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1. Introduction

In this thesis we consider time-harmonic electromagnetic wave scattering at
impenetrable biperiodic surfaces in a homogeneous medium. Besides their
rigorous analysis in biperiodic Sobolev spaces, which aims at answering
the questions about existence and uniqueness of solutions, we will derive a
high order solver for its numerical approximation – a collocation method
based on trigonometric polynomials.

The propagation of electromagnetic waves is described by Maxwell’s equa-
tions. In its simplified form for time-harmonic waves, propagating in an
isotropic and homogeneous medium without charges and external currents,
this system reduces to

curlE − iωµH = 0,
curlH + (iωε− σ)E = 0,

(1.1a)

connecting the electric field E and the magnetic field H to each other.
Here, the material parameter ε, µ > 0 are the electric permittivity and
magnetic permeability, respectively, where σ ≥ 0 is the conductivity and
ω > 0 denotes the frequency.

In general, given a domain Ω ⊆ R3 (the scatterer) as well as some incident
waves Ei and H i, which satisfy Maxwell’s system in all of R3, scattering
problems by a perfect conductor consist of the determination of certain
fields Es and Hs (the scattered fields) which satisfy Maxwell’s system in
R3 \ Ω, together with the boundary condition

n× (Ei + Es) = 0 on ∂Ω (1.1b)

and a suitable radiation condition. Here, n denotes the unit normal vector
on ∂Ω.
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In our context, the scatterer is unbounded and possesses a biperiodic
structure, i.e., it has a periodic shape in two spacial dimensions, say in x1-
and x2-direction. Many of such structures are conceivable. We assume its
boundary ∂Ω to be describable by the graph of a biperiodic and Lipschitz
continuous function f : R2 → R. Later, in view of the numerical treatment,
we require f to be smooth. Furthermore, we assume the incident fields to
be biperiodic as well, up to a certain phase shift.

Such problems appear often in applications, for instance in micro- and
nano-optics such as the design of thin solar cells, the design of photonic
crystals with a certain band gap structure, the construction of holographic
films and optical storage devices. Besides their practical relevance, they
contribute(d) an interesting and fascinating research area in mathematics
during the last 100 years.

1.1. State of the Art

The beginning of the last century can be seen as the starting point of
investigations of scattering problems in a periodic setting, when in 1907
Lord Rayleigh published his famous work about the behaviour of sound
scattered by a perfectly reflecting regularly grooved grating [46]. From this
time up to now many scientists provided valuable contributions, not only
for acoustic but also for electromagnetic scattering problems. Here, the
literature can be mainly divided into two parts: one for the oneperiodic and
the other one for, the already mentioned, biperiodic setting. In contrast,
oneperiodic structures exhibit periodicity only in one spatial direction, say
in x1-direction, while they are constant in the other, say in x2-, direction.
In such structures the time-harmonic Maxwell’s system reduces to scalar
valued Helmholtz equations – a simplification which is not longer possible
in the biperiodic setting. For oneperiodic structures, a good overview about
the state of the art at the beginning of the 1980s is given by Petit in [44]
and about the end of the 1990s by Bao, Cowsar and Masters in [13].

Existence and Uniqueness. In principle, there are two main approaches
to tackle the question about existence and uniqueness of boundary value
problems: the variational approach and the integral equation method.
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They also provide the basis for numerical realizations in form of finite
element methods and the numerical solution of boundary integral equations.
Both approaches are also applicable for scattering problems in a periodic
setting – and in the 1990s there were established a plenty of existence and
uniqueness results in this context.

For the variational approach, a domain truncation process is characteristic:
one truncates the domain to a unit cell, which covers one period, and
considers the weak formulation of the scattering problem only therein. This
process generates artificial boundary conditions, which take the radiation
condition into account via Dirichlet-to-Neumann maps or the Calderon
operator. The approach for the oneperiodic case is for instance shown
by Elschner and Schmidt in [28]. The corresponding approach for the
biperiodic case is treated by Abboud and Nédélec in [1], by Bao, Dobson
and Cox in [10, 11, 12, 14, 26], by Bonnet-Bendhia and Starling in [17]
and by Schmidt in [50]. It is worth mentioning the work of Arens in [7]
for an application of this approach to the Helmholtz equation in three
dimensions. All of them yield essentially one main result: unique solutions
exist for all frequencies outside a certain discrete set.

The integral equation method (to be more precisely the indirect one) con-
sists of a representation of the scattered field in form of a potential ansatz
with an unknown density, which is intended to determine by exploiting
certain jump relations to end up in a boundary integral equation for this
density. This equation is used for both the proof of existence and for
numerical computations. (In contrast, and for the sake of completeness,
the direct integral equation method uses formulations which are directly
based on the representation formulas of Green and Stratton-Chu for the
solution.) Important contributions for this approach came already in the
early 1990s from Nédélec and Starling ([43]) and Chen, Dobson and Fried-
man ([24],[27]). Current results in connection with non-self-intersecting
multilayered structures can be found in Bugert’s dissertation thesis [22].
In summary, again unique solvability can be ensured outside a certain
discrete set regarding some material parameters or the frequency.

The Numerical Treatment. The variational approach is very popular
among mathematicians, because it makes the application of the well-studied
finite element method possible. Hence, many of the above mentioned
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articles contain already implementations or provide at least the basis, see
for instance Bao in [10, 11]. For biperiodic structures an adaptive finite
element method can be found in [15].

The integral equation method yields a boundary integral equation for
which in general three approaches are available to obtain an approxi-
mate solution: Galerkin, collocation and Nyström methods. A standard
reference for a good introduction into this subject is the monograph of
Saranen and Vainikko ([48]) or in a more general context the textbook
of Kress ([36]). An essential disadvantage of boundary integral equation
methods in comparison with finite element method is the solution of big
systems of linear equations with dense matrices.

Galerkin methods are projection methods and are encountered often in
the literature. There exists a complete theory with existence, uniqueness,
stability and convergence results also for the case of non-smooth boundaries.
The numerical implementation in form of boundary element methods is
well-established (see Sauter and Schwab in [49]).

Collocation methods belong to the projection methods as well and are often
used in applications, since they are in principle easier to implement. An
open question concerns stability in the case of non-smooth boundaries.

In combination with matrix compression techniques, both Galerkin and
collocation methods exhibit a complexity which is comparable to the cor-
responding one of finite element methods. Here, low algebraic convergence
rates with approximately linearly growing complexity are characteristic.
Those techniques include the fast multipole method, panel clustering and
adaptive corss approximation (see Rjasanow and Steinbach in [47]) as well
as the H-matrix calculus (see Hackbusch in [32]).

Nyström (or quadrature) methods approximate the integral by appropriate
quadrature rules. For problems in two dimensions, Colton and Kress ([25])
or Meier, Arens, Chandler-Wilde and Kirsch ([41]) achieved for smooth
boundary curves any algebraic convergence rate. Furthermore, methods
with exponential convergence rate and a quadratic count of operations
are known, see Kussmaul ([37]) and Martensen ([39]). For smooth sur-
faces the method is easy to implement, as it requires only the composite
trapezoidal rule in combination with a rule that uses the same quadrature
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points and easy to determine weights to overcome the integration over the
singularity.

For problems in three dimensions the realization is more difficult because
of the more complicated structure of the kernel of the integral operators –
the singularity depends now on both the distance and the direction. In this
situation it is hard to find a quadrature rule with a high order convergence
rate. For the case of a globally parametrizable surface by means of a
sphere, a first implementation was successfully realized by Wienert ([52])
in 1990, who removed the singularity by using rotations and spherical
coordinates. A complete convergence analysis came more than 10 years
later, see Ganesh, Graham and Sloan ([30, 31]).

Another approach were chosen by Bruno and Kunyanski ([19, 20]) in
2001. To make the idea clearer, we assume the surface ∂Ω to be globally
parametrizable by a map Ψ : Q := (−π, π)2 → ∂Ω, which gives us finally
an integral equation of the second kind

ϕ(t)−
∫
Q

k(t, τ)ϕ(τ) dτ = ψ(t), t ∈ Q,

whose approximate solution we are looking for. Using a cut-off function
χ with χ(t) = 0, for |t| ≥ %, and χ ≡ 1 in a neighborhood of zero, the
singularity can be isolated,

ϕ(t)−
∫
Q

k(t, τ)χ(τ − t)ϕ(τ) dτ

−
∫
Q

k(t, τ) (1− χ(τ − t))ϕ(τ) dτ = ψ(t),
(1.2)

for t ∈ Q. Substituting τ in the first integral by polar coordinates centered
at t and applying the transformation rule removes the singularity. As a
consequence, the Nyström method realized by the composite trapezoidal
rule is applicable, leading to high order convergence. Although the idea is
pretty simple, the implementation is technically difficult and an analysis
how the convergence rate is related to the overall complexity was not given.
During the next 10 years some efforts have been made to fill this gap:

• Heinemeyer ([33]) interpreted this method as a method of locally
corrected weights (as suggested in [23]) and proved pointwise con-
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vergence of the discrete operators with super-algebraic convergence
rate, but did not give a convergence rate of the overall scheme.

• Arens interpreted in his habilitation thesis ([7]) the method as a
collocation method based on trigonometric polynomials and he was
the first who rigorously and completely showed stability and super-
algebraic convergence rate with quadratic computational complexity
for the semi-discrete scheme for a variant of this method. However,
the complexity estimate for the fully discrete scheme leaves room for
improvement.

• Bruno, Dominguez and Sayas published in [18] the most complete
analysis, but they limit themselves to scattering problems.

In this thesis, the scheme of Arens in [7] is improved by reducing the
overall complexity.

The Evaluation of Green’s Function. The implementation of the integral
equation method in a biperiodic setting requires the evaluation of the
(quasi-) periodic Green’s function for the Helmholtz equation (including
their partial derivatives) several times. Since for this purpose its usual
series representation is disadvantage, the availability of efficient evaluation
methods is a crucial issue. The lack of those methods might be the reason
for why Nédélec and Starling ([43]) as well as Dobson and Friedman ([27])
did not pursue or did not implement their ansatzes.

In his review article [38], Linton compared different expressions for Green’s
function and recommends Ewald’s method, which is to split up the function
into two exponentially convergent series, one of them containing the singu-
larity. This method was successfully picked up by Arens in [7], who derived
different representations which are best suited for numerics. Arens, Lech-
leiter, Sandfort and Schmitt performed in ([8]) evaluations of the Green’s
function (and their partial derivatives) based on the preparatory work
of [7] and gave rigorous error estimates for the numerical approximation
of the function.

There are also efforts to avoid the Green’s function, at least in the onepe-
riodic and multilayered setting, see [16] and [54, 55].
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1.2. Results Presented in this Thesis

Before we start to describe the electromagnetic scattering problem, that
we are interested in, in the necessary mathematical precision, afterwards
continue with investigations concerning the question about existence and
uniqueness of solutions and finally derive a high order solver for their
numerical approximation, it is indispensable to provide in a first step
the correct framework in form of the function spaces where solutions are
sought for. This will be done in Chapter 2. Here, we have chosen the
approach of [34] for arbitrary bounded Lipschitz domains (an elementary
and comprehensive presentation looking for its equals in particular regard-
ing Chapter 5 therein and which is managed without Sobolev-Slobodeckǐı
spaces) and transferred their ideas to the biperiodic setting. This pro-
ceeding differs from the usual procedure in the literature, such as in [7]
or [22] (where, by means of a special partition of unity, many results can
be obtained from corresponding ones for nonperiodic Sobolev spaces), and
appears to be new. Since the key idea from the approach of [34] is to
exploit results of periodic Sobolev spaces on cuboids, their methods seemed
to be the “natural choice” – and therefore best suited for our purposes.
We start with basis results for Sobolev spaces, where our main focus is on
Sobolev spaces for functions on cuboids for reasons which were mentioned
above. Theorem 2.30, Corollary 2.32, Lemma 2.37 (part (i)), Theorem 2.38
and 2.40, together with Theorem A.2, as well as the special choice of the
partition of unity in Theorem 2.42 resulted from discussions with Andreas
Kirsch. Some of those results refer to a multiplication operator in the trace
spaces of vector fields which appear not to have been published in this form
so far. Then we introduce the Q-periodic setting, in particular the notion
of a cell set and give results which hold in this more general context before
we turn to cell sets of Lipschitz layer type, the setting which will be the
most important one in this thesis. Throughout this thesis we use the term
“Q-periodic” as a synonym of “biperiodic”. Admittedly, the development
of all these results is pretty exhaustive, but allows a detailed analysis. In
Subsection 2.1.4 we connect both approaches from the literature, at least
for smooth surfaces. Last but not least, it is worth mentioning that the
setting for the variational approach requires the consideration of subspaces
where modified differential operators such as ∇β or divβ satisfy certain
conditions. The results in this context seem also to be new.
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Chapter 3 aims at a precise formulation of the scattering problem (1.1)
and at the investigation of its unique solvability by means of methods from
a variational approach. For this we fix the geometrical setting and take a
closer look at upward propagating waves. The latter one is the substitute
of the Silver-Müller radiation condition from the nonperiodic setting and
the method of choice in our situation. This radiation condition was firstly
proposed by Lord Rayleigh in [46]. We carry over the ansatz from [7] to
electromagnetic scattering, see also [22], and give a more detailed analysis
adapted to our purposes, especially as a preparation for the Calderon
operator introduced later. After those preliminary considerations we are
able to give a precise weak formulation and show uniqueness in the standard
way. Afterwards, we introduce the Calderon operator and proceed with
a detailed analysis to obtain its most important properties for further
investigations. Such an analysis could not be found in the literature. By
means of this operator, we rewrite our scattering problem equivalently
into its variational form and continue to prove existence of solutions. For
this we were inspired by [35] and [42] (after personal communication with
Andreas Kirsch), where the solution space is split up into a direct sum
which allows a dissection of the problem in easier to analyse ones. Here, we
adapted the idea to the Q-periodic setting and end up with Theorem 3.42,
the main result of Chapter 3.

The topic of Chapter 4 is the integral equation method – yielding the
boundary integral equation which will be later the basis for our numerical
scheme. At first we recall the definition of the Q-(quasi-)periodic Green’s
function for the Helmholtz equation and its most important properties
from [7]. By means of this fundamental solution we define vector potentials
and follow thereby very closely the presentation in [34], with corresponding
modifications for the Q-periodic framework. Here, special attention should
be paid to a certain transmission problem, as it provides the important
jump relations of the vector potentials and thus gives rise to the definition
of the boundary integral operators Lα and Mα. While Lα can be written
as a compact perturbation of an isomorphism, a similar result in the case
of Lipschitz surfaces is not known for the operator Mα. At this point we
have to impose more regularity on the surface and rely on results from [21].
A special technique, as described in the proof of [7, Theorem 4.22] or the
proof of [22, Lemma 4.15], then makes the results from [21] applicable.
With the tools derived so far at hand, the derivation of the boundary
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integral equation (for the unknown density from the potential ansatz for the
solution of our scattering problem) and the investigation of its solvability
is now straightforward. Finally, some technical efforts are addressed to the
verificaton of the assumptions on the kernels of the corresponding integral
operator, in particular on the weak singularity which is supposed to be of
a special kind, see Assumption 5.6.

In Chapter 5, the numerical scheme is presented. As mentioned above, it
is a variant of the method from [19, 20] and constitutes an improvement of
the scheme in [7], which consists in a reduction of the overall complexity
by introducing another orthogonal projection. A key tool is the removal of
the weak singularity by a transformation into polar coordinates for the first
integral in (1.2). As a consequence, the corresponding integral operator
takes on a non-standard form making the analysis of its mapping properties,
as well as for its approximation, technically complicated. Therefore, the
approach is demonstrated at first on single integral equations and later
generalized to systems. The scheme is a collocation method and achieves
super-algebraic convergence rate (provided the surface is smooth). As
another novelty, the analysis yields an explicit dependence of the constants
in the stability and convergence estimates on some number % which couples
the support of various cut-off functions to each other. The results were
developed in collaboration with Tilo Arens and prepublished in [9]. Therein,
the application to typical boundary value problems such as potential and
scattering problems both for bounded obstacles and for biperiodic surfaces
is emphasized and numerical examples are presented which demonstrate
the expected convergence rates in practice.

1.3. Notational Conventions

Numbers, Sets and Operations. The symbol N denotes the set of natural
numbers with the exception of the zero element 0. We define N0 := N∪{0}.
Moreover, we introduce for s ∈ R, with s ≥ 0, the set N≥s := {n ∈ N0 |
n ≥ s}. As usual, we denote for s ∈ R by bsc the largest integer smaller
than or equal to s, while dse denotes the smallest integer greater than or
equal to s.
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To simplify expressions in some formulas, we make the convenient agree-
ment that 00 := 1.

If M is a set and A ⊆ M , then Ac denotes the complement of A with
respect to M , i.e., Ac := {m ∈M | m /∈ A}.

As usual, for d ∈ N and µ, ν ∈ Zd the symbol δµ,ν designates the Kronecker
delta, i.e.,

δµ,ν :=
{

1, µ = ν,

0, µ 6= ν.

For ease of notation, we define for M ∈ Nd

M := min{M1, . . . ,Md} and M := max{M1, . . . ,Md}. (1.3)

Given z ∈ C we denote by Re(z), Im(z), |z|, arg(z) ∈ (−π, π] and z the
real part, the imaginary part, the absolute value, the argument and the
complex conjugate of z, respectively.

For x = (x1, x2, x3)> ∈ C3, the vector x̃ in C2 and the vector x∗ in C3 are
given by

x̃ := (x1, x2)> and x∗ := (x1, x2,−x3)>. (1.4)

Let a, b ∈ Cd. Then the (real) dot product a · b is defined by

a · b :=
d∑
j=1

ajbj . (1.5)

The cross product a× b for a, b ∈ C3 is defined as usual. If a, b ∈ C2 we
make the arrangement that

a× b := a1b2 − a2b1. (1.6)

Moreover, for a = (a1, a2)> ∈ C2 we set

a⊥ :=
(
−a2
a1

)
. (1.7)

Given a multi-index α ∈ Nd0, we define for x ∈ Cd

xα := xα1
1 · · ·x

αd
d . (1.8)
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Furthermore, we introduce for multi-indices α, β ∈ Nd0 the binomial coeffi-
cient

(
α
β

)
given by (

α

β

)
:=
(
α1

β1

)
· · ·
(
αd
βd

)
(1.9)

and mean by β ≤ α that βj ≤ αj for all j = 1, . . . , d.

The Size of some Mathematical Objects. Let d ∈ N. For x ∈ Rd, |x|
denotes the Euclidean norm and |x|∞ the maximum norm, while for a
multi-index α ∈ Nd0, |α| denotes its order, given by |α| := α1 + · · ·+ αd.
Moreover, for a Lebesgue measurable subset Ω of Rd, |Ω| means the
Lebesgue measure of Ω. The context should exclude any confusion.

For z ∈ Rd and r > 0 we set

Bd(z, r) := {x ∈ Rd | |x− z| < r},
Bd[z, r] := {x ∈ Rd | |x− z| ≤ r}

and Sd−1 := ∂ Bd(0, 1).

Mappings. Let A and B be non-empty sets. Sometimes we will denote
the set of all mappings from A to B by BA. In this sense, for instance the
set CN consists of all sequences (cn)n∈N in C.

Let Ω,Ω′ ⊆ Rd such that Ω ( Ω′. Furthermore, let d′ ∈ N. As usual,
for a function u : Ω′ → Cd′ , we denote by u|Ω the restriction of u to Ω.
Similarly in a converse manner, given a function u : Ω→ Cd′ , we define
u|Ω′0 : Ω′ → Cd′ to be the extension of u by zero to Ω′.

To simplify notation regarding expressions for functions, we make the
following agreement: if the symbol “·” appears in an expression, then this
expression is to interpret as a function where “·” stands for the independent
variable, which domain of definition should be clear from the context. For
example, if a ∈ Cd, then by a · · we mean the function Cd 3 z 7→ a ·z ∈ C.

Normed Spaces and Linear Operators. Let X and Y be vector spaces
over the field F. For a linear mapping T : X → Y , the set ker(T ) denotes
the kernel of T , that is

ker(T ) := {x ∈ X | Tx = 0}.
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The mapping T : X → Y is called antilinear if F = C and T (α1x1+α2x2) =
α1 T (x1) + α2 T (x2), for all αj ∈ C, xj ∈ X, j = 1, 2.

Let A,B ⊆ X. Then A+B indicates the set given by

A+B :=
{
a+ b | a ∈ A, b ∈ B

}
.

Let now (X, ‖ · ‖X) be a normed vector space and A,B ⊆ X. Then
dist(A,B) denotes the distance between A and B, i.e.,

dist(A,B) := inf
{
‖x− y‖X

∣∣ x ∈ A, y ∈ B}.
Moreover, we denote by A and Å the closure and the interior of A,
respectively.

Let U and V be closed subspaces of X such that X = U +V and U ∩V =
{0}. Then X is called direct sum of U and V , in sign

X = U ⊕ V. (1.10)

Let (Y, ‖ · ‖Y ) be another normed vector space. The set L(X,Y ) consists
of all linear and bounded operators from X to Y . If Y coincides with
X, then for simplicity we write L(X) instead of L(X,X). An operator
P ∈ L(X) is called a projection if P 2 = P . If T ∈ L(X,Y ) is bijective
such that T−1 ∈ L(Y,X), then we call T an isomorphism and set

Lis(X,Y ) :=
{
T : X → Y | T is a isomorphism

}
.

If for T ∈ L(X,Y ) there holds ‖Tx‖Y = ‖x‖X for all x ∈ X, then T is
called isometric. If there exists an (isometric) isomorphism between the
spaces X and Y , then X and Y are called (isometrically) isomorphic, in
sign X ' Y (or X ∼= Y respectively).

With X ↪→ Y we denote an embedding from X to Y , that is, a linear,
bounded and injective mapping from X to Y . If X is a subspace of Y ,
sometimes we would like to emphasize that this embedding is given by the
identity operator id : X → Y . In this case we will write X id

↪−→ Y instead
of X ↪→ Y .
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We call L(X,F) the dual space of X and denote this space by X∗. As
usual, the evaluation of ` ∈ X∗ at x ∈ X is expressed by the duality pairing
〈`, x〉 and X∗ is equipped with the operator norm, i.e.,

‖`‖X∗ := sup
x∈X\{0}

|〈`, x〉|
‖x‖X

, ` ∈ X∗.

As an easy to verify consequence, we have the implication

`, `n ∈ X∗, n ∈ N, and `n → ` ⇒ ∀x ∈ X : 〈`n, x〉 → 〈`, x〉.
(1.11)

Classical Function Spaces. Let d ∈ N. For α ∈ Nd0 the partial differential
operator ∂α of order |α| is defined by

∂α := ∂|α|

∂xα1
1 · · · ∂x

αd
d

,

and we consider ∂α also for vector valued functions, see for instance [5].
By definition, ∂α is the identity operator if α = 0. Sometimes we will use
the symbol ∂j to denote the partial derivative of first order with respect
to xj .

Let Ω ⊆ Rd be open and let d′ ∈ N. If u : Ω→ Cd′ is differentiable, then
we denote by u′(x) the Jacobian of u in x ∈ Ω.

Furthermore, let m ∈ N0. The spaces of continuously differentiable func-
tions on Ω, on its closure Ω and with compact support, respectively, are
defined as usual by

Cm(Ω,Cd
′
) :=

{
u : Ω→ Cd

′ ∣∣ ∀ 0 ≤ |α| ≤ m : ∂αu : Ω→ Cd
′

exists and is continuous
}
,

Cm(Ω,Cd
′
) :=

{
u ∈ Cm(Ω,Cd

′
)
∣∣ ∀ 0 ≤ |α| ≤ m : ∂αu : Ω→ Cd

′

can be continuously extended to Ω
}
,

Cm0 (Ω,Cd
′
) :=

{
u ∈ Cm(Ω,Cd

′
)
∣∣ supp(u) is compact and

supp(u) ⊆ Ω
}
.
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We recall that the support of a function u : Ω→ Cd′ is given by

supp(u) := {x ∈ Ω | u(x) 6= 0}.

If Ω is additionally bounded, then as norms in Cm(Ω,Cd′) and Cm0 (Ω,Cd′),
we take

‖u‖Cm0 (Ω,Cd′ ) := ‖u‖Cm(Ω,Cd′ ) := max
|α|≤m

‖∂αu‖∞, (1.12)

where ‖ · ‖∞ denotes the supremum norm. The corresponding spaces of
smooth functions are

C∞(Ω,Cd
′
) =

∞⋂
k=0

Ck(Ω,Cd
′
),

C∞(Ω,Cd
′
) =

∞⋂
k=0

Ck(Ω,Cd
′
), C∞0 (Ω,Cd

′
) =

∞⋂
k=0

Ck0 (Ω,Cd
′
).

Let Ω′ ⊆ Rd be another open subset of Rd and m ∈ N0 ∪ {∞}. We call
u : Ω→ Ω′ a Cm-diffeomorphism from Ω to Ω′, if u is bijective and

u ∈ Cm(Ω,Cd) and u−1 ∈ Cm(Ω′,Cd).

We set

Diffm(Ω,Ω′) :=
{
u : Ω→ Ω′

∣∣ u is a Cm-diffeomorphism
}
.

Lebesgue Spaces. We define L1
loc(Ω,Cd

′) to be the set of Lebesgue
measurable functions which are Lebesgue integrable on all compact subsets
of Ω. With L2(Ω,Cd′) and L∞(Ω,Cd′) we denote the Lebesgue spaces
of square integrable and essentially bounded functions, respectively. Of
course, we equip the space L2(Ω,Cd′) with the inner product

(u | v)L2(Ω,Cd′ ) :=
∫

Ω
u(x) · v(x) dx

and the norm
‖u‖L2(Ω,Cd′ ) :=

(∫
Ω
|u(x)|2 dx

)1/2
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induced by this inner product. And in L∞(Ω,Cd′) we take the norm

‖u‖L∞(Ω,Cd′ ) := inf
{
c > 0

∣∣ |u(x)| ≤ c for almost all x ∈ Ω
}
,

where the function u on the right hand side is any representative of the
equivalence class u ∈ L∞(Ω,Cd′). We will often use the abbreviation “a.a.”
for the term “almost all”. For an element u in L1

loc(Ω,Cd
′), L2(Ω,Cd′)

or L∞(Ω,Cd′), its essential support is also denoted by supp(u) and by
definition the smallest closed set such that u = 0 almost everywhere on
Ω \ supp(u). Sometimes we are encountering integrals of the form∫

Ω
χ(x)u(x) dx,

with a scalar valued function χ : Ω → C and a vector valued function
u : Ω → Cd′ such that χuj is integrable, and understand this integral
taken componentwise. Here, uj , j = 1, . . . , d′, are the components of u.

Fourier Series. If Ω ⊆ Rd has the special form of a cuboid Qd, that is
Ω = Qd, where

Qd :=
d×
j=1

(−Lj , Lj) (1.13)

for some real numbers Lj > 0, j = 1, . . . , d, then an element u in
L2(Qd,Cd

′) can be expanded into a Fourier series

u =
∑
µ∈Zd

u(µ) T
(µ)
Qd
,

where T (µ)
Qd

are the trigonometric monomials given by

T
(µ)
Qd

(x) := 1√
|Qd|

eiq(µ)
Qd
·x
, x ∈ Qd, µ ∈ Zd,

with the reciprocal lattice vector q(µ)
Qd
∈ Rd given by

q
(µ)
Qd

:= (πµ1/L1, . . . , πµd/Ld)>, µ ∈ Zd, (1.14)



16 1. Introduction

and where u(µ) ∈ Cd′ denote the Fourier coefficients of u given by

u(µ) :=
∫
Qd

u(x)T (−µ)
Qd

(x) dx, µ ∈ Zd. (1.15)

It is easy to see, that for u ∈ L2(Qd,Cd
′) the Fourier coefficients u(µ) of

the complex conjugate u of u and the Fourier coefficients u(µ) of u are
connected to each other by the relation

u(µ) = u(−µ), µ ∈ Zd. (1.16)

It is well-known that
{
T

(µ)
Qd
| µ ∈ Zd

}
is an orthonormal basis of L2(Qd).

Furthermore, L2(Qd,Cd
′) is isometrically isomorphic to the set of square

summable sequences `2(Zd,Cd′), i.e.,

L2(Qd,Cd
′
) ∼= `2(Zd,Cd

′
), (1.17)

where the isometric isomorphism is given by relating u ∈ L2(Qd,Cd
′)

to its Fourier coefficients (u(µ))µ∈Zd and where for p ∈ [1,∞) the space
`p(Zd,Cd′) is given by

`p(Zd,Cd
′
) :=

{
(c(µ))µ∈Zd ∈ (Cd

′
)Z
d ∣∣ ∑

µ∈Zd
|c(µ)|p <∞

}
,

equipped with the norm

‖(c(µ))µ∈Zd‖`p(Zd,Cd′ ) :=
( ∑
µ∈Zd

|c(µ)|p
)1/p

.

The space of trigonometric polynomials is defined by

T (Qd,Cd
′
) := span

{
e(j) T

(µ)
Qd
| j ∈ {1, . . . , d′}, µ ∈ Zd

}
,

where e(j) denotes the j-th unit coordinate vector in Rd′ and the linear
combinations are taken with respect to complex numbers. For µ ∈ Zd we
denote by p(µ)

Qd
∈ R3 the lattice vector given by

p
(µ)
Qd

:= (µ12L1, . . . , µd2Ld)>, µ ∈ Zd. (1.18)
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Periodic Functions. A function u : Rd → Cd′ is called periodic, if

u(x+ p
(µ)
Qd

) = u(x), x ∈ Rd, µ ∈ Zd. (1.19)

If u is in L1
loc(Qd,Cd

′), then for periodicity we require that (1.19) holds
almost everywhere in Qd. For m ∈ N0, we define

Cmper(Qd,Cd
′
) :=

{
u ∈ Cm(Qd,Cd

′
)
∣∣ ∃ v ∈ Cm(Rd,Cd

′
) :

v is periodic and u = v|Qd
}

and set

C∞per(Qd,Cd
′
) :=

∞⋂
k=0

Ckper(Qd,Cd
′
).

Remark 1.1 C∞0 (Qd,Cd
′) is a subspace of C∞per(Qd,Cd

′).

Convention 1.2 In regard to the notation for the function spaces intro-
duced in this section and in following ones, if m = 0, then we will drop the
superscript in the symbol for the function spaces. Moreover, we will mostly
suppress the symbol for the co-domain, if we consider only scalar valued
functions, i.e., for example we will write Cm(Ω) instead of Cm(Ω,C).

Modified Differential Operators. Besides the partial differential operator
∂α, we now specify further basic differential operators. For u : Rd → C
and F : R3 → C3, both sufficiently smooth, we have for its gradient
∇u, its rotation curlF and its divergence divF (in a cartesian coordinate
system)

∇u =

∂1u
...

∂d u

 , curlF = ∇× F =

∂2F3 − ∂3F2
∂3F1 − ∂1F3
∂1F2 − ∂2F1

 ,

divF = ∇ · F =
3∑
j=1

∂jFj ,
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respectively. Often we will use modified versions of the last differential
operators in the following form. For β ∈ R3 we define

∇β := ∇+ iβ (1.20a)

where i denotes the imaginary unit, and, considering again u : R3 → C
and F : R3 → C3, both sufficiently smooth,

curlβ F := ∇β ×F, divβ F := ∇β ·F and Δβu := divβ ∇βu. (1.20b)

The Generic Constant. And last but not least, to make estimates in the
proofs more transparent, we denote by C > 0 a generic constant, meaning
that C may change in each occurence.



2. Sobolev Spaces for Q-periodic
Functions

In this comprehensive and exhausting chapter we provide the framework
for a detailed analysis of electromagnetic scattering in a Q-periodic setting.
We follow thereby closely the concept of [34]. Although therein the authors
consider Sobolev spaces for bounded Lipschitz domains, their ideas seem
to be best suited for our purposes as they consistently make use of periodic
Sobolev spaces for functions on cuboids. The step from here to cell sets of
Lipschitz layer type (the domains that we are mainly interested in) is then
even easier than the corresponding step to bounded Lipschitz domains
in the sense that the technical argumentation with a certain partition of
unity can now be almost neglected.

In Section 2.1 we start with basic results for Sobolev spaces for functions on
arbitrary open sets. Here, we intend to pick up the reader and to introduce
into the notation. Then we look a little more in detail at functions on
cuboids for reasons which were mentioned above and present results which
are more extensive. Afterwards, we are ready to define the important trace
spaces, with corresponding trace and extension operators, entirely in the
spirit of [34]. This approach appears to be not so much represented in the
literature and at the end of Section 2.1 we connect it with the approach
used for instance in [22].

The introduction of the Q-periodic setting is topic of Section 2.2. We will
present results which hold in a more general context, similarly as in the
case for arbitrary open sets. Already here we are able to provide several
forms of Helmholtz decompositions which are an important tool in the
context of Maxwell’s equations.

Finally, in Section 2.3 we adopt the concept of [34] to introduce cell sets of
Lipschitz layer type, define trace spaces as well as corresponding trace and
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extension operators for each surface separately, prove Green’s formula and
derive compactness and many other results which are useful for further
analyses.

Special attention should be paid to the fact that we will be working in Q-
periodic Sobolev spaces instead of Q-quasi-periodic ones. As a consequence,
instead of the usual differential operators its modified versions as in (1.20)
will come into play and make the derivation of the results more involved.

2.1. Basic Results for Sobolev Spaces

2.1.1. Functions on Open Sets

Throughout this subsection let d, d′ ∈ N. We start with the basic results
for scalar and vector valued functions defined on an arbitrary open set
Ω ⊆ Rd. Later, in the formulation of Sobolev spaces on the boundary
of a domain, of course we have to make some restrictions concerning the
boundary ∂Ω of Ω.

Definition 2.1 Let Ω ⊆ Rd be open.

(a) For α ∈ Nd0, a function u ∈ L2(Ω,Cd′) possesses a variational
derivative (with respect to α), if there exists v ∈ L2(Ω,Cd′) such that∫

Ω
u(x) ∂αχ(x) dx = (−1)|α|

∫
Ω
v(x)χ(x) dx

for all χ ∈ C∞0 (Ω). Then we set ∂αu := v.

(b) Supposed d = 3, a function u ∈ L2(Ω,C3) possesses a variational
curl, if there exists v ∈ L2(Ω,C3) such that∫

Ω
u(x) · curlχ(x) dx =

∫
Ω
v(x) · χ(x) dx

for all χ ∈ C∞0 (Ω,C3). Then we set curlu := v.
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(c) Supposed d = 3, a function u ∈ L2(Ω,C3) possesses a variational
divergence, if there exists v ∈ L2(Ω) such that∫

Ω
u(x) · ∇χ(x) dx = −

∫
Ω
v(x)χ(x) dx

for all χ ∈ C∞0 (Ω). Then we set div u := v.

It is well-known that the variational derivative, variational curl and varia-
tional divergence, respectively, is unique, if it exists. Note that for α = 0
we have ∂αu = u.

Definition 2.2 Let Ω ⊆ Rd be open.

(a) For m ∈ N0, we define

Hm(Ω,Cd
′
) :=

{
u ∈ L2(Ω,Cd

′
)
∣∣ ∀α ∈ Nd0 with |α| ≤ m :

∂αu ∈ L2(Ω,Cd
′
)
}
,

where ∂αu has to be understood in the sense of Definition 2.1, and
equip this space with the inner product

(u | v)Hm(Ω,Cd′ ) :=
∑
|α|≤m

∫
Ω
∂αu(x) · ∂αv(x) dx

and with the norm ‖ · ‖Hm(Ω,Cd′ ) :=
√

(· | ·)Hm(Ω,Cd′ ), i.e., the norm
induced by the inner product.

(b) Supposed d = 3, we define

H(curl,Ω) :=
{
u ∈ L2(Ω,C3)

∣∣ u has variational curl
}

and equip this space with the inner product

(u | v)H(curl,Ω) := (u | v)L2(Ω,C3) + (curl u | curl v)L2(Ω,C3)

and with the norm ‖ · ‖H(curl,Ω), induced by the inner product.
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(c) Supposed d = 3, we define

H(div,Ω) :=
{
u ∈ L2(Ω,C3)

∣∣ u has variational divergence
}

and equip this space with the inner product

(u | v)H(div,Ω) := (u | v)L2(Ω,C3) + (div u |div v)L2(Ω)

and with the norm ‖ · ‖H(div,Ω), induced by the inner product.

It is well-known that Hm(Ω,Cd′), H(curl,Ω) and H(div,Ω) are Hilbert
spaces. Moreover, we have by definition that H0(Ω,Cd′) = L2(Ω,Cd′).

Recall that a function u : Ω→ Cd′ is called Lipschitz continuous, if there
exists a constant L > 0 such that

|u(x)− u(y)| ≤ L |x− y|, x, y ∈ Ω.

In this case, L is one Lipschitz constant of u. Clearly, if u : Ω → Cd′ is
Lipschitz continuous, then for x ∈ Ω the function

u(x1, . . . , xj−1, ·, xj+1, . . . , xd) : I → Cd
′
,

j = 1, . . . , d, is Lipschitz continuous as well, where I ⊆ R denotes some
interval depending on Ω.

We will need that a Lipschitz continuous function u : Ω → Cd′ belongs
to H1(Ω,Cd′), if Ω is additionally bounded, see the next proposition.
For this let I = [a, b] ⊆ R be an interval. We recall that a Lipschitz
continuous function g : I → C is absolutely continuous and therefore in
I almost everywhere differentiable with integrable derivative g′ and with
the equation

g(b)− g(a) =
∫ b

a

g′(t) dt, (2.1)

holding, see for instance the Paragraphs 9.22 and 9.23 in [51]. Furthermore,
thanks to Rademacher’s result, see [45], we have that g′ ∈ L∞(I).

Proposition 2.3 Let Ω ⊆ Rd be open and bounded. Furthermore, let
u : Ω→ Cd′ be Lipschitz continuous. Then u ∈ H1(Ω,Cd′).
Moreover, ∂ju in the variational sense coincides almost everywhere with
the almost everywhere given partial derivative ∂ju in the classical sense.
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Proof: We only show the assertion for the scalar valued case, as then the
generalization to the vector valued case is obvious.
At first, we consider the case d ∈ N with d > 1. Let χ ∈ C∞0 (Ω). We
extend u and χ by zero to Rd. Then, by rewriting x ∈ Rd in the form
x = (x1, x

′)>, by decomposing suppχ(·, x′) in non-intersecting intervals
and by applying (2.1) together with the product rule in each interval,
which yields the integration by parts formula due to vanishing boundary
terms because of the compact support of χ contained in Ω, we obtain∫

Ω
u(x) ∂1χ(x) dx =

∫
Rd
u(x) ∂1χ(x) dx

=
∫
Rd−1

∫
R
u(t, x′) ∂1χ(t, x′) dt dx′

= −
∫
Rd−1

∫
R
∂1u(t, x′)χ(t, x′) dtdx′

= −
∫
Rd
∂1u(x)χ(x) dx = −

∫
Ω
∂1u(x)χ(x) dx.

Note that due to Rademacher’s result and due to the boundedness of Ω
there holds ∂1u ∈ L∞(Ω) ⊆ L2(Ω).
Analogously, one shows

∫
Ω u ∂jχdx = −

∫
Ω ∂juχdx for j = 2, . . . , d.

And finally, the assertion for d = 1 is shown in the same way. �

Corollary 2.4 Let Ω, Ω′ ⊆ Rd be open, Ω′ additionally be bounded, and
the function Φ̃ : Ω′ → Ω be Lipschitz continuous. Then for u ∈ C∞(Ω,Cd′)
we have v := u ◦ Φ̃ ∈ H1(Ω′,Cd′). In particular, in the case d′ = 1 its
variational gradient ∇v := (∂1v, . . . , ∂dv)> is given by

∇v = (Φ̃′)>(∇u ◦ Φ̃)

and exists almost everywhere in Ω′ in the classical sense. Here, Φ̃′ is the
Jacobian of Φ̃, see also Section 1.3.

Proof: Since v : Ω′ → Cd′ is Lipschitz continuous, the assertion follows
directly from Proposition 2.3. �

Definition 2.5 Let Ω ⊆ Rd be open.
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(a) For m ∈ N0, we define the space Hm
0 (Ω,Cd′) as the closure of

C∞0 (Ω,Cd′) in Hm(Ω,Cd′).

(b) Supposed d = 3, we define the space H0(curl,Ω) as the closure of
C∞0 (Ω,C3) in H(curl,Ω).

(c) Supposed d = 3, we define the space H0(div,Ω) as the closure of
C∞0 (Ω,C3) in H(div,Ω).

Theorem 2.6 Let Ω ⊆ Rd be a bounded open set and let m ∈ N0. Then
the embedding Hm

0 (Ω,Cd′) id
↪−→ L2(Ω,Cd′) is compact.

For a proof regarding the scalar valued case we refer to [34, Theorem 4.14].
Again, the generalization to the vector valued case is obvious.

2.1.2. Functions on Cuboids

The authors in [34] use the following periodic Sobolev spaces with their
properties to define Sobolev spaces for functions on bounded Lipschitz
domains and to derive important results for the trace and extension
operators. Furthermore, this method seems to be best suited for deriving
analogous results for the Q-periodic setting, as we will see later.

Throughout this subsection let Qd ⊆ Rd be a cuboid as given in (1.13).
Here again, d and d′ are assumed to be some natural numbers.

Definition 2.7 (a) Let s ≥ 0. The space Hs
per(Qd,Cd

′) is defined by

Hs
per(Qd,Cd

′
) :=

{
u ∈ L2(Qd,Cd

′
)
∣∣∣ ∑
µ∈Zd

(
1 + |µ|2

)s |u(µ)|2 <∞

}

with inner product

(u | v)Hsper(Qd,Cd′ ) :=
∑
µ∈Zd

(
1 + |µ|2

)s
u(µ) · v(µ)

and induced norm ‖ · ‖Hsper(Qd,Cd′ ). Here, u(µ) denote the Fourier
coefficients of u, see Section 1.3.
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(b) The space Hper(curl, Q3) is defined by

Hper(curl, Q3) :=
{
u ∈ L2(Q3,C3)

∣∣∣ ∑
µ∈Z3

(
|u(µ)|2 +

∣∣q(µ)
Q3
×u(µ)∣∣2) <∞}

with inner product

(u | v)Hper(curl,Q3) :=
∑
µ∈Z3

(
u(µ) · v(µ) +

(
q

(µ)
Q3
×u(µ)) · (q(µ)

Q3
× v(µ)

))
,

induced norm ‖ · ‖Hper(curl,Q3) and where q(µ)
Q3

is given by (1.14).

Note that Hs
per(Qd,Cd

′) and Hper(curl, Q3) are Hilbert spaces. Further-
more, there holds H0

per(Qd,Cd
′) = L2(Qd,Cd

′). Again, we will write
Hs

per(Qd) instead of Hs
per(Qd,Cd

′) if d′ = 1.

Denseness and Compactness Results. The spaces of trigonometric poly-
nomials T (Qd,Cd

′) and T (Q3,C3) are dense in the spaces Hs
per(Qd,Cd

′)
and Hper(curl, Q3), respectively, see the next proposition.

Proposition 2.8 (a) The space of trigonometric polynomials T (Qd,Cd
′)

is dense in the space Hs
per(Qd,Cd

′).

(b) The space of trigonometric polynomials T (Q3,C3) is dense in the
space Hper(curl, Q3).

Proof: (a). A proof can be found in [36], or by following the arguments
in part (b), with corresponding, quite obvious, modifications.
(b). Let u ∈ Hper(curl, Q3) with Fourier coefficients u(µ) ∈ C3, µ ∈ Z3.
For n ∈ N, we set un :=

∑
|µ|≤n u

(µ) T
(µ)
Q3
∈ T (Q3,C3). Then

‖u− un‖2
Hper(curl,Q3) =

∑
|µ|>n

(
|u(µ)|2 +

∣∣q(µ)
Q3
× u(µ)∣∣2) −→ 0, n→∞,

because of convergence of the series
∑
µ∈Z3

(
|u(µ)|2 +

∣∣q(µ)
Q3
×u(µ)

∣∣2). �

Often we will need the estimates from the following lemma.
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Lemma 2.9 For q(µ)
Qd

from (1.14) there holds

(i) ∃ c > 0 ∀µ ∈ Zd : |q(µ)
Qd
| ≤ c

√
1 + |µ|2,

(ii) ∃ c > 0 ∀µ ∈ Zd \ {0} : |q(µ)
Qd
| ≥ c

√
1 + |µ|2.

Proof: (i). Let µ ∈ Zd and recall (1.3). Then |q(µ)
Qd
|2 ≤ π2

L2 (1 + |µ|2).
(ii). Let µ ∈ Zd \ {0}. Then |q(µ)

Qd
| ≥ π

L
|µ| ≥ π

L

1√
2

√
1 + |µ|2. �

The next lemma gives a useful decomposition for the dot product defined
in (1.5).

Lemma 2.10 Let a, b ∈ C3. Moreover, let ρ ∈ C3 such that ρ · ρ = 1.
Then

a · b = (ρ · a) (ρ · b) + (ρ× a) · (ρ× b).

Proof: Using (A.1a) and (A.1b), we obtain

(ρ× a) · (ρ× b) = ρ ·
(
b× (ρ× a)

)
= ρ ·

(
(a · b)ρ− (ρ · b)a

)
= (a · b)(ρ · ρ)− (ρ · a)(ρ · b),

as asserted. �

Remark 2.11 For a, b ∈ C2 and ρ ∈ C2 with ρ · ρ = 1, we obtain from
Lemma 2.10, and with formula (1.6), that

a · b = (ρ · a) (ρ · b) + (ρ× a) (ρ× b).

Indeed, here we only have to identify vectors from C2 with vectors from
C3 whose third component is zero.

Clearly, for s > 0 the space Hs
per(Qd,Cd

′) is compactly embedded in
L2(Qd,Cd

′), see the next proposition. Unfortunately, this is not the case
for the space Hper(curl, Q3). However, we are able to derive a similar com-
pactness result for a certain – divergence free – subspace of Hper(curl, Q3)
as given in the following definition.
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Definition 2.12 Let β ∈ R3. The space Hper(curl,divβ 0, Q3) is defined
by

Hper(curl,divβ 0, Q3) :=
{
u ∈ Hper(curl, Q3)

∣∣
∀µ ∈ Z3 : (q(µ)

Q3
+ β) · u(µ) = 0

}
.

If β = 0, then the subscript β in the symbol Hper(curl,divβ 0, Q3) will be
dropped.

Proposition 2.13 (a) Let 0 ≤ t < s. Then we have that the embed-
ding Hs

per(Qd,Cd
′) id
↪−→ Ht

per(Qd,Cd
′) is compact. In particular,

H1
per(Qd,Cd

′) is compactly embedded in L2(Qd,Cd
′).

(b) The embedding Hper(curl,divβ 0, Q3) id
↪−→ L2(Q3,C3) is compact.

Proof: (a). For a proof we refer to [36, Theorem 8.3] with obvious
modifications for the cuboids considered here, and a straightforward gen-
eralization to the vector valued case.
(b). We denote the embedding from the proposition by J and define for
n ∈ N the operator Jn : Hper(curl,divβ 0, Q3)→ L2(Q3,C3) by

Jnu :=
∑
|µ|≤n

u(µ) T
(µ)
Q3
, u ∈ Hper(curl,divβ 0, Q3).

Note that Jn is compact, because of its finite dimensional range. Let
u ∈ Hper(curl,divβ 0, Q3). Then, thanks to Lemma 2.10, we have for
µ ∈ Z3, with |µ| large enough,

|u(µ)|2 = 1
|q(µ)
Q3

+ β|2

∣∣∣ (q(µ)
Q3

+ β) · u(µ)︸ ︷︷ ︸
=0

∣∣∣2 + 1
|q(µ)
Q3

+ β|2

∣∣∣(q(µ)
Q3

+ β)× u(µ)
∣∣∣2.

Moreover, we have |q(µ)
Q3

+ β| ≥ 1
2 |q

(µ)
Q3
| for such µ. Thus, together with

Lemma 2.9,

‖(Jn − id)u‖2
L2(Q3,C3) =

∑
|µ|>n

|u(µ)|2 =
∑
|µ|>n

1
|q(µ)
Q3

+ β|2

∣∣∣(q(µ)
Q3

+ β)× u(µ)
∣∣∣2
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≤ C 1
n2

∑
|µ|>n

(
|u(µ)|2 + |q(µ)

Q3
× u(µ)|2

)
≤ C 1

n2 ‖u‖
2
Hper(curl,Q3).

Hence, (Jn)n∈N converges in operator norm to J , and from this we conclude
that J is compact. �

A Useful Characterization. Now, we continue with a characterization
of the space Hm

per(Qd,Cd
′) and Hper(curl, Q3), respectively, which is more

useful to work with in some cases, in particular for the derivation of a
product rule in those spaces.

Definition 2.14 (a) For m ∈ N0, the space Hmper(Qd,Cd
′) is defined by

Hmper(Qd,Cd
′
) :=

{
u ∈ L2(Qd,Cd

′
)
∣∣∣ ∀α ∈ Nd0,with |α| ≤ m,

∃ v ∈ L2(Qd,Cd
′
)∀χ ∈ C∞per(Qd) :∫

Qd

u(x) ∂αχ(x) dx = (−1)|α|
∫
Qd

v(x)χ(x) dx
}
.

For u ∈ Hmper(Qd,Cd
′) we set for the moment ∂αperu := v, see also the

next remark. Furthermore, we equip this space with the inner product
(· | ·)Hmper(Qd,Cd′ ) and norm ‖·‖Hmper(Qd,Cd′ ) according to Definition 2.2.

(b) We define the space Hper(curl, Q3) to be

Hper(curl, Q3) :=
{
u ∈ L2(Q3,C3)

∣∣∣ ∃ v ∈ L2(Q3,C3)

∀χ ∈ C∞per(Q3,C3) :
∫
Q3

u(x) · curlχ(x) dx =
∫
Q3

v(x) · χ(x) dx
}
.

For u ∈ Hper(curl, Q3) we set for the moment curlper u := v, see
also the next remark. Furthermore, we equip this space with the
inner product (· | ·)Hper(curl,Q3) and norm ‖ · ‖Hper(curl,Q3) according
to Definition 2.2.
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For the definition of C∞per(Qd,Cd
′) see Section 1.3.

Remark 2.15 Thanks to Remark 1.1, for u from the space Hmper(Qd,Cd
′)

and Hper(curl, Q3), the element v in the definition of those spaces is unique
and coincides with ∂αu and curlu from Definition 2.1, respectively, and
therefore we will write again ∂αu instead of ∂αperu and curlu instead of
curlper u. In particular,

Hmper(Qd,Cd
′
) id
↪−→ Hm(Qd,Cd

′
) and Hper(curl, Q3) id

↪−→ H(curl, Q3).

Of course, the spaces Cnper(Qd,Cd
′) are subspaces of Hmper(Qd,Cd

′) for all
n ∈ N0 ∪ {∞} with n ≥ m. Lipschitz continuous functions are another
example for elements in H1

per(Qd,Cd
′) as shown in the next proposition,

compare also with Proposition 2.3.

Proposition 2.16 Let u : Rd → Cd′ be periodic and Lipschitz continuous.
Then u|Qd ∈ H1

per(Qd,Cd
′).

Moreover, ∂ju in the variational sense coincides almost everywhere with
the almost everywhere given partial derivative ∂ju in the classical sense.

Proof: Again, we only focus on the scalar valued case as the generalization
to the vector valued case is obvious.
We consider at first the case d > 1 and choose some χ ∈ C∞per(Qd).
Supposing that u is differentiable in x = (x1, x

′)> ∈ Qd, we apply the
product rule and obtain u(x1, x

′) ∂1χ(x1, x
′) = −χ(x1, x

′) ∂1u(x1, x
′) +

∂1(u(x1, x
′)χ(x1, x

′)). Note that by (2.1) we have∫ L1

−L1

∂1(u(t, x′)χ(t, x′)) dt

= u(L1, x
′)χ(L1, x

′)− u(−L1, x
′)χ(−L1, x

′) = 0,

because of the periodicity of the integrands. Following now the arguments
from the proof of Proposition 2.3, we obtain the assertion. �

Clearly, u from Hmper(Qd,Cd
′) and Hper(curl, Q3), and also ∂αu and curlu,

respectively, can be expanded into a Fourier series. The next lemma con-
firms the well-known and useful connection between the Fourier coefficients
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of u with ∂αu and with curlu, respectively, from the context of classical
functions. For this recall also (1.8).

Lemma 2.17 (a) Let m ∈ N0. For u ∈ Hmper(Qd,Cd
′) and α ∈ Nd0 with

|α| ≤ m there holds the following relationship between the Fourier
coefficients of u and ∂αu

(∂αu)(µ) =
(
i q(µ)
Qd

)α
u(µ), µ ∈ Zd.

(b) For u ∈ Hper(curl, Q3) there holds the following relationship between
the Fourier coefficients of u and curlu

(curlu)(µ) = i q(µ)
Q3
× u(µ), µ ∈ Z3.

Proof: (a). Let u ∈ Hmper(Qd,Cd
′) and α ∈ Nd0 with |α| ≤ m. Further-

more, let µ ∈ Zd. Then T
(−µ)
Qd

∈ C∞per(Qd) and by definition of the space
Hmper(Qd,Cd

′), together with (1.15), we obtain

(∂αu)(µ) =
∫
Qd

∂αu(x)T (−µ)
Qd

(x) dx = (−1)|α|
∫
Qd

u(x) ∂αT (−µ)
Qd

(x) dx

=
∫
Qd

u(x)
(
i q(µ)
Qd

)α
T

(−µ)
Qd

(x) dx =
(
i q(µ)
Qd

)α
u(µ).

(b). Let u ∈ Hper(curl, Q3) and µ ∈ Z3. Furthermore, let j ∈ {1, 2, 3} and
let e(j) denote the j-th unit coordinate vector in R3. Then e(j)T

(−µ)
Q3

∈
C∞per(Q3,C3) and again by the definition of the space Hper(curl, Q3), to-
gether with (1.15), we obtain

(curlu)(µ)
j =

∫
Q3

curlu(x) · e(j)T
(−µ)
Q3

(x) dx

=
∫
Q3

u(x) · curl
(
e(j)T

(−µ)
Q3

)
(x) dx

=
∫
Q3

u(x) ·
(
− i q(µ)

Q3
× e(j)

)
T

(−µ)
Q3

(x) dx

= e(j) ·
(

i q(µ)
Q3
×
∫
Q3

u(x)T (−µ)
Q3

(x) dx
)

=
(

i q(µ)
Q3
× u(µ)

)
j
,
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and the proof is complete. �

Clearly, the trigonometric polynomials from T (Qd,Cd
′) and T (Q3,C3)

are further examples for elements in Hmper(Qd,Cd
′) and Hper(curl, Q3),

respectively. Furthermore, in the next proposition we will see that in those
subspaces the corresponding norms from Definition 2.7 and Definition 2.14
are equivalent or even equal. For this, the next lemma has preliminary
character. A recall of (1.8) might be appropriate.

Lemma 2.18 For all m ∈ N0 there exists a constant c > 0 such that for
all µ ∈ Zd ∑

|α|=m

µ2α ≤ |µ|2m ≤ c
∑
|α|=m

µ2α,

where α ∈ Nd0 denotes a multi-index. Moreover, we have
1
2
(
1 + |µ|2m

)
≤
(
1 + |µ|2

)m ≤ 2m
(
1 + |µ|2m

)
, µ ∈ Zd, m ∈ N0.

Proof: The assertion for the first inequalities follows by induction with
respect to d and by an application of the binomial theorem. In fact, let
d = 1. For arbitrary m ∈ N0 we have |α| = m, if and only if α1 = m and
therefore

∑
|α|=m µ

2α = µ2α1
1 = |µ|2m, as asserted, with c = 1.

For the inductive step from d to d+ 1, we suppose that the assertion is
true for some d ∈ N. Without loss of generality we assume that m ∈ N;
otherwise if m = 0 the inequalities hold trivially. Then for µ ∈ Zd+1, and
with β ∈ N2

0, γ ∈ Nd0 and µ′ := (µ1, . . . , µd)>,∑
|α|=m

µ2α =
∑
|β|=m

∑
|γ|=β1

µ2γ1
1 · · ·µ2γd

d µ2β2
d+1

≤
∑
|β|=m

(
µ2

1 + · · ·+ µ2
d

)β1
µ2β2
d+1 =

∑
|β|=m

|µ′|2β1µ2β2
d+1

≤
(
|µ′|2 + µ2

d+1
)m = |µ|2m,

where in the second last step we have applied the binomial theorem. And
for the second inequality we obtain

|µ|2m =
(
|µ′|2 + µ2

d+1
)m =

m∑
k=0

(
m
k

)
|µ′|2kµ2(m−k)

d+1 ≤ c
∑
|β|=m

|µ′|2β1µ2β2
d+1
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≤ C
∑
|β|=m

∑
|γ|=β1

µ2γ1
1 · · ·µ2γd

d µ2β2
d+1 = C

∑
|α|=m

µ2α.

The last inequalities from the lemma are easy to show. �

Proposition 2.19 (a) Let m ∈ N0. On the space of trigonometric
polynomials T (Qd,Cd

′), the norms ‖·‖Hmper(Qd,Cd′ ) and ‖·‖Hmper(Qd,Cd′ )
are equivalent, i.e., there exist constants c1, c2 > 0 such that

c1‖u‖Hmper(Qd,Cd′ ) ≤ ‖u‖Hmper(Qd,Cd′ ) ≤ c2‖u‖Hmper(Qd,Cd′ ),

for all u ∈ T (Qd,Cd
′).

(b) On the space of trigonometric polynomials T (Q3,C3), the norms
‖ · ‖Hper(curl,Q3) and ‖ · ‖Hper(curl,Q3) coincide, i.e.,

‖u‖Hper(curl,Q3) = ‖u‖Hper(curl,Q3), u ∈ T (Q3,C3).

Proof: (a). First of all we note that for arbitrary α ∈ Nd0 with |α| ≤ m
there holds (

π

L

)2|α|
µ2α ≤ (q(µ)

Qd
)2α ≤ |q(µ)

Qd
|2|α|, µ ∈ Zd,

where for the number L we refer to (1.3). Now, let u ∈ T (Qd,Cd
′), that is,

there exists some n ∈ N such that u =
∑
|µ|≤n u

(µ) T
(µ)
Qd

. Then for arbitrary
α ∈ Nd0 with |α| ≤ m we have ‖∂αu‖2

L2(Qd,Cd′ )
=
∑
|µ|≤n

(
q

(µ)
Qd

)2α|u(µ)|2,
see also Lemma 2.17. Therefore, we obtain with the second inequality
from above, together with Lemma 2.9, on the one hand

‖u‖2
Hmper(Qd,Cd′ ) =

∑
|α|≤m

‖∂αu‖2
L2(Qd,Cd′ ) =

∑
|α|≤m

∑
|µ|≤n

(
q

(µ)
Qd

)2α|u(µ)|2

≤ c
( ∑
|α|≤m

1
) ∑
|µ|≤n

(1 + |µ|2)m|u(µ)|2 = C ‖u‖2
Hmper(Qd,Cd′ ),

and with the first inequality from above, together with Lemma 2.18, on
the other hand

‖u‖2
Hmper(Qd,Cd′ ) =

∑
|µ|≤n

(
1 + |µ|2

)m|u(µ)|2 ≤ C
∑
|µ|≤n

(
1 + |µ|2m

)
|u(µ)|2
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≤ C
∑
|µ|≤n

(
1 +

∑
|α|=m

µ2α
)
|u(µ)|2 ≤ C

∑
|µ|≤n

(
1 +

∑
|α|=m

(q(µ)
Qd

)2α
)
|u(µ)|2

(∗)
= C

(
‖u‖2

L2(Qd,Cd′ ) +
∑
|α|=m

‖∂αu‖2
L2(Qd,Cd′ )

)
≤ C ‖u‖2

Hmper(Qd,Cd′ ).

(b). Let u ∈ T (Q3,C3), that is, there exists some n ∈ N such that
u =

∑
|µ|≤n u

(µ) T
(µ)
Q3

. Then ‖ curlu‖2
L2(Q3,C3) =

∑
|µ|≤n |q

(µ)
Q3
× u(µ)|2, see

Lemma 2.17, and we obtain

‖u‖2
Hper(curl,Q3) = ‖u‖2

L2(Q3,C3) + ‖ curlu‖2
L2(Q3,C3)

=
∑
|µ|≤n

|u(µ)|2 +
∑
|µ|≤n

|q(µ)
Q3
× u(µ)|2 = ‖u‖2

Hper(curl,Q3),

and the proof is complete. �

Now, we come to the characterization for the spaces Hm
per(Qd,Cd

′) and
Hper(curl, Q3).

Theorem 2.20 (a) For m ∈ N0 we have

Hm
per(Qd,Cd

′
) = Hmper(Qd,Cd

′
)

with equivalent norms ‖ · ‖Hmper(Qd,Cd′ ) and ‖ · ‖Hmper(Qd,Cd′ ) therein.

(b) We have
Hper(curl, Q3) = Hper(curl, Q3)

with coinciding norms ‖ · ‖Hper(curl,Q3) and ‖ · ‖Hper(curl,Q3) therein.

Proof: (a). Let u ∈ Hmper(Qd,Cd
′). Then u and ∂αu belong to L2(Qd,Cd

′),
for all α ∈ Nd0 with |α| ≤ m. Therefore, we proceed as in the proof of
Proposition 2.19 to obtain the inequalities (∗) therein, where we sum
now over µ ∈ Zd, and interchange at the end the sum signs because of
convergent series

∑
µ∈Zd(q

(µ)
Qd

)2α|u(µ)|2 = ‖∂αu‖2
L2(Qd,Cd′ )

, the latter one
thanks to Parseval’s identity. This shows that u ∈ Hm

per(Qd,Cd
′) and

‖u‖Hmper(Qd,Cd′ ) ≤ c ‖u‖Hmper(Qd,Cd′ ), with c > 0 independent of u.
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For the other direction, let u ∈ Hm
per(Qd,Cd

′). Since by Proposition 2.8 the
space of trigonometric polynomials T (Qd,Cd

′) is dense in Hm
per(Qd,Cd

′),
there exists a sequence (un)n∈N in T (Qd,Cd

′) with ‖un−u‖Hmper(Qd,Cd′ ) →
0, as n → ∞. In particular, we have un → u in L2(Qd,Cd

′) as n → ∞.
Let α ∈ Nm0 with |α| ≤ m. By Proposition 2.19, (∂αun)n∈N is a Cauchy
sequence in L2(Qd,Cd

′) and therefore convergent to some v ∈ L2(Qd,Cd
′).

Now let χ ∈ C∞per(Qd). Then∫
Qd

u(x) ∂αχ(x) dx = lim
n→∞

∫
Qd

un(x) ∂αχ(x) dx

= (−1)|α| lim
n→∞

∫
Qd

∂αun(x)χ(x) dx =
∫
Qd

v(x) · χ(x) dx,

where the boundary terms on the right hand side of the second equation
vanish due to the periodicity of all integrands. Hence, there exists ∂αu = v,
and due to the choice of α we have u ∈ Hmper(Qd,Cd

′). Moreover, we have
implicitly shown that ‖un‖Hmper(Qd,Cd′ ) → ‖u‖Hmper(Qd,Cd′ ), as n → ∞.
Thus, again thanks to Proposition 2.19,

‖u‖Hmper(Qd,Cd′ ) = lim
n→∞

‖un‖Hmper(Qd,Cd′ )

≤ C lim
n→∞

‖un‖Hmper(Qd,Cd′ ) = C ‖u‖Hmper(Qd,Cd′ ).

(b). Let u ∈ Hper(curl, Q3). Then u and curlu belong to L2(Q3,C3), and
by Parsevals’s identity, together with Lemma 2.17, we have

‖u‖2
L2(Q3,C3) =

∑
µ∈Z3

|u(µ)|2 and ‖ curlu‖2
L2(Q3,C3) =

∑
µ∈Z3

|q(µ)
Q3
× u(µ)|2,

which shows that u ∈ Hper(curl, Q3).
Now let u ∈ Hper(curl, Q3). Analogous to part (a), there exists a sequence
(un)n∈N in T (Q3,C3) with ‖un − u‖Hper(curl,Q3) → 0, as n → ∞. In
particular, we have un → u in L2(Q3,C3) as n → ∞. Moreover, by
Proposition 2.19, (curlun)n∈N is a Cauchy sequence in L2(Q3,C3) and
therefore convergent to some v ∈ L2(Q3,C3). Now let χ ∈ C∞per(Q3,C3).
Then ∫

Q3

u · curlχdx = lim
n→∞

∫
Q3

un · curlχdx
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= lim
n→∞

∫
Q3

curlun · χdx =
∫
Q3

v · χdx,

where the boundary terms on the right hand side of the second equa-
tion again vanish due to the periodicity of all integrands. Hence, u ∈
Hper(curl, Q3) with curlu = v. Moreover, we have implicitly shown that
‖un‖Hper(curl,Q3) → ‖u‖Hper(curl,Q3), as n → ∞. Thus, again thanks to
Proposition 2.19,

‖u‖Hper(curl,Q3) = lim
n→∞

‖un‖Hper(curl,Q3)

= lim
n→∞

‖un‖Hper(curl,Q3) = ‖u‖Hper(curl,Q3),

and the proof is complete. �

As a first application of the previous characterization we will derive a
product rule for the spaces Hm

per(Qd,Cd
′) and Hper(curl, Q3). For this

recall (1.9).

Proposition 2.21 (a) Let m ∈ N0. If u ∈ Hm
per(Qd,Cd

′) and ψ ∈
C∞per(Qd), then the product ψ u ∈ Hm

per(Qd,Cd
′) and for α ∈ Nd0 with

|α| ≤ m there holds Leibniz’ product rule

∂α(ψ u) =
∑
β≤α

(
α
β

)
∂α−βψ ∂βu.

(b) If u ∈ Hper(curl, Q3) and ψ ∈ C∞per(Q3), then the product ψ u ∈
Hper(curl, Q3) and

curl(ψ u) = ∇ψ × u+ ψ curlu.

In particular, for fixed ψ the multiplication by ψ establishes a linear and
bounded operator in Hm

per(Qd,Cd
′) and Hper(curl, Q3), respectively.

Proof: (a). Note that Hm
per(Qd,Cd

′) = Hmper(Qd,Cd
′), see Theorem 2.20,

and that ψ and all its partial derivatives are bounded as smooth and
periodic functions. Therefore, ∂α−βψ ∂βu ∈ L2(Qd,Cd

′) for all α ∈ Nd0
with |α| ≤ m and all β ∈ Nd0 with β ≤ α. Since T (Qd,Cd

′) is dense in
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Hm
per(Qd,Cd

′) = Hmper(Qd,Cd
′) and the norms therein are equivalent, see

Proposition 2.8 and Theorem 2.20, there exists a sequence (un)n∈N in
T (Qd,Cd

′) converging to u with respect to ‖ · ‖Hmper(Qd,Cd′ ). Let α ∈ Nd0
with |α| ≤ m and let β ∈ Nd0 with β ≤ α. Then

un → u, ∂βun → ∂βu in L2(Qd,Cd
′
),

and in particular

ψ un → ψ u, ∂α−βψ ∂βun → ∂α−βψ ∂βu in L2(Qd,Cd
′
),

as n→∞. Now, let χ ∈ C∞per(Qd). Then we obtain∫
Qd

ψ u∂αχdx = lim
n→∞

∫
Qd

ψ un ∂
αχdx = (−1)|α| lim

n→∞

∫
Qd

∂α(ψ un)χdx

= (−1)|α| lim
n→∞

∫
Qd

∑
β≤α

(
α
β

)
∂α−βψ ∂βun χdx

= (−1)|α|
∫
Qd

∑
β≤α

(
α
β

)
∂α−βψ ∂βuχdx.

(b). Let χ ∈ C∞per(Q3,C3). Then ψ χ ∈ C∞per(Q3,C3) and∫
Q3

(ψ u)(x) · curlχ(x) dx =
∫
Q3

u(x) · ψ(x) curlχ(x) dx

=
∫
Q3

u(x) · curl
(
ψ(x)χ(x)

)
dx−

∫
Q3

u(x) ·
(
∇ψ(x)× χ(x)

)
dx

=
∫
Q3

curlu(x) ·
(
ψ(x)χ(x)

)
dx+

∫
Q3

(
∇ψ(x)× u(x)

)
· χ(x) dx

=
∫
Q3

(
ψ(x) curl u(x) +∇ψ(x)× u(x)

)
· χ(x) dx,

as asserted.
And finally, the linearity and boundedness of the multiplication operators
are easy to see. �
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Trace and Extension Operators. In the following considerations the
cuboids Q2 and Q3 are related to one another by

Q3 ∩
(
R2 × {0}

)
= Q2 × {0}.

While for the scalar valued case the trace space is given by H1/2
per (Q2), the

trace spaces for vector valued functions are more delicate. For a motivation
of the following definition we refer to [34].

Definition 2.22 Let s ∈ R.

(i) The space Hs
per(Div, Q2) is defined as the completion of T (Q2,C2)

with respect to the norm

‖ϕ‖Hsper(Div,Q2) :=
( ∑
µ∈Z2

(
1 + |µ|2

)s(|ϕ(µ)|2 + |q(µ)
Q2
· ϕ(µ)|2

))1/2
.

(ii) The space Hs
per(Curl, Q2) is defined as the completion of T (Q2,C2)

with respect to the norm

‖ϕ‖Hsper(Curl,Q2) :=
( ∑
µ∈Z2

(
1 + |µ|2

)s(|ϕ(µ)|2 + |q(µ)
Q2
× ϕ(µ)|2

))1/2
.

Here, q(µ)
Q2

is given by (1.14) and ϕ(µ) denote the Fourier coefficients of ϕ.
For the cross product recall (1.6).

For s < 0, the elements in Hs
per(Div, Q2) and Hs

per(Curl, Q2) do in general
not belong to L2(Q2,C2) and it is not clear in which sense for those
elements there exists a Fourier series expansion. Later in Corollary 2.34
we will see that such an expansion exists and how convergence has to be
understood.

Theorem 2.23 (a) The trace operator

γ0,per : H1
per(Q3,Cd

′
)→ H1/2

per (Q2,Cd
′
), u 7→ u|Q2×{0},
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is well-defined, linear and bounded. Furthermore, there exists a
bounded right inverse η0,per of γ0,per; that is, a linear and bounded op-
erator η0,per : H1/2

per (Q2,Cd
′)→ H1

per(Q3,Cd
′) with γ0,per◦η0,per = id.

In other words, the function u := η0,per ϕ ∈ H1
per(Q3,Cd

′) coincides
with ϕ ∈ H1/2

per (Q2,Cd
′) on Q2 × {0}.

(b) Let in addition ê := (0, 0, 1)>. Then the following assertions are
true.

(i) The trace operator

γt,per : Hper(curl, Q3)→ H−1/2
per (Div, Q2), u 7→ ê× u(·, 0),

is well-defined, linear and bounded. Furthermore, there exists a
bounded right inverse ηt,per : H−1/2

per (Div, Q2)→ Hper(curl, Q3)
of γt,per.

(ii) The trace operator

γT,per : Hper(curl, Q3)→ H−1/2
per (Curl, Q2), u 7→

(
ê× u(·, 0)

)
× ê,

is well-defined, linear and bounded. Furthermore, there exists a
bounded right inverse ηT,per : H−1/2

per (Curl, Q2)→ Hper(curl, Q3)
of γT,per.

For a proof we refer to [34, Therorem 5.7 and Theorem 5.21], with slight
modifications for the cuboids considered here. Therein, the assertions for
γ0,per and η0,per were shown for d′ = 1. Of course, for the case d′ > 1
the application of these operators has to be understood componentwise.
Moreover, we only use one symbol γ0,per and η0,per, although applications
with different d′ ∈ N simultaneously are possible. Then from the context
it should always be clear in which concrete spaces these operators are
currently working.

Lemma 2.24 Let ψ ∈ C∞per(Q3) with ψ ≡ 1 in a neighborhood of Q2 ×
{0} ⊆ Q3. Then the following assertions are true.

(a) If u ∈ H1
per(Q3,Cd

′), then γ0,per(ψ u) = γ0,per u.
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(b) If u ∈ Hper(curl, Q3), then

γt,per(ψ u) = γt,per u and γT,per(ψ u) = γT,per u.

Proof: We only show the assertion for part (b), as the argumentation for
part (a) is completely analogous.
Since u ∈ Hper(curl, Q3) and since by Proposition 2.8 the space of trigono-
metric polynomials T (Q3,C3) is dense in Hper(curl, Q3), there exists a
sequence (un)n∈N in T (Q3,C3) with un → u with respect to ‖·‖Hper(curl,Q3),
as n→∞. Then, thanks to Theorem 2.20, un → u and curlun → curlu
in L2(Q3,C3), as n→∞. Hence, by exploiting Proposition 2.21 as well,

‖ψ un − ψ u‖2
Hper(curl,Q3) = ‖ψ un − ψ u‖2

H(curl,Q3)

=
∫
Q3

|ψ(x)|2|un(x)− u(x)|2 dx+
∫
Q3

∣∣∣∇ψ(x)×
(
un(x)− u(x)

)
+ ψ(x)

(
curlun(x)− curlu(x)

)∣∣∣2 dx → 0, n→∞,

that is, ψ un → ψ u in the space Hper(curl, Q3). Note that the traces
γt,per(ψ un) and γt,per un can be evaluated pointwise on Q2 × {0}, and
therefore we have γt,per(ψ un) = γt,per un, for all n ∈ N, because ψ ≡ 1
in a neighborhood of Q2 × {0} by assumption. Moreover, by continuity
of γt,per, we obtain γt,per(ψ un) → γt,per(ψ u) and γt,per un → γt,per u, as
n→∞. Thus, γt,per(ψ u) = γt,per u.
The assertion for γT,per is shown analogously. �

As we want to transfer trace and extension results from [34] to the Q-
periodic framework (which will be introduced in Section 2.2), we need the
following observation concerning the extension operator ηt,per from the
proof of [34, Theorem 5.21]. Therein, the operator

ηt,per : H−1/2
per (Div, Q2)→ Hper(curl, Q3), ϕ→ ηt,per ϕ =: u

was constructed by taking

u(µ) := δµ̃
1 + |µ|2 (ϕ(µ̃) × a(µ)), µ ∈ Z3, (2.2)
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as Fourier coefficients for u, where ϕ(ν), ν ∈ Z2, are the coefficients of ϕ
with vanishing third component,

a(µ) :=
{

1
|µ̃|2

(
|µ|2ê− µ3µ

)
, µ̃ 6= 0,

ê, µ̃ = 0,
µ ∈ Z3, (2.3)

and

δν :=
( ∞∑
j=−∞

1
1 + |ν|2 + j2

)−1

, ν ∈ Z2.

Observation 2.25 If ϕ ∈ H−1/2
per (Div, Q2), then u := ηt,per ϕ is symmet-

ric, that is,
u = u∗(·∗) on Q3,

where the symbol “ ∗” denotes the reflection operator given by C3 3 a =
(a1, a2, a3)> 7→ a∗ = (a1, a2,−a3)> ∈ C3, see also Section 1.3.

Proof: Formally, for all x ∈ Q3 there holds

u∗(x∗) =
∑
µ∈Z3

(u(µ))∗ T (µ)
Q3

(x∗) = 1
|Q3|

∑
µ̃∈Z2

eiµ̃·x̃
( ∑
µ3∈Z

(u(µ̃,µ3))∗ ei(−µ3)x3
)
.

Therefore, the proof is complete, if we have shown that (u(µ̃,µ3))∗ =
u(µ̃,−µ3), for all µ ∈ Z3. For this, because of

(u(µ))∗ = − δµ̃
1 + |µ|2

(
(ϕ(µ̃))∗ × (a(µ))∗

)
= − δµ̃

1 + |µ|2
(
ϕ(µ̃) × (a(µ))∗

)
by (2.2), it suffices to show that −(a(µ̃,µ3))∗ = a(µ̃,−µ3) for all µ ∈ Z3. So,
let µ ∈ Z3. If µ̃ 6= 0, then by (2.3)

−(a(µ̃,µ3))∗ = − 1
|µ̃|2

(
|µ|2 ê∗ − µ3µ

∗) = − 1
|µ̃|2

 −µ3µ1
−µ3µ2
−|µ|2 + µ2

3

 = a(µ̃,−µ3).

And if µ̃ = 0, then −(a(µ̃,µ3))∗ = −ê∗ = ê = a(µ̃,−µ3). �
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Duality Results. As mentioned before, the elements in H
−1/2
per (Div, Q2)

and H
−1/2
per (Curl, Q2) do in general not belong to L2(Q2,C2). It is the

objective of the following presentation to derive a useful characterization for
those trace spaces. For this, the dual space H1/2

per (Q2,C2)∗ of H1/2
per (Q2,C2)

plays an important role.

Definition 2.26 Let s ≥ 0. We define H−sper(Qd,Cd
′) to be the dual space

of Hs
per(Qd,Cd

′) equipped with its canonical norm

‖`‖H−sper(Qd,Cd′ ) := sup
ψ∈Hsper(Qd,Cd′ )\{0}

|〈`, ψ〉|
‖ψ‖Hsper(Qd,Cd′ )

for all ` ∈ H−sper(Qd,Cd
′). Here, 〈`, ψ〉 denotes the duality pairing as

introduced in Section 1.3.

The following theorem says that the spaces Hs
per(Qd,Cd

′) can be charac-
terized by certain spaces of sequences. The case s < 0 will be the more
important one.

Definition 2.27 Let s ∈ R. We define the space CsCd′ by

CsCd′ :=
{

(c(µ))µ∈Zd ∈
(
Cd
′)Zd ∣∣∣ ∑

µ∈Zd

(
1 + |µ|2

)s |c(µ)|2 <∞

}

and equip this space with the norm

‖(c(µ))µ∈Zd‖Cs
Cd′

:=
( ∑
µ∈Zd

(
1 + |µ|2

)s |c(µ)|2
)1/2

.

For ease of notation, if d′ = 1, we will write Cs instead of CsCd′ .

Theorem 2.28 (i) For s ≥ 0 we have Hs
per(Qd,Cd

′) ∼= CsCd′ . An iso-
metric isomorphism is given by (1.17).
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(ii) For s > 0 we have H−sper(Qd,Cd
′) ∼= C−sCd′ . An isometric isomorphism

is given by

H−sper(Qd,Cd
′
) 3 ` 7→ (c(µ))µ∈Zd ∈ C−sCd′ ,

c
(µ)
j := `

(
e(j)T

(−µ)
Qd

)
, µ ∈ Zd, j = 1, . . . , d′, (2.4)

with inverse

C−sCd′ 3 (c(µ))µ∈Zd 7→ ` ∈ H−sper(Qd,Cd
′
),

`(u) :=
∑
µ∈Zd

u(µ) · c(−µ), u ∈ Hs
per(Qd,Cd

′
).

Here, T (µ)
Qd

denote the trigonometric monomials and u(µ) the Fourier
coefficients of u, see also Section 1.3, and e(j) is the j-th unit coor-
dinate vector in Rd′ .

Proof: (i). This is easy to see.
(ii). We follow the lines in the proof of [36, Theorem 8.10]. Let (c(µ))µ∈Zd
be a sequence in C−sCd′ and define ` : Hs

per(Qd,Cd
′)→ C by

`(u) :=
∑
µ∈Zd

u(µ) · c(−µ), u ∈ Hs
per(Qd,Cd

′
),

where u(µ) are the Fourier coefficients of u. Then, using the Cauchy-
Schwarz inequality, we have

|`(u)|2 ≤
∑
µ∈Zd

(1 + |µ|2)−s|c(µ)|2
∑
µ∈Zd

(1 + |µ|2)s|u(µ)|2.

Hence, ` is well-defined and bounded with

‖`‖H−sper(Qd,Cd′ ) ≤
( ∑
µ∈Zd

(1 + |µ|2)−s|c(µ)|2
)1/2

.

In particular, for n ∈ N the function un :=
∑
|µ|≤n(1 + |µ|2)−sc(−µ)T

(µ)
Qd

has norm

‖un‖2
Hsper(Qd,Cd′ ) =

d′∑
j=1
‖un,j‖2

Hsper(Qd) =
d′∑
j=1

∑
|µ|≤n

(1 + |µ|2)−s|c(−µ)
j |2
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=
∑
|µ|≤n

(1 + |µ|2)−s|c(µ)|2

and we obtain

‖`‖H−sper(Qd,Cd′ ) ≥
|`(un)|

‖un‖Hsper(Qd,Cd′ )
=
∑
|µ|≤n(1 + |µ|2)−sc(−µ) · c(−µ)(∑
|µ|≤n(1 + |µ|2)−s|c(µ)|2

)1/2

=
( ∑
|µ|≤n

(1 + |µ|2)−s|c(µ)|2
)1/2

.

Passing to limits yields ‖`‖H−sper(Qd,Cd′ ) =
(∑

µ∈Zd(1 + |µ|2)−s|c(µ)|2
)1/2

.
Hence, the mapping C−sCd′ 3 (c(µ))µ∈Zd 7→ ` ∈ H−sper(Qd,Cd

′), which we just
constructed, is well-defined, linear and isometric, and thus bounded and
injective.
To show its surjectivity, let ` ∈ H−sper(Qd,Cd

′) and define for µ ∈ Zd and
j ∈ {1, . . . , d′} the numbers c(µ)

j := `(e(j)T
(−µ)
Qd

). For n ∈ N define the
functions un as above and note that

`(un) =
∑
|µ|≤n

(1 + |µ|2)−s`
(
c(−µ)T

(µ)
Qd

)
=
∑
|µ|≤n

(1 + |µ|2)−s
( d′∑
j=1

c
(−µ)
j `(e(j)T

(µ)
Qd

)
)

=
∑
|µ|≤n

(1 + |µ|2)−s|c(µ)|2.

Hence, using the last estimate from above and passing to limits, we see
that (c(µ))µ∈Zd belongs to C−sCd′ . Now, let u ∈ Hs

per(Qd,Cd
′) and define

for n ∈ N the functions un :=
∑
|µ|≤n u

(µ)T
(µ)
Qd

. Consulting the proof
of Proposition 2.8, we know that un → u in Hs

per(Qd,Cd
′), as n → ∞.

Therefore,

`(u) = lim
n→∞

`
( ∑
|µ|≤n

u(µ)T
(µ)
Qd

)
=
∑
µ∈Zd

`(u(µ)T
(µ)
Qd

) =
∑
µ∈Zd

u(µ) · c(−µ),

where we have again used that `(u(µ)T
(µ)
Qd

) =
∑d′

j=1 u
(µ)
j `(e(j)T

(µ)
Qd

). �

Compared to [36, Theorem 8.10], the reason for the slightly different
definition of the sequence (c(µ))µ∈Zd in the last theorem is the following
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theorem. Here, in difference to [36, Theorem 8.11], we would like to
constuct an explicit embedding from L2(Qd,Cd

′) into H−sper(Qd,Cd
′).

Theorem 2.29 Let s > 0. The space L2(Qd,Cd
′) can be embedded into

H−sper(Qd,Cd
′) via the linear mapping

Cd′ : L2(Qd,Cd
′
) ↪−→ H−sper(Qd,Cd

′
), w → Cd′w := (· |w)L2(Qd,Cd′ )

(for ease of notation, if d′ = 1, then we will write  instead of Cd′ ).
Furthermore, the space Cd′

(
T (Qd,Cd

′)
)

is dense in H−sper(Qd,Cd
′). Here,

T (Qd,Cd
′) denotes the space of trigonometric polynomials, see also Sec-

tion 1.3.

Proof: We follow the lines in the proof of [36, Theorem 8.11]. Let
w ∈ L2(Qd,Cd

′) and w(µ) be the Fourier coefficients of w, for all µ ∈ Zd.
It is easy to check that (w(µ))µ∈Zd belongs to C−sCd′ . Therefore, by expanding
u ∈ Hs

per(Qd,Cd
′) into its Fourier series and substituting this series into

the formula for Cd′w, we obtain that Cd′w belongs to H−sper(Qd,Cd
′),

and thus, that Cd′ is well-defined. Its linearity is clear. And from
(Cd′w)(e(j)T

(−µ)
Qd

) = w
(µ)
j , for all j = 1, . . . , d′ and all µ ∈ Zd, we conclude

from Theorem 2.28 that Cd′ is also injective.
Let ` ∈ H−sper(Qd,Cd

′) and c
(µ)
j := `(e(j)T

(−µ)
Qd

), for all µ ∈ Zd and all j =
1, . . . , d′. For n ∈ N we define `n := Cd′un, where un :=

∑
|µ|≤n c

(µ)T
(µ)
Qd

.
Note that `n(e(j)T

(−µ)
Qd

) = c
(µ)
j for all j = 1, . . . , d′ and all |µ| ≤ n, and

zero otherwise. Hence, by Theorem 2.28,

‖`− `n‖2
H−sper(Qd,Cd′ )

=
∑
|µ|>n

(1 + |µ|2)−s|c(µ)|2 −→ 0, as n→∞,

and the proof is complete. �

Now, we have all the ingredients to prove the following theorem.

Theorem 2.30 Let s > 0. The spaces

H−sper(Div, Q2) :=
{
` ∈ H−sper(Q2,C2)

∣∣∣ for (c(µ))µ∈Z2 from (2.4) we have
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∑
µ∈Z2

(1 + |µ|2)−s
(
|c(µ)|2 + |q(µ)

Q2
· c(µ)|2

)
<∞

}
,

H−sper(Curl, Q2) :=
{
` ∈ H−sper(Q2,C2)

∣∣∣ for (c(µ))µ∈Z2 from (2.4) we have

∑
µ∈Z2

(1 + |µ|2)−s
(
|c(µ)|2 + |q(µ)

Q2
× c(µ)|2

)
<∞

}
,

endowed with the norms ‖ · ‖H−sper(Div,Q2) and ‖ · ‖H−sper(Curl,Q2) given by
the square root of the series above, are Banach spaces which contain
C2
(
T (Q2,C2)

)
as a dense subspace, respectively. Here, C2 denotes the

embedding from Theorem 2.29 and a× b := a1b2 − a2b1, for a, b ∈ C2, see
also (1.6). Furthermore,

H−sper(Div, Q2) ∼= H−sper(Div, Q2) and H−sper(Curl, Q2) ∼= H−sper(Curl, Q2).

