected to an analytical column (11 cm × 75 mm i.d.), and both the 

columns were rigidly packed in-house with C18 resin (Magic C18AQ, 5 mm, 100 A˚). Mobile 

phase A was composed of of 0.1 % formic acid, and mobile phase B was composed of 0.1 % 

formic acid in 100 % ACN. The flow rate was maintained at nearly 250 nL/min under an in-

house split flow system. Each reversed-phase step started with 5 % ACN for a duration of 10 

min, a gradient of 5–40 % ACN for duration of 75 min, 40–85 % ACN for duration of 5 min, 85 

% ACN for duration of 10 min, and then was re-equilibrated with 5 % ACN for a duration of 

20 min. Mass spectrometric analysis were carried out with a high performance LTQ XL linear 

ion trap mass spectrometer (ThermoFisher Scientific, San Jose, CA, USA). A complete-mass 

scan was performed between m/z 350 and 2000, which was followed by MS/MS scans of the 

five highest-intensity precursor ions at 35 % relative collision energy. A dynamic exclusion 

was also enabled with a repeat count of 1, exclusion for duration of 3 min, and with a repeat 

duration of 30 s. 

 

 

2.4.3 Protein identification 

For protein identification strategy, SwissProt protein database 56.8 (release of February 10, 

2009) was searched against the acquired MS/MS spectra using the Mascot Daemon version 

2.2.2, and the taxonomic category was selected as Oryza sativa. For peptide mass tolerance 

and fragment tolerance, values were set at 2 and 0.5 Da, respectively. The initial search was 

specified to allow for up to two missed tryptic cleavages. For determining the false positive 

rates, a Decoy database was performed. The false-positive rates were allowed below 5 % by 

specifying p-value at 0.025. 
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2.4.4 Functional annotation  

Proteins identified with one or more than one peptides with MASCOT scores greater than 40 

were immediately accepted. To avoid false positives, Single peptides with MASCOT scores 

less than 40 were deleted from the analysis. The MSU TIGR v7.0 locus identifiers of the 

subsequent remaining proteins were retrieved using the ID mapping tool in UniProtKB 

(www.uniprot.org) for their input into MAPMAN. Finally, a total of 808 proteins, of 272 and 

217 unique proteins, with TIGR locus IDs in WT and cpm2 roots respectively, were used for 

further functional annotation using MAPMAN. These proteins were mapped on the already 

available rice-mapping files, and the subsequent mapped proteins were further classified 

into 24 functional categories based on MAPMAN BINs as described by Thimm et al. (2004). 

 

2.4.5 Quantitative PCR 

Quantitative RT-PCR analysis of a selected set of genes was performed. The proteome 

analysis suggested candidate genes; those that appeared especially relevant to the JA 

pathway were assessed at the transcript level in the root tissue of the two genotypes under 

well-watered and drought conditions. The primers (Supplementary Table 3) were designed 

using Primer 3 and the rest of the procedures involving RNA extraction; cDNA synthesis and 

qRT-PCR were carried as described in Raorane et al (2015b). OsCyclophilin-2 was used as 

housekeeping gene for all qRT-PCR studies. 

 

2.5 Measurement of endogenous ABA levels in shoot samples  

ABA was quantified from shoot samples using a standardized ultra-performance liquid 

chromatography–tandem mass spectrometry (UPLC-MS/MS)-based method according to 

Balcke et al. (2012) using [2H6] ABA  as internal standard 
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3. Results 

 

The experiments conducted in this study were motivated by the question, which role 

jasmonate signalling plays for the adaptation to drought stress. Therefore, a comparative 

study was performed using a rice JA-biosynthesis mutant, cpm2, to the wild type (WT) 

background rice cultivar (Nihonmasari) at the level of morphology, physiology and molecular 

biology. Surprisingly, the analysis of phenotypic traits and physiological parameters showed 

that leaves and roots of cpm2 exhibited less stress symptoms. This allowed assigning the 

molecular differences, identified by whole-proteome profiling by the tandem-mass tag 

(TMT) technology on the drought stressed roots of cpm2 and corresponding WT to adaptive 

events. The result section is therefore composed of four main subsections: 

1. Description of the phenotypical and physiological responses of mutant versus wild type to 

drought stress. 

2. Description of the proteome profiles of mutant versus wild type as identified by TMT 

proteomics. 

3. Assignment of the identified protein to different gene ontologies (so called bins). 

4. Cross-connection of these clusters according to functional complexes. 

3.1. Description of the phenotypical and physiological responses of mutant versus wild 

type to drought stress. 

3.1.1 JA-deficient mutant cpm2 leaves showed less leaf rolling and wilting under drought 

stress 

Plants of WT and cpm2 grown for four weeks were subjected to drought stress by 

withholding water in order to observe how JA deficiency affects the drought response 

phenotypically. After 2 days of withholding water, leaves of cpm2 appeared to be less 

sensitive with respect to wilting and leaf rolling and did not roll, while the wildtype leaves 

were beginning to roll as a response to drought stress (Fig 9A & B). After the end of day 4, 

WT leaves showed the symptoms of wilting, whereas the mutant leaves remained unfolded 

and appeared turgescent (Figure 9C & D). Hence, the JA deficient mutant cpm2 showed less 

sensitivity to drought during the first few days of stress application. Therefore, it was 

decided to compare further physiological and molecular parameters in wild type and mutant 

plants in response to drought stress.  
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A B 

C D 

Figure 9: Phenotypic changes  observed in  rice seedlings after A) 2 days exposure of drought stress on WT 
B) 2 days exposure of drought stress on cpm2 C) 4 days exposure of drought stress on WT D) 4 days
exposure of drought stress on cpm2. The 4 week old seedlings of WT and cpm2 were subjected to drought
stress in phytochamber by withholding water and then were photographed subsequently after first
appearance of drought stress symptoms. The magnifying glass specifically highlights the leaf area showing
drought stress symptoms.   
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3.1.2 The mutant cpm2 is able to sustain a rich root architecture and good biomass under 

moderate drought stress 

Morpho-physiological measurements in drought studies are crucial for understanding the 

extent of stress experienced by the plant arising due to the stress treatment and also to 

provide a framework to interpret the changes on the molecular level described in the 

sections below. Plants also respond to drought stress in different ways, for example short 

durations of severe stress often lead to short-term but eventually unsustainable reactions of 

the “wait and see” type, however long-term stress requires the initiation of more exorbitant 

avoidance mechanisms that need significant developmental changes. Hence, it becomes 

crucial to choose such a kind of experimental set-up which can remove the biasness and can 

provide reproducible results with a degree of robustness (in order to impose appropriate 

degree of stress). Because of aforesaid reasons, mylar tubes were chosen for carrying out 

this study (see materials and methods) to perform the experiment under a progressive 

drought stress condition in a greenhouse at IRRI, Philippines as these conditions together 

closely mimic the drought conditions prevalent in a rice field.  

In order to see the differential effect of drought stress on root growth in the WT and cpm2, 

the root architecture was examined by scanning the harvested root material from the Mylar 

tubes using the Winrhizo image analysis system. Overall, there were significant differences 

observed across the treatments where cpm2 seemed to develop more roots than the wild 

type and could maintain this feature even under drought. 



40 

Figure 10. Differences in root architecture in WT and cpm2. Plants of two genotypes were grown in 
soils at different moisture contents. Significant differences were observed across the treatments in 
which cpm2 seemed to be performing better. Values for A) Max Root depth B) Nodal Root Length C) 
Lateral Root Length are shown here. Data are mean values ± standard error of five replicates. Stars (* 
& **) denote statistical significance (P ≤ 0.05 & P≤0.01) respectively between the two genotypes in a 
student’s t-test. 
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Maximum root depth (Mrd) was more in cpm2 compared to the WT across all the 

treatments (Figure 10A). However, the WT showed an interesting stress inducible increase in 

Mrd compared to cpm2. Maximum root depth increased for WT as the severity of the stress 

increased. The mutant cpm2 showed an adverse effect on Mrd with increasing drought 

stress. These results indicated that WT roots were capable to increasingly scavenge for water 

compared to the cpm2 by showing an increasing response of Mrd towards stress.  

 

The nodal root length was also measured under the three treatments in both the genotypes. 

Across the treatments, WT showed ~ 40% reduction in nodal root length from control to 

severe stress condition. On the contrary cpm2 showed ~50% reduction in the nodal root 

length from control to severe stress condition (Figure 10B). The lateral root length was also 

measured across the treatments for the two genotypes. It was established that both the WT 

and cpm2 plants showed ~ 51% reduced lateral root growth as the severity of the stress 

increased. It was also observed that both the nodal and lateral root lengths for the WT and 

cpm2 showed marked reduction in severe stress condition than in the moderate stress 

compared to their respective length at control conditions. (Figure 10 C).  

 

 

 

 

Figure 11. Sum of All Root Length are shown here. Plants of two genotypes were grown in soils at 
different moisture contents. Significant differences were observed across the treatments in which 
cpm2 seemed to be performing better. Data are mean values ± standard error of five replicates. Stars 
denote statistical significance (P ≤ 0.05) between genotypes in a student’s t-test.  
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The sum of all root types was calculated by summarizing overall root architecture. This 

indicated that in cpm2, the three different treatments showed much higher root length than 

the WT control (Figure 11). Thus these root morphological characterization suggested that 

although the effect of drought stress was much more pronounced on the cpm2 roots than 

the WT roots; cpm2 had a better overall root architecture and it seems to have the 

machinery to sustain drought stress better.  

 

 

 

 

 

Figure 12. A) Total Number of Forks and B) Total Number of Tips are shown here. Plants of two 
genotypes were grown in soils at different moisture contents. Significant differences were observed 
across the treatments in which cpm2 seemed to be performing better. Data are mean values ± 
standard error of five replicates. Stars denote statistical significance (P ≤ 0.05) between genotypes 
across treatments in a student’s t-test. 
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Total Number of Forks and Total Number of Tips were calculated in both cpm2 and WT after 

scanning the roots using the Winrhizo system. It pointed out that cpm2 in the three different 

treatments showed much higher total number of forks and tips than the corresponding WT 

treatments (Figure 12 A & B) and specifically cpm2 had higher total number of forks and tips 

under moderate drought as compared to WT under same condition. This might help higher 

soil exploitation efficiency by deploying finer roots in a root branch system in cpm2 - which 

could prove as an advantageous strategy under limiting water conditions.  

 

 

 

Figure 13. A) Surface Area B) Root Dry Weight is shown here. Plants of two genotypes were grown 
in soils at different moisture contents. Significant differences were observed across the treatments in 
which cpm2 seemed to be performing better. Data are mean values ± standard error of five 
replicates. Stars denote statistical significance (P ≤ 0.05) between genotypes across treatments in a 
student’s t-test.  
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Total Surface Area (TSA) was measured in WT and cpm2 under control, moderate and severe 

drought treatments. Based on these measurements, it can be stated that the both WT and 

cpm2 plants showed a reduced surface area as the severity of the treatment increased. 

Under control condition, TSA in cpm2 was 35% more as compared to WT however under 

moderate stress cpm2 had 32% more surface area than the WT under the same treatment (P 

≤ 0.05). Under severe stress, the difference became almost similar but it was greatly reduced 

in both the genotypes (Figure 13A). 

