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Content

Objectives — CAD-based MCNP Monte Carlo radiation transport and
activation analyses for the Diagnostic Upper and Equatorial Port Plugs

(UPP #3 and EPP #8, #17 — results presented)
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CAD-Based Monte Carlo Rad. Transport

3 modeling approaches of CAD-based Monte Carlo transport
simulations:

1. Constructive Solid Geometry (CSG) — tradiational approach with CAD to
Monte Carlo models conversion codes:
— MCAM (FDS team, China)
— McCAD (KIT fusion neutronics group, Germany)

2. Unstructured Mesh (UM) geometry in MCNPG6 (LANL, USA);

3. Direct particle tracking technique with Direct Accelerated Geometry Monte

Carlo (DAGMC) library — developed by University of Wisconsin—Madison,
USA.

Stages of CAD-to-MC models geometry conversion to CSG model of
MCNP:
1) Geometry simplification — remove the unnecessary details
2) Approximation of free-form and spline surfaces to 1st and 2nd
order surfaces of MCNP
3) Material definition with homogenization setting up the material
mixtures for the simplified cells, such as steel-water shield 60 vol.%
steel — 40 vol.% water.
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Tallying procedure in MCNP models with lost particles

CAD-to-MC geometry conversion of tokamaks (ITER, DEMO) with all their
complex engineering and diagnostic systems is performed with some level of

approximation.

Approximations could couse geometry errors and as the
consequence — lost paricles.

Big problem with lost particles: If one of particles in a history is lost, MCNP

cancels all tallies calculated during the history and all banked particles are erased.
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Example of lost paricles in ITER Upper Port with strong particle splitting

V2: Diagnostic Upper Port (DUP)
V1: Diagnostic Upper Port (DUP) with lost particles at the back-side

ITER plasma side DUP back-side f§ ITER plasma side DUP back-side

Total n-flux, nfem2/s

1.084+09 Total n-flux, nfem?2/s

1.0e+09

6.3e+8

Closure Plate

o« : J < : Closure Plate
Neutron source in plasma Neutron source in plasma

Neutron fluxes in DUP Closure Plate of 2 MCNP models
(the same neutron source, the same DUP model, just 10e-3 lost paricle rate at the DUP back-side)

Energy V1: Diagnostic Upper Port (DUP), V2: I:_)iagnostic Upper P_ort with lost
n/cm2/s particles at the back-side, n/cm2/s
0<E<0.1 MeV 1.76E+08 1.37E+06
0.1<E<1 MeV 1.04E+08 1.45E+05
1<E<20 MeV 8.06E+06 1.29E+03
Total 2.88E+08 1.52E+06

Conclusion: we must keep lost paricle rate at very low level of 10e-7 - 10e-9
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Shielding Analysis for ITER Port Diagnostics

Example 1:

Tritium and Deposit Monitor (T-monitor) & Core-
Imaging X-ray Spectrometer (CIXS) neutronics
analysis with Local MCNP model of ITER
Equatorial Port Plug (EPP) #17
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Total neutron flux for EPP17 with CIXS only

Collimators:
4 x plates per beam
1-m long

Tungsten (W)

CAD model of the original CIXS shielding

Rectangular opening
reserved for NAS

In-port Crystal
n-port Crysta S

Map of total n-flux for the CIXS model having no-collimated LOS beams  Map of total n-flux for the CIXS model with collimated LOS beams

Total n-flux

: Total n-flux 1e+011

le+01
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1E+10
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Total neutron flux for EPP17 with CIXS and TD-monitor
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Distribution of decay gamma sources for SDDR
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Comparison of the SDDR distributions in MCNP fine mesh

SDDR in CIXS-only model VvS. SDDR in TD-monitor & CIXS model

0.5cm gaps between
DSM #2 and #3

J : 1 SDDR,Sv/h
TD-monitor 1. 3e-04

DSM #2 and #3
|

V

SDDR, Sv/h

3e-04

0.5cm gaps between ll 8
%

0.0001 ~-0.0001

CcP

Decay gamma streaming pathways:

1) 0.5 cm gaps between DSM #2 and #3 Decay gamma streaming pathways:
2) CIXS 1) 0.5 cm gaps between DSM #2 and #3
2) CIXS

3) TD-monitor
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SDDR horizontal distributions and effect of TD-monitor on SDDR

Horizontal SDDR (microSv/h) distributions in spherical detectors of TD-monitor & CIXS model

Detectors location in

Layer # horizontal distribution Left Right
Below the TD-monitor,
L1 at 30cm from CP 134 210 209 120
Behind the TD-monitor,
L2 at 66¢cm from CP 2 2 78 69
L3 Far from TD-monitor, 12 56 72 58