Proof: We only show the assertions for H−sper(Div, Q2) since the argumen-
tation for H−sper(Curl, Q2) is completely analogous. To simplify notation
we will write Q instead of Q2.
(i). To show that H−sper(Div, Q) is a Banach space, we follow the lines in
the proof of [36, Theorem 8.2]. So, let (`(n))n∈N be a Cauchy sequence in
H−sper(Div, Q) with corresponding sequences (c(µ)

n )µ∈Z2 ∈ C−sC2 , n ∈ N, see
Theorem 2.28. Then to given ε > 0 there exists N(ε) ∈ N such that for all
n,m ≥ N(ε) we have ‖`(n) − `(m)‖H−sper(Div,Q) ≤ ε, which means that

∑
µ∈Z2

∣∣c(µ)
n − c(µ)

m

∣∣2 +
∣∣q(µ)
Q ·

(
c

(µ)
n − c(µ)

m

)∣∣2(
1 + |µ|2

)s ≤ ε2

for all n,m ≥ N(ε). From this we conclude that for k ∈ N

∑
|µ|≤k

∣∣c(µ)
n − c(µ)

m

∣∣2 +
∣∣q(µ)
Q ·

(
c

(µ)
n − c(µ)

m

)∣∣2(
1 + |µ|2

)s ≤ ε2
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for all n,m ≥ N(ε), which yields that for all µ ∈ Z2 the sequence
(
c

(µ)
n

)
n∈N

is a Cauchy sequence in C2 and therefore convergent to some α(µ) ∈ C2.
Passing to the limit m→∞ we obtain

∑
|µ|≤k

∣∣c(µ)
n − α(µ)

∣∣2 +
∣∣q(µ)
Q ·

(
c

(µ)
n − α(µ))∣∣2(

1 + |µ|2
)s ≤ ε2

for all k ∈ N and all n ≥ N(ε). Hence, by applying the triangle inequality
of ‖ · ‖H−sper(Div,Q2),

( ∑
|µ|≤k

|α(µ)|2 +
∣∣q(µ)
Q · α(µ)

∣∣2(
1 + |µ|2

)s
)1/2

≤

( ∑
|µ|≤k

∣∣c(µ)
n − α(µ)

∣∣2 +
∣∣q(µ)
Q ·

(
c

(µ)
n − α(µ))∣∣2(

1 + |µ|2
)s

)1/2

+
( ∑
|µ|≤k

∣∣c(µ)
n

∣∣2 +
∣∣q(µ)
Q · c(µ)

n

∣∣2(
1 + |µ|2

)s
)1/2

≤ ε+ ‖`(n)‖H−sper(Div,Q) ≤ ε+ c,

for all k ∈ N and some constant c > 0, the latter one because Cauchy se-
quences are bounded. Therefore,

∑
µ∈Z2

|α(µ)|2+|q(µ)
Q
·α(µ)|2

(1+|µ|2)s <∞. In partic-
ular, (α(µ))µ∈Z2 belongs to C−sC2 and therefore there exists ` ∈ H−sper(Q,C2)
with `(e(j)T

(−µ)
Q ) = α

(µ)
j for all µ ∈ Z2 and j = 1, 2, see Theorem 2.28.

Using the estimates from above, we conclude that ` ∈ H−sper(Div, Q) and
`(n) → ` in H−sper(Div, Q).
(ii). We show that C2

(
T (Q,C2)

)
is a dense subspace of H−sper(Div, Q) and

proceed as in the corresponding part in the proof of Theorem 2.29. So, let
` ∈ H−sper(Div, Q) be given with associated coefficients c(µ)

j = `(e(j)T
(−µ)
Q ),

for µ ∈ Z2 and j = 1, 2. For n ∈ N we define `n := C2un, where
un :=

∑
|µ|≤n c

(µ)T
(µ)
Q . Note that `n(e(j)T

(−µ)
Q ) = c

(µ)
j for j = 1, 2 and



2.1. Basic Results for Sobolev Spaces 47

all |µ| ≤ n, and zero otherwise. Therefore, by definition of the norm
‖ · ‖H−sper(Div,Q2), we obtain

‖`− `(n)‖2
H−sper(Div,Q) =

∑
|µ|>n

∣∣c(µ)
∣∣2 +

∣∣q(µ)
Q · c(µ)

∣∣2(
1 + |µ|2

)s −→ 0, as n→∞.

(iii). For the last assertion of the theorem it sufficies to show that(
T (Q,C2), ‖ · ‖H−sper(Div,Q)

) ∼= (
C2
(
T (Q,C2)

)
, ‖ · ‖H−sper(Div,Q)

)
, because

then H−sper(Div, Q) is a completion of
(
T (Q,C2), ‖ · ‖H−sper(Div,Q)

)
and two

completions of the same normed space are isometrically isomorphic.
To construct an isometric isomorphism, let u =

∑
|µ|≤n u

(µ)T
(µ)
Q belong

to T (Q,C2), we n ∈ N is some natural number. We set ` := C2u. Then
we have that `(e(j)T

(−µ)
Q ) = u

(µ)
j for j = 1, 2 and all |µ| ≤ n, and zero

otherwise. Hence,

‖`‖2
H−sper(Div,Q) =

∑
|µ|≤n

|u(µ)|2 + |q(µ)
Q · u(µ)|2(

1 + |µ|2
)s = ‖u‖2

H−sper(Div,Q),

Hence, we have shown that the just constructed linear mapping u 7→ ` is
isometric. The surjectivity of this mapping is easy to see. �

Corollary 2.31 Let s > 0. Then

H−sper(Div, Q2) ∼= C−sDiv and H−sper(Curl, Q2) ∼= C−sCurl,

where the spaces C−sDiv and C−sCurl are defined by

C−sDiv :=
{

(c(µ)) ∈
(
C2)Z2 ∣∣∣ ∑

µ∈Z2

(
1 + |µ|2

)−s(|c(µ)|2 + |q(µ)
Q2
· c(µ)|2

)
<∞

}
,

C−sCurl :=
{

(c(µ)) ∈
(
C2)Z2 ∣∣∣ ∑

µ∈Z2

(
1 + |µ|2

)−s(|c(µ)|2 + |q(µ)
Q2
×c(µ)|2

)
<∞

}

with norms ‖(c(µ))‖C−sDiv
and ‖(c(µ))‖C−sCurl

given by the square root of the
series, respectively.
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Proof: Using the isometric isomorphism from Theorem 2.28, it is easy
to see that C−sDiv

∼= H−sper(Div, Q2). In fact, given (c(µ))µ∈Z2 ∈ C−sDiv we
have obviously that this sequence belongs to C−sC2 . By the isometric
isomorphism from Theorem 2.28, the corresponding linear and bounded
functional ` ∈ H−sper(Q2,C2) satisfies `(e(j)T

(−µ)
Q2

) = c
(µ)
j , for all µ ∈ Z2 and

j = 1, 2. From this we obtain immediately that ` belongs to H−sper(Div, Q2).
Moreover, it is easy to check that this just constructed mapping C−sDiv 3
(c(µ))µ∈Z2 7→ ` ∈ H−sper(Div, Q2) is isometrically isomorphic. The analogous
result for the spaces C−sCurl and H−sper(Curl, Q2) we obtain with the same
arguments.
And finally, an application of Theorem 2.30 completes the proof. �

Corollary 2.32 Let s > 0. Then

L2(Q2,C2) ∩H−sper(Div, Q2) =
{
ϕ ∈ L2(Q2,C2)

∣∣∣
∑
µ∈Z2

(
|ϕ(µ)|2 +

(
1 + |µ|2

)−s|q(µ)
Q2
· ϕ(µ)|2

)
<∞

}
,

L2(Q2,C2) ∩H−sper(Curl, Q2) =
{
ϕ ∈ L2(Q2,C2)

∣∣∣
∑
µ∈Z2

(
|ϕ(µ)|2 +

(
1 + |µ|2

)−s|q(µ)
Q2
× ϕ(µ)|2

)
<∞

}
,

where ϕ(µ) ∈ C2, with ϕ(µ)
j =

(
ϕj |T (µ)

Q2

)
L2(Q2) for all µ ∈ Z2 and j = 1, 2,

denote the Fourier coefficients of ϕ. Furthermore,∣∣∣ (ϕ |ψ)L2(Q2,C2)

∣∣∣ ≤ c ‖ϕ‖H−1/2
per (Div,Q2) ‖ψ‖H−1/2

per (Curl,Q2)

for ϕ ∈ L2(Q2,C2) ∩H−1/2
per (Div, Q2), ψ ∈ L2(Q2,C2) ∩H−1/2

per (Curl, Q2).
Here, the constant c > 0 can be chosen as c = max

{
1,
√

2 max{L1,L2}
π

}
.

Proof: From the equalities we only show the first one since the argu-
mentation for the second one is completely analogous. The direction
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“⊇” is easy to see. For the direction “⊆” we observe that the statement
ϕ ∈ L2(Q2,C2)∩H−sper(Div, Q2) means that ` := C2ϕ ∈ H−sper(Div, Q2) and
that its associated sequence (ϕ(µ))µ∈Z2 is just the sequence of the Fourier
coefficients of ϕ, see Theorem 2.29 and Theorem 2.30. Therefore,∑

µ∈Z2

(
1 + |µ|2

)−s (|ϕ(µ)|2 + |q(µ)
Q2
· ϕ(µ)|2

)
<∞,

and together with
∑
µ∈Z2 |ϕ(µ)|2 < ∞ the proof for the inclusion “⊆” is

complete.
To show the inequality, let ϕ and ψ belong to the given intersections and
let ϕ(µ) and ψ(µ), for µ ∈ Z2, denote their Fourier coefficients, respectively.
To simplify notation, set L := max{L1, L2}, q(µ) := q

(µ)
Q2

and Q := Q2. At
first let µ ∈ Z2 \ {0}. Then

|q(µ)|2 = π2
(
µ2

1
L2

1
+ µ2

2
L2

2

)
≥ 1

2
π2

L2 2 |µ|2 ≥ 1
2
π2

L2

(
1 + |µ|2

)
.

Moreover, with q̂(µ) := 1
|q(µ)|q

(µ), we have thanks to Remark 2.11

ϕ(µ) · ψ(µ) = (q̂(µ) · ϕ(µ))(q̂(µ) · ψ(µ)) + (q̂(µ) × ϕ(µ))(q̂(µ) × ψ(µ)).

Therefore, using (ab+ cd)2 ≤ (a2 + d2)(b2 + c2) for a, b, c, d ∈ R,

|ϕ(µ) · ψ(µ)|2 ≤
(
|q̂(µ) · ϕ(µ)||ψ(µ)|+ |ϕ(µ)||q̂(µ) × ψ(µ)|

)2

=
( |q(µ) · ϕ(µ)|
|q(µ)|1/2

|ψ(µ)|
|q(µ)|1/2 + |ϕ(µ)|

|q(µ)|1/2
|q(µ) × ψ(µ)|
|q(µ)|1/2

)2

≤
( |ϕ(µ)|2

|q(µ)|
+ |q

(µ) · ϕ(µ)|2

|q(µ)|

)( |ψ(µ)|2

|q(µ)|
+ |q

(µ) × ψ(µ)|2

|q(µ)|

)
≤ 2L

2

π2
|ϕ(µ)|2 + |q(µ) · ϕ(µ)|2√

1 + |µ|2
|ψ(µ)|2 + |q(µ) × ψ(µ)|2√

1 + |µ|2
.

Note that this estimate for |ϕ(µ) · ψ(µ)|2 remains valid also for µ = 0
if we replace 2L

2

π2 by c2 with c > 0 from the corollary. Hence, by the
Cauchy-Schwarz inequality,∣∣(ϕ |ψ)L2(Q,C2)

∣∣ =
∣∣∣ ∑
µ∈Z2

ϕ(µ) · ψ(µ)
∣∣∣ ≤ c ‖ϕ‖H−1/2

per (Div,Q) ‖ψ‖H−1/2
per (Curl,Q),
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and the proof is complete. �

Thanks to the results from above, elements from the spaces H−sper(Qd,Cd
′),

H−sper(Div, Q2) and H−sper(Curl, Q2) possess a series represention as shown
in the next corollary. In particular the series representation for ϕ ∈
H
−1/2
per (Div, Q2) turns out to be helpful in connection with the explicit

formula for the Calderon operator, as we will see later. As a preparation,
we need to specify the meaning of the product of a vector α ∈ Cd′ and a
linear functional ` ∈ H−sper(Qd) which is done in the following definition.
Furthermore, at this point we would like to take the opportunity to
introduce also the complex conjugate ` of ` ∈ H−sper(Qd).

Definition 2.33 Let d′ ∈ N and s > 0.

(i) For α ∈ Cd′ and ` ∈ H−sper(Qd) we define α` ∈ H−sper(Qd,Cd
′) by

〈α`, ψ〉 :=
d′∑
j=1

αj 〈`, ψj〉, ψ ∈ Hs
per(Qd,Cd

′
).

(ii) For ` ∈ H−sper(Qd,Cd
′) its complex conjugate ` ∈ H−sper(Qd,Cd

′) is
defined by

〈`, ψ〉 := 〈`, ψ〉, ψ ∈ Hs
per(Qd,Cd

′
).

Corollary 2.34 (a) For ϕ ∈ H−sper(Qd,Cd
′) we have the unique series

representation
ϕ =

∑
µ∈Zd

ϕ(µ)(T (µ)
Qd

),

where (ϕ(µ))µ∈Zd ∈ C−sCd′ denotes the sequence from Theorem 2.28
and convergence has to be understood in H−sper(Qd,Cd

′).

(b) For ϕ ∈ H−sper(Div, Q2) and ψ ∈ H−sper(Curl, Q2) we have the unique
series representation

ϕ =
∑
µ∈Z2

ϕ(µ)(T (µ)
Q2

) and ψ =
∑
µ∈Z2

ψ(µ)(T (µ)
Q2

),
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where (ϕ(µ))µ∈Z2 ∈ C−sDiv and (ψ(µ))µ∈Z2 ∈ C−sCurl denote the se-
quences from Corollary 2.31, convergence has to be understood in
H−sper(Div, Q2) and H−sper(Curl, Q2), respectively, and where we have
identified H−sper(Div, Q2) with H−sper(Div, Q2) and H−sper(Curl, Q2) with
H−sper(Curl, Q2).

Here,  denotes the embedding from Theorem 2.29.

Proof: (a). Let ϕ ∈ H−sper(Qd,Cd
′) and (ϕ(µ))µ∈Zd ∈ C−sCd′ be its associated

sequence from Theorem 2.28. At first we show that the series on the right
hand side, that is

(∑
ϕ(µ)(T (µ)

Qd
)
)
, is convergent in H−sper(Qd,Cd

′). For
this let ψ ∈ Hs

per(Qd,Cd
′). Then, by Definition 2.33, the definition of the

embedding  from Theorem 2.29 and an application of the inequality of
Cauchy-Schwarz, we obtain for m,n ∈ N, with m > n,∣∣∣〈 ∑

n≤|µ|<m

ϕ(µ)(T (µ)
Qd

), ψ
〉∣∣∣ =

∣∣∣ ∑
n≤|µ|<m

〈
ϕ(µ)(T (µ)

Qd
), ψ
〉∣∣∣

=
∣∣∣ ∑
n≤|µ|<m

d′∑
j=1

ϕ
(µ)
j

〈
(T (µ)

Qd
), ψj

〉∣∣∣
=
∣∣∣ ∑
n≤|µ|<m

d′∑
j=1

ϕ
(µ)
j

(
ψj

∣∣∣T (−µ)
Qd

)
L2(Qd)

∣∣∣ =
∣∣∣ ∑
n≤|µ|<m

ϕ(µ) · ψ(−µ)
∣∣∣

≤
( ∑
n≤|µ|<m

(1 + |µ|2)−s|ϕ(µ)|2
)1/2 ( ∑

n≤|µ|<m

(1 + |µ|2)s|ψ(µ)|2
)1/2

≤
( ∑
n≤|µ|<m

(1 + |µ|2)−s|ϕ(µ)|2
)1/2

‖ψ‖Hsper(Qd,Cd′ ),

where ψ(µ) denote the Fourier coefficients of ψ, and thus∥∥∥ ∑
n≤|µ|<m

ϕ(µ)(T (µ)
Qd

)
∥∥∥
H−sper(Qd,Cd′ )

≤
( ∑
n≤|µ|<m

(1 + |µ|2)−s|ϕ(µ)|2
)1/2
−→ 0,

as m,n→∞, because of (ϕ(µ))µ∈Zd ∈ C−sCd′ . Therefore, Cauchy’s conver-
gence test for series in Banach spaces implies now that

(∑
ϕ(µ)(T (µ)

Qd
)
)
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converges in H−sper(Qd,Cd
′), say to ` ∈ H−sper(Qd,Cd

′).
We show that ` = ϕ. For this, thanks to the continuity of ` and ϕ, it
suffices to restrict our considerations to the subspace T (Qd,Cd

′), because
it is dense in Hs

per(Qd,Cd
′). So, let ψ =

∑
|µ|≤n ψ

(µ)T
(µ)
Qd
∈ T (Qd,Cd

′),
where n ∈ N is some natural number. Then, on the one hand, we obtain
from Theorem 2.28 that

〈ϕ,ψ〉 =
∑
|µ|≤n

ψ(µ) · ϕ(−µ),

and, on the other hand, we obtain from the definition of `, the implica-
tion (1.11), Definition 2.33 and again by the definition of the embedding 
from Theorem 2.29 that

〈`, ψ〉 = lim
m→∞

〈 ∑
|µ|≤m

ϕ(µ)(T (µ)
Qd

), ψ
〉

= lim
m→∞

∑
|µ|≤m

〈
ϕ(µ)(T (µ)

Qd
), ψ
〉

= lim
m→∞

∑
|µ|≤m

d′∑
j=1

ϕ
(µ)
j

〈
(T (µ)

Qd
), ψj

〉
= lim
m→∞

∑
|µ|≤m

ϕ(µ) · ψ(−µ)

=
∑
|µ|≤n

ψ(µ) · ϕ(−µ).

(b). Let ϕ ∈ H−sper(Div, Q2) and (ϕ(µ))µ∈Z2 ∈ C−sDiv be its associated
sequence, see Theorem 2.30 and Corollary 2.31. It is easy to check
that (ϕ(µ))µ∈Z2 belongs to C−sC2 . But now, from part (a) we know that
` :=

∑
µ∈Z2 ϕ(µ)(T (µ)

Q2
) belongs to H−sper(Q2,C2) and has to coincide with

ϕ, because also ϕ ∈ H−sper(Q2,C2), with (ϕ(µ))µ∈Z2 as its associated se-
quence, and therefore ` is just the series representation for ϕ from part (a).
The series representation for ψ ∈ H−sper(Curl, Q2) is proven completely
analogous. �

Remark 2.35 Using Corollary 2.31 together with Corollary 2.32, in the
series representation from Corollary 2.34 the coefficients ϕ(µ) and ψ(µ) are
just the Fourier coefficients of ϕ and ψ if ϕ ∈ L2(Q2,C2) ∩H−sper(Div, Q2)
and ψ ∈ L2(Q2,C2) ∩H−sper(Curl, Q2), respectively.



2.1. Basic Results for Sobolev Spaces 53

Remark 2.36 Using part (ii) from Definition 2.33 together with the defini-
tion of the sequence (c(µ))µ∈Zd from Theorem 2.28, the series representation
of the complex conjugate ` of ` ∈ H−sper(Qd,Cd

′) is given by

` =
∑
µ∈Zd

c(−µ)(T (µ)
Qd

),

where (c(µ))µ∈Zd is the associated sequence of `. Compare also with (1.16).

Multiplication Operators for the Trace Spaces. Similarly as in Propo-
sition 2.21, we want to derive multiplication operators for the trace spaces
Hs

per(Div, Q2) and Hs
per(Curl, Q2). For this purpose we make explicitly

use of the theorem of Young for series, see Theorem A.2. We will see that
this method can also be applied to the space Hs

per(Qd), where s > 0 is
now not necessarily a natural number. The results are needed later when
we will consider periodic and smooth surfaces and apply certain cut-off
functions to exploit results which hold for surfaces of bounded and smooth
domains.

Lemma 2.37 Let d ∈ N and s ≥ 0. Then the following assertions are
true.

(i) ∀µ, ν ∈ Zd :
(
1 + |µ|2

)s(1 + |µ− ν|2
)s ≥ 1

4s
(
1 + |ν|2

)s.
(ii) s > d

2 ⇒
∑
µ∈Zd

1
(1+|µ|2)s <∞.

(iii) Let τ ≥ 0. If χ ∈ Hσ
per(Qd) with σ > d

2 + 2τ , then there holds∑
µ∈Zd

(
1 + |µ|2

)τ |χ(µ)| <∞.

Proof: (i). Let µ, ν ∈ Zd. If |µ| ≤ 1
2 |ν|, then we have

(
1 + |µ|2

)s(1 + |µ− ν|2
)s ≥ (1 +

(
|ν| − |µ|

)2
)s
≥
(

1 +
( 1

2 |ν|
)2
)s

=
( 4

4 + 1
4 |ν|

2)s ≥ 1
4s
(
1 + |ν|2

)s
,
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and otherwise if |µ| > 1
2 |ν|, then we obtain(

1 + |µ|2
)s(1 + |µ− ν|2

)s ≥ (1 + 1
4 |ν|

2)s ≥ 1
4s
(
1 + |ν|2

)s
.

(ii). At first we observe that for µ ∈ Zd and n ∈ N we have

∑
|µ|∞=n

1 = (2n+ 1)d − (2n− 1)d =
d∑
k=0

(
d
k

)
(2n)d−k −

d∑
k=0

(
d
k

)
(2n)d−k(−1)k

≤ c nd−1,

with a constant c > 0 not depending on n. Therefore,

∑
µ∈Zd

1(
1 + |µ|2

)s = 1 +
∞∑
n=1

∑
|µ|∞=n

1(
1 + |µ|2

)s
≤ 1 +

∞∑
n=1

∑
|µ|∞=n

1(
1 + |µ|2∞

)s ≤ 1 +
∞∑
n=1

c nd−1(
1 + n2

)s
≤ 1 + c

∞∑
n=1

1
n2s−d+1 .

From this the assertion follows, since 2s− d+ 1 > 1 by assumption.
(iii). We note that the sequence

( 1
(1+|µ|2)σ/2−τ

)
µ∈Zd belongs to `2(Zd), see

part (ii). Therefore, by means of the inequality of Cauchy-Schwarz, we
obtain∑

µ∈Zd

(
1 + |µ|2

)τ |χ(µ)| =
∑
µ∈Zd

(
1 + |µ|2

)σ/2|χ(µ)| 1(
1 + |µ|2

)σ/2−τ

≤ C ‖χ‖Hσper(Qd) <∞,

as desired. �

Theorem 2.38 Let s ∈ R. Furthermore, let σ ∈ R, with σ > d
2 + |s|, and

let χ ∈ Hσ
per(Qd). Then the following assertions are true.

(i) For s ≥ 0 the mapping Hs
per(Qd,Cd

′) 3 ϕ 7→ χϕ ∈ Hs
per(Qd,Cd

′)
is well-defined, linear and bounded.
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(ii) For s > 0 the mapping H−sper(Qd,Cd
′) 3 ` 7→ χ` ∈ H−sper(Qd,Cd

′) is
well-defined, linear and bounded. Here, χ` is defined by

〈χ`, ψ〉 := 〈`, χψ〉, ψ ∈ Hs
per(Qd,Cd

′
).

Proof: (i). Since σ > 0, we have χ ∈ L2(Qd). Therefore, also T (−µ)
Qd

χ be-
longs to L2(Qd) for all µ ∈ Zd. Now, let ϕ ∈ Hs

per(Qd,Cd
′). Furthermore,

let µ ∈ Zd. Then∫
Qd

χϕT
(−µ)
Qd

dx =
∫
Qd

( ∑
ν∈Zd

ϕ(ν)T
(ν)
Qd

)
χT

(−µ)
Qd

dx

=
∑
ν∈Zd

ϕ(ν)
∫
Qd

χT
(−(µ−ν))
Qd

dx =
∑
ν∈Zd

ϕ(ν) χ(µ−ν) =: ψ(µ),

where we have exploited the continuity of the L2-inner product in the
second equation. Hence, ψ(µ) ∈ Cd′ is well-defined for all µ ∈ Zd. Using
now part (i) from Lemma 2.37 and Theorem A.2 (which is also true for a
convolution of a vector valued sequence with a scalar valued sequence),
we obtain∑
µ∈Zd

(
1 + |µ|2

)s|ψ(µ)|2 =
∑
µ∈Zd

∣∣∣ ∑
ν∈Zd

(
1 + |µ|2

)s/2
ϕ(ν) χ(µ−ν)

∣∣∣2
≤
∑
µ∈Zd

( ∑
ν∈Zd

(
1 + |µ|2

)s/2 |ϕ(ν)| |χ(µ−ν)|
)2

≤ C
∑
µ∈Zd

( ∑
ν∈Zd

(
1 + |ν|2

)s/2 |ϕ(ν)|
(
1 + |µ− ν|2

)s/2|χ(µ−ν)|
)2

≤ C ‖ϕ‖2
Hsper(Qd,Cd′ )

( ∑
µ∈Zd

(
1 + |µ|2

)s/2|χ(µ)|
)2
.

From this we conclude, with τ := s/2 and part (iii) of Lemma 2.37, that∑
µ∈Zd

(
1 + |µ|2

)s|ψ(µ)|2 ≤ C ‖ϕ‖2
Hsper(Qd,Cd′ ).

In particular
(
ψ(µ))

µ∈Zd ∈ `
2(Zd,Cd′) and by the definition of ψ(µ) we

have that
(
ψ(µ))

µ∈Zd are the Fourier coefficients of ψ := χϕ. Thus, in
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summary we have shown that χϕ ∈ Hs
per(Qd,Cd

′) with ‖χϕ‖Hsper(Qd,Cd′ ) ≤
C ‖ϕ‖Hsper(Qd,Cd′ ) and the constant C > 0 independent of ϕ.
(ii). Let ` ∈ H−sper(Qd,Cd

′). Furthermore, let ψ ∈ Hs
per(Qd,Cd

′). Then, by
part (i), also χψ ∈ Hs

per(Qd,Cd
′) and we obtain

|〈χ`, ψ〉| = |〈`, χψ〉| ≤ ‖`‖ ‖χψ‖Hsper(Qd,Cd′ ) ≤ C ‖`‖ ‖ψ‖Hsper(Qd,Cd′ ).

Hence, χ` ∈ H−sper(Qd,Cd
′) with ‖χ`‖ ≤ C ‖`‖. �

Remark 2.39 The requirement from Theorem 2.38 at least for part (i) is
too restrictive, see Theorems A.36 and A.41.

Theorem 2.40 Let s > 0. Furthermore, let σ > s+ 2 and χ ∈ Hσ
per(Q2).

Then the following assertions are true.

(i) The mapping H−sper(Div, Q2) 3 ` 7→ χ` ∈ H−sper(Div, Q2) is well-
defined, linear and bounded.

(ii) The mapping H−sper(Curl, Q2) 3 ` 7→ χ` ∈ H−sper(Curl, Q2) is well-
defined, linear and bounded.

For the definition of χ` see also Theorem 2.38.

Proof: (i). Let ` ∈ H−sper(Div, Q2) with coefficients (c(µ))µ∈Z2 according
to (2.4). By Theorem 2.38 we have χ` ∈ H−sper(Q2,C2) with coefficients

d
(µ)
j = 〈χ`, e(j)T

(−µ)
Q2
〉 = 〈`, χe(j)T

(−µ)
Q2
〉 =

∑
ν∈Z2

χ(ν)〈`, e(j)T
(−(µ−ν))
Q2

〉

=
∑
ν∈Z2

χ(ν)c
(µ−ν)
j =

∑
ν∈Z2

χ(µ−ν)c
(ν)
j ,

where we have made the following considerations for the third equation:
by part (a) of Proposition 2.13 we have χ ∈ Hs

per(Q2), yielding that
e(j)χ =

∑
ν∈Z2 χ(ν)e(j)T

(ν)
Q2

with convergence in Hs
per(Q2,C2) and where

χ(ν) denote the Fourier coefficients of χ; since T (−µ)
Q2

∈ C∞per(Q2), we con-
clude by the continuity of the multiplication operator with T

(−µ)
Q2

, see
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Theorem 2.38, that χe(j)T
(−µ)
Q2

=
∑
ν∈Z2 χ(ν)e(j)T

(ν)
Q2
T

(−µ)
Q2

with conver-
gence in Hs

per(Q2,C2); and finally we exploit the continuity of `.
We have to show that (d(µ))µ∈Z2 ∈ C−sDiv. For this we apply part (i) of
Lemma 2.37 and Theorem A.2 to obtain on the one hand, similarly as in
the proof of Theorem 2.38∑
µ∈Z2

(
1 + |µ|2

)−s|d(µ)|2 =
∑
µ∈Z2

∣∣∣ ∑
ν∈Z2

(
1 + |µ|2

)−s/2
c(ν)χ(µ−ν)

∣∣∣2
≤
∑
µ∈Z2

( ∑
ν∈Z2

(
1 + |µ|2

)−s/2|c(ν)| |χ(µ−ν)|
)2

≤ C
∑
µ∈Z2

( ∑
ν∈Z2

(
1 + |ν|2

)−s/2|c(ν)|
(
1 + |µ− ν|2

)s/2|χ(µ−ν)|
)2

≤ C
( ∑
µ∈Z2

(
1 + |µ|2

)−s|c(µ)|2
)( ∑

µ∈Z2

(
1 + |µ|2

)s/2|χ(µ)|
)2

From this we conclude, with τ := s/2 and part (iii) of Lemma 2.37, that∑
µ∈Z2

(
1 + |µ|2

)−s|d(µ)|2 ≤ C ‖(c(µ))µ∈Zd‖2
C−sDiv

.

Similarly, and in addition with the decomposition q(µ)
Q2

= q
(ν)
Q2

+ q
(µ−ν)
Q2

, we
obtain on the other hand∑
µ∈Z2

(
1 + |µ|2

)−s|q(µ)
Q2
· d(µ)|2 =

∑
µ∈Z2

∣∣∣ ∑
ν∈Z2

(
1 + |µ|2

)−s/2
q

(ν)
Q2
· c(ν)χ(µ−ν)

+
∑
ν∈Z2

(
1 + |µ|2

)−s/2
c(ν) · (q(µ−ν)

Q2
χ(µ−ν))

∣∣∣2
≤ 2

∑
µ∈Z2

( ∑
ν∈Z2

(
1 + |µ|2

)−s/2|q(ν)
Q2
· c(ν)| |χ(µ−ν)|

)2

+ 2
∑
µ∈Z2

( ∑
ν∈Z2

(
1 + |µ|2

)−s/2|c(ν)| |q(µ−ν)
Q2

| |χ(µ−ν)|
)2

≤ C1
∑
µ∈Z2

( ∑
ν∈Z2

(
1 + |ν|2

)−s/2|q(ν)
Q2
· c(ν)|

(
1 + |µ− ν|

)s/2|χ(µ−ν)|
)2
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+ C2
∑
µ∈Z2

( ∑
ν∈Z2

(
1 + |ν|2

)−s/2|c(ν)|
(
1 + |µ− ν|2

)(s+1)/2 |χ(µ−ν)|
)2

≤ C1

( ∑
µ∈Z2

(
1 + |µ|2

)−s|q(µ)
Q2
· c(µ)|2

)( ∑
µ∈Z2

(
1 + |µ|2

)s/2|χ(µ)|
)2

+ C2

( ∑
µ∈Z2

(
1 + |µ|2

)−s|c(µ)|2
)( ∑

µ∈Z2

(
1 + |µ|2

)(s+1)/2|χ(µ)|
)2
.

From this we conclude again, with τ := s/2 as well as τ := (s+ 1)/2 and
part (iii) of Lemma 2.37, that∑

µ∈Z2

(
1 + |µ|2

)−s|q(µ)
Q2
· d(µ)|2 ≤ C ‖(c(µ))µ∈Zd‖2

C−sDiv
.

Summing up both results yields the assertion.
(ii). This is shown completely analogous. �

2.1.3. Functions on Bounded Lipschitz Domains

In this subsection we give a brief introduction into the concepts the authors
in [34] used to work in Sobolev spaces for functions on bounded Lipschitz
domains. Since those concepts are based on results for Sobolev spaces
for functions on cuboids, it seems “natural” to pick up whose ideas for
establishing later an analogous framework for Q-periodic functions.

We start by recalling the notion of a Lipschitz domain, see also the
beginning of [34, Section 5.1].

Definition 2.41 We call an open set Ω ⊆ R3 with compact boundary ∂Ω
a Lipschitz domain, if there exists a finite number of open cylinders Uj of
the form Uj = {Rjx+ z(j) | x ∈ B2(0, αj) × (−2βj , 2βj)} with z(j) ∈ R3,
rotations Rj ∈ R3×3 and Lipschitz-continuous functions fj : B2[0, αj ]→ R
with |fj(x1, x2)| ≤ βj for all (x1, x2)> ∈ B2[0, αj ] such that ∂Ω ⊆

⋃m
j=1 Uj

and

∂Ω ∩ Uj =
{
Rj x+ z(j) | x̃ ∈ B2(0, αj), x3 = fj(x̃)

}
,

Ω ∩ Uj =
{
Rj x+ z(j) | x̃ ∈ B2(0, αj), x3 < fj(x̃)

}
,
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Uj \ Ω =
{
Rj x+ z(j) | x̃ ∈ B2(0, αj), x3 > fj(x̃)

}
.

Let Ω ⊆ R3 be a Lipschitz domain. We call {(Uj , fj) | j = 1, . . . ,m} a
local coordinate system of ∂Ω. Without loss of generality we assume that
βj ≥ αj . Then we introduce the mappings

Ψ̃j(x) := Rj

 x1
x2

fj(x̃) + x3

+ z(j), x ∈ B3(0, αj),

and their restrictions Ψj to B2(0, αj), that is,

Ψj(x) := Rj

 x1
x2
fj(x)

+ z(j), x ∈ B2(0, αj).

Thanks to Rademacher’s result, see [45], we have that fj is differentiable
almost everywhere on B2[0, αj ] and that its gradient is essentially bounded
by the Lipschitz constant of fj . Therefore, Ψj is differentiable almost
everywhere on B2(0, αj) and the surface patch ∂Ω∩Uj can be parametrized
by y = Ψj(x) for x ∈ B2(0, αj), with outward pointing normal unit vector
n(y) at a.a. y = Ψj(x) given by

n(y) = 1
ρj(x)

(
∂Ψj

∂x1
(x)× ∂Ψj

∂x2
(x)
)
,

where
ρj(x) :=

∣∣∣∣∂Ψj

∂x1
(x)× ∂Ψj

∂x2
(x)
∣∣∣∣ =

√
1 + |∇fj(x)|2.

We set U ′j = Ψ̃j(B3(0, αj)). Then ∂Ω ⊆
⋃m
j=1 U

′
j , B3(0, αj)∩ (R2×{0}) =

B2(0, αj)× {0}, and

∂Ω ∩ U ′j = {Ψ̃j(x) | x ∈ B3(0, αj), x3 = 0} = {Ψj(x) | x ∈ B2(0, αj)},
Ω ∩ U ′j = {Ψ̃j(x) | x ∈ B3(0, αj), x3 < 0},
U ′j \ Ω = {Ψ̃j(x) | x ∈ B3(0, αj), x3 > 0}.

Note that the Jacobian Ψ̃′j(x) ∈ R3×3 is given by

Ψ̃′j(x) = Rj

 1 0 0
0 1 0

∂fj
∂x1

(x̃) ∂fj
∂x2

(x̃) 1

 , for a.a. x ∈ B3(0, αj).
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Hence, these Jacobians are regular with constant determinant det Ψ̃′j(x) = 1
and Ψ̃j are isomorphisms from B3(0, αj) to U ′j for every j = 1, . . . ,m. For
the case of vector valued functions, we will also need

Fj(x) :=
[
∂Ψj

∂x1
(x)
∣∣∣∣∂Ψj

∂x2
(x)
∣∣∣∣∂Ψj

∂x1
(x)× ∂Ψj

∂x2
(x)
]
, for a.a. x ∈ B2(0, αj).

We recall the notion of a partition of unity, see also [34, Section A.3] and
references therein. Here, the cut-off functions are chosen such that their
square roots are smooth functions as well.

Theorem 2.42 Let d ∈ N and K ⊆ Rd be compact. For every finite
family {Oj | j = 1, . . . ,m} of open sets with K ⊆

⋃m
j=1 Oj there exist

χj ∈ C∞(Rd) with supp(χj) ⊆ Oj, j = 1, . . . ,m, and
∑m
j=1 χj(x) = 1 for

all x ∈ K. We call the family {(Oj , χj) | j = 1, . . . ,m} a partition of unity
on K.
Here, the cut-off functions χj can be chosen such that √χj ∈ C∞(Rd).

Proof: We refer to the reference from above for the existence of a partition
of unity {(Oj , χ̃j) | j = 1, . . . ,m} on K. We set

η =
m∑
j=1

χ̃2
j + (1−

m∑
j=1

χ̃j)2 on Rd.

Then η > 0 on Rd and η =
∑m
j=1 χ̃

2
j on K, which can be easily verified.

Hence, χj := χ̃2
j/η form also a partition of unity on K with √χj =

χ̃j/
√
η ∈ C∞(Rd). �

Assumption 2.43 Let Ω ⊆ R3 be a Lipschitz domain with corresponding
local coordinate system {(Uj , fj) | j = 1, . . . ,m}, corresponding mappings
Ψ̃j from B3(0, αj) to U ′j and their restrictions Ψj from B2(0, αj) to U ′j∩∂Ω.
Furthermore, let {(U ′j , χj) | j = 1, . . . ,m} be a partition of unity on ∂Ω
according to Theorem 2.42. And finally, let Qd :=×d

j=1(−Lj , Lj), d = 2, 3,
where we assume that Lj > 0, j = 1, . . . , 3, is chosen so big that all of the
balls B3(0, αj) are contained in Q3.
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Together with a partition of unity, the parametrizations Ψ̃j allow us to
transfer the concept of periodic Sobolev spaces on two-dimensional cuboids
to Sobolev spaces for functions on the boundary ∂Ω of Ω. While for
the scalar valued case this procedure is straightforward, for the vector
valued case some modifications are necessary to make the transformation
curl-preserving, see Section 2.3 for details. Nevertheless, we would like
already here to state an important property of Lipschitz continuous func-
tions, which will later turn out as a crucial part of this curl-preserving
transformation.

Proposition 2.44 Let Ω ⊆ R3 be a bounded Lipschitz domain and let
u, v : Ω → C be Lipschitz continuous. Then u∇v ∈ H(curl,Ω) with
variational curl given by

curl(u∇v) = ∇u×∇v.

In particular, curl(u∇v) exists almost everywhere on Ω as a classical
function.

Proof: First of all, thanks to Rademacher’s result, we have that ∇u and
∇v belong to L∞(Ω,C3), which implies that ∇u×∇v ∈ L∞(Ω,C3). And,
since Ω is bounded, we have L∞(Ω,C3) ⊆ L2(Ω,C3).
Moreover, due to Proposition 2.3, we know that u, v ∈ H1(Ω). Therefore,
by Theorem 2.46, we can choose a sequence (un)n∈N in C∞(Ω) such that
un → u in H1(Ω), as n → ∞. In particular, un → u and ∇un → ∇u in
L2(Ω) and L2(Ω,C3), as n→∞, respectively.
Now let χ ∈ C∞0 (Ω,C3). Note that for all n ∈ N the functions [curl(unχ)]j ,
j = 1, 2, 3, belong to C∞0 (Ω) and therefore, by the definition of the
variational derivative,∫

Ω
∇v · curl(unχ) dx = −

∫
Ω
v div curl(unχ)︸ ︷︷ ︸

=0

dx = 0.

Then, with the considerations above,∫
Ω

(u∇v) · curlχdx = lim
n→∞

∫
Ω

(un∇v) · curlχdx

= lim
n→∞

∫
Ω
∇v · (un curlχ) dx
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= lim
n→∞

(∫
Ω
∇v · curl(unχ) dx−

∫
Ω
∇v · (∇un × χ) dx

)
= lim
n→∞

∫
Ω

(∇un ×∇v) · χdx =
∫

Ω
(∇u×∇v) · χdx,

and the proof is complete. �

Let Ω ⊆ R3 be given as in Assumption 2.43 and let d′ ∈ N. The space
L2(∂Ω,Cd′) of square integrable functions on the surface ∂Ω of Ω can be
characterized by ϕ ∈ L2(∂Ω,Cd′), if and only if ϕ̃j ∈ L2(Q2,Cd

′) for all
j = 1, . . . ,m, where for j = 1, . . . ,m the functions ϕ̃j are given by

ϕ̃j(x) :=
{√

χj
(
Ψj(x)

)
ϕ
(
Ψj(x)

)
, x ∈ B2(0, αj),

0, x ∈ Q2 \ B2(0, αj).
(2.5)

Furthermore, we define the subspaces of L2(∂Ω,C3) and L2(Q2,C3) of
tangential vector fields by

L2
t (∂Ω) :=

{
ϕ ∈ L2(∂Ω,C3) | n(y) · ϕ(y) = 0 for a.a. y ∈ ∂Ω

}
,

L2
t (Q2) :=

{
u ∈ L2(Q2,C3) | u3(x) = 0 for a.a. x ∈ Q2

}
,

respectively. Again, we will mostly suppress the symbol for the co-domain
in L2(∂Ω,Cd′) if we consider only scalar valued functions.

Definition 2.45 Let Ω ⊆ R3 be given as in Assumption 2.43.

(a) We define the space H1/2(∂Ω,Cd′) by

H1/2(∂Ω,Cd
′
) :=

{
ϕ ∈ L2(∂Ω,Cd

′
)
∣∣ ∀j ∈ {1, . . . ,m} :

ϕ̃j ∈ H1/2
per (Q2,Cd

′
)
}

with norm

‖ϕ‖H1/2(∂Ω,Cd′ ) :=
(

m∑
j=1
‖ϕ̃j‖2

H
1/2
per (Q2,Cd′ )

)1/2

,

where for j = 1, . . . ,m the functions ϕ̃j are given by (2.5).
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(b) We define the spaces H−1/2(Div, ∂Ω) and H−1/2(Curl, ∂Ω) as the
completion of{

ϕ ∈ L2
t (∂Ω) | ϕ̃tj ∈ H−1/2

per (Div, Q2), j = 1, . . . ,m
}
,{

ϕ ∈ L2
t (∂Ω) | ϕ̃Tj ∈ H−1/2

per (Curl, Q2), j = 1, . . . ,m
}
,

with respect to the norms

‖ϕ‖H−1/2(Div,∂Ω) :=
(

m∑
j=1
‖ϕ̃tj‖H−1/2

per (Div,Q2)

)1/2

,

‖ϕ‖H−1/2(Curl,∂Ω) :=
(

m∑
j=1
‖ϕ̃Tj ‖H−1/2

per (Curl,Q2)

)1/2

,

where

ϕ̃tj(x) := ρj(x)
√
χj
(
Ψj(x)

)
F−1
j (x)ϕ

(
Ψj(x)

)
,

ϕ̃Tj (x) :=
√
χj
(
Ψj(x)

)
F>j (x)ϕ

(
Ψj(x)

)
,

for a.a. x ∈ B2(0, αj) and extended by zero into Q2, respectively.

We remark that the spaces from Definition 2.45 do not depend on the local
coordinate system and on the partition of unity, see [34, Corollary 5.15].

Now, we come to the trace operators. They are defined by continuous
extension which is possible thanks to the following denseness result.

Theorem 2.46 Let Ω ⊆ R3 be given as in Assumption 2.43 and addition-
ally be bounded. Then the following assertions are true.

(a) The space C∞(Ω,Cd′) is dense in Hm(Ω,Cd′).

(b) The space C∞(Ω,C3) is dense in H(curl,Ω).

For a proof we refer to [34, Theorem 5.3 and Theorem 5.19]. Though
therein is only shown that C∞(Ω) is dense in H1(Ω), the idea can be
applied with slight adaptions to the spaces Hm(Ω) for m ∈ N and m > 1
as well, see also Theorem 2.93. And again, the generalization to the case
d′ > 1 is obvious.
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Corollary 2.47 Let Ω ⊆ R3 be given as in Assumption 2.43 and addi-
tionally be bounded. Furthermore, let m,n ∈ N with m > n. Then

Hm(Ω,Cd
′
) id
↪−→ Hn(Ω,Cd

′
),

with Hm(Ω,Cd′) being dense in Hn(Ω,Cd′).

Proof: This follows immediately from the definition of Hm(Ω,Cd′) and
Theorem 2.46. �

Theorem 2.48 Let Ω ⊆ R3 be given as in Assumption 2.43 and addition-
ally be bounded.

(a) The trace operator

γ0 : C∞(Ω,Cd
′
)→ H1/2(∂Ω,Cd

′
), u→ u|∂Ω,

has a bounded extension from H1(Ω,Cd′) to H1/2(∂Ω,Cd′), which we
also denote by γ0. Furthermore, there exists a bounded right inverse
η0 : H1/2(∂Ω,Cd′)→ H1(Ω,Cd′) of γ0.

(b) The following assertions are true.

(i) The trace operator

γt : C∞(Ω,C3)→ H−1/2(Div, ∂Ω), u→ n× u|∂Ω,

has a bounded extension from H(curl,Ω) to H−1/2(Div, ∂Ω),
which we also denote by γt. Furthermore, there exists a bounded
right inverse ηt : H−1/2(Div, ∂Ω)→ H(curl,Ω) of γt.

(ii) The trace operator

γT : C∞(Ω,C3)→ H−1/2(Curl, ∂Ω), u→ (n× u|∂Ω)× n,

has a bounded extension from H(curl,Ω) to H−1/2(Curl, ∂Ω),
which we also denote by γT . Furthermore, there exists a bounded
right inverse ηT : H−1/2(Curl, ∂Ω)→ H(curl,Ω) of γT .

For a proof we refer to [34, Theorem 5.10 and Theorem 5.24], with similar
remarks as after Theorem 2.23.
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Corollary 2.49 Let Ω ⊆ R3 be a bounded Lipschitz domain, with charac-
teristic quantities as in Assumption 2.43. Then the following assertions
are true.

(a) The space

D0(∂Ω,Cd
′
) :=

{
u|∂Ω

∣∣ u ∈ C∞(Ω,Cd
′
)
}

is dense in H1/2(∂Ω,Cd′).

(b) The spaces

Dt(∂Ω,C3) :=
{

n× u|∂Ω
∣∣ u ∈ C∞(Ω,C3)

}
,

DT (∂Ω,C3) :=
{

(n× u|∂Ω)× n
∣∣ u ∈ C∞(Ω,C3)

}
are dense in H−1/2(Div, ∂Ω) and H−1/2(Curl, ∂Ω), respectively.

For a proof we refer to the proof of Corollary 2.108 which is very similar.

Moreover, further important results, such as compact embeddings, charac-
terizations for the kernels of the trace operators, Green’s formula and its
consequences, can be found in [34, Section 5.1].

We close this section by pointing out mollifiers as a key tool when working
in Sobolev spaces. In particular they are needed to prove the denseness
results from above. Since we intend to derive analogous results for Q-
periodic Sobolev spaces (see Section 2.2), we would like to take a closer
look at this tool. For a construction of such mollifiers, we follow [34] and
consider χ : R → R defined by χ(ξ) := e−1/ξ for ξ > 0 and by χ(ξ) := 0
for ξ ≤ 0. Then we set

φ(ξ) := C
χ(1− ξ2)

χ(1− ξ2) + χ(ξ2 − 1/4) , ξ ∈ R,

with C > 0 chosen such that
∫ 1

0 φ(ξ2) ξ2 dξ = 1/(4π), and define for
δ > 0

φδ(x) := 1
δ3 φ

(
1
δ2 |x|

2
)
, x ∈ R3. (2.6)

Then φδ ∈ C∞0 (R3) with supp(φδ) ⊆ B3[0, δ] and
∫
R3 φδ(x) dx = 1.
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Theorem 2.50 Let δ > 0 and a ∈ R3. For u ∈ L2(R3) set

uδa(x) :=
∫
R3
u(y)φδ(x+ δa− y) dy, x ∈ R3.

Then the following statements are true:

(i) uδa ∈ C∞(R3) ∩L2(R3). Moreover, if K ⊆ R3 is compact and if u is
zero outside of K, then supp(uδa) ⊆ K − {δa}+ B3[0, δ].

(ii) ‖uδa − u‖L2(R3) → 0, as δ → 0.

For a proof, we refer to [34, Theorem 4.7].

2.1.4. Functions on Bounded and Smooth Domains

Our numerical scheme for solving electromagnetic scattering problems
on biperiodic surfaces is based on integral equation methods where the
solution is sought in form of a potential ansatz with an unknown density.
To ensure solvability of those equations, we have to impose stronger
requirements on the regularity of the surface, since a key ingredient will
be [21, Lemma 11]. It is the objective of this subsection to establish
the connection between the setting used in [21] and the setting we have
introduced in Subsection 2.1.3.

Definition 2.51 We call an open set Ω ⊆ R3 with compact boundary
∂Ω a smooth domain, if the same statements from Definition 2.41 hold,
with the difference that instead of Lipschitz continuity we require now the
functions fj ∈ C∞(B2[0, αj ]).

Of course, smooth domains are in particular Lipschitz domains and all
results obtained so far for Lipschitz domains carry over.

Let Ω ⊆ R3 be a smooth domain. We introduce the same quantities as in
the subsequent considerations of Definition 2.41 and observe that now the
mappings Ψ̃j , Ψj , ρj and Fj are smooth. Recalling also Theorem 2.42, we
fix those quantities, associated with Ω, by the following assumption, see
also Assumption 2.43.



2.1. Basic Results for Sobolev Spaces 67

Assumption 2.52 Let Ω ⊆ R3 be a smooth domain with corresponding
local coordinate system {(Uj , fj) | j = 1, . . . ,m}, corresponding mappings
Ψ̃j from B3(0, αj) to U ′j and their restrictions Ψj from B2(0, αj) to U ′j∩∂Ω.
Furthermore, let {(U ′j , χj) | j = 1, . . . ,m} be a partition of unity on ∂Ω
according to Theorem 2.42. And finally, let Qd :=×d

j=1(−Lj , Lj), d = 2, 3,
where we assume that Lj > 0, j = 1, . . . , 3, is chosen so big that all of the
balls B3(0, αj) are contained in Q3.

Let Ω ⊆ R3 be a smooth domain with characteristic quantities as in
Assumption 2.52. For m ∈ N0 and d′ ∈ N we define

Cm
(
∂Ω,Cd

′)
:=
{
ϕ ∈ C

(
∂Ω,Cd

′) ∣∣ ∀j ∈ {1, . . . ,m} :

(χjϕ) ◦Ψj ∈ Cm
(
B2(0, αj),Cd

′)}
and the corresponding space of smooth functions

C∞
(
∂Ω,Cd

′)
:=

∞⋂
k=0

Ck
(
∂Ω,Cd

′)
.

Moreover, we define the spaces H−1/2(Div, ∂Ω) and H−1/2(Curl, ∂Ω) as
in Definition 2.45. Concerning the spaces H1/2(∂Ω,Cd′) we allow now
more regularity, see the next definition.

Definition 2.53 Let Ω ⊆ R3 be a smooth domain, with characteristic
quantities as in Assumption 2.52, and let d′ ∈ N. For s ≥ 0 we define the
space Hs(∂Ω,Cd′) by

Hs(∂Ω,Cd
′
) :=

{
ϕ ∈ L2(∂Ω,Cd

′
)
∣∣ ∀j ∈ {1, . . . ,m} : ϕ̃j ∈ Hs

per(Q2,Cd
′
)
}

with norm

‖ϕ‖Hs(∂Ω,Cd′ ) :=
(

m∑
j=1
‖ϕ̃j‖2

Hsper(Q2,Cd′ )

)1/2

,

where for j = 1, . . . ,m the functions ϕ̃j are given by (2.5).
For s > 0 we define H−s(∂Ω,Cd′) to be the dual space of Hs(∂Ω,Cd′)
equipped with its canonical norm

‖`‖H−s(∂Ω,Cd′ ) := sup
ψ∈Hs(∂Ω,Cd′ )\{0}

|〈`, ψ〉s,∂Ω|
‖ψ‖Hs(∂Ω,Cd′ )
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for all ` ∈ H−s(∂Ω,Cd′). Here, 〈·, ·〉s,∂Ω denotes the duality pairing as
introduced in Section 1.3, and with index “s, ∂Ω” to make them distinguish-
able.
For s ∈ R we define the spaces of tangential vector fields by

Hs
t (∂Ω) :=

{
ϕ ∈ Hs(∂Ω,C3)

∣∣ ϕ · n = 0
}
,

where for s > 0 and ` ∈ H−s(∂Ω,C3) the product ` · n ∈ H−s(∂Ω) is
defined by

〈` · n, ψ〉s,∂Ω := 〈`, ψn〉s,∂Ω, ψ ∈ Hs(∂Ω).

Note that for s > 0 and ψ ∈ Hs(∂Ω) the product ψn is well-defined by
Theorem 2.55, as the normal vector n is a smooth function.

Proposition 2.54 Let s ∈ R. Then the following assertions are true.

(i) The space D0(∂Ω,Cd′) is dense in Hs(∂Ω,Cd′).

(ii) If σ ∈ R, with σ < s, then the space Hs(∂Ω,Cd′) is compactly
embedded into Hσ(∂Ω,Cd′).

(iii) If σ ∈ R, with σ < s, then the space Hs
t (∂Ω) is embedded into

Hσ
t (∂Ω).

Proof: (i) and (ii). For the case s ≥ 0, the first assertion follows from the
definition of the space Hs(∂Ω,Cd′), the smooth parametrization Ψ and
the fact that the trigonometric polynomials are dense in Hs

per(Q2,Cd
′),

see Proposition 2.8. And for the case 0 ≤ t < s, the second assertions
is shown similarly as in the proof of [34, Corollary 5.9] and by means of
Proposition 2.13. Note that in the sense of Gelfand triples we have

Hs ı2
↪−→ Ht ı1

↪−→ L2 ı∗1
↪−→ H−t

ı∗2
↪−→ H−s,

where ı∗j denotes the adjoint operator of the embedding ıj , which is, by
the denseness property of ıj , thus itself injective and has, by applying
the same argument to ı∗j and ı∗∗j = ıj (the latter equality holds thanks
to the reflexibility of Hilbert spaces), dense range as well. With these
observations we have shown the assertion also for the remaining cases, if
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we take additionally into account that for compact ıj also ı∗j is compact.
For details relating to properties of Gelfand triples we refer to [53].
(iii). The assertions follows from part (ii) and the definition of the dot
product. �

Multiplication Operators for the Trace Spaces. For Lipschitz domains
the spaces Cm(∂Ω,Cd′) are only well-defined for the case m = 0. Thus,
consulting Theorem 2.40, the regularity of χ ∈ C(∂Ω,Cd′) is too less to
define a multiplication operator in H1/2(∂Ω,Cd′), H−1/2(Div, ∂Ω) and
H−1/2(Curl, ∂Ω), because (χjχ) ◦ Ψj is only Lipschitz continuous and
therefore only in H1(B2(0, αj),Cd

′), see Proposition 2.3. The situation
changes if we consider smooth domains as in this subsection.

In the following presentation we assume Ω ⊆ R3 to be a bounded and
smooth domain.

Theorem 2.55 Let χ ∈ C∞(∂Ω). Then the following assertions are true.

(a) For s ∈ R the mapping Hs(∂Ω,Cd′) 3 ϕ 7→ χϕ ∈ Hs(∂Ω,Cd′) is
well-defined, linear and bounded.

(b) (i) The mapping Dt(∂Ω,C3) 3 ϕ 7→ χϕ ∈ H−1/2(Div, ∂Ω) is well-
defined, linear and bounded and can be continuously extended to
a linear and bounded operator from H−1/2(Div, ∂Ω) into itself.

(ii) The mapping DT (∂Ω,C3) 3 ϕ 7→ χϕ ∈ H−1/2(Curl, ∂Ω)
is well-defined, linear and bounded and can be continuously
extended to a linear and bounded operator from H−1/2(Curl, ∂Ω)
into itself.

For a proof we refer to the proof of Theorem 2.132, which is very similar.

An Alternative Approach. To introduce the setting of [21] for smooth sur-
faces, we need some preparation. Recall the trace operator γ0 : H1(Ω)→
H1/2(∂Ω) from Theorem 2.48, which is also well-defined for the domain Ω
considered here, and define for m, d′ ∈ N

H̃m− 1
2
(
∂Ω,Cd

′)
:=
{
ϕ ∈ L2(∂Ω,Cd

′) ∣∣ ∃u ∈ Hm
(
Ω,Cd

′)
: ϕ = γ0u

}
,
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equipped with the norm

‖ϕ‖
H̃m−

1
2 (∂Ω,Cd′ )

:= inf
{
‖u‖Hm(Ω,Cd′ )

∣∣ u ∈ Hm(Ω,Cd
′
), γ0u = ϕ

}
,

and let H̃−m+ 1
2 (∂Ω) be the dual space of H̃m− 1

2 (∂Ω,Cd′) with respect
to L2(∂Ω,Cd′) as pivot space, see also [42, page 44]. The corresponding
duality pairings will now be denoted by 〈·, ·〉∼

m− 1
2 ,∂Ω.

Proposition 2.56 Let d′ ∈ N and m ∈ Z. Then the following assertions
are true.

(i) H1/2(∂Ω,Cd′) ' H̃1/2(∂Ω,Cd′) with both sets being equal. In partic-
ular, H−1/2(∂Ω,Cd′) ' H̃−1/2(∂Ω,Cd′)

(ii) H̃m+ 1
2 (∂Ω,Cd′) id

↪−→ H̃m− 1
2 (∂Ω,Cd′) with H̃m+ 1

2 (∂Ω,Cd′) being
dense in H̃m− 1

2 (∂Ω,Cd′).

Proof: (i). Let ϕ ∈ H̃1/2(∂Ω,Cd′). Then there exists u ∈ H1(Ω,Cd′)
such that ϕ = γ0u ∈ H1/2(∂Ω,Cd′). Moreover, let ũ ∈ H1(Ω,Cd′) with
γ0ũ = ϕ. Then ‖ϕ‖H1/2(∂Ω,Cd′ ) ≤ ‖γ0‖ ‖ũ‖H1(Ω,Cd′ ), which implies that

‖ϕ‖H1/2(∂Ω,Cd′ )

‖γ0‖
≤ inf

{
‖ũ‖H1(Ω,Cd′ )

∣∣ ũ ∈ H1(Ω,Cd
′
), γ0ũ = ϕ

}
,

meaning that ‖ϕ‖H1/2(∂Ω,Cd′ ) ≤ ‖γ0‖ ‖ϕ‖H̃1/2(∂Ω,Cd′ ).
Conversely, let ϕ ∈ H1/2(∂Ω,Cd′). Then η0ϕ =: u ∈ H1(Ω,Cd′) with
γ0u = ϕ; here, η0 denotes the extension operator from Theorem 2.48.
Hence, ϕ ∈ H̃1/2(∂Ω,Cd′). Moreover,

‖ϕ‖H̃1/2(∂Ω,Cd′ ) = inf
{
‖ũ‖H1(Ω,Cd′ )

∣∣ ũ ∈ H1(Ω,Cd
′
), γ0ũ = ϕ

}
≤ ‖η0ϕ‖H1(Ω,Cd′ ) ≤ ‖η0‖ ‖ϕ‖H1/2(∂Ω,Cd′ ).

To show that also the corresponding dual spaces are isomorphic, we recall
that in the Gelfand triple setting, as in the proof of Proposition 2.54, the
space H−1/2 can be considered as the completion of L2 with respect to
the norm

‖ϕ‖− 1
2

:= sup
0 6=ψ∈H1/2

| (ϕ | ı1ψ)L2
|

‖ψ‖H1/2
, ϕ ∈ L2,
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see again [53] for details. And analogous, the space H̃−1/2 can be consid-
ered as the completion of L2 with respect to the norm ‖ · ‖∼− 1

2
, which is

correspondingly defined and equivalent to ‖ · ‖− 1
2
. Since two completions

of a normed space with respect to two equivalent norms are isomorphic,
see Proposition A.5, the proof for part (i) is complete.
(ii). We start with the case m ∈ N. Let ϕ ∈ H̃m+ 1

2 (∂Ω,Cd′). Then
there exists u ∈ Hm+1(Ω,Cd′) such that γ0u = ϕ. By Corollary 2.47, we
have also u ∈ Hm(Ω,Cd′), which yields that ϕ = γ0u ∈ H̃m− 1

2 (Ω,Cd′).
Observing that the space {u ∈ Hm+1(Ω,Cd′) | γ0u = ϕ} is a sub-
space of the space {u ∈ Hm(Ω,Cd′) | γ0u = ϕ} and that the estimate
‖u‖Hm(Ω,Cd′ ) ≤ ‖u‖Hm+1(Ω,Cd′ ) holds for all u ∈ Hm+1(Ω,Cd′), we see
that ‖ϕ‖

H̃m−
1
2 (∂Ω,Cd′ )

is a lower bound of the set {‖u‖Hm+1(Ω,Cd′ ) | u ∈

Hm+1(Ω,Cd′), γ0u = ϕ} and therefore

‖ϕ‖
H̃m−

1
2 (∂Ω,Cd′ )

≤ ‖ϕ‖
H̃m+ 1

2 (∂Ω,Cd′ )
,

which proves the statement for the embedding.
To show the denseness, let ϕ ∈ H̃m− 1

2 (∂Ω,Cd′). Then there exists
u ∈ Hm(Ω,Cd′) such that γ0u = ϕ. Moreover, by Corollary 2.47, there
exists a sequence (un)n∈N in Hm+1(Ω,Cd′) converging to u in Hm(Ω,Cd′).
Consider ϕn := γ0un ∈ H̃m+ 1

2 (∂Ω,Cd′) ⊆ H̃m− 1
2 (∂Ω,Cd′), n ∈ N.

Then

‖ϕn − ϕ‖
H̃m−

1
2 (∂Ω,Cd′ )

= inf
{
‖v‖Hm(Ω,Cd′ )

∣∣ v ∈ Hm(Ω,Cd
′
), γ0v = ϕn − ϕ

}
≤ ‖un − u‖Hm(Ω,Cd′ ) −→ 0, n→∞.

For the remaining case m ∈ Z \ N we use the same arguments for Gelfand
triples as in the proof of Proposition 2.54. �

As a consequence of Proposition 2.56, for m ∈ N0 and ` ∈ H̃−m− 1
2 (∂Ω,Cd′)

the requirement `
!
∈ H̃−m+ 1

2 (∂Ω,Cd′) makes sense as follows: the linear
and bounded functional ` : H̃m+ 1

2 (∂Ω,Cd′)→ C can now be considered
as a linear and bounded functional with respect to the norm

‖`‖ = sup
ϕ∈H̃m+ 1

2 (∂Ω,Cd′ )\{0}

|〈`, ϕ〉∼
m+ 1

2 ,∂Ω|
‖ϕ‖

H̃m−
1
2 (∂Ω,Cd′ )
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and therefore continuously be extended to a linear and bounded functional
` : H̃m− 1

2 (∂Ω,Cd′)→ C.

And last but not least, for m ∈ N0 and ` ∈ H̃−m+ 1
2 (∂Ω,C3) the product

` · n, where n denotes the unit normal vector on ∂Ω, is for the case m = 0
the usual dot product for functions, while for the case m > 0 it has to be
understood in the following way

〈` · n, ψ〉∼m− 1
2 ,∂Ω := 〈`, ψ n〉∼m− 1

2 ,∂Ω, ψ ∈ H̃m− 1
2 (∂Ω).

Note that for ψ ∈ H̃m− 1
2 (∂Ω) the product ψ n ∈ H̃m− 1

2 (∂Ω,C3) is well-
defined by Proposition 2.56 and Theorem 2.55, as n is a smooth function
on ∂Ω.

Now, we are in the position to introduce the announced setting. For the
next two definitions we refer to (2.3), (2.4) and (2.5) from [3], slightly
modified for a more general setup.

Definition 2.57 For m ∈ N0 and ϕ ∈ H̃−m+ 1
2 (∂Ω,C3), with n · ϕ = 0,

we define the tangential divergence div∂Ω ϕ ∈ H̃−m−
1
2 (∂Ω) by

〈div∂Ω ϕ,ψ〉∼m+ 1
2 ,∂Ω :=

{
−〈ϕ, γ0(∇ψ̃m+1)〉∼

m− 1
2 ,∂Ω, m ≥ 1,

−
∫
∂Ω ϕ · ∇ψ̃1 ds, m = 0,

for all ψ ∈ H̃m+ 1
2 (∂Ω), where ψ̃m+1 ∈ H̃m+1(Ω) is any extension of ψ

such that γ0ψ̃m+1 = ψ, see also the preliminary considerations above.

Definition 2.58 For m ∈ N0 the space H−m+ 1
2 (div∂Ω, ∂Ω) is defined by

H−m+ 1
2 (div∂Ω, ∂Ω) :=

{
ϕ ∈ H̃−m+ 1

2 (∂Ω,C3)
∣∣

ϕ · n = 0, div∂Ω ϕ ∈ H̃−m+ 1
2 (∂Ω)

}
and equipped with the norm

‖ϕ‖
H−m+ 1

2 (div∂Ω,∂Ω)
:= ‖ϕ‖+ ‖div∂Ω ϕ‖, ϕ ∈ H−m+ 1

2 (div∂Ω, ∂Ω),

where the norm on the right hand side is the operator norm in the space
H̃−m+ 1

2 (∂Ω,C3) and H̃−m+ 1
2 (∂Ω), respectively.
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The embedding from [34, Lemma 5.27] turns out to be the correct candidate
for establishing the connection between the space H−1/2(Div, ∂Ω) from
Definition 2.45 and H−1/2(div∂Ω, ∂Ω) from Definition 2.58.

Theorem 2.59 We have that H−1/2(div∂Ω, ∂Ω) ' H−1/2(Div, ∂Ω) in
virtue of the mapping H−1/2(Div, ∂Ω) 3 ϕ 7→ `ϕ ∈ H−1/2(div∂Ω, ∂Ω)
given by

〈`ϕ, ψ〉 1
2 ,∂Ω = 〈ϕ, γT ψ̃〉∂Ω, ψ ∈ H1/2(∂Ω,C3),

where ψ̃ ∈ H1(Ω,C3) is any extension of ψ.

Proof: First of all, recall Proposition 2.56 for an identification of the
spaces H̃−1/2(∂Ω,Cd′) and H−1/2(∂Ω,Cd′).
(i). Let ϕ ∈ H−1/2(Div, ∂Ω). For well-definedness we have to show
that `ϕ · n = 0 and that div∂Ω `ϕ ∈ H−1/2(∂Ω). For the first one let
ψ ∈ H1/2(∂Ω). By Corollary 2.49, there exists a sequence (un)n∈N in
C∞(Ω) such that ψn := un|∂Ω → ψ in H1/2(∂Ω), for n→∞. Note that
n × (un|∂Ω n) = 0 for all n ∈ N. Let ηn ∈ H1(Ω,C3) be an extension of
ψn n ∈ D0(∂Ω,C3), n ∈ N. Then γT ηn = n × (un|∂Ω n) × n = 0 for all
n ∈ N. Therefore,

〈`ϕ · n, ψ〉 1
2 ,∂Ω = lim

n→∞
〈`ϕ · n, ψn〉 1

2 ,∂Ω = lim
n→∞

〈`ϕ, ψn n〉 1
2 ,∂Ω

= lim
n→∞

〈ϕ, γT ηn〉∂Ω = 0.

For the second one, let ψ ∈ H̃3/2(∂Ω). Then

〈div∂Ω `ϕ, ψ〉 3
2 ,∂Ω = −〈`ϕ, γ0(∇ψ̃2)〉 1

2 ,∂Ω = −〈ϕ, γT (∇ψ̃2)〉∂Ω

= 〈Divϕ, γ0ψ̃2〉 1
2 ,∂Ω = 〈Divϕ,ψ〉 1

2 ,∂Ω,

where we have applied [34, Lemma 5.27] in the second step and [34,
Definition 5.29] in the third step, with Divϕ ∈ H−1/2(∂Ω). Hence,
div∂Ω `ϕ : H̃3/2(∂Ω) → C is linear and bounded with respect to the
norm in H−1/2(∂Ω) as desired.
(ii). To show boundedness, we know already from step (i) that div∂Ω `ϕ =
Divϕ (considered as continuous extension) and therefore ‖ div∂Ω `ϕ‖ =
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‖Divϕ‖, for all ϕ ∈ H−1/2(Div, ∂Ω). Hence, for ϕ ∈ H−1/2(Div, ∂Ω) and
ψ ∈ H1/2(∂Ω,C3) we obtain, with

‖∇(η0ψ)‖H(curl,Ω) = ‖∇(η0ψ)‖L2(Ω,C3) ≤ ‖η0ψ‖H1(Ω,C3)

≤ ‖η0‖ ‖ψ‖H1/2(∂Ω,C3),

where η0 denotes the extension operator from Theorem 2.48, that

|〈Divϕ,ψ〉| = |〈ϕ, γT∇(η0ψ)〉∂Ω|
≤ ‖ϕ‖H−1/2(Div,∂Ω) ‖γT ‖ ‖η0‖ ‖ψ‖H1/2(∂Ω,C3).

(iii). To show surjectivity, let ϕ ∈ H−1/2(div∂Ω, ∂Ω). Thanks to [3],
there exists ϕ̃ ∈ H(curl,Ω) such that n × ϕ̃|∂Ω = ϕ. We set ϕ̂ :=
γtϕ̃ ∈ H−1/2(Div, ∂Ω), see Theorem 2.48. To show that `ϕ̂ = ϕ let
ψ ∈ H1/2(∂Ω,C3) and set ψ̃ := η0ψ ∈ H1(Ω,C3), with η0 the extension
operator again from Theorem 2.48. Then on the one hand, we obtain
from [3, (2.1)] that

〈ϕ,ψ〉 1
2 ,∂Ω =

∫
Ω

(
curl ϕ̃ · ψ̃ − ϕ̃ · curl ψ̃

)
dx

and on the other hand, by [34, Lemma 5.27 and (5.19)], that

〈`ϕ̂, ψ〉 1
2 ,∂Ω = 〈ϕ̂, γT ψ̃〉∂Ω =

∫
Ω

(
curl ϕ̃ · ψ̃ − ϕ̃ · curl ψ̃

)
dx,

as desired. �

2.2. Functions on Cell Sets

Later in the formulation of our scattering problem, the scatterer will be
the graph of a Q-periodic and Lipschitz continuous function, and the
corresponding cell set under consideration will have a special form, see
Section 2.3. Nevertheless, in this section we would like to present results
which hold more generally for arbitrary cell sets.

From now on let Q denote a rectangle in R2, given by

Q := (−L1, L1)× (−L2, L2),
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where Lj > 0 are some positive real numbers, j = 1, 2. This rectangle will
be used to pick out a unit cell of the underlying periodic media as we will
see later.

2.2.1. Q-periodic Domains and Functions

For the next definitions see also [7, Section 2.1].

We recall (1.18) and (1.14) for the definition of the lattice and reciprocal
lattice vector p(µ)

Qd
and q

(µ)
Qd

, respectively. To define periodicity in R3 only
in x1, x2-direction with respect to Q, we similarly introduce

p(µ) :=

µ12L1
µ22L2

0

 and q(µ) :=
(
µ1π/L1
µ2π/L2

)
, µ ∈ Z2. (2.7)

A set Ω ⊆ R3 is called Q-periodic, if

x ∈ Ω ⇒ ∀µ ∈ Z2 : x+ p(µ) ∈ Ω.

Let Ω ⊆ R3 be Q-periodic and d′ ∈ N. A function u : Ω → Cd′ is called
Q-periodic, if

u(x+ p(µ)) = u(x), x ∈ Ω, µ ∈ Z2. (2.8)

And u is said to be Q-quasi-periodic with phase shift α ∈ R3, if

u(x+ p(µ)) = eiα·p(µ)
u(x), x ∈ Ω, µ ∈ Z2. (2.9)

If Ω is additionally open and if u is in L1
loc(Ω,Cd′), then for Q-periodicity

and Q-quasi-periodicity we require that (2.8) and (2.9) holds almost
everywhere in Ω, respectively.

We note that for x ∈ Ω, a Q-periodic function u can be (formally) expanded
into a Fourier series at the plane R2 × {x3}

u(·, x3) =
∑
µ∈Z2

u(µ)(x3)T (µ)
Q on R2,
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with Fourier coefficients (u(µ)(x3))µ∈Z2 given by

u(µ)(x3) :=
∫
Q

u(z, x3)T (−µ)
Q (z) dz, µ ∈ Z2,

where T (µ)
Q are the trigonometric monomials from Section 1.3 and where

we have extended u by zero in (Q× {x3}) ∩ Ωc.

It is easy to see, that for a Q-quasi-periodic function u the function v
given by

v(x) := e−iα̃·x̃ u(x), x ∈ Ω, (2.10)

is Q-periodic, and vice versa. Hence, for x ∈ Ω, a Q-quasi-periodic function
u can be similarly rewritten in terms of a Fourier series expansion

u(·, x3) =
∑
µ∈Z2

u(µ)(x3) eiα̃·· T
(µ)
Q on R2, (2.11)

with
u(µ)(x3) =

∫
Q

u(z, x3) e−iα̃·z T
(−µ)
Q dz, µ ∈ Z2.

In the Q-periodic context, the notion of a cell set is fundamental, see the
following definition.

Definition 2.60 An open set D ⊆ R3 is called a cell set, if there exists a
closed and Q-periodic set Ω ⊆ R3 such that D = (Q×R)∩Ω. In this case,
Ω is unique and we set EQ(D) := Ω̊ to be the Q-periodic extension of D.

Let D ⊆ R3 be a cell set, d′ ∈ N and m ∈ N0. Similarly as in Section 1.3,
we define now for the Q-periodic framework the function spaces

CmQ (D,Cd
′
) :=

{
u ∈ Cm(D,Cd

′
)
∣∣ ∃ v ∈ Cm(EQ(D),Cd

′
) :

v is Q-periodic and u = v|D
}
,

CmQ (D,Cd
′
) :=

{
u ∈ CmQ (D,Cd

′
)
∣∣ ∀ 0 ≤ |α| ≤ m :

∂αu can be continuously extended to D
}
,

CmQ,0(D,Cd
′
) :=

{
u ∈ Cm(D,Cd

′
)
∣∣ ∃ v ∈ Cm(EQ(D),Cd

′
) :
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v is Q-periodic, supp(v) ⊆ EQ(D),

supp(v) ∩ (Q× R) is compact and u = v|D
}
.

And the corresponding spaces of smooth functions are

C∞Q (D,Cd
′
) :=

∞⋂
k=0

CkQ(D,Cd
′
),

C∞Q (D,Cd
′
) :=

∞⋂
k=0

CkQ(D,Cd
′
), C∞Q,0(D,Cd

′
) :=

∞⋂
k=0

CkQ,0(D,Cd
′
).

Note that for u ∈ C0(D,Cd′), by continuity, the v in the definition of this
space is unique. Thus, this holds in particular for the other subspaces.
Often we will call this v the Q-periodic extension of u and denote it by
ũ. Furthermore, as before, in the names for these function spaces we will
often neglect the superscript “m” if m = 0. And again, we will mostly
drop the symbol for the co-domain in the case of scalar valued functions,
i.e., for instance we will mostly write C∞Q,0(D) instead of C∞Q,0(D,C).

Remark 2.61 C∞0 (D,Cd′) is a subspace of C∞Q,0(D,Cd′). Furthermore,
on a cuboid Q3 ⊆ R3 we have

C∞0 (Q3,Cd
′
) ⊆ C∞Q,0(Q3,Cd

′
) ⊆ C∞per(Q3,Cd

′
).

2.2.2. Basic Results

In this subsection we will define Sobolev spaces for Q-periodic functions
on cell sets and derive their most important properties.

Definition 2.62 Let D ⊆ R3 be a cell set.

(a) For m ∈ N0 we define the space Hm
Q (D,Cd′) to be

Hm
Q (D,Cd

′
) :=

{
u ∈ L2(D,Cd

′
)
∣∣∣ ∀α ∈ N3

0,with |α| ≤ m,

∃ v ∈ L2(D,Cd
′
)∀χ ∈ C∞Q,0(D) :
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∫
D

u(x) ∂αχ(x) dx = (−1)|α|
∫
D

v(x)χ(x) dx
}
.

For u ∈ Hm
Q (D,Cd′) we set for the moment ∂αQu := v, see also

the next remark. Furthermore, we equip this space with the inner
product (· | ·)Hm

Q
(D,Cd′ ) and the norm ‖ · ‖Hm

Q
(D,Cd′ ) correspondingly

to Definition 2.2.

(b) We define the space HQ(curl, D) to be

HQ(curl, D) :=
{
u ∈ L2(D,C3)

∣∣∣ ∃ v ∈ L2(D,C3)

∀χ ∈ C∞Q,0(D,C3) :
∫
D

u(x) · curlχ(x) dx =
∫
D

v(x) · χ(x) dx
}
.

For u ∈ HQ(curl, D) we set for the moment curlQ u := v, see also
the next remark. Furthermore, we equip this space with the inner
product (· | ·)HQ(curl,D) and the norm ‖ · ‖HQ(curl,D) correspondingly
to Definition 2.2.

(c) We define the space HQ(div, D) to be

HQ(div, D) :=
{
u ∈ L2(D,C3)

∣∣∣ ∃ v ∈ L2(D)

∀χ ∈ C∞Q,0(D) :
∫
D

u(x) · ∇χ(x) dx = −
∫
D

v(x) χ(x) dx
}
.

For u ∈ HQ(div, D) we set for the moment divQ u := v, see also
the next remark. Furthermore, we equip this space with the inner
product (· | ·)HQ(div,D) and the norm ‖ · ‖HQ(div,D) correspondingly to
Definition 2.2.

Remark 2.63 Thanks to Remark 2.61, for u from the space Hm
Q (D,Cd′),

HQ(curl, D) and HQ(div, D), the element v in the definition of those spaces
is unique and coincides with ∂αu, curlu and div u from Definition 2.1,



2.2. Functions on Cell Sets 79

respectively, and therefore we will write again ∂αu instead of ∂αQu, curlu
instead of curlQ u and div u instead of divQ u. In particular,

Hm
Q (D,Cd

′
) id
↪−→ Hm(D,Cd

′
),

HQ(curl, D) id
↪−→ H(curl, D) and HQ(div, D) id

↪−→ H(div, D).

Taking Theorem 2.20 into consideration as well, we have on a cuboid
Q3 ⊆ R3

Hm
per(Q3,Cd

′
) id
↪−→ Hm

Q (Q3,Cd
′
) id
↪−→ Hm(Q3,Cd

′
),

with equivalent norms in Hm
per(Q3,Cd

′) and

Hper(curl, Q3) id
↪−→ HQ(curl, Q3) id

↪−→ H(curl, Q3),

with coinciding norms in Hper(curl, Q3).

With the same arguments as in [34], one shows that the spaces Hm
Q (D,Cd′),

HQ(curl, D) and HQ(div, D) are Hilbert spaces. Moreover, note that
C∞Q,0(D,Cd′) is a subspace of Hm

Q (D,Cd′) and that C∞Q,0(D,C3) is a sub-
space of HQ(curl, D) and of HQ(div, D).

Further examples for elements in HQ(curl, D) are given by the next two
propositions.

Proposition 2.64 Let D ⊆ R3 be a cell set. Furthermore, let u ∈ H1
Q(D)

and β ∈ C3. Then βu ∈ HQ(curl, D) with curl(βu) = ∇u× β.

Proof: Let χ ∈ C∞Q,0(D,C3). Then, by applying (A.3d) and exploiting
the fact that u ∈ H1

Q(D), we obtain∫
D

βu · curlχdx =
∫
D

uβ · curlχdx =
∫
D

u div(χ× β) dx

=
∫
D

u

3∑
j=1

∂j(χ× β)j dx = −
∫
D

( 3∑
j=1

(∂ju) (χ× β)j
)

dx
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= −
∫
D

∇u · (χ× β) dx =
∫
D

(∇u× β) · χdx

and the proof is complete. �

Proposition 2.65 Let D ⊆ R3 be a cell set. Then we have

H1
Q(D,C3) id

↪−→ HQ(curl, D),

with

curlu =

∂2u3 − ∂3u2
∂3u1 − ∂1u3
∂1u2 − ∂2u1

 , u ∈ H1
Q(D,C3).

Proof: Let u ∈ H1
Q(D,C3), i.e., uj ∈ H1

Q(D), j = 1, 2, 3. Furthermore,
let χ ∈ C∞Q,0(D,C3). Then, using the definition of the space H1

Q(D), we
obtain∫

D

u · curlχdx =
∫
D

u1
u2
u3

 ·
∂2χ3 − ∂3χ2
∂3χ1 − ∂1χ3
∂1χ2 − ∂2χ1

 dx

=
∫
D

(
∂3u1 χ2 − ∂2u1 χ3 + ∂1u2 χ3 − ∂3u2 χ1 + ∂2u3 χ1 − ∂1u3 χ2

)
dx

=
∫
D

∂2u3 − ∂3u2
∂3u1 − ∂1u3
∂1u2 − ∂2u1

 · χdx.

Hence, u ∈ HQ(curl, D) with curlu given as in the formula from the
proposition. By means of this formula it is easy to see that the identity
mapping yields indeed a bounded operator from H1

Q(D,C3) to HQ(curl, D),
which completes the proof. �

Definition 2.66 Let D ⊆ R3 be a cell set.

(a) For m ∈ N0 we define the space Hm
Q,0(D,Cd′) as the closure of

C∞Q,0(D,Cd′) in Hm
Q (D,Cd′).
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(b) We define the space HQ,0(curl, D) as the closure of C∞Q,0(D,C3) in
HQ(curl, D).

(c) We define the space HQ,0(div, D) as the closure of C∞Q,0(D,C3) in
HQ(div, D).

Clearly, as closed subspaces of Hilbert spaces, we have that the spaces
Hm
Q,0(D,Cd′), HQ,0(curl, D) and HQ,0(div, D) are itself Hilbert spaces.

As we want to exploit results from the periodic setting, see Subsection 2.1.2,
for this the next proposition turns out to be very helpful.

Proposition 2.67 Let Q3 ⊆ R3 be a cuboid as given in (1.13).

(a) For m ∈ N0 we have

Hm
Q,0(Q3,Cd

′
) id
↪−→ Hm

per(Q3,Cd
′
),

with equivalent norms in Hm
Q,0(Q3,Cd

′).

(b) We have
HQ,0(curl, Q3) id

↪−→ Hper(curl, Q3),

with coinciding norms in HQ,0(curl, Q3).

Proof: (a). Let u ∈ Hm
Q,0(Q3,Cd

′). Then there exists a sequence (un)n∈N
in C∞Q,0(Q3,Cd

′) such that un → u with respect to ‖ · ‖Hm
Q

(Q3,Cd′ ), as
n→∞. By Remark 2.61, we know that un ∈ Hmper(Q3,Cd

′) for all n ∈ N.
Hence, for α ∈ N3

0 with |α| ≤ m, Lemma 2.17 yields for the Fourier
coefficients of un and ∂αun the connection

(∂αun)(µ) =
(
i q(µ)
Q3

)α(un)(µ), µ ∈ Z3, n ∈ N.

Let α ∈ N3
0 with |α| ≤ m and let µ ∈ Z3. By the convergence above, we

have

(∂αu)(µ) =
∫
Q3

∂αu(x)T (−µ)
Q3

(x) dx = lim
n→∞

∫
Q3

∂αun(x)T (−µ)
Q3

(x) dx
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= (i q(µ)
Q3

)α lim
n→∞

∫
Q3

un(x)T (−µ)
Q3

(x) dx

= (i q(µ)
Q3

)α
∫
Q3

u(x)T (−µ)
Q3

(x) dx = (i q(µ)
Q3

)α u(µ).

Since u and ∂αu belong to L2(Q3,Cd
′), we obtain by Parseval’s identity

‖u‖2
L2(Q3,Cd′ ) =

∑
µ∈Z3

|u(µ)|2 and ‖∂αu‖2
L2(Q3,Cd′ ) =

∑
µ∈Z3

(q(µ)
Q3

)2α|u(µ)|2.

Now, we are in a position to regain the last two chains of inequalities from
part (a) in the proof of Proposition 2.19, where now therein the interchange
of the sum signs is allowed due to convergence of the series with respect
to µ. Thus, we have shown that u ∈ Hm

per(Q3,Cd
′) and that the norms

‖ · ‖Hmper(Q3,Cd′ ) and ‖ · ‖Hm
Q

(Q3,Cd′ ) in Hm
Q,0(Q3,Cd

′) are equivalent.
(b). Let u ∈ HQ,0(curl, Q3). Then there exists a sequence (un)n∈N in
C∞Q,0(Q3,C3) such that un → u with respect to ‖ · ‖HQ(curl,Q3), as n→∞,
and analogous to part (a) we have for the Fourier coefficients of un and
curlun the connection

(curlun)(µ) = i q(µ)
Q3
× (un)(µ), µ ∈ Z3, n ∈ N.