Root Dry Weight (RDW) was also measured in all the treatments. Under control condition, 

cpm2 RDW measured 40% more than the WT under the same condition, However effect of 

moderate stress treatment was more pronounced on WT as cpm2 had 44% more RDW than 

WT under the same treatment(P ≤ 0.05). Although under severe stress treatment, the effect 

of stress was more pronounced on both the genotypes and RDW was greatly reduced but 

still cpm2 maintained 45% more RDW than WT. (Figure 13B). 

In summary, several root architecture measurements indicated that cpm2 roots are more 

developed than those of the WT. Also, cpm2 is able to maintain a better growth and higher 

degree of branching under moderate drought conditions  

3.1.3 Water use efficiency, stomatal conductance,  and abscisic-acid levels indicate 

improved drought tolerance in cpm2 

Phenotypically, cpm2 seemed to cope better with drought stress (Figure 9). Therefore, we 

analyzed water use efficiency (WUE) and stomatal conductance of WT and cpm2 under 

drought stress (DS) over the time. WUE can be defined as the ratio of water used by the 

plant for its leaf area development to the total water uptake. Overall, WUE tended to be 

significantly higher in cpm2 as compared to WT under drought conditions (Figure 14A). 

Initially at 36 days after sowing (DAS), at the initiation of drought treatment, cpm2 and WT 

showed similar WUE under control and in DS treatment. Following the drought treatment 

progressively from 41 – 46 DAS, cpm2 showed better WUE than WT, with the highest at the 

most severe drought stress treatment (46 DAS). Till the end of the drought stress 

experiment, cpm2 plants maintained better WUE than the WT under DS condition. On the 

other hand in control condition, difference between WUE of cpm2 and WT was almost non-

significant (Figure 14 B). Thus it could be emphasized here the ability of the cpm2 plants to 
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maintain better WUE throughout the drought stress treatment – indicating its physiological 

capacity to sustain drought better.  

Figure 14. Water use Efficiency of WT and cpm2 calculated after normalizing water uptake rates 
with Leaf Area under A) Drought stress B) Control condition. WT & cpm2 plants were drought 
stressed in lysimeters after 32 Days of Sowing by withholding water. Weighing for lysimeters started 
from 36 DAS for 3 times a week and controls were replenished upto the target weight after each 
successive measurement. Plants were photographed at the same time for green leaf area, which was 
later used to calculate the Water Use Efficiency (WUE). Star (*) denote statistical significance (P ≤ 
0.05) respectively between genotypes in a student’s t-test.  
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Figure 15 A) Measurement of Stomatal Conductance in WT B) Measurement of Stomatal 
Conductance in cpm2 under control, moderate and severe stress. Four week old WT and cpm2 
plants were drought stressed in phytochamber by withholding water for four days and then 
rewatered by replenishing the water levels. Values represent the mean of at least three independent 
experiments ±SE. Stars (*, ** and ***) denote statistical significance (P ≤ 0.05, P ≤ 0.01 & P ≤ 0.001) 
respectively between genotypes in a student’s t-test.  
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The stomatal conductance measures the rate of passage of gases such as carbon dioxide 

(CO2) or water vapour through the stomata of a leaf, and is a function of the density, size, 

and aperture of stomata. Stomatal conductance was measured in WT and cpm2 under both 

control and DS treatments, respectively. Measurements were started on 28 days old plants. 

In control conditions, WT and cpm2 maintained almost a steady state throughout the course 

of experiment (Figure 15 A & B). 

However, under drought treatment, there was a degree of variation in the stomatal 

responses of both WT and cpm2 as observed through the measurements of the stomatal 

conductance. For instance, WT was having higher stomatal conductance (by 30-40%) as 

compared to the cpm2 on 29th day and 30th day (1 day and 2 days after drought treatment 

respectively). On 31st day (3 days after treatment), stomatal conductance in both WT and 

cpm2 dropped significantly but both maintained almost the same degree of conductance. 

Interestingly, on 32nd day (4 days after treatment), the trend became reverse. Here, cpm2 

showed higher stomatal conductance (3 fold than WT) and WT was almost wilting (also 

evident from the phenotype, figure 9C). After re-watering, both the plants replenished their 

water levels but on the 33rd day (1 day after re-watering), cpm2 still had higher degree of 

conductance. On 34th day (2 days after rewatering) WT and cpm2 recovered completely and 

maintained a stomatal conductance as in the control treatment. However cpm2 maintained 

a constant stomatal conductance throughout the re-watering treatment (Figure 15 A & B). 

As hormonal response characteristic for drought stress and to understand the drought effect 

on the stomatal conductance better, ABA levels were quantified. ABA levels in WT and cpm2 

shoot tissue under 3 different conditions of control, moderate stress (SMC 30%) and severe 

stress (SMC 20%) were measured. Under control and moderate stress conditions, WT 

accumulated almost the double amount of ABA as compared to cpm2. However, severe 

stress (20% SMC) led to an increase of ABA in both, cpm2 and WT. While the content in the 

WT increased approximately 4-fold, it increased by a factor of almost 16 in cpm2 shoots. 

Under these conditions, cpm2 contained approximately 2-fold the amount of ABA compared 

to the WT (Figure 16). 
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Figure 16. Measurement of shoot ABA levels in cpm2 and WT under control, moderate and severe 
drought stress. Values represent the mean of at least three independent experiments ±SE.  Stars (**) 
denote statistical significance (P ≤ 0.01 ) respectively between genotypes in a student’s t-test.  

From the measurement of ABA levels in shoots, it could be emphasized that with the 

increase in severity of drought stress, ABA levels exaggerated in cpm2 and quite 

interestingly, they became nearly 2-folds in cpm2 under severe stress as compared to WT 

under severe stress. In contrast, under moderate stress, the mutant accumulated much less 

ABA than the wild type, indicative of a lower level of drought-stress induced imbalance. 

3.2. Description of the proteome profiles of mutant versus wild type as identified by TMT 

proteomics. 

3.2.1 Assessing the function of jasmonate for the drought response in rice roots by 

proteome approach 

As roots are the primary organ to perceive drought stress in the plant, a detailed 

morpho-physiological analysis of roots was carried out as mentioned above. However in 

order to gain better insights into understanding of the key molecular players underlying 

such potential differences between WT and cpm2, a proteomic approach was 

envisioned. We therefore decided to perform a comparison of the root proteomes of both 

genotypes. Proteins of the rice roots from both the genotypes that were subjected to severe 

drought stress along with its respective control well water treatments, were collected and 

used for high throughput Tandem Mass Tag (TMT) analysis subsequently.  
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3.2.2 Proteome analysis by TMT reveals unique and common drought regulated proteins  

A total of 71,331 spectra were detected by TMT and 15,172 were identified. Among the 

identified spectra, 13,485 matched 4,573 peptides, with 4,194 hits assigned to unique 

peptides. In total, 1578 proteins were identified by MS/MS in both WT and cpm2 roots 

together. Out of these, 351 proteins were uniquely found in WT roots, and 341 proteins 

were unique to cpm2 roots. 443 proteins were the common proteins which were reported in 

the root tissue of both the genotypes (Figure 17 A). However, the number of proteins which 

were quantitatively analyzed during MS-MS were 272 and 217 in WT and cpm2 respectively, 

and 319 proteins were common proteins at the quantitative scale (Figure 17 B) The proteins 

from rice roots with or without drought stress treatment were then subsequently analyzed 

using Mapman ontologies. For this purpose, a threshold of log ratio of 1.0 or greater (10-

fold) was used as criterion for a protein being considered as more abundant. On the other 

hand, proteins having log ratios less than 1.0 (reduction by at least a factor of 10) were 

considered as less abundant.   
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Figure 17 A) Venn diagram depicting the unique and common proteins identified in WT and cpm2 
roots during TMT analysis B) Venn diagram depicting the number of proteins quantified during TMT 
analysis 
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Figure 18. Overview of the percentage of root proteins mapped onto gene ontologies through MAPMAN in WT and cpm2. Proteins identified 
after TMT analysis were classified into 32 functional categories according to MAPMAN ontology
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3.3. MapMan based ontological classification of proteins identified in WT and cpm2 roots 

A dynamic range of proteins was identified as implicated by the coverage of proteins from a 

wide range of isoelectric points (4.41–11.91) and molecular weights (4.4 – 236.7 kDa). In 

order to understand the functional importance, these proteins were further classified into 

different gene ontology (BINs) using an in silico tool. MAPMAN tool was used to assign these 

proteins from both the genotypes into 32 functional categories according to rice mapping 

file (Thimm et al. 2004). The overview of percentage of proteins falling under these 

functional categories in cpm2 and WT are shown in the figure 18. Uniquely represented 

proteins in WT and cpm2 are listed in supplementary Table 1 and 2, respectively.  

Among a subset of differentially expressed proteins, few were assigned to a couple of 

important ontologies, namely; energy metabolism and protein metabolism. We also 

observed some interesting proteins assigned in the miscellaneous category of the MAPMAN 

too. 

3.3.1 Energy Related Proteins: 

Energy related proteins were more abundant in cpm2 and were less abundant in WT. 

Triosephosphate isomerase and glyceraldehyde-3- phosphate, major proteins involved in 

glycolysis, were more abundant in cpm2 than the WT. Similarly, pyruvate decarboxylase, an 

important protein involved in fermentation process was more abundant in cpm2 as 

compared to WT (figure 19) 

Figure 19. Differentially expressed proteins related to Energy. Differential proteins related to energy 
were abundant in cpm2 as evident from the log ratios (stress/control) obtained from the TMT 
analysis. 
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3.3.2 Proteins involved in protein metabolism: 

 Two peptidase T1 family proteins were also more abundant and differentially expressed in 

cpm2. Also, a 60S ribosomal protein was also more abundant and differentially expressed in 

cpm2 (Figure 20). 

3.3.3 Proteins from the miscellaneous category: 

A small number of proteins which were not assigned under any major functional category 

were classified as miscellaneous. An aquaporin known as OsPIP1-2(LOC_Os04g47220) was 

more abundant in WT as compared with cpm2 (Figure 21). Conversely, a Ras-related protein, 

OsRas1(LOC_Os01g37800 belonging to family of small GTPase was more abundant in cpm2 

as compared to WT (Figure 21) A protein named 3-isopropylmalate dehydratase small 

subunit 2(LOC_Os02g43830) , which is known to be involved in biosynthesis of leucine, was 

also found to be more abundant in cpm2 than the WT (Figure 21). Similarly, OsGS1 

(LOC_Os03g12290), a key protein involved in N-metabolism in plants was also highly 

abundant in cpm2 as compared to WT (Figure 21).  

Figure 20. Differentially expressed proteins related to protein metabolism. Differential proteins 
related to protein metabolism were abundant in cpm2 as evident from the log ratios (stress/control) 
obtained from the TMT analysis. 
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Figure 21. Differentially Expressed Proteins belonging to the miscellaneous category. Aquaporin 
was only abundant in WT whereas rests were abundant in cpm2 as evident from the log ratios 
(stress/control) obtained from the TMT analysis. 

On the basis above mentioned differentially expressed proteins- it can be suggested that 

cpm2 has better metabolism. This can be useful for cpm2 to maintain its homeostasis under 

stress.  