100cm from CP

Horizontal SDDR (microSv/h) distributions in detectors of CIXS~only model

Detectors location in

Layer # horizontal distribution Left \Qght
Below the TD-monitor,
L1 e fram D 121 193 194 117\
Behind the TD-monitor, N
L2 at 66 cm from CP = e 74 63
L3 Far from TD-monitor, 11 56 67 55

100cm from CP

Effect of TD-monitor on SDDR in spherical detectors. Difference of SDD

Detectors location in

Layer # horizontal distribution Left
Below the TD-monitor,
L1 at 30cm from CP 13 17 15
Behind the TD-monitor,
L2 at 66¢cm from CP & U 4
L3 Far from TD-monitor, 1 0 5

100cm from CP
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Summary and Recommendations

Neutronics analysis was performed in the MCNP Local model of EPP17 included only the apertures of
two Diagnostics: TD-monitor and CIXS.

The results include neutron and gamma fluxes and nuclear heating on 7 mirrors of the TD-monitor,
neutron fluxes and SDDR estimated in spherical detectors and with 3D distributions in EPP17:

 Nuclear heating on mirrors is up to 0.77 W/em? (cooling might be required).

» SDDR in spherical detectors at the bottom of TD-monitor shield box (at 30 cm from Closure Plate)
reaches 210 microSv/h, with a contribution of 17 microSv/h from TD-monitor.

« Shield block behind the TD-monitor contribute to a decrease on 7 microSv/h — gamma shadow effect.

* These are relative SDDR values of Local MCNP model. Final values request inclusion of all the
tenants of EPP17 (TD-monitor, CIXS, Vis/IR system, and Divertor Thermography) — future task of

EPP17 port plug integration, with inclusion of all the sorts of the gaps, radiation cross-talks between
the ports, and environmental effects in global MCNP C-lite model.

Vertical cut of MCNP model

™ Horizontal cut

" Recommendations for TD-monitor design

culated amg] M5 n B - ZEiSCannerrnirrorMG improvement:
[E==2T =0 »
b B P il * Increase vertical shift (M4-M5) of the
AN dog leg inside the port plug - to prevent

of DSM#2

T possible direct neutron streaming.

* Shield block behind the TD-monitor optical box
appears as a ‘““neutronic relevant option™.
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In-port radiation cross-talks

Example 2:

Tangential Neutron Spectrometer (TNS) inside the
EPP #8 with 7 Diagnostics in C-lite v.2
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Tangential Neutron Spectrometer (TNS)
integrated inside the Diagnostic Equatorial Port Plug (EPP) #8

Diamond detectors and fission chambers
are instaled in TNS as neutron detectors.
High fluxes (10° n/cm2s — 10'° n/cm?2s) will
allow at least 100 ms spectroscopy time
resolution.

2 neutron detectors of Tangential Neutron
Spectrometer (TNS)

\\‘(IT CAD-Based Shielding Analysis for ITER Port Diagnostics, Page 15
[

Top view on ITER vacuum vessel

ICRS-13 & RPSD-2016, Paris, France, October 3-6, 2016

Karlsruhe Institute of Technology



Task: eliminate radiation cross-talk from the Fast lon Loss Detector (FILD or Lost
Alpha - LAM) to Tangential Neutron Spectrometer (TNS) in EPP #8

The purpose of TNS spectrometer is to measure spectra of neutrons flying in tangential direction
as a collective D-T plasma rotation. In result to estimate the Doppler energy shift of the neutron
spectrum emission. Problem was noise of neutrons coming from other Diagnostics.

3 €
-~ SR\ \
= ﬁn. ~

Orlgmal pathway in FILD
ist of 7 diagnostics of EP8 defined in CAD-file:

Li

1. Fast lon Loss Detector (FILD)

2. Tangential Neutron Spectrometer (TNS)
3. Divertor Flow Monitor

4. Visible Spectroscopy Reference System
5. High Field Side Reflectometry

6. Single channel Interferometer

7. Tritiumand Deposit Monitor

z
4
-

X 10 By
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Photon heating (W/cm?3) for EPP8 (7 diagnostics included in EPP#8) — impact of
~ Lost Alpha Monitor (LAM) on neutron energy spectrrum in two Detectors of TNS

Photon heat, W/cc
4.000e+00

]

0.03

AR I!\ |-|||||||

ctor (FILD)

st lon LOSS Dete 0.001

Fa

3e-5
=1.000e-05
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Investigation was carrying on for the Central TNS detector.
In the original EPP #8 model the distance between TNS and 1st
leg of FILD was 10 cm, in the turned model it is 60 cm.

Turning upside-down of the FILD pathway helps to increase the
14-MeV peaking factor in energy resolution of the central TNS
detector.

Turned FILD configuration stops neutron streaming from the
FILD pathway to the Central TNS detector.