Let µ ∈ Z3. By the convergence above, we have

(curlu)(µ) =
∫
Q3

curlu(x)T (−µ)
Q3

(x) dx = lim
n→∞

∫
Q3

curlun(x)T (−µ)
Q3

(x) dx

= i q(µ)
Q3
× lim
n→∞

∫
Q3

un(x)T (−µ)
Q3

(x) dx

= i q(µ)
Q3
×
∫
Q3

u(x)T (−µ)
Q3

(x) dx = i q(µ)
Q3
× u(µ).

Since u and curlu belong to L2(Q3,C3), we obtain by Parseval’s identity

‖u‖2
L2(Q3,C3) =

∑
µ∈Z3

|u(µ)|2 and ‖ curlu‖2
L2(Q3,C3) =

∑
µ∈Z3

|q(µ)
Q3
× u(µ)|2.

From this we conclude finally ‖u‖Hper(curl,Q3) = ‖u‖HQ(curl,Q3) <∞, and
the proof is complete. �
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Restriction and Extension (by Zero) Operators. We continue with the
introduction of certain restriction and extension (by zero) operators. Al-
though they appear mostly in the background, their work should not be
underestimated. For their notation recall Section 1.3, page 11.

Let D,D′ ⊆ R3 be cell sets such that D ( D′. Since u ∈ L2(D,Cd′)
implies that ‖u|D′0 ‖L2(D′,Cd′ ) = ‖u‖L2(D,Cd′ ) and, conversely, since u ∈
L2(D′,Cd′) implies that ‖u|D‖L2(D,Cd′ ) ≤ ‖u‖L2(D′,Cd′ ), there holds that
the mappings

L2(D,Cd
′
) ·|D

′
0−→ L2(D′,Cd

′
) and L2(D′,Cd

′
) ·|D−→ L2(D,Cd

′
)

are linear and bounded. The next proposition shows a similar result for
the spaces from Definition 2.62 and Definition 2.66.

Proposition 2.68 Let D,D′ ⊆ R3 be cell sets such that D ( D′.

(a) The following assertions are true.

(i) The mapping Hm
Q (D′,Cd′) 3 u 7→ u|D ∈ Hm

Q (D,Cd′) is well-
defined, linear and bounded with

‖u|D‖Hm
Q

(D,Cd′ ) ≤ ‖u‖Hm
Q

(D′,Cd′ ).

Moreover, ∂α(u|D) = (∂αu)|D for all u ∈ Hm
Q (D′,Cd′) and all

α ∈ N3
0 with |α| ≤ m.

(ii) The mapping Hm
Q,0(D,Cd′) 3 u 7→ u|D′0 ∈ Hm

Q,0(D′,Cd′) is
well-defined, linear and bounded with

‖u|D
′

0 ‖Hm
Q

(D′,Cd′ ) = ‖u‖Hm
Q

(D,Cd′ ).

Moreover, ∂α(u|D′0 ) = (∂αu)|D′0 for all u ∈ Hm
Q,0(D,Cd′) and

all α ∈ N3
0 with |α| ≤ m.

(b) The following assertions are true.

(i) The mapping HQ(curl, D′) 3 u 7→ u|D ∈ HQ(curl, D) is well-
defined, linear and bounded with

‖u|D‖HQ(curl,D) ≤ ‖u‖HQ(curl,D′).

Moreover, curl(u|D) = (curl u)|D for u ∈ HQ(curl, D′).
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(ii) The mapping HQ,0(curl, D) 3 u 7→ u|D′0 ∈ HQ,0(curl, D′) is
well-defined, linear and bounded with

‖u|D
′

0 ‖HQ(curl,D′) = ‖u‖HQ(curl,D).

Moreover, curl(u|D′0 ) = (curl u)|D′0 for all u ∈ HQ,0(curl, D).

Proof: We only show the assertion for part (b) as the argumentation for
part (a) is completely analogous.
(i). Let u ∈ HQ(curl, D′) and χ ∈ C∞Q,0(D,C3). Then χ|D′0 ∈ C∞Q,0(D′,C3)
and∫

D

u|D(x) · curlχ(x) dx =
∫
D′
u(x) · curlχ|D

′

0 (x) dx

=
∫
D′

curlu(x) · χ|D
′

0 (x) dx =
∫
D

(curlu)|D(x) · χ(x) dx.

Moreover,

‖u|D‖2
HQ(curl,D) =

∫
D

|u|D(x)|2 dx+
∫
D

| curl(u|D)(x)|2 dx

=
∫
D

|u(x)|2 dx+
∫
D

| curlu(x)|2 dx

≤
∫
D′
|u(x)|2 dx+

∫
D′
| curlu(x)|2 dx = ‖u‖2

HQ(curl,D′).

(ii). Let u ∈ HQ,0(curl, D). Then there exists a sequence (un)n∈N in
C∞Q,0(D,C3) converging with respect to ‖ · ‖HQ(curl,D) to u. Note that
un|D

′

0 ∈ C∞Q,0(D′,C3) with curl(un|D
′

0 ) = (curlun)|D′0 for all n ∈ N. Choose
some χ ∈ C∞Q,0(D′,C3). Then, using the convergence from above and the
definition of the variational curl, we obtain∫

D′
(u|D

′

0 ) · curlχdx = lim
n→∞

∫
D′
un|D

′

0 · curlχdx

= lim
n→∞

∫
D′

curl(un|D
′

0 ) · χdx = lim
n→∞

∫
D′

(curlun)|D
′

0 · χdx

=
∫
D′

(curlu)|D
′

0 · χdx,
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i.e., u|D′0 ∈ HQ(curl, D′) with curl(u|D′0 ) = (curl u)|D′0 . Furthermore,

‖u|D
′

0 ‖2
HQ(curl,D′) = ‖u|D

′

0 ‖2
L2(D′,C3) + ‖ curl(u|D

′

0 )‖2
L2(D′,C3)

= ‖u‖2
L2(D,C3) + ‖ curlu‖2

L2(D,C3) = ‖u‖2
HQ(curl,D).

Applying the last chain of equations to the difference un|D
′

0 − u|D
′

0 , we
see that (un|D

′

0 )n∈N converges in HQ(curl, D′) to u|D′0 and the proof is
complete. �

Compact Embeddings. In the context of compact embeddings, another
extension operator for the vector valued case is needed, which extends
functions from a certain subspace of HQ(curl, D) by zero to cuboids.
For the introduction of this subspace HQ,0(curl,divβ,A 0, D) in the next
definition and for the statements in the next proposition, it might be useful
to recall (1.20b) and the definition of the space Hper(curl,divβ 0, Q3) from
Definition 2.12. Moreover, as a preparation for later purposes, see also the
beginning of Subsection 2.2.3, we introduce this subspace already here in
its most general form, that is, with respect to a matrix-weighted L2-inner
product similarly as in [34].

Definition 2.69 Let D ⊆ R3 be a cell set. Suppose A ∈ L∞(D,C3×3)
such that A(x) is symmetric for a.a. x ∈ D and Re(z>A(x)z) ≥ c|z|2 for
all z ∈ C3, a.a. x ∈ D and some constant c > 0. Furthermore, let β ∈ R3.

(i) The space HQ,0(curl,divβ,A 0, D) is defined by

HQ,0(curl,divβ,A 0, D) :=
{
u ∈ HQ,0(curl, D)

∣∣
∀ψ ∈ H1

Q,0(D) : (Au | ∇βψ)L2(D,C3) = 0
}
.

(ii) The space HQ(curl,divβ,A 0, D) is defined by

HQ(curl,divβ,A 0, D) :=
{
u ∈ HQ(curl, D)

∣∣
∀ψ ∈ H1

Q,0(D) : (Au | ∇βψ)L2(D,C3) = 0
}
.
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If β = 0 and A = I, where I denotes the identity matrix, then we
will drop the subscript β and A in the symbol HQ,0(curl,divβ,A 0, D) and
HQ(curl,divβ,A 0, D), respectively.

Proposition 2.70 Let D ⊆ R3 be a bounded cell set and let L3 > 0 such
that D ⊆ Q× (−L3, L3) =: Q3. Then the mapping

HQ,0(curl,divβ 0, D) 3 u 7→ u|Q3
0 ∈ Hper(curl,divβ 0, Q3)

is well-defined, linear and bounded with

‖u|Q3
0 ‖Hper(curl,Q3) = ‖u‖HQ(curl,D).

Proof: Let u ∈ HQ,0(curl,divβ 0, D). From Proposition 2.68 and Proposi-
tion 2.67 we know that u|Q3

0 belongs to Hper(curl, Q3) and that the equality
for the norms hold. It remains to show that (u|Q3

0 )(µ) · (q(µ)
Q3

+β) = 0 for all
µ ∈ Z3, where (u|Q3

0 )(µ) denote the Fourier coefficients of u|Q3
0 . For this let

ψ ∈ H1
Q,0(D). By the propositions from above, together with Theorem 2.20

and Lemma 2.17, we have between the Fourier coefficients of ψ|Q3
0 and

∇(ψ|Q3
0 ) the connection [∇(ψ|Q3

0 )](ν) = iq(ν)
Q3

(ψ|Q3
0 )(ν) for all ν ∈ Z3. Note

that, again thanks to Proposition 2.68, there holds (∇βψ)|Q3
0 = ∇β(ψ|Q3

0 ).
Hence,

0 = (u | ∇βψ)L2(D,C3) =
(
u|Q3

0

∣∣∣∇β(ψ|Q3
0 )
)
L2(Q3,C3)

=
∑

µ,ν∈Z3

(u|Q3
0 )(µ) · i(q(ν)

Q3
+ β)(ψ|Q3

0 )(ν)
(
T

(µ)
Q3

∣∣∣T (ν)
Q3

)
L2(Q3,C3)

.

Since ψ ∈ H1
Q,0(D) was arbitrary, we conclude from the last equality that

(u|Q3
0 )(µ) · (q(µ)

Q3
+ β) = 0 for all µ ∈ Z3, as desired. �

Now, we come to the first compactness result in the Q-periodic setting.

Theorem 2.71 Let D ⊆ R3 be a bounded cell set and β ∈ R3. Then the
following assertions are true.

(a) The embedding Hm
Q,0(D,Cd′) id

↪−→ L2(D,Cd′) is compact.
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(b) The embedding HQ,0(curl,divβ 0, D) id
↪−→ L2(D,C3) is compact.

Proof: Choose some L3 > 0 such that D ⊆ Q× (−L3, L3) =: Q3.
(a). We decompose the embedding from the theorem by

Hm
Q,0(D,Cd

′
)

·|Q3
0−→ Hm

Q,0(Q3,Cd
′
) id
↪−→ Hm

per(Q3,Cd
′
)

id
↪−→ L2(Q3,Cd

′
) ·|D−→ L2(D,Cd

′
)

and observe that the first, second and last mapping are bounded, thanks
to Propositon 2.68, Proposition 2.67 and the remarks in front of Proposi-
tion 2.68, respectively. Now the assertion follows, as the embedding from
Hm

per(Q3,Cd
′) to L2(Q3,Cd

′) is compact, see Proposition 2.13.
(b). We decompose the embedding from the theorem by

HQ,0(curl,divβ 0, D)
·|Q3

0−→ Hper(curl,divβ 0, Q3)
id
↪−→ L2(Q3,C3) ·|D−→ L2(D,C3),

which yields, with analogous arguments as in (a), in particular with
Propostition 2.70, the assertion. �

Friedrich’s Inequality. It is well-known that in H1
0 (Ω) there holds an

inequality of Friedrich’s type, saying that ‖u‖L2(Ω) ≤ c ‖∇u‖L2(Ω,C3) for
all u ∈ H1

0 (Ω). Here Ω denotes any open and bounded subset of Rd,
and the constant c > 0 is independent of u. In the Q-periodic setting,
i.e. in H1

Q,0(D), where D ⊆ R3 is a bounded cell set, such an inequality
can be derived as well, see the next theorem. Therein a slightly more
general version is proven which turns out to be more useful later when we
transfer problems from the Q-quasi-periodic into the Q-periodic setting
and therefore obtain modified operators for ∇, curl and div as in (1.20a)
and (1.20b).

Theorem 2.72 Let D ⊆ R3 be a bounded cell set and β ∈ R3. Then there
exists c > 0 such that

‖u‖L2(D) ≤ c ‖∇βu‖L2(D,C3), for all u ∈ H1
Q,0(D).

Here, the operator ∇β is given by ∇β = ∇+ iβ, see also (1.20a).
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Proof: We follow the lines in the proof of [34, Theorem 4.15]. Choose
some L3 > 0 such that D ⊆ Q × (−L3, L3) =: Q3. Let u ∈ C∞Q,0(D).
Extend u by zero to Q3 and choose some x ∈ Q3. Then

eiβ·xu(x) = eiβ·(x1,x2,−L3)> u(x1, x2,−L3)︸ ︷︷ ︸
=0

+
∫ x3

−L3

∂3(eiβ··u)(x1, x2, ξ) dξ

=
∫ x3

−L3

ei(β1x1+β2x2+β3ξ)(∂3u(x1, x2, ξ) + iβ3u(x1, x2, ξ)
)

dξ,

and by the inequality of Cauchy-Schwarz

|u(x)|2 ≤ (x3 + L3)
∫ x3

−L3

∣∣∂3u(x1, x2, ξ) + iβ3u(x1, x2, ξ)
∣∣2 dξ

≤ 2L3

∫ L3

−L3

∣∣∂3u(x1, x2, ξ) + iβ3u(x1, x2, ξ)
∣∣2 dξ.

Hence,∫ L3

−L3

|u(x)|2 dx3 ≤ (2L3)2
∫ L3

−L3

∣∣∂3u(x1, x2, ξ) + iβ3u(x1, x2, ξ)
∣∣2 dξ,

and integration with respect to x1 and x2 yields

‖u‖2
L2(D) = ‖u‖2

L2(Q3)

≤ (2L3)2
L3∫
−L3

L3∫
−L3

L3∫
−L3

∣∣∂3u(x1, x2, ξ) + iβ3u(x1, x2, ξ)
∣∣2 dξ dx2 dx1

≤ (2L3)2 ‖∇u+ iβu‖2
L2(Q3,C3) = (2L3)2 ‖∇βu‖2

L2(D,C3).

Since C∞Q,0(D) is dense in H1
Q,0(D), the last inequality holds even for all

u ∈ H1
Q,0(D). �

Corollary 2.73 Let D ⊆ R3 be a bounded cell set and β ∈ R3. Then
there exists c > 0 such that

‖u‖H1
Q

(D) ≤ c ‖∇βu‖L2(D,C3), for all u ∈ H1
Q,0(D).
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Proof: Let u ∈ H1
Q,0(D). Then an application of the triangle inequal-

ity yields ‖∇u‖L2(D,C3) ≤ ‖∇u + iβu‖L2(D,C3) + ‖iβu‖L2(D,C3), and we
conclude, together with Theorem 2.72,

‖u‖2
H1
Q

(D) = ‖u‖2
L2(D) + ‖∇u‖2

L2(D,C3)

≤ ‖u‖2
L2(D) + 2‖∇u+ iβu‖2

L2(D,C3) + 2|β|2‖u‖2
L2(D)

≤ c ‖∇u+ iβu‖2
L2(D,C3),

as asserted. �

In the proof of the next proposition we have a first application of Friedrich’s
inequality. The following lemma has preliminary character.

Lemma 2.74 Let D ⊆ R3 be a cell set and β ∈ R3. Furthermore, let
(pn)n∈N be a sequence in H1

Q,0(D) such that (pn)n∈N is a Cauchy sequence
in L2(D) and (∇βpn)n∈N is a Cauchy sequence in L2(D,C3). Then for the
L2-limits p := limn→∞ pn and u := limn→∞∇βpn there holds p ∈ H1

Q,0(D)
with ∇βp = u.

Proof: We know that ∇pn+iβpn → u and iβpn → iβp, both in L2(D,C3),
as n → ∞. Hence, ∇pn = (∇pn + iβpn) − iβpn → u − iβp in L2(D,C3).
Let χ ∈ C∞Q,0(D). Then∫

D

p∇χdx = lim
n→∞

∫
D

pn∇χdx = − lim
n→∞

∫
D

∇pnχdx

= −
∫
D

(u− iβp)χdx,

showing that p ∈ H1
Q(D) with ∇p = u − iβp, where the latter one is

equivalent to ∇βp = u. Moreover, ‖pn−p‖2
L2(D)+‖∇pn−∇p‖2

L2(D,C3) → 0,
that is, pn → p with respect to ‖ · ‖H1

Q
(D). Since H1

Q,0(D) is a closed
subspace of H1

Q(D), p belongs indeed to H1
Q,0(D). �

Proposition 2.75 Let D ⊆ R3 be a cell set and β ∈ R3. Then the
following assertions are true.
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(i) There holds

ψ ∈ H1
Q(D)⇒ ∇βψ ∈ HQ(curl, D), with curl(∇βψ) = ∇ψ × iβ.

(ii) There holds
∇βH1

Q,0(D) ⊆ HQ,0(curl, D).

If D is additionally bounded, then ∇βH1
Q,0(D) is a closed subspace

of HQ,0(curl, D).

Proof: (i). Let ψ ∈ H1
Q(D). Take some χ ∈ C∞Q,0(D,C3). Note that

(curlχ)j ∈ C∞Q,0(D) for all j = 1, 2, 3. Moreover, ∇ψ × iβ ∈ L2(D,C3).
Then, by the definition of the variational derivative, on the one hand∫

D

∇ψ · curlχdx =
3∑
j=1

∫
D

∂jψ (curlχ)j dx

= −
3∑
j=1

∫
D

ψ ∂j(curlχ)j dx = −
∫
D

ψ div(curlχ) dx = 0,

and on the other hand∫
D

iβψ · curlχdx = i
∫
D

ψ

(
β1
β2
β3

)
·
(
∂2χ3−∂3χ2
∂3χ1−∂1χ3
∂1χ2−∂2χ1

)
dx

= i
∫
D

(β1χ2∂3ψ − β1χ3∂2ψ + β2χ3∂1ψ − β2χ1∂3ψ

+ β3χ1∂2ψ − β3χ2∂1ψ) dx

= i
∫
D

(
β3∂2ψ−β2∂3ψ
β1∂3ψ−β3∂1ψ
β2∂1ψ−β1∂2ψ

)
· χdx =

∫
D

(∇ψ × iβ) · χdx.

Combining both results yields the assertion.
(ii). Let ψ ∈ H1

Q,0(D). From part (i) we know that ∇βψ ∈ HQ(curl, D)
with curl(∇βψ) = ∇ψ × iβ. Moreover, there exists a sequence (ψn)n∈N
in C∞Q,0(D), converging to ψ with respect to ‖ · ‖H1

Q
(D). Note that

∇βψn ∈ C∞Q,0(D,C3) and curl(∇βψn) = ∇ψn× iβ for all n ∈ N. Therefore,
curl(∇βψn)→ curl(∇βψ) in L2(D,C3), as n→∞, and we obtain

‖∇βψn −∇βψ‖L2(D,C3) + ‖ curl(∇βψn)− curl(∇βψ)‖L2(D,C3) → 0.
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Hence, (∇βψ)n∈N converges with respect to ‖ · ‖HQ(curl,D) to ∇βψ, which
shows that ∇βψ belongs to HQ,0(curl, D).
To show the closedness property, let (pn)n∈N be a sequence in H1

Q,0(D)
such that ∇βpn → u in HQ,0(curl, D), as n→∞. In particular, (∇βpn)n∈N
is a Cauchy sequence in L2(D,C3). Therefore, by Friedrich’s inequality
from Theorem 2.72, (pn)n∈N is a Cauchy sequence in L2(D) and thus
convergent to some p ∈ L2(D). We have to show that p ∈ H1

Q,0(D) and
that ∇βp = u. But this follows immediately from Lemma 2.74. �

Lipschitz Continuous Transformations. In the next section we will in-
troduce cell sets of Lipschitz layer type and derive in this setting trace
and extension operators. As mentioned before, this is done by exploiting
results from Subsection 2.1.2. For this a necessary tool is a transformation
which maps Q-periodic functions defined on such cell sets to periodic func-
tions defined on Q3. In this context, Q-periodic and Lipschitz continuous
functions are again important examples for elements in H1

Q(D), if D is
additionally bounded.

Proposition 2.76 Let D ⊆ R3 be a bounded cell set. Furthermore, let
v : EQ(D) → Cd′ be Q-periodic and Lipschitz continuous. Then u :=
v|D ∈ H1

Q(D,Cd′).
Moreover, ∂ju in the variational sense coincides almost everywhere with
the almost everywhere given partial derivative ∂ju in the classical sense.

Proof: The proof follows exactly the lines from the proof of Proposition 2.3
if we replace therein Ω by D, C∞0 by C∞Q,0 and Rd by Q × R, and if we
take additionally into account that the boundary terms on D ∩ (∂Q× R),
for the case that this set is not empty, cancel out each other due to the
Q-periodicity of the integrands. If this set is empty, then we are exactly
in the situation of Proposition 2.3. �

Corollary 2.77 Let D, D′ ⊆ R3 be cell sets, D′ additionally be bounded,
u ∈ C∞Q (D,Cd′) and ũ its Q-periodic extension. Furthermore, let the
mapping Φ̃ : EQ(D′)→ EQ(D) be Lipschitz continuous such that ṽ := ũ◦Φ̃
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is Q-periodic. Then v := ṽ|D′ ∈ H1
Q(D′,Cd′). In particular, in the case

d′ = 1 its variational gradient ∇v is given by

∇v = (Φ̃′)>[(∇u) ◦ Φ̃]

and exists almost everywhere in D′ in the classical sense.

Proof: Since ṽ : EQ(D′) → Cd′ is Q-periodic and Lipschitz continuous,
the assertion follows directly from Proposition 2.76. �

Product Rules. Later we will often multiply elements from Hm
Q (D,Cd′),

HQ(curl, D) and HQ(div, D) with certain cut-off functions to derive further
results. For this purpose, the following presentation will be of special
interest.

Proposition 2.78 Let D ⊆ R3 be a cell set. Furthermore, let ψ ∈ C∞Q (D)
be bounded. Then the following assertions are true.

(a) Let m ∈ N0. If u ∈ Hm
Q (D,Cd′), then the product ψ u ∈ Hm

Q (D,Cd′)
and for α ∈ N3

0 with |α| ≤ m there holds Leibniz’ product rule

∂α(ψ u) =
∑
β≤α

(
α
β

)
∂α−βψ ∂βu.

(b) If u ∈ HQ(curl, D), then the product ψ u ∈ HQ(curl, D) and

curl(ψ u) = ∇ψ × u+ ψ curlu.

(c) If u ∈ HQ(div, D), then the product ψ u ∈ HQ(div, D) and

div(ψ u) = ψ div u+ u · ∇ψ.

In particular, for fixed and bounded ψ ∈ C∞Q (D), the multiplication by ψ is
a linear and bounded operator in Hm

Q (D,Cd′), HQ(curl, D) and HQ(div, D),
respectively.
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Proof: (a). We only show the assertion for the case d′ = 1 since the
generalization to the case d′ > 1 is obvious.
In contrast to the corresponding proof of Proposition 2.21, here we cannot
use an approximation argument so far. Therefore, we show the assertion
by induction with respect to m. In fact, for m = 1 and j ∈ {1, 2, 3}
we obtain for χ ∈ C∞Q,0(D) that ∂j(ψχ) = χ∂jψ + ψ∂jχ and thus, since
∂j(ψχ) ∈ C∞Q,0(D),∫

D

(ψ u) ∂jχdx =
∫
D

u ∂j(ψ χ) dx−
∫
D

∂jψ uχ dx

= −
∫
D

(ψ ∂ju+ u ∂jψ)χdx.

For the inductive step from m to m+ 1, we at first observe that for α̂ ∈ N3
0

with |α̂| = m, for β ∈ N3
0 with β ≤ α̂, for j ∈ {1, 2, 3} and for

β′ := (β1, . . . , βj−1, 0, βj+1, . . . , β3)>,
β′′ := (β1, . . . , βj−1, α̂j + 1, βj+1, . . . , β3)>,

there holds, with e(j) denoting the j-th unit coordinate vector in R3,

α̂j∑
βj=0

(
α̂j
βj

) [
∂α̂+e(j)−βu ∂βψ + ∂α̂−βu ∂β+e(j)

ψ
]

=
α̂j∑
βj=0

(
α̂j
βj

)
∂α̂+e(j)−βu ∂βψ +

α̂j+1∑
βj=1

(
α̂j
βj−1

)
∂α̂+e(j)−βu ∂βψ

= ∂α̂+e(j)−β′u ∂β
′
ψ +

α̂j∑
βj=1

[(
α̂j
βj

)
+
(
α̂j
βj−1

)]
∂α̂+e(j)−βu ∂βψ

+ ∂α̂+e(j)−β′′u ∂β
′′
ψ

=
α̂j+1∑
βj=0

(
α̂j+1
βj

)
∂α̂+e(j)−βu ∂βψ,

where we have used that
(
n+1
k

)
=
(
n
k

)
+
(
n
k−1
)
. Now, we assume that

the assertion is true for some m ∈ N0. Let α ∈ N3
0 with |α| = m + 1
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and write α = α̂ + e(j) with j ∈ {1, 2, 3}. Note that |α̂| = m. Let
χ ∈ C∞Q,0(D). Then, with β ∈ N3

0 such that β ≤ α̂, with j ∈ {1, 2, 3} and
with ∂j(χ∂βψ) = χ∂β+e(j)

ψ + ∂βψ ∂jχ, we obtain∫
D

ψ u∂αχdx =
∫
D

ψ u∂α̂(∂jχ) dx

= (−1)|α̂|
∫
D

(∑
β≤α̂

(
α̂
β

)
∂α̂−βu ∂βψ

)
∂jχdx

= (−1)|α̂|+1
∫
D

∑
β≤α̂

(
α̂
β

)[
∂α̂+e(j)−βu ∂βψ + ∂α̂−βu ∂β+e(j)

ψ
]
χdx

= (−1)|α|
∫
D

∑
β≤α

((
α
β

)
∂α−βu ∂βψ

)
χdx,

where we have applied the observation from above in the last step. For
this see also (1.9).
(b). The proof follows exactly the lines in the proof of Proposition 2.21 if
we replace therein C∞per(Q3,C3) by C∞Q,0(D,C3).
(c). Let χ ∈ C∞Q,0(D). Then ψχ ∈ C∞Q,0(D) and, with ∇(ψχ) = ψ∇χ +
χ∇ψ, we obtain∫

D

(ψu) · ∇χdx =
∫
D

u · ψ∇χdx

= −
∫
D

(div u)ψχdx−
∫
D

u · χ∇ψ dx

= −
∫
D

(ψ div u+ u · ∇ψ)χdx,

as asserted.
And finally, the linearity and boundedness of the multiplication operators
are easy to see. �

Functions with Compact Support. Later when we multiply elements
from Hm

Q (D,Cd′), HQ(curl, D) and HQ(div, D) with certain cut-off func-
tions, the product will often again be multiplied with another cut-off
function. As a consequence, we will then end up in situations where the
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latter product vanishes in a neighborhood of ∂EQ(D). For those situations
the following results will be useful, in particular the integration by parts
formulas.

In the following definition we specify the spaces for functions with compact
support.

Definition 2.79 Let D ⊆ R3 be a cell set and m ∈ N.

(a) The subspace HmQ,0(D,Cd′) of Hm
Q (D,Cd′) is defined by

HmQ,0(D,Cd
′
) :=

{
u ∈ Hm

Q (D,Cd
′
)
∣∣ there exists a bounded cell set

Ω ⊆ D such that EQ(Ω) ⊆ EQ(D) and supp(u) ⊆ Ω
}
.

(b) The subspace HQ,0(curl, D) of HQ(curl, D) is defined by

HQ,0(curl, D) :=
{
u ∈ HQ(curl, D)

∣∣ there exists a bounded cell set

Ω ⊆ D such that EQ(Ω) ⊆ EQ(D) and supp(u) ⊆ Ω
}
.

(c) The subspace HQ,0(div, D) of HQ(div, D) is defined by

HQ,0(div, D) :=
{
u ∈ HQ(div, D)

∣∣ there exists a bounded cell set

Ω ⊆ D such that EQ(Ω) ⊆ EQ(D) and supp(u) ⊆ Ω
}
.

Lemma 2.80 Let Ω, D ⊆ R3 be cell sets such that Ω is bounded and
EQ(Ω) ⊆ EQ(D). Then there exists χ ∈ C∞Q,0(D) with χ(x) = 1 for all
x ∈ Ω.

Proof: By compactness of Ω and by Q-periodicity of EQ(Ω) and EQ(D),
there exists ε > 0 such that dist

(
EQ(Ω), ∂EQ(D)

)
> ε. Let φ ε

4
be the

mollifier from (2.6) and set

χ̃(x) :=
∫
EQ(Ω)+B3(0, ε4 )

φ ε
4
(x− y) dy, x ∈ EQ(D).
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Then supp(χ̃) ⊆ EQ(Ω) + B3(0, ε2 ) and χ̃(x) = 1 for all x ∈ EQ(Ω). Hence,
χ := χ̃|D has the desired properties. �

Lemma 2.81 Let D ⊆ R3 be a cell set. Then the following assertions are
true.

(i) u ∈ HQ,0(curl, D) ⇒
∫
D

curlu(x) dx = 0.

(ii) u ∈ HQ,0(div, D) ⇒
∫
D

div u(x) dx = 0.

Proof: We only show the assertion for part (i), as for part (ii) the same
arguments can be applied.
By assumption, there exists a bounded cell set Ω ⊆ D such that EQ(Ω) ⊆
EQ(D) and supp(u) ⊆ Ω. Furthermore, due to Lemma 2.80, there exists
χ0 ∈ C∞Q,0(D) with χ0(x) = 1 for all x ∈ Ω. Let e(j) denote the j-th
unit coordinate vector in R3 and let (curlu)j be the j-th component of u,
j = 1, 2, 3. Let j ∈ {1, 2, 3} and set χ(x) := e(j)χ0(x), for x ∈ D. Then
χ ∈ C∞Q,0(D,C3) with curlχ = 0 on Ω, and therefore∫

D

(curlu)j(x) dx =
∫
D

curlu(x) · χ(x) dx =
∫
D

u(x) · curlχ(x) dx

=
∫

supp(u)
u(x) · curlχ(x) dx = 0.

From this the assertion follows. �

Now, we are in a position to prove the following integration by parts
formulas.

Proposition 2.82 Let D ⊆ R3 be a cell set and ψ ∈ C∞Q (D) be bounded.
Then the following assertions are true.

(a) If u ∈ Hm
Q (D,Cd′) and ψ u ∈ HmQ,0(D,Cd′), then for all α ∈ N3

0 with
|α| ≤ m there holds∫

D

∂αu(x)ψ(x) dx = (−1)|α|
∫
D

u(x) ∂αψ(x) dx.
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(b) If u ∈ HQ(curl, D) and ψ u ∈ HQ,0(curl, D), then∫
D

ψ(x) curl u(x) dx = −
∫
D

∇ψ(x)× u(x) dx.

(c) If u ∈ HQ(div, D) and ψ u ∈ HQ,0(div, D), then∫
D

ψ(x) div u(x) dx = −
∫
D

∇ψ(x) · u(x) dx.

Proof: (a). By assumption, there exists a bounded cell set Ω ⊆ D
such that EQ(Ω) ⊆ EQ(D) and supp(ψ u) ⊆ Ω. Furthermore, due to
Lemma 2.80, there exists χ ∈ C∞Q,0(D) with χ(x) = 1 for all x ∈ Ω. In
particular, ψ χ ∈ C∞Q,0(D). Now, let α ∈ N3

0 with |α| ≤ m. Then, applying
Leibniz’ product rule,∫

D

∂αu(x)ψ(x) dx =
∫
D

∂αu(x)ψ(x)χ(x) dx

= (−1)|α|
∫
D

u(x) ∂αψ(x)χ(x) dx

+ (−1)|α|
∑

0 6=β≤α

(
α
β

) ∫
Ω
u(x) ∂α−βψ(x) ∂βχ(x)︸ ︷︷ ︸

=0

dx.

Taking now into account that for the integral in the left summand only
the set Ω is relevant and that χ ≡ 1 on Ω, we have shown the assertion.
(b), (c). The assertion follows immediately by combining the statements
from Proposition 2.78 and Lemma 2.81. �

The next proposition shows how the spaces HmQ,0(D) and HQ,0(curl, D)
are related to the spaces Hm

Q,0(D) and HQ,0(curl, D), respectively.

Proposition 2.83 Let D ⊆ R3 be a cell set. Then the following assertions
are true.

(a) HmQ,0(D,Cd′) ⊆ Hm
Q,0(D,Cd′).

(b) HQ,0(curl, D) ⊆ HQ,0(curl, D).
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Proof: We start with part (b) and postpone part (a) to the end of this
proof.
(b). Let u ∈ HQ,0(curl, D). By assumption, there exists a bounded cell
set Ω ⊆ D such that EQ(Ω) ⊆ EQ(D) and supp(u) ⊆ Ω. Due to the
compactness of Ω and the Q-periodicity of EQ(Ω) and EQ(D), there exists
δ > 0 such that dist

(
EQ(Ω), ∂EQ(D)

)
> δ. Let 0 < ε < δ/3 and set

uε := ũε|D, where

ũε(x) :=
∫

Ω
φ̃ε(x− y)u(y) dy, x ∈ EQ(D),

and φ̃ε is the Q-periodic extension of the mollifier given in (2.6). Note
that ũε is a smooth Q-periodic function with ũε(x) = 0 for x ∈ EQ(D) \(
EQ(Ω) + B3(0, δ3 )

)
. Hence, uε ∈ C∞Q,0(D,C3).

Let x ∈ D. Then φ̃ε(x− ·) ∈ C∞Q (D) and by part (b) of Proposition 2.82

curluε(x) =
∫

Ω
∇x φ̃ε(x− y)× u(y) dy = −

∫
Ω
∇y φ̃ε(x− y)× u(y) dy

=
∫

Ω
φ̃ε(x− y) curl u(y) dy =: (curlu)ε(x).

Now, let D̃ :=
⋃
|µ|∞≤1

(
{p(µ)} + D

)
be the union of D and its eight

neighbors from EQ(D), where p(µ) is the lattice vector given in (2.7).
Moreover, let v ∈ {u, curlu} and ṽ be the Q-periodic extension of v from
D to D̃ and then be extended by zero to R3 \ D̃. And finally set

ṽε(x) :=
∫
R3
φε(x− y) ṽ(y) dy, x ∈ R3.

Then ṽε(x) = vε(x) for all x ∈ D and moreover ṽ ∈ L2(R3,C3) with
ṽ = v almost everywhere in D. Then from Theorem 2.50 we conclude that
ṽε → ṽ in L2(R3,C3) and therefore in particular vε = ṽε|D → ṽ|D = v in
L2(D,C3), as ε→ 0. This means that uε → u with respect to ‖ ·‖H(curl,D),
as ε→ 0, and the proof for part (b) is complete.
(a). The proof follows very closely the lines from part (b), where we now
cite part (a) from Proposition 2.82. The details are omitted. �
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2.2.3. Helmholtz Decompositions

In the next section, when we introduce cell sets D ⊆ R3 of Lipschitz layer
type, we will need a compactness result as in Theorem 2.71, but now
for a “divergence free” subset of functions from the space HQ(curl, D)
which do not have to vanish at the boundary. To derive such a result,
we will apply the curl-preserving transformation from the next section
to trace back to cuboids and to exploit already derived results therein.
As we will see later, this transformation will force us to consider matrix-
weighted L2-inner products, similarly as in [34]. Therefore, we have to
improve the result from Theorem 2.71 by allowing any matrix valued
function A ∈ L∞(D,C3×3) in the sense of the setting from Definition 2.69.
This is one reason for the introduction of the Helmholtz decompositions
here. Another reason is its importance in the context of proofs for unique
solvability of boundary value problems in variational form in the space
HQ(curl, D), see for instance Theorem 4.14.

Definition 2.84 Let D ⊆ R3 be a cell set. Suppose A ∈ L∞(D,C3×3)
such that A(x) is symmetric for a.a. x ∈ D and Re(z>A(x)z) ≥ c|z|2 for
all z ∈ C3, a.a. x ∈ D and some constant c > 0. Furthermore, let β ∈ R3.
The space L2(divβ,A 0, D) is defined by

L2(divβ,A 0, D) :=
{
u ∈ L2(D,C3)

∣∣
∀ψ ∈ H1

Q,0(D) : (Au | ∇βψ)L2(D,C3) = 0
}
.

If β = 0 and A = I, where I denotes the identity matrix, then we will drop
the subscript β and A in the symbol L2(divβ,A 0, D), respectively.

For the direct sum in the next theorem recall (1.10).

Theorem 2.85 Let D ⊆ R3 be a bounded cell set and β ∈ R3. Then

(i) L2(D,C3) = L2(divβ,A 0, D)⊕∇βH1
Q,0(D),

(ii) HQ,0(curl, D) = HQ,0(curl,divβ,A 0, D)⊕∇βH1
Q,0(D),

(iii) HQ(curl, D) = HQ(curl,divβ,A 0, D)⊕∇βH1
Q,0(D).
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Remark 2.86 The Helmholtz decompositions from Theorem 2.85 have to
be read in the following way: u = ũ+ v, where v is of the form v = ∇βp
with p ∈ H1

Q,0(D) uniquely determined!

Remark 2.87 Provided X is a Banach space, it is a well-known result
from functional analysis that to a direct sum X = U ⊕V there corresponds
a unique projection P ∈ L(X) such that P (X) = U and (I − P )(X) = V .

Proof: (Theorem 2.85) (i). We show that L2(divβ,A 0, D) is a closed
subspace of L2(D,C3). In fact, let (un)n∈N be a sequence in the space
L2(divβ,A 0, D), converging to some u ∈ L2(D,C3) with respect to the
norm ‖ · ‖L2(D,C3). Note that Aun → Au in L2(D,C3), as n → ∞. Let
ψ ∈ H1

Q,0(D). Then

(Au | ∇βψ)L2(D,C3) = lim
n→∞

(Aun | ∇βψ)L2(D,C3 = 0.

We show that ∇βH1
Q,0(D) is a closed subspace of L2(D,C3). In fact, let

(pn)n∈N be a sequence in H1
Q,0(D) such that ∇βpn → u in L2(D,C3). In

particular, (∇βpn)n∈N is a Cauchy sequence in L2(D,C3). Therefore, by
Friedrich’s inequality from Theorem 2.72, (pn)n∈N is a Cauchy sequence
in L2(D) and thus convergent to some p ∈ L2(D). We have to show
that p ∈ H1

Q,0(D) and that ∇βp = u. But this follows immediately from
Lemma 2.74.
We show that L2(divβ,A 0, D)∩∇βH1

Q,0(D) = {0}. In fact, let u belong to
the intersection of L2(divβ,A 0, D) and ∇βH1

Q,0(D). Then u = ∇βψ with
ψ ∈ H1

Q,0(D) and we obtain

0 = Re (Au | ∇βψ)L2(D,C3) = Re
∫
D

∇βψ(x)
>
A(x)∇βψ(x) dx

≥ c
∫
D

|∇βψ(x)|2 dx = c ‖∇βψ‖2
L2(D,C3).

Hence, ∇βψ = 0, and with Friedrich’s inequality we obtain ψ = 0, i.e.,
u = 0.
And finally, we show that L2(D,C3) ⊆ L2(divβ,A 0, D) +∇βH1

Q,0(D). In
fact, let u ∈ L2(D,C3). Consider the sesquilinear form a : H1

Q,0(D) ×
H1
Q,0(D)→ C and the linear functional ` : H1

Q,0(D)→ C given by

a(ψ, p) := (∇βψ |A∇βp)L2(D,C3) and `(ψ) := (∇βψ |Au)L2(D,C3) .
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Then |`(ψ)| ≤ ‖∇βψ‖L2(D,C3) ‖Au‖L2(D,C3) ≤ c ‖ψ‖H1
Q

(D) and analogously
|a(ψ, p)| ≤ c ‖ψ‖H1

Q
(D) ‖p‖H1

Q
(D) for all ψ, p ∈ H1

Q,0(D). Furthermore,

Re a(ψ,ψ) = Re
∫
D

(∇βψ(x))>A(x)∇βψ(x) dx

≥ C
∫
D

|∇βψ(x)|2 dx ≥ C ‖ψ‖2
H1
Q

(D),

for all ψ ∈ H1
Q,0(D), where we have applied Corollary 2.73. Therefore,

we are in the situation of Theorem A.8 and obtain a unique p ∈ H1
Q,0(D)

such that (A∇βp | ∇βψ)L2(D,C3) = (Au | ∇βψ)L2(D,C3) for all ψ ∈ H1
Q,0(D).

Set ũ := u−∇βp. Then, for arbitrary ψ ∈ H1
Q,0(D), we arrive at

(Aũ | ∇βψ)L2(D,C3) = (Au | ∇βψ)L2(D,C3) − (A∇βp | ∇βψ)L2(D,C3) = 0.

(ii). We show that HQ,0(curl,divβ,A 0, D) is a closed subspace of the space
HQ,0(curl, D). In fact, let (un)n∈N be a sequence in HQ,0(curl,divβ,A 0, D),
converging to some u ∈ HQ,0(curl, D) with respect to ‖ · ‖HQ(curl,D). In
particular, un → u and Aun → Au, both in L2(D,C3). Let ψ ∈ H1

Q,0(D).
Then

(Au | ∇βψ)L2(D,C3) = lim
n→∞

(Aun | ∇βψ)L2(D,C3 = 0.

We have to show that ∇βH1
Q,0(D) is a closed subspace of HQ,0(curl, D).

But this was already done in Proposition 2.75
We have to show that HQ,0(curl,divβ,A 0, D) ∩ ∇βH1

Q,0(D) = {0}. But
this follows with exactly the same arguments as in the corresponding step
from part (i).
We have to show that HQ,0(curl, D) ⊆ HQ,0(curl,divβ,A 0, D)+∇βH1

Q,0(D).
In fact, let u ∈ HQ,0(curl, D). We consider again the sesquilinear form
a : H1

Q,0(D) ×H1
Q,0(D) → C and the linear functional ` : H1

Q,0(D) → C
given by

a(ψ, p) := (∇βψ |A∇βp)L2(D,C3) and `(ψ) := (∇βψ |Au)L2(D,C3)

and repeat the arguments from the corresponding step in part (i) to obtain a
unique p ∈ H1

Q,0(D) such that (A∇βp | ∇βψ)L2(D,C3) = (Au | ∇βψ)L2(D,C3)
for all ψ ∈ H1

Q,0(D). We set again ũ := u−∇βp and easily check that ũ
belongs to HQ,0(curl,divβ,A 0, D).
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(iii). The assertion is proven very similar to part (ii). We ommit the
details. �

Now, we are in a position to improve the result from Theorem 2.71 by
allowing any matrix valued function A ∈ L∞(D,C3×3) as in the setting of
Definition 2.69.

Theorem 2.88 Let D ⊆ R3 be a bounded cell set. Then the embedding
HQ,0(curl,divβ,A 0, D) id

↪−→ L2(D,C3) is compact.

Proof: We follow the lines in the proof of [34, Lemma 5.31]. Let (un)n∈N
be a bounded sequence in HQ,0(curl,divβ,A 0, D). We decompose un =
ũn +∇βpn according to

HQ,0(curl, D) = HQ,0(curl,divβ 0, D)⊕∇βH1
Q,0(D),

for all n ∈ N, and have, thanks to Remark 2.87, that (ũn)n∈N is a bounded
sequence in HQ,0(curl,divβ 0, D) with respect to ‖ · ‖HQ(curl,D). From
Theorem 2.71 we conclude that there exists a subsequence (denoted by
the same symbol) such that (ũn)n∈N is convergent in L2(D,C3). On the
other hand, ũn = un −∇βpn is just the decomposition with respect to

L2(D,C3) = L2(divβ,A 0, D)⊕∇βH1
Q,0(D).

Taking again Remark 2.87 into account, we conclude that (un)n∈N is a
Cauchy sequence in L2(D,C3) and thus convergent therein. �

2.3. Functions on Cell Sets of Lipschitz Layer
Type

In this section we focus on cell sets of special type, which will naturally arise
later when we pose scattering problems on Q-periodic surfaces. Moreover,
for those cell sets we can introduce trace and extension operators by only
slightly modifying the concepts in [34].
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2.3.1. Geometrical Setting and First Consequences

Definition 2.89 We call an open set D ⊆ R3 a cell set of Lipschitz layer
type, if D is a cell set and if there exist Q-periodic and Lipschitz-continuous
functions fj : R2 → R, j = 0, 1, such that f0(ξ) < f1(ξ) for all ξ ∈ R2 and

EQ(D) =
{
x ∈ R3 | f0(x̃) < x3 < f1(x̃)

}
.

Let D ⊆ R3 be a cell set of Lipschitz layer type with corresponding
functions fj , j = 0, 1, as in Definition 2.89. We set

Γ̃j :=
{
x ∈ R3 | x̃ ∈ R2 and x3 = fj(x̃)

}
, j = 0, 1, (2.12a)

Γj :=
{
x ∈ R3 | x̃ ∈ Q and x3 = fj(x̃)

}
, j = 0, 1, (2.12b)

Γεj := D ∩
(
Γ̃j + B3(0, ε)

)
, j = 0, 1, 0 < ε < dist(Γ0,Γ1). (2.12c)

We continue with the following result, which transfers the notion of a
partition of unity to the Q-periodic setting. This tool plays an important
role for the derivation of denseness results and for the construction of trace
and extension operators. We choose a partition of unity which consists
of three members. This has the advantage that functions defined on D
can be cut-off only near the boundary Γ0 and Γ1, which is absolutely
sufficient and provides enough information for the definition of the trace
operators.

Theorem 2.90 Let D ⊆ R3 be a cell set of Lipschitz layer type and
recall (2.12a) for the definition of the set Γ̃j, j = 0, 1. Then there exist
φ̃j ∈ C∞Q (R3), j = 0, 1, 2, such that

(i) φ̃j ≥ 0 on R3, j = 0, 1, 2,

(ii)
∑2
j=0 φ̃j(x) = 1 for all x ∈ EQ(D),

(iii) φ̃0 ≡ 0 in a neighborhood of Γ̃1 and φ̃1 ≡ 0 in a neighborhood of Γ̃0,
as well as φ̃2 ≡ 0 in a neighborhood of Γ̃0 ∪ Γ̃1.
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Proof: Since D is of Lipschitz layer type, we have δ := dist(Γ̃0, Γ̃1) > 0.
Let 0 < ε < δ

3 . Set Ω0 := D ∩
(
Γ̃0 + B3(0, ε)

)
, Ω1 := D ∩

(
Γ̃1 + B3(0, ε)

)
and Ω2 := D \ (Ω0 ∪ Ω1). Note that Ωj are cell sets, j = 0, 1, 2. Let
φε/3 be the mollifier given in (2.6) and define similarly as in the proof of
Lemma 2.80

ψ̃j(x) :=
∫
EQ(Ωj)+B3(0,ε/3)

φε/3(x− y) dy, x ∈ R3, j = 0, 1, 2.

Then the functions φ̃j : R3 → R, j = 0, 1, 2, given by

φ̃0 := ψ̃0, φ̃1 := ψ̃1(1− ψ̃0) and φ̃2 := ψ̃2(1− ψ̃0)(1− ψ̃1),

have the desired properties, if we take into account the fact as well that
the equation

∑2
j=0 φ̃j = 1−

∏2
j=0(1− ψ̃j) holds. �

Now, we fix characteristic quantities describing D, similarly as the authors
of [34] have done for general Lipschitz domains, see Subsection 2.1.3.

Let D ⊆ R3 be a cell set of Lipschitz layer type with corresponding
functions fj and boundary patches Γj from (2.12b), j = 0, 1, let L3 ∈ R
such that

L3 > max
{
f1(ξ)− f0(ξ) | ξ ∈ Q

}
> 0

and set

Q3 := Q× (−L3, L3), Q−3 := Q× (−L3, 0), Q+
3 := Q× (0, L3).

We introduce the mappings

Ψ̃0(x) :=
(
x1, x2, f0(x̃)− x3

)>
, x ∈ Q−3 ,

Ψ̃1(x) :=
(
x1, x2, f1(x̃) + x3

)>
, x ∈ Q−3 ,

and their extensions (and restrictions) to Q× {0}, that is,

Ψ0(x) :=

 x1
x2
f0(x̃)

 and Ψ1(x) :=

 x1
x2
f1(x̃)

 , x ∈ Q.

Again thanks to Rademacher’s result, we have that fj is differentiable
almost everywhere on Q and that its gradient is essentially bounded by the
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Lipschitz constant of fj . Therefore, Ψj is differentiable almost everywhere
on Q and the surface Γj can be parametrized by y = Ψj(x) for x ∈ Q,
with outward pointing normal unit vector nj(y) at a.a. y = Ψj(x) ∈ Γj
given by

nj(y) = ∓ 1
ρj(x)

(
∂Ψj

∂x1
(x)× ∂Ψj

∂x2
(x)
)
,

where in “∓” the minus sign holds for j = 0 and the plus sign for j = 1
and where

ρj(x) :=
∣∣∣∣∂Ψj

∂x1
(x)× ∂Ψj

∂x2
(x)
∣∣∣∣ =

√
1 + |∇fj(x)|2, for a.a. x ∈ Q.

(2.13)
We set Uj := Ψ̃j(Q−3 ), j = 0, 1. Note that the Jacobian Ψ̃′j(x) ∈ R3×3 is
given by

Ψ̃′j(x) =

 1 0 0
0 1 0

∂fj
∂x1

(x̃) ∂fj
∂x2

(x̃) ∓1

 , for a.a. x ∈ Q−3 ,

where again in “∓” the minus sign holds for j = 0 and the plus sign for
j = 1. Hence, these Jacobians are again regular with constant determinant
det Ψ̃′j(x) = ∓1 and Ψ̃j are isomorphisms from Q−3 to Uj for j = 0, 1.
Furthermore, we define

Fj(x) :=
[
∂Ψj

∂x1
(x)
∣∣∣∣∂Ψj

∂x2
(x)
∣∣∣∣∂Ψj

∂x1
(x)× ∂Ψj

∂x2
(x)
]
, for a.a. x ∈ Q.

Finally, we choose φ̃j ∈ C∞Q (R3) from Theorem 2.90 and set φj := φ̃j |D,
j = 0, 1, 2. Then

• φj ∈ C∞Q (D) and φj ≥ 0 on D, j = 0, 1, 2,

•
∑2
j=0 φj(x) = 1 for all x ∈ D,

• φ0 ≡ 0 in a neighborhood of Γ1 and φ1 ≡ 0 in a neighborhood of Γ0,
as well as φ2 ≡ 0 in a neighborhood of Γ0 ∪ Γ1.

Assumption 2.91 Let D ⊆ R3 be a cell set of Lipschitz layer type with
corresponding number L3, boundary Γj, mapping Ψ̃j from Q−3 to Uj, with
their restriction Ψj from Q to Γj, j = 0, 1, and partition of unity φj,
j = 0, 1, 2, from above.



106 2. Sobolev Spaces for Q-periodic Functions

The next lemma puts two kinds of neighborhoods in relation to one another.
Its statements are used several times in the sequel and their proofs make
explicitly use of the Lipschitz continuity of the considered surface patches
of D.

Lemma 2.92 Let D ⊆ R3 be a cell set of Lipschitz layer type with corre-
sponding functions f0 and f1 as in Definition 2.89. Recall (2.12a) for the
set Γ̃j and define for t > 0

Vj(t) :=
{
x ∈ R3 ∣∣ |x3 − fj(x̃)| < t

}
, j = 0, 1.

Choose some δ ∈ R such that 0 < δ < dist(Γ̃0, Γ̃1). Furthermore, let
a := (0, 0, a3)> ∈ R3 be given with a3 ≥ L+ 2, where L > 0 denotes the
maximum of the Lipschitz constants of f0 and f1, and let j ∈ {0, 1}. Then
the following statements are true.

(i) For all t > 0 there exists ε > 0 such that Γ̃j + B3(0, ε) ⊆ Vj(t).

(ii) Vj(t) + B3(0, ε) ⊆ Γ̃j + B3(0, δ′), for all 0 ≤ ε < t+ ε ≤ δ′ ≤ δ.

(iii) For all 0 < ε ≤ 1
L+1+a3

δ
2 there holds

• x ∈ D \ V1(δ) ∧ y ∈ B3[x+ εa, ε] ⇒ y3 ≤ f1(ỹ)− δ
2 ,

• x ∈ D \ V0(δ) ∧ y ∈ B3[x− εa, ε] ⇒ y3 ≥ f0(ỹ) + δ
2 .

(iv) For all ε > 0 there holds

• x ∈ D ∧ y ∈ B3[x+ εa, ε] ⇒ y3 ≥ f0(ỹ) + ε,

• x ∈ D ∧ y ∈ B3[x− εa, ε] ⇒ y3 ≤ f1(ỹ)− ε.

(v) In particular, for all 0 < ε ≤ 1
L+1+a3

δ
2 there holds

• x ∈ D \ V1(δ) ⇒ B3[x+ εa, ε] ⊆ EQ(D) \
(
V1( δ2 ) ∪ V0(ε)

)
,

• x ∈ D \ V0(δ) ⇒ B3[x− εa, ε] ⊆ EQ(D) \
(
V0( δ2 ) ∪ V1(ε)

)
.

(vi) For all ε > 0 there holds

• x ∈ D ∩ V1(ε) ∧ y ∈ D ⇒ y /∈ B3(x+ εa, ε),

• x ∈ D ∩ V0(ε) ∧ y ∈ D ⇒ y /∈ B3(x− εa, ε).
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Proof: For part (iii) and (iv) we were inspired by the proof from [34,
Theorem 5.3].
(i). Let t > 0 and set ε := t

L+1 . Let x ∈ Γ̃j + B3(0, ε), i.e., x = y + z with
y ∈ Γ̃j and z ∈ B3(0, ε). Then

|x3 − fj(x̃)| = |fj(ỹ) + z3 − fj(ỹ + z̃)| ≤ L|z̃|+ |z3| < (L+ 1)ε = t.

(ii). At first we consider the case ε = 0, i.e., B3(0, ε) = ∅. Let x ∈ Vj(t).
Then by definition |x3 − fj(x̃)| < t. Now define y := (x̃, fj(x̃))>. Then
there holds for z := x − y that |z| = |x − y| = |x3 − fj(x̃)| < t ≤ δ′.
Now, let ε > 0 such that t + ε ≤ δ′. Then from the case ε = 0 we
conclude that Vj(t) ⊆ Γ̃j + B3(0, δ′ − ε). Therefore, Vj(t) + B3(0, ε) ⊆
Γ̃j + B3(0, δ′ − ε) + B3(0, ε). Since B3(0, δ′ − ε) + B3(0, ε) = B3(0, δ′), the
assertion follows.
(iii). Let x ∈ D \ V1(δ). Take some y ∈ B3[x+ εa, ε]. Hence, |x̃− ỹ| ≤ ε.
Then

y3 ≤ x3 + εa3 + ε ≤ f1(x̃)− δ + ε(1 + a3)
= f1(x̃)− f1(ỹ) + f1(ỹ)− δ + ε(1 + a3)
≤ |f1(x̃)− f1(ỹ)|+ f1(ỹ)− δ + ε(1 + a3)
≤ L|x̃− ỹ|+ f1(ỹ)− δ + ε(1 + a3)
≤ f1(ỹ)− δ + ε(L+ 1 + a3) ≤ f1(ỹ)− δ

2 .

The second assertion is shown analogously.
(iv). Take some x ∈ D and some y ∈ B3[x + εa, ε]. Hence, |x̃ − ỹ| ≤ ε.
Then

y3 ≥ x3 + εa3 − ε > f0(x̃) + ε(a3 − 1)
= f0(ỹ)−

(
f0(ỹ)− f0(x̃)

)
+ ε(a3 − 1)

≥ f0(ỹ)− |f0(ỹ)− f0(x̃)|+ ε(a3 − 1)
≥ f0(ỹ)− L|ỹ − x̃|+ ε(a3 − 1)
≥ f0(ỹ) + ε(a3 − 1− L) ≥ f0(ỹ) + ε.

The second assertion is shown analogously.
(v). This is a combination of part (iii) and (iv).
(vi). Let x ∈ D ∩ V1(ε) and y ∈ D. Then x3 > f1(x̃) − ε. If |ỹ − x̃| > ε,
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then we obtain immediately |x+ εa− y| ≥ |x̃− ỹ| > ε. So let |ỹ − x̃| ≤ ε.
Then we conclude

|x+ εa− y| ≥ |x3 + εa3 − y3| ≥ x3 + εa3 − y3

> f1(x̃)− ε+ εa3 − y3

= f1(ỹ)− y3 −
(
f1(ỹ)− f1(x̃)

)
+ ε(a3 − 1)

≥ −|f1(ỹ)− f1(x̃)|+ ε(a3 − 1)
≥ −L|ỹ − x̃|+ ε(a3 − 1) ≥ ε(a3 − L− 1) ≥ ε.

The second assertion is shown analogously. �

Denseness Results. Recall the integral identities (A.6) and consider D ⊆
R3 to be a cell set of Lipschitz layer type. Due to the Q-periodicity, it is easy
to show that for ϕ,ψ ∈ C1

Q(D)∩CQ(D) and u, v ∈ C1
Q(D,C3)∩CQ(D,C3)

there holds ∫
D

(ϕ∇ψ + ψ∇ϕ) dx =
1∑
j=0

∫
Γj
ϕψ n ds, (2.14a)

∫
D

(curlu · v − u · curl v) dx =
1∑
j=0

∫
Γj

(n× u) · v ds, (2.14b)

∫
D

(ψ div u+ u · ∇ψ) dx =
1∑
j=0

∫
Γj
ψ (n · u) ds, (2.14c)

where n denotes the outward pointing normal unit vector on D. There-
fore, C∞Q (D) is a subspace of Hm

Q (D) and C∞Q (D,C3) is a subspace of
HQ(curl, D) and of HQ(div, D). The next important theorem shows that
these subspaces are even dense therein.

Theorem 2.93 Let D ⊆ R3 be a cell set of Lipschitz layer type. Then
the following assertions are true.

(a) The space C∞Q (D,Cd′) is dense in Hm
Q (D,Cd′).

(b) The space C∞Q (D,C3) is dense in HQ(curl, D).
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(c) The space C∞Q (D,C3) is dense in HQ(div, D).

Proof: Recall Γ̃j , j = 0, 1, from (2.12a) and φj , j = 0, 1, 2, from Assump-
tion 2.91. Note that φj ∈ C∞Q (D). Moreover, there exists δ > 0 such that
supp(φ0) ⊆ D \Γδ1, supp(φ1) ⊆ D \Γδ0 and supp(φ2) ⊆ D \

(
Γδ0∪Γδ1

)
, with

Γδj from (2.12c), j = 0, 1. Set a := (0, 0, L+ 2)>, where L > 0 denotes the
maximum of the Lipschitz constants from f0 and f1.
We start with part (b), continue with part (c) and postpone part (a) to
the end of this proof.
(b) Let u ∈ HQ(curl, D). Set u(j) := φju. Then u(j) ∈ HQ(curl, D) and
supp(u(j)) ⊆ supp(φj), j = 0, 1, 2. Furthermore,

∑2
j=0 u

(j) = u. We
define for 0 < ε < 1

2δ

u(0)
ε (x) :=

∫
D

φ̃ε(x+ εa− y)u(0)(y) dy, x ∈ D,

u(1)
ε (x) :=

∫
D

φ̃ε(x− εa− y)u(1)(y) dy, x ∈ D,

u(2)
ε (x) :=

∫
D

φ̃ε(x− y)u(2)(y) dy, x ∈ D,

where φ̃ε denotes the Q-periodic extension of φε from (2.6). Note that
u

(j)
ε ∈ C∞Q (D,C3), j = 0, 1, 2. Furthermore, by part (iv) from Lemma 2.92,

we have for all x ∈ D that φ̃ε(x+εa−·) and φ̃ε(x−εa−·) vanish in a neigh-
borhood of Γ̃0 and Γ̃1, respectively. Therefore, thanks to Proposition 2.82,
we obtain for x ∈ D

curlu(0)
ε (x) =

∫
D

∇x φ̃ε(x+ εa− y)× u(0)(y) dy

= −
∫
D

∇y φ̃ε(x+ εa− y)× u(0)(y) dy

=
∫
D

φ̃ε(x+ εa− y) curlu(0)(y) dy =: (curlu(0))ε(x).

And analogously, we have for x ∈ D

curlu(1)
ε (x) =

∫
D

φ̃ε(x− εa− y) curl u(1)(y) dy =: (curlu(1))ε(x),
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curlu(2)
ε (x) =

∫
D

φ̃ε(x− y) curlu(2)(y) dy =: (curlu(2))ε(x).

Now we similarly proceed as at the end of the proof of Proposition 2.83
and set D̃ :=

⋃
|µ|∞≤1

(
{p(µ)}+D

)
. Moreover, let v(j) ∈ {u(j), curlu(j)}

and ṽ(j) be the Q-periodic extension of v(j) from D to D̃ and then be
extended by zero to R3 \ D̃, j = 0, 1, 2. And finally set

ṽ(0)
ε (x) :=

∫
R3
φε(x+ εa− y) ṽ(0)(y) dy, x ∈ R3,

ṽ(1)
ε (x) :=

∫
R3
φε(x− εa− y) ṽ(1)(y) dy, x ∈ R3,

ṽ(2)
ε (x) :=

∫
R3
φε(x− y) ṽ(2)(y) dy, x ∈ R3.

Let j ∈ {0, 1, 2}. Then ṽ
(j)
ε (x) = v

(j)
ε (x) for all x ∈ D and moreover

ṽ(j) ∈ L2(R3,C3) with ṽ(j) = v(j) almost everywhere in D. Then from
Theorem 2.50 we conclude that ṽ(j)

ε → ṽ(j) in L2(R3,C3) and therefore
in particular v(j)

ε = ṽ
(j)
ε |D → ṽ(j)|D = v(j) in L2(D,C3), as ε → 0. This

means that u(j)
ε → u(j) with respect to ‖ · ‖H(curl,D), as ε→ 0.

From this we finally conclude that for uε :=
∑2
j=0 u

(j)
ε there holds uε ∈

C∞Q (D,C3) and uε =
∑2
j=0 u

(j)
ε →

∑2
j=0 u

(j) = u in HQ(curl, D), as
ε→ 0, and the proof is complete.
(c) Let u ∈ HQ(div, D). We define u(j) and u(j)

ε , j = 0, 1, 2, as in part (b)
and obtain with the same arguments, and again thanks to Proposition 2.82,
for x ∈ D

div u(0)
ε (x) =

∫
D

∇x φ̃ε(x+ εa− y) · u(0)(y) dy

= −
∫
D

∇y φ̃ε(x+ εa− y) · u(0)(y) dy

=
∫
D

φ̃ε(x+ εa− y) div u(0)(y) dy =: (div u(0))ε(x),

and analogously

div u(1)
ε (x) =

∫
D

φ̃ε(x− εa− y) div u(1)(y) dy =: (div u(1))ε(x),
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div u(2)
ε (x) =

∫
D

φ̃ε(x− y) div u(2)(y) dy =: (div u(2))ε(x).

Now we follow the lines as in part (b) to obtain the desired result.
(a) We only show the assertion for the case d′ = 1 as the generalization
for the case d′ > 1 is obvious.
Let u ∈ Hm

Q (D). We define u(j) and u
(j)
ε , j = 0, 1, 2, as in part (b) and

obtain with the same arguments, and again thanks to Proposition 2.82,
for α ∈ N3

0, |α| ≤ m, and x ∈ D

∂αu(0)
ε (x) =

∫
D

∂αx φ̃ε(x+ εa− y)u(0)(y) dy

= (−1)|α|
∫
D

∂αy φ̃ε(x+ εa− y)u(0)(y) dy

=
∫
D

φ̃ε(x+ εa− y) ∂αu(0)(y) dy =: (∂αu(0))ε(x),

and analogously

∂αu(1)
ε (x) =

∫
D

φ̃ε(x− εa− y) ∂αu(1)(y) dy =: (∂αu(1))ε(x),

∂αu(2)
ε (x) =

∫
D

φ̃ε(x− y) ∂αu(2)(y) dy =: (∂αu(2))ε(x).

Now we follow again the lines as in part (b) to obtain the desired result
and the proof is complete. �

Lower and Upper Boundary Patches. One of the most important prop-
erties of the geometrical structure of a cell set D ⊆ R3 of Lipschitz layer
type is, that only the lower and upper boundary patch Γ0 and Γ1, described
by the graph of the function f0 and f1, respectively, is interesting, since
contributions of the side patches on intergrals over the whole boundary
∂D cancel out in the Q-periodic framework. Therefore it seems quite
natural to focus on the lower and upper boundary patch separately and to
introduce also separate trace and extension operators. However, to realize
this concept, additional function spaces have to be defined.
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Let D ⊆ R3 be a cell set of Lipschitz layer type with characteristic
quantities as in Assumption 2.91. Furthermore, let m ∈ N0 and j ∈ {0, 1}.
We introduce

CmQ,0,Γj (D,C
d′) :=

{
u ∈ CmQ (D,Cd

′
)
∣∣ ∃ ε > 0 : supp(u) ∩ Γεj = ∅

}
,

C∞Q,0,Γj (D,C
d′) :=

∞⋂
k=0

CkQ,0,Γj (D,C
d′).

As before, in the names of these function spaces we will often neglect the
superscript “m” if m = 0. And again, we will mostly drop the symbol for
the co-domain in the case of scalar valued functions.

Definition 2.94 Let D ⊆ R3 be a cell set of Lipschitz layer type and
j ∈ {0, 1}.

(a) We define Hm
Q,0,Γj (D,C

d′) as the closure of C∞Q,0,Γj (D,C
d′) in the

space Hm
Q (D,Cd′).

(b) We define HQ,0,Γj (curl, D) as the closure of C∞Q,0,Γj (D,C
3) in the

space HQ(curl, D).

Further Extension (by Zero) Operatos. Often we will need a variant
of the extension (by zero) operator from Proposition 2.68. For cell sets
of Lipschitz layer type, an upwards and downwards extension by zero
is possible if the function under consideration vanishes in Γε1 and Γε0,
respectively, see the next result.

Proposition 2.95 Let D,D′ ⊆ R3 be cell sets of Lipschitz layer type,
with characteristic quantities as in Assumption 2.91, such that D ( D′.

(a) The following assertions are true.

(i) If Γ0 ⊆ ∂D′, then the mapping

Hm
Q,0,Γ1

(D,Cd
′
) 3 u 7→ u|D

′

0 ∈ Hm
Q,0,Γ′1

(D′,Cd
′
)

is well-defined, linear and bounded.



2.3. Functions on Cell Sets of Lipschitz Layer Type 113

(ii) If Γ1 ⊆ ∂D′, then the mapping

Hm
Q,0,Γ0

(D,Cd
′
) 3 u 7→ u|D

′

0 ∈ Hm
Q,0,Γ′0

(D′,Cd
′
)

is well-defined, linear and bounded.

In both cases we have ‖u|D′0 ‖Hm
Q

(D′,Cd′ ) ≤ ‖u‖Hm
Q

(D,Cd′ ) and further-
more ∂α(u|D′0 ) = (∂αu)|D′0 for all u ∈ Hm

Q,0,Γj (D,C
d′), j = 0, 1, and

all α ∈ N3
0 with |α| ≤ m.

(b) The following assertions are true.

(i) If Γ0 ⊆ ∂D′, then the mapping

HQ,0,Γ1(curl, D) 3 u 7→ u|D
′

0 ∈ HQ,0,Γ′1(curl, D′)

is well-defined, linear and bounded.

(ii) If Γ1 ⊆ ∂D′, then the mapping

HQ,0,Γ0(curl, D) 3 u 7→ u|D
′

0 ∈ HQ,0,Γ′0(curl, D′)

is well-defined, linear and bounded.

In both cases we have ‖u|D′0 ‖HQ(curl,D′) = ‖u‖HQ(curl,D) and further-
more curl(u|D′0 ) = (curl u)|D′0 for all u ∈ HQ,0,Γj (curl, D), j = 0, 1.

Proof: This is shown with exactly the same arguments as in part (ii) of
the proof of Proposition 2.68. �

Friedrich’s Inequality. Due to the special structure of a cell set D ⊆ R3

of Lipschitz layer type, we can generalize Friedrich’s inequality from
Theorem 2.72 and its Corollary 2.73 to situations where u ∈ H1

Q(D)
vanishes only on one of both surfaces patches, see the next theorem.

Theorem 2.96 Let D ⊆ R3 be a cell set of Lipschitz layer type and
β ∈ R3. Then there exists c > 0 such that

‖u‖L2(D) ≤ c ‖∇βu‖L2(D,C3), for all u ∈ H1
Q,0,Γj (D), j = 0, 1.

Here, the operator ∇β is given by ∇β = ∇+ iβ, see also (1.20a).
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Proof: For j = 0 we can exactly follow the lines in the proof of Theo-
rem 2.72 if we replace therein C∞Q,0(D) by C∞Q,0,Γ0

(D) and H1
Q,0(D) by

H1
Q,0,Γ0

(D). The modification for j = 1 are then quite obvious. �

Corollary 2.97 Let D ⊆ R3 be a cell set of Lipschitz layer type and
β ∈ R3. Then there exists c > 0 such that

‖u‖H1
Q

(D) ≤ c ‖∇βu‖L2(D,C3), for all u ∈ H1
Q,0,Γj (D), j = 0, 1.

Here, the operator ∇β is given by ∇β = ∇+ iβ, see also (1.20a).

Proof: This is shown by the same arguments as in the proof of Corol-
lary 2.73. �

We continue with the correspondents of Lemma 2.74 and Proposition 2.75.
For example, one of these results will be needed later for the definition of
the surface divergence.

Lemma 2.98 Let D ⊆ R3 be a cell set of Lipschitz layer type with char-
acteristic quantities as in Assumption 2.91. Furthermore, let j ∈ {0, 1}
and β ∈ R3.
If (pn)n∈N is a sequence in H1

Q,0,Γj (D) such that (pn)n∈N is a Cauchy
sequence in L2(D) and (∇βpn)n∈N is a Cauchy sequence in L2(D,C3),
then for the L2-limits p := limn→∞ pn and u := limn→∞∇βpn there holds
p ∈ H1

Q,0,Γj (D) with ∇βp = u.

Proof: The assertion is shown by copying the lines of the proof of
Lemma 2.74 and by replacing therein H1

Q,0(D) with H1
Q,0,Γj (D). �

Proposition 2.99 Let D ⊆ R3 be a cell set of Lipschitz layer type with
characteristic quantities as in Assumption 2.91. Furthermore, let j ∈ {0, 1}
and β ∈ R3. Then ∇βH1

Q,0,Γj (D) is a closed subspace of HQ,0,Γj (curl, D).
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Proof: The assertion is shown by copying the lines of part (ii) in the
proof of Proposition 2.75 and by replacing therein the space H1

Q,0(D)
with H1

Q,0,Γj (D), the space HQ,0(curl, D) with HQ,0,Γj (curl, D), the space
C∞Q,0(D) with C∞Q,0,Γj (D), the space C∞Q,0(D,C3) with C∞Q,0,Γj (D,C

3),
Theorem 2.72 with Theorem 2.96 and finally if we replace Lemma 2.74
with Lemma 2.98. �

Functions with Compact Support. Again, we will often be in situations
where the support of a function has some distance to the boundary of D.
Here two more possibilities are conceivable. Recall Definition 2.79 for the
space HQ,0(curl, D). In Proposition 2.83 we have seen that HQ,0(curl, D)
is a subset of HQ,0(curl, D), where D denoted therein an arbitrary cell set.
Hence, we have this result in particular for cell sets of Lipschitz layer type.
As mentioned above, we are now interested in spaces for functions which
only vanish in the neighborhood of one, the lower or the upper, boundary
patch, i.e., on Γε0 or on Γε1, respectively. In this situation we obtain a
similar result, see the next proposition.

Definition 2.100 Let D ⊆ R3 be a cell set of Lipschitz layer type, m ∈ N
and j ∈ {0, 1}.

(a) The subspace HmQ,0,Γj (D,C
d′) of Hm

Q (D,Cd′) is defined by

HmQ,0,Γj (D,C
d′) :=

{
u ∈ Hm

Q (D,Cd
′
)
∣∣ ∃ ε > 0 : supp(u) ∩ Γεj = ∅

}
.

(b) The subspace HQ,0,Γj (curl, D) of HQ(curl, D) is defined by

HQ,0,Γj (curl, D) :=
{
u ∈ HQ(curl, D)

∣∣ ∃ ε > 0 : supp(u)∩Γεj = ∅
}
.

Proposition 2.101 Let D ⊆ R3 be a cell set of Lipschitz layer type and
let j ∈ {0, 1}. Then

(a) HmQ,0,Γj (D,C
d′) ⊆ Hm

Q,0,Γj (D,C
d′),

(b) HQ,0,Γj (curl, D) ⊆ HQ,0,Γj (curl, D).
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Proof: We start with part (b) and postpone part (a) to the end of this
proof.
(b). We only prove the assertion for j = 1, because the argumentation for
the case j = 0 is completely analogous.
Let u ∈ HQ,0,Γ1(curl, D). By assumption, there exists δ > 0 such that
supp(u) ∩ Γδ1 = ∅. Set a := (0, 0, L + 2)>, where L > 0 denotes the
maximum of the Lipschitz constants from f0 and f1. We define for ε > 0

uε(x) :=
∫
D

φ̃ε(x+ εa− y)u(y) dy, x ∈ D.

where φ̃ε denotes the Q-periodic extension of φε from (2.6). By part (vi)
from Lemma 2.92, uε vanishes in a neighborhood of Γ1. Therefore, uε ∈
C∞Q,0,Γ1

(D,C3) for all ε > 0. Furthermore, by part (iv) from Lemma 2.92,
we have for all x ∈ D that φ̃ε(x+ εa− ·) vanishes in a neighborhood of Γ̃0.
Therefore, thanks to part (b) of Proposition 2.82, we obtain for x ∈ D

curluε(x) =
∫
D

∇x φ̃ε(x+ εa− y)× u(y) dy

= −
∫
D

∇y φ̃ε(x+ εa− y)× u(y) dy

=
∫
D

φ̃ε(x+ εa− y) curlu(y) dy =: (curlu)ε(x).

Now we similarly proceed as at the end of the proof of Proposition 2.83 and
set D̃ :=

⋃
|µ|∞≤1

(
{p(µ)}+D

)
to be the union of D and its eight neighbors

from EQ(D), where p(µ) is the lattice vector given in (2.7). Moreover, let
v ∈ {u, curlu} and ṽ be the Q-periodic extension of v from D to D̃ and
then be extended by zero to R3 \ D̃. And finally set

ṽε(x) :=
∫
R3
φε(x+ εa− y) ṽ(y) dy, x ∈ R3.

Then ṽε(x) = vε(x) for all x ∈ D and moreover ṽ ∈ L2(R3,C3) with
ṽ = v almost everywhere in D. Then from Theorem 2.50 we conclude that
ṽε → ṽ in L2(R3,C3) and therefore in particular vε = ṽε|D → ṽ|D = v in
L2(D,C3), as ε→ 0. This means that uε → u with respect to ‖ ·‖H(curl,D),
as ε→ 0, and the proof for part (b) is complete.
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(a). The proof follows very closely the lines from part (b), where we now
cite part (a) from Proposition 2.82. The details are omitted. �

2.3.2. A curl-preserving Transformation

Since Q-periodic functions on a cell set D of Lipschitz layer type and
periodic functions on a cuboid Q3 are closely related to each other, we can
and will often reuse results from Subsection 2.1.2 when we are deriving
analogous results for Q-periodic functions defined on D. However, a
suitable transformation between those function spaces is needed. While
for the scalar valued case this procedure, realized by

u 7→ u ◦ Ψ̃j ,

is straightforward, for the vector valued case this transformation doesn’t
work because it does not map vector fields of HQ(curl, D) into vector
fields of HQ(curl, Q−3 ), see also [34]. Hence, for the vector valued case a
curl-preserving transformation, realized by

u 7→ (Ψ̃′j)>(u ◦ Ψ̃j),

has to be introduced. This requires a little more effort, see the next lemma,
with the following proposition as preparation. The lemma contains two
more results which are later of importance when we will consider the trace
operators.

Proposition 2.102 Let D ⊆ R3 be a cell set of Lipschitz layer type and
let ũ, ṽ : EQ(D) → C be Q-periodic and Lipschitz continuous. Then for
u := ũ|D and v := ṽ|D we have that u∇v ∈ HQ(curl, D) with variational
curl given by

curl(u∇v) = ∇u×∇v.
In particular, curl(u∇v) exists almost everywhere on D as a classical
function.

Proof: Thanks to Proposition 2.76 and Theorem 2.93, we can, by re-
placing the space C∞ by C∞Q and C∞0 by C∞Q,0, follow the proof from
Proposition 2.44 line for line to obtain the assertion. �
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Lemma 2.103 Let D ⊆ R3 be a cell set of Lipschitz layer type with
characteristic quantities as in Assumption 2.91. In the following arguments
we will drop the index “j”. Let 0 < ` < L3 and R := Q × (−`, 0). For
u ∈ C∞Q

(
Ψ̃(R),C3) set

v(x) := Ψ̃′(x)>u
(
Ψ̃(x)

)
, for a.a. x ∈ R ∪ (Q× {0}).

Furthermore, define ê := (0, 0,∓1)> ∈ R3, where in “∓” the minus sign
holds for j = 0 and the plus sign for j = 1. Then v ∈ HQ(curl, R) and,
with y = Ψ(x),

(i) curl v(x) =
(
Ψ̃′(x)

)−1( curlu
)(

Ψ̃(x)
)
, for a.a. x ∈ R,

(ii) ρ(x)
(
n(y)× u(y)

)
= F (x)

(
ê× v(x, 0)

)
, for a.a. x ∈ Q,

(iii)
(
n(y)× u(y)

)
× n(y) = F (x)−>

[(
ê× v(x, 0)

)
× ê
]
, for a.a. x ∈ Q.

Proof: We proceed similarly as in the proof of [34, Lemma 5.22] and note
that for any regular matrix M = [a|b|c] ∈ R3×3, with column vectors a, b
and c, the inverse M−1 is given by

M−1 = 1
(a×b)·c [b× c|c× a|a× b]> = 1

detM [b× c|c× a|a× b]>.

In the following arguments the subscript j denotes the j-th component of
the vector under consideration.
(i). At first, with y = Ψ̃(x), we show that

3∑
j=1
∇(uj ◦ Ψ̃)(x)×∇Ψ̃j(x) =

(
Ψ̃′(x)

)−1 curlu(y),

holds for a.a. x ∈ R. In fact, due to the smoothness of u and the Lipschitz
continuity of Ψ̃, we have for a.a. x ∈ R that the following equations hold
in the classical sense∑3

j=1
∇(uj ◦ Ψ̃)(x)×∇Ψ̃j(x) =

∑3

j=1

[(
Ψ̃′(x)

)>∇uj(y)
]
×∇Ψ̃j(x)

=
∑3

j,k=1
∂kuj(y)

[
∇Ψ̃k(x)×∇Ψ̃j(x)

]
=
[
(∇Ψ̃2 ×∇Ψ̃3)(x) | (∇Ψ̃3 ×∇Ψ̃1)(x) | (∇Ψ̃1 ×∇Ψ̃2)(x)

]
curlu(y)
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=
(
Ψ̃′(x)

)−1 curlu(y),

where we applied the observation from the beginning to
(
Ψ̃(x)

)>. Now,
we note that uj ◦ Ψ̃ and Ψ̃j are Lipschitz continuous functions as in
Proposition 2.102. Therefore, (uj ◦ Ψ̃)∇Ψ̃j ∈ HQ(curl, R) with

curl
(
(uj ◦ Ψ̃)∇Ψ̃j

)
= ∇(uj ◦ Ψ̃)×∇Ψ̃j , j = 1, 2, 3.

Hence, for arbitrary χ ∈ C∞Q,0(R,C3) we obtain∫
R

v(x) · curlχ(x) dx =
∑3

j=1

∫
R

uj
(
Ψ̃(x)

)
∇Ψ̃j(x) · curlχ(x) dx

=
∑3

j=1

∫
R

[
∇(uj ◦ Ψ̃)(x)×∇Ψ̃(x)

]
· χ(x) dx

=
∫
R

(
Ψ̃′(x)

)−1 curlu
(
Ψ̃(x)

)
· χ(x) dx,

which shows that v ∈ HQ(curl, R) with variational curl given as asserted.
(ii). The following equations have to be understood only almost everywhere
in R. We have v = (u · ∂1Ψ̃, u · ∂2Ψ̃, u · ∂3Ψ̃)> and therefore ê × v =
(±u · ∂2Ψ,∓u · ∂1Ψ, 0)> on the boundary x3 = 0. Consequently,

F (ê× v) = ±(u · ∂2Ψ) ∂1Ψ∓ (u · ∂1Ψ) ∂2Ψ = ∓(∂1Ψ× ∂2Ψ)× u = ρ(n× u).

(iii). Again, the following equations have to be understood only almost
everywhere on the boundary of R for x3 = 0. At first, we observe that

A :=

 |∂2Ψ|2 −∂1Ψ · ∂2Ψ 0
−∂1Ψ · ∂2Ψ |∂1Ψ|2 0

0 0 ρ2

 = ρ2(F>F )−1 = ρ2F−1F−>.

From above we have ρ(n× u) = ±v2 ∂1Ψ∓ v1 ∂2Ψ. Hence,

ρ2(n× u)× n = −v2 ∂1Ψ× (∂1Ψ× ∂2Ψ) + v1 ∂2Ψ× (∂1Ψ× ∂2Ψ)
= −v2

[
(∂1Ψ · ∂2Ψ)∂1Ψ− |∂1Ψ|2∂2Ψ

]
+ v1

[
|∂2Ψ|2∂1Ψ− (∂1Ψ · ∂2Ψ)∂2Ψ

]
= FA (v1, v2, 0)> = ρ2FF−1F−> (v1, v2, 0)> = ρ2F−>

(
(ê× v)× ê

)
.

This completes the proof. �
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Theorem 2.104 Let D ⊆ R3 be a cell set of Lipschitz layer type with
characteristic quantities as in Assumption 2.91. Furthermore, let 0 < ` <
L3 and R := Q × (−`, 0). In the following arguments we will drop the
index “j” and consider Ψ̃ restricted to R. Then the following assertions
are true.

(a) The mapping

H1
Q(Ψ̃(R)) 3 u 7→ v := u ◦ Ψ̃ ∈ H1

Q(R)

is well-defined and belongs to Lis
(
H1
Q(Ψ̃(R)), H1

Q(R)
)
. Its inverse is

given by H1
Q(R) 3 v 7→ u := v ◦ Ψ̃−1 ∈ H1

Q(Ψ̃(R)). Furthermore,

∇v = (Ψ̃′)>[(∇u) ◦ Ψ̃], u ∈ H1
Q(Ψ̃(R)),

∇u = [(Ψ̃′)−> ◦ Ψ̃−1][(∇v) ◦ Ψ̃−1], v ∈ H1
Q(R).

(b) The mapping

HQ(curl, Ψ̃(R)) 3 u 7→ v := (Ψ̃′)>(u ◦ Ψ̃) ∈ HQ(curl, R)

is well-defined and belongs to Lis
(
HQ(curl, Ψ̃(R)), HQ(curl, R)

)
. Its

inverse is given by HQ(curl, R) 3 v 7→ u := (Ψ̃′◦Ψ̃−1)−>(v◦Ψ̃−1) ∈
HQ(curl, Ψ̃(R)). Furthermore,

curl v = (Ψ̃′)−1[(curlu) ◦ Ψ̃], u ∈ HQ(curl, Ψ̃(R)),
curlu = (Ψ̃′ ◦ Ψ̃−1)[(curl v) ◦ Ψ̃−1], v ∈ HQ(curl, R).

Proof: (a). Let u ∈ H1
Q(Ψ̃(R)). By Theorem 2.93, there exists a sequence

(un)n∈N in C∞Q
(
Ψ̃(R)

)
, converging to u with respect to ‖ · ‖H1

Q
(Ψ̃(R)). Set

vn := un ◦ Ψ̃ for all n ∈ N. Due to Corollary 2.77, vn ∈ H1
Q(R) with

∇vn = (Ψ̃′)>[(∇un) ◦ Ψ̃] for all n ∈ N. Therefore, the convergence from
above, together with the transformation formula, implies

un ◦ Ψ̃→ v in L2(R),
∇vn → (Ψ̃′)>[(∇u) ◦ Ψ̃] in L2(R,C3),
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the latter because of essential boundedness of the entries in (Ψ̃′)>, see
Rademacher’s result. Let χ ∈ C∞Q,0(R). Then∫

R

v(x)∇χ(x) dx = lim
n→∞

∫
R

(un ◦ Ψ̃)(x)∇χ(x) dx

= lim
n→∞

∫
R

∇vn(x)χ(x) dx =
∫
R

(Ψ̃′)>(x) [(∇u) ◦ Ψ̃](x)χ(x) dx,

which shows that v ∈ H1
Q(R) with ∇v = (Ψ̃′)>[(∇u) ◦ Ψ̃]. Hence, the

mapping is well-defined. Its linearity is clear and its boundedness follows
easily by means of the formulas for v and ∇v.
Analogously, one shows that the mapping H1

Q(R) 3 v 7→ u := v ◦ Ψ̃−1 ∈
H1
Q(Ψ̃(R)) is well-defined, linear and bounded. And finally, the bijectivity

follows from u = u ◦ Ψ̃ ◦ Ψ̃−1 and v = v ◦ Ψ̃−1 ◦ Ψ̃.
(b). The assertions are shown with the same arguments as in part (a),
while we cite here Lemma 2.103 instead of Corollary 2.77. �

To use results from Subsection 2.1.2, after having transformed a Q-periodic
function defined on a cell set D of Lipschitz layer type to a Q-periodic
function defined on the half-cuboid Q−3 , we often have to extend those
functions in a further step to Q-periodic functions defined on the cuboid
Q3 by a reflection technique as described in the following proposition. For
this recall (1.4) for the definition of the reflection operator “∗”.