3.4. Cross-connection of these clusters according to functional categories 

3.4 1. Understanding of key enzymes invloved in JA synthesis in response to drought stress 

3.4.1.1 Abundance of JA biosynthesis enzymes was differentially affected in WT and cpm2  

TMT technique employed to analyze the whole root proteome also shed light on jasmonate-

specific proteomic response to drought stress in WT and cpm2. While looking for proteins 

specifically involved into the JA biosynthesis pathway, it was a surprise to observe that the 

AOC protein, a key enzyme involved in JA biosynthesis pathway became highly abundant in 

WT (Figure 22A) but it was not detected in cpm2 at all. The qRT-PCR was also performed to 

determine whether the observed changes in protein abundance were regulated at the 

transcriptional level. Transcript abundances of mRNAs encoding AOC protein were analyzed 

at control, moderate and severe drought stressed conditions. Under control condition, level 

of the AOC mRNA transcript in WT was more than cpm2 (nearly 2 folds) but the trend got 

reversed when cpm2 transcripts became more up-regulated than WT under moderate and 

severe conditions (Figure 22B). However, it is important to mention here that the transcripts 
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accumulating in cpm2 do not give rise to a functional AOC as cpm2 mutant is generated by 

deleting 11 base pairs in the first exon of the AOC gene, leading to the loss of 3 amino acids 

and a subsequent frameshift mutation (Riemann et al.,2013).In contrast to AOC, OPR7 

protein, a key enzyme operating downstream of AOC, became more abundant as compared 

to WT under drought condition (Figure 23A). This is surprising as in cpm2 the natural 

substrate for OPR7, 12-oxo-phytodioneic acid (OPDA), is not present due to the absence of 

AOC protein (Riemann et al.,2013). The levels of mRNAs encoding OPR7 were also checked 

at control, moderate and severe drought stress condition. Similar to AOC transcript, the 

transcript levels for OPR7 were lower in cpm2 in control treatment as compared to WT. 

However, under moderate and severe stress, OPR7 transcripts in cpm2 were slightly up-

regulated (but non-significant) but remained almost similar to mRNAs levels of OPR7 in WT. 

(Figure 23B). Hence, it means that the upregulation of the protein occurs at the post-

transcriptional level. 

Overall summing up together, it was observed that the protein for AOC, an enzyme 

upstream in the JA pathway, which was highly abundant in WT, but it was not reported at all 

in cpm2 during TMT analysis. For OPR7 which is the next successive enzyme in the pathway, 

the protein was found to be more abundant in cpm2. The transcript abundances for both the 

above mentioned proteins were also determined successfully using the qRT-PCR. 

Therefore the dynamics of the enzymes AOC and OPR7, which are present up-stream and 

down- stream of OPDA respectively, seem to be affected by drought stress. This could be 

very crucial – considering the recently studied role of OPDA as a signaling molecule for plant 

response against environmental cues (Savchenko et al.,2014). 
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Figure 22. The uniquely present, AOC protein involved in the Jasmonic Acid 
biosynthesis pathway, found in WT. Transcript abundances of mRNAs encoding AOC 
protein were analyzed at well-watered, moderate and severe drought stressed 
conditions. The mRNA levels at severe drought stress were compared with the TMT 
data.  (A) Overview of the Jasmonic Acid Pathway, Log Ratios (Stress/Control) for 
AOC protein is shown in blue which was unique in WT (B) The changes in transcript 
abundances of AOC. Bars represent means ± SE(n=3). Star (*) denote statistical 
significance (P ≤ 0.05) between genotypes in student’s t-test.   
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Figure 23. The differentially expressed OPR7 protein involved in the Jasmonic Acid 
biosynthesis pathway. Transcript abundances of mRNAs encoding OPR7 protein were analyzed 
at well-watered, mild and severe drought stress conditions. The mRNA levels at moderate and 
severe stress were compared with the TMT data. (A) Overview of the Jasmonic Acid Pathway, 
Log Ratios ( Stress/Control) for OPR7 protein are shown in red and blue respectively for cpm2 
and WT  (B) The changes in transcript abundances of  OPR7. Bars represent means ± SE (n=3). 
Star (*) denote statistical significance (P ≤ 0.05) between genotypes in a student’s t-test.     
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3.4.2: ROS detoxification proteins were found to be more abundant in the mutant 

Apart from looking at unique proteins that were regulated in these two genotypes in 

response to drought, we also explored the common proteins that were differentially 

accumulated between the two genotypes. In order to identify those proteins, four different 

comparison studies were employed. Namely,  

1. WT down-regulated vs cpm2 up-regulated

2. WT up-regulated vs cpm2 down-regulated

3. cpm2 up-regulated vs WT up-regulated

4. cpm2 down-regulated vs WT down-regulated

Proteins showing a difference of log ratio of 1.0 or greater (~ 10 fold-change) were identified 

and further examined to determine their role in response to drought stress. Interestingly 

many of these proteins belong to redox machinery. This ontology contains six proteins, five 

of which were more abundant in cpm2 under drought stress and only one was found to be 

more abundant in WT. Abundant proteins included glutathione S-transferases (OsGSTF2 and 

OsGSTU12), ascorbate peroxidase (OsAPX7), a DJ-1 family protein and serine 

hydroxymethyltransferase (SHMT). The only abundant protein in WT under this category was 

the non-symbiotic haemoglobin 2 (nsHb2) (Figure 24). 

 Glutathione-S-transferases catalyze conjugation of tri-peptide glutathione (GSH) to a variety 

of hydrophobic, electrophilic and cytotoxic substances and thus they help to inactivate 

cytotoxic compounds in plants. OsGSTF2 also known as GST-II, and OsGSTU12 became more 

abundant in cpm2 under stress as compared to WT (Figure 24). 

Ascorbate peroxidases (APX) are evidently known to be the enzymes that detoxify peroxides 

such as hydrogen peroxide using ascorbate as substrate. One of this group of proteins 

OsAPX7 became more abundant in cpm2 as compared to WT (Figure 24). 

DJ-1 family proteins are reported to have an anti-oxidant property and their loss of function 

have been shown to result in an accelerated cell-death. One of these DJ-1 family proteins 

was also more abundant in cpm2 as compared to WT (Figure 24).  

Serine hydroxymethyltransferases (SHMTs) are also known to be part of dissipatory 

mechanisms to minimize production of reactive oxygen species (ROS) in plants. Protein for 

one such SHMT, OsSHMT2 was more abundant in cpm2 as compared to WT (Figure 24). 
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Non-symbiotic hemoglobin2 was the only protein less abundant in cpm2 falling under redox 

category (Figure 24). Limited information is available about this class of protein and also its 

probable function under abiotic stress but it is known to be occurring under hypoxic 

conditions in plant roots.  

Figure 24. Differentially Expressed Proteins belonging to the redox machinery. Most of the proteins 
related to redox machinery were abundant in cpm2 as evident from the log ratios (stress/control) 
obtained from the TMT analysis. 

3.4.3 Under drought stress, cpm2 roots accumulate more cell organization and cell wall 

related proteins  

Overall, three differentially expressed proteins were mapped onto cell wall related category. 

A protein belonging to the glycosyl hydrolases family 17 known as Gns6 was more abundant 

in cpm2 than the WT (Figure 25). Also, the O-methyltransferase (ROMT-9) was more 

abundant in cpm2 as well. Similarly, another cell wall biosynthesis related protein; UDP-

glucose-6-dehydrogenase was highly abundant in cpm2 than the WT (Figure 25). 

Two differentially expressed proteins were categorized as cell organization proteins because 

of their role in cell organization. β-Tubulin 1, a major building block of microtubules was 

more abundant in cpm2 as compared to WT. Similarly, the actin nucleation protein 

was more abundant in cpm2 as compared to the WT (Figure 26) 
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Figure 25. Differentially Expressed Proteins belonging to the cell wall metabolism. Differentially 
regulated proteins related to cell wall were abundant in cpm2 as evident from the log ratios 
(stress/control) obtained from the TMT analysis. 
 

  

 
 Figure 26. Differentially expressed Proteins belonging to the cell organization category. Differential 
proteins related to cell organization were abundant in cpm2 as evident from the log ratios 
(stress/control) obtained from the TMT analysis. 
 

3.4.3.1 Proteins participating in Phenylpropanoid pathway were specifically induced in 

cpm2  

As described in the previous section, proteins related to cell organization and cell wall were 

more abundant in cpm2. Moreover, it was also found that the proteins responsible for 

mediating phenylpropanoid pathway were also more abundant in cpm2 as compared to WT 

under drought stress. Interestingly for the enzymes involved at the beginning of the 

phenylpropanoid pathway, phenylalanine-ammonia-lyase (PAL) was found to be more 

abundant in cpm2 under drought stress (Figure 27). Similarly another important protein 

further downstream in the phenylpropanoid pathway namely, 4-coumarate-CoA ligase 
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(Os4CL) was more abundant in cpm2 during stress as compared to control. Interestingly 

these proteins were not detected in WT and seem to be an unique response of cpm2 (Figure 

27). Likewise proteins specific for the lignin biosynthesis branch of the phenylpropanoid 

pathway, the first enzyme caffein-CoA-methyltransferase also known as OsOMT26 was only 

induced in cpm2 under drought stress. Also cinnamyl alcohol dehydrogenase (OsCAD4) was 

more abundant in cpm2 than in the WT under drought stress as well. Lastly, caffein-o-

methyltransferase (OsOMT26) was also only induced in WT (Figure 27). 

Phenylpropanoid pathway Other Metabolic products 

1.81  PAL Salicylates 

C4H Coumarins 

 1.21 4CL Stilbenoids 
Lignin pathway Flavonoids 

Isoflavonoids 
Anthocyanins 

HCT C3H 

 1.19  COMT/CCoAMT  FSH  Capsaicins 

 1.01, 0.88  CAD 

 1.19 COMT/CCoAMT   FSH 

POX  LACC 

Lignin 

Figure 27. Simplified diagram of enzymatic steps in pathways committed to Phenylpropanoid 
pathway with main focus on lignin biosynthesis step: Log ratios for proteins identified in cpm2 and 
WT through TMT analysis are shown in red and blue respectively beside the protein names.  

 PAL- phenylalanine ammonia lyase
 4CL-4-coumarate:coenzyme A ligase
 COMT- caffeic acid O-methyltransferase
 CAD- cinnamyl alcohol dehydrogenase

*Log Ratio expressed as stress/control
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Gene expression of the key genes involved in phenylpropanoid pathway was measured using 

qRT-PCR analysis. Transcripts encoding for PAL, 4CL and COMT were analyzed at control, 

moderate and severe stress in both the genotypes because the respective proteins had been 

more abundant. 

In case of OsPAL, the transcript abundances of mRNAs encoding PAL protein were 

significantly lower in cpm2 as compared to WT under control conditions. Similarly, under 

moderate stress transcript abundances were lower in cpm2 as compared to WT. But under 

severe stress, there was no significant difference between WT and cpm2 (Figure 28). If we 

compare the relative change in transcript abundances between moderate stress to control, 

it is quite evident that it correlates with the OsPAL protein abundance in cpm2 under 

drought stress however in case of the WT, there was no co-relation in transcript 

abundances. 

Figure 28. Changes in transcript abundance of OsPAL (LOC_Os02g41630) in WT and cpm2 under 
control, moderate and severe drought stress conditions. Stars (*) denote statistical significance (P ≤ 
0.05) between genotypes respectively in a student’s t-test. 