For measuring of n-spectrum in Central Det. #2 the turned
FILD option is an equivalent to one of its absence — option
of totally filled FILD (LAM — as FILD called before):
“TNS-no-LAM” case on the spectra plots next slide.
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Neutron spectra, 1em?is per lethargy interval

10

10

Eliminating cross-talks between TNS and LAM (FILD)

In Central TNS Detector #2 the neutron spectra are coincided for two cases:
1) Totally removed LAM (FILD)
2) Turned upside-down LAM (FILD) ™

1"

——Central TNS Det #2 in DSM #2
—5—Side TNS Det #1 in DSM #3

.. | —#—Central TNS-no-LAM Det #2
Central TNS Det #2, with turned LAM
RNC detector at cryostat (z=82cm y=-27cm)

—7—Uncollided central RNC Det at cryostat
Uncollided Central TNS Det #2

10 11

SKIT

Karlsruhe Institute of Technology

12

|
13 14
Neutron energy, MeV

-
-]

CAD-Based Shielding Analysis for ITER Port Diagnostics, Page 20
ICRS-13 & RPSD-2016, Paris, France, October 3-6, 2016



In-port radiation cross-talks

Example 3:

Shutter and the main Diagnostic path of the Charge
eXchange Recombination Spectroscopy (CXRS) in
UPP #3
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Upper Port Plug #3 with Charge eXchange Recombination Spectroscopy (CXRS)

Diagnosticarea in B14

Fibre opc relay in — L
| cable trays (PBS44)
> [ —

* Collects visible light emitted by Diag. Neutral Beam (DNB)
*Analyses the light = lon Temp., Plasma Rotation, Impurities

a | Neutral Beam Cell |
=

c B14
Tritium building

dPort cell UP3 ;

200 ettt L L 1 IR SR T T T S SO TR T SR 1

| MCNP neutronic model

100

+ CXRS main path

CAD Transmission line GDC

Last 4 mirrors CXRS (M3,
M4, M5, M6)

Front-end
electrode GDC

for shutter arms

I 2 mirrors
I 1 CXRS (M1, M2)

Materials of the CXRS mirrors:
M1, M2 - Molybdenum(Mo) [T T T T T T T T T T
M3 - M6 - Silicon carbide (SiC) -100 0 100 200

:‘L‘ Main optical path
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Impact of CXRS shutter — on neutron flux streaming

Total neutron flux, n/cm2/s
| | \ | \

1e+009 1e+010

MirrorrMS

Strong impact of CXRS shutter
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Case #1

Case #1:

UPP-CXRS with GDC
4 pathways of neutron
streaming :

1 — Gaps all-round the UPP
2 — CXRS shutter Port Interspace
3 — CXRS main optical path (P1)

4 — GDC electrode Total neutron flux, n/cm2/s

1e+008

Neutron pathway analysis:
Case #1 vs. Case #2:

Case #2

Case #2:

UPP-CXRS except GDC
3 pathways of neutron
streaming :

1 — Gaps all-round the UPP Port |r2|t3<9|r)8pace
2 — CXRS shutter
3 — CXRS main optical path

Total neutron flux, n/fcm2/s

le+013
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Case 1:
UPP-CXRS with GDC
4 pathways of neutron

streaming :
1 — Gaps all-round the UPP Port
2 — CXRS shutter Interspace (Pl)
3 — CXRS main optical path
4 — GDC electrode Total neutron flux, n/cm2/s

1e+008 1e+013

Neutron pathway analysis:
Case #1 vs. Case #3: Case #3

Case 3:

Generic UPP

1 pathway of neutron
streaming :

1 — Gaps all-round the GUPP Port
Interspace (PI)

Total neutron flux, nfecm?2/s

1e+008
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Conclusions

The phenomenon of in-port cross-talk was investigated for the diagnostic systems
deployed in two Equatorial Port Plugs (EPP) #17 and #8, and for the components of
Upper Port Plug (UPP) #3.

The T-monitor & Core-Imaging X-ray Spectrometer (CIXS) inside the Diagnostic
Generic EPP are analysed in EPP#17 local MCNP model of ITER. While EPP#8
and UPP#3 are modelled globally with C-lite v2 and B-lite v3 models, respectively.

Multiple sets of diagnostic equipment inserted inside the same Port Plug create
additional pathways for radiation streaming along the diagnostic channels and
labyrinths (e.g. optical pathways) — the reason of in-port radiation cross-talk
between different diagnostic systems.

Demonstrated that in order to take advantage of particular shielding improvements
in full extent, we should also assess the mutual influence of every Diagnostic
system installed inside the same port.

This subject is important for Diagnostics designing at the stage of port
integration to ensure engineering and maintenance solutions for the
Diagnostic tenant systems.
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