Proposition 2.105 Let ` > 0 and set R := Q×(−`, `), R− := Q×(−`, 0)
and R+ := Q× (0, `). Then the following assertions are true.

(a) For v ∈ H1
Q(R−) define

v̂ :=
{
v on R−,

v(·∗) on R+,
and ŵ :=

{
∇v on R−,

(∇v)∗(·∗) on R+.

Then v̂ ∈ H1
Q(R) with ∇v̂ = ŵ. Moreover, the mapping H1

Q(R−) 3
v 7→ v̂ ∈ H1

Q(R) is linear and bounded.

(b) For v ∈ HQ(curl, R−) define

v̂ :=
{
v on R−,

v∗(·∗) on R+,
and ŵ :=

{
curl v on R−,

−(curl v)∗(·∗) on R+.
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Then v̂ ∈ HQ(curl, R) with curl v̂ = ŵ. Moreover, the mapping
HQ(curl, R−) 3 v 7→ v̂ ∈ HQ(curl, R) is linear and bounded.

Proof: We only show the assertion for the vector valued case as the
argumentation for the scalar valued case is completely analogous.
Let T : R3 → R3, x→ T (x) := x∗ = (x1, x2,−x3)>. Then

T ′(x) =

1 0 0
0 1 0
0 0 −1

 , x ∈ R3,

with |det(T ′(x))| = 1 for all x ∈ R3. Moreover, there exists T−1 coinciding
with T . We need this observation in the following arguments when we
apply the transformation theorem.
Let v ∈ HQ(curl, R−). Take some χ ∈ C∞Q,0(R,C3). Choose a sequence
(vn)n∈N in C∞Q (R−,C3) with vn → v in HQ(curl, R−), as n→∞. Due to
vn → v and curl vn → curl v in L2(R−,C3) and because of∫

R+

∣∣v∗n(T (x))− v∗(T (x))
∣∣2 dx =

∫
R−

∣∣(vn(y)− v(y)
)∗∣∣2 dy

=
∫
R−
|vn(y)− v(y)|2 dy,

for all n ∈ N, we have v∗n(·∗) → v∗(·∗) and analogously (curl vn)∗(·∗) →
(curl v)∗(·∗) in L2(R+,C3), as n → ∞. Let n ∈ N. Then, using Equa-
tion (A.6b), we have∫

R−
vn(x) · curlχ(x) dx

=
∫
R−

curl vn(x) · χ(x) dx−
∫
Q×{0}

((
0
0
1

)
× vn(x)

)
· χ(x) ds.

Using in addition curl(χ∗◦T−1)(y) = −[(curlχ)∗◦T−1](y), for all y ∈ T (R),
we analogously obtain∫

R+
v∗n(T (x)) · curlχ(x) dx =

∫
R−

v∗n(y) · [(curlχ) ◦ T−1](y) dy

=
∫
R−

vn(y) · [(curlχ)∗ ◦ T−1](y) dy
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= −
∫
R−

vn(y) · curl(χ∗ ◦ T−1)(y) dy

= −
∫
R−

curl vn(y) · (χ∗ ◦ T−1)(y) dy

+
∫
Q×{0}

((
0
0
1

)
× vn(y)

)
· (χ∗ ◦ T−1)(y)︸ ︷︷ ︸

=χ∗(y)

ds

= −
∫
R+

(curl vn)∗(T (x)) · χ(x) dx

+
∫
Q×{0}

((
0
0
1

)
× vn(y)

)
· χ(y) ds,

where we have exploited the fact, that in the last cross product the third
component is zero. Note that in the sum of both integral identities the
boundary terms vanish. Hence,∫

R

v̂(x) · curlχ(x) dx

=
∫
R−

v(x) · curlχ(x) dx+
∫
R+

v∗(x∗) · curlχ(x) dx

= lim
n→∞

(∫
R−

vn(x) · curlχ(x) dx+
∫
R+

v∗n(x∗) · curlχ(x) dx
)

= lim
n→∞

(∫
R−

curl vn(x) · χ(x) dx−
∫
R+

(curl vn)∗(x∗) · χ(x) dx
)

=
∫
R−

curl v(x) · χ(x) dx−
∫
R+

(curl v)∗(x∗) · χ(x) dx,

which shows that v̂ ∈ HQ(curl, R) with variational curl as given in the
formula from the assertion. Furthermore, it is easy to see that

‖v∗(·∗)‖L2(R+,C3) = ‖v‖L2(R−,C3),

‖(curl v)∗(·∗)‖L2(R+,C3) = ‖ curl v‖L2(R−,C3).

Therefore, ‖v̂‖H(curl,R) =
√

2‖v‖H(curl,R−) and the proof is complete. �
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2.3.3. Trace and Extension Operators

Next, we want to derive trace and extension results for Q-periodic functions
defined on a cell set D of Lipschitz layer type by following the ideas in [34]
for bounded Lipschitz domains. This requires some technical efforts.

Let d′ ∈ N, D ⊆ R3 be a cell set of Lipschitz layer type, with characteristic
quantities as in Assumption 2.91, and let j ∈ {0, 1}. The space L2(Γj ,Cd

′)
of square integrable functions on the surface patch Γj of D can be charac-
terized by ϕ ∈ L2(Γj ,Cd

′), if and only if ϕ ◦Ψj ∈ L2(Q,Cd′), because of

‖ϕ‖2
L2(Γj ,Cd′ ) =

∫
Γj
|ϕ(y)|2 ds =

∫
Q

|ϕ(Ψj(x))|2 ρj(x) dx, (2.15a)

where ρj was defined in (2.13), and the estimate

1 ≤ ρj(x) ≤
√

1 + ‖∇fj‖2
∞, for a.a. x ∈ Q. (2.15b)

We define the subspace of L2(Γj ,C3) of tangential vector fields by

L2
t (Γj) :=

{
ϕ ∈ L2(Γj ,C3) | n(y) · ϕ(y) = 0 for a.a. y ∈ Γj

}
.

Definition 2.106 Let D ⊆ R3 be a cell set of Lipschitz layer type, with
characteristic quantities as in Assumption 2.91, and let j ∈ {0, 1}.

(a) We define the space H1/2
Q (Γj ,Cd

′) by

H
1/2
Q (Γj ,Cd

′
) :=

{
ϕ ∈ L2(Γj ,Cd

′
)
∣∣ ϕ ◦Ψj ∈ H1/2

per (Q,Cd
′
)
}

with norm

‖ϕ‖
H

1/2
Q

(Γj ,Cd′ )
:= ‖ϕ ◦Ψj‖H1/2

per (Q,Cd′ ), ϕ ∈ H1/2
Q (Γj ,Cd

′
).

(b) We define the spaces H−1/2
Q (Div,Γj) and H

−1/2
Q (Curl,Γj) as the

completion of {
ϕ ∈ L2

t (Γj) | ϕ̃t ∈ H−1/2
per (Div, Q)

}
,
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{
ϕ ∈ L2

t (Γj) | ϕ̃T ∈ H−1/2
per (Curl, Q)

}
,

with respect to the norms

‖ϕ‖
H
−1/2
Q

(Div,Γj) := ‖ϕ̃t‖
H
−1/2
per (Div,Q),

‖ϕ‖
H
−1/2
Q

(Curl,Γj) := ‖ϕ̃T ‖
H
−1/2
per (Curl,Q),

where

ϕ̃t(x) := ρj(x)F−1
j (x)ϕ

(
Ψj(x)

)
, for a.a. x ∈ Q, (2.16a)

ϕ̃T (x) := F>j (x)ϕ
(
Ψj(x)

)
, for a.a. x ∈ Q, (2.16b)

respectively.

Note that in contrast to Definition 2.45 no partition of unity is required here.
Furthermore, due to (2.15) and Proposition 2.13, there exist constants
c1, c2 > 0 such that for all ϕ ∈ H1/2

Q (Γj ,Cd
′) there holds

‖ϕ‖L2(Γj ,Cd′ ) ≤ c1 ‖ϕ ◦Ψj‖L2(Q,Cd′ )

≤ c2 ‖ϕ ◦Ψj‖H1/2
per (Q,Cd′ ) = c2 ‖ϕ‖H1/2

Q
(Γj ,Cd′ )

.

A closer look at Proposition 2.13 even shows that the embedding

H
1/2
Q (Γj ,Cd

′
) id
↪−→ L2(Γj ,Cd

′
) (2.17)

is compact, see Theorem 2.122.

Theorem 2.107 Let D ⊆ R3 be a cell set of Lipschitz layer type, with
characteristic quantities as in Assumption 2.91, and let j ∈ {0, 1}.

(a) The trace operator

γ0,Γj : C∞Q (D,Cd
′
)→ H

1/2
Q (Γj ,Cd

′
), u 7→ u|Γj ,

has a bounded extension from H1
Q(D,Cd′) to H

1/2
Q (Γj ,Cd

′), which
we also denote by γ0,Γj . Furthermore, there exists a bounded right
inverse η0,Γj : H1/2

Q (Γj ,Cd
′)→ H1

Q(D,Cd′) of γ0,Γj . Moreover,

η0,Γ0

(
H

1/2
Q (Γ0,Cd

′
)
)
⊆ H1

Q,0,Γ1
(D,Cd

′
),

η0,Γ1

(
H

1/2
Q (Γ1,Cd

′
)
)
⊆ H1

Q,0,Γ0
(D,Cd

′
).
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(b) The following assertions are true.

(i) The trace operator

γt,Γj : C∞Q (D,C3)→ H
−1/2
Q (Div,Γj), u 7→ nj × u|Γj ,

has a bounded extension from HQ(curl, D) to H−1/2
Q (Div,Γj),

which we also denote by γt,Γj . Furthermore, there exists a
bounded right inverse ηt,Γj : H−1/2

Q (Div,Γj)→ HQ(curl, D) of
γt,Γj . Moreover,

ηt,Γ0

(
H
−1/2
Q (Div,Γ0)

)
⊆ HQ,0,Γ1(curl, D),

ηt,Γ1

(
H
−1/2
Q (Div,Γ1)

)
⊆ HQ,0,Γ0(curl, D).

(ii) The trace operator

γT,Γj : C∞Q (D,C3)→ H
−1/2
Q (Curl,Γj), u 7→ (nj × u|Γj )× nj ,

has a bounded extension from HQ(curl, D) to H−1/2
Q (Curl,Γj),

which we also denote by γT,Γj . Furthermore, there exists a
bounded right inverse ηT,Γj : H−1/2

Q (Curl,Γj) → HQ(curl, D)
of γT,Γj . Moreover,

ηT,Γ0

(
H
−1/2
Q (Curl,Γ0)

)
⊆ HQ,0,Γ1(curl, D),

ηT,Γ1

(
H
−1/2
Q (Curl,Γ1)

)
⊆ HQ,0,Γ0(curl, D).

Proof: We start with part (b) and postpone part (a) to the end of this
proof.
(b). Let u ∈ C∞Q (D,C3). We start with j = 0 and show that for

ϕ̃t(x) := ρ0(x)F−1
0 (x) (n0 × u)

(
Ψ0(x)

)
, for a.a. x ∈ Q,

there holds ϕ̃t ∈ H−1/2
per (Div, Q). For this we consider the product φ0 u

and note that by construction of φ0, we have φ0 u ∈ C∞Q (D,C3) with φ0 u
vanishing in a neighborhood of Γ1 and with n0 × u|Γ0 = n0 × (φ0 u)|Γ0 .
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By Proposition 2.95 and Proposition 2.101, (φ0 u)|Ψ̃0(Q−3 )
0 belongs to

HQ(curl, Ψ̃0(Q−3 )) and we have that this operation is bounded. Set

v(x) := Ψ̃′0(x)>
[
(φ0 u)

∣∣Ψ̃0(Q−3 )
0 ◦ Ψ̃0(x)

]
, for a.a. x ∈ Q−3 ∪ (Q× {0}).

Now, by Theorem 2.104, v ∈ HQ(curl, Q−3 ) and, by Lemma 2.103, ϕ̃t =
ê× v(·, 0) almost everywhere on Q, where ê = (0, 0,−1)>. Define

v̂(x) :=
{
v(x), for a.a. x ∈ Q−3 ∪ (Q× {0}),
v∗(x∗), for a.a. x ∈ Q+

3 ,
(∗)

where the symbol “∗” denotes the reflection operator given by C3 3 a =
(a1, a2, a3)> 7→ a∗ := (a1, a2,−a3)> ∈ C3, see also Section 1.3. Due to
Proposition 2.105, we have v̂ ∈ HQ(curl, Q3). By Proposition 2.83, we
even have v̂ ∈ HQ,0(curl, Q3). Moreover, ê × v̂(·, 0) = ê × v(·, 0) almost
everywhere on Q. Therefore

‖n0×u|Γ0‖H−1/2
Q

(Div,Γ0) = ‖ϕ̃t‖
H
−1/2
per (Div,Q) = ‖ê× v̂(·, 0)‖

H
−1/2
per (Div,Q)

≤ C1‖v̂‖Hper(curl,Q3) = C1‖v̂‖HQ(curl,Q3) ≤ C2‖v‖HQ(curl,Q−3 )

≤ C3

∥∥∥(φ0 u)
∣∣Ψ̃0(Q−3 )
0

∥∥∥
HQ(curl,Ψ̃0(Q−3 ))

≤ C3‖φ0 u‖HQ(curl,D)

≤ C4‖u‖HQ(curl,D),

where we have applied Theorem 2.23, Proposition 2.67, Proposition 2.105,
Theorem 2.104, Proposition 2.95 and finally Proposition 2.78.
Now to the construction of the extension operator ηt,Γ0 . Again, this is
done by continuous extension. First of all we note that by Theorem 2.90
φ0 ≡ 1 in a neighborhood of Γ0 in D. Therefore, there exists 0 < δ < L3
such that Ψ̃0(Q× (−δ, 0)) is a subset of this neighborhood. As part of the
construction, this δ is assumed to be fix.
Let ϕ ∈

{
ψ ∈ L2

t (Γ0) | ψ̃t ∈ H−1/2
per (Div, Q)

}
. Then ϕ̃t ∈ H−1/2

per (Div, Q)
and by Theorem 2.23, there exists v̂ ∈ Hper(curl, Q3) such that γt,perv̂ = ϕ̃t.
Note that by Observation 2.25 there holds v̂|Q+

3
=
(
v̂|Q−3

)∗(·∗) on Q+
3 .

Next, consider

χ0(x) :=
∫
Q×
(
− δ2 ,

δ
2

) φ̃ δ
4
(x− y) dy, x ∈ Q3,
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where φ̃ δ
4

denotes the Q-periodic extension of φ δ
4

from (2.6). Then χ0 ∈
C∞per(Q3) with χ0 ≡ 1 in a neighborhood of Q× {0} and with χ0 ≡ 0 in
Q×

(
(−L3,− 3

4δ)∪ ( 3
4δ, L3)

)
. We set v := χ0v̂. Then, by Proposition 2.21,

v ∈ Hper(curl, Q3) and, by Lemma 2.24, γt,perv = γt,perv̂ = ϕ̃t. Moreover,
we still have v|Q+

3
=
(
v|Q−3

)∗(·∗) on Q+
3 . Furthermore, due to Remark 2.63,

v ∈ HQ(curl, Q3). Finally, we define

w := T−1 v|Q−3 ,

with T : HQ(curl, Ψ̃0(Q−3 ))→ HQ(curl, Q−3 ) denoting the curl-preserving
transformation from Theorem 2.104, and we define u as restriction of w
onto D. Then u ∈ HQ(curl, D) and all operators involved in the construc-
tion were bounded, see in particular Proposition 2.68.
Now, we show that γt,Γ0u = ϕ. In fact, due to the choice of δ, we have
φ0u = u, meaning that u ∈ HQ,0,Γ1(curl, D), which yields that u can be
extended by zero to an element of HQ(curl, Ψ̃0(Q−3 )) coinciding with w.
Therefore, T (φ0u) = v|Q−3 . From above we know that v|Q+

3
=
(
v|Q−3

)∗(·∗)
on Q+

3 . Therefore, the image of v|Q−3 under the reflection operator given
by (∗) coincides with v and we are done, because from above we have
γt,perv = ϕ̃t.
For the case j = 1 we follow the lines from above completely analogous.
And finally, the statements with respect to γT,Γj and ηT,Γj , j = 0, 1, are
obtained analogously as well.
(a). We only show the assertion for the case d′ = 1 as the generalization
to the case d′ > 1 is obvious.
Let u ∈ C∞Q (D). Similarly to part (b) we have that φ0 u vanishes in a neigh-

borhood of Γ1 and that therefore (φ0 u)|Ψ̃0(Q−3 )
0 belongs to H1

Q(Ψ̃0(Q−3 )).
We set

v(x) := (φ0 u)
∣∣Ψ̃0(Q−3 )
0 ◦ Ψ̃0(x), x ∈ Q−3 ∪ (Q× {0}).

Note that v(x, 0) = u(Ψ0(x)) for all x ∈ Q. By Theorem 2.104, v belongs
to H1

Q(Q−3 ). We define

v̂(x) :=
{
v(x), x ∈ Q−3 ∪ (Q× {0}),
v(x∗), x ∈ Q+

3
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and have that v̂ ∈ H1
Q(Q3), see Proposition 2.105. By Proposition 2.83,

we even have v̂ ∈ H1
Q,0(Q3). Moreover, v̂(·, 0) = v(·, 0). Using now the

same arguments as in part (b), we obtain

‖u|Γ0‖H1/2
Q

(Γj) = ‖v̂(·, 0)‖
H

1/2
per (Q) ≤ C ‖u‖H1

Q
(D).

Now to the construction of the extension operator η0,Γ0 . Let ϕ ∈ H1/2
Q (Γ0).

Then ϕ ◦Ψ0 ∈ H1/2
per (Q) and by Theorem 2.23 there exists v̂ ∈ H1

per(Q3)
such that γ0,perv̂ = ϕ ◦Ψ0. Now we follow the arguments as in part (b)
but for the scalar valued case and obtain w ∈ H1

Q(Ψ̃0(Q−3 )). Again, we
define u as restriction of w onto D. Then u ∈ H1

Q(D) and all involved
operations were bounded. To show that γ0,Γ0u = ϕ, we apply now the
separate operations in the construction of γ0,Γ0 to u. Indeed, analogous to
part (b), these operations yield v = χ0v̂. Applying Lemma 2.24 and then
γ0,per from Theorem 2.23, we arrive at ϕ ◦Ψ0 as desired.
Finally, the case j = 1 is shown completely analogous and the proof is
complete. �

By means of the trace and extension operators we easily obtain the next
denseness results.

Corollary 2.108 Let D ⊆ R3 be a cell set of Lipschitz layer type, with
characteristic quantities as in Assumption 2.91, and let j ∈ {0, 1}. Then
the following assertions are true.

(a) The space

DQ,0(Γj ,Cd
′
) :=

{
u|Γj

∣∣u ∈ C∞Q (D,Cd
′
)
}

is dense in H
1/2
Q (Γj ,Cd

′).

(b) The spaces

DQ,t(Γj ,C3) :=
{

nj × u|Γj
∣∣u ∈ C∞Q (D,C3)

}
,

DQ,T (Γj ,C3) :=
{

(nj × u|Γj )× nj
∣∣u ∈ C∞Q (D,C3)

}
are dense in H

−1/2
Q (Div,Γj) and H−1/2

Q (Curl,Γj), respectively.
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Proof: (a). The proof follows closely the argumentation as in part (b)
from below and we leave the details to the reader.
(b). Let j ∈ {0, 1}. We only show the assertion for DQ,t(Γj ,C3) since
the argumentation for DQ,T (Γj ,C3) is completely analogous. By The-
orem 2.107, DQ,t(Γj ,C3) is a subspace of H−1/2

Q (Div,Γj). Let ϕ ∈
H
−1/2
Q (Div,Γj). Then again by Theorem 2.107, u := ηt,Γjϕ ∈ HQ(curl, D).

Since C∞Q (D,C3) is dense in HQ(curl, D), there exists a sequence (un)n∈N
in C∞Q (D,C3) converging to u in HQ(curl, D). Therefore, again by The-
orem 2.107, (γt,Γjun)n∈N is a sequence in DQ,t(Γj ,C3) with γt,Γjun →
γt,Γju = ϕ, as n→∞. �

Remark 2.109 Consulting the proof of Theorem 2.107 and (2.16), we
have for ϕ ∈ DQ,t(Γj ,C3) and ψ ∈ DQ,T (Γj ,C3) that ϕ̃t and ψ̃T belong to
L2(Q,C2) ∩H−1/2

per (Div, Q) and L2(Q,C2) ∩H−1/2
per (Curl, Q), respectively,

j = 0, 1.

Trace Operator in HQ(div,D). To show later the existence of a solution
to the variational formulation of our scattering problem of interest, we
will also need a trace theorem for elements in HQ(div, D). Thanks to
the integral identity (A.6c), this can be done with almost no effort by
interpreting the right hand side in (A.6c) as duality pairing, see below.
We follow closely the lines at the end of [34, Subsection 5.1.1], see in
particular [34, Definition 5.17], where the authors introduced the normal
derivative for elements from a certain subspace of H1(Ω), with Ω ⊆ R3

therein a bounded Lipschitz domain.

Definition 2.110 Let D ⊆ R3 be a cell set of Lipschitz layer type, with
characteristic quantities as in Assumption 2.91. Furthermore, let j ∈ {0, 1}.
We define H−1/2

Q (Γj ,Cd
′) to be the dual space of H1/2

Q (Γj ,Cd
′) equipped

with its canonical norm

‖`‖
H
−1/2
Q

(Γj ,Cd′ )
:= sup

ψ∈H1/2
Q

(Γj ,Cd′ )\{0}

|〈`, ψ〉|
‖ψ‖

H
1/2
Q

(Γj ,Cd′ )

for all ` ∈ H
−1/2
Q (Γj ,Cd

′). Here, 〈`, ψ〉 denotes the duality pairing as
introduced in Section 1.3.
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In the following considerations let D ⊆ R3 be a cell set of Lipschitz
layer type, with characteristic quantities as in Assumption 2.91, and let
j ∈ {0, 1}. Take some u ∈ C∞Q (D,C3) and ψ ∈ H1

Q(D). Since C∞Q (D) is
dense in H1

Q(D), see Theorem 2.93, there exists a sequence (ψn)n∈N in
C∞Q (D) which converges to ψ with respect to ‖ · ‖H1

Q
(D). The continuity

of the trace operators then implies that γ0,Γjψn → γ0,Γjψ in H
1/2
Q (Γj),

as n→∞. And by (2.17) we have that (γ0,Γjψn)n∈N converges to γ0,Γjψ
also in L2(Γj). Therefore, taking also (2.14c) into account,∫

D

(ψ div u+ u · ∇ψ) dx = lim
n→∞

∫
D

(ψn div u+ u · ∇ψn) dx

= lim
n→∞

1∑
j=0

∫
Γj

(n · u) γ0,Γjψn ds =
1∑
j=0

∫
Γj

(n · u) γ0,Γjψ ds.

Hence, the element u ∈ C∞Q (D,C3) can be assigned traces nj · u|Γj , which
in turn can be considered as linear functionals from H

1/2
Q (Γj) to C via

the surface integral over Γj on the right hand side or, even better, via
the integral over D on the left hand side. Since the latter integral is also
well-defined for elements from HQ(div, D) and since, by Theorem 2.93,
C∞Q (D,C3) is dense in HQ(div, D), via this formula the just constructed
trace operator can be continuously extended to the whole space HQ(div, D),
see the next theorem (definition).

Theorem 2.111 (and Definition) Let D ⊆ R3 be a cell set of Lipschitz
layer type, with characteristic quantities as in Assumption 2.91, and let
j ∈ {0, 1}. The mapping γn,Γj : HQ(div, D)→ H

−1/2
Q (Γj) given by

〈γn,Γju, ψ〉 :=
∫
D

(
ψ̃ div u+ u · ∇ψ̃

)
dx, ψ ∈ H1/2

Q (Γj),

is well-defined, linear and bounded. Here, for the case j = 0, ψ̃ ∈
H1
Q,0,Γ1

(D) is any extension of ψ into D such that γ0,Γ0 ψ̃ = ψ, while
for the case j = 1, ψ̃ ∈ H1

Q,0,Γ0
(D) is any extension of ψ into D such

that γ0,Γ1 ψ̃ = ψ. We call the mapping γn,Γj trace operator for elements in
HQ(div, D) with respect to Γj.
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Proof: To see that the mapping γn,Γ0 is well-defined, first of all recall from
Theorem 2.107 and Proposition 2.101 that by ψ̃ := η0,Γ0ψ such an extension
exists. Let now ψ̃1 and ψ̃2 be such extensions. Then, by part (a) from
Theorem 2.116 (inspecting the proof of this part we will note that we are
using arguments that we have already on hand), ψ̃ := ψ̃1 − ψ̃2 ∈ H1

Q,0(D).
Hence, there exists a sequence (ψ̃n)n∈N in C∞Q,0(D) which converges to ψ̃
with respect to ‖ · ‖H1

Q
(D), and the definition of the variational divergence

yields∫
D

(
ψ̃ div u+ u · ∇ψ̃

)
dx = lim

n→∞

∫
D

(
ψ̃n div u+ u · ∇ψ̃n

)
dx = 0.

The linearity of γn,Γ0 is easy to see. To show its boundedness, let u ∈
HQ(div, D) and ψ ∈ H

1/2
Q (Γ0). Then, by means of the inequality of

Cauchy-Schwarz and the boundedness of η0,Γ0 , we obtain

|〈γn,Γ0u, ψ〉| =
∣∣∣ ∫
D

(
η0,Γ0ψ div u+ u · ∇(η0,Γ0ψ)

)
dx
∣∣∣

≤ ‖div u‖L2(D)‖η0,Γ0ψ‖L2(D) + ‖u‖L2(D,C3)‖∇(η0,Γ0ψ)‖L2(D,C3)

≤ 2‖u‖HQ(div,D)‖η0,Γ0ψ‖H1
Q

(D) ≤ 2‖u‖HQ(div,D)‖η0,Γ0‖ ‖ψ‖H1/2
Q

(Γ0).

Hence, ‖γn,Γ0u‖H−1/2
Q

(Γ0) ≤ 2‖η0,Γ0‖ ‖u‖HQ(div,D) which shows that the
operator γn,Γ0 is indeed bounded.
The assertion for the case j = 1 is shown completely analogous. �

Remark 2.112 Since the definition of the trace operator γn,Γj is moti-
vated by (A.6c), the sign changes in situation where the normal vector
points into D.

2.3.4. Greens Formula and Applications

In this subsection we will derive analogous formulas to (2.14), but now in
the context for functions in H1

Q(D), HQ(curl, D) and HQ(div, D), respec-
tively. The formula (2.18b) is often referred to as Green’s formula.
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Theorem 2.113 Let D ⊆ R3 be a cell set of Lipschitz layer type with
characteristic quantities as in Assumption 2.91. Then the following asser-
tions are true.

(a) For u, v ∈ H1
Q(D) there holds the integration by parts formula in the

following form∫
D

(
u∇v + v∇u

)
dx =

1∑
j=0

∫
Γj

(γ0,Γju) (γ0,Γjv) n ds. (2.18a)

(b) For j ∈ {0, 1} the bilinear form

〈·, ·〉Γj : DQ,t(Γj ,C3)×DQ,T (Γj ,C3)→ C

defined by

(ϕ,ψ)→ 〈ϕ,ψ〉Γj :=
(
ϕ̃t
∣∣ ψ̃T )

L2(Q,C2),

where ϕ̃t and ψ̃T are given by (2.16), has a continuous extension
from H

−1/2
Q (Div,Γj)×H−1/2

Q (Curl,Γj) to C, which we also denote
by 〈·, ·〉Γj . There holds

|〈ϕ,ψ〉Γj | ≤ C ‖ϕ‖H−1/2
Q

(Div,Γj) ‖ψ‖H−1/2
Q

(Curl,Γj),

for all ϕ ∈ H−1/2
Q (Div,Γj), ψ ∈ H−1/2

Q (Curl,Γj) and j = 0, 1, where
C > 0 can be chosen as in Corollary 2.32. With these bilinear forms,
there holds Green’s formula in the following form∫

D

(
curlu · v − u · curl v

)
dx

=
1∑
j=0

〈
γt,Γju, γT,Γjv

〉
Γj

= −
1∑
j=0

〈
γt,Γjv, γT,Γju

〉
Γj

(2.18b)

for all u, v ∈ HQ(curl, D).

(c) For u ∈ HQ(div, D) and ψ ∈ H1
Q(D) there holds the formula∫

D

(
ψ div u+ u · ∇ψ

)
dx =

1∑
j=0
〈γn,Γju, γ0,Γjψ〉. (2.18c)

Here, 〈·, ·〉 denotes the duality pairing from Theorem 2.111.
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Proof: (a). Let u, v ∈ H1
Q(D) and let (un)n∈N, (vn)n∈N be sequences

in C∞Q (D) such that un → u, vn → v in H1
Q(D), as n → ∞. Then

γ0,Γjun → γ0,Γju in H
1/2
Q (Γj), j = 0, 1. In particular, we have this

convergence in L2(Γj), j = 0, 1. Therefore, by applying the integral
identity (A.6a) and exploiting therein the Q-periodicity of the smooth
functions,∫
D

(u∇v + v∇u) dx = lim
n→∞

∫
D

(un∇vn + vn∇un) dx

= lim
n→∞

1∑
j=0

∫
Γj

(γ0,Γjun) (γ0,Γjvn) n ds =
1∑
j=0

∫
Γj

(γ0,Γju) (γ0,Γjv) n ds.

(b). Due to Remark 2.109 and Corollary 2.32, the bilinear form is well-
defined on DQ,t(Γj ,C3) × DQ,T (Γj ,C3) and bounded. Hence, Corol-
lary 2.108 allows the continuous extension with the given estimate.
To verify the formula, take at first some u, v ∈ C∞Q (D,C3) and let j ∈ {0, 1}.
Set ϕ := nj × u|Γj and ψ := (nj × v|Γj ) × nj . By the definition of γt,Γj
and γT,Γj we can rewrite ϕ and ψ in the form ϕ = γt,Γju and ψ = γT,Γjv.
Then∫

Γj
γt,Γju · γT,Γjv ds =

∫
Q

ρj(x)F−1
j (x)ϕ

(
Ψj(x)

)
· F>j (x)ψ

(
Ψj(x)

)
dx

=
∫
Q

ϕ̃t(x) · ψ̃T (x) dx = 〈ϕ,ψ〉Γj =
〈
γt,Γju, γT,Γjv

〉
Γj
.

Now, let u, v ∈ HQ(curl, D) and let (un)n∈N, (vn)n∈N be sequences in
C∞Q (D,C3) such that un → u, vn → v in HQ(curl, D), as n → ∞.
Then γt,Γjun → γt,Γju and γT,Γjvn → γT,Γjv in H

−1/2
Q (Div,Γj) and

H
−1/2
Q (Curl,Γj), respectively, j = 0, 1. Therefore, by applying the inte-

gral identity (A.6b), exploiting therein the Q-periodicity of the smooth
functions and using the observation from above, we obtain∫

D

(curlu · v − u · curl v) dx = lim
n→∞

∫
D

(curlun · vn − un · curl vn) dx

= lim
n→∞

1∑
j=0

∫
Γj
γt,Γjun · γT,Γjvn ds
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= lim
n→∞

1∑
j=0

〈
γt,Γjun, γT,Γjvn

〉
Γj

=
1∑
j=0

〈
γt,Γju, γT,Γjv

〉
Γj
.

The second equation follows by interchanging the roles of u and v.
(c). Let u ∈ HQ(div, D) and ψ ∈ H1

Q(D). Then there exist sequences
(un)n∈N in C∞Q (D,C3) and (ψn)n∈N in C∞Q (D) converging to u and ψ
with respect to ‖ · ‖HQ(div,D) and ‖ · ‖H1

Q
(D), respectively. Using the

partition of unity from Assumption 2.91, there holds ψ =
∑2
j=0 φjψ =∑2

j=0 limn→∞ φjψn and, together with Proposition 2.78,

∇ψ =
2∑
j=0
∇(φjψ) =

2∑
j=0

(φj∇ψ + ψ∇φj)

=
2∑
j=0

lim
n→∞

(φj∇ψn + ψn∇φj) =
2∑
j=0

lim
n→∞

∇(φjψn),

where the limits are taken in L2(D) and L2(D,C3), respectively. For n ∈ N
and j ∈ {0, 1} set ψ̃(j)

n := η0,Γjγ0,Γjψn. Note that ψ̃(0)
n ∈ H1

Q,0,Γ1
(D)

and ψ̃
(1)
n ∈ H1

Q,0,Γ0
(D), n ∈ N. Furthermore, by the boundedness of

the trace and extension operator the sequence (ψ̃(j)
n )n∈N converges to

η0,Γjγ0,Γjψ =: ψ̃(j) in H1
Q(D), j = 0, 1. Let n ∈ N. Then, by the definition

of the cut-off functions φj , by the Q-periodicity of all involved functions
and by (A.6c), we obtain

2∑
j=0

∫
∂D

(φjψn) n · un ds =
∫

Γ0

(γ0,Γ0ψn) n · un ds+
∫

Γ1

(γ0,Γ1ψn) n · un ds

=
∫
D

(
ψ̃(0)
n div un + un · ∇ψ̃(0)

n

)
dx+

∫
D

(
ψ̃(1)
n div un + un · ∇ψ̃(1)

n

)
dx.

Hence, using the observations from above and again (A.6c),∫
D

(
ψ div u+ u · ∇ψ

)
dx =

2∑
j=0

∫
D

(
(φjψ) div u+ u · ∇(φjψ)

)
dx

=
2∑
j=0

lim
n→∞

∫
D

(
(φjψn) div un + un · ∇(φjψn)

)
dx
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=
2∑
j=0

lim
n→∞

∫
∂D

(φjψn) n · un ds

= lim
n→∞

1∑
j=0

∫
D

(
ψ̃(j)
n div un + un · ∇ψ̃(j)

n

)
dx

=
1∑
j=0

∫
D

(
ψ̃(j) div u+ u · ∇ψ̃(j))dx =

1∑
j=0
〈γn,Γju, γ0,Γjψ〉,

where the last step holds by the definition of the trace operator γn,Γj , see
Theorem 2.111. �

Duality Results. As a first application of Green’s formula in HQ(curl, D)
we show that the spaces H−1/2

Q (Div,Γj) and H
−1/2
Q (Curl,Γj) are dual to

each other, up to isomorphism. The next corollary states more precisely
what we mean by this formulation.

Corollary 2.114 Let D ⊆ R3 be a cell set of Lipschitz layer type with
characteristic quantities as in Assumption 2.91. To simplify notation we
will drop the index “j”.

(i) The dual space H−1/2
Q (Div,Γ)∗ of H−1/2

Q (Div,Γ) is isomorphic to
H
−1/2
Q (Curl,Γ). An isomorphism is given by

J1 : H−1/2
Q (Curl,Γ)→ H

−1/2
Q (Div,Γ)∗, ψ → J1ψ := 〈·, ψ〉Γ.

(ii) The dual space H−1/2
Q (Curl,Γ)∗ of H−1/2

Q (Curl,Γ) is isomorphic to
H
−1/2
Q (Div,Γ). An isomorphism is given by

J2 : H−1/2
Q (Div,Γ)→ H

−1/2
Q (Curl,Γ)∗, ϕ→ J2ϕ := 〈ϕ, ·〉Γ.

Proof: We follow the proof of [34, Theorem 5.26] and show at first that J1

is surjective. For this let ` ∈ H−1/2
Q (Div,Γ)∗. Since ` ◦ γt,Γ is an element

of the dual space HQ(curl, D)∗ of the Hilbert space HQ(curl, D), by the
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theorem of Riesz there exists a unique v ∈ HQ(curl, D) such that for all
u ∈ HQ(curl, D) we have∫

D

(curlu · curl v + u · v) dx = `
(
γt,Γu

)
.

From this we conclude∫
D

(curlχ · curl v + χ · v) dx = 0, for all χ ∈ C∞Q,0(D,C3).

Hence, curl v ∈ HQ(curl, D) with curl2 v = −v. Set ψ := γT,Γ curl v. To
show that J1ψ = ` let ϕ ∈ H−1/2

Q (Div,Γ) and set u := ηt,Γ ϕ. Then

`(ϕ) = `
(
γt,Γ u

)
=
∫
D

(curlu · curl v − u · curl2 v) dx

=
〈
γt,Γ u, γT,Γ curl v

〉
Γ = 〈ϕ,ψ〉Γ =

(
J1ψ

)
(ϕ).

The surjectivity for J2 is shown completely analogous.
To see that J1 is injective, let ψ ∈ H−1/2

Q (Curl,Γ) such that J1ψ = 0. By
a corollary of Hahn-Banach’s theorem, there exists ` ∈ H−1/2

Q (Curl,Γ)∗
with ‖`‖ = 1 and `(ψ) = ‖ψ‖

H
−1/2
Q

(Curl,Γ). Due to the surjectivity of J2,

there exists ϕ ∈ H−1/2
Q (Div,Γ) such that J2ϕ = `. Therefore,

‖ψ‖
H
−1/2
Q

(Curl,Γ) = `(ψ) = 〈ϕ,ψ〉Γ =
(
J1ψ

)
(ϕ) = 0.

Again, the injectivity of J2 is obtained with the same arguments. �

Further Extension (by Zero) Operators. As a next application of The-
orem 2.113 we show a generalization of the extension result from Proposi-
tion 2.95.

Proposition 2.115 Let D ⊆ R3 be a cell set of Lipschitz layer type with
characteristic quantities as in Assumption 2.91 and let D′ ⊆ R3 be a cell
set such that D ( D′.

(a) The following assertions are true.
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(i) If Γ0 ⊆ ∂D′, then the mapping

ker(γ0,Γ1) 3 u 7→ u|D
′

0 ∈ H1
Q(D′,Cd

′
)

is well-defined, linear and bounded.

(ii) If Γ1 ⊆ ∂D′, then the mapping

ker(γ0,Γ0) 3 u 7→ u|D
′

0 ∈ H1
Q(D′,Cd

′
)

is well-defined, linear and bounded.

(iii) The mapping

ker(γ0,Γ0) ∩ ker(γ0,Γ1) 3 u 7→ u|D
′

0 ∈ H1
Q(D′,Cd

′
)

is well-defined, linear and bounded.

In all cases we have ‖u|D′0 ‖H1
Q

(D′,Cd′ ) ≤ ‖u‖H1
Q

(D,Cd′ ) and further-
more ∂α(u|D′0 ) = (∂αu)|D′0 for all α ∈ N3

0 with |α| ≤ 1.

(b) The following assertions are true.

(i) If γ ∈ {γt,Γ1 , γT,Γ1} and Γ0 ⊆ ∂D′, then the mapping

ker(γ) 3 u 7→ u|D
′

0 ∈ HQ(curl, D′)

is well-defined, linear and bounded.

(ii) If γ ∈ {γt,Γ0 , γT,Γ0} and Γ1 ⊆ ∂D′, then the mapping

ker(γ) 3 u 7→ u|D
′

0 ∈ HQ(curl, D′)

is well-defined, linear and bounded.

(iii) If γ1 ∈ {γt,Γ1 , γT,Γ1} and γ0 ∈ {γt,Γ0 , γT,Γ0}, then the mapping

ker(γ1) ∩ ker(γ0) 3 u 7→ u|D
′

0 ∈ HQ(curl, D′)

is well-defined, linear and bounded.

In all cases we have ‖u|D′0 ‖H(curl,D′) ≤ ‖u‖H(curl,D) and furthermore
curl(u|D′0 ) = (curl u)|D′0 .
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Proof: We only show the assertion for part (b) as the argumentation for
part (a) is completely analogous.
(i). Let γ = γt,Γ1 and u ∈ ker(γ). Since ker(γ) ⊆ HQ(curl, D), there exists
a sequence (un)n∈N in C∞Q (D,C3) with un → u in HQ(curl, D), as n→∞.
In particular, γun → γu = 0 in H

−1/2
Q (Div,Γ1). Let χ ∈ C∞Q,0(D′,C3).

Note that by Theorem 2.113∣∣〈γun, γT,Γ1χ
〉

Γ1

∣∣ ≤ C ‖γun‖H−1/2
Q

(Div,Γ1)‖γT,Γ1χ‖H−1/2
Q

(Curl,Γ1) → 0,

as n→∞. Using now Green’s formula (2.18b) from Theorem 2.113 and
the fact that γT,Γ0χ = 0, we obtain therefore∫

D′
u|D

′

0 (x) · curlχ(x) dx = lim
n→∞

∫
D

un(x) · curlχ(x) dx

= lim
n→∞

(∫
D

curlun(x) · χ(x) dx+
〈
γun, γT,Γ1χ

〉
Γ1

)
=
∫
D

curlu(x) · χ(x) dx =
∫
D′

(curlu)|D
′

0 (x) · χ(x) dx.

This proves that the mapping is well-defined. Its linearity is clear and its
boundedness is easy to obtain, see the proof of Proposition 2.68.
Thanks to the second equality in (2.18b), we can proceed analogously for
the case γ = γT,Γ1 .
The assertion in (ii) is shown with the same arguments. And the assertion
in (iii) is proven by combining the arguments for (i) and (ii). �

The Kernels of Trace Operators. Recall Definition 2.94 for the spaces
H1
Q,0,Γj (D,C

d′) and HQ,0,Γj (curl, D), j = 0, 1. It turns out that these
spaces are the kernels of the corresponding trace operators on Γ0 and Γ1,
respectively. This will be shown next.

Theorem 2.116 Let D ⊆ R3 be a cell set of Lipschitz layer type with
characteristic quantities as in Assumption 2.91 and let j ∈ {0, 1}. Then
the following assertions are true.

(a) (i) ker(γ0,Γj ) = H1
Q,0,Γj (D,C

d′),
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(ii) H1
Q,0(D,Cd′) = H1

Q,0,Γ0
(D,Cd′) ∩H1

Q,0,Γ1
(D,Cd′).

(b) (i) ker(γt,Γj ) = HQ,0,Γj (curl, D) = ker(γT,Γj ),

(ii) HQ,0(curl, D) = HQ,0,Γ0(curl, D) ∩HQ,0,Γ1(curl, D).

Proof: Set a := (0, 0, L+ 2)>, where L > 0 denotes the maximum of the
Lipschitz constants from f0 and f1.
We start with part (b) and postpone part (a) to the end of this proof.
(b). (i). We only show that ker(γt,Γj ) = HQ,0,Γj (curl, D), since the
argumentation for the second equation is completely analogous.
Let j ∈ {0, 1} and u ∈ HQ,0,Γj (curl, D). Then there exists a sequence
(un)n∈N in C∞Q,0,Γj (D,C

3) with un → u in HQ(curl, D), as n → ∞. By
the continuity of γt,Γj we obtain γt,Γjun → γt,Γju. And since γt,Γjun = 0
for all n ∈ N, we conclude γt,Γju = 0.
To show the other direction, let u ∈ ker(γt,Γ1), i.e., u ∈ HQ(curl, D) with
γt,Γ1u = 0. Choose some cell set D′ ⊆ R3 such that D ( D′ and Γ0 ⊆ ∂D′.
Then u|D′0 ∈ HQ(curl, D′), see Proposition 2.115. We define for ε > 0

uε(x) :=
∫
D

φ̃ε(x+ εa− y)u(y) dy, x ∈ D,

=
∫
D′
φ̃ε(x+ εa− y)u|D

′

0 (y) dy, (∗)

where φ̃ε denotes the Q-periodic extension of φε from (2.6). From part (vi)
of Lemma 2.92 we know that for x ∈ D with x3 > f1(x̃)− ε and for y ∈ D
there holds y /∈ B3(x + εa, ε). Hence, uε ∈ C∞Q,0,Γ1

(D,C3). Combining
part (iv) with part (i) of Lemma 2.92, we obtain that φ̃ε(x+εa−·) vanishes
in a neighborhood of Γ0 for all x ∈ D. Therefore, thanks to part (b) of
Proposition 2.82, we obtain for x ∈ D

curluε(x) =
∫
D′
∇x φ̃ε(x+ εa− y)× u|D

′

0 (y) dy

= −
∫
D′
∇y φ̃ε(x+ εa− y)× u|D

′

0 (y) dy

=
∫
D′
φ̃ε(x+ εa− y) curlu|D

′

0 (y) dy

=
∫
D

φ̃ε(x+ εa− y) curlu(y) dy =: (curlu)ε(x).
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Now we proceed as at the end of the proof of Proposition 2.83 and set
D̃ :=

⋃
|µ|∞≤1

(
{p(µ)} + D

)
. Moreover, let v ∈ {u, curlu} and ṽ be the

Q-periodic extension of v from D to D̃ and then be extended by zero to
R3 \ D̃. And finally set

ṽε(x) :=
∫
R3
φε(x+ εa− y) ṽ(y) dy, x ∈ R3.

Then ṽε(x) = vε(x) for all x ∈ D and moreover ṽ ∈ L2(R3,C3) with ṽ = v
almost everywhere in D. From Theorem 2.50 we conclude that ṽε → ṽ in
L2(R3,C3) and therefore in particular vε = ṽε|D → ṽ|D = v in L2(D,C3),
as ε→ 0. This means that uε → u with respect to ‖ · ‖H(curl,D), as ε→ 0,
and this shows that u ∈ HQ,0,Γ1(curl, D).
To show the assertion for u ∈ ker(γt,Γ0), we use the same argumentation.
We only have to interchange the indices “1” and “0” and to replace
φ̃ε(x+ εa− y) by φ̃ε(x− εa− y).
(ii). The direction “⊆” is easy to see. To show the other direction, let
u ∈ HQ,0,Γ0(curl, D) ∩HQ,0,Γ1(curl, D). By part (i) we have γt,Γ0u = 0 =
γt,Γ1u. Let D′ ⊆ R3 be a cell set such that D ( D′ and Γ0 ∪ Γ1 ⊆ D′.
Again thanks to Proposition 2.115, u|D′0 ∈ HQ(curl, D′). For j ∈ {0, 1, 2}
set u(j) := φ̃j |D′ u|D

′

0 , where {φ̃k | k = 0, 1, 2} is the partition of unity
from Theorem 2.90. One of its important properties implies that there
exists δ > 0 such that supp(u(1)) ⊆ D \ Γδ0, supp(u(0)) ⊆ D \ Γδ1 and
supp(u(2)) ⊆ D \ (Γδ0 ∪ Γδ1). Furthermore,

∑2
j=0 u

(j)|D = u. For 0 < ε <
δ

2(L+2) we set as in part (i)

u(0)
ε (x) :=

∫
D

φ̃ε(x− εa− y)u(0)|D(y) dy, x ∈ D,

u(1)
ε (x) :=

∫
D

φ̃ε(x+ εa− y)u(1)|D(y) dy, x ∈ D,

u(2)
ε (x) :=

∫
D

φ̃ε(x− y)u(2)|D(y) dy, x ∈ D,

and note that analogous to (∗) we can rewrite these integrals as integrals
over D′. Furthermore, we observe that we can use the same arguments
from part (i) to see that u(1)

ε vanishes in a neighborhood of Γ1 and that
φ̃ε(x + εa − ·) vanishes in a neighborhood of Γ0 for all x ∈ D. To
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see that u(1)
ε also vanishes in a neighborhood of Γ0, let x ∈ D with

x3 < f0(x̃) + ( 1
4δ −

1
2ε(L+ 2)). This implies that x+ εa ∈ V0( δ2 ), with V0

from Lemma 2.92. Using part (ii) of this lemma, we have x+ εa ∈ Γδ/2
0 .

Since ε < δ
2 , we obtain therefore B3(x + εa, ε) ⊆ Γδ0, meaning that the

integrand in the definition of u(1)
ε is indeed zero. Hence, u(1)

ε ∈ C∞Q,0(D,C3)
and furthermore for curl u(1)

ε we obtain the same result as in part (i).
For u(0)

ε and u
(2)
ε we can argue completely analogous. Now we can follow

the lines at the end of the proof of Theorem 2.93 and obtain u(j)
ε → u(j)|D

with respect to ‖ · ‖H(curl,D), as ε → 0, j = 0, 1, 2. From this we finally
conclude that for uε :=

∑2
j=0 u

(j)
ε there holds uε ∈ C∞Q,0(D,C3) and

uε =
∑2
j=0 u

(j)
ε →

∑2
j=0 u

(j)|D = u in HQ(curl, D), as ε → 0, and the
proof for part (b) is complete.
(a). The proof follows very closely the lines from part (b), where we now
cite part (a) from Proposition 2.82. The details are omitted. �

Corollary 2.117 Let D ⊆ R3 be a cell set of Lipschitz layer type with
characteristic quantities as in Assumption 2.91. Furthermore, let 0 < ` <
L3 and R := Q × (−`, 0). In the following arguments we consider Ψ̃j

restricted to R. Moreover, let Sj and Tj denote the isomorphism from
Theorem 2.104 for the scalar and vector valued case, respectively. For ease
of notation we denote by Γ′0 and Γ′1 the lower and upper boundary patch
of Ψ̃j(R), j = 0, 1, respectively. Then the following assertions are true.

(a) For the scalar valued case we have

Sj
(
H1
Q,0(Ψ̃j(R))

)
= H1

Q,0(R), j = 0, 1,
S0
(
H1
Q,0,Γ′0

(Ψ̃0(R))
)

= H1
Q,0,Q×{0}(R) = S1

(
H1
Q,0,Γ′1

(Ψ̃1(R))
)
,

S0
(
H1
Q,0,Γ′1

(Ψ̃0(R))
)

= H1
Q,0,Q×{−`}(R) = S1

(
H1
Q,0,Γ′0

(Ψ̃1(R))
)
.

(b) For the vector valued case we have

Tj
(
HQ,0(curl, Ψ̃j(R))

)
= HQ,0(curl, R), j = 0, 1,
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T0
(
HQ,0,Γ′0(curl, Ψ̃0(R))

)
= HQ,0,Q×{0}(curl, R)
= T1

(
HQ,0,Γ′1(curl, Ψ̃1(R))

)
,

T0
(
HQ,0,Γ′1(curl, Ψ̃0(R))

)
= HQ,0,Q×{−`}(curl, R)
= T1

(
HQ,0,Γ′0(curl, Ψ̃1(R))

)
.

Proof: We only show the assertion for the vector valued case as the
argumentation for the scalar valued case is completely analogous.
Let v ∈ T0

(
HQ,0(curl, Ψ̃0(R))

)
, i.e., there exists u ∈ HQ,0(curl, Ψ̃0(R))

such that v = T0u. Moreover, there exists (un)n∈N in C∞Q,0(Ψ̃0(R),C3)
converging to u with respect to ‖ · ‖HQ(curl,Ψ̃0(R)). Hence, T0un →
T0u in HQ(curl, R) and therefore 0 = γt,Q×{0}T0un → γt,Q×{0}T0u and
0 = γt,Q×{−`}T0un → γt,Q×{−`}T0u, as n → ∞. Consequently, v ∈
ker(γt,Q×{0}) ∩ ker(γt,Q×{−`}), which yields with Theorem 2.116 that
v ∈ HQ,0(curl, R).
For the other direction let now v ∈ HQ,0(curl, R). Since T0 is an isomor-
phism, we can use the same argumentation from above to obtain that
u := T−1

0 v belongs to HQ,0(curl, Ψ̃0(R)) and we are done.
The remaining equalities are shown analogously. �

Intermediate Layers. Thanks to Theorem 2.113, piecewise defined func-
tions whose traces coincide can be clued together, as shown in the next
proposition.

Proposition 2.118 Let D−, D+ ⊆ R3 be cell sets of Lipschitz layer type
with corresponding surfaces Γ−j and Γ+

j , j = 0, 1, respectively, such that
D− ∩D+ = ∅, but Γ−1 = Γ+

0 =: Γ. For simplicity, set D := D− ∪ Γ ∪D+.

(a) If v ∈ H1
Q(D−) and w ∈ H1

Q(D+) with γ0,Γv = γ0,Γw, then

u :=
{
w, on D+,

v, on D−

belongs to H1
Q(D) with ∇u = ∇v on D− and ∇u = ∇w on D+.

Moreover, the mapping H1
Q(D−)×H1

Q(D+) 3 (v, w) 7→ u ∈ H1
Q(D)

is linear and bounded.
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(b) If v ∈ HQ(curl, D−) and w ∈ HQ(curl, D+) with γt,Γv = −γt,Γw or
with γT,Γv = γT,Γw, then

u :=
{
w, on D+,

v, on D−

belongs to HQ(curl, D) with curlu = curl v on D− and curlu = curlw
on D+. Moreover, the mapping HQ(curl, D−) × HQ(curl, D+) 3
(v, w) 7→ u ∈ HQ(curl, D) is linear and bounded.

Proof: We only show the assertion for part (b) as the argumentation for
part (a) is completely analogous.
Moreover, we only show the assertion for the case γT,Γv = γT,Γw, because
the assertion for the other case is shown by very similar arguments. So,
let χ ∈ C∞Q,0(D,C3). Note that γt,Γχ|D− = −γt,Γχ|D+ and γt,Γ−0

χ|D− =
γt,Γ+

1
χ|D+ = 0. Using the second equality from Green’s formula (2.18b),

we obtain therefore∫
D

u · curlχdx =
∫
D−

v · curlχdx+
∫
D+

w · curlχdx

=
∫
D−

curl v · χdx+ 〈γt,Γ χ|D− , γT,Γ v〉Γ

+
∫
D+

curlw · χdx+ 〈γt,Γ χ|D+ , γT,Γ w〉Γ

=
∫
D−

curl v · χdx+
∫
D+

curlw · χdx,

which shows that u ∈ HQ(curl, D) with variational curl as given in the
proposition. The linearity and boundedness are easy to see. �

Otherwise, if a cell set D of Lipschitz layer type can be divided by an
intermediate Lipschitz surface Γ into two cell sets of Lipschitz layer type
which contact each other, then for the traces on both sides of Γ we have
the following result.

Proposition 2.119 Let D ⊆ R3 be a cell set of Lipschitz layer type
with characteristic quantities as in Assumption 2.91. Furthermore, let
f : R2 → R be Q-periodic and Lipschitz-continuous, and set

Γ :=
{
x ∈ R3 | x̃ ∈ Q and x3 = f(x̃)

}
.
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Moreover, suppose that Γ ⊆ D and set

D+ :=
{
x ∈ R3 | x̃ ∈ Q and f(x̃) < x3 < f1(x̃)

}
,

D− :=
{
x ∈ R3 | x̃ ∈ Q and f0(x̃) < x3 < f(x̃)

}
.

Then the following assertions are true.

(a) If u ∈ H1
Q(D,Cd′), then γ0,Γu|D− = γ0,Γu|D+ .

(b) If u ∈ HQ(curl, D), then

γt,Γu|D− = −γt,Γu|D+ and γT,Γu|D− = γT,Γu|D+ .

Proof: We only show the assertion for part (b) as the argumentation for
part (a) is completely analogous.
Let u ∈ HQ(curl, D). Also here, we only show the first equation, since the
proof for the second one uses analogous arguments.
Let ψ ∈ H−1/2

Q (Curl,Γ). Thanks to Theorem 2.107 we have v− := ηT,Γψ ∈
HQ,0,Γ0(curl, D−) and v+ := ηT,Γψ ∈ HQ,0,Γ1(curl, D+). Now, Proposi-
tion 2.118 implies that

v :=
{
v+, on D+,

v−, on D−

belongs to HQ(curl, D). In particular, v ∈ HQ,0(curl, D). Due to Propo-
sition 2.83, there exist a sequence (χn)n∈N in C∞Q,0(D,C3), converging
to v in HQ(curl, D). Now, by Proposition 2.68 we have χn|D− → v− in
HQ(curl, D−) and χn|D+ → v+ in HQ(curl, D+), as n → ∞. Therefore,
by continuity of the trace operators, γT,Γχn|D− → ψ and γT,Γχn|D+ → ψ

in H
−1/2
Q (Curl,Γ), as n→∞. Hence, using Green’s formula (2.18b),

〈γt,Γu|D− + γt,Γu|D+ , ψ〉Γ
= lim
n→∞

〈γt,Γu|D− , γT,Γχn|D−〉Γ + lim
n→∞

〈γt,Γu|D+ , γT,Γχn|D+〉Γ

= lim
n→∞

[ ∫
D−

(curlu · χn − u · curlχn) dx

+
∫
D+

(curlu · χn − u · curlχn) dx
]
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= lim
n→∞

∫
D

(curlu · χn − u · curlχn) dx = 0,

where the last equality holds by definition of the variational curl. Since
ψ ∈ H−1/2

Q (Curl,Γ) was arbitrarily chosen, Corollary 2.114 yields now the
assertion. �

Surface Divergence. To show later existence of a solution to the varia-
tional formulation of our scattering problem of interest, we also need the
notion of the surface divergence. In classical terms, its definition and some
applications can be found in the appendix of [34]. Here we will focus on
a definition in variational sense, and this in particular for the Q-periodic
setting. However, for this purpose again [34] will be our basis.

Theorem 2.120 (and Definition) Let D ⊆ R3 be a cell set of Lipschitz
layer type with characteristic quantities as in Assumption 2.91. Further-
more, let j ∈ {0, 1} and β ∈ R3. For ϕ ∈ H−1/2

Q (Div,Γj) the mapping

H
1/2
Q (Γj) 3 ψ 7→ −〈ϕ, γT,Γj∇−βψ̃〉Γj ∈ C

is well-defined, linear and bounded. Here, ψ̃ ∈ H1
Q(D) is any extension of

ψ into D such that γ0,Γj ψ̃ = ψ. We call this mapping surface divergence
of ϕ, in sign Divβ ϕ (if β = 0, then we will drop the index “β” in this
symbol). Hence, for ϕ ∈ H−1/2

Q (Div,Γj) we have that Divβ ϕ ∈ H−1/2
Q (Γj)

and
〈Divβ ϕ,ψ〉 = −〈ϕ, γT,Γj∇−βψ̃〉Γj , ψ ∈ H1/2

Q (Γj).

In particular, there holds the identity

〈Divβ ϕ, γ0,Γjψ〉 = −〈ϕ, γT,Γj∇−βψ〉Γj , (2.19)

for all ϕ ∈ H−1/2
Q (Div,Γj) and all ψ ∈ H1

Q(D).

Proof: We only show the assertion for the case j = 0, as the assertion for
the case j = 1 is shown completely analogous.
To see that the mapping is well-defined, first of all recall from Theo-
rem 2.107 that by ψ̃ := η0,Γ0ψ such an extension exists. Let now ψ̃1 and
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ψ̃2 be such extensions. Then, by part (a) from Theorem 2.116, ψ̃ :=
ψ̃1 − ψ̃2 ∈ H1

Q,0,Γ0
(D). Furthermore, ∇−βH1

Q,0,Γ0
(D) ⊆ HQ,0,Γ0(curl, D),

see Proposition 2.99. Hence, γT,Γ0∇−βψ̃ = 0.
To show the boundedness, let ϕ ∈ H

−1/2
Q (Div,Γ0) and ψ ∈ H

1/2
Q (Γ0).

Then, by part (b) of Theorem 2.113, by the boundedness of γT,Γ0 , the
estimate ‖∇−β(η0,Γ0ψ)‖HQ(curl,D) ≤ C ‖η0,Γ0ψ‖H1

Q
(D) (thanks to Proposi-

tion 2.75) and by the boundedness of η0,Γ0 , we obtain

|〈Divβ ϕ,ψ〉| =
∣∣〈ϕ, γT,Γ0∇−β(η0,Γ0ψ)〉Γ0

∣∣
≤ C ‖ϕ‖

H
−1/2
Q

(Div,Γ0) ‖γT,Γ0‖ ‖∇−β(η0,Γ0ψ)‖HQ(curl,D)

≤ C ‖ϕ‖
H
−1/2
Q

(Div,Γ0) ‖η0,Γ0‖ ‖ψ‖H1/2
Q

(Γ0).

Hence, ‖Divβ ϕ‖H−1/2
Q

(Γ0) ≤ C, which shows that Divβ ϕ is indeed bounded.
For the symbol C, which appeared here several times, recall again the
convention from the end of Section 1.3.
The identity (2.19) is clear, because ψ ∈ H1

Q(D) is an extension of γ0,Γ0ψ
with the required property. �

H
−1/2
Q (Div,Γj) as a Subspace of H−1/2

Q (Γj,CCC3). As in [34, Lemma
5.27], in the following presentation we will show that for a cell set D ⊆ R3

of Lipschitz layer type, with characteristic quantities as in Assumption 2.91,
the space H−1/2

Q (Div,Γj) can be embedded into H−1/2
Q (Γj ,C3), j = 0, 1.

We will need this result for the proof of existence of a solution to the
variational formulation of our scattering problem of interest and, moreover,
for the definition of vector surface potentials.

Recall Proposition 2.65. Hence, for u ∈ H1
Q(D,C3) its trace γT,Γju is

well-defined and belongs to H−1/2
Q (Curl,Γj), j = 0, 1.

Theorem 2.121 Let D ⊆ R3 be a cell set of Lipschitz layer type, with
characteristic quantities as in Assumption 2.91, and let j ∈ {0, 1}. Then
we have

H
−1/2
Q (Div,Γj) ↪−→ H

−1/2
Q (Γj ,C3),
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where the embedding is given by H−1/2
Q (Div,Γj) 3 ϕ 7→ `ϕ∈ H−1/2

Q (Γj ,C3),
with `ϕ defined by

〈`ϕ, ψ〉 := 〈ϕ, γT,Γj ψ̃〉Γj , ψ ∈ H1/2
Q (Γj ,C3).

Here, 〈·, ·〉 denotes the duality pairing with respect to H−1/2
Q (Γj ,C3) and

ψ̃ ∈ H1
Q(D,C3) is any extension of ψ such that γ0,Γj ψ̃ = ψ.

Proof: Let j ∈ {0, 1}. Furthermore, let ϕ ∈ H
−1/2
Q (Div,Γj). We fol-

low the lines in the proof of [34, Lemma 5.27] and show at first that
`ϕ ∈ H−1/2

Q (Γj ,C3) is well-defined. For this let ψ̃1, ψ̃2 ∈ H1
Q(D,C3) be

two extensions of ψ ∈ H
1/2
Q (Γj ,C3). Then ψ̃ := ψ̃1 − ψ̃2 belongs to

H1
Q,0,Γj (D,C

3), see Theorem 2.116 (applied to each component of ψ̃).
Due to Definition 2.94, there exists a sequence (χn)n∈N in C∞Q,0,Γj (D,C

3)
converging in H1

Q(D,C3) to ψ̃. By Proposition 2.65, this sequence con-
verges even in HQ(curl, D) to ψ̃. Therefore, 0 = limn→∞ γT,Γjχn = γT,Γj ψ̃.
Moreover, for ψ ∈ H1/2

Q (Γj ,C3) and ψ̃ := η0,Γjψ ∈ H1
Q(D,C3) we obtain

|〈`ϕ, ψ〉| = |〈ϕ, γT,Γj ψ̃〉Γj |
≤ c ‖ϕ‖

H
−1/2
Q

(Div,Γj) ‖γT,Γj‖ ‖η0,Γj‖ ‖ψ‖H1/2
Q

(Γj ,C3).

Both together shows indeed that `ϕ is well-defined.
Clearly, the mapping H−1/2

Q (Div,Γj) 3 ϕ 7→ `ϕ∈ H−1/2
Q (Γj ,C3) is linear,

and its boundedness follows easily from the last estimate. It remains to
show its injectivity. For this let ϕ ∈ H−1/2

Q (Div,Γj) such that `ϕ = 0.
Let ψ ∈ H−1/2

Q (Curl,Γj) and set ψ̃ := ηT,Γjψ ∈ HQ(curl, D). Then there
exists a sequence (χn)n∈N in C∞Q (D,C3) converging to ψ̃ in HQ(curl, D).
Note that for n ∈ N the function χn|Γj belongs to DQ,0(Γj ,C3), yielding
that χn|Γj itself belongs to H1/2

Q (Γj ,C3), see Corollary 2.108. Hence, since
`ϕ = 0, we have

〈ϕ,ψ〉Γj = lim
n→∞

〈ϕ, γT,Γjχn〉Γj = lim
n→∞

〈`ϕ, χn|Γj 〉 = 0.

Therefore, ϕ has to vanish because of the isomorphism J2 from Corol-
lary 2.114. �
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2.3.5. Compactness Results

The following theorem is an analog of Theorem 2.71. It might be useful to
recall Definition 2.69.

Theorem 2.122 Let D ⊆ R3 be a cell set of Lipschitz layer type, with
characteristic quantities as in Assumption 2.91, and let j ∈ {0, 1}. Fur-
thermore, let β ∈ R3. Then the following assertions are true.

(a) (i) The embedding H1/2
Q (Γj ,Cd

′) id
↪−→ L2(Γj ,Cd

′) is compact.

(ii) The embedding H1
Q(D,Cd′) id

↪−→ L2(D,Cd′) is compact.

(b) The embedding HQ(curl,divβ 0, D) id
↪−→ L2(D,C3) is compact.

Proof: (a) (i). Let at first d′ = 1. We decompose the embedding in the
following way

H
1/2
Q (Γj)

Sj−→ H1/2
per (Q) id

↪−→ L2(Q) Tj−→ L2(Γj),

where the operators Sj and Tj are given by Sjϕ := ϕ ◦ Ψj and Tjψ :=
ψ◦Ψ−1

j , respectively. By the definition of the space H1/2
Q (Γj), the operator

Sj is bounded, and the boundedness of Tj we obtain from (2.15). Now the
assertion follows from Proposition 2.13.
For d′ > 1 we conclude from the case d′ = 1 that for a bounded sequence
in H

1/2
Q (Γj ,Cd

′) each sequence for the components has a convergent sub-
sequence in L2(Γj); and from this it is easy to see that the sequence where
we started from has a convergent subsequence in L2(Γj ,Cd

′).
(a) (ii). We only show the assertion for the case d′ = 1 as the generalization
to the case d′ > 1 is obvious, see also part (i).
Let at first u ∈ H1

Q(D) be arbitrary and define u(j) := (φju)|Uj0 with φj
and Uj from Assumption 2.91, j = 0, 1. Note that u(0) ∈ H1

Q,0,Γ1
(D) and

u(1) ∈ H1
Q,0,Γ0

(D). Let j ∈ {0, 1}. We define

v(j) := u(j) ◦ Ψ̃j ∈ H1
Q(Q−3 )
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as in Theorem 2.104 and observe that v(j) vanishes in a neighborhood of
Q× {−L3}. We set

v̂(j) :=
{
v(j), on Q−3 ,

v(j)(·∗), on Q+
3 .

Due to Proposition 2.105 and Proposition 2.83, we have v̂(j) ∈ H1
Q,0(Q3).

Let now (un)n∈N be a bounded sequence in H1
Q(D). The quantities u(j)

n ,
v

(j)
n and v̂

(j)
n correspond to the quantities from above. Then (v̂(j)

n )n∈N is
bounded in H1

Q,0(Q3) and possesses therefore, thanks to Theorem 2.71, a
converging subsequence in L2(Q3) (which we denote by the same symbol).
Hence (v(j)

n )n∈N converges in L2(Q−3 ), yielding that (u(j)
n )n∈N converges in

L2(Uj). And this implies that (φjun)n∈N converges in L2(D).
Recall φ2 from Assumption 2.91. Then (φ2un)n∈N is a bounded sequence
in H1

Q,0(D) and possesses therefore, again due to Theorem 2.71, a subse-
quence (denoted by the same symbol) which converges in L2(D).
Since

∑2
j=0 φj ≡ 1, in summary we have shown that the bounded sequence

(un)n∈N from above contains a subsequence which converges in L2(D).
(b). We follow the lines in the proof of [34, Theorem 5.32], but in contrast
we have to apply the argument of Lax-Milgram twice to get rid off the
extra summand in (∗4) caused by iβ in ∇β .
Let at first u ∈ HQ(curl,divβ 0, D) be arbitrary and define u(j) := (φju)|Uj0
with φj and Uj from Assumption 2.91, j = 0, 1. Note that u(0) ∈
HQ,0,Γ1(curl, D) and u(1) ∈ HQ,0,Γ0(curl, D). Let j ∈ {0, 1}. Note that
for ψ ∈ H1

Q,0(Uj) we have φjψ ∈ H1
Q,0(D) and that we therefore obtain

0 = (u | ∇β(φjψ))L2(D,C3) =
(
u|Uj0

∣∣∣ψ∇φj + φj∇ψ + iβφjψ
)
L2(Uj ,C3)

=
(
u(j)

∣∣∣∇βψ)
L2(Uj ,C3)

+
(
u|Uj0

∣∣∣ψ∇φj)
L2(Uj ,C3)

.

Consider the sesquilinear form a : H1
Q,0(Uj) × H1

Q,0(Uj) → C and the
linear functional ` : H1

Q,0(Uj)→ C given by

a(ψ, p) := (∇βψ | ∇βp)L2(Uj ,C3) and `(ψ) := −
(
u|Uj0

∣∣∣ψ∇φj)
L2(Uj ,C3)

.

Then |`(ψ)| ≤ C ‖u‖L2(Uj ,C3) ‖ψ‖L2(Uj) ≤ C ‖ψ‖H1
Q

(Uj) and analogously
|a(ψ, p)| ≤ C ‖ψ‖H1

Q
(Uj) ‖p‖H1

Q
(Uj) for all ψ, p ∈ H1

Q,0(Uj). Furthermore,
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Re a(ψ,ψ) = ‖∇βψ‖2
L2(Uj ,C3) ≥ C ‖ψ‖2

H1
Q

(Uj) for all ψ ∈ H1
Q(Uj), where

we have applied Corollary 2.73. Hence, by Theorem A.8, there exists a
unique p(j) ∈ H1

Q,0(Uj) such that(
∇βp(j)

∣∣∣∇βψ)
L2(Uj ,C3)

= −
(
u|Uj0

∣∣∣ψ∇φj)
L2(Uj ,C3)

(∗1)

for all ψ ∈ H1
Q,0(Uj). From this equation we conclude, if we choose p(j)

for ψ,

‖∇βp(j)‖2
L2(Uj ,C3) ≤ C ‖u‖L2(D,C3) ‖p(j)‖L2(Uj), (∗2)

‖∇βp(j)‖L2(Uj ,C3) ≤ C ‖u‖L2(D,C3), (∗3)

where for the second inequality we have applied Theorem 2.96. We set
ũ(j) := u(j) − ∇βp(j) and have that ũ(j) belongs to HQ(curl,divβ 0, Uj).
Moreover, if j = 0, then ũ(j) is zero above from Γ1, and if j = 1, then ũ(j)

is zero below from Γ0; otherwise by taking ψ ∈ H1
Q,0(Uj) such that its

gradient does not vanish above from Γ1 and below from Γ0, respectively,
we would get a contradiction to (∗1). We define

ṽ(j) := (Ψ̃′j)>(ũ(j) ◦ Ψ̃j) ∈ HQ(curl, Q−3 )

as in Theorem 2.104 and observe that ṽ(j) vanishes in a neighborhood of
Q × {−L3}. Take some ψ ∈ H1

Q,0(Q−3 ) and set ψ̃ := ψ ◦ (Ψ̃j)−1. Note
that ψ̃ ∈ H1

Q,0(Uj), thanks to Corollary 2.117. Therefore, together with
the identity (∇ψ̃) ◦ Ψ̃j = (Ψ̃j)−>∇ψ and the transformation formula, we
obtain

0 =
(
ũ(j)

∣∣∣∇βψ̃)
L2(Uj ,C3)

=
(
ũ(j) ◦ Ψ̃j

∣∣∣ (Ψ̃′j)−>∇ψ + iβψ
)
L2(Q−3 ,C3)

=
(
Aṽ(j)

∣∣∣∇ψ)
L2(Q−3 ,C3)

+
(

(Ψ̃′j)−>ṽ(j)
∣∣∣ iβψ)

L2(Q−3 ,C3)
, (∗4)

where we have set A(x) := (Ψ̃′j(x))−1(Ψ̃′j(x))−> for almost all x ∈ Q−3 .
Now we consider the sesquilinear form a : H1

Q,0(Q−3 ) × H1
Q,0(Q−3 ) → C

and the linear functional ` : H1
Q,0(Q−3 )→ C given by

a(ψ, q) := (∇ψ |A∇q)L2(Q−3 ,C3) , `(ψ) := −
(

iβψ
∣∣∣ (Ψ̃′j)−>ṽ(j)

)
L2(Q−3 ,C3)

.
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Note that A ∈ L∞(Q−3 ,C3×3) satisfies the assumptions from for instance
Definition 2.84. Therefore, we can proceed analogous to above to obtain a
unique q(j) ∈ H1

Q,0(Q−3 ) such that(
A∇q(j)

∣∣∣∇ψ)
L2(Q−3 ,C3)

= −
(

(Ψ̃′j)−>ṽ(j)
∣∣∣ iβψ)

L2(Q−3 ,C3)

for all ψ ∈ H1
Q,0(Q−3 ). And from this equation we conclude again

‖∇q(j)‖2
L2(Q−3 ,C3) ≤ C ‖ṽ

(j)‖L2(Q−3 ,C3) ‖q
(j)‖L2(Q−3 ), (∗5)

‖∇q(j)‖L2(Q−3 ,C3) ≤ C ‖ṽ
(j)‖L2(Q−3 ,C3), (∗6)

where we have used for the first estimate also the coercivity of A. We
define w(j) := ṽ(j) − ∇q(j) ∈ HQ(curl, Q−3 ) and observe again that w(j)

vanishes in a neighborhood of Q× {−L3}. We set

ŵ(j) :=
{
w(j), on Q−3 ,

(w(j))∗(·∗), on Q+
3 ,

Âlk :=


Alk, on Q−3 ,

−Alk(·∗), on Q+
3 , l, k ∈ {1, 2} or l = k = 3,

Alk(·∗), on Q+
3 , else.

Due to Proposition 2.105 and Proposition 2.83, we have that ŵ(j) belongs
to HQ,0(curl, Q3). Moreover, for ψ ∈ H1

Q,0(Q3) an elementary calculation
yields

−A(x∗)w(j)(x∗) · (∇ψ)∗(x) = Â(x) ŵ(j)(x) · ∇ψ(x), for a.a. x ∈ Q+
3 .

Let ψ ∈ H1
Q,0(Q3) and set ϕ := ψ|Q−3 − ψ(·∗)|Q−3 , which belongs to

H1
Q,0(Q−3 ). Moreover, ∇ϕ(x) = ∇ψ(x)− (∇ψ)∗(x∗) for almost all x ∈ Q−3 .

Therefore, using the definition of w(j),

0 =
(
Aw(j)

∣∣∣∇ϕ)
L2(Q−3 ,C3)

=
∫
Q−3

A(x)w(j)(x) · ∇ψ(x) dx−
∫
Q+

3

A(x∗)w(j)(x∗) · (∇ψ)∗(x) dx
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=
∫
Q−3

Â(x) ŵ(j)(x) · ∇ψ(x) dx+
∫
Q+

3

Â(x) ŵ(j)(x) · ∇ψ(x) dx

=
∫
Q3

Â(x) ŵ(j)(x) · ∇ψ(x) dx,

meaning that ŵ(j) ∈ HQ,0(curl,divÂ 0, Q3).
Let now (un)n∈N be a bounded sequence in HQ(curl,divβ 0, D) and let
j ∈ {0, 1}. The quantities u(j)

n , p(j)
n , ũ(j)

n , ṽ(j)
n , q(j)

n , w(j)
n and ŵ

(j)
n corre-

spond to the quantities from above. Using (∗3) and Corollary 2.73, we
see that (p(j)

n )n∈N is a bounded sequence in H1
Q,0(Uj). By Theorem 2.71,

there exists a subsequence (which we denote by the same symbol) which
converges in L2(Uj). Then the estimate (∗2) applied to p(j)

l − p
(j)
m yields

that (∇βp(j)
n )n∈N is convergent in L2(Uj ,C3).

Now, (ũ(j)
n )n∈N is bounded in HQ(curl,divβ 0, Uj). Hence, (ṽ(j)

n )n∈N is
bounded in HQ(curl, Q−3 ). Using (∗6) and again Corollary 2.73, we see
again that (q(j)

n )n∈N is a bounded sequence in H1
Q,0(Q−3 ). By Theorem 2.71,

there exists a subsequence of (q(j)
n )n∈N (which we denote by the same

symbol) which converges in L2(Q−3 ). The estimate (∗5) yields now that
(∇q(j)

n )n∈N is convergent in L2(Q−3 ,C3).
Furthermore, (ŵ(j)

n )n∈N is now bounded in HQ,0(curl,divÂ 0, Q3). There-
fore, by Theorem 2.88, there exists a subsequence of (ŵ(j)

n )n∈N (which
we denote by the same symbol) which converges in L2(Q3,C3). Then
(w(j)

n )n∈N converges in L2(Q−3 ,C3) and therefore (ṽ(j)
n )n∈N converges in

L2(Q−3 ,C3) which yields that (ũ(j)
n )n∈N converges in L2(Uj ,C3). From

this we conclude that (u(j)
n )n∈N is convergent in L2(Uj ,C3) and therefore

(φjun)n∈N is convergent in L2(D,C3).
Finally, take φ2 from Assumption 2.91 and define u(2)

n := φ2un, n ∈ N. Let
n ∈ N. Note that u(2)

n ∈ HQ,0(curl, D). Moreover, by repeating from the
beginning of this part (b) of the proof the first chain of equalities and by
considering the same sesquilinear form and linear functional, but now with
Uj replaced by D, we obtain a decomposition u

(2)
n = ũ

(2)
n +∇βp(2)

n with
p

(2)
n ∈ H1

Q,0(D) and ũ
(2)
n ∈ HQ,0(curl,divβ 0, D), where for the latter one

we also take Proposition 2.75 into account. Using again the corresponding
estimates (∗3) and (∗2), we obtain analogous to above that (∇βp(2)

n )n∈N
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possesses a subsequence (denoted by the same symbol) which converges
in L2(D,C3). Furthermore, we see again that (ũ(2)

n )n∈N is a bounded
sequence in HQ,0(curl,divβ 0, D), which implies thanks to Theorem 2.88
that this sequence possesses a subsequence (denoted by the same symbol),
which converges in L2(D,C3). Therefore, also (φ2un)n∈N is convergent in
L2(D,C3).
Since again

∑2
j=0 φj ≡ 1, adding it all up we have shown that the bounded

sequence (un)n∈N from above contains a subsequence which converges in
L2(D,C3). �

Further Helmholtz Decompositions. Due to the special structure of a
cell set of Lipschitz layer type, further Helmholtz decompositions are
possible and also needed. Their main application, in connection with the
compactness results from Theorem 2.122, will be in the next chapter when
we introduce vector surface potentials and their corresponding boundary
operators.

For the following results compare also with Definition 2.69 and Theo-
rem 2.85.

Definition 2.123 Let D ⊆ R3 be a cell set of Lipschitz layer type with
characteristic quantities as in Assumption 2.91. Furthermore, let β ∈ R3

and j ∈ {0, 1}. The space HQ,0,Γj (curl,divβ 0, D) is defined by

HQ,0,Γj (curl,divβ 0, D) :=
{
u ∈ HQ,0,Γj (curl, D)

∣∣
∀ψ ∈ H1

Q,0,Γj (D) : (u | ∇βψ)L2(D,C3) = 0
}
.

Theorem 2.124 Let D ⊆ R3 be a cell set of Lipschitz layer type with
characteristic quantities as in Assumption 2.91. Furthermore, let β ∈ R3

and j ∈ {0, 1}. Then

HQ,0,Γj (curl, D) = HQ,0,Γj (curl,divβ 0, D)⊕∇βH1
Q,0,Γj (D).

Proof: We can exactly follow the lines in the proof of part (ii) from
Theorem 2.85, if we replace therein the cited results with their analogs for
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cell sets of Lipschitz layer type, i.e., in particular Corollary 2.97 instead of
Corollary 2.73. We ommit the details. �

2.3.6. Conclusions for Flat Surfaces

Later in the variational formulation for our scattering problem of interest,
the unit cell, i.e., the domain of integration, will be a cell set D ⊆ R3

of Lipschitz layer type where the upper surface patch Γ1 is flat, that is,
where the function f1 which describes Γ1 is given by f1(ξ) := h, ξ ∈ R2,
where h is some real number such that h > maxξ∈R2 f0(ξ). Hence,

Ψ1(x) =

x1
x2
h

 , x ∈ Q,

which implies that ρj(x) = 1 and Fj(x) =
(

1 0 0
0 1 0
0 0 1

)
for all x ∈ Q. For the

definition of those quantities see the presentation before Assumption 2.91.
This gives rise to the following convention.

Convention 2.125 Let D ⊆ R3 be a cell set of Lipschitz layer type with
characteristic quantities as in Assumption 2.91. The function f1 we suppose
to be given by f1(ξ) := h, for all ξ ∈ R2, where h is some real number
such that h > maxξ∈R2 f0(ξ). To make this situation more apparent, the
surface patch Γ1 is renamed as Γh. We identify

• H1/2
Q (Γh,Cd

′) with H1/2
per (Q,Cd′), and thus the space H−1/2

Q (Γh,Cd
′)

with H−1/2
per (Q,Cd′),

• H−1/2
Q (Div,Γh) with H−1/2

per (Div, Q) and

• H−1/2
Q (Curl,Γh) with H−1/2

per (Curl, Q).

Consequently, an element ϕ from the space H−1/2
Q (Γh,Cd

′), H−1/2
Q (Div,Γh)

and H−1/2
Q (Curl,Γh) has a series representation of the form

ϕ =
∑
µ∈Z2

ϕ(µ)(T (µ)
Q ),
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with (ϕ(µ))µ∈Z2 from C−1/2
Cd′ , C−1/2

Div and C−1/2
Curl , respectively; see also Corol-

lary 2.34.

As a consequence of those identifications, we can and will derive some
convenient formulas for the trace operators, the surface divergence and the
embedding from Theorem 2.121, what is the objective of this subsection.
In particular, those formulas will be useful when we prove existence of a
solution to the variational formulation.

We start with a result which has preliminary character.

Proposition 2.126 Let D ⊆ R3 be a cell set of Lipschitz layer type as
in Convention 2.125. Furthermore, let u ∈ C∞Q (D,Cd′) and define for
α ∈ N3

0
ϕ(x) := ∂αu(x1, x2, h), x ∈ Q,

i.e., ϕ denotes the restriction from the continuous extension (from D to
D) of ∂αu onto Γh. Then ϕ ∈ C∞per(Q,Cd

′) with

∂βϕ = ∂(β1,β2,0)(∂αu)(·, h), β ∈ N2
0.

Proof: Let α ∈ N3
0 and set for simplicity v := ∂αu. Furthermore, let

j ∈ {1, . . . , d′}, take some (a, x2)> ∈ Q and let n ∈ N. Then, by applying
Taylor’s formula for functions of several real variables, see for instance [5],
we obtain for x1 ∈ (−L1, L1) \ {a}

vj(x1, x2, h− 1
n )− vj(a, x2, h− 1

n )
x1 − a

= ∂1vj(a, x2, h− 1
n )

+ (x1 − a)
∫ 1

0
(1− θ) ∂2

1vj
(
a+ θ(x1 − a), x2, h− 1

n

)
dθ.

Therefore,

ϕj(x1, x2)− ϕj(a, x2)
x1 − a

= lim
n→∞

vj(x1, x2, h− 1
n )− vj(a, x2, h− 1

n )
x1 − a

= ∂1vj(a, x2, h) + (x1 − a)
∫ 1

0
(1− θ) ∂2

1vj
(
a+ θ(x1 − a), x2, h

)
dθ,
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which converges to ∂1vj(a, x2, h), as x1 → a. Hence, ∂1ϕj = ∂1vj(·, h),
and ∂1ϕj is therefore also continuous. The remaining part of the assertion
follows now by induction. �

Now, we come to the announced formulas for the trace operators.

Lemma 2.127 Let D ⊆ R3 be a cell set of Lipschitz layer type as in
Convention 2.125. Furthermore, recall q(µ) from (2.7), and (1.7) for the
definition of a⊥, for a ∈ C2.

(a) If β ∈ R3 and u ∈ C∞Q (D), then γt,Γh∇βu and γT,Γh∇βu belong to
C∞per(Q,C2) and possess the Fourier series expansion

γt,Γh∇βu = i
∑
µ∈Z2

(q(µ) + β̃)⊥ u(µ) T
(µ)
Q ,

γT,Γh∇βu = i
∑
µ∈Z2

(q(µ) + β̃)u(µ) T
(µ)
Q .

Here, u(µ) ∈ C denote the Fourier coefficients of u(·, h), β̃ is given
by (1.4) and convergence is uniform. Moreover, by replacing T (µ)

Q with
(T (µ)

Q ), where  denotes the embedding from Theorem 2.29, we have
convergence in H

−1/2
Q (Div,Γh) and H−1/2

Q (Curl,Γh), respectively.

(b) If u ∈ C∞Q (D,C3), then γt,Γhu and γT,Γhu belong to C∞per(Q,C2) and
possess the Fourier series expansion

γt,Γhu =
∑
µ∈Z2

(
−u(µ)

2
u

(µ)
1

)
T

(µ)
Q and γT,Γhu =

∑
µ∈Z2

(
u

(µ)
1
u

(µ)
2

)
T

(µ)
Q .

Here, u(µ) ∈ C3 denote the Fourier coefficients of u(·, h) and conver-
gence is uniform. Moreover, by replacing T (µ)

Q with (T (µ)
Q ), we have

convergence in H
−1/2
Q (Div,Γh) and H−1/2

Q (Curl,Γh), respectively.