The level of mRNAs encoding 4CL, a gene further downstream in phenylpropanoid pathway, 

were also checked. As seen in figure 29, transcript levels were comparatively lower in cpm2 

than WT under control condition but interestingly under moderate stress, mRNAs levels 

increased in cpm2 significantly as compared to WT. Under severe stress, transcript levels 

were bit higher in cpm2 as compared to WT but if compared to moderate stress transcript 

levels in cpm2 decreased significantly (Figure 29). By comparing the relative change in 

transcript abundances between moderate stress to control, it becomes well evident that 

0

0.5

1

1.5

2

2.5

3

3.5

4

CONTROL MODERATE SEVERE 

Fo
ld

 c
h

an
ge

 (
R

Q
) 

OsPAL Transcript in Roots 
WT 

cpm2

*



63 

relative change (moderate stress/control) correlates with the abundance of 4CL protein in 

cpm2 (Figure 27). 

Figure 29. Changes in transcript abundance of 4CL (LOC_Os02g08100) in WT and cpm2 under control, 
moderate and severe drought stress conditions. Stars (**) denote statistical significance (P ≤ 0.01) 
between genotypes respectively in a student’s t-test. 

Figure 30. Changes in transcript abundance of COMT (LOC_08g38900) in WT and cpm2 under control, 
moderate and severe drought stress conditions. Star (*) denote statistical significance (P ≤ 0.05) 
between genotypes respectively in a student’s t-test. 

The expression of the gene coding for the protein, COMT was also analyzed which is further 

downstream of 4CL. It was found that the transcript levels in cpm2 were comparatively 

lower under control condition as compared to WT. Under moderate stress, transcript levels 

in cpm2 were comparatively higher than levels in cpm2 under control (2 fold) and hence it 
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correlates with the proteomic abundance but under severe stress there was no difference 

between transcript levels in both the genotypes. (Figure 30).  

3.5 Summary of the results: 

In this study, the data generated was intended for comparing the relative changes that are 

involved in drought-stress adaptation mechanisms of JA deficient mutant, cpm2 to the WT 

background rice cultivar Nihonmasari. The data obtained in this study showed the following 

observations: 

1. Morphological investigation revealed that the damage symptoms triggered by 

drought stress such as leaf rolling and wilting were less pronounced in cpm2 and 

hence it showed less sensitivity to drought stress.

2. Significant differences were observed in root architecture across the treatments in 

both WT and cpm2 where cpm2 had higher root dry weight, total surface area, longer 

nodal and lateral roots and also had better root architecture than the wild type and 

could maintain this feature even under drought stress.

3. cpm2 plants were able to maintain better WUE throughout the drought stress 

treatment and had better water conservation strategy under drought.

4. cpm2 maintained lower stomatal conductance under drought stress as compared to 

WT – indicating increased stomatal activity to control water loss. cpm2 also had 

comparatively higher ABA levels in the shoots as compared to WT.

5. A TMT approach was also undertaken to determine if the roots of cpm2 and WT 

respond differentially to drought at the proteome level.

a. In JA biosynthesis pathway, it was observed that the protein for AOC, an enzyme 

upstream in the JA pathway became highly abundant in WT however it was not 

reported at all in cpm2. This reconfirmed the lack of AOC in the cpm2.

b. A large number of differentially expressed proteins revealed better ROS 

detoxification and increased cell and cell wall growth in cpm2 roots as they were 

abundant in cpm2 roots. 
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4. Discussion

Dehydration tolerance in plants has been researched using three main approaches: 

1) Investigating tolerant systems such as seeds and resurrection plants 2) By studying the

effects of stress on agriculturally important plants and 3) By analyzing mutants from model 

species. The intension of the current work is to compare the JA biosynthesis mutant to the 

WT under drought stress at the seedling stage, on the level of morphology, physiology, 

molecular biology and proteomics in order to shed more light on the role of JA during 

adaptation to drought stress. The observed changes in the morpho-physiological parameters 

and in the root proteome after exposure to drought, and their prospective cross-connections 

in better drought adaptation of cpm2 are discussed in the following subsections, namely: 

(i) Phenotypic and morphological characterization provided cues for better drought

adaptation in cpm2

(ii) Better physiological modulation in cpm2 correlate with improved drought tolerance

(iii) Functional context of the protein candidates revealed by the TMT analysis.

(iv) Proposed models for mechanisms of drought adaptation in the mutant.

4.1. Phenotypic and morphological characterization provided cues for better drought 

adaptation in cpm2 

It is a commonly observed phenomenon that overall plant growth is greatly affected by 

drought stress. Morphologically, shoot and the root system are most severely affected as 

both are the principle elements of plant adaptation to drought. In response to drought 

stress, plants generally limit the area of leaves in response to lower down the water budget 

spent in transpiration (Schuppler et al., 1998). Since roots are the sole source to derive water 

from soil, the root growth, its density, proliferation and size could be the critical responses 

of plants to drought stress (Kavar et al., 2007). 

4.1.1. Less pronounced leaf rolling was perceived as a phenotypic signal of drought 

adaptation in cpm2  

One of the well-known indicators for water stress is the rolling of leaves. Wenkert (1980) 

also reported that water stress in maize is indicated by loss of texture and development of 
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decoloration prior to leaf rolling. O’ Toole and Cruz (1980) also reported that a good 

correlation exists between leaf rolling, stomatal resistance and leaf water potential in rice. 

Hence, leaf rolling can be used as an early symptom for drought susceptibility. Unexpectedly, 

cpm2 showed a less drought-sensitive phenotype as compared to its WT background cultivar 

Nihonmasari. The finding that leaf rolling was less pronounced in cpm2 correlated well with 

the fact that cpm2 leaves remained turgid and fleshy as compared to the WT under both 

moderate and severe drought stress (Figure 9). 

4.1.2 Roots of cpm2 were better developed under both control and moderate drought 

stress 

Serving as interfaces between plant and the soil, roots are the first organs to perceive and 

respond to drought (Trachsel et al., 2010). The phenotype of the roots can therefore be 

considered as immediate manifestation for the ability of the plants to cope with drought 

stress. It has been reported in numerous studies previously that root architecture has a 

profound effect on overall growth and stress tolerance of crop plants including rice (Suji et 

al., 2012, Trachsel et al., 2011, Prince et al., 2013). In drought tolerant genotypes, root 

architecture is greatly modified under drought stress (Osmont et al., 2007). A more 

comprehensive root architecture analysis was performed on the two genotypes to gain 

deeper understanding of the factors affecting the phenotype. These studies further helped 

to determine whether root traits can be linked with better plant performance of cpm2 under 

drought.  

Deep rooting is a critical factor influencing the ability of plant to absorb water from the 

deeper layers of the soil (Franco et al., 2006; 2011) Nodal roots are postembryonic roots, 

which arise from nodes at the base of the main stem and tillers. Functionally, nodal roots 

penetrate deeply into the soil and hence create a framework for whole root system to grow 

(Gowda et al., 2011). Overall, this observation is also supported by a report by Manavalan et 

al. (2010) where they have shown that the distribution of roots, particularly those that can 

penetrate deeper in the soil, plays a crucial role in determining the ability of plants to 

capture key resources such as water and mobile nutrients like nitrate. Cpm2 plants rooted 

deeper with more dry weight and had a longer nodal root length (Figure 13B & 10B). 
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In this study, longer lateral roots, increased total surface area and increased total root length 

were also observed in cpm2 for control conditions, and these features were also maintained 

during moderate drought stress (Figure 10C). Lateral roots are basically the most active part 

of root system engaged in water uptake, and comprise the majority of length and surface 

area of the root system (Bauhus and Messier, 1999). This observation is consistent with 

similar observations reported by Rewald et al. (2011) where they found increased water 

uptake in citrus plants under moderate drought stress with increased lateral root length. 

Total root length represents the sum of the primary, crown, seminal and lateral roots (Li et 

al., 2015). It has been reported previously by Franco et al. (2008) that branching of the roots 

and total root length of Silene vulgaris plants were increased under moderate drought-

stress. Root branching helps to circumvent localized water depletion around the roots, thus 

minimizing resistance to water transport into the root system and hence improved overall 

plant performance. 

 

The JA mutant cpm2 also showed increase in the fine root attributes (forks and tips) under 

control as well as under moderate stress stringency. Fine root attributes (≤2 mm diameter) 

play an important role in nutrient and water acquisition from soil to support the plants 

growth and survival (Pregitzer et al., 2002; de Kroon, 2007). The increase in maximum root 

depth and root dry weight is thus an indicator of better plant resilience which probably 

contributes to sustenance under stress (Toorchi et al., 2006; Kanbar et al., 2009).  

In this study, overall it was observed that the cpm2 performed better in above mentioned 

root traits as compared to WT during moderate drought stress treatment.  

 

4.2. Better physiological modulation in cpm2 correlate with improved drought tolerance 

Together with the rise in root mass particularly deeper in the soil and with the strategies 

that limit water loss - such as leaf rolling and stomatal closure - an improved plant water 

status could be maintained. These superior morpho-physiological adaptations are 

considered to be an important asset for improving drought tolerance in crops such as rice 

(Alsina et al., 2007; Romero et al., 2013) 
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4.2.1 Under drought, higher WUE in cpm2 leads to better canopy production 

 Water Use Efficiency (WUE) is especially important trait in conditions where available water 

resources are limited or diminishing. The merits and disadvantages of various methods to 

estimate WUE have been discussed by Medrano et al. (2010), and also the choice of the 

appropriate method depends on the capacity, facilities, and scale of the specific study. Since 

cpm2 is male sterile and because the absence of jasmonate renders it more susceptible to 

biotic stress (Riemann et al., 2013), it was decided to evaluate WUE with respect to green 

leaf area at the seedling and early vegetative stage only. Importantly, in this study, with the 

increase in the severity of drought stress - the WUE increased in both the genotypes but 

altogether the mutant cpm2 performed superior to WT under drought stress (Figure 14A). 

On the other hand, there was no significant difference under control conditions in both the 

genotypes (Figure 14 B). Better WUE of cpm2 suggests better biomass production and this 

was also conserved by more developed aerial parts of the cpm2 under drought stress. 

4.2.2 Lower stomatal conductance in cpm2 under drought: an effective water conservation 

strategy  

 Genotypes with increased stomatal conductance may in fact have a greater capacity to 

uptake available soil water via increased root area (Mitchell et al., 1996) or osmotic 

adjustment (Blum, 2005), and therefore, can maintain transpiration during mild water stress 

conditions (Blum, 2009). However, increased stomatal conductance is a disadvantage when 

soil water deficits are more prevalent (Donovan et al., 2007). Under severe drought, plants 

respond by lowering their stomatal conductance, whereas by a reduction of WUE plants 

exhaust available water faster, loose turgor, and eventually die if they do not succeed in a 

drought sustenance strategy (Donovan et al., 2007). During our measurements, we also 

found interesting correlations supporting those mentioned by Mitchell et al. (1996) and 

Donovan et al. (2007): under moderate drought the WT showed a higher stomatal 

conductance (Figure 15A) whereas the cpm2 responded more sensitively to drought stress 

and adjusted stomatal conductance (Figure 15B). But under severe stress, the conductance 

in the WT became very low which correlated well with its wilting phenotype as shown in 

Figure 9C, while the cpm2 in similar conditions was performing better phenotypically due to 

a modest stomatal conductance as compared to WT. 



4.2.3 Higher ABA levels in cpm2 correlates with reduced stomatal conductance 

During drought stress, ABA biosynthesis in the roots is known to be activated, and ABA is 

then translocated to the shoot via the xylem and can cause stomatal closure in the leaves 

(Gowing et al., 1990; Zhang and Davies, 1990; Gomes et al., 1997). As stomatal conductance 

was regulated differently in the cpm2, it could be predicted that abscisic acid (ABA), the 

main hormone controlling stomatal aperture, could be regulated differentially. In fact, the 

different accumulation of ABA in WT and cpm2 correlated well with the differences of 

stomatal conductance(Figure 16A).  

Analysis of morpho-physiological traits leads to the following scenario, explaining, why the 

mutant performs better under drought stress at physiological level. This improved 

performance is linked with a swifter adjustment of stomatal conductance appropriate to the 

respective level of stress stringency, correlated with corresponding modulations of ABA 

accumulation in the shoots. Moreover, the better overall root architecture under control 

conditions already, provides the cpm2 with the ability to scavenge for water and nutrients 

even under drought. This allows cpm2 to buffer the initially moderate drought stress more 

efficiently, as seen from the superior control of stomatal conductance as compared to the 

WT. When the conditions become too adverse, under severe stress, cpm2 once is still able to 

adapt by increasing the content of ABA hormone, which leads to lower stomatal 

conductance and better WUE, whereas the WT seemed to have lost any control over the 

water status. 

4.3. Functional context of the protein candidates as revealed by the TMT approach 

As it is well evident that genome and transcriptome expression profiling do not accurately 

relate with proteome complexity (Maier, 2009) hence comparative proteomics has been 

successfully employed to identify proteins that are differentially regulated proteins in 

response to salt (Pandhal et al.,2008) and drought stress (Hajheidari et al. 2005). The 

drawback of proteomics has been the difficulty to standardize 2D electrophoresis to a state, 

that biological replicas yield the same patterns. The highly sensitive proteomic platform 

based on the isobaric labels tandem mass tags (TMT) has therefore been developed to 

improve reliability by a mulitplexing strategy and has meanwhile emerged as one of the 
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most robust proteomics techniques (Thompson et al., 2003; Pagel et al., 2015). In this study, 

TMT approach was applied for the first time ever to dissect the root proteome of a JA 

deficient mutant of rice. Since the morpho-physiological analysis indicated that the superior 

drought tolerance of the jasmonate deficient rice mutant was located in the root, a targeted 

TMT strategy was utilized to identify the key molecular players in the roots. As a logical filter 

to prioritize the hits, the comparison was done with the respective WT background, and 

detailed knowledge on the temporal dynamics of drought responses in WT and mutant was 

utilized for the data analysis. This approach should allow us to specifically unravel insights 

into the molecular mechanisms associated with drought stress in a jasmonate dependent 

and/or independent manner.  

The data obtained through this root proteome analysis contributed for a proteomic 

explanation for the differential adaptive morpho-physiological responses observed among 

the WT and cpm2 during the drought stress - which are described in the previous sections.  

4.3.1 Metabolism related DEPs contributed to enhanced drought tolerance in cpm2 

During plant adaptation to abiotic stress, a change in glycolysis and gluconeogenesis is 

considered to be a normal trend. Glycolysis is an important metabolic pathway in 

carbohydrate metabolism, and drought stress leads to altered sucrose and amino acid 

contents, which was revealed by metabolite analysis (Broeckling et al., 2005). During the 

root proteome analysis, three important proteins involved in glycolysis were differentially 

expressed under drought stress and they were abundant in cpm2: 1) Triose Phosphate 

Isomerase (TPI) 2) glyceraldehyde phosphate dehydrogenase (G3PD) and 3) pyruvate 

decarboxylase (PDC) (Figure 19). G3PD may provide a direct connection between membrane 

lipid–based signaling, energy metabolism and growth control in a plant's response to ROS 

and water stress (Guo et al., 2012). TPI has also been reported to be involved in plant stress 

response and its expression is also induced in response to water deficit conditions in maize 

(Riccardi et al., 1998). TPI was also found to be more abundant in cpm2 roots. PDC is the first 

and key enzyme of ethanolic fermentation, which branches off the main glycolytic pathway 

at pyruvate (Zabalza et al., 2009). Recent research indicates that ethanolic fermentation 

occurs not only under anaerobic conditions but also under aerobic conditions, taking part in 

carbohydrate and energy metabolism (Chen and Han, 2011). In Arabidopsis, transgenic and 

mutant experiments indicated that PDC1 and PDC2 are important for the improved survival 
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of roots and leaves under low-oxygen conditions (Mithran et al., 2014). Thus, it appears that 

ethanolic fermentation might be an important switch in regulating carbohydrate metabolism 

under stress conditions such as drought. 

Protein synthesis is of critical importance for plant abiotic stress adaption. The levels of 

many components of the protein synthesis machinery are altered under abiotic stress 

conditions such as salinity and drought. Ribosomal proteins, are also an important 

component of protein synthesis machinery, are drought induced in Arabidopsis and maize 

roots (Ghosh et al., 2014). In the present study, two DEPs related to peptidase T1 family 

were found to be abundant in cpm2 (Figure 20). Similarly, one 60 S ribosomal protein was 

also differentially expressed and was more abundant in cpm2 (Figure 20). This suggested 

that protein synthesis machinery might be upregulated in cpm2 which seems to help the 

plant to battle drought stress.

4.3.2 Better cellular homeostasis and increased nitrogen metabolism: cpm2 more tolerant 

against drought stress 

Water uptake and its flow across the cell membrane are essential for plant growth and 

sustenance under normal and stressful conditions. The plasma membrane intrinsic protein 

(PIP) is a subfamily of aquaporins comprising two subgroups of PIP1 and PIP2; and PIP2 

proteins show higher water channel activity (Chaumont et al., 2000). However, under 

drought stress a strong down-regulation of PIP genes transcription was also observed in the 

roots and twigs of olive plants (Sechhi et al., 2007), and in the roots of tobacco (Mahdieh et 

al., 2008). It is a general observation that down-regulation of some of the PIP genes is 

believed to inhibit water loss and to help prevent backflow of water to dried soil (Afzal et al., 

2016). In the present study, abundance of one such DEP; OsPIP1 in WT and its less 

abundance in cpm2 (Figure 21) was probably to resist the rapid diffusion of water to the 

outside of plasma membrane and this can help to maintain cellular homeostasis under 

drought in the case cpm2.  

3-isopropylmalate dehydrogenase was also identified as a DEP, which is involved in leucine 

biosynthesis, in cpm2 as an abundant protein (Figure 21). Leucine is an important amino acid 

and hence an important structural component of many proteins in plants.  
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For plants, nitrogen is an essential nutrient and a critical limiting factor in plant productivity. 

In plants, all inorganic nitrogen is first converted to ammonium before it could be utilized for 

biosynthesis of organic compounds. Glutamine Synthetase (GS) then converts ammonium 

into glutamine, which supplies nitrogen groups, either directly or via glutamate, for almost 

every nitrogenous cell compounds. Thus, being the first enzyme of the nitrogen assimilatory 

pathway, GS is believed to play a regulatory role in nitrogen metabolism and plant 

productivity (Lea and Miffin, 2010). In this study, GS was identified as a DEP and it was highly 

abundant in cpm2 (Figure 21). It is widely believed that increased flux through N metabolic 

pathways suggests an enhancement of N uptake by the roots under stress, which is 

important for plant stress tolerance. Also, according to Kalamaki et al. (2009) increased 

expression of GS genes contributes to drought and salt tolerance. 

4.3.3 Less cellular oxidative damage makes cpm2 more sustainable against drought stress.  

Much of the injury to plants caused by various stressful conditions is frequently due to 

oxidative damage at the cellular level, which results from increased production of reactive 

oxygen species (ROS) (Sharma et al., 2012). Higher plants have developed a complex series 

of detoxification mechanisms to tightly control the level of ROS through enzymatic and non-

enzymatic approaches. Ascorbate (AsA) and glutathione (GSH), non-enzymatic antioxidants 

are crucial for plant defense against oxidative stress, playing a key role as antioxidant buffers 

(Foyer and Noctor, 2005). In this study, two of these Glutathione-S-Transferase(GST) were 

found to be as Differentially Expressed Proteins (DEP), OsGSTF2 and OsGSTU12 and they 

were considerably highly abundant in cpm2 (Figure 24). GSTs are best known for the 

detoxification of xenobiotics but they can also act as antioxidants by tagging oxidative 

degradation products (especially from fatty acids and nucleic acids) for removal or by acting 

as a glutathione peroxidase to directly scavenge peroxides (Frova, 2003). It has been widely 

reported that ascorbate peroxidase (APX) participate in the ascorbate-glutathione cycle, 

which is an important process for free radical detoxification (Cramer et al., 2013). Significant 

abundance of OsAPX7 was identified in cpm2 (Figure 24); therefore, it could be speculated 

that APX activity may influence drought tolerance by regulating glycerophospholipid 

metabolism and the ascorbate pathway in cpm2 for better drought adaptation. Similarly, 

OsSHMT2 was more abundant in cpm2. Serine hydroxymethyltransferases (SHMTs) are 
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known to be part of dissipative mechanisms to minimize production of ROS under biotic and 

abiotic conditions in plants (Morena et al., 2005). 

4.3.4 Enhanced cell organization and augmented cell wall adaptations promoted drought 

tolerance in cpm2 roots 

Several proteins identified as differentially expressed between the two genotypes indicated 

the capacity of the cpm2 to make the necessary favourable cell wall adaptation in the roots 

against drought stress. Proteins such as tubulins, profilins, glycosyl hydrolases, O-methyl 

transferases, glycosyl hydrolases and UDP-D-Glucose dehydrogenase were able to shed 

some light on the morphological adaptations in cpm2.  

Glycosyl hydrolases plays an important role in the formation of branched glucans, as well as 

in cell-wall assembly and rearrangement. The biochemical activity of these enzymes is based 

on the hydrolytic cleavage of 1,3-D-glucosidic linkages between β-1,3-glucans, which are 

major components of the cell wall surrounding fungi and plants. The enzymatic activity of β-

1,3-glucanases is crucial in the chemical changes of the glucan composition and in the 

remodelling of the cell wall (Torres et al., 2015). In this study, one such glycosyl hydrolase 

was more abundant in cpm2 (Figure 25). Although not much is known about its exact 

function in drought but it is believed to have a critical role in cell wall remodelling which is a 

critical adaptation during various abiotic stresses. 

Plant O-Methyltransferases (OMT) are multifunctional enzymes that have varied functions 

ranging from their role in cell wall adaptations as well as they catalyze O-methylation of 

multiple secondary metabolites that are involved in diverse biological processes such as 

plant growth, development, and environmental responses. There is some evidence that OMT 

genes may be involved in various abiotic and biotic stress responses (Barakat et al., 2011). 

One such OMT was identified as a DEP, and it was more abundant in cpm2 (Figure 25).  