Proof: (a). Let u ∈ C∞Q (D). We observe that ∂αu(·, h) ∈ C∞per(Q) for
any α ∈ N3

0, see Proposition 2.126. Let
(∑

µ∈Z2 u(µ)T
(µ)
Q

)
be the Fourier

series expansion with respect to u(·, h). Note that by the observation
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above the series converges uniformly to u(·, h). Furthermore, by the same
observation, there holds

∂ju(·, h) =
∑
µ∈Z2

i q(µ)
j u(µ)T

(µ)
Q , j = 1, 2,

where convergence is uniform too. Finally, let
(∑

µ∈Z2 θ(µ)T
(µ)
Q

)
be the

Fourier series expansion with respect to ∂3u(·, h). Here we have again
uniform convergence by the observation above. Then

∇βu(·, h) =
∑
µ∈Z2

i (q(µ)
1 + β1)u(µ)

i (q(µ)
2 + β2)u(µ)

θ(µ) + iβ3u
(µ)

T
(µ)
Q

and

γt,Γh∇βu =
(

0
0
1

)
×∇βu(·, h) = i

∑
µ∈Z2

(q(µ) + β̃)⊥ u(µ) T
(µ)
Q ,

where uniform convergence has passed on and we have implicitly made
use of Convention 2.125. Since u(µ) are the Fourier coefficients of u(·, h) ∈
C∞per(Q), we conclude from the last equation that γt,Γh∇βu belongs to
C∞per(Q,C2). And now, we obtain from Remark 2.35 that its series rep-
resentation converges even in H

−1/2
Q (Div,Γh) to γt,Γh∇βu, if we replace

therein the trigonometric monomials T (µ)
Q with (T (µ)

Q ).
The assertion for γT,Γh∇βu is shown by the same arguments.
(b). Let u ∈ C∞Q (D,C3). Then, again thanks to Proposition 2.126,
u(·, h) ∈ C∞per(Q,C3). Let

(∑
µ∈Z2 u(µ)T

(µ)
Q

)
be the Fourier series expan-

sion with respect to u(·, h). Again, the series converges uniformly to u(·, h).
Therefore,

γt,Γhu =
(

0
0
1

)
× u(·, h) =

∑
µ∈Z2

(
−u(µ)

2

u
(µ)
1

)
T

(µ)
Q ,

where again uniform convergence has passed on and we have implicitly
made use of Convention 2.125. Now we follow the arguments as in part (a)
and obtain that γt,Γhu ∈ C∞per(Q,C2) and that its series representation
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converges even in H−1/2
Q (Div,Γh), if we replace therein T (µ)

Q with (T (µ)
Q ).

The assertion for γT,Γhu is shown by the same arguments. �

As announced above, in the following lemma we give a convenient formula
for the surface divergence and the embedding from Theorem 2.121.

Remark 2.128 The embedding from Theorem 2.121 reads now as

H
−1/2
Q (Div,Γh) ↪−→ H

−1/2
Q (Γh,C2),

where C3 was replaced by C2, because for the flat surface Γh elements from
the trace space H−1/2

Q (Div,Γh) do not have a component in x3-direction.

Lemma 2.129 Let D ⊆ R3 be a cell set of Lipschitz layer type as in
Convention 2.125.

(i) Let β ∈ R3. Furthermore, recall q(µ) from (2.7) and β̃ from (1.4). If
ϕ ∈ H−1/2

Q (Div,Γh), then Divβ ϕ ∈ H−1/2
Q (Γh) possesses the series

representation

Divβ ϕ = i
∑
µ∈Z2

ϕ(µ) · (q(µ) + β̃) (T (µ)
Q ),

where (ϕ(µ)) ∈ C−1/2
Div are the associated coefficients of ϕ, see also

Convention 2.125.

(ii) The embedding from Theorem 2.121, that is (see also Remark 2.128)

H
−1/2
Q (Div,Γh) ↪−→ H

−1/2
Q (Γh,C2),

is given by
ϕ→ `ϕ = ϕ =

∑
µ∈Z2

ϕ(µ)(T (µ)
Q )

where (ϕ(µ))µ∈Z2 ∈ C−1/2
div are the associated coefficients of ϕ ∈

H
−1/2
Q (Div,Γh).
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Proof: (i). Let ϕ ∈ H−1/2
Q (Div,Γh). Then ϕ possesses the series repre-

sentation ϕ =
∑
µ∈Z2 ϕ(µ)(T (µ)

Q ) with coefficients (ϕ(µ))µ∈Z2 ∈ C−1/2
Div . It

is easy to see that the sequence
(
i(q(µ) + β̃) · ϕ(µ))

µ∈Z2 belongs to C−1/2.
Therefore, due to Corollary 2.34,

` := i
∑
µ∈Z2

ϕ(µ) · (q(µ) + β̃) (T (µ)
Q )

belongs to H−1/2
per (Q). We have to show that Divβ ϕ and ` coincide. Since

DQ,0(Γh) is dense in H1/2
Q (Γh), see Corollary 2.108, and since Divβ ϕ and `

are continuous, it suffices to check coincidence for this dense subspace. So,
let ψ ∈ DQ,0(Γh), i.e., there exists ψ̃ ∈ C∞Q (D) such that ψ = ψ̃|Γh . We
expand ψ̃(·, h) into its Fourier series ψ̃(·, h) =

∑
µ∈Z2 ψ̃(µ)T

(µ)
Q and obtain

from Lemma 2.127 that γT,Γh∇βψ̃(·, h) = −i
∑
ν∈Z2(q(ν) + β̃)ψ̃(ν)(T (−ν)

Q ).
Therefore, by definition of Divϕ, see Theorem 2.120, by definition of
〈·, ·〉Γh , see part (b) from Theorem 2.113, and by an application of (1.16),
we obtain

〈Divβ ϕ,ψ〉 = −
〈
ϕ, γT,Γh∇βψ̃

〉
Γh

= i
∑

µ,ν∈Z2

ψ̃(ν)
〈
ϕ(µ)(T (µ)

Q ), (q(ν) + β̃) (T (−ν)
Q )

〉
Γh

= i
∑

µ,ν∈Z2

ψ̃(ν) ϕ(µ) · (q(ν) + β̃)
(
T

(µ)
Q

∣∣∣T (ν)
Q

)
L2(Q)

= i
∑
µ∈Z2

ϕ(µ) · (q(µ) + β̃) ψ̃
(−µ)

= `
(
ψ̃(·, h)

)
= `
(
ψ
)
,

as desired. For the second last step we have applied Theorem 2.28.
(ii). We proceed similarly as in part (a). So, let ϕ ∈ H

−1/2
Q (Div,Γh).

Then ϕ possesses the series representation ϕ =
∑
µ∈Z2 ϕ(µ)(T (µ)

Q ) with
coefficients (ϕ(µ))µ∈Z2 ∈ C−1/2

Div . It is easy to see that this sequence be-
longs to C−1/2

C2 as well. Therefore, ϕ ∈ H
−1/2
Q (Γh,C2). To show that

the continuous mappings ϕ and `ϕ, the latter one from Theorem 2.121,
coincide, is suffices to restrict our considerations to the dense subspace
DQ,0(Γh,C2) of H−1/2

Q (Γh,C2). So, let ψ ∈ DQ,0(Γh,C2), i.e., there ex-
ists ψ̃ ∈ C∞Q (D,C2) such that ψ = ψ̃|Γh . We expand ψ̃(·, h) into its
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Fourier series ψ̃(·, h) =
∑
ν∈Z2 ψ̃(ν)T

(ν)
Q and obtain from Lemma 2.127

that γT,Γh ψ̃ =
∑
ν∈Z2 ψ̃(ν)(T (ν)

Q ). Therefore, by definition of `ϕ from The-
orem 2.121 and the definition of 〈·, ·〉Γh from part (b) of Theorem 2.113,
we obtain

〈`ϕ, ψ〉 = 〈ϕ, γT,Γh ψ̃〉Γh =
∑

µ,ν∈Z2

ϕ(µ) · ψ̃(ν)
(
T

(µ)
Q

∣∣∣T (−ν)
Q

)
L2(Q)

=
∑
µ∈Z2

ϕ(µ) · ψ̃(−µ) = 〈ϕ, ψ̃(·, h)〉 = 〈ϕ,ψ〉,

as desired, where we have again applied Theorem 2.28 in the second last
step. �

2.3.7. Some Results for Smooth Surfaces

In this subsection let f ∈ C∞per(Q) be real valued and define

Γ :=
{
x ∈ R3 ∣∣ x̃ ∈ Q and x3 = f(x̃)

}
.

Furthermore, we introduce the set Γ̃, the parametrization Ψ : Q→ Γ and
the mapping F : Q→ R3×3 as above from Assumption 2.91 and observe
that now the functions are smooth.

For m ∈ N0 and d′ ∈ N we define

CmQ
(
Γ,Cd

′)
:=
{
ϕ := ϕ̃|Γ

∣∣ ϕ̃ ∈ C(Γ̃,Cd′) is Q-periodic

and ϕ ◦Ψ ∈ Cmper(Q,Cd
′
)
}

and the corresponding space of smooth functions

C∞Q
(
Γ,Cd

′)
:=

∞⋂
k=0

CkQ
(
Γ,Cd

′)
.

Moreover, we define the spaces H−1/2
Q (Div,Γ) and H

−1/2
Q (Curl,Γ) as in

Definition 2.106. Concerning the spaces H1/2
Q (Γ,Cd′) we allow now again

more regularity, see the next definition.
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Definition 2.130 Let the surface Γ be given as above. For s ≥ 0 we
define the space Hs

Q(Γ,Cd′) by

Hs
Q(Γ,Cd

′
) :=

{
ϕ ∈ L2(Γ,Cd

′
)
∣∣ ϕ ◦Ψ ∈ Hs

per(Q,Cd
′
)
}

with norm
‖ϕ‖Hs

Q
(Γ,Cd′ ) := ‖ϕ ◦Ψ‖Hsper(Q,Cd′ ).

For s > 0 we define H−sQ (Γ,Cd′) to be the dual space of Hs
Q(Γ,Cd′) equipped

with its canonical norm

‖`‖H−s
Q

(Γ,Cd′ ) := sup
ψ∈Hs

Q
(Γ,Cd′ )\{0}

|〈`, ψ〉Q,s,Γ|
‖ψ‖Hs

Q
(Γ,Cd′ )

for all ` ∈ H−sQ (Γ,Cd′). Here, 〈·, ·〉Q,s,Γ denotes the duality pairing as
introduced in Section 1.3, and with index “Q, s,Γ” to make them distin-
guishable.
For s ∈ R we define the spaces of tangential vector fields by

Hs
Q,t(Γ) :=

{
ϕ ∈ Hs

Q(Γ,C3)
∣∣ ϕ · n = 0

}
,

where for s > 0 and ` ∈ H−sQ (Γ,C3) the product ` · n ∈ H−sQ (Γ) is defined
by

〈` · n, ψ〉Q,s,Γ := 〈`, ψn〉Q,s,Γ, ψ ∈ Hs
Q(Γ).

Note that for s > 0 and ψ ∈ Hs
Q(Γ) the product ψn is well-defined by

Theorem 2.132, as the normal vector n is a smooth function.

Proposition 2.131 Let s ∈ R. Then the following assertions are true.

(i) The space DQ,0(Γ,Cd′) is dense in Hs
Q(Γ,Cd′).

(ii) If σ ∈ R, with σ < s, then the space Hs
Q(Γ,Cd′) is compactly

embedded into Hσ
Q(Γ,Cd′).

(iii) If σ ∈ R, with σ < s, then the space Hs
Q,t(Γ) is embedded into

Hσ
Q,t(Γ).
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Proof: This is shown with the same arguments as in the proof for Propo-
sition 2.54. �

Clearly, all results we have achieved so far for Lipschitz continuous surfaces
hold in particular for smooth surfaces.

As already mentioned at the beginning of Subsection 2.1.4, we intend to
exploit results from [21]. Since those results are given for the trace space
H−1/2(div∂Ω, ∂Ω), where Ω ⊆ R3 is a bounded and smooth domain, and
since H−1/2(div∂Ω, ∂Ω) ' H−1/2(Div, ∂Ω) due to Theorem 2.59, we have
somehow to relate the spaces H−1/2(Div, ∂Ω) and H

−1/2
Q (Div,Γ) to each

other. A key ingredient will be a certain partition of unity on Γ. Hence,
we have to ensure that ϕ ∈ H−1/2

Q (Div,Γ) multiplied by χ ∈ C∞Q (Γ), with
supp(χ) ⊆ Γ as well as supp(χ) ⊆ ∂Ω, and extended by zero to ∂Ω belongs
to H−1/2(Div, ∂Ω), and that the operator describing this mapping is linear
and bounded.

Note that these investigations seem not to be trivial, since for the case
of Lipschitz continuous surfaces the spaces CmQ (Γ) are only well-defined
for m = 0. Then for χ ∈ CQ(Γ) the function χ ◦ Ψ is only Lipschitz
continuous and therefore, by Proposition 2.16, only in H1

per(Q). Hence,
according to Theorem 2.40, the regularity of this product is too less to
give rise to a linear and bounded operator in H

−1/2
Q (Div,Γ). For smooth

surfaces as considered in this subsection the situation is better, see the
next theorem.

Theorem 2.132 Let χ ∈ C∞Q (Γ). Then the following assertions are true.

(a) For s ∈ R the mapping Hs
Q(Γ,Cd′) 3 ϕ 7→ χϕ ∈ Hs

Q(Γ,Cd′) is
well-defined, linear and bounded.

(b) (i) The mapping DQ,t(Γ,C3) 3 ϕ 7→ χϕ ∈ H−1/2
Q (Div,Γ) is well-

defined, linear and bounded and can be continuously extended to
a linear and bounded operator from H

−1/2
Q (Div,Γ) into itself.

(ii) The mapping DQ,T (Γ,C3) 3 ϕ 7→ χϕ ∈ H
−1/2
Q (Curl,Γ) is

well-defined, linear and bounded and can be continuously ex-
tended to a linear and bounded operator from H

−1/2
Q (Curl,Γ)

into itself.
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Proof: We consider only part (b), as the argumentation for part (a) is
very similar.
(i). Note that by assumption χ◦Ψ belongs to C∞per(Q). Let ϕ ∈ DQ,t(Γ,C3).
Then ϕ̃t ∈ H−1/2

per (Div, Q) (recall (2.16a) for the definition of ϕ̃t). More-
over,

˜(χϕ)
t
(x) = ρ(x)F−1(x)χ(Ψ(x))ϕ(Ψ(x)) = χ(Ψ(x))ϕ̃t(x), x ∈ Q.

Therefore, thanks to Theorem 2.40, we have that ˜(χϕ)
t
∈ H−1/2

per (Div, Q)
with ‖ ˜(χϕ)t‖

H
−1/2
per (Div,Q) ≤ C ‖ϕ̃t‖

H
−1/2
per (Div,Q) and the constant C > 0

independent of ϕ. Thus, χϕ ∈ H−1/2
Q (Div,Γ) with

‖χϕ‖
H
−1/2
Q

(Div,Γ) = ‖ ˜(χϕ)t‖
H
−1/2
per (Div,Q)

≤ C ‖ϕ̃t‖
H
−1/2
per (Div,Q) = C ‖ϕ‖

H
−1/2
Q

(Div,Γ),

which shows that the mapping is well-defined and bounded (its linearity
is clear). Since DQ,t(Γ,C3) is dense in H

−1/2
Q (Div,Γ), this multiplication

operator can be continuously extended as desired.
(ii). The assertion is shown completely analogous. �

Now, we come to the main theorem of this subsection.

Theorem 2.133 Let Γ0 ( Γ1 ( Γ, such that Γ0 is relatively closed and
Γ1 is relatively open in Γ, and let Ω ⊆ R3 be a bounded and smooth domain
such that Γ1 ⊆ ∂Ω. Furthermore, let χ ∈ C∞(∂Ω) with supp(χ) ⊆ Γ0.
Then the following assertions are true.

(i) The mapping DQ,t(Γ,C3) 3 ϕ 7→ (χϕ)|∂Ω
0 ∈ H−1/2(Div, ∂Ω)

is well-defined, linear and bounded and can be continuously ex-
tended to a linear and bounded operator from H

−1/2
Q (Div,Γ) into

H−1/2(Div, ∂Ω).

(ii) The mapping Dt(∂Ω,C3) 3 ϕ 7→ (χϕ)|Γ ∈ H−1/2
Q (Div, ∂Ω) is well-

defined, linear and bounded and can be continuously extended to a lin-
ear and bounded operator from H−1/2(Div, ∂Ω) into H−1/2

Q (Div,Γ).
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Proof: As a preparation, recall Assumption 2.52. Without loss of
generality, there exists m′ ≤ m such that Γ0 ⊆

⋃m′
j=1 U

′
j ⊆ Γ1 and

Γ0 ∩
⋃m
j=m′+1 U

′
j = ∅. Moreover, without loss of generality we assume that

B2(0, αj) ⊆ Q for j = 1, . . . ,m′.
(i). Let ϕ ∈ DQ,t(Γ,C3). Then χϕ belongs to DQ,t(Γ,C3) as well. We
consider χϕ also extended by zero to ∂Ω and use the same symbols. Then
χϕ belongs to Dt(∂Ω,C3) which is a dense subspace of H−1/2(Div, ∂Ω).
We consider the Fourier coefficients of ˜(χϕ)

t

j determined with respect to
Q, j = 1, . . . ,m′. It sufficies to show that

m′∑
j=1
‖ ˜(χϕ)

t

j‖
2
H
−1/2
per (Div,Q)

≤ C ‖ ˜(χϕ)
t
‖2
H
−1/2
per (Div,Q)

,

where by definition

˜(χϕ)
t

j(x) =
{
ρj(x)

√
χj(Ψj(x))F−1

j (x) (χϕ)(Ψj(x)), x ∈ B2(0, αj),
0, x ∈ Q \ B2(0, αj),

˜(χϕ)
t
(x) = ρ(x)F−1(x) (χϕ)(Ψ(x)), x ∈ Q.

Note that ˜(χϕ)
t

j = 0 for j = m′ + 1, . . . ,m. Let j ∈ {1, . . . ,m′}. Due to
our assumptions, the parametrization Ψj can be built up by means of the
parametrization Ψ as follows

Ψj(u1, u2) =

 u1
u2

f(u1 + z
(j)
1 , u2 + z

(j)
2 )

+

z(j)
1
z

(j)
2
0

 , u ∈ B2(0, αj),

with ρj(u) = ρ(u1 + z
(j)
1 , u2 + z

(j)
2 ) and F−1

j (u) = F−1(u1 + z
(j)
1 , u2 + z

(j)
2 )

for u ∈ B2(0, αj). Therefore,

˜(χϕ)
t

j(u) =
√
χj(Ψ(u1 + z

(j)
1 , u2 + z

(j)
2 )) ˜(χϕ)

t
(u1 + z

(j)
1 , u2 + z

(j)
2 ) (∗)

for all u ∈ B2(0, αj). Hence, by an application of the transformation
formula we obtain with (x1, x2)> = (u1 + z

(j)
1 , u2 + z

(j)
2 )> that

1√
|Q|

∫
Q

˜(χϕ)
t

j(u) e−iq(µ)·u du
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= eiq(µ)·(z(j)
1 ,z

(j)
2 )> 1√

|Q|

∫
Q

√
χj(Ψ(x)) ˜(χϕ)

t
(x) e−iq(µ)·x dx,

which shows that the Fourier coefficients differ only by a phase shift factor.
Therefore,

‖ ˜(χϕ)
t

j‖H−1/2
per (Div,Q) = ‖(√χj ◦Ψ) ˜(χϕ)

t
‖
H
−1/2
per (Div,Q)

≤ C ‖ ˜(χϕ)
t
‖
H
−1/2
per (Div,Q),

where we have applied Theorem 2.40 after recalling that √χj ◦ Ψ is a
smooth function by the choice of our partition of unity on ∂Ω. This shows
that the mapping is well-defined and bounded (its linearity is clear) and
thus can be continuously extended to a linear and bounded operator from
H
−1/2
Q (Div,Γ) into H−1/2(Div, ∂Ω) as desired.

(ii). Let ϕ ∈ Dt(∂Ω,C3). We consider χϕ also restricted to Γ and use the
same symbols. Then χϕ belongs to DQ,t(Γ,C3). Note that for y ∈ Γ0 we
have (χϕ)(y) =

∑m′

j=1 χj(y) (χϕ)(y). Therefore, using in addition (∗) and
again the transformation formula,

1√
|Q|

∫
Q

˜(χϕ)
t
(x) e−iq(µ)·x dx = 1√

|Q|

∫
Ψ−1(Γ0)

˜(χϕ)
t
(x) e−iq(µ)·x dx

=
m′∑
j=1

1√
|Q|

∫
Ψ−1(Γ0∩supp(χj))

χj(Ψ(x)) ˜(χϕ)
t
(x) e−iq(µ)·x dx

=
m′∑
j=1

eiq(µ)·(z(j)
1 ,z

(j)
2 )> 1√

|Q|

∫
Q

√
χj(Ψ(u)) ˜(χϕ)

t

j(u) e−iq(µ)·u du.

Hence,
∣∣[ ˜(χϕ)

t](µ)∣∣2 ≤ C ∑m′

j=1
∣∣[(√χj ◦Ψ) ˜(χϕ)

t

j

](µ)∣∣2 and

∣∣[q(µ) · ˜(χϕ)
t](µ)∣∣2 ≤ C m′∑

j=1

∣∣[q(µ) · (√χj ◦Ψ) ˜(χϕ)
t

j

](µ)∣∣2,
which yields that

‖ ˜(χϕ)
t
‖2
H
−1/2
per (Div,Q)

≤ C
m′∑
j=1
‖(√χj ◦Ψ) ˜(χϕ)

t

j‖
2
H
−1/2
per (Div,Q)
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≤ C
m∑
j=1
‖ ˜(χϕ)

t

j‖
2
H
−1/2
per (Div,Q)

,

where we have again applied Theorem 2.40 and the fact that ˜(χϕ)
t

j = 0
for j = m′+ 1, . . . ,m. Thus, the mapping is well-defined and bounded (its
linearity is clear) and can again be continuously extended to a linear and
bounded operator from H−1/2(Div, ∂Ω) into H−1/2

Q (Div,Γ) and the proof
is complete. �





3. Electromagnetic Scattering –
Variational Formulation

One of the two main approaches to treat questions about existence and
uniqueness of solutions to boundary value problems are functional ana-
lytic methods based on variational formulations. To make this approach
accessible to scattering problems we have to truncate the domain and to
impose another boundary condition by means of the Calderon operator.

In this chapter we will take this route and start in Section 3.1, after a short
derivation of the time-harmonic Maxwell’s equations, with the geometrical
setting as well as the introduction of upward (and downward) propagating
waves as analogs of the Silver-Müller radiation condition. After these
preparations, we are in a position to give a precise weak formulation of
the scattering problem (1.1) and to show uniqueness of solutions.

In Section 3.2 we use a special extension operator, given by the unique
solvability of a certain exterior boundary value problem, to define the
Calderon operator. The latter operator allows us to rewrite our scattering
problem from the previous section equivalently into its variational form –
the starting point for investigations of existence of solutions.

This will be the topic of Section 3.3. For this, we follow the idea from [35]
and [42], which is to split up the solution space into a direct sum, where
one summand is “curl-free” and the other one is “divergence-free”. By
means of this decomposition, we are able to divide the scattering problem
given in its variational form into two smaller ones, which are easier to
analyse. Nevertheless, some technical efforts have to be overcome for the
second auxiliary problem before we finally can state the existence result.
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3.1. Problem Formulation and Uniqueness of
Solution

3.1.1. Time-Harmonic Maxwell’s Equations

The following presentation is an extract of [34, Chapter 1].

In general, electromagnetic wave phenomena are described by Maxwell’s
equations, which connect five vector fields, namely the electric field E , the
electric displacement D, the magnetic field H, the magnetic flux density B
and the current density J , and one scalar field, namely the charge density
%, to each other by

∂B
∂t

+ curlx E = 0 (Faraday’s Law of Induction),

∂D
∂t
− curlxH = −J (Ampere’s Law),

divxD = % (Gauss’ Electric Law),
divx B = 0 (Gauss’ Magnetic Law).

We assume that all fields behave periodically with respect to time t ≥ 0,
with the same frequency ω > 0. Then the complex valued functions

E(x, t) = e−iωtE(x), H(x, t) = e−iωtH(x), etc., (3.1)

as well as their real and imaginary parts, satisfy the time-harmonic
Maxwell’s equations

−iωB + curlE = 0,
iωD + curlH = J,

divD = ρ,

divB = 0.

Incorporating now the constitutive equations for an isotropic and homoge-
neous medium

D = εE and B = µH,
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where ε > 0 denotes the electric permittivity and µ > 0 the magnetic
permeability, and Ohm’s law

J = σE + Je,

where σ ≥ 0 is the conductivity and Je is the external current density, we
arrive at

curlE − iωµH = 0,
curlH + (iωε− σ)E = Je,

divE = ρ/ε,

divH = 0.

3.1.2. Geometrical Setting

Material Parameters. In the sequel, Q ⊆ R2 will denote the rectangle
given by

Q := (−L1, L1)× (−L2, L2)

for some constants Lj > 0, j = 1, 2. Furthermore, α ∈ R3 will be a vector
of the form

α =

α1
α2
0

 ∈ R3.

Recall from the beginning of Section 2.2.1 the definition for Q-(quasi)-
periodicity (with phase shift α). Throughout this thesis the term “biperi-
odic” will be considered as a synonym of the term “Q-periodic”.

We are interested in time-harmonic electromagnetic wave scattering at
impenetrable biperiodic surfaces. We suppose the scatterer Γ̃0 ⊆ R3 to
be the graph of a Q-periodic Lipschitz continuous function f0 : R2 → R,
i.e.,

Γ̃0 :=
{
x ∈ R3 | x̃ ∈ R2 and x3 = f0(x̃)

}
, (3.2)

which is illuminated from above. Since the scatterer is impenetrable, the
domain of interest is above from Γ̃0. For the material parameters we make
the following assumption.
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Assumption 3.1 We assume that ε, µ > 0 and σ ≥ 0. Furthermore, we
suppose Je and ρ to be zero.

Definition 3.2 We call the number k ∈ C, satisfying Re(k) > 0 and
Im(k) ≥ 0 as well as

k2 = ω2εµ+ iωµσ,

wave number.

Consequences for Maxwell’s Equations. As incident fields we will con-
sider Q-quasi-periodic vector fields, with phase shift α, which are smooth
solutions to the time-harmonic Maxwell’s equations and impact the scat-
terer from above. We denote them by Ei

α and H i
α. As a consequence, by

taking also the Q-periodicity of the scatterer into account, the scattered
fields Es

α and Hs
α can be assumed as Q-quasi-periodic, with phase shift α,

as well, which satisfy the time-harmonic Maxwell’s equations too. Due to
Assumption 3.1, those equations read now as

curlEα − iωµHα = 0,
curlHα + (iωε− σ)Eα = 0,

divEα = 0,
divHα = 0.

(3.3)

Using the first equation in (3.3) to substitute Hα in the second equation
in (3.3) and using (A.2b), it is easy to check that Eα and Hα solve (3.3),
if and only if Eα satisfies

curl curlEα − k2Eα = 0

and Hα := 1
iωµEα. Therefore, it suffices to concentrate on vector fields

uα : R3 → C3 which are Q-quasi-periodic, with phase shift α, and solve

curl curl uα − k2uα = 0. (3.4)

The Unit Cell. A key ingredient to any scattering problem is a suitable
radiation condition, see [7]. For this we follow in the next section the
Rayleigh expansion ansatz in [7], which requires the introduction of a
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certain planar auxiliary surface. It turns out to be a great convenience to
introduce the following sets, which will later keep the notation simple.

Let Γ̃ ⊆ R3 be the graph of an arbitrary Q-periodic Lipschitz continuous
function f : R2 → R and let Γ denote the patch of Γ̃ whose orthogonal
projection onto R2 gives Q, i.e.,

Γ :=
{
x ∈ R3 | x̃ ∈ Q and x3 = f(x̃)

}
.

For a, b ∈ R, we define

Da
Γ :=

{
x ∈ R3 | x̃ ∈ Q and f(x̃) < x3 < a

}
, (3.5a)

D∞Γ :=
{
x ∈ R3 | x̃ ∈ Q and f(x̃) < x3 <∞

}
, (3.5b)

DΓ
a :=

{
x ∈ R3 | x̃ ∈ Q and a < x3 < f(x̃)

}
, (3.5c)

DΓ
−∞ :=

{
x ∈ R3 | x̃ ∈ Q and −∞ < x3 < f(x̃)

}
, (3.5d)

Db
a :=

{
x ∈ R3 | x̃ ∈ Q and a < x3 < b

}
, (3.5e)

D∞a :=
{
x ∈ R3 | x̃ ∈ Q and a < x3 <∞

}
, (3.5f)

Da
−∞ :=

{
x ∈ R3 | x̃ ∈ Q and −∞ < x3 < a

}
(3.5g)

and last but not least

Γa :=
{
x ∈ R3 | x̃ ∈ Q and x3 = a

}
. (3.6)

Note that there are choices of a and b such that some of those sets are
empty.

Now, recall f0 from above, whose graph describes our scatterer Γ̃0. Since
the scattered wave us

α is assumed to be Q-quasi-periodic as well, it sufficies
to restrict our considerations to the surface patch

Γ0 :=
{
x ∈ R3 | x̃ ∈ Q and x3 = f0(x̃)

}
.

We fix h± ∈ R such that h+ > maxξ∈R2 f0(ξ) and h− < minξ∈R2 f0(ξ).
Furthermore, we define

D := Dh+

Γ0
(3.7)

and call D the unit cell. Note that D is a cell set of Lipschitz layer type
according to Definition 2.89. This set will be later the domain of greatest
interest for the variational formulation of our scattering problem.
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The Scattering Problem in Classical Terms. With the preliminary con-
siderations from above, we will now give a first (vague) formulation of the
scattering problem we are interested in. We start with the incident field
for which we will make the following assumption.

Assumption 3.3 The incident field ui
α is assumed to be a smooth function

ui
α ∈ C∞(D∞Γ0

,C3), which is Q-quasi-periodic, with phase shift α, and
solves (3.4).

Given an incident field ui
α as in Assumption 3.3, we are looking for a

function uα : D∞Γ0
→ C3, the total field, such that

curl curl uα − k2uα = 0 in D∞Γ0
,

n× uα = 0 on Γ0,

us
α := uα − ui

α is upward propagating in D∞h+ ,

(3.8)

where n denotes the unit normal vector on Γ0, pointing in the downward
direction. In the next subsection we will state more precisely what we
mean by the term “upward propagating”. And in the subsection after the
next, we will be in the position to give a precise (weak) formulation of our
scattering problem.

Connection to the Q-periodic Framework. To work out answers to the
questions of existence and uniqueness of solutions to our scattering problem
and to develop a high order solver for its numerical solution, the necessary
tools were provided in Chapter 2 not for the Q-quasi-periodic but for the
Q-periodic framework. As already mentioned in Subsection 2.2.1, both
situations are closely related to each other by the transformation (2.10).

Convention 3.4 Let Ω ⊆ R3 be a cell set and d′ ∈ N. Recalling (2.10),
for given uα : Ω→ Cd′ , which is Q-quasi-periodic with phase shift α, we
denote by u its Q-periodic counterpart, i.e., u is the Q-periodic function
u : Ω→ Cd′ given by

u(x) := e−iα̃·x̃uα(x), x ∈ Ω.

Conversely, for given Q-periodic function u : Ω→ Cd′ , we denote by uα
its Q-quasi-periodic counterpart, with phase shift α.
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Having Convention 3.4 in mind and using (1.20b), it is easy to check that
uα satisfies (3.4), if and only if u satisfies

curlα curlα u− k2u = 0. (3.9)

3.1.3. Upward and Downward Propagating Waves

We follow the Rayleigh expansion ansatz in [7, Section 2.2] to define a
suitable radiation condition. Since a bounded andQ-quasi-periodic solution
uα to the Helmholtz equation in D∞h+ is an analytic and Q-quasi-periodic
function on any plane {x3 = h}, where h > h+, uα can be expanded
on such planes into a Fourier series of the form (2.11), see [7]. Inserting
this expansion into the Helmholtz equation, in [7] were derived conditions
on the Fourier coefficients to ensure uα to be an upward or downward
propagating wave. Since solutions of the time harmonic Maxwell system
are divergence free solutions to the vector Helmholtz equation, see [34,
Lemma 1.3] and the remarks after it, we choose the next conditions for an
upward and downward propagating wave in our electromagnetic context.
For this, recall q(µ) from (2.7) and define for µ ∈ Z2

ρ(µ) :=
(
k2 − |d(µ)|2

)1/2 ∈ C, where d(µ) := α̃+ q(µ) ∈ R2. (3.10)

Assumption 3.5 Throughout this thesis we assume that ρ(µ) 6= 0 for all
µ ∈ Z2.

Definition 3.6 (i) A function u : D∞a → C3 is said to satisfy the
upward propagating Rayleigh expansion radiation condition (URC),
if there exists a sequence (u(µ))µ∈Z2 in C3 such that

u(x) =
∑
µ∈Z2

u(µ) ei(q(µ)· x̃+ρ(µ)(x3−a)), x ∈ D∞a , (3.11a)

with uniform convergence to u on D∞b for all b > a.

(ii) A function u : Da
−∞ → C3 is said to satisfy the downward propagat-

ing Rayleigh expansion radiation condition (DRC), if there exists a
sequence (u(µ))µ∈Z2 in C3 such that

u(x) =
∑
µ∈Z2

u(µ) ei(q(µ)· x̃+ρ(µ)(a−x3)), x ∈ Da
−∞, (3.11b)
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with uniform convergence to u on Db
−∞ for all b < a.

Multiplying (3.11a) by the factor e−iωt from (3.1) yields for the sum-
mands

e−iωt u(µ) ei(q(µ)· x̃+ρ(µ)(x3−a))

= u(µ)e−Im(ρ(µ))(x3−a) ei(q(µ)· x̃+Re(ρ(µ))(x3−a)−ωt),

for all x ∈ D∞a and all µ ∈ Z2. Note that in this equation for fixed µ ∈ Z2

and for fixed x̃ ∈ Q the term q(µ) · x̃+ Re(ρ(µ))(x3 − a)− ωt is constant
for growing t > 0, only if x3 > a is growing as well. Hence, each summand
in (3.11a) represents indeed an upward propagating wave. Similarly, we
see that the summands in (3.11b) are downward propagating waves.

Moreover, note that the function u from Definition 3.6 is Q-periodic. And,
having still Convention 3.4 in mind, it is easy to see that a function
u : D∞a → C3 satisfies the (URC) from Definition 3.6, if and only if its
Q-quasi-periodic counterpart uα satisfies

uα(x) =
∑
µ∈Z2

u(µ) ei(d(µ)· x̃+ρ(µ)(x3−a)), x ∈ D∞a , (3.12)

with the same sequence of coefficients (u(µ))µ∈Z2 . Condition (3.12) will
be referred to as (URC)α. Of course, the analogous result we have for
functions satisfying the (DRC).

Remark 3.7 It is easy to check that u : Da
−∞ → C3 satisfies (DRC) if

and only if u∗(·∗) : D∞−a → C3 satisfies (URC). Here, recall (1.4) for the
definition of z∗ for some z ∈ C3. Therefore, in the following presentation
it suffices to restrict our attention to functions satisfying (URC).

Functions Satisfying (URC). Now, we will show that functions which
satisfy the (URC) are smooth functions. Recall Lemma 2.9 for some
convenient estimates for the quantity q(µ). Similar estimates for the
quantity ρ(µ) will be of interest and are derived in the next lemma.

Lemma 3.8 For the quantity ρ(µ) from (3.10) there holds
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(i) ∃C > 0 ∀µ ∈ Z2 : |ρ(µ)| ≤ C
√

1 + |µ|2,

(ii) ∃C > 0 ∀µ ∈ Z2 : |ρ(µ)| ≥ Im
(
ρ(µ)) ≥ C√1 + |µ|2.

Proof: We observe that |q(µ)| → ∞, as |µ| → ∞, which implies that
|α̃ + q(µ)| → ∞ and arg(ρ(µ)) → π

2 , as |µ| → ∞. The convergence for
arg(ρ(µ)) results from Definition 3.2.
(i). By the observation above, there exists N ∈ N such that for all µ ∈ Z2

with |µ| ≥ N we have |α̃+ q(µ)|2 ≥ |Re(k2)|, |α̃+ q(µ)|4 ≥ (Im(k2))2 and
|q(µ)| ≥ |α̃|. Let µ ∈ Z2 with |µ| ≥ N . Then 0 ≤ |α̃ + q(µ)|2 − Re(k2) ≤
2|α̃+ q(µ)|2 and we obtain, together with (i) from Lemma 2.9,

|ρ(µ)|2 =
√(
|α̃+ q(µ)|2 − Re(k2)

)2 +
(
Im(k2)

)2

≤
√

5 |α̃+ q(µ)|2 ≤ 4
√

5 |q(µ)|2 ≤ C̃2(1 + |µ|2
)
.

Set M := max
{
|ρ(µ)|

∣∣ |µ| < N
}

and m := min
{√

1 + |µ|2
∣∣ |µ| < N

}
.

Note that m > 0. Now, let µ ∈ Z2 with |µ| < N . Then

|ρ(µ)| ≤M = M√
1+|µ|2

√
1 + |µ|2 ≤ M

m

√
1 + |µ|2.

Finally the assertion follows by choosing C := max
{
M
m , C̃

}
.

(ii). By the observation above, there exists N ∈ N such that for all
µ ∈ Z2 with |µ| ≥ N we have |α̃ + q(µ)|2 ≥ 2|Re(k2)|, |q(µ)| ≥ 2|α̃| and
sin
(

arg(ρ(µ))
)
≥ 1

2 . Let µ ∈ Z2 with |µ| ≥ N . Then |α̃+q(µ)|2−Re(k2) ≥
1
2 |α̃+ q(µ)|2 ≥ 0 and we obtain, together with (ii) from Lemma 2.9,

Im(ρ(µ)) = 4
√(
|α̃+ q(µ)|2 − Re(k2)

)2 +
(
Im(k2)

)2 sin
(

arg(ρ(µ))
)

≥ 1√
2

1
2 |α̃+ q(µ)| ≥ 1√

2
1
4 |q

(µ)| ≥ 1√
2

1
4 C̃
√

1 + |µ|2.

Set m := min
{

Im(ρ(µ))
∣∣ |µ| < N

}
and M := max

{√
1 + |µ|2

∣∣ |µ| < N
}

.
Note that m > 0. Now, let again µ ∈ Z2 with |µ| < N . Then

Im(ρ(µ)) ≥ m = m 1√
1+|µ|2

√
1 + |µ|2 ≥ m

M

√
1 + |µ|2.

And finally the assertion follows by choosing C := min
{
m
M , 1√

2
1
4 C̃
}

. �

The next lemma gives a useful quantification for the convergence rate for
the coefficients u(µ) of a function u which satisfies the (URC).
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Lemma 3.9 Let u : D∞a → C3 satisfy (URC). Then for its coefficients
(u(µ))µ∈Z2 there holds(

u(µ) eiρ(µ)(b−a))
µ∈Z2 ∈ `2(Z2,C3), for all b > a.

Proof: By definition of the (URC), we have uniform convergence of the
series representation for u on D∞(a+b)/2 to u. Therefore, by the continuity
of all summands, u is continuous on D∞(a+b)/2. Hence, u(·, b) has a Fourier
series expansion, i.e., u(·, b) =

∑
µ∈Z2 û(µ) T

(µ)
Q . Since uniform conver-

gence is stronger than L2-convergence (on bounded measurable sets), we
obtain, by uniqueness of the Fourier coefficients,

(
u(µ) eiρ(µ)(b−a))

µ∈Z2 =( 1
|Q|1/2 û

(µ))
µ∈Z2 ∈ `2(Z2,C3). �

Using the statements of the last two lemmas, we obtain the following
important result, saying that a function which satisfies the (URC) is a
smooth function.

Proposition 3.10 Let the function u : D∞a → C3 satisfy (URC). Then
u ∈ C∞Q (D∞a ,C3) with

∂βuj(x) =
∑
µ∈Z2

∂βu
(µ)
j ei(q(µ)· x̃+ρ(µ)(x3−a)), x ∈ D∞a ,

for all j = 1, 2, 3 and all β ∈ N3
0, where convergence holds uniformly on

D∞b for all b > a.

Proof: Thanks to Lemma 3.8, there exists a constant C̃ > 0 such that
for all µ ∈ Z2 we have 1

2 Im(ρ(µ)) ≥ C̃
√

1 + |µ|2. Let b > a. Moreover,
let n ∈ N and x ∈ D∞b . For µ ∈ Z2 we define h(µ) := C̃(b− a)

√
1 + |µ|2.

Note that b − a > 0. Therefore, (h(µ))n+2

eh(µ) is bounded for all µ ∈ Z2.
Furthermore,

|u(µ)|
(√

1 + |µ|2
)n ∣∣ei(q(µ)· x̃+ρ(µ)(x3−a))∣∣

=
(√

1+|µ|2
)n+2

e 1
2 Im(ρ(µ))(x3−a) |u

(µ)| e− 1
2 Im(ρ(µ))(x3−a) 1

1 + |µ|2
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≤
(√

1+|µ|2
)n+2

eC̃
√

1+|µ|2(b−a)
|u(µ)| e− 1

2 Im(ρ(µ))(b−a) 1
1 + |µ|2

= 1
[C̃(b−a)]n+2

(h(µ))n+2

eb(µ) |u(µ)| e−Im(ρ(µ))(b̂−a) 1
1 + |µ|2

≤ C |u(µ)| e−Im(ρ(µ))(b̂−a) 1
1 + |µ|2 ,

for all µ ∈ Z2, where b̂ := 1
2 (a+b) > a. Using the parts (i) from Lemma 2.9

and Lemma 3.8, using Lemma 3.9 and the Cauchy-Schwarz inequality
(note that ( 1

1+|µ|2 )µ∈Z2 belongs to `(Z2) according to Lemma 2.37), we
obtain from the last estimate, that the series of each partial derivative
∂i from the j-th component of the continuously differentiable summands
in (3.11a) converge uniformly on D∞b . In particular, they converge locally
uniformly on D∞a . Therefore uj ∈ C1(D∞a ), and hence u ∈ C1(D∞a ,C3).
Now, by induction and again by the last estimate, we finally obtain the
assertion. �

Remark 3.11 Applying the argumentation in the proof of Lemma 3.9 to
the series representation in Proposition 3.10, we see that for a function
u : D∞a → C3 which satisfies (URC) there holds for its coefficients u(µ)(

(
√

1 + |µ|2)nu(µ) eiρ(µ)(b−a)
)
µ∈Z2

∈ `2(Z2,C3), for all b > a, n ∈ N0.

3.1.4. Weak Formulation and Uniqueness of Solution

We are now in a position to give a precise (weak) formulation of our scat-
tering problem under consideration, see also (3.8) and Convention 3.4.

Problem 3.12 Given an incident field ui as in Assumption 3.3, find
u : D∞Γ0

→ C3 such that for all h > h+ there holds u ∈ HQ(curl, Dh
Γ0

) and
∀v ∈ HQ,0(curl, Dh

Γ0
) :
∫
DhΓ0

(
curlα u · curlα v − k2u · v

)
dx = 0,

γt,Γ0u = 0,
us := u− ui satisfies (URC) in D∞h+ .
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For a solution to Problem 3.12 we can derive the following properties,
which turn out to be quite useful, in particular later when we show that
Problem 3.12 is equivalent to the variational formulation based on the
Calderon operator, see next section.

Proposition 3.13 Let u : D∞Γ0
→ C3 be a solution to Problem 3.12.

Furthermore, let h > h+. Then the following assertions are true.

(i) curlα u belongs to HQ(curl, Dh
Γ0

) with

curl(curlα u) = k2u− (iα× curlα u), i.e., curlα curlα u = k2u,

holding in L2(Dh
Γ0
,C3).

(ii) u|D∞
h+

belongs to C∞Q (D∞h+ ,C3) and solves the equation in (i) in the
classical sense. In particular, this is true for us|D∞

h+
.

(iii) For all v ∈ HQ,0,Γ0(curl, D) there holds∫
D

(
curlα u · curlα v−k2u ·v

)
dx = −〈γt,Γh+ curlα u|D, γT,Γh+ v〉Γh+ .

Proof: (i). Let χ ∈ C∞Q,0(Dh
Γ0
,C3) and set v := χ. Then v belongs to

HQ,0(curl, Dh
Γ0

) and we obtain, using the first equation in Problem 3.12,∫
DhΓ0

curlα u · curlχdx

=
∫
DhΓ0

[
curlα u · (curlχ+ iα× χ) + curlα u · (iα× χ)

]
dx

=
∫
DhΓ0

[
curlα u · curlα v − (iα× curlα u) · χ

]
dx

=
∫
DhΓ0

[
k2u− (iα× curlα u)

]
· χdx.

(ii). Since us satisfies (URC) in D∞h+ , we have due to Proposition 3.10
that us|D∞

h+
∈ C∞Q (D∞h+ ,C3). Moreover, ui belongs to C∞Q (D∞Γ0

,C3) by
definition. Therefore, u|D∞

h+
= (ui + us)|D∞

h+
∈ C∞Q (D∞h+ ,C3).
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(iii). Let v ∈ HQ,0,Γ0(curl, D). Due to part (i) and according to part (i) of
part (b) of Proposition 2.68, we know that curlα u ∈ HQ(curl, D) and that
curlα curlα u = k2u in L2(D,C3). Therefore, an application of Green’s
formula (2.18b) yields∫

D

(
curlα u · curlα v − k2u · v

)
dx

=
∫
D

[
curlα u · curl v + curlα u · (v × iα)− k2u · v

]
dx

=
∫
D

(curlα curlα u− k2u︸ ︷︷ ︸
=0

) · v dx− 〈γt,Γ0 curlα u|D, γT,Γ0v︸ ︷︷ ︸
=0

〉Γ0

− 〈γt,Γh+ curlα u|D, γT,Γh+ v〉Γh+

= −〈γt,Γh+ curlα u|D, γT,Γh+ v〉Γh+ ,

and the proof is complete. �

Theorem 3.14 If Im(k) > 0, then Problem 3.12 has at most one solution.

Proof: Suppose u, v : D∞Γ0
→ C3 are solutions to Problem 3.12 to a

given incident field ui : D∞Γ0
→ C3. Set w := u − v. Then, for all

h > h+, w ∈ HQ(curl, Dh
Γ0

) and satisfies the first equation in Problem 3.12.
Furthermore, γt,Γ0w = 0 and w = (u − ui) − (v − ui) satisfies (URC) in
D∞h+ , i.e.,

w(x) =
∑
µ∈Z2

w(µ) eiρ(µ)(x3−h+) eiq(µ)·x̃, x ∈ D∞h+ ,

with a certain sequence (w(µ))µ∈Z2 in C3. From Propostion 3.10 we know
that w ∈ C∞Q (D∞h+ ,C3) and that the series (and its derivatives) converges
uniformly on D∞h for all h > h+. Moreover, by Proposition 3.13, there
holds curlα curlα w − k2w = 0 even in the classical sense. From this we
conclude that divα w = 0. For any h > h+, from the uniform convergence
on Γh we obtain therefore

0 = divα w(·, h) = i√
|Q|

∑
µ∈Z2

d(µ)
1
d

(µ)
2
ρ(µ)

 · w(µ) eiρ(µ)(h−h+) T
(µ)
Q .
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Since divα w(·, h) is continuous on Γh, it can be expanded into a Fourier
series and by uniqueness of Fourier coefficients we conclude from the last
equation d(µ)

1
d

(µ)
2
ρ(µ)

 · w(µ) = 0, for all µ ∈ Z2. (∗)

Now, let h > h+ and µ ∈ Z2. Then
0

0
1

×

d(µ)

1
d

(µ)
2
ρ(µ)

× w(µ)


 · w(µ) =

w(µ)
3

d(µ)
1
d

(µ)
2
0

− ρ(µ)

w(µ)
1

w
(µ)
2
0


 · w(µ)

= −ρ(µ) |w(µ)
3 |2 − ρ(µ)(|w(µ)

1 |2 + |w(µ)
2 |2

)
,

where we have applied the complex conjugate of (∗). Again by uniform
convergence of the series representation of w (and its derivatives), we
obtain now∫

Γh

[(
0
0
1

)
× curlα w

]
· w ds

= |Q|
∫
Q

∑
µ∈Z2

(
0
0
1

)
× curlα

(
w(µ) eiρ(µ)(h−h+) T

(µ)
Q (x̃)

)
·

(∑
ν∈Z2

w(ν) eiρ(ν)(h−h+) T
(−ν)
Q (x̃)

)
dx̃

= −i|Q|
∑
µ∈Z2

(
ρ(µ)(|w(µ)

1 |2 + |w(µ)
2 |2

)
+ ρ(µ) |w(µ)

3 |2
)

e−2Im(ρ(µ))(h−h+).

Let a > h+ and consider for µ ∈ Z2 the functions gµ : (a,∞)→ C defined
by

gµ(ξ) :=
(
ρ(µ)(|w(µ)

1 |2 + |w(µ)
2 |2

)
+ ρ(µ) |w(µ)

3 |2
)

e−2Im(ρ(µ))(ξ−h+)

for ξ ∈ (a,∞). Then |gµ(ξ)| ≤ C
√

1 + |µ|2 |w(µ)|2 e−2Im(ρ(µ))(a−h+) for
all ξ ∈ (a,∞), because of Lemma 3.8. Thus, by Remark 3.11, the series
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(
∑
gµ) of continuous functions gµ converges uniformly to a continuous

function g. Hence, the interchange of limits is allowed and we obtain

lim
h→∞

∫
Γh

[(
0
0
1

)
× curlα w

]
· w ds = 0.

Using the previous observations, an application of Green’s formula (2.18b)
yields now, with −〈γt,Γ0 curlα w, γT,Γ0w〉Γ0 = 〈γt,Γ0w, γT,Γ0 curlα w〉Γ0 =
0, that∫
DhΓ0

(
curlα w · curlα w − k2w · w

)
dx

=
∫
DhΓ0

(
curlα curlα w − k2w︸ ︷︷ ︸

=0

)
· w dx−

∫
Γh

[(
0
0
1

)
× curlα w

]
· w ds.

Dividing the last equation by k, taking then the imaginary part and passing
finally to the limit for h → ∞, we obtain w = 0 almost everywhere on
D∞Γ0

and the proof is complete. �

3.2. Calderon Operator and Variational
Formulation

A Special Extension Operator. As a preparation for the definition of the
Calderon operator, we now construct a certain extension operator, which
turns out to be the unique solution of the following exterior boundary
value problem.

Problem 3.15 Given ϕ ∈ H−1/2
Q (Div,Γh+), find u : D∞h+ → C3 such that

u satisfies (URC), u ∈ HQ(curl, Dh
h+), for all h > h+, and{

curlα curlα u− k2u = 0 in D∞h+ ,

γt,Γh+u = ϕ.
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Note that by Proposition 3.10 the function u in Problem 3.15 is smooth
and that therefore the first equation therein holds in the classical sense.

Recall Convention 2.125 for the identification of the spacesH−1/2
Q (Div,Γh+)

and H
−1/2
per (Div, Q). Hence, we have for ϕ ∈ H−1/2

Q (Div,Γh+) its series
representation

ϕ =
∑
µ∈Z2

(
ϕ

(µ)
1

ϕ
(µ)
2

)
(T (µ)

Q ), (3.13)

with associated sequence (ϕ(µ))µ∈Z2 ∈ C−1/2
Div and convergence to be under-

stood in H
−1/2
Q (Div,Γh+). Moreover,

‖ϕ‖2
H
−1/2
Q

(Div,Γh+ )
=
∑
µ∈Z2

(
1 + |µ|2)−1/2(|ϕ(µ)|2 + |q(µ) · ϕ(µ)|2

)
<∞.

Taking for ϕ ∈ H−1/2
Q (Div,Γh+) this sequence (ϕ(µ))µ∈Z2 , we recall (3.10)

and define the sequence (E(µ))µ∈Z2 in C3 by

E(µ) := 1√
|Q|

1
ρ(µ)

d(µ)
1
d

(µ)
2
ρ(µ)

×
ϕ(µ)

1
ϕ

(µ)
2
0

 , µ ∈ Z2 (3.14)

and consider the extension

E(x) :=
∑
µ∈Z2

E(µ) ei(q(µ)· x̃+ρ(µ)(x3−h+)), x ∈ D∞h+ . (3.15)

Note that the coefficients E(µ) in (3.14) are well-defined thanks to As-
sumption 3.5 and that they are motivated by plugging the ansatz for E
from (3.15) into Problem 3.15 and using in particular γt,Γh+E

!= ϕ and
divαE

!= 0. Our next goal is to show that E from (3.15) is the unique
solution to Problem 3.15.

Lemma 3.16 Let ϕ ∈ H−1/2
Q (Div,Γh+), define for µ ∈ Z2 the coefficients

E(µ) by (3.14) and furthermore the coefficients
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F (µ) := i

q(µ)
1
q

(µ)
2
ρ(µ)

×E(µ), F (µ)
α := i

d(µ)
1
d

(µ)
2
ρ(µ)

×E(µ), G(µ) := i

q(µ)
1
q

(µ)
2
ρ(µ)

× F (µ)
α .

Then the following assertions are true.

(i) ∃C > 0 ∀µ ∈ Z2 : |E(µ)| ≤ C |ϕ(µ)|.

(ii) ∃C > 0 ∀µ ∈ Z2 : |F (µ)| ≤ C
(
|ϕ(µ)|+ |q(µ) · ϕ(µ)|

)
.

(iii) ∃C > 0 ∀µ ∈ Z2 : |F (µ)
α | ≤ C

(
|ϕ(µ)|+ |q(µ) · ϕ(µ)|

)
.

(iv) ∃C > 0 ∀µ ∈ Z2 : |G(µ)| ≤ C
(
|ϕ(µ)|+ |q(µ) · ϕ(µ)|

)
.

Proof: (i). Let µ ∈ Z2. Then, using the definition (3.14) for the coeffi-
cients E(µ), we have

|E(µ)| ≤ 1√
|Q|

1
|ρ(µ)|

√
|q(µ)|2 + |ρ(µ)|2 |ϕ(µ)|.

Now, the assertion follows immediately from Lemma 2.9 and Lemma 3.8.
(ii). Let µ ∈ Z2. Using the definition (3.14) for the coefficients E(µ)

and (A.1b), we have

F (µ) = i q
(µ) · ϕ(µ)√
|Q| ρ(µ)

d(µ)
1
d

(µ)
2
ρ(µ)

− i |q
(µ)|2 + (ρ(µ))2 + q(µ) · α̃√

|Q| ρ(µ)

ϕ(µ)
1

ϕ
(µ)
2
0

 .

Note that |q(µ)|2 + (ρ(µ))2 = |q(µ)|2 +k2−|α̃+ q(µ)|2 = k2−|α̃|2−2α̃ · q(µ).
Therefore

|F (µ)| ≤ |k
2|+ |α̃|2 + |α̃| |q(µ)|√

|Q| |ρ(µ)|
|ϕ(µ)|+ |q

(µ) · ϕ(µ)|√
|Q|

√
|q(µ)|2
|ρ(µ)|2

+ 1.

Now, we obtain the assertion again immediately from Lemma 2.9 and
Lemma 3.8.
(iii). Since F (µ)

α = F (µ) + i (α1, α2, 0)> × E(µ), the assertion follows easily
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from (i) and (ii).
(iv). Let µ ∈ Z2. We obtain, similarly to step (ii),

F (µ)
α = i d

(µ) · ϕ(µ)√
|Q| ρ(µ)

d(µ)
1
d

(µ)
2
ρ(µ)

− i k2√
|Q| ρ(µ)

ϕ(µ)
1

ϕ
(µ)
2
0

 ,

where we have exploited that |d(µ)|2 + (ρ(µ))2 = k2. Hence,

G(µ) = −q
(µ) · ϕ(µ) + α̃ · ϕ(µ)√

|Q| ρ(µ)

q(µ)
1
q

(µ)
2
ρ(µ)

×
α1
α2
0

+ k2√
|Q| ρ(µ)

q(µ)
1
q

(µ)
2
ρ(µ)

×
ϕ(µ)

1
ϕ

(µ)
2
0


and therefore

|G(µ)| ≤ 1√
|Q|

√
|q(µ)|2
|ρ(µ)|2

+ 1
[(
|k2|+ |α̃|2

)
|ϕ(µ)|+ |α̃|

∣∣q(µ) · ϕ(µ)∣∣].
And again, the assertion follows now immediately from Lemma 2.9 and
Lemma 3.8. �

Remark 3.17 The coefficients F (µ), F (µ)
α and G(µ) from Lemma 3.16

correspond to the application of curl, curlα and curl curlα to the µ-th
summand of E from (3.15), respectively.

Lemma 3.18 Let ϕ ∈ H−1/2
Q (Div,Γh+) and define for µ ∈ Z2 the coef-

ficients E(µ), F (µ), F (µ)
α and G(µ) according to Lemma 3.16. Further-

more, let (H(µ))µ∈Z2 ∈
{

(E(µ))µ∈Z2 , (F (µ))µ∈Z2 , (F (µ)
α )µ∈Z2 , (G(µ))µ∈Z2

}
and consider the series

H(x) :=
∑
µ∈Z2

H(µ) eiρ(µ)(x3−h+) eiq(µ)·x̃, x ∈ D∞h+ .

Then the following statements are true.



3.2. Calderon Operator and Variational Formulation 187

(i) H ∈ C∞(D∞h+ ,C3) and the series converges uniformly to H on D∞h
for all h > h+. In particular, E from (3.15) satisfies (URC) and
furthermore

curlα curlαE(x) = k2E(x), x ∈ D∞h+ ,

in the classical sense.

(ii) Let h > h+. The series converges in L2(Dh
h+ ,C3) to H|Dh

h+
. In

particular, the series representation for E and curlαE converges in
HQ(curl, Dh

h+) to E and curlαE, respectively.

(iii) For E from (3.15) there exists C > 0 such that for all h > h+ we
have curlαE ∈ HQ(curl, Dh

h+) and

‖ curlαE ‖H(curl,Dh
h+ ) ≤ C ‖E ‖H(curl,Dh

h+ ).

Proof: (i). Thanks to Proposition 3.10 and Remark 3.17, it sufficies to
show that E from (3.15) satisfies (URC). For this we proceed similarly
to the proof of Proposition 3.10 and observe that there exists a constant
C̃ > 0 such that for all µ ∈ Z2 we have Im(ρ(µ)) ≥ C̃

√
1 + |µ|2. Let

h > h+ and x ∈ D∞h . For µ ∈ Z2 we define b(µ) := C̃(h− h+)
√

1 + |µ|2.
Note that h− h+ > 0. Therefore, (b(µ))5/2

eb(µ) is bounded for all µ ∈ Z2. Now,
let µ ∈ Z2. Then, using the observations from above and Lemma 3.16, we
obtain ∣∣E(µ) eiρ(µ)(x3−h+) eiq(µ)·x̃∣∣ = e−Im(ρ(µ))(x3−h+) |E(µ)|

≤ C e−C̃
√

1+|µ|2(h−h+) |ϕ(µ)|

= C
[C̃ (h−h+)]5/2

(b(µ))5/2

eb(µ)
|ϕ(µ)|(

1 + |µ|2
)1/4

1
1 + |µ|2 .

Hence, since x ∈ D∞h was arbitrarily chosen,

sup
x∈D∞

h

∣∣E(µ) eiρ(µ)(x3−h+) eiq(µ)·x̃∣∣ ≤ C |ϕ(µ)|+ |q(µ) · ϕ(µ)|(
1 + |µ|2

)1/4
1

1 + |µ|2 .

Now, Cauchy-Schwarz’s inequality yields∑
µ∈Z2

sup
x∈D∞

h

∣∣E(µ) eiρ(µ)(x3−h+) eiq(µ)·x̃∣∣ ≤ C ‖ϕ‖2
H
−1/2
Q

(Div,Γh+ )
,
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which shows that E satisfies (URC) since normal convergence implies
uniform convergence.
We show that E solves the differential equation in the classical sense.
In fact, since E satisfies (URC), Proposition 3.10 implies now that all
differential operations can be applied componentwise. In particular,

curlα curlαE(x) =
∑
µ∈Z2

H(µ) eiρ(µ)(x3−h+) eiq(µ)·x̃, x ∈ D∞h+ ,

where, by recalling Remark 3.17, (3.14) and (3.10),

H(µ) := i2

d(µ)
1
d

(µ)
2
ρ(µ)

×

d(µ)

1
d

(µ)
2
ρ(µ)

× E(µ)

 = k2 E(µ), µ ∈ Z2.

From this the assertion follows immediately.
(ii). Let n,m ∈ N such that n < m. Then, using Fubini’s theorem,
Lemma 3.8 and Lemma 3.16, we obtain∫

Dh
h+

∣∣∣ ∑
n<|µ|≤m

H(µ) eiρ(µ)(x3−h+) eiq(µ)·x̃
∣∣∣2 dx

= |Q|
∫ h

h+

∥∥∥ ∑
n<|µ|≤m

H(µ) eiρ(µ)(x3−h+) T
(µ)
Q

∥∥∥2

L2(Q,C3)
dx3

= |Q|
∑

n<|µ|≤m

|H(µ)|2
∫ h

h+
e−2 Im(ρ(µ))(x3−h+) dx3

≤ |Q|
∑

n<|µ|≤m

|H(µ)|2
∫ h

h+
e−C̃
√

1+|µ|2 (x3−h+) dx3

= |Q|
∑

n<|µ|≤m

|H(µ)|2 1
C̃
√

1 + |µ|2
(

1− e−C̃
√

1+|µ|2 (h−h+)
)

≤ C
∑

n<|µ|≤m

1√
1 + |µ|2

(
|ϕ(µ)|2 + |q(µ) · ϕ(µ)|2

)
.

Since ϕ ∈ H−1/2
Q (Div,Γh+), Cauchy’s convergence test for series in Ba-

nach spaces yields now that the series converges in L2(Dh
h+ ,C3) to some
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H̃ ∈ L2(Dh
h+ ,C3). By Riesz-Fischer’s theorem, there exists a subsequence

of the sequence of partial sums, converging pointwise almost everywhere
on Dh

h+ to H̃. From part (i) we know that this subsequence of partial
sums also converges (in particular) pointwise to H on Dh

h+ . Hence, H and
H̃ coincide almost everywhere on Dh

h+ .
(iii). Let h > h+. From part (ii), together with Remark 3.17, we ob-
tain E ∈ HQ(curl, Dh

h+). Note that curlαE(x) = curlE(x) + iα × E(x).
Furthermore, by part (i),

curl curlαE(x) = curlα curlαE(x)− iα× curlαE(x)
= k2E(x)− iα× (iα× E(x))− iα× curlE(x).

Moreover, from part (ii) we know that E and curlE belong to L2(Dh
h+ ,C3).

Together with the last observation, the asserted inequality follows immedi-
ately. �

Theorem 3.19 Let ϕ ∈ H−1/2
Q (Div,Γh+), define for µ ∈ Z2 the coeffi-

cients E(µ) by (3.14) and consider E from (3.15), i.e.,

E(x) :=
∑
µ∈Z2

E(µ) ei(q(µ)· x̃+ρ(µ)(x3−h+)), x ∈ D∞h+ .

Then E is the unique solution to Problem 3.15. Moreover, for all h > h+

the mapping H−1/2
Q (Div,Γh+) 3 ϕ 7→ E ∈ HQ(curl, Dh

h+) is bounded (with
a constant not depending on h).

Proof: (i). We have to show that E satisfies (URC) and that E solves
the first equation in Problem 3.15 in the classical sense. But this follows
from Lemma 3.18.
(ii). Let h > h+. We have to show that E belongs to HQ(curl, Dh

h+). In
fact, from part (i) we know that E satisfies (URC). Therefore, Proposi-
tion 3.10 gives us that curlE exists in the classical sense and it allows us
furthermore to apply the curl operation componentwise such that we end
up in the situation of Lemma 3.18, if we take Remark 3.17 into account as
well. Hence, E and curlE belong to L2(Dh

h+ ,C3).
(iii). We show that γt,Γh+E = ϕ. In fact, let h > h+. In Lemma 3.18
we have shown that the series representation for E converges also in
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HQ(curl, Dh
h+). Moreover, γt,Γh+ from HQ(curl, Dh

h+) to H−1/2
Q (Div,Γh+)

is bounded. Therefore, by recalling (3.14), (3.13) and Convention 2.125,
we obtain

γt,Γh+E =
∑
µ∈Z2

 0
0
−1

× E(µ)
√
|Q| (T (µ)

Q ) =
∑
µ∈Z2

(
ϕ

(µ)
1

ϕ
(µ)
2

)
(T (µ)

Q ) = ϕ.

(iv). We show uniqueness of Problem 3.15. Suppose u : D∞h+ → C3 is a
solution to Problem 3.15 for ϕ = 0. Let h > h+. Since u satisfies (URC)
we have

γt,Γhu(x̃) =
∑
µ∈Z2

−u(µ)
2
u

(µ)
1

0

 eiρ(µ)(h−h+) eiq(µ)·x̃, x̃ ∈ Q.

Let ν ∈ Z2 and set

v(x) :=

−u(ν)
2

u
(ν)
1

0

 eiρ(ν)(x3−h+) e−iq(ν)·x̃, x ∈ D∞h+ .

Then v belongs to HQ(curl, Dh
h+), even to C∞(D∞h+ ,C3). Therefore, we

can apply Green’s formula from Theorem 2.113 and obtain∫
Γh
γt,Γhu · γT,Γhv ds+ 〈γt,Γh+u︸ ︷︷ ︸

=0

, γT,Γh+ v〉Γh+

=
∫
Dh
h+

(curlu · v − u · curl v) dx.

Since the right hand side converges to zero as h tends to h+, we have

|Q|
(
|u(ν)

1 |2 + |u(ν)
2 |2

)
e−2Im(ρ(ν))(h−h+) =

∫
Γh
γt,Γhu · γT,Γhv ds→ 0,

as h→ h+. From this we conclude that u(µ)
1 = u

(µ)
2 = 0 for all µ ∈ Z2.

Moreover, u satisfies curlα curlα u− k2u = 0 in the classical sense. There-
fore, divα u = 0. Furthermore, thanks to Proposition 3.10, all differential
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operations go through componentwise to the series representation for u.
Since divα u(·, h) is continuous, it can be expanded into a Fourier series.
Hence,

0 = divα u(·, h) =
√
|Q|

∑
µ∈Z2

i

d(µ)
1
d

(µ)
2
ρ(µ)

 · u(µ) eiρ(µ)(h−h+) T
(µ)
Q ,

and by uniqueness of the Fourier coefficients we obtain (d(µ)
1 , d

(µ)
2 , ρ(µ))> ·

u(µ) = 0 for all µ ∈ Z2. And from this we obtain finally u
(µ)
3 = 0 for all

µ ∈ Z2, since ρ(µ) 6= 0.
(v). We show boundedness of the solution operator. For this let h > h+.
Moreover, for n ∈ N we set

En(x) :=
∑
|µ|≤n

E(µ) eiρ(µ)(x3−h+) eiq(µ)·x̃, x ∈ Dh
h+ ,

and obtain very similar to part (ii) from the proof of Lemma 3.18 that for
all n ∈ N, and with F (µ) from Lemma 3.16,

‖En‖2
H(curl,Dh

h+ ) = |Q|
∑
|µ|≤n

(
|E(µ)|2 + |F (µ)|2

) ∫ h

h+
e−2 Im(ρ(µ))(x3−h+) dx3

≤ C
∑
|µ|≤n

1√
1 + |µ|2

(
|ϕ(µ)|2 + |q(µ) · ϕ(µ)|2

)
≤ C ‖ϕ‖2

H
−1/2
Q

(Div,Γh+ )
.

Using that En → E in HQ(curl, Dh
h+), as n→∞, see Lemma 3.18, from

the last estimate the assertion follows now immediately. �

The Calderon Operator. Theorem 3.19 yields a linear and bounded
operator

H
−1/2
Q (Div,Γh+) 3 ϕ 7→ E ∈ HQ(curl, Dh

h+),
where E is given by (3.15) and is the unique solution to Problem 3.15.
Here, h is any real number such that h > h+. Furthermore, taking this E,
by part (iii) of Lemma 3.18 the operator

HQ(curl, Dh
h+) 3 E 7→ curlαE ∈ HQ(curl, Dh

h+)
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is also linear and bounded. Finally, recall that γt,Γh+ is a linear and
bounded operator from HQ(curl, Dh

h+) to H−1/2
Q (Div,Γh+). These obser-

vations give rise to the following definition.

Definition 3.20 The linear and bounded operator

H
−1/2
Q (Div,Γh+) 3 ϕ 7→ γt,Γh+ curlαE ∈ H−1/2

Q (Div,Γh+)

given by the composition of the three linear and bounded operators from
above is called Calderon operator. We denote this operator by Λα.

Remark 3.21 Note that in the definition of the Calderon operator there
goes into the trace operator γt,Γh+ . Since curlαE belongs for any h > h+

to HQ(curl, Dh
h+), γt,Γh+ operates by definition with respect to the normal

vector (0, 0,−1)>, because it’s showing outside of Dh
h+ .

Remark 3.22 For the Calderon operator we have the explicit formula

Λαϕ = i
∑
µ∈Z2

1
ρ(µ)

(
d

(µ)
1 d

(µ)
2 (d(µ)

2 )2 − k2

k2 − (d(µ)
1 )2 −d(µ)

1 d
(µ)
2

)
ϕ(µ) (T (µ)

Q )

= i
∑
µ∈Z2

1
ρ(µ)

[
k2(ϕ(µ))⊥ − (d(µ) · ϕ(µ))(d(µ))⊥

]
(T (µ)

Q )

for all ϕ ∈ H−1/2
Q (Div,Γh+). Here, convergence has to be understood in

H
−1/2
Q (Div,Γh+), and a⊥ := (−a2, a1)> for a ∈ C2, see (1.7). For the

coefficients ϕ(µ) of ϕ see (3.13).

Proof: Let ϕ ∈ H−1/2
Q (Div,Γh+). Moreover, let µ ∈ Z2 and recall (3.14)

for the definition of the coefficients E(µ). Then 0
0
−1

×
i

d(µ)
1
d

(µ)
2
ρ(µ)

× E(µ)

 = −i

E(µ)
3

d(µ)
1
d

(µ)
2
0

− ρ(µ)

E(µ)
1

E
(µ)
2
0
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= i√
|Q| ρ(µ)

(d(µ)
2 ϕ

(µ)
1 − d(µ)

1 ϕ
(µ)
2 )

d(µ)
1
d

(µ)
2
0

− (ρ(µ))2

 ϕ
(µ)
2

−ϕ(µ)
1

0




= i√
|Q| ρ(µ)

 d
(µ)
1 d

(µ)
2 (d(µ)

2 )2 − k2

k2 − (d(µ)
1 )2 −d(µ)

1 d
(µ)
2

0 0

ϕ(µ),

where we have applied (ρ(µ))2 = k2 − |d(µ)|2, see (3.10). Now, thanks to
Lemma 3.18 and Remark 3.17, we have

curlαE(x) =
∑
µ∈Z2

F (µ)
α eiρ(µ)(x3−h+) eiq(µ)·x̃, x ∈ D∞h+ ,

with F
(µ)
α from Lemma 3.16, and where we have convergence also in

HQ(curl, Dh
h+) for all h > h+. Therefore, we can apply the trace operator

γt,Γh+ componentwise and obtain

γt,Γh+ curlαE =
∑
µ∈Z2

γt,Γh+F
(µ)
α eiρ(µ)(·3−h+) eiq(µ) ·̃·.

Using the calculations from above and recalling Convention 2.125 together
with (3.13), the explicit formula for the Calderon operator follows now
immediately. �

The Variational Formulation. By means of the Calderon operator, we
are now in a position to give an equivalent formulation of Problem 3.12 in
variational form. We will take this formulation to show later existence of
solutions.

Problem 3.23 Given an incident field ui as in Assumption 3.3, find
u ∈ HQ,0,Γ0(curl, D) such that for all v ∈ HQ,0,Γ0(curl, D)∫
D

(
curlα u · curlα v − k2u · v

)
dx+

〈
Λα(γt,Γh+u), γT,Γh+ v

〉
Γh+

=
〈

Λα(γt,Γh+ (ui|D))− γt,Γh+ curlα(ui|D), γT,Γh+ v
〉

Γh+
.



194 3. Electromagnetic Scattering – Variational Formulation

Remark 3.24 If u ∈ HQ,0,Γ0(curl, D) solves Problem 3.23, then we have∫
D

(
curlα u · curlα v − k2u · v

)
dx = 0

for all v ∈ HQ,0(curl, D). Hence, from Proposition 3.13 we conclude that
curlα u ∈ HQ(curl, D) with curlα curlα u = k2u holding in L2(D,C3).

Theorem 3.25 Problem 3.12 and Problem 3.23 are equivalent.

Proof: (i). Let u : D∞Γ0
→ C3 be a solution to Problem 3.12. Using

Proposition 3.13, we see that us|D∞
h+

is a solution to Problem 3.15 for
ϕ = γt,Γh+u

s|Dh
h+

for any h > h+. Since E defined by (3.15) solves this
problem too, we have by uniqueness E = us|D∞

h+
. Therefore,

Λαϕ
def= γt,Γh+ curlαE = γt,Γh+ curlα(us|Dh

h+
) = −γt,Γh+ curlα(us|D).

Moreover, thanks to Proposition 2.119,

Λαϕ = Λαγt,Γh+ (us|Dh
h+

) = −Λαγt,Γh+ (us|D).

This yields

γt,Γh+ curlα(u|D) = γt,Γh+ curlα(u|D − ui|D) + γt,Γh+ curlα(ui|D)
= Λαγt,Γh+ (u|D − ui|D) + γt,Γh+ curlα(ui|D).

Let v ∈ HQ,0,Γ0(curl, D). Then, by part (iii) of Proposition 3.13, we
have∫

D

(
curlα u · curlα v − k2u · v

)
dx = −〈γt,Γh+ curlα(u|D), γT,Γh+ v〉Γh+ .

Using the observations from above, from the last equation the assertion
follows now immediately.
(ii). Let u ∈ HQ,0,Γ0(curl, D) be a solution to Problem 3.23. Thanks to
Remark 3.24, curlα u belongs to HQ(curl, D). Therefore, we can apply
Green’s formula (2.18b) to curlα u and an arbitrary v ∈ HQ,0,Γ0(curl, D),
and obtain∫

D

(
curlα u · curlα v − k2u · v

)
dx



3.2. Calderon Operator and Variational Formulation 195

=
∫
D

(
curlα curlα u− k2u︸ ︷︷ ︸

=0

)
· v dx− 〈γt,Γh+ curlα u, γT,Γh+ v〉Γh+ ,

where we have again applied Remark 3.24. Let ψ ∈ H−1/2
Q (Curl,Γh+) and

set v := ηT,Γh+ψ ∈ HQ(curl, D). Note that v is even in HQ,0,Γ0(curl, D),
see Theorem 2.107. Then the variational equation in Problem 3.23 yields,
together with the last equation from above,〈

γt,Γh+ curlα(u− ui|D)− Λαγt,Γh+ (u− ui|D), ψ
〉

Γh+
= 0.

Since ψ ∈ H
−1/2
Q (Curl,Γh+) was arbitrary, Corollary 2.114 and a well-

known conclusion from Hahn-Banach’s theorem yield that

γt,Γh+ curlα(u− ui|D) = Λαγt,Γh+ (u− ui|D).

Let u+,s : D∞h+ → C3 denote the solution of Problem 3.15 to the boundary
data ϕ = −γt,Γh+ (u − ui|D). Furthermore, set u+ := ui|D∞

h+
+ u+,s and

define û : D∞Γ0
→ C3 by

û :=
{
u+, on D∞h+ ,

u, on D.

Note that by construction u+,s satisfies (URC) and that u+,s is smooth
with curlα curlα u+,s = k2u+,s. Furthermore, u+,s ∈ HQ(curl, Dh

h+), for all
h > h+, with γt,Γh+u

+,s = ϕ = −γt,Γh+ (u− ui|D) and γt,Γh+ curlα u+,s =
Λαϕ = −Λαγt,Γh+ (u − ui)|D. Therefore, u+ ∈ HQ(curl, Dh

h+), for all
h > h+, and

γt,Γh+u
+ = γt,Γh+ (u+ − ui|Dh

h+
) + γt,Γh+ (ui|Dh

h+
)

= −γt,Γh+ (u− ui|D)− γt,Γh+ (ui|D) = −γt,Γh+u.

Hence, by Proposition 2.118, we have û ∈ HQ(curl, Dh
Γ0

), for all h >
h+. Moreover, γt,Γ0 û = γt,Γ0u = 0. Finally, let h > h+ and v ∈
HQ,0(curl, Dh

Γ0
). Then, by applying Green’s formula (2.18b) and using the

observations from above,∫
Dh
h+

(
curlα u+ · curlα v − k2u+ · v

)
dx
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=
∫
Dh
h+

(
curlα curlα u+ − k2u+︸ ︷︷ ︸

=0

)
· v dx− 〈γt,Γh+ curlα u+, γT,Γh+ v〉Γh+

= −〈γt,Γh+ curlα(u+− ui|Dh
h+

), γT,Γh+v〉Γh+− 〈γt,Γh+ (ui|Dh
h+

), γT,Γh+v〉Γh+

= 〈Λαγt,Γh+ (u− ui|D), γT,Γh+ v〉Γh+ + 〈γt,Γh+ (ui|D), γT,Γh+ v〉Γh+ .

Therefore, the first equation in Problem 3.12 follows now from∫
DhΓ0

(
curlα û · curlα v − k2û · v

)
dx =

∫
D

(
curlα u · curlα v − k2u · v

)
dx

+
∫
Dh
h+

(
curlα u+ · curlα v − k2u+ · v

)
dx

together with the variational equation from Problem 3.23. �

3.3. Existence of Solution

From Theorem 3.14 we know, that for special values of k Problem 3.12 has
at most one solution. It is the objective of this section to investigate when
there also exists a solution. For this we will take its equivalent formulation
in variational form, namely Problem 3.23, as a basis and apply standard
tools from functional analysis.

Since the functionals, which will appear here, are antilinear (see Section 1.3
for a definition), we will need a variant of the theorem of Lax–Milgram as
given by Corollary A.9.

3.3.1. The Idea of Proof

Recall Problem 3.23. For ease of notation, we set

V := HQ,0,Γ0(curl, D)
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and define for u, v ∈ V the sesquilinear form B(u, v) : V × V → C and the
antilinear functional ` : V → C by

B(u, v) :=
∫
D

(
curlα u · curlα v − k2u · v

)
dx+

〈
Λα(γt,Γh+u), γT,Γh+ v

〉
Γh+

,

(3.16)
`(v) :=

〈
Λα(γt,Γh+ (ui|D))− γt,Γh+ curlα(ui|D), γT,Γh+ v

〉
Γh+

. (3.17)

Then Problem 3.23 reads as: find u ∈ V such that

B(u, v) = `(v), for all v ∈ V.

Inspired by [35] and [42, Section 10.3], we define the subspaces W and X̃
of the space V by

W := H1
Q,0,Γ0

(D) and X̃ :=
{
ũ ∈ V | ∀ψ ∈W : B(ũ,∇αψ) = 0

}
. (3.18)

Suppose for the moment that the space V can be decomposed into

V = X̃ ⊕∇αW

and that u = ũ+∇αp ∈ V is the solution to Problem 3.23. Then we obtain
for arbitrary v = ṽ +∇αψ ∈ V that

B(u, v) = `(v) ⇔ B(ũ, v) = `(v)−B(∇αp, v)
⇔ B(ũ, ṽ) +B(ũ,∇αψ)︸ ︷︷ ︸

=0

= `(ṽ) + `(∇αψ)−B(∇αp, ṽ)−B(∇αp,∇αψ).

This gives rise to introduce the following two auxiliary problems and to
solve them separately.

Problem 3.26 Find p ∈W such that

B(∇αp,∇αψ) = `(∇αψ), for all ψ ∈W.

Problem 3.27 For given p ∈W find ũ ∈ X̃ such that

B(ũ, ṽ) = `(ṽ)−B(∇αp, ṽ), for all ṽ ∈ X̃.

In the following presentation we will show that both problems are uniquely
solvable and that indeed V = X̃⊕∇αW . Then, by the chain of equivalences
from above, ũ+∇αp =: u solves Problem 3.23, where p is the solution to
Problem 3.26 and ũ is the solution to Problem 3.27 for this p.
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3.3.2. The First Auxiliary Problem

Motivated by Problem 3.26, we introduce the sesquilinear forms B1, B2 :
W ×W → C, defined by

B1(p, ψ) := (∇p | ∇ψ)L2(D,C3) + |α|2 (p |ψ)L2(D)

− 1
k2

〈
Λα(γt,Γh+∇αp), γT,Γh+∇αψ

〉
Γh+

, (3.19a)

B2(p, ψ) := (∇p | iαψ)L2(D,C3) + (iαp | ∇ψ)L2(D,C3) , (3.19b)

and consider the following problem.

Problem 3.28 To given antilinear and bounded g : W → C, find p ∈W
such that

B1(p, ψ) +B2(p, ψ) = g(ψ), for all ψ ∈W. (3.20)

Remark 3.29 It is easy to verify that there holds the equation

B1(p, ψ) +B2(p, ψ) = − 1
k2 B(∇αp,∇αψ), for all p, ψ ∈W.

Hence, choosing the antilinear and bounded functional g : W → C from
the form

g(ψ) := − 1
k2 `(∇αψ), for all ψ ∈W,

Problem 3.26 is a special case of Problem 3.28.

In the next Proposition we will show that B1 and B2 are bounded and
that B1 is in addition coercive. This gives rise to rewrite the variational
equation (3.20) to an operator equation. The operator therein will turn
out to be a compact perturbation of the identity operator. Finally we show
that this compact perturbation is injective. Then, an application of Riesz’
third theorem will finish the proof for the solvability of Problem 3.28.

For the terms appearing in the next lemma consult for instance Theo-
rem A.8.
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Proposition 3.30 The sesquilinear forms B1 and B2, given by (3.19a)
and (3.19b), respectively, are bounded. Furthermore, B1 is coercive.

Proof: (i). We show that B2 is bounded. In fact, let p, ψ ∈W . Then

|B2(p, ψ)| ≤ |α| ‖∇p‖L2(D,C3) ‖ψ‖L2(D) + |α| ‖p‖L2(D) ‖∇ψ‖L2(D,C3)

≤ |α| ‖p‖H1(D) ‖ψ‖H1(D).

(ii). We show that B1 is bounded. In fact, let p, ψ ∈ W . At first, we
observe that by the boundedness of Λα and γt,Γh+ , see Definition 3.20 and
Theorem 2.107,

‖Λα(γt,Γh+∇αp)‖H−1/2
Q

(Div,Γh+ ) ≤ C ‖∇αp‖H(curl,D)

≤ C
(
‖∇p‖H(curl,D) + ‖iαp‖H(curl,D)

)
= C

(
‖∇p‖L2(D,C3) +

√
‖αp‖2

L2(D,C3) + ‖(∇p)× α‖2
L2(D,C3)

)
≤ C ‖p‖H1(D).

Therefore, by consulting also Theorem 2.113, we obtain now from (3.19a)
easily

|B1(p, ψ)| ≤ C ‖p‖H1(D) ‖ψ‖H1(D).

(iii). We show that B1 is coercive. In fact, let p ∈ C∞Q,0,Γ0
(D). By

Lemma 2.127, the series representation therein for γt,Γh+∇αp converges
in H

−1/2
Q (Div,Γh+). Therefore, we can apply the Calderon operator

componentwise, which yields

Λαγt,Γh+∇αp = i
∑
µ∈Z2

1
ρ(µ)

[
−i k2p(µ)d(µ)−i p(µ)( d(µ) · (d(µ))⊥︸ ︷︷ ︸

=0

)
(d(µ))⊥

]
(T (µ)

Q ).

Here, p(µ) denote the Fourier coefficients of p(·, h+). Again by Lemma 2.127,
we have

γT,Γh+∇αp = −i
∑
ν∈Z2

p(ν)d(ν)(T (−ν)
Q ),

with convergence in H
−1/2
Q (Curl,Γh+). Hence,〈

Λαγt,Γh+∇αp, γT,Γh+∇αp
〉

Γh+
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=
∑

µ,ν∈Z2

〈k2p(µ)

ρ(µ) d(µ)(T (µ)
Q ),−i p(ν)d(ν)(T (−ν)

Q )
〉

Γh+

= −i k2
∑

µ,ν∈Z2

p(µ)p(ν)

ρ(µ) d(µ) · d(ν)
(
T

(µ)
Q

∣∣∣T (ν)
Q

)
L2(Q)

= −i k2
∑
µ∈Z2

1
ρ(µ) |d

(µ)|2|p(µ)|2,

where we have applied the definition of the bilinear form 〈·, ·〉Γh+ from
Theorem 2.113. Note that Re ( i

ρ(µ) ) ≥ 0, for all µ ∈ Z2. Therefore,

Re [B1(p, p)] = ‖∇p‖2
L2(D,C3) + |α|2‖p‖2

L2(D) +
∑
µ∈Z2

Re
( i
ρ(µ)

)
|d(µ)|2|p(µ)|2

≥ min{1, |α|2} ‖p‖2
H1(D).

If α = 0, then one shows the last inequality by means of the inequality of
Friedrich’s type, see Theorem 2.96.
Finally, let p ∈ W . By definition, C∞Q,0,Γ0

(D) is dense in W . Therefore,
the assertion follows from the last estimate by a standard approximation
argument. �

As a consequence of Proposition 3.30, by a conclusion of the theorem of
Lax–Milgram, see Corollary A.9, there exists a unique linear and bounded
operator K1 : W →W and a unique b ∈W such that

B1(K1p, ψ) = B2(p, ψ), for all p, ψ ∈W, (3.21)
B1(b, ψ) = g(ψ), for all ψ ∈W.

Now, it is not difficult to see that Problem 3.28 is equivalent to: to given
b ∈W , find p ∈W such that

(I +K1) p = b, (3.22)

where I : W →W denotes the identity operator.

Proposition 3.31 The operator K1 : W → W , given by (3.21), is com-
pact. Moreover, the operator I +K1 : W →W is injective.
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Proof: (i). We show compactness of K1. For this let (pn)n∈N be a
bounded sequence in W . By Theorem 2.122, there exists a subsequence
(pn1(l))l∈N of (pn)n∈N which converges in L2(D). Since K1 : W → W is
bounded, also (K1pn1(l))l∈N is bounded in W , and again by Theorem 2.122,
there exists a subsequence (K1pn2(l))l∈N of (K1pn1(l))l∈N which converges
in L2(D). Hence, using the coercivity of B1, Equation (3.21) and the
definition of B2, we obtain

‖K1(pn2(l) − pn2(m))‖2
H1(D)

≤ C
∣∣B1
(
K1(pn2(l) − pn2(m)),K1(pn2(l) − pn2(m))

)∣∣
= C

∣∣B2
(
pn2(l) − pn2(m),K1(pn2(l) − pn2(m))

)∣∣
≤ C

(
‖∇(pn2(l) − pn2(m))‖L2(D,C3) ‖iαK1(pn2(l) − pn2(m))‖L2(D,C3)

+ ‖iα(pn2(l) − pn2(m))‖L2(D,C3) ‖∇K1(pn2(l) − pn2(m))‖L2(D,C3)

)
.

Since the terms where the symbol “∇” appears are bounded and the other
terms are convergent, we conclude that (K1pn2(l))l∈N is a Cauchy sequence
in W and therefore convergent in W .
(ii). We show injectivity of I +K1. For this let p ∈W with (I +K1) p = 0.
This is equivalent to B1(p, ψ)+B2(p, ψ) = 0 for all ψ ∈W . In particular

0 = B1(p, p) +B2(p, p)

= ‖∇αp‖2
L2(D,C3) −

1
k2

〈
Λα(γt,Γh+∇αp), γT,Γh+∇αp

〉
Γh+

.

From part (iii) in the proof of Proposition 3.30 we know that

Re
(

1
k2

〈
Λα(γt,Γh+∇αp), γT,Γh+∇αp

〉
Γh+

)
≤ 0.

This implies together with the equation before that ‖∇αp‖2
L2(D,C3) = 0.

Finally, Friedrich’s inequality, see Theorem 2.96, yields p = 0 and the
proof is complete. �

Theorem 3.32 Problem 3.28 and Problem 3.26 are uniquely solvable.

Proof: The assertion for Problem 3.28 follows from the equivalent problem
represented by (3.22) and from Proposition 3.31 together with Riesz’ third
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theorem, see for instance [36, Theorem 3.3].
And the assertion for Problem 3.26 is now a consequence of the unique
solvability of Problem 3.28 and Remark 3.29. �

Proposition 3.33 The spaces X̃ and ∇αW are closed subspaces of V .
Furthermore, we have V = X̃ ⊕∇αW .

Proof: (i). To see that ∇αW is a closed subspace of V , we repeat
the argumentation in the proof of Proposition 2.75 with corresponding
adaptions for the situation considered here, where the functions vanish only
on Γ0. For instance, we have to cite Theorem 2.96 instead of Theorem 2.72.
(ii). We show that X̃ is a closed subspace of V . For this let (ũn)n∈N be a
sequence in X̃ which converges to some ũ ∈ V with respect to ‖·‖HQ(curl,D).
Let ψ ∈W . Then B(ũn,∇αψ) = 0 for all n ∈ N and we obtain

0 = lim
n→∞

B(ũn,∇αψ) = B(ũ,∇αψ),

where the last step holds thanks to the convergence of (ũn)n∈N with respect
to ‖ · ‖HQ(curl,D) and the definition of B, see (3.16).
(iii). We show that V = X̃ + ∇αW . The inclusion “⊇” is obviously
true. For the inclusion “⊆”, let u ∈ V . Define p ∈ W as the unique
solution of Problem 3.28 to given g(ψ) := − 1

k2B(u,∇αψ), for all ψ ∈W ,
see Theorem 3.32. Set ũ := u − ∇αp. Then, by the first equation in
Remark 3.29,

1
k2 B(ũ,∇αψ) = 1

k2 B(u,∇αψ)− 1
k2 B(∇αp,∇αψ)

= −g(ψ) +B1(p, ψ) +B2(p, ψ) = 0

for all ψ ∈W , and hence ũ ∈ X̃.
To see that X̃ ∩ ∇αW = ∅, let ũ ∈ X̃ ∩ ∇αW . Then ũ = ∇αp for some
p ∈W and we obtain

0 = − 1
k2 B(ũ,∇αψ) = − 1

k2 B(∇αp,∇αψ) = B1(p, ψ) +B2(p, ψ)

for all ψ ∈ W . From this we conclude, since Problem 3.28 is uniquely
solvable, that p = 0. Hence, ũ = ∇αp = 0 and the proof is complete. �
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3.3.3. The Second Auxiliary Problem

Unfortunately, the investigation of the solvability of Problem 3.27 is
more involved, because the Calderon operator considered in the situation
here does not give rise to a coercive sesquilinear form, see the following
observation, and has therefore to be split up into a coercive and compact
part. Especially the proof of the compactness result requires some technical
efforts. For this, we need in particular to introduce several auxiliary
operators and to study their mapping properties. Nevertheless, the main
procedure is very similar to the investigation of Problem 3.26.

Observation 3.34 The sesquilinear form

X̃ × X̃ 3 (ũ, ṽ) 7→ 〈Λα(γt,Γh+ ũ), γT,Γh+ ṽ〉Γh+ ∈ C

is in general not coercive.

Proof: Let ũ ∈ C∞Q,0,Γ0
(D,C3). By Lemma 2.127, the series representa-

tion therein for γt,Γh+ ũ and γT,Γh+ ũ converges in H
−1/2
Q (Div,Γh+) and

H
−1/2
Q (Curl,Γh+), respectively. In particular, the Calderon operator can

be applied componentwise yielding

Λαγt,Γh+ ũ = i
∑
µ∈Z2

1
ρ(µ)

[
− k2ũ(µ) −

(
d(µ) · (ũ(µ))⊥

)
(d(µ))⊥

]
(T (µ)

Q ),

where here and for the rest of this proof ũ(µ) ∈ C2 denote the Fourier coef-
ficients of ũ(·, h+) orthogonally projected from C3 onto C2. Therefore,

〈Λαγt,Γh+ ũ, γT,Γh+ ũ〉Γh+ = i
∑
µ∈Z2

1
ρ(µ)

(
− k2|ũ(µ)|2 + |d(µ) · (ũ(µ))⊥|2

)
,

where we have applied the definition of the bilinear form 〈·, ·〉Γh+ from
Theorem 2.113. Note that Re ( i

ρ(µ) ) ≥ 0, for all µ ∈ Z2. However, the
summands containing the factor −k2 destroy in general coercivity due to
Definition 3.2. �
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As mentioned before, because of Observation 3.34 we have to split up the
Calderon operator Λα into a coercive and compact part. For this purpose
we write

Λαϕ = Λ(1)
α ϕ+ Λ(2)

α ϕ, ϕ ∈ H−1/2
Q (Div,Γh+),

where the operators Λ(1)
α ,Λ(2)

α : H−1/2
Q (Div,Γh+)→ H

−1/2
Q (Div,Γh+) are

given by

Λ(1)
α ϕ := −i

∑
µ∈Z2

1
ρ(µ) (d(µ) · ϕ(µ))(d(µ))⊥ (T (µ)

Q ),

Λ(2)
α ϕ := ik2

∑
µ∈Z2

1
ρ(µ) (ϕ(µ))⊥ (T (µ)

Q ),

see also Remark 3.22, in particular for the coefficients (ϕ(µ))µ∈Z2 ∈ C−1/2
Div .

To see that the operators are well-defined, we have to show that the
coefficients

(
− id

(µ)·ϕ(µ)

ρ(µ) (d(µ))⊥
)
µ∈Z2 and

( ik2

ρ(µ) (ϕ(µ))⊥
)
µ∈Z2 belong to

C−1/2
Div . But, thanks to Lemma 2.9 and Lemma 3.8, this is easy to see.

Moreover, the convergences have to be understood in H
−1/2
Q (Div,Γh+)

and the operators are linear and bounded.

Now motivated by Problem 3.27, we introduce the sesquilinear forms
B3, B4 : X̃ × X̃ → C, defined by

B3(ũ, ṽ) := (curl ũ | curl ṽ)L2(D,C3) + (iα× ũ | iα× ṽ)L2(D,C3)

+ (ũ | ṽ)L2(D,C3) + 〈Λ(1)
α (γt,Γh+ ũ), γT,Γh+ ṽ〉Γh+ , (3.23a)

B4(ũ, ṽ) := −(1 + k2) (ũ | ṽ)L2(D,C3) + (iα× ũ | curl ṽ)L2(D,C3)

+ (curl ũ | iα× ṽ)L2(D,C3) + 〈Λ(2)
α (γt,Γh+ ũ), γT,Γh+ ṽ〉Γh+ ,

(3.23b)

and consider the following problem.

Problem 3.35 To given antilinear and bounded g : X̃ → C, find ũ ∈ X̃
such that

B3(ũ, ṽ) +B4(ũ, ṽ) = g(ṽ), for all ṽ ∈ X̃. (3.24)
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Remark 3.36 It is easy to verify that there holds the equation

B3(ũ, ṽ) +B4(ũ, ṽ) = B(ũ, ṽ), for all ũ, ṽ ∈ X̃.

Hence, choosing the antilinear and bounded functional g : X̃ → C from the
form

g(ṽ) := `(ṽ)−B(∇αp, ṽ), for all ṽ ∈ X̃,
for some p ∈W , Problem 3.27 is a special case of Problem 3.35.

Similarly as for Problem 3.28, in the following presentation we will show
that B3 and B4 are bounded and that B3 is in addition coercive. Again,
this gives rise to rewrite the variational equation (3.24) to an operator
equation. The operator therein will turn out to be a compact perturbation
of the identity operator. Unfortunately, to verify the compactness property,
more work has to be done. Finally, we will show again that this compact
perturbation is injective. Thus, as before, an application of Riesz’ third
theorem will yield the solvability of Problem 3.35.

We start with a useful characterization of the space X̃.

Proposition 3.37 The space X̃ from (3.18) can be characterized by

X̃ =
{
ũ ∈ V | divα ũ = 0 and Divα(Λαγt,Γh+ ũ) = −k2γn,Γh+ ũ

}
.

Moreover, the embedding X̃ id
↪−→ L2(D,C3) is compact.

Proof: (i). To show the characterization, first of all, for ψ ∈ H1
Q(D) we

have iα × (∇ψ + iαψ) = iα ×∇ψ and, thanks to Proposition 2.75, that
curl(∇αψ) = ∇ψ × iα, which implies that curlα(∇αψ) = 0.
Let ũ ∈ X̃. Choosing some χ ∈ C∞Q,0(D) ⊆ W , from B(ũ,∇αχ) = 0 we
conclude, with the observation above, that∫

D

ũ · ∇χdx = −
∫
D

(−iα · ũ)χdx.

Hence, ũ ∈ HQ(div, D) with div ũ = −iα · ũ, which is equivalent to
divα ũ = 0. Now, let ψ ∈ W . Then from B(ũ,∇αψ) = 0 we conclude,
with (2.18c) and (2.19), that

0 = −k2
∫
D

ũ · ∇αψ dx+ 〈Λα(γt,Γh+ ũ), γT,Γh+∇αψ〉Γh+
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= k2
∫
D

ψ divα ũ︸ ︷︷ ︸
=0

dx− k2〈γn,Γh+ũ, γ0,Γh+ψ〉 − 〈Divα Λα(γt,Γh+ũ), γ0,Γh+ψ〉

= −
〈
k2γn,Γh+ ũ+ Divα Λα(γt,Γh+ ũ), γ0,Γh+ψ

〉
.

From this we obtain, together with the surjectivity of the trace operator
γ0,Γh+ ∈ L(H1

Q(D), H1/2
Q (Γh+)) and a well-known conclusion from Hahn-

Banach’s theorem, that indeed Divα(Λαγt,Γh+ ũ) = −k2γn,Γh+ ũ.
To show the reverse inclusion, let ũ ∈ V such that divα ũ = 0 and
Divα(Λαγt,Γh+ ũ) = −k2γn,Γh+ ũ. Furthermore, let ψ ∈ W . Exploiting
again (2.18c), we then have

0 =
∫
D

ψ divα ũdx = −
∫
D

ũ · ∇αψ dx+ 〈γn,Γh+ ũ, γ0,Γh+ψ〉

and again by (2.19) that

〈Divα(Λαγt,Γh+ ũ), γ0,Γh+ψ〉 = −〈Λα(γt,Γh+ ũ), γT,Γh+∇αψ〉Γh+ .

From this, together with curlα∇αψ = 0, we conclude finally B(ũ,∇αψ) = 0,
as desired.
(ii). To show compactness of the embedding, by consulting the definition
of the space X̃ from (3.18), it is easy to see that X̃ is a subspace of the
space HQ(curl,divα 0, D) from Definition 2.69. Therefore, the assertion
follows now immediately from Theorem 2.122. �

Proposition 3.38 The sesquilinear forms B3 and B4, given by (3.23a)
and (3.23b), respectively, are bounded. Furthermore, B3 is coercive.

Proof: (i). We show that B3 is bounded. In fact, let ũ, ṽ ∈ X̃. Then, by
the boundedness of the operators Λ(1)

α , γt,Γh+ and γT,Γh+ , there holds the
estimate ‖Λ(1)

α (γt,Γh+ ũ)‖
H
−1/2
Q

(Div,Γh+ ) ≤ C ‖ũ‖HQ(curl,D) and furthermore
‖γT,Γh+ ṽ‖H−1/2

Q
(Curl,Γh+ ) ≤ C ‖ṽ‖HQ(curl,D), and we obtain

|B3(ũ, ṽ)| ≤ ‖ curl ũ‖L2(D,C3) ‖ curl ṽ‖L2(D,C3)

+ (1 + |α|2)‖ũ‖L2(D,C3) ‖ṽ‖L2(D,C3)
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+ C ‖Λ(1)
α (γt,Γh+ ũ)‖

H
−1/2
Q

(Div,Γh+ ) ‖γT,Γh+ ṽ‖H−1/2
Q

(Curl,Γh+ )

≤ C ‖ũ‖HQ(curl,D) ‖ṽ‖HQ(curl,D).

Again, for the constant C, which appeared here several times, see the
convention at the end of Section 1.3.
(ii). We show that B4 is bounded. In fact, let ũ, ṽ ∈ X̃. Then, with the
same arguments as above, we obtain

|B4(ũ, ṽ| ≤ |1 + k2| ‖ũ‖L2(D,C3) ‖ṽ‖L2(D,C3)

+ |α| ‖ũ‖L2(D,C3) ‖ curl ṽ‖L2(D,C3)

+ |α| ‖ curl ũ‖L2(D,C3) ‖ṽ‖L2(D,C3)

+ C ‖Λ(2)
α (γt,Γh+ ũ)‖

H
−1/2
Q

(Div,Γh+ ) ‖γT,Γh+ ṽ‖H−1/2
Q

(Curl,Γh+ )

≤ C ‖ũ‖HQ(curl,D) ‖ṽ‖HQ(curl,D).

(iii). We show that B3 is coercive. In fact, let ũ ∈ C∞Q,0,Γ0
(D,C3). By

Lemma 2.127, the series representation therein for γt,Γh+ ũ converges in
H
−1/2
Q (Div,Γh+). Therefore, we can apply the operator Λ(1)

α component-
wise, which yields

Λ(1)
α γt,Γh+ ũ = −i

∑
µ∈Z2

1
ρ(µ)

(
d(µ) · (ũ(µ))⊥

)
(d(µ))⊥(T (µ)

Q ).

Here, ũ(µ) ∈ C2 denote the Fourier coefficients of ũ(·, h+), orthogonally
projected from C3 onto C2. Again by Lemma 2.127, we have γT,Γh+ ũ =∑
ν∈Z2 ũ(ν)(T (−ν)

Q ), with convergence in H
−1/2
Q (Curl,Γh+). Hence,〈

Λ(1)
α γt,Γh+ ũ, γT,Γh+ ũ

〉
Γh+

=
∑

µ,ν∈Z2

〈−i d(µ) · (ũ(µ))⊥

ρ(µ) (d(µ))⊥(T (µ)
Q ), ũ(ν)(T (−ν)

Q )
〉

Γh+

= −i
∑

µ,ν∈Z2

d(µ) · (ũ(µ))⊥

ρ(µ) (d(µ))⊥ · ũ(ν)︸ ︷︷ ︸
=−d(µ)·(ũ(ν))⊥

(
T

(µ)
Q

∣∣∣T (ν)
Q

)
L2(Q)

= i
∑
µ∈Z2

1
ρ(µ) |d

(µ) · (ũ(µ))⊥|2,
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where we have applied the definition of the bilinear form 〈·, ·〉Γh+ from
Theorem 2.113. Note that Re ( i

ρ(µ) ) ≥ 0, for all µ ∈ Z2. Therefore,

Re [B3(ũ, ũ)] = ‖ curl ũ‖2
L2(D,C3) + ‖iα× ũ‖2

L2(D,C3) + ‖ũ‖2
L2(D,C3)

+
∑
µ∈Z2

Re
( i
ρ(µ)

)
|d(µ) · (ũ(µ))⊥|2

≥ ‖ũ‖2
HQ(curl,D).

Finally, note that B3 is even well-defined in V . Since, by definition,
C∞Q,0,Γ0

(D,C3) is dense in V , by a standard approximation argument we
conclude that B3 is coercive in V , and therefore in particular in X̃. �

Note that X̃ is a Hilbert space, see Proposition 3.33. Hence, again as
a consequence of Proposition 3.38, by a conclusion of the theorem of
Lax–Milgram, see Corollary A.9, there exists a unique linear and bounded
operator K3 : X̃ → X̃ and a unique b̃ ∈ X̃ such that

B3(K3ũ, ṽ) = B4(ũ, ṽ), for all ũ, ṽ ∈ X̃, (3.25)
B3(b̃, ṽ) = g(ṽ), for all ṽ ∈ X̃.

And again, it is not difficult to see that Problem 3.35 is equivalent to: to
given b̃ ∈ X̃, find ũ ∈ X̃ such that

(I +K3) ũ = b̃, (3.26)

where again I : X̃ → X̃ denotes the identity operator.

The next goal is to show that the operator K3 is compact. For this, as we
will see below, that the compactness of the mapping

X̃ 3 ũ 7→ Λ(2)
α γt,Γh+ ũ ∈ H

−1/2
Q (Div,Γh+) (3.27)

is a key ingredient. To prove this property, we recall Convention 2.125,
together with Lemma 2.129, and observe that for ϕ ∈ H−1/2

Q (Div,Γh+) we
have

‖ϕ‖2
H
−1/2
Q

(Div,Γh+)
=
∑
µ∈Z2

(1 + |µ|2)−1/2(|ϕ(µ)|2 + |(q(µ) + α̃− α̃) · ϕ(µ)|2
)
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≤ (1 + 2|α|2)
∑
µ∈Z2

(1 + |µ|2)−1/2|ϕ(µ)|2

+ 2
∑
µ∈Z2

(1 + |µ|2)−1/2∣∣(q(µ) + α̃) · ϕ(µ)∣∣2
= (1 + 2|α|2) ‖ϕ‖2

H
−1/2
Q

(Γh+ ,C2)
+ 2 ‖Divα ϕ‖2

H
−1/2
Q

(Γh+ )
.

Therefore, the compactness of the mapping given by (3.27) follows easily,
if we have shown that the mappings

X̃ 3 ũ 7→ Λ(2)
α γt,Γh+ ũ ∈ H

−1/2
Q (Γh+ ,C2), (3.28a)

X̃ 3 ũ 7→ Divα
(
Λ(2)
α γt,Γh+ ũ

)
∈ H−1/2

Q (Γh+) (3.28b)

are compact. This is the statement of the following lemma.

Lemma 3.39 The mappings given by (3.28a) and (3.28b) are compact.
In particular, the mapping given by (3.27) is compact.

Proof: (a). To verify compactness of the mapping given by (3.28a),
we note, thanks to the boundedness of the trace operator γt,Γh+ and
the embedding from Lemma 2.129, that it suffices to show compactness
of the mapping H

−1/2
Q (Γh+ ,C2) 3 ϕ 7→ Λ(2)

α ϕ ∈ H
−1/2
Q (Γh+ ,C2). We

call this mapping λ and consider for n ∈ N the compact mappings λn :
H
−1/2
Q (Γh+ ,C2)→ H

−1/2
Q (Γh+ ,C2) given by

λnϕ := ik2
∑
|µ|≤n

1
ρ(µ) (ϕ(µ))⊥ (T (µ)

Q ), ϕ ∈ H−1/2
Q (Γh+ ,C2).

Then, for ϕ ∈ H−1/2
Q (Γh+ ,C2) we obtain, by applying Lemma 3.8,

‖(λn − λ)ϕ‖2
H
−1/2
Q

(Γh+ ,C2)
= |k|4

∑
|µ|>n

(1 + |µ|2)−1/2 |ϕ(µ)|2

|ρ(µ)|2

≤ C
∑
|µ|>n

(1 + |µ|2)−1/2 |ϕ(µ)|2

1 + |µ|2 ≤
C

1 + n2 ‖ϕ‖
2
H
−1/2
Q

(Γh+ ,C2)
.
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Hence, (λn)n∈N converges to λ in operator norm, as n→∞, which shows
that λ is compact too.
(b). To verify compactness of the mapping given by (3.28b), let ũ ∈ X̃.
Then, thanks to Proposition 3.37 and Theorem 2.111, we obtain

‖Divα
(
λ(2)
α γt,Γh+ ũ

)
‖
H
−1/2
Q

(Γh+ ) = |k|2‖γn,Γh+ ũ‖H−1/2
Q

(Γh+ )

≤ C ‖ũ‖HQ(div,D) = C
(
‖ũ‖2

L2(D,C3) + ‖ divα ũ︸ ︷︷ ︸
=0

−iα · ũ‖2
L2(D)

)1/2

≤ C ‖ũ‖L2(D,C3).

Taking now the embedding from Proposition 3.37 into account, we have
indeed shown that the mapping given by (3.28b) is compact.
And finally, the compactness of the mapping given by (3.27) follows
now immediately from the compactness of the mappings given by (3.28a)
and (3.28b), together with the estimate after (3.27). �

Proposition 3.40 The operator K3 : X̃ → X̃, given by (3.25), is com-
pact. Moreover, provided Problem 3.12 has at most one solution, the
operator I +K3 : X̃ → X̃ is injective.

Proof: (i). We show compactness ofK3. For this let (ũn)n∈N be a bounded
sequence in X̃. By Lemma 3.39, there exists a subsequence (ũn1(l))l∈N of
(ũn)n∈N such that (Λ(2)

α γt,Γh+ ũn1(l))l∈N is convergent in H
−1/2
Q (Div,Γh+).

Moreover, thanks to the embedding from Proposition 3.37, there exists a
subsequence (ũn2(l))l∈N of (ũn1(l))l∈N which converges in L2(D,C3). And
last but not least, since the sequence (K3ũn2(l))l∈N is bounded in X̃, there
exists a subsequence (ũn3(l))l∈N of (ũn2(l))l∈N such that (K3ũn3(l))l∈N
converges in L2(D,C3), thanks again to Proposition 3.37. Hence, using
the coercivity of B3, Equation (3.25) and the definition of B4, we obtain

‖K3(ũn3(l) − ũn3(m))‖2
HQ(curl,D)

≤ C
∣∣B3
(
K3(ũn3(l) − ũn3(m)),K3(ũn3(l) − ũn3(m))

)∣∣
= C

∣∣B4
(
ũn3(l) − ũn3(m),K3(ũn3(l) − ũn3(m))

)∣∣
≤ C

(
‖ũn3(l) − ũn3(m)‖L2(D,C3) ‖K3(ũn3(l) − ũn3(m))‖L2(D,C3)
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+ ‖ũn3(l) − ũn3(m)‖L2(D,C3)
∥∥ curl

(
K3(ũn3(l) − ũn3(m))

)∥∥
L2(D,C3)

+
∥∥ curl

(
ũn3(l) − ũn3(m)

)∥∥
L2(D,C3) ‖K3(ũn3(l) − ũn3(m))‖L2(D,C3)

+ ‖Λ(2)
α γt,Γh+ (ũn3(l) − ũn3(m))‖H−1/2

Q
(Div,Γh+ )

‖K3(ũn3(l) − ũn3(m))‖HQ(curl,D)

)
−→ 0, as l,m→∞,

because both terms containing the curl-operator and the term measured in
the ‖ · ‖HQ(curl,D) norm are bounded and the remaining terms converge to
zero by the considerations from above. Hence, (K3ũn3(l))l∈N is a Cauchy
sequence in X̃ and therefore convergent in X̃, because X̃ is a Hilbert space,
see Proposition 3.33.
(ii). We show injectivity of I +K3. For this let ũ ∈ X̃ with (I +K3)ũ = 0.
This is equivalent to B3(ũ, ṽ) + B4(ũ, ṽ) = 0 for all ṽ ∈ X̃. Thanks to
the first equation in Remark 3.36, the composition V = X̃ ⊕∇αW and
B(ũ,∇αψ) = 0, this is equivalent to B(ũ, v) = 0 for all v = ṽ +∇αψ ∈ V .
That is, ũ is a solution of Problem 3.23 to ui = 0. Since this problem has
by assumption at most one solution, see also Theorem 3.25, it follows that
ũ = 0. �

Theorem 3.41 Provided Problem 3.12 has at most one solution, Prob-
lem 3.35 and Problem 3.27 possess exactly one solution.

Proof: As in the proof of Theorem 3.32, the assertion for Problem 3.35
follows from the equivalent problem represented by (3.26) and from Propo-
sition 3.40 together with Riesz’ third theorem.
And again, the assertion for Problem 3.27 is now a consequence of the
unique solvability of Problem 3.35 and Remark 3.36. �

3.3.4. Summa Summarum

Thanks to the preliminary considerations from above, we are now in a
relaxed position to prove the main theorem of this chapter.

Theorem 3.42 If Problem 3.12 has at most one solution, then it possesses
exactly one solution.
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Proof: This follows as outlined at the end of Subsection 3.3.1, together
with Theorem 3.25. �



4. Electromagnetic Scattering –
Boundary Integral Equations

The integral equation method is the other main approach for investigations
of existence and uniqueness of solutions to boundary value problems and
well-suited for exterior (such as scattering) problems. In its indirect
variant, we will use a fundamental solution (the Green’s function) and
look for the solution of the problem in form of vector potentials with an
unknown density. In order to determine this density, we exploit certain
jump relations of those potentials on the boundary and obtain a boundary
integral equation, whose solvability has to be studied next. Furthermore,
this equation can be used to derive high order numerical schemes.

In Section 4.1 we will recall the definition of the Q-(quasi-)periodic Green’s
function for the Helmholtz equation from [7] and collect its most important
properties.

Then we continue in Section 4.2 to define vector potentials and investigate
first properties. A key tool will be a special transmission problem as it
provides the important jump relations and thus the boundary integral
operators Lα and Mα. So far, we have followed very closely the ideas
in [34] with corresponding adaptions to the Q-periodic framework. Those
methods allow us also the write Lα as a compact perturbation of an
isomorphism. Unfortunately, such a result is not known for the operator
Mα in the case of Lipschitz surfaces and we have to impose more regularity
on the surface. Then we are able to fall back on results of [21], which allow
us by means of a special technique to show compactness of Mα.

Finally, in Section 4.3 we will derive the boundary integral equation and
obtain its unique solvability in a straightforward manner. Technically
more involved is the verification that the weak singularity of the kernels
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meets the requirements of the numerical scheme. These investigations will
close this chapter.

4.1. The Q-periodic Green’s Function

A key ingredient for the integral equation method is a suitable Green’s
function. In our framework a Q-(quasi-)periodic variant of Green’s function
for the Helmholtz equation is needed, as worked out in [7]. Based on this
reference, it is the objective of this section to recall the definition of the
Green’s function and to collect its most important properties being relevant
for the definition of vector potentials as well as for an application of the
numerical method from Chapter 5.

Recall Convention 3.4 for the notation involving the phase shift α.

Let Ω := Q × R and set Ωs := {(x, x) | x ∈ Ω}. We look for a function
Gk,α : (Ω×Ω) \Ωs → C, depending also on the wave number k, such that
for fixed y ∈ Ω the function Gk,α(·, y) has a Q-quasi-periodic extension to
R3 with phase shift α and that

Gk,α(x, y) = Φk(x, y) + Ψk,α(x− y), x, y ∈ (Ω× Ω) \ Ωs, (4.1)

where Φk denotes the fundamental solution to the Helmholtz equation in
free fields conditions,

Φk(x, y) := 1
4π

eik|x−y|

|x− y|
, x 6= y, (4.2)

and Ψk,α is an analytic solution to the Helmholtz equation in Ω. Moreover,
we require that Gk,α(·, y) must be propagating away from y ∈ Ω and that
this function is bounded on Ω except for neighborhoods of y.

In [7] there were tackled two approaches to solve this problem: the Green’s
function in form of a Fourier series expansion or in form of a superposition
of point sources placed on a periodic array.

Recall the definition of d(µ) and ρ(µ) from (3.10) and of p(µ) from (2.7).
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Proposition 4.1 The Q-quasi-periodic Green’s function Gk,α : (Ω× Ω) \
Ωs → C, with phase shift α, has a representation

(i) in form of a Fourier series expansion

Gk,α(x, y) = i
2|Q|

∑
µ∈Z2

1
ρ(µ) ei(d(µ)·(x̃−ỹ)+ρ(µ)|x3−y3|), x3 6= y3,

where for fixed y ∈ Ω and ε > 0 convergence of the series (and all
of its derivatives) is uniform with respect to x in {z ∈ R3 | z3 /∈
[y3 − ε, y3 + ε]}, and vice versa.

(ii) in form of a superposition of point sources

Gk,α(x, y) = 1
4π

∑
µ∈Z2

eiα·p(µ) eik|x−y−p(µ)|

|x− y − p(µ)|
, x− y 6= p(µ),

where for fixed y ∈ Ω convergence of the series (and all of its deriva-
tives) is uniform with respect to x in every compact set K ⊆ R3 such
that y + p(µ) /∈ K, and vice versa.

In particular, the Green’s function can be extended analytically to the line
x3 = y3 for x 6= y.

For a proof we refer to the derivation in [7, Section 3.1]; for the state-
ment regarding the convergence of the Fourier series expansion see also
Lemma 4.3.

Remark 4.2 The corresponding representations from Proposition 4.1 for
the Q-periodic counterpart of Gk,α read as

Gk(x, y) = i
2|Q|

∑
µ∈Z2

1
ρ(µ) ei(q(µ)·(x̃−ỹ)+ρ(µ)|x3−y3|), x3 6= y3, (4.3a)

Gk(x, y) = 1
4π e−iα̃·(x̃−ỹ)

∑
µ∈Z2

eiα·p(µ) eik|x−y−p(µ)|

|x− y − p(µ)|
, x− y 6= p(µ),

(4.3b)

see also Convention 3.4.
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Fix for the moment µ ∈ Z2 and y ∈ Ω, and set v(x) := eik|x−y−p(µ)|

|x−y−p(µ)| and
u(x) := e−iα̃·(x̃−ỹ)v(x), for x 6= y. Note that Δv = −k2v. Then, on the
one hand, because of (1.20b), we have

Δαu = divα∇αu = Δu+ 2iα · ∇u− |α|2u,

and on the other hand from the definition of u we obtain

∇u(x) =
(
− i
(
α1
α2
0

)
v(x) +∇v(x)

)
e−iα̃·(x̃−ỹ),

Δu(x) =
(
− |α|2v(x)− 2iα · ∇v(x) + Δv(x)

)
e−iα̃·(x̃−ỹ).

Both together yields Δαu(x) = −k2u(x). An important consequence of
Proposition 4.1 is that we can interchange differentiation and summation.
This and the observation we just have made imply from (4.3b) that

Δα,xGk(x, y) = −k2Gk(x, y) = Δα,yGk(x, y), x, y ∈ R3, x− y 6= p(µ).
(4.4)

Furthermore, from this observation and the representation (4.3b) we obtain
an explicit expression for the function Ψk,α in (4.1).

Lemma 4.3 Let y ∈ R3 and ε > 0. Furthermore, let β ∈ N3
0. Then the

series ( ∑
µ∈Z2

1
ρ(µ) ∂

βei(q(µ)·(̃·−ỹ)+ρ(µ)|·3−y3|)
)

converges uniformly in {z ∈ R3 | z3 /∈ [y3 − ε, y3 + ε]}. Here, the partial
derivative ∂β can be taken with respect to x or y.
The statement remains true if we interchange x and y.

Proof: In the following presentation let ∂β be taken with respect to x or y.
Furthermore, let x belong to the set from the lemma. Then |x3 − y3| > ε
and we obtain, thanks to Lemma 2.9 and Lemma 3.8,∣∣∣ 1
ρ(µ) ∂

βei(q(µ)·(̃·−ỹ)+ρ(µ)|·3−y3|)
∣∣∣ ≤ C

ρ(µ)

(√
1 + |µ|2

)|β|e−Im(ρ(µ))|x3−y3|

≤ C
(√

1 + |µ|2
)|β|−1

eC̃
√

1+|µ|2ε
= C

(C̃ε)|β|+3

(
C̃
√

1 + |µ|2ε
)|β|+3

eC̃
√

1+|µ|2ε

1
(1 + |µ|2)2
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≤ C 1
(1 + |µ|2)2 ,

because of the boundedness of the term (C̃
√

1+|µ|2ε)|β|+1

eC̃
√

1+|µ|2ε
. The assertion

follows now from
∑
µ∈Z2

1
(1+|µ|2)2 <∞, see also Lemma 2.37. �

Lemma 4.4 Recalling the notation from Subsection 3.1.2, let h > h+ and
x ∈ D∞h . Furthermore, let β ∈ N3

0. Then the Fourier series representation
for ∂βGk(x, ·)e(j) converges also in HQ(curl, D), j = 1, 2, 3. Here, e(j)

denotes the j-th unit coordinate vector in R3, j = 1, 2, 3, and the partial
derivative is taken either with respect to x or y.

Proof: This is an immediate consequence of the uniform convergence of
the Fourier series representation, see part (i) from Proposition 4.1. �

We close this section by citing the following theorem which will ensure the
applicability of the numerical method from Chapter 5.

Theorem 4.5 In our setting concerning the wave number k and the phase
shift α, see also Assumption 3.5, there holds

Gk,α(x, y) = cos(k|x− y|)
4π|x− y| + P (k2|x− y|2), x 6= y, |x− y| ≤ L

2 ,

with an analytic function P . For the number L recall (1.3).

For a proof we refer to [7, Theorem 3.8].

4.2. Vector Potentials and Boundary Integral
Operators

This section is devoted to solutions of Maxwell’s equations which are of
special form: vector potentials built up with an unknown density. Choosing
those potentials as an ansatz for the solution to Problem 3.12 and making
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use of their properties established in this section, will enable us in the next
section to pose an integral equation of Fredholm type of index zero for the
unkown density. Those integral equations will be solved numerically with
high order convergence in the next chapter.

4.2.1. Vector Potentials and First Properties

To define vector potentials and to derive their most important properties,
we follow the lines in [34, Section 5.2] and adapt the presentation therein
to the Q-periodic framework.

Let f : R2 → R be Q-periodic and Lipschitz-continuous and set

Γ :=
{
x ∈ R3 | x̃ ∈ Q and x3 = f(x̃)

}
, (4.5)

Γ̃ :=
{
x ∈ R3 | x̃ ∈ R2 and x3 = f(x̃)

}
.

Furthermore, let ϕ ∈ H−1/2
Q (Div,Γ). So far, the duality pairing 〈ϕ,ψ〉Γ

has made only sense for ψ ∈ H−1/2
Q (Curl,Γ). In the following presentation

it will be convenient to give it a meaning also for the case that ψ is a
scalar valued function, i.e., for ψ ∈ H1/2

Q (Γ).

Convention 4.6 Let Γ be given by (4.5). For ϕ ∈ H
−1/2
Q (Div,Γ) and

ψ ∈ H1/2
Q (Γ) we mean by 〈ϕ,ψ〉Γ the expression

〈ϕ,ψ〉Γ :=
3∑
j=1

〈
ϕ, γT,Γ

(
e(j)ψ̃

)〉
Γ
e(j),

where ψ̃ ∈ H1
Q(D) is any extension of ψ such that γ0,Γψ̃ = ψ and where

D ⊆ R3 is any cell set of Lipschitz layer type, with characteristic quantities
as in Assumption 2.91, such that either Γ0 = Γ or Γ1 = Γ. Again, e(j)

denotes the j-th unit coordinate vector in R3, j = 1, 2, 3. Note that by
Proposition 2.64 it doesn’t matter whether we choose D such that Γ0
coincides with Γ or whether we choose D such that Γ1 coincides with Γ.
Therefore, the right hand side of the expression above is well-defined.
If ψ belongs to H1

Q(D), then we set

〈ϕ,ψ〉Γ := 〈ϕ, γ0,Γψ〉Γ.
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Now, for a density ϕ ∈ H−1/2
Q (Div,Γ) we introduce the function

w(x) :=
〈
ϕ,Gk(x, ·)

〉
Γ, x ∈ R3 \ Γ̃, (4.6)

and call it single layer vector potential.

Proposition 4.7 For the single layer vector potential w, see (4.6), the
following assertions are true.

(i) w ∈ C∞Q
(
(Q × R) \ Γ,C3) with ∂βw(x) =

〈
ϕ, ∂βxGk(x, ·)

〉
Γ for all

x ∈ (Q× R) \ Γ and β ∈ N3
0.

(ii) Let a > maxξ∈R2 f(ξ), b < minξ∈R2 f(ξ) and set D+ := D∞a as well
as D− := Db

−∞, see also (3.5) for the notation here. Then

∂βw(x) = i
2|Q|

∑
µ∈Z2

1
ρ(µ)

〈
ϕ, e−i(q(µ) ·̃·±ρ(µ)·3)

〉
Γ
∂βei(q(µ)·x̃±ρ(µ)x3)

for all x ∈ D± and β ∈ N3
0. Furthermore, the series converges

uniformly in D±.

Proof: (i) Obviously, w is Q-periodic. Let j ∈ {1, 2, 3} and consider
ψ(x) :=

〈
ϕ, γT,Γ

(
e(j)Gk(x, ·)

)〉
Γ, for x ∈ (Q × R3) \ Γ. Due to Conven-

tion 4.6, it suffices to show that ψ ∈ C∞Q
(
(Q × R) \ Γ

)
with ∂βψ(x) =〈

ϕ, γT,Γ
(
e(j)∂βxGk(x, ·)

)〉
Γ, for all x ∈ (Q × R) \ Γ and β ∈ N3

0. For
this purpose, let x ∈ (Q × R) \ Γ. Then there exists ε > 0 such that
B3(x, ε) ⊆ (Q × R) \ Γ. Without loss of generality we assume that x is
above from Γ, and hence also B3(x, ε) is above from Γ. Let D ⊆ R3 be
any cell set of Lipschitz layer type, with characteristic quantities as in
Assumption 2.91, such that Γ1 = Γ.
Set Z := B3(x, ε)×D and consider for the moment the smooth function

g : Z → C, z := (z′, z′′)→ g(z) := Gk(z′, z′′),

where Z has to be understood as a subset of R6. Then thanks to Taylor’s
formula for functions of several real variables, see for instance [5], we
have

g(z + h) = g(z) + ∂g(z)h+
∫ 1

0
(1− t)∂2g(z + th)[h]2 dt,
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and hence∣∣g(z + h)− g(z)− ∂g(z)h
∣∣ ≤ ∫ 1

0
(1− t)

∥∥∂2g(z + th)
∥∥|h|2 dt,

for z ∈ Z and h ∈ R6 such that {z+ th | t ∈ [0, 1]} ⊆ Z, and where ∂g and
∂2g denote the first and the second derivative of g, which are in our case
continuous mappings from Z to L(R6,C) and L(R6,R6;C), respectively,
where the latter space denotes the set of all bilinear and bounded mappings
from R6 × R6 to C. Choosing now z ∈ Z such that z′ = x and z′′ ∈ D,
setting y := z′′ and letting h = h1ê

(1), where |h1| < ε and ê(1) denotes the
first unit coordinate vector in R6, we obtain from the last inequality∣∣Gk(x+ h1e

(1), y)−Gk(x, y)− h1∂1,xGk(x, y)
∣∣ ≤ C|h1|2,

where the constant C > 0 does not depend on y ∈ D. Analogously, the
considerations we just have made yield, by replacing in the definition for
g the expression Gk(z′, z′′) by ∂l,z′′Gk(z′, z′′), where l is some number in
{1, 2, 3},∣∣∂l,yGk(x+ h1e

(1), y)− ∂l,yGk(x, y)− h1∂1,x∂l,yGk(x, y)
∣∣ ≤ C ′|h1|2,

for |h1| < ε and where the constant C ′ > 0 does not depend on y ∈ D and
l ∈ {1, 2, 3}. Consequently,∫

D

∣∣[Gk(x+ h1e
(1), y)−Gk(x, y)− h1∂1,xGk(x, y)

]
e(j)∣∣2 dy ≤ C|h1|4,

for |h1| < ε. Analogously, by means of the observation∣∣∣ curly
([
Gk(x+ h1e

(1), y)−Gk(x, y)− h1∂1,xGk(x, y)
]
e(j))∣∣∣

=
∣∣∣∇y[Gk(x+ h1e

(1), y)−Gk(x, y)− h1∂1,xG− k(x, y)
]
× e(j)

∣∣∣
≤
∣∣∣∇y[Gk(x+ h1e

(1), y)−Gk(x, y)− h1∂1,xG− k(x, y)
]∣∣∣

≤
3∑
l=1

∣∣∣∂l,yGk(x+ h1e
(1), y)− ∂l,yGk(x, y)− h1∂1,x∂l,yGk(x, y)

∣∣∣
≤ C ′|h1|2,
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we obtain∫
D

∣∣ curly
([
Gk(x+ h1e

(1), y)−Gk(x, y)− h1∂1,xGk(x, y)
]
e(j))∣∣2 dy

≤ C ′|h1|4

for |h1| < ε. After these preliminary considerations we obtain finally∣∣∣ψ(x+ h1e
(1))− ψ(x)− h1

〈
ϕ, γT,Γ

(
e(j)∂1,xGk(x, ·)

)〉∣∣∣
≤ ‖ϕ‖

H
−1/2
Q

(Div,Γ) ‖γT,Γ‖∥∥e(j)[Gk(x+ h1e
(1), ·)−Gk(x, ·)− h1∂1,xGk(x, ·)

]∥∥
HQ(curl,D)

≤ C ′′|h1|2,

for |h1| < ε. Hence, we have shown that ∂1ψ(x) exists and coincides
with

〈
ϕ, γT,Γ

(
e(j)∂1,xGk(x, ·)

)〉
Γ, for x ∈ (Q × R) \ Γ. Similarly, one

shows that ∂1ψ : (Q× R) \ Γ→ C is continuous. Since j ∈ {1, 2, 3} was
arbitrarily chosen, we conclude that ψ ∈ C1

Q

(
(Q× R) \ Γ

)
. The property

ψ ∈ C∞Q
(
(Q× R) \ Γ

)
follows now by induction.

(ii). Fix some h ∈ R such that maxξ∈R2 f(ξ) < h < a and choose some
cell set D ⊆ R3 of Lipschitz layer type, with characteristic quantities
as in Assumption 2.91, such that Γ0 = Γ and Γ1 = Γh, see also (3.6).
Furthermore, let β ∈ N3

0 and x ∈ D∞a . Then, thanks to the first part of
this proposition and to Lemma 4.4,

∂βw(x) =
3∑
j=1

〈
ϕ, γT,Γ

(
e(j)∂βxGk(x, ·)

)〉
Γ e

(j)

= i
2|Q|

3∑
j=1

∑
µ∈Z2

1
ρ(µ)

〈
ϕ, γT,Γ

(
e(j)∂βx ei(q(µ)·(x̃−·̃)+ρ(µ)(x3−·3)

)〉
Γ
e(j)

= i
2|Q|

∑
µ∈Z2

1
ρ(µ)

〈
ϕ, e−i(q(µ) ·̃·+ρ(µ)·3)

〉
Γ
∂βei(q(µ)·x̃+ρ(µ)x3),

see also Convention 4.6. To verify uniform convergence, we observe that∫
D

∣∣∣e−i(q(µ)·ỹ+ρ(µ)y3)e(j)
∣∣∣2 dy =

∫
D

e2Im(ρ(µ))y3 dy
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=
∫
Q

∫ h

f(ξ)
e2Im(ρ(µ))y3 dy3 dξ

= 1
2Im(ρ(µ))

∫
Q

(
e2Im(ρ(µ))h− e2Im(ρ(µ))f(ξ)︸ ︷︷ ︸

≤0

)
dξ

≤ |Q|
2Im(ρ(µ))

e2Im(ρ(µ)h

and, similarly,∫
D

∣∣∣ curl e−i(q(µ)·ỹ+ρ(µ)y3)e(j)
∣∣∣2 dy

=
∫
D

∣∣∣− i
(
q

(µ)
1

q
(µ)
2
ρ(µ)

)
× e(j)e−i(q(µ)·ỹ+ρ(µ)y3)

∣∣∣2 dy

≤
(
|q(µ)|2 + |ρ(µ)|2

) ∫
D

e2Im(ρ(µ))y3 dy

≤ |Q|
2Im(ρ(µ))

(
|q(µ)|2 + |ρ(µ)|2

)
e2Im(ρ(µ)h,

and therefore∥∥∥e−i(q(µ) ·̃·+ρ(µ)·3 e(j)
∥∥∥2

HQ(curl,D)
≤ |Q| 1 + |q(µ)|2 + |ρ(µ)|2

2Im(ρ(µ))
e2Im(ρ(µ))h.

Hence, by Lemma 2.9 and Lemma 3.8,∣∣∣ 1
ρ(µ)

〈
ϕ, γT,Γ

(
e−i(q(µ) ·̃·+ρ(µ)·3)e(j))〉

Γ

∣∣∣
≤ 1
|ρ(µ)|

‖ϕ‖
H
−1/2
Q

(Div,Γ) ‖γT,Γ‖
∥∥∥e−i(q(µ) ·̃·+ρ(µ)·3)e(j)

∥∥∥
HQ(curl,D)

≤ C ‖ϕ‖
H
−1/2
Q

(Div,Γ)
1√

1 + |µ|2

√
1 + |µ|2√
1 + |µ|2

eIm(ρ(µ))h

= C ‖ϕ‖
H
−1/2
Q

(Div,Γ)
1(

1 + |µ|2
)1/4 eIm(ρ(µ))h.

Moreover, we have∣∣∣∂βei(q(µ)·x̃+ρ(µ)x3)
∣∣∣ =

∣∣∣i|β|(q(µ)
1
)β1(

q
(µ)
2
)β2(

ρ(µ))β3ei(q(µ)·x̃+ρ(µ)x3)
∣∣∣
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≤ C
(√

1 + |µ|2
)|β|e−Im(ρ(µ))x3 .

Using all these observations, we obtain∣∣∣ 1
ρ(µ)

〈
ϕ, γT,Γ

(
e−i(q(µ) ·̃·+ρ(µ)·3)e(j))〉

Γ
∂βei(q(µ)·x̃+ρ(µ)x3) e(j)

∣∣∣
≤ C ‖ϕ‖

H
−1/2
Q

(Div,Γ)
1(

1 + |µ|2
)1/4

(
1 + |µ|2

)|β|/2 e−Im(ρ(µ))(x3−h)

≤ C ‖ϕ‖
H
−1/2
Q

(Div,Γ)

(
1 + |µ|2

) 2|β|−1
4 e−C̃

√
1+|µ|2(a−h)

= C
‖ϕ‖

H
−1/2
Q

(Div,Γ)(
C̃(a− h)

) 2|β|+7
2

(
C̃
√

1 + |µ|2(a− h)
) 2|β|+7

2

eC̃
√

1+|µ|2(a−h)︸ ︷︷ ︸
bounded

1
(1 + |µ|2)2

≤ C ‖ϕ‖
H
−1/2
Q

(Div,Γ)
1

(1 + |µ|2)2 .

Since x ∈ D∞a was arbitrarily chosen and since
∑
µ∈Z2

1
(1+|µ|2)2 <∞, we

conclude from the last estimate that the series representation for ∂βw
converges uniformly in D∞a .
And finally, the assertion for Db

−∞ is shown analogoulsy. �

Taking again some density ϕ ∈ H−1/2
Q (Div,Γ), we define now, by means

of the single layer vector potential w, the functions

u(x) := curlα curlα
〈
ϕ,Gk(x, ·)

〉
Γ = curl2α w(x), x ∈ R3 \ Γ̃, (4.7a)

v(x) := curlα
〈
ϕ,Gk(x, ·)

〉
Γ = curlα w(x), x ∈ R3 \ Γ̃, (4.7b)

and call them electric and magnetic vector potential, respectively.

Proposition 4.8 The electric and magnetic vector potential u and v,
see (4.7), belong to C∞Q

(
(Q× R) \ Γ,C3) and satisfy the equation

curlα curlα w − k2w = 0 in (Q× R) \ Γ

as well as the (URC) in D∞a for any a > maxξ∈R2 f(ξ) and the (DRC) on
Da
−∞ for any a < minξ∈R2 f(ξ).
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Proof: The first assertion is an immediate consequence of Proposition 4.7.
For the second assertion, we observe that v(x) = curlα w(x), for x ∈ R3 \Γ,
where w denotes here the single layer vector potential from (4.6). Using
now (A.4c), (A.4a) and (4.4), we obtain for x ∈ (Q× R) \ Γ, that

curl2α v(x) = curlα curl2α w(x) = curlα∇α︸ ︷︷ ︸
=0

divα w(x)− curlα Δαw(x)

= − curlα(−k2w(x)) = k2v(x).

The equation for u is shown analogously.
For the last assertions regarding the radiation condition, take at first some
a > maxξ∈R2 f(ξ). Note that

curlα(ψχ) = ∇ψ × χ+ ψ curlχ+ iα× (ψχ) = (∇αψ)× χ+ ψ curlχ

for smooth enough χ : D∞a → C3 and ψ : D∞a → C. Then, by Proposi-
tion 4.7, we obtain for x ∈ D∞a

v(x) = curlα
〈
ϕ,Gk(x, ·)

〉
Γ

=
∑
µ∈Z2

i2

2|Q|
1
ρ(µ)

(
d

(µ)
1

d
(µ)
2
ρ(µ)

)
×
〈
ϕ, e−i(q(µ) ·̃·+ρ(µ)·3)〉

Γ ei(q(µ)·x̃+ρ(µ)x3)

=
∑
µ∈Z2

v(µ) ei(q(µ)·x̃+ρ(µ)(x3−a)),

where d(µ) was defined in (3.10),

v(µ) := − eiρ(µ)a

2|Q|ρ(µ)

(
d

(µ)
1

d
(µ)
2
ρ(µ)

)
×
〈
ϕ, e−i(q(µ) ·̃·+ρ(µ)·3)〉

Γ, µ ∈ Z2,

and where convergence is uniform in D∞a , and therefore in particular
in D∞b for all b > a. Applying the operator curlα now to this rep-
resentation of v on D∞a , we obtain, again thanks to Proposition 4.7,
u =

∑
µ∈Z2 u(µ) ei(q(µ) ·̃·+ρ(µ)(·3−a)), where

u(µ) := − i eiρ(µ)a

2|Q|ρ(µ)

[(
d

(µ)
1

d
(µ)
2
ρ(µ)

)
×

((
d

(µ)
1

d
(µ)
2
ρ(µ)

)
×
〈
ϕ, e−i(q(µ) ·̃·+ρ(µ)·3)〉

Γ

)]
,
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for µ ∈ Z2, and where convergence is uniform as above.
And finally, the assertion regarding the (DRC) is shown in a very similar
way, again thanks to Proposition 4.7. �

4.2.2. A Special Transmission Problem

Further properties of the vector potentials, like boundedness and the
important jump relations, we will derive as in [34] by means of a special
transmission problem. As we will see in a moment, its unique solution
is connected to the vector potentials by the following version of the well-
known Stratton-Chu formula. To prove this version, we need the result
given by the next lemma.

Lemma 4.9 Let D ⊆ R3 be a cell set of Lipschitz layer type with char-
acteristic quantities as in Assumption 2.91. For u ∈ HQ(curl, D) and
ψ ∈ H1

Q(D) we have

1∑
j=0
〈γt,Γju, γ0,Γjψ〉Γj =

∫
D

(
ψ curlu+∇ψ × u

)
dx.

Proof: Due to Convention 4.6, we obtain, by means of Green’s for-
mula (2.18b),

1∑
j=0
〈γt,Γju, γ0,Γjψ〉Γj =

1∑
j=0

3∑
n=1

〈
γt,Γju, γT,Γj

(
e(n)ψ

)〉
Γj
e(n)

=
3∑

n=1

(∫
D

(
curlu · e(n)ψ − u · curl(e(n)ψ)︸ ︷︷ ︸

=∇ψ×e(n)

)
dx
)
e(n)

=
3∑

n=1

(∫
D

(
ψ curlu+∇ψ × u

)
· e(n) dx

)
e(n)

=
∫
D

(
ψ curlu+∇ψ × u

)
dx,

which is the desired result. �



226 4. Electromagnetic Scattering – Boundary Integral Equations

Theorem 4.10 (Stratton-Chu Formula) Let D ⊆ R3 be a cell set of
Lipschitz layer type with characteristic quantities as in Assumption 2.91.
Furthermore, let Gk denote the Q-periodic Green’s function. For any
weak solution u ∈ HQ(curl, D) of curlα curlα u − k2u = 0, i.e., for u ∈
HQ(curl, D) satisfying

∀v ∈ HQ,0(curl, D) :
∫
D

(
curlα u · curlα v − k2u · v

)
dx = 0,

we have the representation

−
1∑
j=0

curlα
〈
γt,Γju,Gk(x, ·)

〉
Γj
− 1
k2

1∑
j=0

curl2α
〈
γt,Γj curlα u,Gk(x, ·)

〉
Γj

=
{
u(x), x ∈ D,
0, x /∈ D.

Proof: We follow the lines in the proof of [34, Theorem 5.49] and note at
first that u is a smooth solution of curlα curlα u − k2u = 0, see also the
first paragraph in the proof of [42, Theorem 9.2]. Second, we choose x ∈ D
and r > 0 such that for B := B3(x, r) there holds B ⊆ D. Next, we divide
D into two cell sets of Lipschitz layer type D+ and D−. The cell set D+ is
bounded by the surfaces Γ+ and Γ1, while the borders for D− are Γ0 and
Γ−. Γ− and Γ+ share the same surface, except for ∂B. Here, Γ+ consists of
the upper part of ∂B and Γ− of the lower part, respectively. This situation
is visualized by the picture below, which can similarly be drawn also for
cell sets of Lipschitz layer type with maxξ∈R2 f0(ξ) > minξ∈R2 f1(ξ).

Γ1

Γ0

x

Γ−
Γ+

B

D+

D−

Due to Lemma 4.9 we obtain now〈
γt,Γ0u,Gk(x, ·)

〉
Γ0

+
∫

Γ−
(n−× u)Gk(x, ·) ds
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=
∫
D−

(
Gk(x, ·) curlu+∇yGk(x, ·)× u

)
dy,〈

γt,Γ1u,Gk(x, ·)
〉

Γ1
+
∫

Γ+
(n+× u)Gk(x, ·) ds

=
∫
D+

(
Gk(x, ·) curlu+∇yGk(x, ·)× u

)
dy,

where n− and n+ denote the normal unit vectors on Γ− and Γ+, pointing
outward of D− and D+, respectively. Adding up both equations yields

1∑
j=0

〈
γt,Γju,Gk(x, ·)

〉
Γj
−
∫
∂B

(n× u)Gk(x, ·) ds

=
∫
D\B

(
Gk(x, ·) curlu+∇yGk(x, ·)× u

)
dy, (∗1)

where n denotes the normal unit vector on ∂B pointing outward of B.
Analogously we obtain

1∑
j=0

〈
γt,Γj curlα u,Gk(x, ·)

〉
Γj
−
∫
∂B

(n× curlα u)Gk(x, ·) ds

=
∫
D\B

(
Gk(x, ·) curl curlα u+∇yGk(x, ·)× curlα u

)
dy. (∗2)

For the next calculations we need the observation that for v ∈ HQ(curl, D)
and ψ ∈ H1

Q(D) there holds

ψ curl v +∇ψ × v = ψ curlα v +∇−αψ × v,

what can easily be verified. Moreover, we note that
(
∇−α,yGk(x, ·)

)
×u =

− curlα,x
(
Gk(x, ·)u

)
. Now, we take a closer look at the right hand side of

the equations (∗1) and (∗2) and calculate

curlα
∫
D\B

(
Gk(x, ·) curlu+∇yGk(x, ·)× u

)
dy

= curlα
∫
D\B

(
Gk(x, ·) curlα u+∇−α,yGk(x, ·)× u

)
dy

=
∫
D\B

(
curlα,x

(
Gk(x, ·) curlα u

)
− curl2α,x

(
Gk(x, ·)u

))
dy
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as well as, by means of curlα curlα = ∇α divα−Δα and curlα∇α = 0,
see (A.4), and Δα,xGk(x, ·) = −k2Gk(x, ·), see (4.4),

1
k2 curl2α

∫
D\B

(
Gk(x, ·) curl curlα u+∇yGk(x, ·)× curlα u

)
dy

= 1
k2 curl2α

∫
D\B

(
Gk(x, ·) curlα curlα u+∇−α,yGk(x, ·)× curlα u

)
dy

= 1
k2 curl2α

∫
D\B

(
k2Gk(x, ·)u− curlα,x

(
Gk(x, ·) curlα u

))
dy

=
∫
D\B

(
curl2α,x

(
Gk(x, ·)u

)
− curlα,x

(
Gk(x, ·) curlα u

))
dy.

Hence, adding up both equations yields zero. Using this result, we obtain
from (∗1) and (∗2) that

curlα
1∑
j=0

〈
γt,Γju,Gk(x, ·)

〉
Γj

+ 1
k2 curl2α

1∑
j=0

〈
γt,Γj curlα u,Gk(x, ·)

〉
Γj

= curlα
∫
∂B

(n× u)Gk(x, ·) ds+ 1
k2 curl2α

∫
∂B

(n× curlα u)Gk(x, ·) ds

= −u(x)

by the classical Stratton-Chu formula, see for instance [34, Theorem 3.27],
whose proof justifies also its application for the slightly modified equation
here.
Finally, the case x /∈ D is handled in the same way by applying Lemma 4.9
in all of D. �

Now we specify the transmission problem which was mentioned above.
First of all, we fix some L3 > 0 such that f(ξ) ∈ (−L3, L3) for all
ξ ∈ Q, and set Q3 := Q × (−L3, L3). Here, f denotes the function
describing Γ, see also (4.5). Furthermore, we fix the direction of the
unit normal vector on a Lipschitz surface of the form (4.5) to point
upwards and introduce the cell sets of Lipschitz layer type Q−3 and Q+

3 with
corresponding boundaries Γ− and Γ as well as Γ and Γ+, respectively, such
that Q−3 ∪Γ∪Q+

3 = Q3, see the picture below. Recalling Proposition 2.119,
we have for u ∈ HQ(curl, Q3) that γt,Γu|Q−3 = −γt,Γu|Q+

3
. To simplify
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Γ−

Γ+

Γ
n

Q−3

Q+
3

Figure 4.1.: The geometrical setting for the special transmission problem.

notation, in the following presentation we will sometimes use the symbols
for the classical traces n× u|± instead of γt,Γu|Q±3 , i.e., we define

n× u|− := γt,Γu|Q−3 and n× u|+ := −γt,Γu|Q+
3

on Γ

and analogously

n× u|Γ− := −γt,Γ−u on Γ− and n× u|Γ+ := γt,Γ+u on Γ+,

where the minus sign appears by definition of the trace operator γt,Γj ,
which is applied to functions from HQ(curl, D) with surfaces Γj , j = 0, 1,
and normal unit vectors pointing outside of the cell set D ⊆ R3 of Lipschitz
layer type, recall also Theorem 2.107. For the next results, see also [34,
Theorem 5.51].

To write in the following presentation the formulas more compact, the
symbol

∑
± a
±, where a− and a+ are some (summable) mathematical

objects, has to be understood as
∑
± a
± := a− + a−.

Problem 4.11 Let η ∈ C with Im(ηk) > 0 and K± : H−1/2
Q (Div,Γ±)→

H
−1/2
Q (Curl,Γ±) be a linear and compact operator such that 〈ψ,K±ψ〉Γ±

are real valued and 〈ψ,K±ψ〉Γ± > 0 for all ψ ∈ H−1/2
Q (Div,Γ) \ {0}. For

given ϕ ∈ H−1/2
Q (Div,Γ), find u ∈ HQ(curl, Q3) such that

∀v ∈ HQ,0(curl, Q±3 ) :
∫
Q±3

(
curlα u · curlα v − k2u · v

)
dx = 0,
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n× u|− = n× u|+, n× curlα u|+ − n× curlα u|− = ϕ on Γ
n× curlα u+ η n×K−(n× u) = 0 on Γ−,
n× curlα u− η n×K+(n× u) = 0 on Γ+.

In variational form this reads as: for given ϕ ∈ H
−1/2
Q (Div,Γ), find

u ∈ HQ(curl, Q3) such that∫
Q3

(
curlαu · curlα v − k2u · v

)
dx

− η
∑
±

〈
γt,Γ±v,K

±(γt,Γ±u)
〉

Γ± = 〈ϕ, γT,Γv〉Γ (4.8)

for all v ∈ HQ(curl, Q3).

To verify (4.8), we observe, similarly to Proposition 3.13, that the first
equation in Problem 4.11 implies that curlα u belongs to HQ(curl, Q±3 )
with curlα curlα u = k2u holding in L2(Q±3 ,C3). Therefore, an application
of Green’s formula (2.18b) yields for v ∈ HQ(curl, Q−3 )∫

Q−3

(
curlα u · curlα v − k2u · v

)
dx

=
∫
Q−3

(
curl curlα u · v − curlα u · (iα× v)− k2u · v

)
dx

− 〈γt,Γ− curlα u, γT,Γ−v〉Γ− − 〈γt,Γ curlα u, γT,Γv〉Γ

=
∫
Q−3

(
curlα curlα u− k2u︸ ︷︷ ︸

=0

)
· v dx

− 〈γt,Γ− curlα u, γT,Γ−v〉Γ− − 〈γt,Γ curlα u, γT,Γv〉Γ

and similarly for v ∈ HQ(curl, Q+
3 )∫

Q+
3

(
curlα u · curlα v − k2u · v

)
dx

= −〈γt,Γ curlα u, γT,Γv〉Γ − 〈γt,Γ+ curlα u, γT,Γ+v〉Γ+ .

Adding the last two equations and incorporating the boundary conditions
yields finally for v ∈ HQ(curl, Q3)∫

Q3

(
curlα u · curlα v − k2u · v

)
dx
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= 〈−γt,Γ curlα u|Q−3 − γt,Γ curlα u|Q+
3
, γT,Γv〉Γ

− 〈γt,Γ− curlα u, γT,Γ−v〉Γ− − 〈γt,Γ+ curlα u, γT,Γ+v〉Γ+

= 〈−n× curlα u|− + n× curlα u|+, γT,Γv〉Γ
+ 〈n× curlα u, γT,Γ−v〉Γ− − 〈n× curlα u, γT,Γ+v〉Γ+

= 〈ϕ, γT,Γv〉Γ − η
∑
±
〈n×K±(n× u), γT,Γ±v〉Γ±

= 〈ϕ, γT,Γv〉Γ − η
∑
±
〈γt,Γ±(K±(γt,Γ±u)), γT,Γ±v〉Γ±

= 〈ϕ, γT,Γv〉Γ + η
∑
±
〈γt,Γ±v,K±(γt,Γ±u)〉Γ± ,

as asserted.

Our next goal is to show that Problem 4.11 is uniquely solvable. For this
purpose the modified Helmholtz decompositions

HQ(curl, Q3) = HQ(curl,divα 0, Q3)⊕ 1
k
∇αH1

Q,0(Q3) (4.9a)

= HQ(curl,divα 0, Q3)⊕ 1
k
∇αH1

Q,0(Q3), (4.9b)

see also Theorem 2.85 and Definition 2.69, will be applied. The following
two lemmas have preliminary character.

Lemma 4.12 The variational formulation of Problem 4.11 is equivalent
to: for given ϕ ∈ H

−1/2
Q (Div,Γ) find (u0, p) ∈ HQ(curl,divα 0, Q3) ×

H1
Q,0(Q3) such that∫

Q3

(
curlα u0 · curlα v0 − k2u0 · v0 +∇αp · ∇αq

)
dx

− η
∑
±

〈
γt,Γ±(v0 − 1

k
∇αq),K±

(
γt,Γ±(u0 + 1

kp)
)〉

Γ±

=
〈
ϕ, γt,Γ(v0 − 1

k
∇αq)

〉
Γ

(4.10)

for all (v0, q) ∈ HQ(curl,divα 0, Q3)×H1
Q,0(Q3).

Proof: Let u ∈ HQ(curl, Q3) be a solution to Problem 4.11. We write u =
u0 + 1

k∇αp according to (4.9a). Note that (u0, p) ∈ HQ(curl,divα 0, Q3)×
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H1
Q,0(Q3) =: X. Let (v0, q) ∈ X and set v := v0 − 1

k
∇αq. Substituting u

and v into (4.8), exploiting (A.4a) and Definition 2.69 yields then (4.10).
Conversely, let (u0, p) ∈ X be a solution to (4.10). Set u := u0 + 1

k∇αp.
Furthermore, let v ∈ HQ(curl, Q3) and write v = v0 − 1

k
∇αq according

to (4.9b). Then (v0, q) ∈ X and substituting (u0, p) and (v0, q) into (4.10)
yields then (4.8). �

Lemma 4.13 Recalling (3.6) and Convention 2.125, let a ∈ R and con-
sider K : H−1/2

Q (Div,Γa)→ H
−1/2
Q (Curl,Γa), given by

ϕ =
∑
µ∈Z2

ϕ(µ)
(
T

(µ)
Q

)
→ Kϕ :=

∑
µ∈Z2

1
1 + |µ|2 ϕ

(µ)
(
T

(µ)
Q

)
.

Then K is well-defined, linear and compact. Moreover

〈ϕ,Kϕ〉Γa ∈ R, ϕ ∈ H−1/2
Q (Div,Γa),

〈ϕ,Kϕ〉Γa > 0, ϕ ∈ H−1/2
Q (Div,Γa) \ {0}.

Proof: For n ∈ N we consider the operators Kn : H−1/2
Q (Div,Γa) →

H
−1/2
Q (Curl,Γa), given by Knϕ :=

∑
|µ|≤n

1
1+|µ|2ϕ

(µ)
(
T

(µ)
Q

)
, and note

that they are linear and compact. Recalling Remark 2.11, we have for
µ 6= 0 that |ϕ(µ)|2 = |q̂(µ) · ϕ(µ)|2 + |q̂(µ) × ϕ(µ)|2, where q̂(µ) := 1

|q(µ)|q
(µ).

Hence,

|q(µ)×ϕ(µ)|2 = |q(µ)|2|q̂(µ)×ϕ(µ)|2 = |q(µ)|2|ϕ(µ)|2−|q(µ) ·ϕ(µ)|2, µ 6= 0.

Using this observation and Lemma 2.9, we obtain for ϕ ∈ H−1/2
Q (Div,Γa)

and n ∈ N∥∥(Kn −K)ϕ
∥∥2
H
−1/2
Q

(Curl,Γa)

=
∑
|µ|>n

(1 + |µ|2)−1/2
(
|ϕ(µ)|2

(1 + |µ|2)2 + |q
(µ) × ϕ(µ)|2

(1 + |µ|2)2

)

=
∑
|µ|>n

(1 + |µ|2)−1/2
(

1 + |q(µ)|2

(1 + |µ|2)2 |ϕ
(µ)|2 − |q

(µ) · ϕ(µ)|2

(1 + |µ|2)2

)
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≤ C
∑
|µ|>n

(1 + |µ|2)−1/2 1 + |µ|2

(1 + |µ|2)2 |ϕ
(µ)|2

≤ C 1
n2

∑
|µ|>n

(1 + |µ|2)−1/2 |ϕ(µ)|2

≤ C 1
n2

∑
|µ|>n

(1 + |µ|2)−1/2
(
|ϕ(µ)|2 + |q(µ) · ϕ(µ)|2

)
≤ C 1

n2 ‖ϕ‖H−1/2
Q

(Div,Γa).

From this we conclude that the operator K is well-defined and compact.
Finally, let ϕ ∈ H−1/2

Q (Div,Γa). Then, by means of Remark 2.36,

〈ϕ,Kϕ〉Γa =
∑

µ,ν∈Z2

〈
ϕ(−µ)

(
T

(µ)
Q

)
,

1
1 + |ν|2 ϕ

(ν)
(
T

(ν)
Q

)〉
Γa

=
∑

µ,ν∈Z2

1
1 + |ν|2ϕ

(−µ) · ϕ(ν)(T (µ)
Q | T (−ν)

Q

)
L2(Q)

=
∑
ν∈Z2

1
1 + |ν|2 |ϕ

(ν)|2 ≥ 0,

and the proof is complete. �

Theorem 4.14 Problem 4.11 is uniquely solvable. The solution operator

H
−1/2
Q (Div,Γ) 3 ϕ 7→ u ∈ HQ(curl, Q3)

is bounded; here, u ∈ HQ(curl, Q3) denotes the unique solution to Prob-
lem 4.11. Furthermore, the operator

H
−1/2
Q (Div,Γ) 3 ϕ 7→ γt,Γu|Q−3 ∈ H

−1/2
Q (Div,Γ)

is an isomorphism.

Proof: First of all we note that thanks to Lemma 4.13 the operators
K± from Problem 4.11 indeed exists. Moreover, due to Lemma 4.12,
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Problem 4.11 is equivalent to (4.10). Now, we divide the proof into several
steps.
(i). We define the space X := HQ(curl,divα 0, Q3)×H1

Q,0(Q3) and equip
it with the inner product

((u0, p) | (v0, q))X := (u0 | v0)L2(Q3,C3) + (curlα u0 | curlα v0)L2(Q3,C3)

+ (p | q)L2(Q3) + (∇αp | ∇αq)L2(Q3,C3) ,

for (u0, p), (v0, q) ∈ X. Then, (4.10) can be rewritten to: for given
ϕ ∈ H−1/2

Q (Div,Γ) find (u0, p) ∈ X such that

((u0, p) | (v0, q))X − (1 + k2) (u0 | v0)L2(Q3,C3) − (p | q)L2(Q3)

− η
∑
±

〈
γt,Γ±(v0 − 1

k
∇αq),K±

(
γt,Γ±(u0 + 1

kp)
)〉

Γ±

=
〈
ϕ, γT,Γ(v0 − 1

k
∇αq)

〉
Γ

(4.11)

for all (v0, q) ∈ X. Thus, by the well-known representation theorem of
Riesz, there exist (w0, r) ∈ X and A ∈ L(X) such that for (u0, p), (v0, q) ∈
X we have

(A(u0, p) | (v0, q))X = −(1 + k2) (u0 | v0)L2(Q3,C3) − (p | q)L2(Q3)

− η
∑
±

〈
γt,Γ±(v0 − 1

k
∇αq),K±

(
γt,Γ±(u0 + 1

k∇αp)
)〉

Γ±

((w0, r) | (v0, q))X =
〈
ϕ, γT,Γ(v0 − 1

k
∇αq)

〉
Γ
,

which yields that (4.11) can be equivalently rewritten to: find (u0, p) ∈ X
such that

(u0, p) +A (u0, p) = (w0, r).

(ii). We show that the operator A is compact. For this let (u0, p), (v0, q) ∈
X. Then, by using a1b1 + a2b2 ≤ (a2

1 + a2
2)1/2(b2

1 + b2
2)1/2 for aj , bj ≥ 0,

j = 1, 2, we obtain∣∣ (A(u0, p) | (v0, q))X
∣∣

≤ C1‖(u0, p)‖L2(Q3,C3)×L2(Q3) ‖(v0, q)‖L2(Q3,C3)×L2(Q3)

+ C2
∑
±

∥∥γt,Γ±(v0 − 1
k
∇αq)

∥∥
H
−1/2
Q

(Div,Γ±)
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·
∥∥K±(γt,Γ±(u0 + 1

k∇αp)
)∥∥
H
−1/2
Q

(Curl,Γ±)

≤ C
(
‖(u0, p)‖L2(Q3,C3)×L2(Q3)

+
∑
±

∥∥K±(γt,Γ±(u0 + 1
k∇αp)

)∥∥
H
−1/2
Q

(Curl,Γ±)

)
‖(v0, q)‖X .

Here, we have chosen the `2-norm in L2(Q3,C3)× L2(Q3). From the last
estimate, with the special choice (v0, q) := A(u0, p) we obtain

‖A(u0, p)‖X ≤ C
(
‖(u0, p)‖L2(Q3,C3)×L2(Q3)

+
∑
±

∥∥K±(γt,Γ±(u0 + 1
k∇αp)

)∥∥
H
−1/2
Q

(Curl,Γ±)

)
.

Now, let ((u(n)
0 , p(n)))n∈N be a bounded sequence in X. Then (u(n)

0 )n∈N,
(p(n))n∈N and (u(n)

0 + 1
k∇αp

(n))n∈N are bounded in HQ(curl,divα 0, Q3),
H1
Q(Q3) and HQ(curl, Q3), respectively. With these observations, together

with Theorem 2.122, we conclude now from the last estimate, that there
exists a subsequence ((u(nl)

0 , p(nl)))l∈N such that (A(u(nl)
0 , p(nl)))l∈N con-

verges in X.
(iii). We show that the operator I + A is injective. For this let u ∈
HQ(curl, Q3) be a solution of (4.8) to given data ϕ = 0. Then we obtain
from (4.8), with v := ku,

k‖curlαu‖2
L2(Q3,C3) − k|k|

2‖u‖2
L2(Q3,C3)

− ηk
∑
±

〈
γt,Γ±u,K

±(γt,Γ±u)
〉

Γ±︸ ︷︷ ︸
>0 for u 6=0

= 0.

Taking from this equation the imaginary part yields then ‖u‖L2(Q3,C3) = 0,
and thus u = 0.
As a consequence from step (ii) and (iii), we obtain now from Riesz’ third
theorem, see for instance [36, Theorem 3.3], that Problem 4.11 is uniquely
solvable.
(iv). We show that ϕ 7→ γt,Γu|Q−3 is an isomporphism. But this follows
from the unique solvability of the following two problems: for given
ψ ∈ H−1/2

Q (Div,Γ) find u− ∈ HQ(curl, Q−3 ) such that

∀v ∈ HQ,0(curl, Q−3 ) :
∫
Q−3

(
curlα u− · curlα v − k2u− · v

)
dx = 0,
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n× u− = ψ on Γ,
n× curlα u− + η n×K−(n× u−) = 0 on Γ−

and u+ ∈ HQ(curl, Q+
3 ) such that

∀v ∈ HQ,0(curl, Q+
3 ) :

∫
Q+

3

(
curlα u+ · curlα v − k2u+ · v

)
dx = 0,

n× u+ = ψ on Γ,
n× curlα u+ − η n×K+(n× u+) = 0 on Γ+,

see step (v). In fact, let u− and u+ be the solutions to ψ ∈ H−1/2
Q (Div,Γ).

Then u :=
{
u+ in Q+

3 ,

u− in Q−3
belongs to HQ(curl, Q3), see Proposition 2.118,

and solves (4.8) for given data ϕ := −γt,Γ curlα u+ − γt,Γ curlα u−. Hence,
ϕ 7→ u 7→ γt,Γu

− = n× u− = ψ, which shows surjectivity.
To check injectivity, let ϕ ∈ H−1/2

Q (Div,Γ) with 0 = γt,Γu|Q−3 = −γt,Γu|Q+
3

,
where u ∈ HQ(curl, Q3) is the unique solution to Problem 4.11. Then
u− := u|Q−3 and u+ := u|Q+

3
solve the corresponding problems from above

to ψ = 0. From their unique solvability we conclude that u− = u+ = 0,
and thus u = 0. Therefore, 0 = −γt,Γ curlα u|Q+

3
− γt,Γ curlα u|Q−3 = ϕ.

It remains to show that ϕ 7→ γt,Γu|Q−3 is continuous (because of the
open mapping theorem). For this let ϕ ∈ H−1/2

Q (Div,Γ). We know that
(I+A)−1 ∈ L(X), see for instance [36, Theorem 3.4]. Hence, in the setting
from step (i), the solution to Problem 4.11 is given by u := u0 + 1

k∇αp,
where (u0, p) := (I + A)−1(w0, r). Furthermore, we know from Riesz’
representation theorem that

‖(w0, r)‖X = sup
(v0,q)∈X\{0}

∣∣〈ϕ, γT,Γ(v0 − 1
k
∇αq)

〉
Γ

∣∣
‖(v0, q)‖X

.

Using this relation, we obtain

‖(w0, r)‖X ≤ ‖ϕ‖H−1/2
Q

(Div,Γ)‖γT,Γ‖ sup
(v0,q)∈X\{0}

‖v0 − 1
k
∇αq‖HQ(curl,Q3)

‖(v0, q)‖X
≤ C ‖ϕ‖

H
−1/2
Q

(Div,Γ).
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From these observations, we finally conclude that

‖u‖HQ(curl,Q3) = ‖u0 + 1
k∇αp‖HQ(curl,Q3) ≤ C ‖(u0, p)‖X

≤ C ‖(I +A)−1‖‖(w0, r)‖X
≤ C ‖ϕ‖

H
−1/2
Q

(Div,Γ).

Hence, on the one hand we have shown that the solution operator is
bounded. On the other hand, by applying further the bounded operator
γt,Γ to u|Q−3 , we have also shown that the mapping ϕ 7→ γt,Γu|Q−3 is
bounded.
(v). We show that both problems from step (iv) are uniquely solvable.
For this we consider only the first one, because the second one can be
treated in the same way. We follow the hint in the corresponding proof
of [34, Theorem 5.51] and make the ansatz u− = û + u, where û :=
ηt,Γψ. Note that û ∈ HQ(curl, Q−3 ) vanishes in a neighborhood of Γ−, see
Theorem 2.107. Hence, the first problem in step (iv) is equivalent to: for
given ψ ∈ H−1/2

Q (Div,Γ) find u ∈ HQ(curl, Q−3 ) such that

∀v ∈ HQ,0(curl, Q−3 ) :
∫
Q−3

(
curlα u · curlα v − k2u · v

)
dx

= −
∫
Q−3

(
curlα û · curlα v − k2û · v

)
dx,

n× u = 0 on Γ,
n× curlα u+ η n×K−(n× u) = 0 on Γ−.

The condition n × u = 0 on Γ suggests the test space HQ,0,Γ(curl, Q−3 ).
Now, we obtain, similarly to the verification of the variational form (4.8)
after Problem 4.11, that for v ∈ HQ,0,Γ(curl, Q−3 )∫

Q−3

(
curlα u · curlα v − k2u · v

)
dx =

∫
Q−3

(
curlα curlα u− k2u

)
· v dx

− 〈γt,Γ curlα u, γT,Γv︸ ︷︷ ︸
=0

〉Γ − 〈γt,Γ− curlα u, γT,Γ−v〉Γ− ,∫
Q−3

(
curlα û · curlα v − k2û · v

)
dx =

∫
Q−3

(
curlα curlα û− k2û

)
· v dx



238 4. Electromagnetic Scattering – Boundary Integral Equations

− 〈γt,Γ curlα û, γT,Γv︸ ︷︷ ︸
=0

〉Γ − 〈γt,Γ− curlα û︸ ︷︷ ︸
=0

, γT,Γ−v〉Γ− .

Summing up both equations and exploiting that∫
Q−3

(
curlα curlα u− k2u

)
· v dx+

∫
Q−3

(
curlα curlα û− k2û

)
· v dx = 0,

yields the variational formulation∫
Q−3

(
curlα u · curlα v − k2u · v

)
dx− η 〈γt,Γ−v,K−(γt,Γ−u)〉Γ−

=
∫
Q−3

(
k2û · v − curlα û · curlα v

)
dx.

Now, we compare this formulation with (4.8) and recognize, by taking the
decomposition

HQ,0,Γ(curl, Q−3 ) = HQ,0,Γ(curl,divα 0, Q−3 )⊕∇αH1
Q,0,Γ(Q−3 ),

from Theorem 2.124 into account as well, that we can apply the same
method as in step (i), (ii) and (iii) of this proof to show that the last
variational formulation is uniquely solvable. �

4.2.3. Jump Relations and Boundary Integral Operators

We are now in a position to derive further properties of the vector potentials.
These properties will enable us in the next section to derive the already
mentioned boundary integral equations.

Theorem 4.15 Let the surface Γ be given by (4.5), choose any cell set
D ⊆ R3 of Lipschitz layer type, such that Γ ⊆ D, and denote the upper
part of D with respect to (and without) Γ by D+ and the lower part by
D−, see also Figure 4.2.
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(i) The operator L̃α : H−1/2
Q (Div,Γ)→ HQ(curl, D) and the operators

M̃±α : H−1/2
Q (Div,Γ)→ HQ(curl, D±) given by

(L̃αϕ)(x) := curl2α〈ϕ,Gk(x, ·)〉Γ, x ∈ D,
(M̃±αϕ)(x) := curlα〈ϕ,Gk(x, ·)〉Γ, x ∈ D±,

are well-defined, linear and bounded.

(ii) For ϕ ∈ H−1/2
Q (Div,Γ) the electric and magnetic vector potential u

and v, see (4.7), satisfy u|D± , v|D± ∈ HQ(curl, D±) with the jump
conditions

γt,Γu|D− + γt,Γu|D+ = 0 and γt,Γv|D− + γt,Γv|D+ = −ϕ,

respectively.

(iii) The boundary operators Lα,Mα : H−1/2
Q (Div,Γ)→ H

−1/2
Q (Div,Γ),

given by
Lαϕ := γt,Γ

(
L̃αϕ

)
|D− ,

Mαϕ := 1
2

(
γt,Γ

(
M̃−αϕ

)
− γt,Γ

(
M̃+

αϕ
))
,

are well-defined, linear and bounded. With these notations the jump
conditions for the electric and magnetic vector potential u and v from
part (ii) read as

γt,Γu|D± = Lαϕ and ∓ γt,Γv|D± = ±1
2ϕ+Mαϕ,

respectively.

(iv) The boundary operator Lα from part (iii) can be splitted into the sum
Lα = L̂ + K̂ with L̂ ∈ Lis(H−1/2

Q (Div,Γ)) and a compact operator
K̂ : H−1/2

Q (Div,Γ)→ H
−1/2
Q (Div,Γ).

Proof: We follow the lines in the proof of [34, Theorem 5.52] and fix some
L3 > 0 such that L3 > maxξ∈R2 f1(ξ) and −L3 < minξ∈R2 f0(ξ), and set
Q3 := Q × (−L3, L3); here fj denotes the function which describes the
surface Γj of D, j = 0, 1, see Assumption 2.91. Hence, Q3 is a cuboid
which contains D, including its surfaces Γj , j = 0, 1, and which is divided
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Γ1

Γ0

Γ

Γ+

Γ−

D+

D−

Q+
3

Q−3

Q3D

Figure 4.2.: The cell set D of Lipschitz layer type is contained in the
cuboid Q3. Both sets are divided by the surface Γ into D− and D+ as
well as Q−3 and Q+

3 .

by Γ into the upper part Q+
3 and the lower part Q−3 too. The situation is

illustrated in Figure 4.2.
(i). Let ϕ ∈ H−1/2

Q (Div,Γ) and let w ∈ HQ(curl, Q3) denote the solution
to (4.8), see Theorem 4.14. We show that

L̃αϕ = k2(w|D + w̃) in HQ(curl, D), (∗1)
M̃±αϕ = curlα w|D± + curlα w̃|D± in HQ(curl, D±), (∗2)

where

w̃(x) :=
∑
±

(
curlα〈γt,Γ±w,Gk(x, ·)〉Γ±

+ 1
k2 curl2α〈γt,Γ± curlα w,Gk(x, ·)〉Γ±

)
(∗3)

for x ∈ D. To show these decompositions, we fix some x ∈ D+ and apply
the Stratton-Chu formula from Theorem 4.10 to w with respect to Q+

3
as well as to Q−3 , i.e., to w+ := w|+Q3

and w− := w|−Q3
, respectively, and

obtain

w(x) =− curlα
〈
γt,Γw

+, Gk(x, ·)
〉

Γ −
1
k2 curl2α

〈
γt,Γ curlα w+, Gk(x, ·)

〉
Γ
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− curlα
〈
γt,Γ+w,Gk(x, ·)

〉
Γ+−

1
k2 curl2α

〈
γt,Γ+curlαw,Gk(x, ·)

〉
Γ+ ,

0 =− curlα
〈
γt,Γw

−, Gk(x, ·)
〉

Γ −
1
k2 curl2α

〈
γt,Γ curlα w−, Gk(x, ·)

〉
Γ

− curlα
〈
γt,Γ−w,Gk(x, ·)

〉
Γ−−

1
k2 curl2α

〈
γt,Γ−curlαw,Gk(x, ·)

〉
Γ− .