UDP-D-glucose dehydrogenase (UDPGDH) oxidizes UDP-Glc (UDP-d-glucose) to UDP-GlcA 

(UDP-d-glucuronate), the precursor of UDP-D-xylose and UDP-L-arabinose which are major 

cell wall polysaccharide precursors (Kärkönen et al., 2005a). An increased relative abundance 

of UDP-glucose 6-dehydrogenase (UGPGDH) was observed in cpm2 (Figure 25) which may 

indicate enhanced synthesis of pectins and hemicelluloses, as well as the remodeling of cell 

walls in response to stress (Kärkönen et al., 2005b). This is also in agreement by a report by 
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Yoshimura et al. (2008) where they also reported UDPGDH been accumulating under 

drought stress in watermelon roots.  

β-Tubulins are major components of the microtubules that are involved in many cellular 

processes, such as cell division and intracellular transport in eukaryotic organisms (Zhao et 

al., 2014). β-Tubulin1 was found to be more abundant in cpm2 (Figure 26).  

It has been reported by Ramachandran et al. (2000) that actin nucleation protein plays a role 

in cell elongation, cell shape maintenance, and polarized growth of root hair. One such actin 

nucleation protein was also more abundant in cpm2 (Figure 26). Though for both these 

proteins, no direct role in drought has been implicated in the past as per available 

information but it is assumed that they have an important role to play in organization of 

cytoskeleton which is very necessary for cell elongation and cell shape maintenance in 

adverse conditions such as drought.  

Lignins also form an important structural part of plant cell walls. Reports have shown that 

there was an increased expression of genes involved in lignin biosynthesis during the 

intermediate and final stages of water stress (from 48 h to 72 h) in rice roots (Oryza sativa 

L.), such as those coding for PAL, C3H, 4-coumarate: coenzyme A ligase (4CL), caffeoyl 

coenzyme A O-methyltransferase (CCoAOMT), cinnamyl alcohol dehydrogenase (CAD), and 

peroxidase (Yang et al., 2006). Similarly, lignin synthesis-related proteins were abundant 

mostly in the later stage of drought stress in the roots of wild watermelon (Citrullus lanatus 

sp.), which may function in the enhancement of physical desiccation tolerance and drought 

adaptation (Yoshimura et al., 2008). In this study as well, several enzymes involved in the 

phenylpropanoid pathway were found to be specifically abundant in the cpm2 (Figure 27). In 

this study, two PALs were found unique and abundant in cpm2. In addition, 4CL was also 

unique and abundant in cpm2. Also, other important proteins for COMT and CAD were more 

abundant in cpm2. The proteomic abundances of these important enzymes of 

phenylpropanoid pathway also co-related well with the transcript abundances much 

specifically during moderate stress (Figure 28, 29, 30).  
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4.4 Models explaining for mechanisms of enhanced drought adaptation in cpm2 

A. Importance to constrain OPDA to suppress drought induced senescence 

In this study, ALLENE OXIDE CYCLASE (AOC) was found to be unique to WT and highly 

abundant under drought (Figure 22A). This reconfirmed the lack of AOC in cpm2. Another 

protein, 12-OXOPHYTODIENOATE REDUCTASE (OPR7), which is downstream of AOC in the JA 

biosynthesis pathway, was more abundant in cpm2 under drought (Figure 23A). However, 

when comparing OPDA and JA hormonal levels in plants grown in soil under greenhouse 

conditions with similar treatment of moderate and severe stress respectively - no significant 

differences were found due to the refractory effect of drought stress. As hormonal levels are 

being transient it is possible to miss those precise time points during which alterations in 

their trace amounts could be detected. Due to practical limitations, it was almost impossible 

to repeat these hormonal measurements as determining the precise time points under these 

natural conditions were cumbersome as well as time and resource consuming. However 

based on the proteomic evidence, it can be speculated that in WT because of very high 

abundance of AOC and less abundance of downstream OPR7 respectively, leads to an 

increased OPDA accumulation. This speculation also becomes consistent with the findings of 

Hazman et al. (2015) using cpm2 and WT, where increased OPDA accumulation in WT was 

perceived as a damage signal during salinity stress. However to confirm this finding during 

drought at the metabolite level, further measurements will be required to confirm the OPDA 

accumulation. 

B. Cell wall rigidification could have improved mechanical penetrance of cpm2 root under 

drought stress 

Root traits are known to be important for better plant sustenance under drought stress. The 

structure and development of root system largely determines plant function under drought. 

Roots rapidly sense changes in water potential and significantly alter root architecture and 

intensify cell wall rigidification in an attempt to acquire more water and for improved tissue 

water status simultaneously to maintain non-detrimental water potential. Among the very 

first cellular response to drought stress is cell wall hardening, which relates to the reduced 

plastic extensibility and increased elastic modulus of the cell wall. This wall hardening is 

biochemically related to diminished cell wall acidification and increased cross linking by 
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phenolic substances such as lignins (Fan and Neumann, 2004; Fan et al., 2006). Moreover, 

cell wall hardening with increased energy metabolism in the apical regions at the same time 

translates into enhanced growth which may lead to deeper root penetration into the soil 

pans where the soil moisture contents are considerably higher. In case of cpm2 roots, this 

phenomenon correlates very well as overall; cell wall metabolism was higher together with a 

better root architecture which renders better sustenance during drought stress.  

C. Growth-Defence tradeoffs: better plant performance in case of cpm2  

Implementation of defence responses in plants inflicts a considerable requirement of 

resources, which has been suggested to reduce growth. This hypothesis is based on the 

notion that being well-contended (i.e., having strong, prior defensive mechanisms) may not 

always be the best fitting defence strategy, probably because allotment of metabolites and 

proteins for resistance may curb other plant physiological processes (Kempel et al., 2011). 

Also, this negative impact on growth could result from diminished leaf area (or 

photosynthesis) which could reduce the overall pool of energy reserves, and/or a diversion 

of resources away from growth and more towards defence in a serious detrimental 

condition such as drought.  

It has been shown long back that activation of JA signalling by applying JA into the growth 

medium results in growth inhibition (Staswick et al., 1992). It is also known that suppressing 

components in JA-mediated defence signalling alleviates fitness costs observed in wild-type 

plants (Meldau et al., 2012). In the case of constitutive defence response, diminished fitness 

could be due to redundant deviation of energy reserves away from growth in the absence of 

stress. Based on these evidences, it could be predicted that in cpm2 under drought stress, 

there exists a defence-growth trade-off, which may shift the whole physiological 

phenomenon towards superior plant performance under drought as already observed in 

cpm2. In particular, Gibberellic acid (GA), a known growth hormone - which also has a 

function during abiotic stress tolerance, may be involved in growth promotion (Colebrook et 

al., 2014). Recent studies have shown an important role for JA–GA signaling crosstalk in 

regulating the growth–defence trade-off. In Nicotiana attenuata, an increased JA level has a 

negative effect on GA biosynthesis in stems resulting in growth inhibition (Heinrich et al., 

2013). Conversely, in several Arabidopsis mutants in which the DELLA transcriptional 

repressors are stabilized, MYC2-dependent JA-responsive genes were hypersensitive to JA 
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treatment resulting in increased growth inhibition (Hou et al., 2010). This JA-GA antagonistic 

relationship, in cpm2, can be predicted to be conferring increased growth due to increased 

induction of GA signalling under drought. 

4.5 Concluding Remarks:  

Till date only a handful of reports have been able to show a co-relation between JA 

functioning as a stress hormone in drought tolerance and that too mainly in Arabidopsis but 

not in model crop species such as rice under realistic drought conditions. In order to assess 

the role of JA during drought stress in rice, this whole study was formulated using the cpm2, 

which is a JA deficient mutant. Firstly, the comparative changes between WT and cpm2 in 

some morpho- physiological traits under realistic drought stress conditions were analysed. 

The mutant, cpm2 showed morpho-physiological adaptations to drought, for instance cpm2 

had lower stomatal conductance and higher water use efficiency under drought as 

compared to the WT with better developed root architecture. As roots are considered as the 

principal organs to perceive low water potential in the soil, a targeted root proteome 

analysis was undertaken using high throughput Tandem Mass Tag (TMT) approach. It was 

observed that the biological processes were diverse in the sense that cellular metabolic 

pathways, communication between cells, and the processes involved in stress protective 

roles were affected by drought stress and were upregulated in the jasmonate mutant cpm2. 

As a central participant of the whole story, based on the proteomic evidences, it is 

postulated that in cpm2 suppression of OPDA accumulation due to the loss of AOC represses 

the drought induced senescence. Moreover, a hormonal cross-talk could be implicated as a 

major player in regulating trade-offs needed to achieve a balance between growth and 

defence in cpm2 during drought stress. Based on all these results, it can be suggested that JA 

signalling might negatively influence drought tolerance by orchestrating a block on critical 

morpho-physiological and molecular changes necessary for stress adaptation.  

These revelations could provide us powerful tools for improving drought tolerance in plants 

and also to develop new drought tolerant varieties through smart breeding in the future. 

However, on the other hand it will be a tedious task for molecular biologists to manipulate 

JA biosynthesis or signalling in such a manner so that negative side effects commonly 

associated with reduced jasmonate function such as reduced fertility and enhanced 

sensitivity to pathogens does not arise. Unravelling the critical nodes in the JA biosynthetic 
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pathway and its fine-tuning could be useful for stress tolerance without the associated 

penalties will largely denote the extent of success in employing these strategies for breeding 

stress tolerant crop varieties 

5. Outlook  

In future, further gene validation through genetic engineering is recommended in order to 

provide conclusive evidence on contribution of above mentioned pathways to drought 

tolerance trait in rice. This is because they exhibited differential expression between WT and 

cpm2 under control and drought treatment. For instance genes that provide insights into 

pathways regulating root architecture and/or secondary metabolism could be used to 

produce plants with enhanced water usage efficiency and higher drought tolerance through 

genetic engineering. 
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Locus ID Protein name Gene Ontology Stress/Control 
Log Ratio 

loc_os01g41710 chlorophyll A-B binding protein, 
putative, expressed 

PS.light reaction.photosystem II.LHC-II 1.352 

loc_os06g04270 transketolase, chloroplast precursor, 
putative, expressed 

PS.calvin cycle.transketolase 1.181 

major CHO metabolism 

loc_os08g20660 sucrose-phosphate synthase, putative, 
expressed 

major CHO metabolism.synthesis.sucrose.SPS 1.155 

loc_os05g50380 glucose-1-phosphate 
adenylyltransferase large subunit, 

chloroplast precursor, putative, 
expressed 

major CHO metabolism.synthesis.starch.AGPase 1.354 

glycolysis 

loc_os03g56460 glucose-6-phosphate isomerase, 
putative, expressed 

glycolysis.plastid branch.glucose-6-phosphate 
isomerase 

1.173 

loc_os01g09570 6-phosphofructokinase, putative,
expressed 

glycolysis.plastid branch.phosphofructokinase (PFK) 1.261 

fermentation 

loc_os09g26880 aldehyde dehydrogenase, putative, 
expressed 

fermentation.LDH 1.117 

OPP 

loc_os07g22350 glucose-6-phosphate 1-dehydrogenase, 
chloroplast precursor, putative, 

expressed 

OPP.oxidative PP.G6PD 1.014 

TCA / org. transformation 

loc_os08g33440 2-oxo acid dehydrogenases 
acyltransferase domain containing 

protein, expressed 

TCA / org. transformation.TCA.pyruvate DH.E2 1.022 

loc_os06g01630 2-oxo acid dehydrogenases 
acyltransferase domain containing 

protein, expressed 

TCA / org. transformation.TCA.pyruvate DH.E2 1.055 

loc_os04g32330 dihydrolipoyllysine-residue 
succinyltransferase component of 2-

oxoglutarate dehydrogenase complex, 
mitochondrial precursor, putative, 

expressed 

TCA / org. transformation.TCA.2-oxoglutarate 
dehydrogenase 

1.312 

loc_os07g04240 succinate dehydrogenase flavoprotein 
subunit,mitochondrial precursor, 

putative, expressed 

TCA / org. transformation.TCA.succinate 
dehydrogenase 

1.392 

loc_os02g03260 3-isopropylmalate dehydratase large 
subunit 2, putative, expressed