Now we recall the boundary conditions −γt,Γ curlα w+−γt,Γ curlα w− = ϕ
and γt,Γw

− = −γt,Γw+ to obtain, by summing up both equations,

w(x) = 1
k2 curl2α

〈
ϕ,Gk(x, ·)

〉
Γ − w̃(x),

from which the asserted decomposition (∗1) follows immediately for this
case. For x ∈ D \ D+ we argue similarly. Note that w̃ belongs to
C∞Q (D,C3), see for instance Proposition 4.7, with all derivatives being
integrable, since the domain of definition D of w̃ is away from some neigh-
borhoods of the surfaces Γ± and therefore far away from any singularities
of the Green’s function Gk. Hence, the operator L̃α is well-defined. Its
linearity is clear and its boundedness follows from the decomposition (∗1)
together with the boundedness of the solution operator from Theorem 4.14.
To obtain the corresponding properties for the operators M̃±α , we observe
that away from the boundary Γ we can apply Proposition 4.8 to L̃αϕ,
which yields for x ∈ D±

curlα(L̃αϕ)(x) = curl2α curlα
〈
ϕ,Gk(x, ·)

〉
Γ = k2 curlα

〈
ϕ,Gk(x, ·)

〉
Γ

= k2(M̃±αϕ)(x) (4.12)

and shows the decomposition (∗2). Hence, we have shown that the op-
erators M̃±α are well-defined. Again, their linearity is clear and their
boundednes follows similarly to above from properties of w.
(ii). The jump conditions follow easily from the decomposition (∗1) as well
as (∗2) and the boundary conditions for the solution w to Problem 4.11.
In fact, by using γt,Γw̃|D− = −γt,Γw̃|D+ , there holds

γt,Γu|D− = γt,Γ(L̃αϕ)|D− = k2(γt,Γw|Q−3 + γt,Γw̃|D−
)

= −k2(γt,Γw|Q+
3

+ γt,Γw̃|D+
)

= −γt,Γ(L̃αϕ)|D+ = −γt,Γu|D+

and, since γt,Γ curlα w̃|D− = −γt,Γ curlα w̃|D+ , we have

γt,Γv|D− + γt,Γv|D+ = γt,Γ(M̃−αϕ) + γt,Γ(M̃+
αϕ)
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= γt,Γ
(

curlα w|Q−3 + curlα w̃|D−
)

+ γt,Γ
(

curlα w|Q+
3

+ curlα w̃|D+
)

= γt,Γ curlα w|Q−3 + γt,Γ curlα w|Q+
3

= −ϕ.

(iii). The statements follow easily from step (i) and (ii).
(iv). The decomposition of the operator Lα follows by an application of
the trace operator γt,Γ to the decomposition (∗1) and by Theorem 4.14.
For the compactness of the operator K̂ it suffices to show that the mapping
T : H−1/2

Q (Div,Γ) → (C2
Q(D,C3), ‖ · ‖C2(D,C3)), given by ϕ → Tϕ := w̃,

where w̃ is defined by (∗3) (with domain of definition extended to D), is
bounded, because then the mapping K̂ : H−1/2

Q (Div,Γ)→ H
−1/2
Q (Div,Γ)

can be split up into

H
−1/2
Q (Div,Γ) T−→ C2

Q(D,C3) ↪−→ C1,1
Q (D,C3)

cp.
↪−→ C1,λ

Q (D,C3)

↪−→ H1
Q(D,C3) ↪−→ HQ(curl, D) k

2γt,Γ−→ H
−1/2
Q (Div,Γ)

with the compact embedding C1,1
Q (D,C3)

cp.
↪−→ C1,λ

Q (D,C3), see [2, Theo-
rem 1.34] and the other mappings being bounded. For the Hölder spaces
Cm,λ(Ω), for 0 < λ ≤ 1, we refer to [2] as well, with slight modifications
for Cm,λQ (D,C3). For the norm ‖ · ‖C2(D,C3) in the definition of T see
also (1.12).
To show that the linear operator T is bounded, we introduce for ψ± ∈
H
−1/2
Q (Div,Γ±) the functions

g±(x) := curlα〈ψ±, Gk(x, ·)〉Γ± , x ∈ D,
h±(x) := curl2α〈ψ±, Gk(x, ·)〉Γ± , x ∈ D.

Note that by Convention 4.6 we have for x ∈ D and β ∈ N3
0

∂βg±(x) = ∂β
(

curlα
3∑
j=1

〈
ψ±, γT,Γ±

(
e(j)Gk(x, ·)

)〉
Γ± e

(j)
)

= ∂β
3∑
j=1

(
∇
〈
ψ±, γT,Γ±

(
e(j)Gk(x, ·)

)〉
Γ± × e

(j)

+
〈
ψ±, γT,Γ±

(
e(j)Gk(x, ·)

)〉
Γ± iα× e(j)

)
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=
3∑
j=1

(
∇
〈
ψ±, γT,Γ±

(
e(j)∂βxGk(x, ·)

)〉
Γ± × e

(j)

+
〈
ψ±, γT,Γ±

(
e(j)∂βxGk(x, ·)

)〉
Γ± iα× e(j)

)
,

where we also applied Proposition 4.7, and analogously

∂βh±(x) =
3∑
j=1

(
∇
(
∇
〈
ψ±, γT,Γ±

(
e(j)∂βxGk(x, ·)

)〉
Γ± · e

(j))
+∇

〈
ψ±, γT,Γ±

(
e(j)∂βxGk(x, ·)

)〉
Γ± iα · e(j)

+ iα
(
∇
〈
ψ±, γT,Γ±

(
e(j)∂βxGk(x, ·)

)〉
Γ± · e

(j))
+ iα

〈
ψ±, γT,Γ±

(
e(j)∂βxGk(x, ·)

)〉
Γ±
(
iα · e(j))

−
[〈
ψ±, γT,Γ±

(
e(j)Δx∂

β
xGk(x, ·)

)〉
Γ±

+ 2iα · ∇
〈
ψ±, γT,Γ±

(
e(j)∂βxGk(x, ·)

)〉
Γ±

− |α|2
〈
ψ±, γT,Γ±

(
e(j)∂βxGk(x, ·)

)〉
Γ±

]
e(j)

)
.

Now we choose some cell sets Ω± ⊆ R3 of Lipschitz layer type, both with
flat upper and lower surfaces, such that Ω± ⊆ Q3, Ω± ∩D = ∅ and the
upper surface of Ω+ coincides with Γ+ while the lower surface of Ω−
coincides with Γ−. Then we obtain for x ∈ D and β ∈ N3

0 that

∣∣∂βg±(x)
∣∣ ≤ 3∑

j=1

( 3∑
l=1

∣∣∣〈ψ±, γT,Γ±(e(j)∂l,x∂
β
xGk(x, ·)

)〉
Γ±

∣∣∣
+ |α|

∣∣∣〈ψ±, γT,Γ±(e(j)∂βxGk(x, ·)
)〉

Γ±

∣∣∣)

≤ C ‖γT,Γ±‖
3∑
j=1

( 3∑
l=1

∥∥∥e(j)∂l,x∂
β
xGk(x, ·)

∥∥∥
HQ(curl,Ω±)︸ ︷︷ ︸

≤C1

+
∥∥∥e(j)∂βxGk(x, ·)

∥∥∥
HQ(curl,Ω±)︸ ︷︷ ︸

≤C2

)
‖ψ±‖

H
−1/2
Q

(Div,Γ±),
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where the constants Cj > 0, j = 1, 2, do not depend on x. To see this,
we note that for the calculation of the HQ(curl,Ω±)-norms some partial
derivatives of Gk are used, while the function Gk is only considered on
D×Q±, which is a set far away of any occurrence of singularities. Therefore,
the supremum of the absolute value of any partial derivative of Gk with
respect to D × Ω± is finite and can be drawn out the integrals during the
calculation of the norms. Hence, for g±, and similarly for h±, we obtain
for β ∈ N3

0

‖∂βg±‖∞ ≤ C ‖ψ±‖H−1/2
Q

(Div,Γ±) and ‖∂βh±‖∞ ≤ C ‖ψ±‖H−1/2
Q

(Div,Γ±).

Now, we choose ψ± := γt,Γ±w, with w ∈ HQ(curl, Q3) the unique solution
to Problem 4.11 for given ϕ ∈ H−1/2

Q (Div,Γ). Then

‖ψ±‖
H
−1/2
Q

(Div,Γ±) ≤ ‖γt,Γ±‖ ‖w‖HQ(curl,Q3) ≤ C ‖γt,Γ±‖ ‖ϕ‖H−1/2
Q

(Div,Γ),

where the last inequality holds by the boundedness of the solution operator,
see Theorem 4.14. Finally, we choose ψ± := γt,Γ± curlα w, with w from
above. Since w is the solution to Problem 4.11, we have curlα w± ∈
HQ(curl, Q±3 ) with curlα curlα w± = k2w±, where we have set w± := w|Q±3
for simplicity. Therefore,

‖curlα w±‖2
HQ(curl,Q±3 ) ≤ C

(
‖curlα w±‖2

L2(Q±3 ,C3) + ‖curl2α w±‖2
L2(Q±3 ,C3)

)
≤ C ‖w±‖2

HQ(curl,Q±3 ) ≤ C ‖w‖
2
HQ(curl,Q3),

where the last inequality holds by part (i) in part (b) from Proposition 2.68.
Hence, also for this choice of ψ± we obtain

‖ψ±‖
H
−1/2
Q

(Div,Γ±) ≤ ‖γt,Γ±‖ ‖ curlα w±‖HQ(curl,Q±3 ) ≤ C ‖ϕ‖H−1/2
Q

(Div,Γ).

In summary, we have now for x ∈ D and β ∈ N3
0, with |β| ≤ 2, that

∣∣∂βw̃(x)
∣∣ ≤∑

±

(∣∣∣∂β curlα
〈
γt,Γ±w,Gk(x, ·)

〉
Γ±

∣∣∣
+ 1
|k|2

∣∣∣∂β curl2α
〈
γt,Γ± curlα w,Gk(x, ·)

〉
Γ±

∣∣∣)
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≤ C
∑
±

(∥∥∂βg±∥∥∞ + 1
|k|2

∥∥∂βh±∥∥∞)
≤ C ‖ϕ‖

H
−1/2
Q

(Div,Γ),

where g± and h± in the second inequality were defined with the corre-
sponding choices of ψ± from above. Observing that the constant C > 0
can be chosen not depending on β, the proof is complete. �

4.2.4. On the Compactness of the Operator Mα

Unfortunately, for Lipschitz surfaces the boundary operator Mα fails
to be a compact operator in H

−1/2
Q (Div,Γ), since this operator can be

considered as the counterpart of the double layer potential for the scalar
valued case. For the latter operator, examples can be constructed involving
domains with corners which violate the condition |n(x)·(y−x)|

|x−y|1+ε ≤ C, a crucial
property for establishing compactness. But for smooth surfaces, by means
of the following result from [21] with regard to an operator Ck, which is
the analog of Mα for smooth and bounded domains, we are able to show
compactness of Mα. It might be useful to recall the alternative approach
from Subsection 2.1.4 for the notation used therein.

Theorem 4.16 Let Ω ⊆ R3 be a bounded and smooth domain. Further-
more, let s ∈ R. Then the operator Ck is linear and bounded as an operator
Ck : Hs

t (∂Ω)→ Hs+1
t (∂Ω) and as an operator Ck : H−1/2(div∂Ω, ∂Ω)→

H1/2(div∂Ω, ∂Ω).

For a proof we refer to [21, Lemma 11].

Corollary 4.17 Ck : H−1/2(div∂Ω, ∂Ω)→ H−1/2(div∂Ω, ∂Ω) is compact.

Proof: According to Theorem 4.16, we only have to show that the space
H1/2(div∂Ω, ∂Ω) is compactly embedded into H−1/2(div∂Ω, ∂Ω). But,
thanks to Proposition 2.54, this follows from the compact embedding
H1/2(∂Ω,C3) ↪−→ H−1/2(∂Ω,C3). In fact, let (ϕn)n∈N be a bounded
sequence inH1/2(div∂Ω, ∂Ω). By definition of the norm inH1/2(div∂Ω, ∂Ω),
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(ϕn)n∈N and (div∂Ω ϕn)n∈N are bounded sequences in H1/2(∂Ω,C3) and
there exists a subsequence (ϕnj )j∈N such that (ϕnj )j∈N and (div∂Ω ϕnj )j∈N
are convergent in H−1/2(∂Ω,C3). Now, by definition of the norm in
H−1/2(∂Ω,C3), (ϕnj )j∈N is a Cauchy sequence in H−1/2(∂Ω,C3) and
therefore convergent therein. �

For the rest of this section we assume the surface Γ to be smooth, i.e.,

Γ :=
{
x ∈ R3 ∣∣ x̃ ∈ Q and x3 = f(x̃)

}
,

where f ∈ C∞per(Q) is real valued, see also Subsection 2.3.7. Now we come
to the important compactness result for the boundary operator Mα for
the case of smooth surfaces.

Theorem 4.18 Let Γ be smooth. Then the operator Mα is linear and
bounded as an operator Mα : H−1/2

Q (Div,Γ) → H
1/2
Q,t (Γ), and for s ≥ 0

also as an operator Mα : Hs
Q,t(Γ) → Hs+1

Q,t (Γ). Furthermore, Mα is
compact as an operator Mα : H−1/2

Q (Div,Γ)→ H
−1/2
Q (Div,Γ).

Proof: For the following arguments we were inspired by the proof of [7,
Theorem 4.22] or the proof of [22, Lemma 4.15]. We only show the
compactness property, as the other mapping properties are shown in a
very similar way. We divide the proof into several steps.
(i). Let {(Oj , χ̂(j)) | j = 1, . . . , N} be a partition of unity on Q as
in [7, Proof of Theorem 4.22] or in [22, Definition 2.29], i.e., it is a
partition of unity as in Theorem 2.42, with the additional property: if
supp χ̂(j) ∩ supp χ̂(m) 6= ∅, then there exists a translation Q′ of Q such
that supp χ̂(j) ∪ supp χ̂(m) ⊆ Q′. We set χ(j)(y) := χ̂(j)(ỹ) for y ∈ Γ
and j ∈ {1, . . . , N}. Note that

∑n
j=1 χ

(j)(y) =
∑N
j=1 χ̂

(j)(ỹ) = 1 for
y ∈ Γ and that χ(j) ◦ Ψ = χ̂(j) on Q for j = 1, . . . , N . Let N :=
{1, . . . , N} × {1, . . . , N} = N1 ∪N2 with

N1 :=
{

(m, j) ∈ N | suppχ(m) ∩ suppχ(j) = ∅
}

and N2 := N \N1.

For (m, j) ∈ N2 we choose smooth and bounded domains Ωm,j ⊆ R3 such
that

Γm,j :=
{
x ∈ R3 | x̃ ∈ supp χ̂(m) ∪ supp χ̂(j) and x3 = f(x̃)

}
⊆ ∂Ωm,j .
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Without loss of generality we consider χ(j) as Q-periodic functions and
define its Q-quasi-periodic counterparts by

χ(j)
α (y) := eiα̃·ỹχ(j)(y), y ∈ Γ̃, j = 1, . . . , N,

see also (2.10). Moreover, without loss of generality we assume for (m, j) ∈
N2 that supp χ̂(m) ∪ supp χ̂(j) ⊆ Q (otherwise we have by assumption that
supp χ̂(m) ∪ supp χ̂(j) ⊆ Q′ and we integrate later over Q′ instead of Q
which makes no difference due to the Q-periodicity of the integrands).
(ii). We show that for (m, j) ∈ N2, ϕ ∈ DQ,t(Γ,C3) and x /∈ Γ

curlα
〈
χ(m)ϕ,Gk(x, ·)

〉
Γ

= e−iα̃·x̃ curl
∫
∂Ωm,j

χ(m)
α ϕGk,α(x, ·) ds.

In fact, first of all we observe that for x 6= y, ψ ∈ DQ,t(Γ,C3) and ψα
according to Convention 3.4 we have

∇xGk(x, y) = ∇x
(

e−iα̃·(x̃−ỹ)Gk,α(x, y)
)

= e−iα̃·(x̃−ỹ)
(
∇xGk,α(x, y)− iαGk,α(x, y)

)
,

∇xGk(x, y)× e−iα̃·ỹψα(y) = e−iα̃·x̃∇xGk,α(x, y)× ψα(y)
− iα× ψ(y)Gk(x, y)

and therefore

curlα
∫

Γ
ψGk(x, ·) ds =

∫
Γ

[
curlx

(
ψGk(x, ·)

)
+ iα×

(
ψGk(x, ·)

)]
ds

=
∫

Γ

[
∇xGk(x, ·)× ψ + iα×

(
ψGk(x, ·)

)]
ds

= e−iα̃·x̃
∫

Γ
∇xGk,α(x, ·)× ψα ds = e−iα̃·x̃ curl

∫
Γ
ψαGk,α(x, ·) ds.

Hence, by the definition of the bilinear form 〈·, ·〉Γ from Theorem 2.113
we obtain for x /∈ Γ

curlα
〈
χ(m)ϕ,Gk(x, ·)

〉
Γ

= curlα
∫

Γ
χ(m) ϕGk(x, ·) ds

= e−iα̃·x̃ curl
∫

Γ
χ(m)
α ϕGk,α(x, ·) ds
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= e−iα̃·x̃ curl
∫
∂Ωm,j

χ(m)
α ϕGk,α(x, ·) ds,

as desired.
(iii). Let ϕ ∈ DQ,t(Γ,C3). Then with Mαϕ =

∑N
m,j=1 χ

(j)Mα(χ(m)ϕ)
we obtain

Mαϕ =
∑

(m,j)∈N1

χ(j)Mα(χ(m)ϕ)

+
∑

(m,j)∈N2

(
χ(j)Mα(χ(m)ϕ)− χ(j)

−αC
(m,j)
k (χ(m)

α ϕ)
)

+
∑

(m,j)∈N2

χ
(j)
−αC

(m,j)
k (χ(m)

α ϕ),

where C(m,j)
k denotes the operator from [21] with respect to the surface

∂Ωm,j , which is the analog of Mα but for the non-periodic setting consid-
ered there and built up with the kernel (4.2). Note that by Theorem 2.132
the operator χ(j)Mα(χ(m)·) : H−1/2

Q (Div,Γ)→ H
−1/2
Q (Div,Γ) in the first

summand is linear and bounded. Moreover, its kernel is smooth, yielding
that this operator is compact. For the operator χ(j)

−αC
(m,j)
k (χ(m)

α ·) from
H
−1/2
Q (Div,Γ) into itself in the third summand we recall Theorem 2.133,

Theorem 2.59 and Corollary 4.17 and see that this operator can be decom-
posed into two linear and bounded outer operators and a compact inner
operator, yielding that this operator is compact too. And last but not
least, by means of the first equation from the step (ii), Equation (4.1) and
the definitions of the operators Mα and C

(m,j)
k , we see that the kernel of

the operator difference in the second summand is also smooth and gives
rise to a compact operator as well.
In summary we have shown that the restriction ofMα onto DQ,t(Γ,C3) is
compact. And the compactness of Mα : H−1/2

Q (Div,Γ)→ H
−1/2
Q (Div,Γ)

follows now from Proposition A.6. �
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4.3. The Boundary Integral Equation of Interest

In this section we will derive a boundary integral equation, which enables
us to determine the solution to Problem 3.12 explicitly by an ansatz in
form of vector potentials with an unknown density. Beside their derivation
and the investigation of their solvability, we will prove that the kernels of
the corresponding integral operator have a singularity of a certain kind – a
property which is fundamental for an application of the numerical scheme
introduced in the next chapter.

For the notation used in the following presentation concerning the geomet-
rical setting, we recall the explanations from Subsection 3.1.2, in particular
for the unit cell D and its variants Dh

Γ0
, and require now in the definition

of Γ0,
Γ0 =

{
x ∈ R3 ∣∣ x̃ ∈ Q and x3 = f0(x̃)

}
, (4.13)

instead of Lipschitz continuity the function f0 to be in C∞per(Q). Some-
times we will also need the whole surface which was denoted by Γ̃0, see
also (3.2).

4.3.1. Derivation and Solvability

In the next chapter we will introduce a high order solver for the elec-
tromagnetic scattering problem as given in Problem 3.12, see also (3.8).
In Theorem 3.42 we have seen that this problem is uniquely solvable, at
least for special values of the wave number k (see also Theorem 3.14). To
determine in those cases the solution explicitly we make an ansatz for the
scattered field in the form

us = M̃+
αϕ

for some ϕ ∈ H−1/2
Q (Div,Γ0). Let h > h+. From Theorem 4.15 we know

that us and curlα us belong to HQ(curl, Dh
Γ0

). Hence, from Proposition 4.8
we conclude, similarly as in the proof of part (iii) from Proposition 3.13,
that for arbitrary v ∈ HQ,0(curl, Dh

Γ0
)∫

DhΓ0

(
curlα us · curlα v − k2us · v

)
dx = 0.
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Furthermore, again by Proposition 4.8, us satisfies the (URC) in D∞h+ .
Therefore, so far, u := us +ui seems to be a good candidate for the solution
to Problem 3.12. From the boundary condition γt,Γ0u = 0 therein, together
with the jump relations from Theorem 4.15, we obtain

1
2ϕ+Mαϕ = γt,Γ0u

i in H
−1/2
Q (Div,Γ0), (4.14)

the boundary integral equation of greatest interest for our numerical
method. The following theorem shows that this equation is uniquely
solvable, and thus u is indeed the solution to Problem 3.12. For this, the
next lemma has preliminary character.

Lemma 4.19 Let Γ± :=
{
x ∈ R3 | x̃ ∈ Q and x3 = ±f(x̃)

}
, where

f ∈ C∞per(Q) is Lipschitz continuous and real valued. Furthermore, let
h > maxξ∈R2 f(ξ). Then the following assertions are true.

(i) u ∈ HQ(curl, Dh
Γ+) ⇔ û ∈ HQ(curl, DΓ−

−h), and in this case we have
curl û = −(curlu)∗(·∗) as well as γt,Γ− û = −(γt,Γ+u)∗.

(ii) u ∈ HQ(curl, Dh
Γ+) solves

∀v ∈ HQ,0(curl, Dh
Γ+) :

∫
Dh

Γ+

(
curlα u · curlα v − k2u · v

)
dx = 0

if and only if û ∈ HQ(curl, DΓ−
−h) solves

∀v ∈ HQ,0(curl, DΓ−
−h) :

∫
DΓ−
−h

(
curlα û · curlα v − k2û · v

)
dx = 0.

Here, we have defined û := u∗(·∗), where for z ∈ C3 the vector z∗ is given
by (1.4).

Proof: We will similarly proceed as in the proof of Proposition 2.105 and
take from there the observation (curlw)∗(·∗) = − curl(w∗(·∗)). Moreover,
we note that for a, b ∈ C3 we have a× b∗ = −(a∗ × b)∗ and (−a)∗ = −a∗,
which can easily be verified. Furthermore, we recall the definition of α
which yields α∗ = α. And last but not least, x ∈ Dh

Γ+ if and only if
x∗ ∈ DΓ−

−h, where the absolute value of the Jacobian of this transformation
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is constant and equal to one.
(i). Let u ∈ HQ(curl, Dh

Γ+). Furthermore, let χ ∈ C∞Q,0(DΓ−
−h,C3). Then,

with the observations from above, we obtain∫
DΓ−
−h

û(x) · curlχ(x) dx =
∫
DΓ−
−h

u∗(x∗) · curlχ(x) dx

=
∫
Dh

Γ+

u∗(x) · curlχ(x∗) dx =
∫
Dh

Γ+

u(x) · (curlχ)∗(x∗) dx

= −
∫
Dh

Γ+

curlu(x) · χ∗(x∗) dx = −
∫
DΓ−
−h

(curlu)∗(x∗) · χ(x) dx,

where we have applied that χ∗(·∗) ∈ C∞Q,0(Dh
Γ+ ,C3). The other direction

is shown in the same way. The formula for the traces can be easily verified
for smooth functions and then we use an approximation argument.
(ii). Let u ∈ HQ(curl, Dh

Γ+) solve the first variational equation in the
lemma. From part (i) we know already that û ∈ HQ(curl, DΓ−

−h). Let
v ∈ HQ,0(curl, DΓ−

−h). Note that v∗(·∗) ∈ HQ,0(curl, Dh
Γ+), which is shown

by approximation and a similar calculation as in part (i). Then, again
with the observations from above, we have∫
DΓ−
−h

(
curlα û · curlα v − k2û · v

)
dx =

∫
DΓ−
−h

[(
curlu∗(x∗) + iα× u∗(x∗)

)
·
(

curl v(x) + iα× v(x)
)
− k2u∗(x∗) · v(x)

]
dx

=
∫
DΓ−
−h

[
− curlα u(x∗) ·

(
(curl v)∗(x) + (iα× v(x))∗

)
− k2u(x∗) · v∗(x)

]
dx

=
∫
Dh

Γ+

[
− curlα u(x) ·

(
(curl v)∗(x∗) + (iα× v(x∗))∗

)
− k2u(x) · v∗(x∗)

]
dx

=
∫
Dh

Γ+

(
curlα u(x) · (curlα v∗(·∗))(x)− k2u(x) · v∗(x∗)

)
dx = 0,

as desired. And the other direction is again shown by very similar argu-
ments. �



252 4. Electromagnetic Scattering – Boundary Integral Equations

Theorem 4.20 Let ui be an incident field as in Assumption 3.3. If Γ0 is
a smooth surface (as introduced above) and if Problem 3.12 has at most
one solution, then the operator equation in (4.14) possesses exactly one
solution.

Proof: Thanks to the compactness of Mα as an operator from the space
H
−1/2
Q (Div,Γ0) onto itself and thanks to the third theorem of Riesz, it

suffices to show that 1
2I +Mα : H−1/2

Q (Div,Γ0) → H
−1/2
Q (Div,Γ0) is

injective; here I denotes the identity operator in H
−1/2
Q (Div,Γ0).

For this let ϕ ∈ H−1/2
Q (Div,Γ0) such that 1

2ϕ+Mαϕ = 0. We choose cell
sets D± of Lipschitz layer type as in Theorem 4.15, with the Γ therein
now being Γ0. Furthermore, we set

v± := M̃±αϕ in D±,

u := L̃αϕ in D.

Note that by the jump relations from Theorem 4.15 we have γt,Γ0v
+ =

−( 1
2ϕ+Mαϕ) = 0. Arguing similarly as at the beginning of this section,

we see that v+ solves Problem 3.12 for an incident field which is zero. By
assumption, this problem has at most one solution and we conclude that
v+ = 0. Thus, also curlα v+ = 0. Since by definition u|D+ = curlα v+, we
obtain therefore u|D+ = 0. Again by the jump relations from Theorem 4.15,
we have γt,Γ0u|D− = γt,Γ0u|D+ = 0. Let h < h−. Arguing again as at the
beginning of this section, and taking again Proposition 4.8 into account,
we see that u− := u|D− solves u− ∈ HQ(curl, DΓ0

h ) and
∀w ∈ HQ,0(curl, DΓ0

h ) :
∫
D

Γ0
h

(
curlα u− · curlα w − k2u− · w

)
dx = 0,

γt,Γ0u
− = 0,

u− satisfies (DRC) on Dh−

−∞.

Now, Remark 3.7 and Lemma 4.19 come into play, which yield that
(u−)∗(·∗) solves Problem 3.12 (with another Γ0) for an incident field
again being zero. Therefore, one more time thanks to our assumption,
(u−)∗(·∗) = 0, and hence u− = 0. Thus, u = 0 and in particular
curlα u|D± = 0. Using (4.12), we obtain

0 = curlα u|D± = curlα(L̃αϕ)|D± = k2M̃±αϕ = k2v±.
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Finally, we exploit the jump relations from Theorem 4.15 a last time and
arrive at

−ϕ = γt,Γ0v
+ + γt,Γ0v

− = 0,

and the proof is complete. �

4.3.2. On the Weak Singularity of the Kernels

As mentioned above, the numerical method from the next chapter requires
the singularity of the kernels of Mα to be of a special kind, see Assump-
tion 5.6. It is the objective of the following presentation to show that
those kernels indeed satisfy this assumption.

We start with Equation (4.14) and rewrite it equivalently to: for given
ψ ∈ H−1/2

Q (Div,Γ0) find ϕ ∈ H−1/2
Q (Div,Γ0) such that

ϕ+ 2Mαϕ = ψ,

where the operator Mα was given by

Mαϕ = 1
2

(
γt,Γ0

(
M̃−αϕ

)
− γt,Γ0

(
M̃+

αϕ
))
,

see Theorem 4.15. Now, we make two observations: For s ≥ 0 and
ψ ∈ H−1/2

Q (Div,Γ0) ∩Hs
Q,t(Γ0), we obtain from Theorem 4.18 and Propo-

sition 2.131 that the solution ϕ = ψ − 2Mαϕ belongs to Hs
Q,t(Γ0) as well,

i.e., the solution has the same regularity as the right hand side. Taking
Sobolev’s embedding theorem as well as the smoothness of Γ0, recall (4.13),
into account, for smooth enough right hand side ψ the action of Mα to
ϕ ∈ Hs

Q,t(Γ0) can therefore be described by an ordinary boundary integral
of the form

(Mαϕ)(x) = n(x)× curlα
∫

Γ0

Gk(x, y)ϕ(y) ds(y), x ∈ Γ0,

see for instance [34, Theorem 3.34]. Here, the unit normal vector n(x)
points into the upward direction of Γ0. And the second observation is, that
for ϕ ∈ Hs

Q,t(Γ0) there holds (n(y)× ϕ(y))× n(y) = ϕ(y), for all y ∈ Γ0.
Therefore, we can and will build in this projection onto the tangential
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plane into the operator, which has at the moment no effect, and consider
from now on the operator Mα given by

(Mαϕ)(x) = n(x)× curlα
∫

Γ0

Gk(x, ·) (n× ϕ)× n ds, x ∈ Γ0. (4.15)

The introduction of this artificial projection has numerical advantages,
since now we can widen our solution space based on Hs

Q(Γ0,C3) instead of
Hs
Q,t(Γ0) and need not care about tangential fields, because ϕ = ψ−2Mαϕ,

with Mα according to (4.15), is automatically a tangential field, if the
right hand side is.

Lemma 4.21 The boundary integral operator Mα can be rewritten to

(Mαϕ)(x) =
∫

Γ0

eiα̃·(ỹ−x̃)
[
∇xGk,α(x, y)

(
n(x)− n(y)

)>
− n(x)>∇xGk,α(x, y) I3

]
ζ(y) ds(y), x ∈ Γ0,

for ϕ ∈ H−1/2
Q (Div,Γ0)∩Hs

Q,t(Γ0) and s ≥ 0 big enough. Here, Gk,α is the
Q-quasi-periodic Green’s function, see (4.1), I3 :=

(
1 0 0
0 1 0
0 0 1

)
, ζ := (n×ϕ)×n

and the unit normal vector n is pointing in the upward direction of Γ0.

Proof: First of all, by recalling also Remark 4.2, we obtain for x, y ∈ Γ0,
such that x− y 6= p(µ),

curlα,x
(
Gk(x, y) ζ(y)

)
= curlx

(
eiα̃·(ỹ−x̃)Gk,α(x, y) ζ(y)

)
+ iα×

(
Gk(x, y) ζ(y)

)
= eiα̃·(ỹ−x̃)

(
∇xGk,α(x, y)− iαGk,α(x, y)

)
× ζ(y)

+
(
iαGk(x, y)

)
× ζ(y)

= eiα̃·(ỹ−x̃)∇xGk,α(x, y)× ζ(y)

and furthermore, by (A.1b) and because of n(y) · ζ(y) = 0,

n(x)×
(
∇xGk,α(x, y)× ζ(y)

)
=
[(

n(x)− n(y)
)
· ζ(y)

]
∇xGk,α(x, y)
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−
[
n(x) · ∇xGk,α(x, y)

]
ζ(y).

Note that (a · b) c = c a>b for all a, b, c ∈ C3. Using now the last results to-
gether with (4.15) and considerations as in the proof of [34, Theorem 3.34],
the assertion follows immediately. �

Now, choose some cut-off function χ ∈ C∞0 (R3) with 0 ≤ χ ≤ 1, χ ≡ 1
in a neighborhood of the origin and with supp(χ) ⊆ B3(0, L2 ); see (1.3)
for the definition of L. We define χ̃ to be the Q-periodic extension of χ.
Furthermore, let K denote the kernel of Mα, i.e.,

K(x, y) := eiα̃·(ỹ−x̃)
[
∇xGk,α(x, y)

(
n(x)− n(y)

)>
− n(x)>∇xGk,α(x, y) I3

]
for x, y ∈ Γ̃0 with x 6= y+p(µ). By means of the Q-periodic cut-off function
χ̃ we can split up K into

K(x, y) = χ̃(x− y)K(x, y) + (1− χ̃(x− y))K(x, y)

=: K1(x, y) +K2(x, y), x, y ∈ Γ̃0, x 6= y + p(µ),

with a Q-periodic (in both variables) and smooth part K2 and a Q-periodic
(in both variables) part K1, the latter one containing the singularities.

Remark 4.22 Note that the singularities of K1 are isolated, meaning that
K1 has support only in a neighborhood of the singularties. Moreover, all
singularities of K1 are of the same nature, which can be described, thanks
to the choice of χ̃, by the representation of Gk,α from Theorem 4.5.

Recalling the representation of Gk,α from Theorem 4.5, we have for x 6= y

and |x− y| ≤ L
2

∇xGk,α(x, y) = −cos(k|x− y|)
4π|x− y|3 (x− y)− k sin(k|x− y|)

4π|x− y|2 (x− y) +H(x, y),

with some smooth function H. We set for x, y ∈ Γ̃0 and x 6= y + p(µ)

K1,1(x, y) := − 1
4π χ̃(x− y) eiα̃·(ỹ−x̃)

[
cos(k|x− y|)
|x− y|3
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+ k
sin(k|x− y|)
|x− y|2

]
(x− y)

(
n(x)− n(y)

)>
+ 1

4π χ̃(x− y) eiα̃·(ỹ−x̃)

[
cos(k|x− y|)
|x− y|3

+ k
sin(k|x− y|)
|x− y|2

]
n(x)>(x− y) I3,

where we consider the terms on the right hand side, where necessary,
Q-periodically extended, and furthermore for x, y ∈ Γ̃0

K1,2(x, y) := χ̃(x−y) eiα̃·(ỹ−x̃)
[
H(x, y)

(
n(x)−n(y)

)>−n(x)>H(x, y) I3

]
.

Note that by Remark 4.22 we have K1 = K1,1 + K1,2 and that the
singularities are now only contained in K1,1. Taking into account that for
x, y ∈ Γ0 there holds, since Γ0 is smooth,

|n(x) · (x− y)| ≤ C |x− y|2 and |n(x)− n(y)| ≤ C|x− y|,

we see already from the definition of K1,1 that their singularities are
weak. Finally, we recall the parametrization Ψ0 of Γ0 and consider it
Q-periodically extended, i.e.,

Ψ0(t) =

 t1
t2

f0(t1, t2)

 , t ∈ R2,

and define for t, τ ∈ R2, and additionally t 6= τ + p̃(µ) for the first
definition,

k1(t, τ) := K1,1
(
Ψ0(t),Ψ0(τ)

)√
1 + |∇f0(τ)|2,

k2(t, τ) :=
[
K1,2

(
Ψ0(t),Ψ0(τ)

)
+K2

(
Ψ0(t),Ψ0(τ)

)]√
1 + |∇f0(τ)|2.

Proposition 4.23 The functions k1 and k2 from above satisfy Assump-
tion 5.6.

Proof: By the considerations from above we have already shown that
the assumptions for k2 are satisfied. Thus, it remains to take a closer
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look at k1. Again by the considerations from above we have already
that k1 is Q-periodic with respect to both arguments and that their
entries k(i,j)

1 belong to C∞((Q×Q) \ {(t, t) | t ∈ Q}). Furthermore, the
assumption for the bounds regarding the partial derivatives of k(i,j)

1 can
be easily verified by means of the product rule and by the kind of a certain
reproducing structure while differentiating the terms cos(k|x−y|)

|x−y|n (xl − yl)
and sin(k|x−y|

|x−y|m (xl − yl).
Let 0 < %0 < π be small enough and let i, j ∈ {1, 2, 3}. To show that

` : Q× [−%0, %0]× S1 → C, (t, r, v)→ `(t, r, v) := |r| k(i,j)
1 (t, t+ rv)

belongs to C∞(Q× [−%0, %0]× S1), we only have to concentrate on those
terms in k1 which are relevant for the singularyties, namely

h1(t, τ) := Ψ0(t)−Ψ0(τ)
|Ψ0(t)−Ψ0(τ)|3

(
∂1Ψ0(t)× ∂2Ψ0(t)√

1 + |∇f0(t)|2

− ∂1Ψ0(τ)× ∂2Ψ0(τ)√
1 + |∇f0(τ)|2

)>
∈ C3×3,

h2(t, τ) :=
(
∂1Ψ0(t)× ∂2Ψ0(t)

)
·
(
Ψ0(t)−Ψ0(τ)

)
|Ψ0(t)−Ψ0(τ)|3 ,

for t, τ ∈ Q with t 6= τ , because the other terms are smooth factors.
Thanks to Taylor’s theorem, see for instance [5], we have for a smooth
function g : Q→ Cd′ a representation for its differences in the following
forms

g(τ)− g(t) =
∫ 1

0
∂g
(
t+ ξ(τ − t)

)
(τ − t) dξ, (∗1)

= ∂g(t)(τ − t) +
∫ 1

0
(1− ξ) ∂2g

(
t+ ξ(τ − t)

)
[τ − t, τ − t] dξ (∗2)

for all t, τ ∈ Q, where ∂2g(s) is a bounded bilinear form from R2 × R2 to
Cd′ , see [5] for details. Moreover, we observe that∣∣∣ ∫ 1

0
∂Ψ0(t+ ξrv)v dξ

∣∣∣2 =
∫ 1

0

∫ 1

0
v>∂Ψ0(t+ ξrv)>∂Ψ0(t+ θrv)v dξdθ.
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Since Ψ0 is regular and since (Ψ0(t))>∂Ψ0(t) is the first fundamental form
of Γ0, the latter expression is uniformly positive definite. Hence, due to
continuity, there exist r0, δ > 0 such that∣∣∣ ∫ 1

0
∂Ψ0(t+ ξrv)v dξ

∣∣∣2 ≥ δ, (t, r, v) ∈ Q× [−r0, r0]× S1.

In particular, there holds∣∣∣ ∫ 1

0
∂Ψ0(t+ ξrv)v dξ

∣∣∣3 =
∣∣∣ ∫ 1

0
∂Ψ0(t+ ξrv)v dξ

∣∣∣2√∣∣∣ ∫ 1

0
∂Ψ0(t+ ξrv)v dξ

∣∣∣2,
which yields that Q×[−r0, r0]×S1 3 (t, r, v) 7→

∣∣ ∫ 1
0 ∂Ψ0(t+ξrv)v dξ

∣∣3 ∈ R
is a smooth function.
Applying now (∗1) to the smooth functions Ψ0 : Q→ R3 and g : Q→ C,
t→ g(t) := (∂1Ψ0(t)×∂2Ψ0(t))j√

1+|∇f0(t)|2
we obtain

h
(i,j)
1 (t, t+ rv) =

∫ 1
0 ∂Ψ0,i(t+ ξrv)v dξ

∫ 1
0 ∂g(t+ ξrv)v dξ

|r|
∣∣ ∫ 1

0 ∂Ψ0(t+ ξrv)v dξ
∣∣3

with smooth enumerator and denominator and the latter one always away
from zero, such that the quotient rule is applicable and yields a smooth
fraction as well. For the enumerator in h2 we apply (∗2) and note that(
∂1Ψ0(t)× ∂2Ψ0(t)

)
× ∂Ψ0(t)v = 0. Hence,

h2(t, t+ rv) =
(
∂1Ψ0(t)× ∂2Ψ0(t)

)
·
∫ 1

0 (1− ξ) ∂2Ψ0(t+ ξrv)[v, v] dξ
|r|
∣∣ ∫ 1

0 ∂Ψ0(t+ ξrv)v dξ
∣∣3 ,

where with the same arguments as before this fraction is smooth. With
those results it is now easy to see that ` satisfies the requirement from
above and the proof is complete. �



5. The High-Order Numerical
Scheme

It is the objective of this chapter to introduce a high order numerical
method for a system of integral equations

ϕ(i)(t)−
n∑
j=1

∫
Q

k(i,j)(t, τ)ϕ(j)(τ) dτ = ψ(i)(t), t ∈ Q, i = 1, . . . , n,

(5.1)
where the kernel functions k(i,j) of the underlying integral operators are
weakly singular and Q-periodic with respect to both arguments. Precise
assumptions will be given in Section 5.2. Such systems appear quite
often in applications, e.g. for boundary value problems which can be
solved by the integral equation method – and after having rewritten the
boundary integrals by means of the parametrization to integrals (or system
of integrals) over the parameter domain Q. An example is of course the
electromagnetic scattering problem introduced in this thesis. Provided
the surface is smooth (what we tacitly do because of Theorem 4.20),
the numerical scheme achieves super-algebraic convergence rate. Most of
the results were already prepublished in [9]. Therein, for the case of a
single integral equation, other examples can be found including numerical
experiments and complexity estimates. The scheme is a variant of the
approach from [19, 20] and improves the scheme of [7] by reducing the
overall complexity.

The numerical method can be interpreted as a collocation method based on
trigonometric interpolation, and Section 5.1 collects corresponding results
which will be needed later.

In Section 5.2, the main idea of the method is demonstrated and analysed
on a single biperiodic integral equation. As already indicated in (1.2),
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a key ingredient will be a transformation into polar coordinates for the
first integral to remove the singularity. However, now the corresponding
integral operator takes on a non-standard form which makes its analysis
much more involved, in particular for its approximation with respect to the
fully discrete system. By means of certain auxiliary spaces and operators,
we finally obtain all desired results in order to state the two main theorems
of this section about stability and convergence.

The generalization to systems of biperiodic integral equations is then
straighforward and shown in Section 5.3.

To simplify notation, especially for the convergence analysis, we assume
in this chapter, without loss of generality, our rectangle Q to be of the
form

Q = (−π, π)× (−π, π).

5.1. Trigonometric Interpolation

As mentioned above, an essential component of the numerical method
is trigonometric interpolation. In this section we will collect all relevant
results.

First of all, we recall the space Hs
per(Q,Cd

′) from Definition 2.7 and the
well-known Sobolev’s embedding theorem, which says that Hs

per(Q,Cd
′)

is compactly embedded in (Cper(Q,Cd
′), ‖ · ‖∞), provided s > 1. As an

important consequence, it makes then sense to introduce an interpolation
operator based on

TN (Q,Cd
′
) := span

{
e(j) T

(µ)
Q

∣∣ j ∈ {1, . . . , d′}, µ ∈ Z2
N

}
,

which is a finite dimensional subspace of T (Q,Cd′) from Section 1.3. Here,
for N = (N1, N2)> ∈ N2 we have set

Z2
N :=

{
µ ∈ Z2 | −Nj < µj ≤ Nj , j = 1, 2

}
.



5.1. Trigonometric Interpolation 261

Furthermore, for the interpolation operator we also need an appropriate
grid of interpolation points (tNµ )µ∈Z2

N
and choose it as

tNµ = (tNµ,1, tNµ,2)> :=
(
µ1 π

N1
,
µ2 π

N2

)>
, µ ∈ Z2

N .

Lemma 5.1 Suppose that s > 1 and 0 ≤ σ ≤ s. Given u ∈ Hs
per(Q,Cd

′),
for every N ∈ N2 there exists a unique interpolation polynomial PNu ∈
TN (Q,Cd′) such that

u(tNµ ) = PNu(tNµ ) , µ ∈ Z2
N .

The linear operator PN : Hs
per(Q,Cd

′)→ Hσ
per(Q,Cd

′) is bounded with

‖PNu− u‖Hσper(Q,Cd′ ) ≤ C
N
σ

Ns ‖u‖Hsper(Q,Cd′ ),

where C > 0 is a constant depending on σ and s. For N and N recall (1.3).

For a proof we refer to [7, Lemma 5.1], which holds also for vector valued
functions. Here, the symbol PN relates to both the scalar and vector
valued case. From the context it should always be clear on which spaces
PN is currently working.

An alternative way to express the interpolation operator is using the
Lagrange basis representation,

PNu =
∑
µ∈Z2

N

u(tNµ )LNµ , (5.2)

with the Lagrange basis functions given by

LNµ (t) = π

2N1 N2

∑
ν∈Z2

N

T
(ν)
Q (t− tNµ ) , t ∈ R2 .

For t ∈ Q \ {tNµ }, there also holds the expression

LNµ (t) = 1
4N1 N2

2∏
j=1

sin
(
Nj (tj − tNµ,j)

) [
i + cot

tj − tNµ,j
2

]
.



262 5. The High-Order Numerical Scheme

This follows from the corresponding one-dimensional result in [36, Section
11.3], with some obvious modifications due to a slightly different choice of
the space TN (Q).

Lemma 5.2 The set
{
e(j)LNµ

∣∣ j ∈ {1, . . . , d′}, µ ∈ Z2
N

}
is an orthogonal

basis of
(
TN (Q,Cd′), ‖ · ‖L2(Q,Cd′ )

)
with

(
LNµ | LNν

)
L2(Q) = π2

N1 N2
δµ,ν , µ, ν ∈ Z2

N .

Proof: From PN (TN (Q,Cd′)) = TN (Q,Cd′) and (5.2) it follows, that
TN (Q,Cd′) = span

{
e(j)LNµ | j ∈ {1, . . . , d′}, µ ∈ Z2

N

}
. Moreover,

(LNµ , LNν )L2(Q) = π2

4N2
1 N

2
2

∑
λ,ι∈Z2

N

(
T

(λ)
Q (·− tNµ )

∣∣ T (ι)
Q (·− tNν )

)
L2(Q)

= (π2)2

N2
1 N

2
2

∑
λ,ι∈Z2

N

(
T

(λ)
Q

∣∣ T (ι)
Q

)
L2(Q)

T
(ι)
Q (tNν )T (λ)

Q (−tNµ )

= π3

2N2
1 N

2
2

∑
λ∈Z2

N

T
(λ)
Q (tNν − tNµ ) = π2

N1 N2
LNµ (tNν ) = π2

N1 N2
δµ,ν ,

which completes the proof. �

In some instances, products of functions from Hs
per(Q,Cd

′) with smooth
and scalar valued functions occur. For m ∈ N0 and χ ∈ Cmper(Q,Cd

′), we
set

‖χ‖∞;m := sup
t∈Q
|χ(t)|+ max

|β|=m
sup
t∈Q
|∂βχ(t)|.

Lemma 5.3 Let s ≥ 0 and σ ∈ N≥s. Suppose ϕ ∈ Hs
per(Q,Cd

′) and let
χ ∈ Cσper(Q). Then χϕ ∈ Hs

per(Q,Cd
′) and

‖χϕ‖Hsper(Q,Cd′ ) ≤ C‖χ‖∞;σ‖ϕ‖Hsper(Q,Cd′ ),

where the constant C > 0 is independent of ϕ and χ.
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Proof: The assertion follows from the equivalence of ‖ · ‖Hsper(Q,Cd′ ) with
the Sobolev-Slobodeckǐı norm, see Theorems A.36 and A.41. �

In particular, we are interested in an estimate of this kind when the smooth
factor is a trigonometric monomial.

Lemma 5.4 Let σ ∈ N. Then ‖T (µ)
Q ‖∞;σ ≤ 1

2π (1 + |µ|σ) for all µ ∈ Z2.

Proof: Let β ∈ N2
0 with |β| = σ. Then, for µ ∈ Z2 and t ∈ Q, we have

∂βT
(µ)
Q (t) = i|β| µβ1

1 µβ2
2 T

(µ)
Q (t) and hence

∣∣∂βT (µ)
Q (t)

∣∣ ≤ |µ1|β1 |µ2|β2

2π ≤ |µ|
|β|
∞

2π .

Since |µ|∞ ≤ |µ|, we obtain ‖T (µ)
Q ‖∞;σ ≤ 1

2π (1 + |µ|σ). �

In the later analysis, functions which are Q-periodic with respect to several
independent variables will occur. Such functions can be expanded into a
Fourier series with respect to one of these variables. The behaviour of the
Fourier coefficients in such expansions will be of importance.

Lemma 5.5 Let F ∈ C∞(R2×R2,Cd′) be Q-periodic with respect to both
arguments and define

F (λ)(t) :=
∫
Q

F (t, τ)T (−λ)
Q (τ) dτ, λ ∈ Z2, t ∈ R2.

Then
F (t, τ) =

∑
λ∈Z2

F (λ)(t)T (λ)
Q (τ), t, τ ∈ R2,

holds pointwise, where (F (λ))λ∈Z2 is a sequence in C∞per(Q,Cd
′). Moreover,

for any m ∈ N0 and β ∈ N2
0 there exists a constant C > 0 such that

sup
λ∈Z2

sup
t∈R2

(
1 + |λ|2

)m |∂βF (λ)(t)| ≤ C ‖F‖∞;|β|+2m .
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Proof: We expand F into a Fourier series with respect to the second
argument. Pointwise convergence holds due to the smoothness of F (t, ·) for
all t ∈ R2. In particular, the definition of F (λ) and well-known facts about
parameter-dependent integrals yield F (λ) ∈ C∞per(Q,Cd

′). Furthermore,

|∂βF (λ)(t)| ≤ 2π ‖F‖∞;|β| , t ∈ R2, β ∈ N2
0 .

For m ∈ N0, we have |λ|2m =
∑
α∈N2

0:|α|=m
m!

α1!α2! λ
2α1
1 λ2α2

2 . Let λ ∈ Z2,
t ∈ R2, β ∈ N2

0 and α ∈ N2
0 with |α| = m. Then

m!
α1!α2!λ

2α1
1 λ2α2

2
∣∣∂βF (λ)(t)

∣∣
= m!

α1!α2!

∣∣∣ ∫
Q

∂βt F (t, τ)
(
− i
)2|α|

λ2α1
1 λ2α2

2 T
(−λ)
Q (τ)︸ ︷︷ ︸

=∂(2α1,2α2)T
(−λ)
Q

(τ)

dτ
∣∣∣

= m!
α1!α2!

∣∣∣ ∫
Q

∂βt ∂
(2α1,2α2)
τ F (t, τ)T (−λ)

Q (τ) dτ
∣∣∣ ≤ 2π m!

α1!α2!‖F‖∞;|β|+2m ,

where we have used integration by parts in the third line. Hence,

|λ|2m
∣∣∂βF (λ)(t)

∣∣ ≤ 2π ‖F‖∞;|β|+2m
∑
|α|=m

m!
α1!α2! = 2m+1 π ‖F‖∞;|β|+2m .

From
(
1 + |λ|2

)m ≤ 2m
(
1 + |λ|2m

)
, λ ∈ Z2, we obtain(

1 + |λ|2
)m∣∣∂βF (λ)(t)

∣∣ ≤ 2m+1π
(
‖F‖∞;|β| + 2m ‖F‖∞;|β|+2m

)
.

Since λ ∈ Z2 and t ∈ R2 were chosen arbitrarily, the proof is completed by
observing the boundedness of the embedding from C

|β|+2m
per (Q,Cd′) into

C
|β|
per(Q,Cd

′). �

5.2. The Approach for a Single Biperiodic
Integral Equation

In this section we reduce the system (5.1) to a single integral equation and
introduce the numerical scheme for it. The generalization to systems is
then straightforward and topic of the next section.



5.2. The Approach for a Single Biperiodic Integral Equation 265

We consider an integral equation

ϕ(t)−
∫
Q

k(t, τ)ϕ(τ) dτ = ψ(t), t ∈ Q, (5.3)

and impose the following assumptions on the kernel function and the right
hand side:

Assumption 5.6 Let k = k1 +k2, where k1 ∈ C∞(Q×Q\{(t, t) | t ∈ Q})
and k2 ∈ C∞(R2 × R2) are Q-periodic with respect to both variables. For
every multi-index α ∈ N2

0, there exists C > 0 such that the estimate

|∂αk1(t, τ)| ≤ C

minν∈Z2 |t− τ − 2π ν|1+|α| , t, τ ∈ R2 , t 6= τ + 2πν,

is satisfied. For some 0 < %0 < π, setting `(t, r, v) = |r| k1(t, t+ rv), t ∈ Q,
r ∈ [−%0, %0], v ∈ S1, we assume that ` ∈ C∞(Q× [−%0, %0]× S1).

We also assume ψ ∈ Hs
per(Q) for some s > 1.

Hence, k1 is assumed to have a particular type of weak singularity that
can be removed by a transformation to polar coordinates around the
singularity.

Examples of such kernels are the entries of the kernel function of Mα, see
Proposition 4.23. Further examples are discussed in [9].

Isolating and Removing the Singularity. To make use of Assumption
5.6 in the numerical method, we require appropriate cut-off functions. For
0 < δ < ε < π we define

χδ,ε(τ) :=


1 , |τ | ≤ δ ,
χ̃
(
ε−|τ |
ε−δ

)
, δ < |τ | < ε ,

0 , |τ | ≥ ε ,
τ ∈ Q,

with
χ̃(s) := e−1/s

e−1/s + e−1/(1−s) , s ∈ (0, 1) .
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Note that χδ,ε is infinitely often differentiable. On all of R2, χδ,ε is assumed
to be Q-periodic. Furthermore, an argument by induction shows that

∂αχδ,ε(τ) =
m∑
`=1

pα` (τ)
(δ − ε)` |τ |2m−` χ̃

(`)
(
ε− |τ |
ε− δ

)
, α ∈ N2

0 , |α| = m ∈ N ,

where pα` are either homogeneous polynomials of degree m or the zero
function. From this representation, we obtain the estimate

|∂αχδ,ε(t)| ≤ Cα
m∑
`=1

εm

δ2m−` (ε− δ)` , t ∈ R2 . (5.4)

Fixing numbers 0 < δ1 < δ2, (5.4) implies

|∂αχδ1%,δ2%(t)| ≤ Cα,δ1,δ2 %
−m , 0 < % < π/δ2 , (5.5)

with a constant Cα,δ1,δ2 independent of %.

With the help of these cut-off functions, we localize the singularity in
the integral operator from (5.3). Fixing numbers 0 < ε1 < ε2 < 1 and
0 < % < %0, define

ksmooth(t, τ) := k1(t, τ) (1− χε1%,ε2%(τ − t)) + k2(t, τ) , (5.6)

and introduce the operators

J1ϕ(t) :=
∫
Q

k1(t, τ)χε1%,ε2%(τ − t)χε2%,%(τ − t)ϕ(τ) dτ ,

J2ϕ(t) :=
∫
Q

ksmooth(t, τ)ϕ(τ) dτ ,
t ∈ Q .

Then (5.3) can be rewritten as

ϕ− J1ϕ− J2ϕ = ψ on Q . (5.7)

The reason for introducing χε2%,% will be explained below.

Next, we rewrite J1ϕ(t) using polar coordinates around t. We set

Π(p) := r
%

π

(
cosϑ
sinϑ

)
, p = (r, ϑ)> ∈ Q ,



5.2. The Approach for a Single Biperiodic Integral Equation 267

and

kpolar(t, p) := |r| %
2

2π2 k1(t, t+ Π(p))χε1%,ε2%(Π(p)) , t, p = (r, ϑ)> ∈ Q .

Substituting τ = t+ Π(p) in the expression for the operator J1 gives

J1ϕ(t) =
∫
Q

kpolar(t, p)χε2%,%(Π(p))ϕ(t+ Π(p)) dp , t ∈ Q . (5.8)

By Assumption 5.6 and kpolar(t, p) = 0 for |Π(p)| ≥ ε2%, we have that
kpolar ∈ C∞(Q×Q) can be extended Q-periodically with respect to both
arguments to C∞(R2 × R2). The reason for introducing χε2%,% becomes
clear now: χε2%,%(Π(·)) ϕ(t+ Π(·)) can also be Q-periodically extended to
C∞(R2).

The Semidiscrete Problem and Modifications. We want to solve (5.7)
numerically using a collocation method on the space TN (Q). Thus, the
semidiscrete problem is to find ϕN ∈ TN (Q) such that

ϕN − PNJ1ϕN − PNJ2ϕN = PNψ on Q. (5.9)

A fully discrete method is obtained in several steps. Firstly, both integrals
are replaced by composite trapezoidal rules which are highly efficient for
periodic functions. For M , N ∈ N2, we set for ϕ ∈ Hs

per(Q)

J1,Mϕ(t) :=
∫
Q

PM [kpolar(t, ·)χε2%,%(Π(·))ϕ(t+ Π(·))] (p) dp

= π2

M1M2

∑
ν∈Z2

M

kpolar(t, tMν )χε2%,%(Π(tMν ))ϕ(t+ Π(tMν ))

(5.10)

J2,Nϕ(t) :=
∫
Q

PN [ksmooth(t, ·)ϕ] (τ) dτ

= π2

N1N2

∑
ν∈Z2

N

ksmooth(t, tNν )ϕ(tNν ) . (5.11)

While both operators are discrete in principle, only J2,N can be used
directly. The expression for J1,M involves the evaluation of ϕ(t+ Π(tMν )).
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An exact evaluation requires the knowledge of LNµ (Π(tMν )) for all µ ∈ Z2
N

and ν ∈ Z2
M , which amounts to O(N2M2) operations. In [19, 20, 18] the

quadrature rule in radial direction is slightly perturbed and the values
of ϕ(t+ Π(·)) in the quadrature points are obtained to high accuracy by
fixed degree polynomial interpolation. However, this approach limits the
asymptotic convergence rate.

The approach of [7] is a collocation method and uses the exact values
of ϕ(t+ Π(·)) in the quadrature points. Here, we modify the scheme by
reducing the cost in the approximation of J1. We require the orthogonal
projection OM from L2(Q) onto TM (Q),

OMv :=
∑
µ∈Z2

M

(
v | T (µ)

Q

)
L2(Q) T

(µ)
Q = M1M2

π2

∑
µ∈Z2

M

(
v | LMµ

)
L2(Q) L

M
µ

(5.12)
for v ∈ L2(Q), where the second representation is due to Lemma 5.2.
Let 1 < ε3 denote a number such that ε3% ≤ %0. A scaled projection for
functions on Q% := (−ε3%, ε3%)2 is given by

ÕMv := OM

[
v
(ε3%

π
·
)]( π

ε3%
·
)
, v ∈ L2(Q%) .

We define for M , M̃ ∈ N2,

J1,M,M̃ϕ(t) :=
∫
Q

PM

[
kpolar(t, ·)

OM
[{
χε2%,% ÕM̃ [χ%,ε3% ϕ(t+ ·)]

}
◦Π
] ]

(p) dp . (5.13)

The operator OM was already used in [7]. It makes the derivation of
(5.20) below possible which is central to the proof of Theorem 5.15. The
projection ÕM̃ reduces the complexity of the scheme when compared to
the approach in [7], see also [9, Section 5].

Mapping Properties. For the remaining part of this section, we focus
on the convergence analysis of the approach introduced above. We will
start with properties of the operators J2 and J2,N which are simpler to
analyse.
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Theorem 5.7 Let s ≥ 0. Then J2 : Hs
per(Q)→ Hs+1

per (Q) is well-defined,
linear and bounded with ‖J2‖ ≤ C %−max{5,s+3} for all % ≤ %0 with the
constant C dependent on the kernel k and the numbers ε1, ε2.

Proof: We write ksmooth using its Fourier series representation from
Lemma 5.5,

ksmooth(t, τ) =
∑
λ∈Z2

k(λ)(t)T (λ)
Q (τ), t, τ ∈ R2.

Let ϕ ∈ Hs
per(Q) and set σ := bsc, see also the beginning of Section 1.3

for the meaning of this symbol. By Lemma 5.3, there holds∥∥k(λ)∥∥
Hs+1

per (Q) = 2π
∥∥k(λ)T

(0)
Q

∥∥
Hs+1

per (Q) ≤ C
∥∥k(λ)∥∥

∞;σ+2

for all λ ∈ Z2. Therefore, by applying the triangle inequality with respect
to the norm ‖ · ‖Hs+1

per (Q),

‖J2 ϕ‖Hs+1
per (Q) ≤

∑
λ∈Z2

∣∣∣∣∫
Q

T
(λ)
Q (τ)ϕ(τ) dτ

∣∣∣∣ ∥∥k(λ)∥∥
Hs+1

per (Q)

=
∑
λ∈Z2

|ϕ−λ|
∥∥k(λ)∥∥

Hs+1
per (Q)

≤ C ‖ϕ‖Hsper(Q)

(∑
λ∈Z2

(
1 + |λ|2

)−σ ∥∥k(λ)∥∥2
∞;σ+2

)1/2

≤ C ‖ϕ‖Hsper(Q) sup
λ∈Z2

[(
1 + |λ|2

)max{1−σ2 ,0}
∥∥k(λ)∥∥

∞;σ+2

]
×

(∑
λ∈Z2

(
1 + |λ|2

)−2
)1/2

≤ C ‖ϕ‖Hsper(Q)
∥∥ksmooth

∥∥
∞;σ+2+max{2−σ,0}

= C ‖ϕ‖Hsper(Q)
∥∥ksmooth

∥∥
∞;max{4,σ+2} ,

where the last estimate is due to Lemma 5.5. Recall that C a generic
constant that may be different in each occurence.
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Define the set Ω% = {(t, τ) ∈ R2 ×R2 | |t− τ + 2πν| ≥ ε2% for all ν ∈ Z2}.
We proceed to bound for m ∈ N0 using Assumption 5.6 and (5.5)∥∥ksmooth

∥∥
∞;m ≤ ‖k2

∥∥
∞;m + ‖k1

∥∥
∞

+ C
∑

|α|+|β|=m

‖∂αk1(·, ·)‖∞;Ω% ‖∂β(1− χε1%,ε2%)‖∞;R2 ≤ C%−m−1

for % ≤ %0, which completes the proof. �

Theorem 5.8 Let s > 1 and t ∈ [0, s]. Then J2,N : Hs
per(Q)→ Ht+1

per (Q)
is well-defined, linear and bounded. Moreover,

‖(J2 − J2,N )ϕ‖Ht+1
per (Q) ≤ C %

−2s−6 (max{N1, N2})t

(min{N1, N2})s
‖ϕ‖Hsper(Q)

for all ϕ ∈ Hs
per(Q), % ≤ %0 and all N ∈ N2, where C depends on k, ε1

and ε2.

Proof: Let σ ∈ N≥s. From Cauchy-Schwarz’s inequality and Lemma 5.1,
we conclude∣∣∣ ∫

Q

(
T

(λ)
Q ϕ− PN [T (λ)

Q ϕ]
)
(τ) dτ

∣∣∣ ≤ 2π
∥∥T (λ)

Q ϕ− PN [T (λ)
Q ϕ]

∥∥
Htper(Q)

≤ C (max{N1, N2})t

(min{N1, N2})s
∥∥T (λ)

Q ϕ
∥∥
Hsper(Q) .

From Lemmas 5.3 and 5.4, we obtain∥∥T (λ)
Q ϕ

∥∥
Hsper(Q) ≤ C

∥∥T (λ)
Q

∥∥
∞;σ‖ϕ‖Hsper(Q) ≤ C

(
1 + |λ|σ

)
‖ϕ‖Hsper(Q)

≤ C
(
1 + |λ|2

)σ
2 ‖ϕ‖Hsper(Q)

so that ∣∣∣ ∫
Q

(
T

(λ)
Q ϕ− PN [T (λ)

Q ϕ]
)
(τ) dτ

∣∣∣
≤ C (max{N1, N2})t

(min{N1, N2})s
(
1 + |λ|2

)σ/2 ‖ϕ‖Hsper(Q) .
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Thus, by applying the triangle inequality with respect to ‖ · ‖Ht+1
per (Q),

‖(J2 − J2,N )ϕ‖Ht+1
per (Q)

≤
∑
λ∈Z2

∣∣∣ ∫
Q

(
T

(λ)
Q ϕ− PN [T (λ)

Q ϕ]
)
(τ) dτ

∣∣∣ ∥∥k(λ)
smooth

∥∥
Ht+1

per (Q)

≤ C (max{N1, N2})t

(min{N1, N2})s
‖ϕ‖Hsper(Q)

∑
λ∈Z2

(
1 + |λ|2

)σ/2 ∥∥k(λ)
smooth

∥∥
∞;σ+1

and again Lemma 5.5 completes the proof as the remaining argument is
very similar to that at the end of the proof for Theorem 5.7. �

The derivation of a similar result for the approximation J1,M,M̃ of J1 as
introduced in (5.13) is more complicated. Although the singularity has
been removed, the integral operator now takes on a non-standard form
which makes the analysis of its mapping properties much more involved.

To simplify the considerations, let us rewrite J1 in terms of expressions
that are easier to analyse. Writing kpolar as a Fourier series with respect
to p,

kpolar(t, p) =
∑
λ∈Z2

k
(λ)
polar(t)T

(λ)
Q (p), t, p ∈ Q , (5.14)

we formally have

J1ϕ(t) =
∑
λ∈Z2

k
(λ)
polar(t)

∫
Q

T
(λ)
Q (p)χε2%,%(Π(p))ϕ(t+ Π(p)) dp .

The later analysis will show that interchanging integration and summation
is indeed justified.

Recalling Q% = (−ε3%, ε3%)2, with corresponding trigonometric monomi-
als

T
(ν)
Q%

(τ) = 1
2ε3%

exp
(

i π

ε3%
τ · ν

)
, τ ∈ Q% ,

consider now functions u of t ∈ Q and τ ∈ Q%. These can be expanded
into Fourier series with respect to both variables,

u(t, τ) =
∑

µ,ν∈Z2

uµ,ν T
(µ)
Q (t)T (ν)

Q%
(τ) .
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For s ≥ 0, we introduce the vector space

HsQ,Q% :=
{
u ∈ L2(Q×Q%) | ps,σ(u) <∞ for all σ ≥ 0

}
,

where

ps,σ(u) :=
∑

µ,ν∈Z2

(1 + |µ|2)s(1 + |µ− π
ε3%

ν|2)σ|uµ,ν |2 , σ ≥ 0 .

Remark 5.9 The space HsQ,Q% is a subspace of HtQ,Q% , for all 0 ≤ t ≤ s.

For u ∈ HsQ,Q% and σ ≥ 0, we also set

qs,σ(u) :=
∑

µ,ν∈Z2

(1 + | πε3%
ν|2)s(1 + |µ− π

ε3%
ν|2)σ|uµ,ν |2.

Between ps,σ and qs,σ, there holds a certain equivalence relation. For
u ∈ HsQ,Q% and σ ≥ 0, we estimate

ps,σ(u) =
∑

µ,ν∈Z2

(
1 + |µ|2

)s(1 + |µ− π
ε3%

ν|2
)σ|uµ,ν |2

≤ 2s
∑

µ,ν∈Z2

(
1 + |µ− π

ε3%
ν|2 + | πε3%

ν|2
)s(1 + |µ− π

ε3%
ν|2
)σ|uµ,ν |2

≤ 2s
∑

µ,ν∈Z2

(
1 + | πε3%

ν|2
)s(1 + |µ− π

ε3%
ν|2
)σ+s|uµ,ν |2 = 2s qs,σ+s(u) ,

(5.15)

and by similar arguments also qs,σ(u) ≤ 2s ps,σ+s(u).

Two technical lemmas are required to establish the mapping properties of
the operator J1.

Lemma 5.10 Denote by χ̂%,ε3% the Fourier transform of the extension of
χ%,ε3%|Q to R2 by 0. Then for any σ ∈ N0 and ε3% ≤ %0,

sup
x∈R2

[
(1 + |x|2)σ

∣∣χ̂%,ε3%(x)
∣∣] ≤ C %−2σ+2 ,

where the constant C depends only on σ and ε3.
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Proof: We note that χ%,ε3%(%t) = χ1,ε3(t), for all t ∈ Q, and obtain

χ̂%,ε3%(x) =
∫
B2(0,ε3%)

χ%,ε3%(t) e−it·x dt = %2
∫
B2(0,ε3)

χ1,ε3(t) e−i% t·x dt .

Let R > 0 and consider x = |x| x̂ with |x| ≥ R. We rewrite the integral
using the divergence theorem as∫

B2(0,ε3)
χ1,ε3(t) e−i% t·x dt

=
∫
B2(0,ε3)

{
x̂ · ∇χ1,ε3(t) e−i%|x| t·x̂

i |x| % −∇t ·
[
x̂ χ1,ε3(t) e−i%|x| t·x̂

i |x| %

]}
dt

= 1
i%|x|

∫
B2(0,ε3)

x̂ · ∇χ1,ε3(t) e−i%|x| t·x̂ dt .

We repeat this argument 2σ − 1 times to obtain

χ̂%,ε3%(x) = %2

(i%|x|)2σ

∫
B2(0,ε3)

h(t) e−i%|x| t·x̂ dt

with some function h depending on ε3 and continuously on x̂. The assertion
follows by applying the triangular inequality for integrals and taking the
maximum with respect to x̂.
For |x| ≤ R, we use |χ̂%,ε3%(x)| ≤ C (ε3%)2 and ε3% ≤ %0. �

Lemma 5.11 Let s ≥ 0, ε3% ≤ %0.

(i) For ϕ ∈ Hs
per(Q) define

Mϕ(t, τ) := χ%,ε3%(τ)ϕ(t+ τ) , (t, τ) ∈ Q×Q%.

Then Mϕ ∈ HsQ,Q% , and for all σ ≥ 0,

ps,σ(Mϕ) ≤ C %−2σ−2 ‖ϕ‖2
Hsper(Q) ,

where the constant C depends only on σ and ε3.
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(ii) For λ ∈ Z2 and u ∈ HsQ,Q% , set

J (λ)u(t) :=
∫
Q

T (λ)(p)χε2%,%(Π(p))u(t,Π(p)) dp, t ∈ Q.

(J (λ))λ∈Z2 is a family of linear operators which map the space HsQ,Q%
to Hs+1

per (Q) and with

‖J (λ)u‖Hs+1
per (Q) ≤ C %

−1 (1 + |λ|2)
√
ps,3(u), u ∈ HsQ,Q% , λ ∈ Z2,

where C > 0 is a constant only depending on ε2, ε3 and s.

(iii) (J (λ) ◦M)λ∈Z2 is a family of linear and bounded operators mapping
Hs

per(Q) to Hs+1
per (Q). In particular,

‖J (λ)Mϕ‖Hs+1
per (Q) ≤ C %

−5 (1 + |λ|2)‖ϕ‖Hsper(Q), ϕ ∈ Hs
per(Q),

and for all λ ∈ Z2, where the constant C > 0 only depends on ε2, ε3
and s.

Proof: (i). Let s ≥ 0 and ϕ ∈ Hs
per(Q). In a first step, we calculate the

Fourier-coefficients uµ,ν of u =Mϕ. Therefore, let µ, ν ∈ Z2. Then

uµ,ν =
∫
Q

∫
Q%

u(t, τ)T (−µ)
Q (t)T (−ν)

Q%
(τ) dτ dt

= 1
2ε3%

∫
Q%

χ%,ε3%(τ) e−i π
ε3%

ν·τ
(

1
2π

∫
Q

ϕ(t+ τ) e−iµ·(t+τ−τ) dt
)

dτ

= 1
2ε3%

∫
R2
χ%,ε3%(τ) e−i( π

ε3%
ν−µ)·τ

(
1

2π

∫
τ+Q

ϕ(t′) e−iµ·t′ dt′
)

dτ

= 1
2ε3%

χ̂%,ε3%( π
ε3%

ν − µ)ϕµ,

where the last step holds due to the Q-periodicity of ϕ. Now, in a second
step, for σ ≥ 0, there holds

ps,σ(u) = 1
(2ε3%)2

∑
µ,ν∈Z2

(
1+|µ|2

)s (1+| πε3%
ν−µ|2

)σ+2(
1+| πε3%

ν−µ|2
)2 |ϕµ|2

∣∣χ̂%,ε3%( π
ε3%

ν−µ)
∣∣2.
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From ∫
R2

1
(1 + |x|2)2 dx ≥ h2

∑
ν∈Z2

ν1,ν2 6=0

1
(1 + |hν|2)2 , h > 0 ,

and similar estimates for the remaining terms in the sum, we see that the
value of the series

∑
ν∈Z2

(
1 + | πε3%

ν − µ|2
)−2

is uniformly bounded in µ

and % for ε3% ≤ %0. Thus from Lemma 5.10, the assertion follows.
(ii). Using the Fourier series expansion of u, there holds

J (λ)u =
∑

µ,ν∈Z2

uµ,ν

∫
Q

T
(λ)
Q (p)χε2%,%(Π(p))T (ν)

Q%
(Π(p)) dp T (µ)

Q .

Suppose ν 6= 0. We write (ν1, ν2)> = qν(cosϑν , sinϑν)> for some qν > 0
and some ϑν ∈ (−π, π], and obtain

T
(ν)
Q%

(Π(p)) = 1
2ε3%

exp (i qν (r/ε3) cos(ϑ− ϑν)) , p = (r, ϑ) ∈ Q.

Hence, the substitution ϑ′ = ϑ− ϑν and the 2π-periodicity with respect
to ϑ yield∫

Q

T
(λ)
Q (p)χε2%,%(Π(p))T (ν)

Q%
(Π(p)) dp = 1

2ε3%
eiλ2 ϑν

∫
Q

T
(λ)
Q (r, ϑ′)

× [χε2%,% ◦Π] (r, ϑ′ + ϑν)ei qν (r/ε3) cosϑ′ d(r, ϑ′).

The behaviour of the integral in this expression with respect to λ and ν
can be estimated by the method of stationary phase. A detailed proof is
given in [7, Lemma 6.2]. We obtain

∣∣∣ ∫
Q

T
(λ)
Q (p)

[
χε2%,% T

(ν)
Q%

]
◦Π(p) dp

∣∣∣ ≤ C ∥∥T (λ)
Q [χε2%,% ◦Π] (·, ·+ ϑν)

∥∥
∞;2

qν
.

Similarly as in the proof of Lemma 5.10 we observe that

[χε2%,% ◦Π] (r, ϑ+ ϑν) = χε2,1

(
r

π

(
cos(ϑ+ ϑν)
sin(ϑ+ ϑν)

))
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is independent of %. Hence∣∣∣ ∫
Q

T
(λ)
Q (p)

[
χε2%,% T

(ν)
Q%

]
◦Π(p) dp

∣∣∣
≤ C

∥∥T (λ)
Q

∥∥
∞;2

qν
≤
√

2C

∥∥T (λ)
Q

∥∥
∞;2

(1 + |ν|2)1/2 . (5.16)

Note that the final estimate is also true for ν = 0. Using Lemma 5.4,
gives ∣∣∣∣∫

Q

T
(λ)
Q (p)χε2%,%(Π(p))T (ν)

Q%
(Π(p)) dp

∣∣∣∣ ≤ C 1 + |λ|2

(1 + |ν|2)1/2 .

We proceed with

∥∥∥J (λ)u
∥∥∥2

Hs+1
per (Q)

≤ C2
∑
µ∈Z2

(1 + |µ|2)s+1

(∑
ν∈Z2

1+|λ|2
(1+|ν|2)1/2 |uµ,ν |

)2

= C2(1 + |λ|2)2
∑
µ∈Z2

(1 + |µ|2)s
(∑
ν∈Z2

(
1+|µ|2
1+|ν|2

)1/2
|uµ,ν |

)2

≤ C2(1 + |λ|2)2
∑
µ∈Z2

(1 + |µ|2)s ×

(∑
ν∈Z2

(
(1+| πε3%

ν|2) (1+|µ− π
ε3%

ν|2)
(1+|ν|2)

)1/2

|uµ,ν |

)2

≤ C2 %−2 (1 + |λ|2)2
∑
µ∈Z2

(1 + |µ|2)s
(∑
ν∈Z2

(1+|µ− π
ε3%

ν|2)3/2

1+|µ− π
ε3%

ν|2
|uµ,ν |

)2

.

(5.17)

As in the proof of part (i), the series
∑
ν∈Z2

(
1 + |µ− π

ε3%
ν|2
)−2

is bounded
independently of µ and % < 1, so that we can apply the Hölder inequality
for `2-series to obtain∥∥∥J (λ)u

∥∥∥2

Hs+1
per (Q)

≤ C2 %−2 (1 + |λ|2)2

×
∑

µ,ν∈Z2

(1 + |µ|2)s(1 + |µ− π
ε3%

ν|2)3|uµ,ν |2
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= C2 %−2 (1 + |λ|2)2 ps,3(u) .

(iii). The assertion follows directly by combining (i) and (ii). �

With these preliminary considerations, we are now able to investigate the
mapping properties of J1.

Theorem 5.12 Let s ≥ 0. Then J1 : Hs
per(Q) → Hs+1

per (Q) defined
in (5.8) is a linear and bounded operator with

‖J1ϕ‖Hs+1
per (Q) ≤ C %

−5 ‖ϕ‖Hsper(Q)

for ε3% ≤ %0 with C depending only on k, s, ε1, ε2 and ε3.

Proof: By definition, J1 is a linear integral operator. To show boundedness
from Hs

per(Q) to Hs+1
per (Q), we insert χ%,ε3%(Π(·)) in the integrand and

expand kpolar into its Fourier series (5.14). With J (λ) from Lemma 5.11
we obtain

J1ϕ(t) =
∑
λ∈Z2

k
(λ)
polar(t)J

(λ)Mϕ(t) .

This is justified by the estimates for any σ ∈ N≥s+1 using Lemma 5.11

‖J1ϕ‖Hs+1
per (Q) ≤ C

∑
λ∈Z2

‖k(λ)
polar‖∞;σ

∥∥J (λ)Mϕ
∥∥
Hs+1

per (Q)

≤ C %−5 ‖ϕ‖Hsper(Q)
∑
λ∈Z2

(
1 + |λ|2

)
‖k(λ)

polar‖∞;σ

≤ C %−5 ‖ϕ‖Hsper(Q)
∑
λ∈Z2

1
(1 + |λ|2)2

(
1 + |λ|2

)3‖k(λ)
polar‖∞;σ .

The series converges as the two last factors are bounded by Lemma 5.5
with

sup
λ∈Z2

(
1 + |λ|2

)3‖k(λ)
polar‖∞;σ ≤ C ‖kpolar‖∞,σ+6 .

With t, p = (r, ϑ)> ∈ Q and setting p̂ = (cosϑ, sinϑ)>, we write kpolar(t, p)
as

kpolar(t, p) = %

2π `
(
t,
% r

π
, p̂
)
χε1,ε2

( r
π
p̂
)
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with the function ` from Assumption 5.6. It follows that ‖kpolar‖∞,σ+6 ≤ C
uniformly for ε3% ≤ %0 with C depending only on σ, ε1 and ε2. This
completes the proof. �

We next derive an analogue of Theorem 5.8 for J1, i.e. an estimate for the
difference J1 − J1,M,M̃ . To this end, we write

J1 − J1,M,M̃ =
[
J1 − J̃1,M̃

]
+
[
J̃1,M̃ − J1,M,M̃

]
,

where

J̃1,M̃ϕ(t) :=
∫
Q

kpolar(t, p)
[{
χε2%,% ÕM̃ [χ%,ε3% ϕ(t+ ·)]

}
◦Π
]

(p) dp

(5.18)
for t ∈ Q. Note that, using the projection

OM̃u(·, ··) :=
∑
µ∈Z2

∑
ν∈Z2

M̃

uµ,ν T
(µ)
Q (·)T (ν)

Q%
(··) , u ∈ HsQ,Q% , (5.19)

we can write J̃1,M̃ as J̃1,M̃ϕ =
∑
λ∈Z2 k

(λ)
polar J (λ)OM̃Mϕ.

Lemma 5.13 Let s ≥ 0, ε3% ≤ %0, M ∈ N2 and recall the definitions of
J (λ) and M from Lemma 5.11.

(i) For all u ∈ HsQ,Q% and λ ∈ Z2,

‖J (λ)u‖Hs+1
per (Q) ≤ C %

−1 (1 + |λ|2)
√
qs,s+3(u) ,

where C depends only on s, ε2 and ε3.

(ii) For 0 ≤ t ≤ s, σ ≥ 0 and all u ∈ HsQ,Q% ,

qt,σ
(
(I − OM )u

)
≤
(√

2M
)2(t−s)

qs,σ(u) .

Here I denotes the identity operator and for M recall (1.3).

(iii) Let 0 ≤ t ≤ s, λ ∈ Z2. Then J (λ)(I−OM )M : Hs
per(Q)→ Ht+1

per (Q)
is bounded with

‖J (λ)(I −OM )Mϕ‖Ht+1
per (Q) ≤ C %

−2s−5 (1 + |λ|2)M t−s ‖ϕ‖Hsper(Q)

for all ϕ ∈ Hs
per(Q), where the constant C > 0 only depends on s, t,

ε2 and ε3.
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Proof: (i). This follows from Lemma 5.11 (ii) together with (5.15).
(ii). Let 0 ≤ t ≤ s and σ ≥ 0. Then

qt,σ
(
(I − OM )u

)
=
∑
µ∈Z2

∑
ν∈Z2\Z2

M

(
1 + | πε3%

ν|2
)t(1 + |µ− π

ε3%
ν|2
)σ|uµ,ν |2

≤
∑
µ∈Z2

∑
ν∈Z2\Z2

M

(
1 + |ν|2

)t−s(1 + | πε3%
ν|2
)s(1 + |µ− π

ε3%
ν|2
)σ|uµ,ν |2

≤
(√

2M
)2(t−s)

qs,σ(u)

holds for all u ∈ HsQ,Q% .
(iii). Let ϕ ∈ Hs

per(Q) and set u =Mϕ. Then, by Lemma 5.11 (i) and
Remark 5.9, u ∈ HtQ,Q% , and hence also (I − OM )u ∈ HtQ,Q% . From
part (i) and (ii) together with (5.15) and Lemma 5.11 (i), we obtain the
estimate

‖J (λ)(I − OM )u‖Ht+1
per (Q) ≤ C %

−1 (1 + |λ|2)
√
qt,t+3

(
(I −OM )u

)
≤ C %−1 (1 + |λ|2)M t−s

√
qs,s+3(u)

≤ C %−1 (1 + |λ|2)M t−s
√
ps,2s+3(u)

≤ C %−2s−5 (1 + |λ|2)M t−s ‖ϕ‖Hsper(Q),

which is the desired result. �

Theorem 5.14 Let M̃ ∈ N2, s ≥ 0 and t ∈ [0, s]. Then the operator
J̃1,M̃ : Hs

per(Q) → Ht+1
per (Q) defined in (5.18) is well-defined, linear and

bounded with

‖(J1 − J̃1,M̃ )ϕ‖Ht+1
per (Q) ≤ C %

−2s−5 M̃
t−s‖ϕ‖Hsper(Q)

for all ϕ ∈ Hs
per(Q) and ε3% ≤ %0, where C > 0 only depends on k, s, t,

ε2 and ε3.

Proof: Let ϕ ∈ Hs
per(Q) and σ ∈ N≥s+1. Proceeding analogously as in

the proof of Theorem 5.12, from Lemma 5.13 (iii) we obtain

‖(J1 − J̃1,M̃ )ϕ‖Ht+1
per (Q) ≤ C

∑
λ∈Z2

‖k(λ)
polar‖∞;σ

∥∥J (λ)(I − OM̃ )Mϕ
∥∥
Ht+1

per (Q)
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≤ C %−2s−5 M̃
t−s‖ϕ‖Hsper(Q)

∑
λ∈Z2

(
1 + |λ|2

)
‖k(λ)

polar‖∞;σ .

For the remainder of this proof we proceed as at the end of the proof of
Theorem 5.12. �

Theorem 5.15 Let M,M̃ ∈ N2, s ≥ 0 and t ∈ [0, s]. Then the operator
J1,M,M̃ : Hs

per(Q)→ Ht+1
per (Q) defined in (5.13) is well-defined, linear and

bounded. Moreover, there exists some τ > 0 such that

‖(J̃1,M̃ − J1,M,M̃ )ϕ‖Ht+1
per (Q) ≤ C %

−4 M
τ

Ms−t+τ ‖ϕ‖Hsper(Q)

for all ϕ ∈ Hs
per(Q) and ε3% ≤ %0, where C > 0 only depends on k, s, t,

τ , ε2 and ε3.

Proof: We follow the proof of [7, Theorem 6.5]. Let ϕ ∈ Hs
Q. We set

v(p) :=
{
χε2%,% ÕM̃ [χ%,ε3% ϕ(t+ ·)]

}
◦Π(p), p ∈ Q,

and write the operators as

J̃1,M̃ϕ =
∑
λ∈Z2

k
(λ)
polar

∫
Q

T
(λ)
Q (p) v(p) dp ,

J1,M,M̃ϕ =
∑
λ∈Z2

k
(λ)
polar

∫
Q

PM

[
T

(λ)
Q OMv

]
(p) dp .

A central observation regarding this representation of J1,M,M̃ is∫
Q

PM
[
T

(λ)
Q OMv

]
(p) dp =

∑
ι∈Z2

M

T
(λ)
Q (tMι )OMv(tMι )

∫
Q

LMι (p) dp

=
∑
ι∈Z2

M

T
(λ)
Q (tMι ) π2

M1M2
OMv(tMι )

=
∑
ι∈Z2

M

T
(λ)
Q (tMι ) π2

M1M2

( ∑
ν∈Z2

M

M1M2

π2

∫
Q

LMν (p) v(p) dpLMν (tMι )
)
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=
∑
ι∈Z2

M

T
(λ)
Q (tMι )

∫
Q

LMι (p) v(p) dp =
∫
Q

v(p)PMT (λ)
Q (p) dp ,

so that we obtain

(J̃1,M̃ − J1,M,M̃ )ϕ =
∑
λ∈Z2

k
(λ)
polar

∫
Q

v(p)
[
T

(λ)
Q (p)− PMT (λ)

Q (p)
]

dp .

(5.20)
Moreover, let τ > 3 and ω ≥ s − t + τ . By Sobolev’s Imbedding Theo-
rem, the space Hτ

per(Q) is continuously imbedded in the space of twice
continuously differentiable Q-periodic functions. Hence, by Lemma 5.1∥∥T (λ)

Q − PMT (λ)
Q

∥∥
∞;2 ≤ C

∥∥T (λ)
Q − PMT (λ)

Q

∥∥
Hτper(Q)

≤ C M
τ

Mω

∥∥T (λ)
Q

∥∥
Hωper(Q) ≤ C

M
τ

Ms−t+τ
(
1 + |λ|2

)ω/2
.