TCA / org. transformation.other organic acid 
transformaitons.aconitase 

1 

loc_os01g19450 ATP-citrate synthase subunit 1, putative, 
expressed 

TCA / org. transformation.other organic acid 
transformaitons.atp-citrate lyase 

1.031 

cell wall 

loc_os08g03570 NAD dependent epimerase/dehydratase 
family protein, putative, expressed 

cell wall.precursor synthesis.MUR4 1.036 

loc_os01g47780 fasciclin domain containing protein, 
expressed 

cell wall.cell wall proteins.AGPs.AGP 1.019 

loc_os07g07990 uncharacterized protein At4g06744 
precursor, putative, expressed 

cell wall.cell wall proteins.LRR 1.255 

loc_os11g43750 polygalacturonase, putative, expressed cell wall.degradation.pectate lyases and 
polygalacturonases 

1.612 

loc_os10g40700 expansin precursor, putative, expressed cell wall.modification 1.305 

lipid metabolism 

loc_os08g39350 glycerophosphoryl diester 
phosphodiesterase family protein, 

putative, expressed 

lipid metabolism.lipid 
degradation.lysophospholipases.glycerophosphodiester 

phosphodiesterase 

1.073 

loc_os02g17390 3-hydroxyacyl-CoA dehydrogenase,
putative, expressed 

lipid metabolism.lipid degradation.beta-
oxidation.multifunctional 

1.08 

N-metabolism 

loc_os01g48960 glutamate synthase, chloroplast 
precursor, putative, expressed 

N-metabolism.ammonia metabolism.glutamate 
synthase 

1.356 

amino acid metabolism 

loc_os05g47640 threonine synthase, chloroplast 
precursor, putative, expressed 

amino acid metabolism.synthesis.aspartate 
family.threonine.threonine synthase 

1.227 

loc_os02g24020 dihydrodipicolinate reductase, putative, amino acid metabolism.synthesis.aspartate 1.012 

Suppl Table 1.  List of unique proteins - more abundant in WT 
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expressed family.lysine.dihydrodipicolinate reductase 

loc_os03g42110 
semialdehyde dehydrogenase, NAD 
binding domain containing protein, 

putative, expressed 

amino acid metabolism.synthesis.aspartate 
family.misc.homoserine.aspartate semialdehyde 

dehydrogenase 

1.118 

loc_os12g04440 2-isopropylmalate synthase B, putative,
expressed 

amino acid metabolism.synthesis.branched chain 
group.leucine specific.2-isopropylmalate synthase 

1.209 

loc_os04g55720 D-3-phosphoglycerate dehydrogenase,
chloroplast precursor, putative,

expressed 

amino acid metabolism.synthesis.serine-glycine-
cysteine group.serine.phosphoglycerate dehydrogenase 

1.086 

loc_os03g27230 phospho-2-dehydro-3-deoxyheptonate 
aldolase, chloroplast precursor, putative, 

expressed 

amino acid metabolism.synthesis.aromatic 
aa.chorismate.3-deoxy-D-arabino-heptulosonate 7-

phosphate synthase 

1.205 

loc_os06g42560 tryptophan synthase beta chain 2, 
putative, expressed 

amino acid metabolism.synthesis.aromatic 
aa.tryptophan.tryptophan synthase 

1.173 

loc_os01g13190 histidinol dehydrogenase, chloroplast 
precursor, putative, expressed 

amino acid metabolism.synthesis.histidine 1.417 

loc_os06g04380 aminomethyltransferase, putative, 
expressed 

amino acid metabolism.degradation.serine-glycine-
cysteine group.glycine 

1.333 

loc_os04g57410 methylthioribose kinase, putative, 
expressed 

amino acid metabolism.misc 1.016 

S-assimilation 

loc_os04g02050 bifunctional 3-phosphoadenosine 5-
phosphosulfate synthetase, putative, 

expressed 

S-assimilation.ATPS 1.206 

secondary metabolism 

loc_os02g03260 3-isopropylmalate dehydratase large 
subunit 2, putative, expressed

secondary metabolism.sulfur-
containing.glucosinolates.synthesis.aliphatic.methylthio

alkylmalate isomerase large subunit (MAM-IL) 

1 

hormone metabolism 

loc_os07g14610 IAA-amino acid hydrolase ILR1-like 6 
precursor, putative, expressed 

hormone metabolism.auxin.synthesis-degradation 1 

loc_os01g43090 oxidoreductase, aldo/keto reductase 
family protein, putative, expressed 

hormone metabolism.auxin.induced-regulated-
responsive-activated 

1.001 

loc_os03g32314 allene oxide cyclase 4, chloroplast 
precursor, putative, expressed 

hormone metabolism.jasmonate.synthesis-
degradation.allene oxidase cyclase 

7.52 

Co-factor and vitamine metabolism 

loc_os08g37605 riboflavin biosynthesis protein ribAB, 
chloroplast precursor, putative, 

expressed 

Co-factor and vitamine metabolism.riboflavin.GTP 
cyclohydrolase II 

1.332 

redox 

loc_os03g13160 non-symbiotic hemoglobin 2, putative, 
expressed 

redox.heme 1.167 

loc_os03g03910 catalase domain containing protein, 
expressed 

redox.dismutases and catalases 1.09 

loc_os02g02400 catalase isozyme A, putative, expressed redox.dismutases and catalases 1.088 

nucleotide metabolism 

loc_os02g50350 dihydroorotate dihydrogenase protein, 
putative, expressed 

nucleotide 
metabolism.degradation.pyrimidine.dihydrouracil 

dehydrogenase 

1.064 

loc_os11g20790 adenylate kinase, putative, expressed nucleotide metabolism.phosphotransfer and 
pyrophosphatases.adenylate kinase 

1.046 

Biodegradation of Xenobiotics 

loc_os05g22970 glyoxalase family protein, putative, 
expressed 

Biodegradation of Xenobiotics 1.515 

misc 

loc_os01g69130 dynamin family protein, putative, 
expressed 

misc.dynamin 1.15 

loc_os06g13820 dynamin, putative, expressed misc.dynamin 1.131 

RNA 

loc_os03g59050 DEAD-box ATP-dependent RNA helicase, 
putative, expressed 

RNA.processing.RNA helicase 1.102 

loc_os07g31270 cupin 2, conserved barrel domain 
protein, putative, expressed 

RNA.regulation of transcription.Trihelix, Triple-Helix 
transcription factor family 

1.208 

loc_os01g14440 WRKY1, expressed RNA.regulation of transcription.WRKY domain 
transcription factor family 

1.06 

loc_os02g32350 TUDOR protein with multiple SNc 
domains, putative, expressed 

RNA.regulation of transcription.Zn-finger(CCHC) 1.078 
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loc_os07g46480 eukaryotic aspartyl protease domain 
containing protein, expressed 

RNA.regulation of transcription.unclassified 1.071 

loc_os10g41440 KH domain containing protein, putative, 
expressed 

RNA.RNA binding 1.049 

loc_os11g41890 RNA recognition motif containing 
protein, putative, expressed 

RNA.RNA binding 1.253 

loc_os07g39560 RNA recognition motif containing 
protein, putative, expressed 

RNA.RNA binding 1.046 

DNA 

loc_os01g36090 DNA-damage-repair/toleration protein 
DRT102, putative, expressed 

DNA.repair 1.034 

protein 

loc_os08g42560 tRNA synthetase class II core domain 
containing protein, expressed 

protein.aa activation.glycine-tRNA ligase 1.128 

loc_os07g05580 ribosomal protein L7Ae, putative, 
expressed 

protein.synthesis.ribosomal protein.eukaryotic.40S 
subunit.S12 

1.07 

loc_os06g04290 S10/S20 domain containing ribosomal 
protein, putative, expressed 

protein.synthesis.ribosomal protein.eukaryotic.40S 
subunit.S20 

1.16 

loc_os07g42450 ribosomal protein S2, putative, 
expressed 

protein.synthesis.ribosomal protein.eukaryotic.40S 
subunit.SA 

1.032 

loc_os01g47660 60S ribosomal protein L18a, putative, 
expressed 

protein.synthesis.ribosomal protein.eukaryotic.60S 
subunit.L18A 

1.311 

loc_os01g71090 xylanase inhibitor, putative, expressed protein.degradation.aspartate protease 1.785 

loc_os05g49200 aspartic proteinase oryzasin-1 precursor, 
putative, expressed 

protein.degradation.aspartate protease 1.257 

loc_os12g13390 aspartyl aminopeptidase, putative, 
expressed 

protein.degradation.aspartate protease 1.072 

loc_os05g33430 xyloglucanase inhibitor, putative, 
expressed 

protein.degradation.aspartate protease 1.06 

loc_os06g20040 aspartic proteinase nepenthesin-2 
precursor, putative, expressed 

protein.degradation.aspartate protease 1.049 

loc_os05g44310 vesicle-fusing ATPase, putative, 
expressed 

protein.degradation.AAA type 1.045 

loc_os11g01510 ubiquitin-activating enzyme, putative, 
expressed 

protein.degradation.ubiquitin.E1 1.045 

loc_os01g36930 ubiquitin carboxyl-terminal hydrolase 6, 
putative, expressed 

protein.degradation.ubiquitin.ubiquitin protease 1.15 

loc_os01g08200 ubiquitin carboxyl-terminal hydrolase 
14, putative, expressed 

protein.degradation.ubiquitin.ubiquitin protease 1.448 

loc_os05g02510 beta-hexosaminidase precursor, 
putative, expressed 

protein.glycosylation.alpha-1,3-mannosyl-glycoprotein-
beta-1,2-N-acetylglucosaminyltransferase(GnTI) 

1.11 

loc_os05g02510 beta-hexosaminidase precursor, 
putative, expressed 

protein.glycosylation.alpha-1,6-mannosyl-glycoprotein-
beta-1,2-N-acetylglucosaminyltransferase(GnTII) 

1.11 

signalling 

loc_os11g31530 BRASSINOSTEROID INSENSITIVE 1-
associated receptor kinase 1 precursor, 

putative, expressed 

signalling.receptor kinases.leucine rich repeat XI 1.048 

transport 

loc_os01g46980 vacuolar ATP synthase subunit E, 
putative, expressed 

transport.p- and v-ATPases.H+-transporting two-sector 
ATPase.subunit E 

1.139 

loc_os06g21920 inorganic phosphate transporter 1-9, 
putative, expressed 

transport.phosphate 1.011 
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Suppl Table 2: List of unique proteins - more abundant in cpm2 

Locus ID Protein name Gene Ontology Stress/control 
log ratio 

PS 

loc_os04g53210 hydroxyacid oxidase 1, putative, 
expressed 

PS.photorespiration.glycolate oxidase 1.575 

loc_os01g05490 triosephosphate isomerase, cytosolic, 
putative, expressed 

PS.calvin cycle.TPI 1.904 

loc_os09g36450 triosephosphate isomerase, 
chloroplast precursor, putative, 
expressed 

PS.calvin cycle.TPI 1.233 

loc_os01g67860 fructose-bisphospate aldolase 
isozyme, putative, expressed 

PS.calvin cycle.aldolase 1.129 

loc_os01g02880 fructose-bisphospate aldolase 
isozyme, putative, expressed 

PS.calvin cycle.aldolase 1.164 

loc_os05g33380 fructose-bisphospate aldolase 
isozyme, putative, expressed 

PS.calvin cycle.aldolase 1.737 

Major CHO Metabolism 

loc_os02g05030.
1 

sucrose-phosphatase, putative, 
expressed 

major CHO metabolism.synthesis.sucrose.SPP 1.007 

Minor CHO Metabolism 

loc_os10g22450 inositol-3-phosphate synthase, 
putative, expressed 

minor CHO metabolism.myo-inositol.InsP Synthases 1.652 

loc_os07g09330 inositol-1-monophosphatase, 
putative, expressed 

minor CHO metabolism.myo-inositol.inositol phosphatase 1.037 

loc_os04g56290 aldose 1-epimerase, putative, 
expressed 

minor CHO metabolism.others 1.037 

loc_os05g39690 oxidoreductase, aldo/keto reductase 
family protein, putative, expressed 

minor CHO metabolism.others 1.359 

loc_os11g29370 haloacid dehalogenase-like hydrolase 
family protein, putative, expressed 

minor CHO metabolism.others 1.008 

loc_os07g48160 alpha-galactosidase precursor, 
putative, expressed 

minor CHO metabolism.galactose.alpha-galactosidases 1.163 

Gluconeogenesis 

loc_os02g13840 citrate synthase, putative, expressed gluconeogenese/ glyoxylate cycle.citrate synthase 1.195 

loc_os08g33720  malate lactate/malate 
dehydrogenase, putative, expressed 

gluconeogenesis.Malate DH 1.078 

TCA 

loc_os05g49880 lactate/malate dehydrogenase, 
putative, expressed 

TCA / org. transformation.TCA.malate DH 1.514 

loc_os01g46070  lactate/malate dehydrogenase, 
putative, expressed 

TCA / org. transformation.TCA.malate DH 1.255 

loc_os08g33720 lactate/malate dehydrogenase, 
putative, expressed 

TCA / org. transformation.TCA.malate DH 1.078 

loc_os10g33800 lactate/malate dehydrogenase, 
putative, expressed 

TCA / org. transformation.other organic acid 
transformaitons.cyt MDH 

1.392 

mitochondrial electron transport / ATP synthesis 

loc_os02g30460 uncharacterized protein MJ0304, 
putative, expressed 

mitochondrial electron transport / ATP synthesis.NADH-
DH.complex I.carbonic anhydrase 

1 

Cell Wall 

loc_os03g16980 NAD dependent 
epimerase/dehydratase family 
domain containing protein, expressed 

cell wall.precursor synthesis.UXS 1.179 

loc_os04g56520.
1 

alpha-1,4-glucan-protein synthase, 
putative, expressed 

cell wall.cell wall proteins.RGP 1.255 

Lipid Metabolism 

loc_os08g23810 enoyl-acyl-carrier-protein reductase 
NADH, chloroplast precursor, 
expressed 

lipid metabolism.FA synthesis and FA elongation.enoyl 
ACP reductase 

1.052 

loc_os11g10980 pyruvate kinase, putative, expressed lipid metabolism.FA synthesis and FA elongation.pyruvate 
kinase 

1.252 

loc_os01g07760 phospholipase D, putative, expressed lipid metabolism.lipid 
degradation.lysophospholipases.phospholipase D 

1.024 

N-metabolism 
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loc_os03g58040 glutamate dehydrogenase protein, 
putative, expressed 

N-metabolism.N-degradation.glutamate dehydrogenase 1.099 

Amino acid Metabolism 

loc_os03g19280 argininosuccinate lyase, putative, 
expressed 

amino acid metabolism.synthesis.glutamate 
family.arginine.argininosuccinate lyase 

1.166 

loc_os03g50510 threonine dehydratase biosynthetic, 
chloroplast precursor, putative, 
expressed 

amino acid metabolism.synthesis.branched chain 
group.isoleucine specific.threonine ammonia-lyase 

1.007 

loc_os12g42980 cysteine synthase, putative, 
expressed 

amino acid metabolism.synthesis.serine-glycine-cysteine 
group.cysteine.OASTL 

1.06 

loc_os06g04280 3-phosphoshikimate 1-
carboxyvinyltransferase, chloroplast 
precursor, putative, expressed

amino acid metabolism.synthesis.aromatic 
aa.chorismate.5-enolpyruvylshikimate-3-phosphate 

synthase 

1.665 

loc_os02g57260 3-ketoacyl-CoA thiolase, peroxisomal 
precursor, putative, expressed

amino acid metabolism.degradation.branched-chain 
group.shared 

1.472 

Secondary Metabolism 

loc_os09g07830 acetyl-CoA acetyltransferase, 
cytosolic, putative, expressed 

secondary metabolism.isoprenoids.mevalonate 
pathway.acetyl-CoA C-acyltransferase 

1.438 

loc_os02g08100  4CL1 (4- AMP-binding domain 
containing protein, expressed 

secondary metabolism.phenylpropanoids.lignin 
biosynthesis.4CL 

1.205 

loc_os08g38900 caffeoyl-CoA O-methyltransferase, 
putative, expressed 

secondary metabolism.phenylpropanoids.lignin 
biosynthesis.CCoAOMT 

1.192 

loc_os11g40690 dehydrogenase, putative, expressed secondary metabolism.phenylpropanoids.lignin 
biosynthesis.CAD 

1.012 

loc_os02g09490  ATCAD5 dehydrogenase, putative, 
expressed 

secondary metabolism.phenylpropanoids.lignin 
biosynthesis.CAD 

1.099 

loc_os02g43830 3-isopropylmalate dehydratase small 
subunit 2, putative, expressed

secondary metabolism.sulfur-
containing.glucosinolates.synthesis.aliphatic.methylthioalk

ylmalate isomerase small subunit (MAM-IS) 

1.827 

Hormone Metabolism 

loc_os07g18120 aldehyde oxidase, putative, expressed hormone metabolism.abscisic acid.synthesis-degradation 1.392 

loc_os08g35740 12-oxophytodienoate reductase,
putative, expressed

hormone metabolism.jasmonate.synthesis-
degradation.12-Oxo-PDA-reductase 

1.215 

Co-factor and vitamine metabolism 

loc_os06g34040 DJ-1 family protein, putative, 
expressed 

Co-factor and vitamine metabolism.thiamine 1.995 

Tetrapyrrole synthesis 

loc_os08g41990 aminotransferase, putative, 
expressed 

tetrapyrrole synthesis.GSA 1.049 

stress 

loc_os07g01660 dirigent, putative, expressed stress.biotic.PR-proteins 1.412 

Redox 

loc_os02g56850 glutathione reductase, putative, 
expressed 

redox.ascorbate and glutathione.glutathione 1.038 

loc_os04g46960 glutathione peroxidase domain 
containing protein, expressed 

redox.ascorbate and glutathione.glutathione 1.222 

Nucleotide metabolism 

loc_os03g61600 phosphoribosylformylglycinamidine 
synthase, putative, expressed 

nucleotide metabolism.synthesis.purine.AIR synthase 1.046 

Biodegradation of Xenobiotics 

loc_os03g21460 metallo-beta-lactamase family 
protein, putative, expressed 

Biodegradation of Xenobiotics.hydroxyacylglutathione 
hydrolase 

1.003 

C1-metabolism 

loc_os09g27420 formate--tetrahydrofolate ligase, 
putative, expressed 

C1-metabolism.formate-tetrahydrofolate ligase 1.053 

Miscellaneous  

loc_os01g71350 glycosyl hydrolases family 17, 
putative, expressed 

misc.beta 1,3 glucan hydrolases.glucan endo-1,3-beta-
glucosidase 

2.654 

loc_os11g20160 O-methyltransferase, putative,
expressed

misc.O-methyl transferases - lateral root 8.719 

loc_os08g06100 O-methyltransferase, putative,
expressed

misc.O-methyl transferases 1.976 

loc_os03g13540 Ser/Thr protein phosphatase family 
protein, putative, expressed 

misc.acid and other phosphatases 1.002 
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loc_os03g01300 LTPL114 - Protease inhibitor/seed 
storage/LTP family protein precursor, 
expressed 

misc.protease inhibitor/seed storage/lipid transfer protein 
(LTP) family protein 

1.858 

loc_os04g46810.
1 

LTPL120 - Protease inhibitor/seed 
storage/LTP family protein precursor, 
expressed 

misc.protease inhibitor/seed storage/lipid transfer protein 
(LTP) family protein 

1.184 

Protein Synthesis 

loc_os02g52880 ybaK/prolyl-tRNA synthetase family 
protein, putative, expressed 

protein.aa activation.proline-tRNA ligase 1.06 

loc_os11g29190 40S ribosomal protein S5, putative, 
expressed 

protein.synthesis.ribosomal protein.eukaryotic.40S 
subunit.S5 

1.003 

loc_os12g38000 60S ribosomal protein L8, putative, 
expressed 

protein.synthesis.ribosomal protein.eukaryotic.60S 
subunit.L8 

2.359 

loc_os07g14280 WD domain, G-beta repeat domain 
containing protein, expressed 

protein.targeting.secretory pathway.plasma membrane 1.247 

Signalling 

loc_os01g63800 pleckstrin homology domain-
containing protein, putative, 
expressed 

signalling.phosphinositides 1.105 

loc_os08g33370 14-3-3 protein, putative, expressed signalling.14-3-3 proteins 1.419 

loc_os08g37490 14-3-3 protein, putative, expressed signalling.14-3-3 proteins 1.134 

Development/storage  

loc_os05g02520 cupin domain containing protein, 
expressed 

development.storage proteins 1.302 

Transport 

loc_os02g57240 oxidoreductase, aldo/keto reductase 
family protein, putative, expressed 

transport.potassium 2.31 

loc_os02g44080 aquaporin protein, putative, 
expressed 

transport.Major Intrinsic Proteins.TIP 1.348 
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Suppl Table 3. The sequences of gene specific forward and reverse primers used for the qRT-PCR 

analysis 

Gene Name Accession number Forward Primer (5’-3’) Reverse Primer (5’-3’) 

OsCyclophilin 2 LOC_Os02g02890 GTGGTGTTAGTCTTTTTATGAGTTCGT ACCAAACCATGGGCGATCT 

OsAOC LOC_Os03g32314 TGCCTCAACAACTTCACCAACTA CACATGCCGCAATTAACACTAAA 

OsOPR7 LOC_Os08g35740 CTCAACCACCGGTTTCCTCA TCCATGCATCAGTCTGCTCT 

OsPAL1 LOC_Os02g41630 AAGGTGTTCCTCGGCATCAG GGCAATGGCGATGGGATCTT 

Os4CL3 LOC_Os02g08100 CTCACCCGGAGATCAAGGAC CCTCGGTGATTTCTGAGCCT 

OsCOMT LOC_Os08g38900 TCATCACGGACAAGCACCAG GACACCCACCTCGATTGTCC 