Setting u :=Mϕ withM from Lemma 5.11 and recalling OM̃ from (5.19),
we obtain∫

Q

(
T

(λ)
Q (p)− PMT (λ)

Q (p)
)
χε2%,%(Π(p))OM̃u(·,Π(p)) dp

=
∑
µ∈Z2

∑
ν∈Z2

M̃

uµ,ν

∫
Q

(
T

(λ)
Q − PMT (λ)

Q

)
(p)
[
χε2%,% T

(ν)
Q%

]
◦Π(p) dp T (µ)

Q .

Hence, by a slight modification of the estimate in (5.16), we can proceed
as in (5.17) to obtain∥∥∥∫

Q

(
T

(λ)
Q (p)− PMT (λ)

Q (p)
)
χε2%,%(Π(p))OM̃u(·,Π(p)) dp

∥∥∥
Ht+1

per (Q)

≤ C M
τ (1 + |λ|2)ω/2

Ms−t+τ

∑
µ∈Z2

(
1 + |µ|2

)t( ∑
ν∈Z2

M̃

(1+|µ|2)1/2

(1+|ν|2)1/2 |uµ,ν |
)2
1/2

≤ C M
τ (1 + |λ|2)ω/2

Ms−t+τ

( ∑
µ∈Z2

ν∈Z2
M̃

(
1 + |µ|2

)t(1 + |µ− π
ε3%

ν|2
)3|uµ,ν |2

)1/2

≤ C M
τ

Ms−t+τ
(
1 + |λ|2

)ω/2
√
pt,3(u).
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Now, by setting σ := btc, from (5.20) we conclude that∥∥(J̃1,M̃ − J1,M,M̃

)
ϕ
∥∥
Ht+1

per (Q) ≤ C
∑
λ∈Z2

‖k(λ)
polar‖∞;σ+2

×
∥∥∥∥∫

Q

(
T

(λ)
Q (p)− PMT (λ)

Q (p)
)
χε2%,%(Π(p))OM̃u(·,Π(p)) dp

∥∥∥∥
Ht+1

per (Q)

≤ C M
τ

Ms−t+τ

√
pt,3(u)

∑
λ∈Z2

‖k(λ)
polar‖∞;σ+2

(
1 + |λ|2

)ω/2
.

Using Lemma 5.11 (i), Lemma 5.5 and arguing as in the proof of Theo-
rem 5.12, we establish the bound∥∥(J̃1,M̃ − J1,M,M̃

)
ϕ
∥∥
Ht+1

per (Q) ≤ C
M

τ

Ms−t+τ %
−4 ‖ϕ‖Htper(Q) .

From this, the assertion follows due to the continuous imbedding of Hs
per(Q)

in Ht
per(Q). �

The Fully Discrete System. We now consider the approximation of the
solution of the integral equation (5.7) by the fully discrete version of (5.9)
which is to find ϕN ∈ TN (Q) such that

ϕN − PN (J1,M,M̃ + J2,N )ϕN = PNψ . (5.21)

Based on our results so far, we now prove stability and convergence for
Equation (5.21). To simplify expressions in the following analysis, let us
assume N1 = N2 and introduce the meshsize h := π/N1. We next set
M̃1 := M̃2 := d%/he, M := M̃ and furthermore

A := J1 + J2 , Ah := PN (J1,M,M̃ + J2,N ) .

We will assume that I −A is boundedly invertible on any Hs
per(Q), s ≥ 0.

This is no restriction with respect to our application of electromagnetic scat-
tering in mind, see Theorems 4.20 and 4.18, and many other applications,
see [9].

Theorem 5.16 Let t > 1 and assume that % = hα for some α ∈ (0, 1
2t+6 ).

Then there exists h0 > 0 such that I −Ah ∈ Lis(Ht
per(Q)) for 0 < h ≤ h0,

with uniformly bounded inverse.
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Proof: We write

A−Ah = (J1 − J1,M,M̃ ) + (J2 − J2,N ) + (I − PN ) (J1,M,M̃ + J2,N ) .

From Theorems 5.8, 5.15 and 5.14, we have the estimates

‖(J1 − J1,M,M̃ )ϕ‖Htper(Q) ≤ C h%−1 (%−2t−5 + %−4) ‖ϕ‖Htper(Q) ,

‖(J1 − J1,M,M̃ )ϕ‖Ht+1
per (Q) ≤ C

(
%−2t−5 + %−4) ‖ϕ‖Htper(Q) ,

‖(J2 − J2,N )ϕ‖Htper(Q) ≤ C h%−2t−6 ‖ϕ‖Htper(Q) ,

‖(J2 − J2,N )ϕ‖Ht+1
per (Q) ≤ C %

−2t−6 ‖ϕ‖Htper(Q) .

By Lemma 5.1, the norm of I − PN : Ht+1
per (Q)→ Ht

per(Q) is bounded by
the number Ch. Thus

‖(A−Ah)ϕ‖Htper(Q) ≤ C h%−2t−6 ‖ϕ‖Htper(Q) −→ 0 (h→ 0) .

The assertion follows now from standard results for operator approximation,
see for instance [36]. �

Theorem 5.17 Let α ∈ (0, 1/3) and % = hα. Assume that t ≥ 0 and s >
max{1, t, 10α+3αt+t

1−3α }. Furthermore, let (5.21) be a stable approximation
of (5.7) in Hs

per(Q), i.e. there exists c > 0 such that ‖ϕh‖Hsper(Q) ≤
c‖ϕ‖Hsper(Q) for sufficiently small h. Then there exists h0 > 0 such that

‖ϕ− ϕh‖Htper(Q) ≤ C h(s−t)(1−3α)/2‖ϕ‖Hsper(Q)

for all 0 < h ≤ h0.

Proof: From ϕh = PNψ+Ahϕh = PN (ϕ−Aϕ+J1,M,M̃ϕh +J2,Nϕh) we
obtain

(I −A)(ϕ− ϕh)
= ϕ−Aϕ+ J1,M,M̃ϕh + J2,Nϕh − ϕh − (J1,M,M̃ + J2,N −A)ϕh
= (I − PN )(ϕ−Aϕ+ J1,M,M̃ϕh + J2,Nϕh)− (J1,M,M̃ + J2,N −A)ϕh .

From Theorems 5.8, 5.14 and 5.15, we have

‖J1,M,M̃ϕh + J2,Nϕh‖Hsper(Q) ≤
(
‖A‖+ C h%−2s−6) ‖ϕh‖Hsper(Q) .
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Similarly, ‖(J1,M,M̃ + J2,N − A)ϕh‖H1
per(Q) ≤ C hs %−3s−5 ‖ϕh‖Hsper(Q).

Thus from the boundedness of (I − A)−1 in L2(Q), Lemma 5.1 and the
stability estimate, we conclude

‖ϕ− ϕh‖L2(Q) ≤ C ‖(I −A)(ϕ− ϕh)‖L2(Q) ≤ C hs %−3s−5 ‖ϕ‖Hsper(Q)

for all h ≤ h0 such that also % ≤ %0.
For the general result, we observe that for T ∈ TN (Q), the estimate
‖T‖Htper(Q) ≤ C h−t ‖T‖L2(Q) follows directly from the definition of the
norm in Ht

per(Q). Using the orthogonal projection ON , we have

‖ϕ− ϕh‖Htper(Q) ≤ ‖ϕ−ONϕ‖Htper(Q) + ‖ONϕ− ϕh‖Htper(Q)

≤ ‖ϕ−ONϕ‖Htper(Q) + C h−t ‖ONϕ− ϕh‖L2(Q)

≤ ‖ϕ−ONϕ‖Htper(Q) + C h−t ‖ϕ− ϕh‖L2(Q) ,

where the last estimate follows from the Pythagorean theorem. For ϕ−
ONϕ, bounds as for ϕ− PNϕ have been shown in the proof of Lemma 5.1.
Thus

‖ϕ− ϕh‖Htper(Q) ≤ C hs−t
(
1 + %−3s−5) ‖ϕ‖Hsper(Q) .

From s ≥ 10α+3αt+t
1−3α follows (s− t)(1− 3α)/2 ≥ α(5 + 3t). Thus

hs−t %−3s−5 = hs−t−α(3s+5) = h(s−t)(1−3α) h−α(5+3t) ≤ h(s−t)(1−3α)/2 .

This concludes the proof. �

By assumption, the Equation (5.7) is uniquely solvable and the solution
ϕ := (I − A)−1 ψ belongs to Hs

per(Q) for any s ≥ 0, provided the right
hand side ψ does. In this case, Theorem 5.17 establishes a super-algebraic
convergence rate, i.e., for fixed t ≥ 0 and any n ∈ N there exists Cn > 0
such that

‖ϕ− ϕh‖Htper(Q) ≤ Cn hn, 0 < h ≤ h0.

5.3. Extension to Systems of Biperiodic Integral
Equations

As we want to apply the numerical scheme from the last section to elec-
tromagnetic scattering problems, we have it to generalize to systems of
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biperiodic integral equations as given in (5.1). This is topic of the present
section. The procedure is straightforward and involves matrix operators,
which will be indicated by bold letters.

Inspecting (5.1) again, now of course we require each kernel function
k(i,j) and each right hand side ψ(i) to satisfy Assumption 5.6 (see also
Proposition 4.23 for our application in mind). Then, by exploiting the
results from Section 5.2, the operators

(J (i,j)
1 ϕ)(t) :=

∫
Q

k
(i,j)
polar(t, p)χε2%,%(Π(p))ϕ(t+ Π(p)) dp,

(J (i,j)
2 ϕ)(t) :=

∫
Q

k
(i,j)
smooth(t, τ)ϕ(τ) dτ,

t ∈ Q,

with k
(i,j)
polar and k

(i,j)
smooth as in Section 5.2, but now for k(i,j)

1 and k
(i,j)
2

instead of k1 and k2, respectively, satisfy Theorem 5.12 and Theorem 5.7,
respectively. And for their discrete analogs J̃

(i,j)
1,M̃ , J (i,j)

1,M,M̃
and J

(i,j)
2,N ,

see (5.18), (5.13) and (5.11), there hold the statements from Theorem 5.14,
5.15 and 5.8, respectively.

The following lemma gives a useful result concerning the mapping proper-
ties of certain matrix operators.

Lemma 5.18 Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be normed spaces, and for
fixed n ∈ N let X := Xn and Y := Y n be their product spaces, endowed
with the norm

‖ϕ‖X :=
( n∑
i=1
‖ϕi‖2

X

)1/2
, ϕ = (ϕ1, . . . ,ϕn)> ∈X,

‖ψ‖Y :=
( n∑
i=1
‖ψi‖2

Y

)1/2
, ψ = (ψ1, . . . ,ψn)> ∈ Y .

Moreover, consider the matrix operator T :=
(
T (i,j))n

i,j=1, with entries
T (i,j) ∈ L(X,Y ) such that ‖T (i,j)ϕ‖Y ≤ Ci,j ‖ϕ‖X for all ϕ ∈ X and all
i, j ∈ {1, . . . , n}, and acting in terms of the usual matrix-vector product.
Then T ∈ L(X,Y ) with

‖Tϕ‖Y ≤ C ‖ϕ‖X , ϕ ∈X,
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where C2 = 2n−1 ∑n
i,j=1 C

2
i,j.

Proof: Let ϕ ∈X. We estimate

‖T ϕ‖2
Y =

n∑
i=1

∥∥∥ n∑
j=1

T (i,j)ϕj

∥∥∥2

Y
≤ 2n−1

n∑
i=1

n∑
j=1

∥∥T (i,j)ϕj
∥∥2
Y

≤
n∑
j=1
‖ϕj‖2

X 2n−1
n∑
i=1

C2
i,j ≤ C ‖ϕ‖X ,

as asserted. �

For s ≥ 0 we set
Hs

per(Q) := (Hs
per(Q))n

and endow this space with the norm

‖ϕ‖Hs
per(Q) :=

( n∑
j=1
‖ϕj‖2

Hsper(Q)

)1/2
, ϕ = (ϕ1, . . . ,ϕn)> ∈Hs

per(Q).

Analogously, we set L2(Q) := (L2(Q))n and TN (Q) := (TN (Q))n, for
N ∈ N2, and consider therein the norm ‖ · ‖L2(Q) := ‖ · ‖H0

per(Q), because
of L2(Q) = H0

per(Q) and the definition of the norm at the right hand side.
It is easy to check that

Hs
per(Q,Cn) ∼= Hs

per(Q), L2(Q,Cn) ∼= L2(Q) and TN (Q,Cn) ∼= TN (Q).

This justifies the use of the bold variants in the following analysis, where
we are especially interested in the case n = 3.

Now, in the spirit of Lemma 5.18, we define for N ∈ N2 the operators ON
and PN given by

ON :=

ON · · · 0
...

. . .
...

0 · · · ON

 and PN :=

PN · · · 0
...

. . .
...

0 · · · PN

 ,

and furthermore,

J1 :=
(
J

(i,j)
1

)n
i,j=1, J̃1,M̃ :=

(
J̃

(i,j)
1,M̃

)n
i,j=1, J1,M,M̃ :=

(
J

(i,j)
1,M,M̃

)n
i,j=1,
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J2 :=
(
J

(i,j)
2

)n
i,j=1, J2,N :=

(
J

(i,j)
2,N

)n
i,j=1.

And last but not least, we connect again all indices to the meshsize h
by assuming N1 = N2 and setting h := π/N1, M̃1 := M̃2 := d%/he and
M := M̃ , introduce

A := J1 + J2, Ah := PN
(
J1,M,M̃ + J2,N

)
,

and assume that I −A is boundedly invertible on Hs
per(Q) for any s ≥ 0,

where I denotes the identity on Hs
per(Q). Then the system (5.1) reads as:

for given ψ ∈Hs
per(Q) find ϕ ∈Hs

per(Q) such that

(I −A)ϕ = ψ, (5.22)

and we consider approximations of its solution by the fully discrete system:
find ϕh ∈ TN (Q) such that

(I −Ah)ϕh = PN ψ. (5.23)

Theorem 5.19 Let t > 1 and assume that % = hα for some α ∈ (0, 1
2t+6 ).

Then there exists h0 > 0 such that I −Ah ∈ Lis(Ht
per(Q)) for 0 < h ≤ h0,

with uniformly bounded inverse.

Proof: We copy the proof for Theorem 5.16 line for line and replace the
lean symbols by their bold analogs. Then, thanks to Lemma 5.18, in
particular to the special form of the constant C therein, we factor out all
common constants from the estimates for the lean operators. This allows
us to continue our argumentation as in the remaining part of the proof of
Theorem 5.16, which finally yields the assertion. �

Theorem 5.20 Let α ∈ (0, 1/3) and % = hα. Assume that t ≥ 0 and s >
max{1, t, 10α+3αt+t

1−3α }. Furthermore, let (5.23) be a stable approximation
of (5.22) in Hs

per(Q), i.e. there exists c > 0 such that ‖ϕh‖Hs
per(Q) ≤

c‖ϕ‖Hs
per(Q) for sufficiently small h. Then there exists h0 > 0 such that

‖ϕ−ϕh‖Ht
per(Q) ≤ C h(s−t)(1−3α)/2‖ϕ‖Hs

per(Q)

for all 0 < h ≤ h0.

Proof: We copy the proof of Theorem 5.17 line for line and proceed as in
the proof of Theorem 5.19. �





A. Elementary Results from
Calculus and Functional
Analysis

Throughout this thesis we use elementary results from calculus and func-
tional analysis. For convenience, those results are collected in this appendix.
Some of them in Section A.2 and A.3 are extracted from the appendix
of [34].

An exception makes Section A.5. Therein the results for the biperiodic
case were not found in the literature and it seemed appropriate to give
them the opportunity for an appearance at least here.

A.1. The Theorems of Fubini and Young for
Series

Theorem A.1 (Fubini for series) Let d, d′ ∈ N and let a(µν) ∈ Cd′ for
µ, ν ∈ Zd. Assume that

(∑
ν∈Zd |a(µν)|

)
converges for all µ ∈ Zd and

c :=
∑
µ∈Zd

( ∑
ν∈Zd

|a(µν)|
)
<∞.

Then
(∑

µ∈Zd |a(µν)|
)

converges for all ν ∈ Zd and∑
ν∈Zd

( ∑
µ∈Zd

|a(µν)|
)

= c.
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Proof: This is a special case of the theorem for double series, see for
instance [4]. �

Theorem A.2 (Young for series) Let d, d′ ∈ N and let p ∈ [1,∞).
Furthermore, let (a(ν))ν∈Zd ∈ `1(Zd,Cd′), (b(ν))ν∈Zd ∈ `p(Zd,Cd′) and
define

c(µ) :=
∑
ν∈Zd

a(µ−ν) · b(ν), µ ∈ Zd.

Then (c(µ))µ∈Zd ∈ `p(Zd,Cd
′) and∥∥(c(µ))µ∈Zd

∥∥
`p(Zd,Cd′ ) ≤

∥∥(a(µ))µ∈Zd
∥∥
`1(Zd,Cd′ )

∥∥(b(µ))µ∈Zd
∥∥
`p(Zd,Cd′ ).

Proof: (i). We start with the case p = 1 and show that∑
µ∈Zd

( ∑
ν∈Zd

|a(µ−ν)||b(ν)|
)

=
∥∥(a(ν))ν∈Zd

∥∥
`1

∥∥(b(ν))ν∈Zd
∥∥
`1 .

In fact,
∑
µ∈Zd |a(µ−ν)||b(ν)| = |b(ν)|

∥∥(a(µ))µ∈Zd
∥∥
`1 , for all ν ∈ Zd, and∑

ν∈Zd
(∑

µ∈Zd |a(µ−ν)||b(ν)|
)

=
∥∥(a(µ))µ∈Zd

∥∥
`1

∥∥(b(ν))ν∈Zd
∥∥
`1 , and thus

Theorem A.1 yields the desired equation. With this result, the assertion
follows immediately.
(ii). Now, let p ∈ (1,∞) and set p′ := p/(p − 1). Since (|a(ν)|)ν∈Zd and
(|b(ν)|p)ν∈Zd belong to `1(Zd), we can apply the theorem for the case p = 1
and obtain∑

µ∈Zd

( ∑
ν∈Zd

|a(µ−ν)||b(ν)|p
)
≤
∥∥(a(ν))ν∈Zd

∥∥
`1

∥∥(b(ν))ν∈Zd
∥∥p
`p
.

In particular, the sequence
(
|a(µ−ν)|1/p |b(ν)|

)
ν∈Zd belongs to `p(Zd) and

an application of Hölder’s inequality yields∑
ν∈Zd

|a(µ−ν)||b(ν)| =
∑
ν∈Zd

|a(µ−ν)|1/p
′
|a(µ−ν)|1/p |b(ν)|

≤
( ∑
ν∈Z2

|a(µ−ν)|
)1/p′ ( ∑

ν∈Z2

|a(µ−ν)||b(ν)|p
)1/p

,
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for all µ ∈ Zd, and thus∑
µ∈Zd

( ∑
ν∈Zd

|a(µ−ν)||b(ν)|
)p
≤
∥∥(a(ν))ν∈Zd

∥∥p/p′
`1

∑
µ∈Zd

( ∑
ν∈Zd

|a(µ−ν)||b(ν)|p
)

≤
∥∥(a(ν))ν∈Zd

∥∥1+p/p′

`1

∥∥(b(ν))ν∈Zd
∥∥p
`p
,

which completes the proof. �

A.2. Differential Operators

For x, y, z ∈ C3 there holds

x · (y × z) = y · (z × x) = z · (x× y) (A.1a)
x× (y × z) = (x · z) y − (x · y) z (A.1b)

For sufficiently smooth scalar valued function u : R3 → C and vector
valued functions F,G : R3 → C3 we have

curl∇u = 0, (A.2a)
div curlF = 0, (A.2b)

curl curlF = ∇ divF −ΔF, (A.2c)

where in the last equation the Laplacian operator is taken componentwise.
Moreover, there holds

div(uF ) = F · ∇u+ u divF, (A.3a)
curl(uF ) = ∇u× F + u curlF, (A.3b)
∇(F ·G) = (F ′)>G+ (G′)>F, (A.3c)

div(F ×G) = G · curlF − F · curlG, (A.3d)
curl(F ×G) = F divG−GdivF + F ′G−G′F, (A.3e)

where F ′(x), G′(x) ∈ C3×3 are the Jacobian matrices of F and G, respec-
tively. Recalling the modified versions of the differential operators from
the end of Section 1.3, the analogs of (A.2) read then as

curlβ ∇βu = 0, (A.4a)
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divβ curlβ F = 0, (A.4b)
curlβ curlβ F = ∇β divβ F −ΔβF. (A.4c)

In fact, to verify for instance Equation (A.4c), we obtain for smooth enough
F : R3 → C3 on the one hand

curlβ curlβ F = curl curlF + curl(iβ × F ) + iβ × curlF + iβ × (iβ × F )
= curl curlF + iβ divF − iF ′β − iβ × curlF + (iβ · F )iβ − (iβ · iβ)F,

where we have applied (A.3e) in the second step. Note that

iβ × curlF = i

β2(∂1F2 − ∂2F1)− β3(∂3F1 − ∂1F3)
β3(∂2F3 − ∂3F2)− β1(∂1F2 − ∂2F1)
β1(∂3F1 − ∂1F3)− β2(∂2F3 − ∂3F2)

 .

On the other hand, we have

ΔβF =

div∇F1 + div(iβF1) + iβ · ∇F1 + iβ · (iβF1)
div∇F2 + div(iβF2) + iβ · ∇F2 + iβ · (iβF2)
div∇F3 + div(iβF3) + iβ · ∇F3 + iβ · (iβF3)


= ΔF + iF ′β + iF ′β + (iβ · iβ)F

and therefore

∇β divβ F −ΔβF = ∇ divF +∇(iβ · F ) + iβ divF + iβ(iβ · F )−ΔβF

= curl2 F + iβ divF − iF ′β + (iβ · F )iβ − (iβ · iβ)F +∇(iβ · F )− iF ′β.

Using finally the fact that

∇(iβ · F )− iF ′β = i
(
(F ′)> − F ′

)
β

= i

 0 ∂1F2 − ∂2F1 −(∂3F1 − ∂1F3)
−(∂1F2 − ∂2F1) 0 ∂2F3 − ∂3F2
∂3F1 − ∂1F3 −(∂2F3 − ∂3F2) 0

β

= iβ × curlF,

we have indeed shown the Equation (A.4c). The remaining equations
in (A.4) are shown analogously, but even easier.
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A.3. Integral Identities

Theorem A.3 Let Ω ⊆ R3 be a bounded Lipschitz domain. For F ∈
C1(Ω,C3) ∩ C(Ω,C3) there holds∫

Ω
divF (x) dx =

∫
∂D

F (x) · n(x) ds, (A.5)

where n denotes the outward pointing normal unit vector on ∂Ω.

For a proof for Lipschitz domains we refer to [40]. For smooth domains a
proof can be found in [29].

The last theorem is often referred to as Theorem of Gauss or as Divergence
Theorem. As a simple application we obtain the following result.

Theorem A.4 Let Ω ⊆ R3 be a bounded Lipschitz domain. Furthermore,
let u, v ∈ C1(Ω) ∩ C(Ω) and A, B ∈ C1(Ω,C3) ∩ C(Ω,C3). Then∫

Ω
u∇v dx+

∫
Ω
v∇udx =

∫
∂Ω
u v n ds, (A.6a)∫

Ω
(B · curlA−A · curlB) dx =

∫
∂Ω

(n×A) ·B ds, (A.6b)∫
Ω

(udivA+A · ∇u) dx =
∫
∂Ω
u (n ·A) ds, (A.6c)

where n denotes the outward pointing normal unit vector on ∂Ω.

A.4. Results from Functional Analysis

Proposition A.5 Let X be a vector space endowed with two equivalent
norms ‖ · ‖1 and ‖ · ‖2. Furthermore, let X̃1 and X̃2 be the completion of
X with respect to ‖ · ‖1 and ‖ · ‖2, respectively. Then

X̃1 ' X̃2.
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Proof: By a well-known construction, we have X̃i
∼= Ci(X)/Ni(X), where

Ci(X) and Ni(X) denote the set of all Cauchy sequences and all null
sequences in (X, ‖ · ‖i), respectively, i = 1, 2. Since C1(X) = C2(X) and
N1(X) = N2(X), clearly C1(X)/N1(X) = C2(X)/N2(X). Moreover, by
construction, the norms in C1(X)/N1(X) and C2(X)/N2(X) are equivalent.
Therefore, we obtain

X̃1 ∼= C1(X)/N1(X) ' C2(X)/N2(X) ∼= X̃2,

as asserted. �

Proposition A.6 Let X be a normed vector space, Y a Banach space
and U be a dense subspace of X. Furthermore, let T0 : (U, ‖ · ‖X)→ Y be
compact. Then the continuous extension T : X → Y of T0 is compact too.

Proof: Let (xn)n∈N be a bounded sequence in X. Choose a sequence
(x̂n)n∈N in U such that ‖x̂n − xn‖ ≤ 1

n for all n ∈ N. Then (x̂n)n∈N is
a bounded sequence in U and there exists a subsequence (x̂nj )j∈N with
(T0x̂nj )j∈N converging in Y to some y ∈ Y . Therefore,

‖Txnj − y‖ ≤ ‖T (xnj − x̂nj )‖+ ‖T0x̂nj − y‖ ≤ ‖T‖ 1
nj

+ ‖T0x̂nj − y‖,

for all j ∈ N, which shows that (Txnj )j∈N is convegent in Y . �

The following result can be regarded as a corollary of the well-known
extension theorem for linear and bounded operators.

Corollary A.7 Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces and let
U ⊆ X be a dense subspace of X and V ⊆ Y be a dense subspace of Y .
Moreover, suppose T0 ∈ L(U, V ) and S0 ∈ L(V,U) such that

T0S0 = idV and S0T0 = idU .

Then for the continuous extensions T ∈ L(X,Y ) of T0 and S ∈ L(Y,X)
of S0 we have

TS = idY and ST = idX .
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Proof: Let y ∈ Y . Then there exists a sequence (yn)n∈N ⊆ V such that
yn → y in (Y, ‖ · ‖Y ), as n→∞. Hence,

TSy = T
(

lim
n→∞

S0yn
)

= lim
n→∞

T0S0yn = lim
n→∞

yn = y.

The other equality is shown completely analogous. �

Theorem A.8 (Lax–Milgram) Let X be a Hilbert space over the field
C and ` ∈ X∗. Furthermore, let a : X ×X → C be sesquilinear, bounded
and coercive, that is, there exist c1, c2 > 0 such that

|a(u, v)| ≤ c1 ‖u‖X‖v‖X for all u, v ∈ X,
Re a(u, u) ≥ c2 ‖u‖2

X for all u ∈ X.
Then there exists a unique u ∈ X such that

a(ψ, u) = `(ψ) for all ψ ∈ X.

Furthermore, there exists a constant c > 0, independent of u and `, such
that ‖u‖X ≤ c‖`‖X∗ .

For a proof we refer to, e.g., [29, Section 6.2].

If the functional ` : X → C is antilinear (see Section 1.3 for a definition)
and bounded, then the statement of Theorem A.8 has to be slightly
modified, see the following corollary.

Corollary A.9 Let X be a Hilbert space over the field C and ` : X → C
be antilinear and bounded. Furthermore, let a : X×X → C be sesquilinear,
bounded and coercive. Then there exists a unique u ∈ X such that

a(u, ψ) = `(ψ) for all ψ ∈ X.

Furthermore, there exists a constant c > 0, independent of u and `, such
that ‖u‖X ≤ c‖`‖X∗ .

Proof: Consider ã(u, v) := a(v, u) and ˜̀(u) := `(u), for all u, v ∈ X.
Then

∀ψ ∈ X : a(u, ψ) = `(ψ) ⇔ ∀ψ ∈ X : ã(ψ, u) = ˜̀(ψ),

and the assertion follows now immediately from Theorem A.8, because ã
and ˜̀ satisfy its assumptions. �
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A.5. Sobolev-Slobodeckǐı spaces

In this thesis we could manage the analysis without Sobolev-Slobodeckǐı
spaces, even in the case of Lemma 5.3, albeit with a less strong statement
(see Theorem 2.38). For stronger results as in Lemma 5.3, the use of
Sobolev-Slobodeckǐı spaces seems inevitable. For periodic functions in one
dimension corresponding results can be found in [36]. However, for their
counterparts in two dimensions it is hard to find analogs in the literature.
It is the objective of this section to provide such results. Although that
will be given for periodic functions in R2, the generalization to Rd then
can be easily realized.

But before, we give a short introduction into general Sobolev-Slobodeckǐı
spaces and provide some key tools which will facilitate the handling
therein.

A.5.1. Fractional Sobolev Spaces

In this subsection we give a short introduction into Sobolev-Slobodeckǐı
spaces. For this, a good reference is [53], which was also the basis here.
For our applications, only Sobolev-Slobodeckǐı spaces based on the Hilbert
space L2(Ω), where Ω is an open subset of Rd, are of interest.

Throughout this subsection let Ω be an open subset of Rd.

We recall the spaces Cm0 (Ω) and C∞0 (Ω) from Section 1.3. Additionally,
we define the spaces Cmb (Ω) and C∞b (Ω) to consist of all m-times and
infinitely often continuously differentiable functions χ : Ω→ C, where all
partial derivatives are bounded, respectively. Clearly, Cm0 (Ω) is a subspace
of Cmb (Ω). In Cmb (Ω) we choose the norm

‖χ‖Cm
b

(Ω) := max
|α|≤m

sup
x∈Ω
|∂αχ(x)|,

similarly as in (1.12).

Recalling furthermore the notion of the variational derivative from Defini-
tion 2.1, the following lemma gives a useful criterion to decide whether
ϕ ∈ L2(Ω) possesses such a derivative.
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Lemma A.10 Let ϕ,ψ ∈ L2(Ω) and α ∈ Nd0. If there exists a sequence
(ϕn)n∈N in C |α|(Ω) such that

‖ϕn − ϕ‖L2(Ω) → 0 and ‖∂αϕn − ψ‖L2(Ω) → 0,

as n → ∞, then ϕ possesses the derivative ∂αϕ = ψ in the variational
sense.

Proof: Let χ ∈ C∞0 (Ω) and set B := suppχ. Then∫
Ω
ϕ(x) ∂αχ(x) dx = lim

n→∞

∫
B

ϕn(x) ∂αχ(x) dx

= lim
n→∞

(−1)|α|
∫
B

∂αϕn(x)χ(x) dx = (−1)|α|
∫

Ω
ψ(x)χ(x) dx

and the proof is complete. �

To make in the following presentation the notation easier, we introduce
for q ∈ (0, 1) and for suitable ϕ,ψ ∈ L2(Ω) the quantities

〈ϕ,ψ〉q,Ω :=
∫

Ω

∫
Ω

(
ϕ(x)− ϕ(y)

)(
ψ(x)− ψ(y)

)
|x− y|d+2q dy dx,

|ϕ|q,Ω :=
√
〈ϕ,ϕ〉q,Ω .

Moreover, for ϕ ∈ L1
loc(Ω) we recall that its essential support suppϕ is the

smallest closed set such that ϕ = 0 almost everywhere on Ω \ suppϕ.

Definition A.11 Let Ω ⊆ Rd be open and let s = m+ q, where m ∈ N0
and q ∈ (0, 1). We define

Hs(Ω) :=
{
ϕ ∈ Hm(Ω)

∣∣∣ ∀α ∈ Nd0 with |α| ≤ m : |∂αϕ|q,Ω <∞
}

and endow this space with the inner product

(ϕ | ψ)Hs(Ω) := (ϕ | ψ)Hm(Ω) +
∑
|α|≤m

〈∂αϕ, ∂αψ〉q,Ω .



298 A. Elementary Results from Calculus and Functional Analysis

Here, the space Hm(Ω) was defined in Definition 2.2. For s ∈ R with s ≥ 0,
we choose in Hs(Ω) the norm ‖ · ‖Hs(Ω) :=

√
(· | ·)Hs(Ω). Furthermore, we

set
Hs
c (Ω) :=

{
ϕ ∈ Hs(Ω) | suppϕ ⊆ Ω is compact

}
and, for compact K ⊆ Ω,

Hs
K(Ω) :=

{
ϕ ∈ Hs(Ω) | suppϕ ⊆ K

}
.

It is well-known, that for s ≥ 0 the space Hs(Ω) is a separable Hilbert
space, see for instance [53, Theorem 3.1].

Regarding the space Hs
K(Ω) we make the following observation.

Proposition A.12 Let ϕ ∈ Hs
K(Ω). Then for all α ∈ Nd0 with |α| ≤ bsc

there holds
supp ∂αϕ ⊆ K.

Proof: Let χ ∈ C∞0 (Ω\K). Then χ|Ω0 belongs to C∞0 (Ω) and, by definition
of the derivatives in the variational sense, we conclude∫

Ω\K
(∂αϕ)χdx =

∫
Ω

(∂αϕ)χ|Ω0 dx = (−1)|α|
∫

Ω
ϕ∂αχ|Ω0 dx

= (−1)|α|
(∫

K

ϕ ∂αχ|Ω0︸ ︷︷ ︸
=0

dx+
∫

Ω\K
ϕ︸︷︷︸
=0

∂αχdx
)

= 0.

Since χ ∈ C∞0 (Ω \K) was arbitrarily chosen, by a well-known theorem it
follows that ∂αϕ = 0 almost everywhere on Ω \K. �

In the next lemma we will see that the notation | · |q,Ω from above is
advisable since it shows that | · |q,Ω is a seminorm.

Lemma A.13 Let q ∈ (0, 1). Then | · |q,Ω is a seminorm in Hq(Ω).

Proof: Let ϕ,ψ ∈ Hq(Ω) and λ ∈ C be arbitrary. Then it is easy to
see that |ϕ|q,Ω ≥ 0 and that |λϕ|q,Ω = |λ| |ϕ|q,Ω. To show the triangle
inequality, we set

Φ(x, y) := ϕ(x)− ϕ(y)
|x− y|d/2+q , (x, y) ∈ Ω× Ω,
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and define Ψ : Ω× Ω→ C analogously. Then Φ,Ψ ∈ L2(Ω× Ω) and we
obtain

|ϕ+ ψ|q,Ω =
(∫

Ω

∫
Ω

∣∣(ϕ(x) + ψ(x)
)
−
(
ϕ(y) + ψ(y)

)∣∣2
|x− y|d+2q dy dx

)1/2

= ‖Φ + Ψ‖L2(Ω×Ω) ≤ ‖Φ‖L2(Ω×Ω) + ‖Ψ‖L2(Ω×Ω) = |ϕ|q,Ω + |ψ|q,Ω ,

as desired. �

Mollifiers. A main tool when working in Sobolev spaces are mollifiers.
One possibility to construct them is to take χ̃ ∈ C∞0 (Rd) defined by

χ̃(x) =
{

exp
(
− 1/(1− |x|2)

)
, x ∈ Bd(0, 1),

0, x ∈ Rd \ Bd(0, 1),

and to consider modifications χ and χε of χ̃ as follows

χ(x) := 1
‖χ̃‖L1(Rd)

χ̃(x) and χε(x) := ε−d χ
( 1
εx
)
,

for x ∈ Rd and ε > 0. Then 0 ≤ χε ∈ C∞0 (Rd), χε(x) > 0 if and only if
|x| < ε, χε = 0 on Rd \ Bd(0, ε) and ‖χε‖L1(Rd) = 1. For ϕ ∈ L2(Ω) we
extend ϕ by zero to Rd and set

Tεϕ(x) :=
∫
Bd(x,ε)

χε(x− y)ϕ(y) dy =
∫
Bd(0,ε)

χε(z)ϕ(x− z) dz

=
∫
Bd(0,ε)

χε(z)ϕ(x+ z) dz, for x ∈ Rd.

Then Tεϕ ∈ C∞(Rd),

suppTεϕ ⊆ suppϕ+ Bd[0, ε], (A.7)

‖Tεϕ‖L2(Ω) ≤ ‖Tεϕ‖L2(Rd) ≤ ‖χε‖L1(Rd)‖ϕ‖L2(Rd) = ‖ϕ‖L2(Ω) (A.8)
and

Tεϕ→ ϕ in L2(Ω), as ε→ 0.
For ϕ ∈ L2(Ω) with variational derivative ∂αϕ ∈ L2(Ω), for some α ∈ Nd0,
there also holds

∂αTεϕ = Tε ∂
αϕ→ ∂αϕ in L2(Ω), as ε→ 0. (A.9)
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Multiplication Operators. As a first application of the mollifiers, we
now introduce multiplication operators with respect to differentiable and
bounded functions. We start with an important consequence from the
mean value theorem given in form of the following lemma.

Lemma A.14 Let χ ∈ C1
b (Rd). Then there exists a constant C ≥ 0 such

that
|χ(x)− χ(y)| ≤ C |x− y|

1 + |x− y| , x, y ∈ Rd.

The constant C can be chosen as C = 2 ‖χ‖C1
b

(Rd) max
{

2,
√
d
}

.

Proof: Let χ ∈ C1
b (Rd). If |x− y| > 1 then

|χ(x)− χ(y)| ≤ 2 ‖χ‖C1
b

(Rd) = 2 ‖χ‖C1
b

(Rd)
|x− y|

1 + |x− y|

(
1 + 1
|x− y|

)
≤ 4 ‖χ‖C1

b
(Rd)

|x− y|
1 + |x− y| .

And if |x− y| ≤ 1 then 1 ≤ 2/(1 + |x− y|) and the mean value theorem
yields

|χ(x)− χ(y)| ≤
√
d ‖χ‖C1

b
(Rd) |x− y| ≤ 2

√
d ‖χ‖C1

b
(Rd)

|x− y|
1 + |x− y| ,

where we used the fact that ‖∂χ(x)‖2 =
∑d
k=1

∣∣ ∂
∂xk

χ(x)
∣∣2 ≤ d ‖χ‖2

C1
b

(Rd).
Now the assertion follows immediately. �

Theorem A.15 Let Ω ⊆ Rd be open and let s ∈ R with s ≥ 0. Further-
more, let χ ∈ Cdseb (Rd) and ϕ ∈ Hs(Ω). Then χϕ ∈ Hs(Ω) and there
holds Leibniz’ product rule

∂α(χϕ) =
∑
β≤α

(
α
β

)
∂α−βχ ∂βϕ, α ∈ Nd0 with |α| ≤ bsc.

Moreover, there exists a constant C ≥ 0, not depending on χ and ϕ, such
that

‖χϕ‖Hs(Ω) ≤ C ‖χ‖Cdse
b

(Rd) ‖ϕ‖Hs(Ω).
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Proof: Since χ is bounded, there holds χϕ ∈ L2(Ω). Let α ∈ Nd0 with
|α| ≤ bsc. Furthermore, let β ∈ Nd0 with β ≤ α. By (A.9) we have

Tεϕ→ ϕ, ∂βTεϕ = Tε∂
βϕ→ ∂βϕ in L2(Ω), as ε→ 0,

and, since χ and its derivatives are bounded, in particular

χTεϕ→ χϕ, ∂α−βχ∂βTεϕ→ ∂α−βχ∂βϕ in L2(Ω), as ε→ 0.

Let θ ∈ C∞0 (Ω). Then∫
Ω
χ(x)ϕ(x) ∂αθ(x) dx = lim

ε→0

∫
Ω
χ(x)Tεϕ(x) ∂αθ(x) dx

= (−1)|α| lim
ε→0

∫
Ω
∂α(χTεϕ)(x) θ(x) dx

= (−1)|α| lim
ε→0

∫
Ω

∑
β≤α

(
α
β

)
∂α−βχ(x) ∂βTεϕ(x) θ(x) dx

= (−1)|α|
∫

Ω

∑
β≤α

(
α
β

)
∂α−βχ(x) ∂βϕ(x)

 θ(x) dx.

Hence, there exists ∂α(χϕ) ∈ L2(Ω) and is given by the Leibniz product
rule. Moreover, we have shown that χϕ ∈ Hbsc(Ω).
Now, let s = m + q with m ∈ N0 and q ∈ (0, 1). And again, let α ∈ Nd0
with |α| ≤ m and β ∈ Nd0 with β ≤ α. Then

‖∂α−βχ∂βϕ‖2
L2(Ω) ≤ ‖χ‖

2
C
dse
b

(Rd)
‖∂βϕ‖2

L2(Ω) ≤ ‖χ‖
2
C
dse
b

(Rd)
‖ϕ‖2

Hs(Ω).

Note that by Fubini’s theorem and by Lemma A.14 there holds∫
Ω

∫
Ω
|∂βϕ(y)|2 |∂

α−βχ(x)− ∂α−βχ(y)|2

|x− y|d+2q dy dx

≤ 4 ‖χ‖2
C
dse
b

(Rd)
max{4, d}

∫
Ω
|∂βϕ(y)|2

(∫
Rd

1
(1 + |z|)2|z|d+2q−2 dz

)
︸ ︷︷ ︸

=:C1<∞

dy

≤ 4 max{4, d}C1 ‖χ‖2
C
dse
b

(Rd)
‖ϕ‖2

Hs(Ω),

and thus we continue with∣∣∂α−βχ∂βϕ∣∣2
q,Ω =

∫
Ω

∫
Ω

∣∣∣∣∣∂α−βχ(x)[∂βϕ(x)− ∂βϕ(y)]
|x− y|d+2q
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+ ∂βϕ(y)[∂α−βχ(x)− ∂α−βχ(y)]
|x− y|d+2q

∣∣∣∣∣
2

dy dx

≤ 2 ‖χ‖2
C
dse
b

(Rd)

∣∣∂βϕ∣∣2
q,Ω + 8 max{4, d}C1 ‖χ‖2

C
dse
b

(Rd)
‖ϕ‖2

Hs(Ω)

≤ C2 ‖χ‖2
C
dse
b

(Rd)
‖ϕ‖2

Hs(Ω),

where C2 := 2 + 8 max{4, d}C1. Consequently, by applying Leibniz’
product rule, the triangle inequality and the results above, we obtain

‖χϕ‖2
Hs(Ω) =

∑
|α|≤bsc

‖∂α(χϕ)‖2
L2(Ω) +

∑
|α|≤bsc

|∂α(χϕ)|2q,Ω

≤
(
1 + C2

) ∑
|α|≤bsc

∑
β≤α

(
α
β

)
‖χ‖

C
dse
b

(Rd)‖ϕ‖Hs(Ω)

2

,

and from this we see immediately that also the last assertion from the
theorem holds. �

Denseness Results. Now, we will derive an important denseness result
for the space Hs(Ω). The following lemmas have preliminary character.

Lemma A.16 Let Ω ⊆ Rd be open.

(i) If O ⊆ Ω is open and bounded, then there exists a constant C > 0
such that ∫

O

∫
O

|ϕ(y)|2 1
|x− y|d+2q−2 dy dx ≤ C ‖ϕ‖2

L2(O),

for all ϕ ∈ Cb(Ω) ∪ L2(Ω).

(ii) Let q ∈ (0, 1). If ∅ 6= K ⊆ Ω is compact and O ⊆ Ω is open such
that K ⊆ O, then there exists a constant C > 0 such that∫

−x+Ω\O

1
|z|d+2q dz ≤ C, x ∈ K.
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Proof: (i). Since O is compact, there exists r0 := max
{
|x| | x ∈ O

}
<∞.

Hence,∫
O

∫
O

|ϕ(y)|2 1
|x− y|d+2q−2 dy dx =

∫
O

|ϕ(y)|2
(∫
−y+O

1
|z|d+2q−2 dz

)
dy

≤
∫
O

|ϕ(y)|2
(∫

Bd(0,2r0)

1
|z|d+2q−2 dz

)
︸ ︷︷ ︸

=:C

dy.

(ii). Set r0 := dist(K,Rd \ O). Then r0 > 0. Note that −K + Ω \ O ⊆
Rd \ Bd(0, r0), because: if z ∈ −K + Ω \O then z = −x+ y with x ∈ K
and y ∈ Ω \O, meaning that |z| = | − x+ y| ≥ r0. Let x ∈ K. Then,

0 ≤
∫
−x+Ω\O

1
|z|d+2q dz ≤

∫
−K+Ω\O

1
|z|d+2q dz

≤
∫
Rd\Bd(0,r0)

1
|z|d+2q dz =: C <∞,

as asserted. �

Lemma A.17 Let Ω ⊆ Rd be open and let s ∈ R with s ≥ 0. Then

C
dse
0 (Ω) ⊆ Hs

c (Ω).

Proof: For s = m ∈ N0, the assertion is clear. So, let s = m + q
with m ∈ N0 and q ∈ (0, 1). Let χ ∈ Cm+1

0 (Ω). We know already that
χ ∈ Hm

c (Ω). Extend χ to Rd \ Ω by zero and set K := suppχ. Let
α ∈ Nd0 with |α| ≤ m. Then ∂αχ ∈ C1

0 (Rd) and therefore there exist
C1,α := maxz∈Rd |∂αχ(z)| < ∞ and C2,α := maxz∈Rd ‖∂(∂αχ)(z)‖ < ∞.
In particular, by the mean value theorem,

|∂αχ(x)− ∂αχ(y)| ≤ C2,α |x− y|, x, y ∈ Rd.

Moreover, there exists an open and bounded set O ⊆ Rd such that K ⊆
O ⊆ Ω. Consequently,

|∂αχ|2q,Ω =
∫

Ω

∫
Ω

|∂αχ(x)− ∂αχ(y)|2

|x− y|d+2q dy dx
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=
∫
O

∫
Ω

|∂αχ(x)− ∂αχ(y)|2

|x− y|d+2q dy dx+
∫

Ω\O

∫
K

|∂αχ(y)|2

|x− y|d+2q dy dx

=
∫
O

∫
O

|∂αχ(x)− ∂αχ(y)|2

|x− y|d+2q dy dx+ 2
∫
K

∫
Ω\O

|∂αχ(x)|2

|x− y|d+2q dy dx

≤ C2
2,α

∫
O

∫
O

1
|x− y|d+2q−2 dy dx+ 2C2

1,α

∫
K

∫
Ω\O

1
|x− y|d+2q dy dx.

Using Fubini’s theorem and the substitution z = y − x we obtain∫
K

∫
Ω\O

1
|x− y|d+2q dy dx =

∫
K

(∫
−x+Ω\O

1
|z|d+2q dz

)
dx.

Using this identity in the last estimate and applying Lemma A.16, the
proof is complete. �

Lemma A.18 Let Ω ⊆ Rd be open and let s ∈ R with s ≥ 0. Furthermore,
let ϕ ∈ Hs

c (Ω). Then there exists ε0 > 0 such that
{
Tεϕ | ε ∈ (0, ε0)

}
is

dense in Hs
c (Ω). In particular, C∞0 (Ω) is dense in Hs

c (Ω).

Proof: Let ϕ ∈ Hs
c (Ω). Set ε0 := dist(suppϕ,Rd \ Ω). Then ε0 > 0, and

for ε ∈ (0, ε0) by (A.7) we have Tεϕ ∈ C∞0 (Ω), and thus by Lemma A.17
also Tεϕ ∈ Hs

c (Ω). Let α ∈ Nd0 with |α| ≤ bsc. Then by (A.9),

∂αTεϕ→ ∂αϕ in L2(Ω), as ε→ 0,

yielding that ‖Tεϕ − ϕ‖Hbsc(Ω) converges to zero, as ε → 0. Thus, it
remains to consider the case s = m+ q, with m ∈ N0 and q ∈ (0, 1), and
to show that |∂αTεϕ− ∂αϕ|q,Ω converges to zero, as ε→ 0, with α from
above. To this end, we observe, with B := Bd(0, ε),∣∣(∂αTεϕ(x)− ∂αϕ(x)

)
−
(
∂αTεϕ(y)− ∂αϕ(y)

)∣∣2
=
∣∣∣ ∫
B

χε(z)
{(
∂αϕ(x+ z)− ∂αϕ(y + z)

)
−
(
∂αϕ(x)− ∂αϕ(y)

)}
dz
∣∣∣2

≤
(∫

B

χε(z)
1
2 + 1

2
∣∣(∂αϕ(x+z)− ∂αϕ(y+z)

)
−
(
∂αϕ(x)− ∂αϕ(y)

)∣∣dz)2
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≤
∫
B

χε(z)
∣∣ (∂αϕ(x+ z)− ∂αϕ(y + z)

)
−
(
∂αϕ(x)− ∂αϕ(y)

)︸ ︷︷ ︸
=:f(x,y,z)

∣∣2 dz · 1.

Hence,

|∂αTεϕ− ∂αϕ|2q,Ω =
∫

Ω

∫
Ω

∣∣∣∣∣∂αTεϕ(x)− ∂αϕ(x)
|x− y|d+2q

− ∂αTεϕ(y)− ∂αϕ(y)
|x− y|d+2q

∣∣∣∣∣
2

dy dx

≤
∫
Bd(0,ε)

χε(z)
∫

Ω×Ω

∣∣f(x, y, z)
∣∣2

|x− y|d+2q d(x, y) dz

≤ 1 · sup
|z|≤ε

∫
Ω×Ω

∣∣f(x, y, z)
∣∣2

|x− y|d+2q d(x, y)

= sup
|z|≤ε

∫
Ω×Ω

∣∣(∂αϕ(x+z)− ∂αϕ(y+z)
)
−
(
∂αϕ(x)− ∂αϕ(y)

)∣∣2
|x− y|d+2q d(x, y).

By assumption, Ω×Ω 3 (x, y) 7→ |∂αϕ(x)− ∂αϕ(y)|/|x− y|p+d/2 belongs
to L2(Ω× Ω) and is therefore mean continuous (see the second condition
in Remark A.19). This means, that we can make the last expression in
the last estimate as small as we like. Thus, we have shown the first part
of the lemma.
Since

{
Tεϕ | ε ∈ (0, ε0)

}
⊆ C∞0 (Ω), also the second part of the lemma is

true. �

The next statement was used in the proof of the last lemma and is also
known as the Kolmogorov-Riesz compactness principle, see for instance
[53, page 4].

Remark A.19 Let M be a subset of Lp(Ω), 1 ≤ p <∞. M is relatively
compact if and only if the following three conditions are satisfied:

(i) M is bounded in Lp(Ω), i.e., supϕ∈M ‖ϕ‖Lp(Ω) <∞.

(ii) limh→0
∫

Ω |ϕ(x+ h)− ϕ(x)|p dx = 0 holds uniformly for ϕ ∈M .
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(iii) limr↗∞
∫
{|x|>r}∩Ω |ϕ(x)|p dx = 0 holds uniformly for ϕ ∈M .

For a proof we refer to [53] and references therein.

Theorem A.20 Let Ω ⊆ Rd be open and let s ∈ R with s ≥ 0. Then
C∞(Ω) ∩Hs(Ω) is dense in Hs(Ω).

Proof: Set Ωn :=
{
x ∈ Ω

∣∣ |x| < n, dist(x, ∂Ω) > 1/n
}

for n ∈ N. Then
Ωn is open and bounded, and Ωn ⊆ Ωn ⊆ Ωn+1 ⊆ Ω for all n ∈ N. Note
that

⋃∞
n=1 Ωn = Ω and Ω =

⋃∞
n=0 Ωn+1 \ Ωn−1, where Ω0 := Ω−1 := ∅.

There exist functions 0 ≤ χn ∈ C∞0 (Ω) such that suppχn ⊆ Ωn+1 \ Ωn−1
and

∑∞
n=1 χn(x) = 1 for all x ∈ Ω.

Let ϕ ∈ Hs(Ω) and ε > 0. Note that χn ϕ ∈ Hs
c (Ω), see Theorem A.15.

Then, thanks to Lemma A.18, for all n ∈ N there exists δn > 0 such that
Tδn(χn ϕ) =: θn ∈ C∞0 (Ω), supp θn ⊆ supp(χn ϕ)+Bd[0, δn] ⊆ Ωn+1\Ωn−1
and ‖θn − χn ϕ‖Hs(Ω) ≤ 2−nε. Define θ(x) :=

∑∞
n=1 θn(x) for all x ∈ Ω.

Since any Bd[0, r] ⊆ Ω intersects only finitely many of the sets Ωn+1\Ωn−1,
we obtain θ ∈ C∞(Ω), because the sum is finite on each Bd[0, r].
Since ‖θn −χn ϕ‖Hs(Ω) ≤ 2−nε and Hs(Ω) is a Banach space, there exists
ψ ∈ Hs(Ω) such that ψ =

∑∞
n=1(θn − χn ϕ). Let χ ∈ C∞0 (Ω). Set

K := suppχ and N := max
{
n ∈ N | K ∩

(
Ωn+1 \ Ωn−1

)
6= ∅
}

. Then for
n ≥ N there holds θ − ϕ =

∑n
k=1(θk − χk ϕ) almost everywhere on K.

Consequently,∫
Ω

[ψ − (θ − ϕ)]χdx = lim
n→∞

∫
K

[
n∑
k=1

(θk − χk ϕ)− (θ − ϕ)
]
χdx

= lim
n→∞
N≤n

∫
K

[
n∑
k=1

(θk − χk ϕ)−
n∑
k=1

(θk − χk ϕ)
]
χdx = 0,

i.e., ψ = θ − ϕ almost everywhere on Ω. Hence, θ = θ − ϕ+ ϕ ∈ Hs(Ω)
and ‖θ − ϕ‖Hs(Ω) ≤

∑∞
n=1 ‖θn − χn ϕ‖Hs(Ω) ≤ ε. �

Transformation Theorem. Our next goal is to give a simplified version
of the transformation theorem which is tailor-made for many situations in
applications. We start with a lemma which ensures the application of the
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mean value theorem also for the case where the subset under consideration
is not convex.

Lemma A.21 Let Ω ⊆ Rd be open and let O ⊆ Rd be open and bounded
such that O ⊆ Ω. Then the following statements are true.

(i) For all χ ∈ C1(Ω) there exists a constant C ≥ 0 such that

|χ(x)− χ(y)| ≤ C |x− y|, x, y ∈ O.

(ii) For any open set Ω′ ⊆ Rd and any ζ ∈ Diff1(Ω,Ω′) there exist
constants C,C ′ ≥ 0 such that, with O′ := ζ(O) and x′ := ζ(x),
x ∈ O,

|x′ − y′| ≤ C |x− y| and |x− y| ≤ C ′ |x′ − y′|,

for all x, y ∈ O and all x′, y′ ∈ O′.

Proof: (i). For x, y ∈ Rd we set Jx, yK := {x+ ξ(y− x) | ξ ∈ [0, 1]}. Since
O is compact, we find some open and bounded set O1 ⊆ Rd such that
O ⊆ O1 and O1 ⊆ Ω. Set δ := dist

(
O,Rd \ O1

)
. Then δ > 0. Choose

some ε ∈ (0, δ). Thus, for x, y ∈ O with |x− y| < ε, we have Jx, yK ⊆ O1
and therefore

|χ(x)− χ(y)| ≤ max
z∈O1

∥∥∂χ(z)
∥∥|x− y|.

And if x, y ∈ O such that |x− y| ≥ ε, then

|χ(x)− χ(y)| ≤ 2 max
z∈O
|χ(z)| ≤ 2

ε
max
z∈O
|χ(z)||x− y|.

Choosing C := max
{

maxz∈O1
‖∂χ(z)‖, 2/εmaxz∈O |χ(z)|

}
, the first part

is finished.
(ii). The proof follows exactly the proof from the first part. For the second
estimate we note that |x − y| = |ζ−1(x′) − ζ−1(y′)|, for x′, y′ ∈ O′, and
that O′ = ζ(O) ⊆ Ω′ is compact. �

The next formula for the chain rule in higher dimensions is convenient and
meets our requirements.
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Proposition A.22 Let O,O′ ⊆ Rd be open and let m ∈ N. Suppose
ζ ∈ Cm(O,O′) and ϕ ∈ Cm(O′). Then for all α ∈ Nd0 with |α| ≤ m

∂α(ϕ ◦ ζ)(x) =
∑
|β|≤|α|

pαβ(x)
(
(∂βϕ) ◦ ζ

)
(x), x ∈ O,

where pαβ : O → R is a polynomial of degree less or equal to |β| in the
derivatives up to order |α| of the components of ζ. To be more precisely,
the summands of pαβ(x) are of the form

c
(
∂γ

(1,1)
ζ1(x) · · · ∂γ

(1,β1)
ζ1(x)

)
· · ·
(
∂γ

(d,1)
ζd(x) · · · ∂γ

(d,βd)
ζd(x)

)
,

where c ∈ N0, γ(i,j) ∈ Nd0 with |γ(i,j)| ≤ |α| and the k-th factor in the
expression above is equal to one if βk = 0.

Proof: We show the statement by induction. For |α| = 0, the equation is
trivially satisfied with p00 ≡ 1. Now, suppose the formula holds for some
α ∈ Nd0 with 0 ≤ |α| < m. Choose i ∈ {1, . . . , d} and denote by e(i) the
i-th unit coordinate vector in Rd. Then

∂α+e(i)
[ϕ ◦ ζ] = ∂e

(i){
∂α[ϕ ◦ ζ]

}
= ∂e

(i)

 ∑
|β|≤|α|

pαβ ·
(
[∂βϕ] ◦ ζ

)
=

∑
|β|≤|α|

{[
∂e

(i)
pαβ
]
·
(
[∂βϕ] ◦ ζ

)
+ pαβ

d∑
j=1

([
∂β+e(j)

ϕ
]
◦ ζ
)
∂e

(i)
ζj

}
.

From the last line, we already see that in the expression on the right hand
side of the plus sign there appear only pαβ · ∂e

(i)
ζj , meaning that the

summands of the old polynomial pαβ are only multiplied by ∂e(i)
ζj , and

hence, these products contribute already summands of the new polynomial
in the form as asserted. For the expression on the left hand side of the
plus sign, we proceed with an extra step to recognize the special form also
for these contributions. In fact, for the summands in ∂e

(i)
pαβ we have

∂e
(i)

c d∏
j=1

βj∏
k=1

∂γ
(j,k)

ζj

 = c

d∑
j=1

∂e(i)

 βj∏
k=1

∂γ
(j,k)

ζj

 · d∏
l=1
l 6=j

(
βl∏
p=1

∂γ
(l,p)

ζl

)
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= c
d∑
j=1


(

βj∑
k=1

{
∂γ

(j,k)+e(i)
ζj

βj∏
n=1
n 6=k

∂γ
(j,n)

ζj

})
·
d∏
l=1
l 6=j

(
βl∏
p=1

∂γ
(l,p)

ζl

)
= c

d∑
j=1

βj∑
k=1

(
∂γ

(j,k)+e(i)
ζj

βj∏
n=1
n6=k

∂γ
(j,n)

ζj

)
·

(
d∏
l=1
l 6=j

βl∏
p=1

∂γ
(l,p)

ζl

)
,

from which we see that also the summands of the new polynomial, generated
by the derivatives of the summands of the old polynomial, are of the
asserted form. And finally, c ∈ N0 results from the consideration, that
during the process of generating the summands of the new polynomial, as
described above, it may happen that some of those are equal. �

We define the pullback operators ∗ζ and (∗ζ)−1 in the next transformation
theorem by continuous extension, thanks to Corollary A.7.

Theorem A.23 Let Ω,Ω′ ⊆ Rd be open, s ∈ R with s ≥ 0 and let
ζ ∈ Diffbsc+1(Ω,Ω′). Furthermore, let O ⊆ Rd be open and bounded such
that O ⊆ Ω, and set O′ := ζ(O). Then the mapping(

C∞(O′) ∩Hs(O′), ‖ · ‖Hs(O′)
)
3 ϕ 7→ ϕ ◦ ζ ∈ Hs(O)

is well-defined, linear and bounded. Its continuous extension to Hs(O′),
denoted by ∗ζ, belongs to the space Lis

(
Hs(O′), Hs(O)

)
. The inverse

(∗ζ)−1 : Hs(O)→ Hs(O′) is the continuous extension of(
C∞(O) ∩Hs(O), ‖ · ‖Hs(O)

)
3 ψ 7→ ψ ◦ ζ−1 ∈ Hs(O′)

to Hs(O).

Proof: Note, by Theorem A.20 the subspace C∞(O′) ∩ Hs(O′) and
C∞(O) ∩ Hs(O) is dense in Hs(O′) and Hs(O), respectively. Further-
more,

ϕ 7→ ϕ ◦ ζ 7→ ϕ ◦ ζ ◦ ζ−1 = ϕ and ψ 7→ ψ ◦ ζ−1 7→ ψ ◦ ζ−1 ◦ ζ = ψ,

for ϕ ∈ C∞(O′) ∩Hs(O′) and ψ ∈ C∞(O) ∩Hs(O). Therefore, thanks to
Corollary A.7, we only have to show, that the mappings from the theorem,
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defined on the dense subset, are indeed well-defined, linear and bounded.
And since both of them play the same role, it sufficies to consider only one
of them, say the first one.
Without loss of generality, we assume s = m + q with m ∈ N0 and
q ∈ (0, 1), as the case s = m ∈ N0 is a special case from the following
explanation. We start by choosing some χ ∈ C∞0 (Ω) with χ|O ≡ 1. Now,
let ϕ ∈ C∞(O′) ∩Hs(O′). Furthermore, let α ∈ Nd0 with |α| ≤ m. Then,
by Proposition A.22,

∂α(ϕ ◦ ζ) =
∑
|β|≤|α|

pαβ ·
(
[∂βϕ] ◦ ζ

)
.

Let β ∈ Nd0 with |β| ≤ |α|. Note that pαβχ ∈ C1
0 (Ω) and by extension

by zero to Rd we have pαβχ ∈ C1
b (Rd). Set Cζ := ‖ det ∂(ζ−1)‖Cb(O) and

Cp := max
{
‖pγκ‖C1

b
(O)

∣∣ |κ| ≤ |γ|, |γ| ≤ m
}

. By the transformation
theorem for Lebesgue integrable functions we have∥∥[∂βϕ] ◦ ζ

∥∥2
L2(O) ≤ Cζ

∥∥∂βϕ∥∥2
L2(O′),∣∣[∂βϕ] ◦ ζ

∣∣2
q,O
≤ Cd+2q

1 C2
ζ

∣∣∂βϕ∣∣2
q,O′

,

where we also applied part (ii) from Lemma A.21 in the second estimate and
where C1 denotes the corresponding constant therein. Hence, [∂βϕ] ◦ ζ ∈
Hq(O) and by Theorem A.15 we obtain pαβχ

(
[∂βϕ] ◦ ζ

)
∈ Hq(O) as well

and moreover∥∥pαβ([∂βϕ]◦ζ
)∥∥2
L2(O) +

∣∣pαβ([∂βϕ] ◦ ζ
)∣∣2
q,O

=
∥∥pαβχ ([∂βϕ] ◦ ζ

)∥∥2
Hq(O)

≤ C2
2 C

2
p

∥∥[∂βϕ] ◦ ζ
∥∥2
Hq(O)

≤ C2
2 C

2
p Cζ

(∥∥∂βϕ∥∥2
L2(O′) + Cd+2q

1 Cζ
∣∣∂βϕ∣∣2

q,O′

)
≤ C2

2 C
2
p Cζ

(
1 + Cd+2q

1 Cζ
)︸ ︷︷ ︸

=:C3

‖ϕ‖2
Hs(O′),

where C2 denotes the corresponding constant from Theorem A.15. With
the triangle inequality for the L2-norm and the seminorm we conclude
that∥∥∂α(ϕ ◦ ζ)

∥∥2
L2(O) +

∣∣∂α(ϕ ◦ ζ)
∣∣2
q,O
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≤
( ∑
|β|≤|α|

1
) ∑
|β|≤|α|

(∥∥pαβ([∂βϕ] ◦ ζ
)∥∥2
L2(O) +

∣∣pαβ([∂βϕ] ◦ ζ
)∣∣2
q,O

)
≤ C3 C

2
4 ‖ϕ‖2

Hs(O′),

where we have set C4 :=
∑
|β|≤m 1. From this we get finally the estimate

‖ϕ ◦ ζ‖2
Hs(O) ≤ C3 C

3
4 ‖ϕ‖2

Hs(O′), as desired. �

Corollary A.24 Let Ω,Ω′ ⊆ Rd be open, s ∈ R with s ≥ 0 and let
ζ ∈ Diffbsc+1(Ω,Ω′). Furthermore, let K ⊆ Ω be compact and let O ⊆ Rd
be open and bounded such that K ⊆ O and O ⊆ Ω. Set K ′ := ζ(K) and
O′ := ζ(O). Finally, let ∗ζ ∈ Lis

(
Hs(O′), Hs(O)

)
be the pullback operator

from Theorem A.23. Then
∗ζ|Hs

K′
(O′) ∈ Lis

(
Hs
K′(O′), Hs

K(O)
)
.

Proof: It sufficies to show that ϕ ∈ Hs
K′(O′) implies supp(∗ζ ϕ) ⊆ K. For

this let ϕ ∈ Hs
K′(O′). By definition, ∗ζ ϕ = limn→∞ ϕn ◦ ζ, where the

limit is taken with respect to ‖ · ‖Hs(O), for some sequence (ϕn)n∈N in
C∞(O′) ∩Hs(O′) converging to ϕ with respect to ‖ · ‖Hs(O′). Take any
χ ∈ C∞0 (O \K) and set x′ := ζ(x) for x ∈ O. Then∫

O\K
(∗ζ ϕ)(x)χ(x) dx = lim

n→∞

∫
O\K

ϕn
(
ζ(x)

)
χ(x) dx

= lim
n→∞

∫
O′\K′

ϕn(x′)χ
(
ζ−1(x′)

) ∣∣det ∂(ζ−1)(x′)
∣∣dx′

=
∫
O′\K′

ϕ(x′)χ
(
ζ−1(x′)

) ∣∣ det ∂(ζ−1)(x′)
∣∣ dx′ = 0,

as suppϕ ⊆ K ′. This shows that ∗ζ ϕ is zero almost everywhere on O \K,
as desired. �

Auxiliary mappings. Let Ω′ ⊆ Ω ⊆ Rd and both be open. For ϕ ∈ L2(Ω)
recall its restriction ϕ|Ω′ and for ϕ ∈ L2(Ω′) its extension (by zero) ϕ|Ω0
from Section 1.3. Now, we would like to introduce restriction and extension
(by zero) operators for the space Hs(Ω) and Hs

K(Ω′), respectively.
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Lemma A.25 Let Ω′ ⊆ Ω ⊆ Rd and both be open. Moreover, let s ∈ R
with s ≥ 0 and α ∈ Nd0 with |α| ≤ bsc. Then

(i) ϕ ∈ Hs(Ω) ⇒ ∃ ∂α(ϕ|Ω′) =
(
∂αϕ

)∣∣
Ω′ ∈ L

2(Ω′),

(ii) K ⊆ Ω′ compact, ϕ ∈ Hs
K(Ω′) ⇒ ∃ ∂α(ϕ|Ω0 ) = (∂αϕ)|Ω0 ∈ L2(Ω).

Proof: (i). Let ϕ ∈ Hs(Ω). Clearly,
(
∂αϕ

)
|Ω′ ∈ L2(Ω′). Take any

χ ∈ C∞0 (Ω′). Of course, χ|Ω0 ∈ C∞0 (Ω) and suppχ|Ω0 ⊆ Ω′. Hence,∫
Ω′
ϕ|Ω′ ∂αχdx =

∫
Ω
ϕ∂αχ|Ω0 dx = (−1)|α|

∫
Ω

(∂αϕ)χ|Ω0 dx

= (−1)|α|
∫

Ω′

(
∂αϕ

)
|Ω′ χdx.

(ii). Let ϕ ∈ Hs
K(Ω′). By Proposition A.12, the support of ∂αϕ is

contained in K. Since ∂αϕ ∈ L2(Ω′), of course (∂αϕ)|Ω0 ∈ L2(Ω). Take
some χ ∈ C∞0 (Ω). Choose η ∈ C∞0 (Ω′) such that η ≡ 1 in a neighborhood
of K. By extension by zero, we can consider η ∈ C∞0 (Ω) as well. Then
χ = ηχ+ (1− η)χ with supp ηχ ⊆ Ω′ and supp(1− η)χ ⊆ Kc. Therefore,
by considering also ηχ ∈ C∞0 (Ω′),∫

Ω
ϕ|Ω0 ∂αχdx =

∫
Ω
ϕ|Ω0 ∂α(ηχ) dx+

∫
Ω
ϕ|Ω0 ∂α

(
(1− η)χ

)
dx

=
∫

Ω′
ϕ∂α(ηχ) dx+

∫
K

ϕ|Ω0 ∂α
(
(1− η)χ

)︸ ︷︷ ︸
=0

dx

= (−1)|α|
∫

Ω′
∂αϕ(ηχ) dx+ (−1)|α|

∫
Ω\K

0 ·
(
(1− η)χ

)
dx

= (−1)|α|
(∫

Ω′
(∂αϕ)|Ω0 (ηχ) dx+

∫
Ω\K

(∂αϕ)|Ω0
(
(1− η)χ

)
dx
)

= (−1)|α|
(∫

Ω
(∂αϕ)|Ω0 (ηχ) dx+

∫
Ω

(∂αϕ)|Ω0
(
(1− η)χ

)
dx
)

= (−1)|α|
∫

Ω
(∂αϕ)|Ω0 χdx.

This completes the proof. �
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Theorem A.26 Let Ω′ ⊆ Ω ⊆ Rd and both be open. Moreover, let s ∈ R
with s ≥ 0. Then the following assertions are true.

(i) The restriction operator Hs(Ω) 3 ϕ 7→ ϕ|Ω′ ∈ Hs(Ω′) is well-defined,
linear and bounded, i.e.,

‖ϕ|Ω′‖Hs(Ω′) ≤ ‖ϕ‖Hs(Ω), ϕ ∈ Hs(Ω).

(ii) Let in addition Ω be bounded and K ⊆ Ω′ be compact. Then the
extension operator Hs

K(Ω′) 3 ϕ 7→ ϕ|Ω0 ∈ Hs
K(Ω) is well-defined,

linear and bounded, i.e.,

‖ϕ|Ω0 ‖Hs(Ω) ≤ c ‖ϕ‖Hs(Ω′), ϕ ∈ Hs
K(Ω′).

The constant c only depends on K, Ω′, Ω and s.

Proof: At first we assume that s = m+ q with m ∈ N and q ∈ (0, 1).
(i). The assertion for the restriction operator is obviously true.
(ii). In the following considerations, c2 > 0 denotes the constant from the
second part of Lemma A.16. Let ϕ ∈ Hs

K(Ω′). Take some α ∈ Nd0 with
|α| = m. Note that also supp ∂αϕ ⊆ K, see Proposition A.12. Then∫

Ω′

∫
Ω\Ω′

∣∣∂αϕ(x)
∣∣2

|x− y|d+2q dy dx =
∫
K

∫
Ω\Ω′

∣∣∂αϕ(x)
∣∣2

|x− y|d+2q dy dx

≤ c2 |Ω \ Ω′|
∥∥∂αϕ∥∥2

L2(Ω′).

Hence, thanks to Lemma A.25,

∣∣∂α(ϕ|Ω0 )
∣∣2
q,Ω =

∫
Ω

∫
Ω

∣∣∂α(ϕ|Ω0 )(x)− ∂α(ϕ|Ω0 )(y)
∣∣2

|x− y|d+2q dy dx

=
∫

Ω

∫
Ω

∣∣(∂αϕ)|Ω0 (x)− (∂αϕ)|Ω0 (y)
∣∣2

|x− y|d+2q dy dx

= 2
∫

Ω′

∫
Ω\Ω′

∣∣∂αϕ(x)
∣∣2

|x− y|d+2q dy dx+
∫

Ω′

∫
Ω′

∣∣∂αϕ(x)− ∂αϕ(y)
∣∣2

|x− y|d+2q dy dx

≤ 2 c2 |Ω \ Ω′|
∥∥∂αϕ∥∥2

L2(Ω′) + |∂αϕ|2q,Ω′ .
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Therefore, again with the help of the two lemmas,

‖ϕ|Ω0 ‖2
Hs(Ω) = ‖ϕ|Ω0 ‖2

L2(Ω) +
∑
|α|=m

‖∂α(ϕ|Ω0 )‖2
L2(Ω) +

∑
|α|=m

∣∣∂α(ϕ|Ω0 )
∣∣2
q,Ω

≤ ‖ϕ‖2
L2(Ω′) +

(
1 + 2 c2 |Ω \ Ω′|

) ∑
|α|=m

‖∂αϕ‖2
L2(Ω′) +

∑
|α|=m

|∂αϕ|2q,Ω′ .

Thus, the extension operator is well-defined. Its linearity is clear and its
boundedness follows immediately from the last estimate.
Finally, the remaining cases for s are similarly treated, but easier. �

A Useful “Continuity” Result. We conclude this subsection with a “con-
tinuity” result concerning the seminorm, as stated in the following lemma.
This result is needed later, when we show norm equivalences in periodic
Sobolev spaces. Nevertheless, we outsource the corresponding step from
there already here in form of this lemma, since the result may also be seen
in a general context and its proof contains some useful ideas. The ideas
were taken over from [53, page 63].

Lemma A.27 Let Ω ⊆ Rd be open, q ∈ (0, 1) and let ϕ,ϕn ∈ L2(Ω) for
all n ∈ N, such that ϕn → ϕ in L2(Ω), as n→∞. Moreover, suppose that(
|ϕn|2q,Ω

)
n∈N is a Cauchy sequence. Then

|ϕ|2q,Ω <∞ and |ϕn|2q,Ω −→ |ϕ|
2
q,Ω , as n→∞.

Proof: By the Theorem of Riesz-Fischer, there exists a subsequence
(ϕnk)k∈N, converging pointwise to ϕ almost everywhere in Ω. Hence,

|ϕnk(x)− ϕnk(y)|2

|x− y|d+2q −→ |ϕ(x)− ϕ(y)|2

|x− y|d+2q , as k →∞,

for almost all (x, y) ∈ Ω×Ω. Since
(
|ϕn|2q,Ω

)
n∈N is a Cauchy sequence, it

is in particular bounded, say by 0 < M <∞, and together with Fatou’s
lemma

|ϕ|2q,Ω =
∫

Ω

∫
Ω

|ϕ(x)− ϕ(y)|2

|x− y|d+2q dy dx
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≤ lim inf
k→∞

∫
Ω

∫
Ω

|ϕnk(x)− ϕnk(y)|2

|x− y|d+2q dy dx ≤M.

Moreover,∣∣∣∣ |ϕnk(x)− ϕnk(y)|2

|x− y|d+2q − |ϕ(x)− ϕ(y)|2

|x− y|d+2q

∣∣∣∣ −→ 0, as k →∞,

for almost all (x, y) ∈ Ω× Ω. Applying now a corollary of Fatou’s lemma,
see for instance [6, Korollar 3.8], yields

0 ≤ lim sup
k→∞

∣∣∣∣∫
Ω

∫
Ω

(
|ϕnk(x)− ϕnk(y)|2

|x− y|d+2q − |ϕ(x)− ϕ(y)|2

|x− y|d+2q

)
dy dx

∣∣∣∣ (∗)

≤ lim sup
k→∞

∫
Ω

∫
Ω

∣∣∣∣ |ϕnk(x)− ϕnk(y)|2

|x− y|d+2q − |ϕ(x)− ϕ(y)|2

|x− y|d+2q

∣∣∣∣dy dx ≤ 0.

Because
(
|ϕn|2q,Ω

)
n∈N is a Cauchy sequence in R, it is convergent. There-

fore, also
(
|ϕnk |

2
q,Ω
)
k∈N is convergent and converges to the same limit.

Hence, there exists

lim
k→∞

∣∣∣|ϕnk |2q,Ω − |ϕ|2q,Ω∣∣∣ =
∣∣∣∣ lim
k→∞

|ϕnk |
2
q,Ω − |ϕ|

2
q,Ω

∣∣∣∣ .
Since in the case of convergence the limit and the limit superior coincide,
we obtain from the last identity, together with (∗) and the remark from
above about the limit of subsequences, indeed the convergence result from
the lemma. �

A.5.2. Results for Biperiodic Sobolev Spaces

In this subsection we will transfer the results for Sobolev-Slobodeckǐı spaces
from above to the biperiodic setting. For this purpose, let throughout this
subsection the rectangle Q ⊆ R2 be given by

Q := (−L1, L1)× (−L2, L2),

where Lj > 0 are some real numbers, j = 1, 2, and recall the notion of
periodic functions (with respect to Q) from the corresponding paragraph
in Section 1.3.
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Clearly, with Cmb (Q) from the last subsection there holds Cmper(Q) ⊆
Cmb (Q), i.e., we can also equip Cmper(Q) with the norm ‖ · ‖Cm

b
(Q).

As in (2.7) (see also (1.14)) we define

q(µ) := q
(µ)
Q =

(
µ1π/L1
µ2π/L2

)
, µ ∈ Z2.

Now, we want to introduce Sobolev-Slobodeckǐı spaces based on periodic
functions and investigate their relation to Hs

per(Q) from Definition 2.7. To
this end, the space Hmper(Q) from Definition 2.14 turns out to be the correct
starting point, similarly as its analog Hm(Ω) in the last subsection. For
ease of notation, we introduce for q ∈ (0, 1) and for suitable ϕ,ψ ∈ L2(Q)
the quantities

〈ϕ,ψ〉q,per :=
∫
Q

∫
Q

(
ϕ(t)− ϕ(τ)

)(
ψ(t)− ψ(τ)

)(∣∣∣sin π(t1−τ1)
2L1

∣∣∣+
∣∣∣sin π(t2−τ2)

2L2

∣∣∣)2q+2 dτ dt,

|ϕ|q,per :=
√
〈ϕ,ϕ〉q,per.

As we will see in Lemma A.33, such suitable ϕ,ψ ∈ L2(Q) are for instance
the trigonometric monomials.

Definition A.28 For s = m+ q with m ∈ N0 and q ∈ (0, 1) we define

Hsper(Q) :=
{
ϕ ∈ Hmper(Q)

∣∣∣ ∀α ∈ N2
0 with |α| ≤ m :

∣∣∂αperϕ
∣∣
q,per <∞

}
and endow this space with the inner product

(ϕ | ψ)Hsper(Q) := (ϕ | ψ)Hmper(Q) +
∑
|α|≤m

〈∂αϕ, ∂αψ〉q,per .

Here, the space Hmper(Q) was defined in Definition 2.14. For s ∈ R with
s ≥ 0 we choose in Hsper(Q) the norm ‖ · ‖Hsper(Q) :=

√
(· | ·)Hsper(Q).

Again, the choice of the symbol | · |q,per is advisable since the following
lemma shows that | · |q,per is a seminorm.
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Lemma A.29 Let q ∈ (0, 1). Then | · |q,per is a seminorm in Hqper(Q).

Proof: The proof is a repetition of the proof of Lemma A.13. So, let
ϕ,ψ ∈ Hqper(Q) and λ ∈ C be arbitrary. Then it is easy to see that
|ϕ|q,per ≥ 0 and that |λϕ|q,per = |λ| |ϕ|q,per. To show the triangle inequality,
we set

Φ(t, τ) := ϕ(t)− ϕ(τ)(∣∣∣sin π(t1−τ1)
2L1

∣∣∣+
∣∣∣sin π(t2−τ2)

2L2

∣∣∣)q+1 , (t, τ) ∈ Q×Q,

and define Ψ : Q×Q→ C analogously. Then Φ,Ψ ∈ L2(Q×Q) and we
obtain

|ϕ+ ψ|q,per =

∫
Q

∫
Q

∣∣(ϕ(t) + ψ(t)
)
−
(
ϕ(τ) + ψ(τ)

)∣∣2(∣∣∣sin π(t1−τ1)
2L1

∣∣∣+
∣∣∣sin π(t2−τ2)

2L2

∣∣∣)2q+2 dτ dt


1/2

= ‖Φ + Ψ‖L2(Q×Q) ≤ ‖Φ‖L2(Q×Q) + ‖Ψ‖L2(Q×Q)

= |ϕ|q,per + |ψ|q,per ,

as desired. �

Correlation between Hs
per(Q) and Hs

per(Q). From Theorem 2.20 we
know already that for the special case s = m ∈ N0 we have Hsper(Q) =
Hs

per(Q). In the following presentation we will derive that this equality
even holds for all s ∈ R with s ≥ 0. For this, we follow [36]. However,
we have to overcome some effort when transfering the results therein to
the two dimensional case. We proceed in several steps. The next lemmas
are of particular importance to get a grip on the fractional part of the
Sobolev-Slobodeckǐı norm for the periodic case.

Lemma A.30 (i) ∀t ∈ Q : 1
L
|t| ≤

∣∣ sin πt1
2L1

∣∣+
∣∣ sin πt2

2L2

∣∣ ≤ π
L |t|.

(ii) Let K ⊆ Q be compact. Then there exist constants c1, c2 > 0 such
that

c1 |t− τ | ≤
∣∣ sin π(t1−τ1)

2L1

∣∣+
∣∣ sin π(t2−τ2)

2L2

∣∣ ≤ c2 |t− τ |, t, τ ∈ K.
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Proof: (i). We use 2
π |ξ| ≤ | sin ξ| ≤ |ξ| for ξ ∈ R and |ξ| ≤ π/2 to estimate

for t ∈ Q
1
L
|t| ≤ 1

L

(
|t1|+ |t2|

)
≤
∣∣ sin πt1

2L1

∣∣+
∣∣ sin πt2

2L2

∣∣ ≤ π
2L
(
|t1|+ |t2|

)
≤ π

L |t|.

(ii). For % ∈ (0, 1) we observe that sin(%π)
%π |ξ| ≤ | sin ξ| ≤ |ξ| for ξ ∈ R and

|ξ| ≤ % π. Since K ⊆ Q is compact, there exists %i ∈ (0, 1) such that for all
t, τ ∈ K there holds |π(ti−τi)

2Li | ≤ %iπ, i = 1, 2. Now, with the observation
from the beginning, the assertion follows similarly as in part (i). The
constants can be chosen as c1 = 1

2L
mini=1,2

sin(%iπ)
%i

and c2 = π
L . �

Lemma A.31 Let q ∈ (0, 1). Then there exist constants c0 > 0 and
c1 > 0 such that

c0 |µ|2q ≤
∫
Q′

sin2 ( q(µ)·τ
2
)

|τ |2q+2 dτ ≤ c1 |µ|2q, µ ∈ Z2,

where Q′ := [−L1, L1]× [0, L2].

Proof: We note that the existence of the integral follows in particular
from the second inequality. Furthermore, the inequalities

2
π |ξ| ≤ | sin ξ| ≤ |ξ|, ξ ∈ R, |ξ| ≤ π/2,

will be helpful. Clearly, the assertion of the lemma holds if µ = 0. So, let’s
assume µ ∈ Z2 \ {0}. We start with the observation

∫
Q′

sin2 ( q(µ)·τ
2
)

|τ |2q+2 dτ =
∫
Q′

sin2 ( 1
2
q(µ)

|q(µ)| · |q
(µ)|τ

)
|τ |2q+2 dτ

= |q(µ)|2q
∫
|q(µ)|Q′

sin2 ( 1
2
q(µ)

|q(µ)| · σ
)

|σ|2q+2 dσ,

and proceed to derive bounds for the last integral. For this, on the one
hand we estimate∫
|q(µ)|Q′

sin2 ( 1
2
q(µ)

|q(µ)| · σ
)

|σ|2q+2 dσ ≤
∫
B2(0,π)

1
4 |σ|

2

|σ|2q+2 dσ +
∫
R2\B2(0,π)

1
|σ|2q+2 dσ
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≤ π

2

∫ π

0

1
r2q−1 dr + 2π

∫ ∞
π

1
r2q+1 dr

= π3−2q

2
1

2− 2q + π

q

( 1
π

)2q
=: c̃1 > 0,

which yields with c1 := c̃1(π/L)2q the second inequality. On the other
hand

∫
|q(µ)|Q′

sin2 ( 1
2
q(µ)

|q(µ)| · σ
)

|σ|2q+2 dσ ≥
∫
π

4L
Q′

sin2 ( 1
2
q(µ)

|q(µ)| · σ
)

|σ|2q+2 dσ

≥ 4
π2

∫
π

4L
Q′

1
4
∣∣ q(µ)

|q(µ)| · σ
∣∣2

|σ|2q+2 dσ.

Now, we set F (t̂) :=
∫
π

4L
Q′
|t̂·σ|2
|σ|2q+2 dσ, for t̂ ∈ S1. We observe that F is

continuous and that F (t̂) > 0 for all t̂ ∈ S1. Since S1 is compact, there
exists c̃0 := mint̂∈S1 F (t̂) > 0. Finally, setting c0 := (c̃0/π

2)(π/L)2q yields
the first inequality and completes the proof. �

Lemma A.32 Let q ∈ (0, 1). Define

γµ := 8
∫
Q′

sin2 ( q(µ)·t
2
)(∣∣ sin πt1

2L1

∣∣+
∣∣ sin πt2

2L2

∣∣)2q+2 dt, µ ∈ Z2,

where Q′ := [−L1, L1] × [0, L2]. Then γµ is well-defined and there exist
constants C0, C1 > 0 such that

C0|µ|2q ≤ γµ ≤ C1|µ|2q, µ ∈ Z2.

Proof: The assertion follows from Lemma A.31 together with part (i)
from Lemma A.30. The constants can be chosen as C0 = 8 c0

(L
π

)2q+2 and
C1 = 8 c1 L

2q+2, both greater than zero. �
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Lemma A.33 Let q ∈ (0, 1) and γµ be the number from Lemma A.32.
Then

γµ = 8
∫
Q′

sin2 ( q(µ)·t
2
)(∣∣ sin πt1

2L1

∣∣+
∣∣ sin πt2

2L2

∣∣)2q+2 dt

= 2
∫
Q

1− e±iq(µ)·t(∣∣ sin πt1
2L1

∣∣+
∣∣ sin πt2

2L2

∣∣)2q+2 dt.

Moreover 〈
T

(µ)
Q , T

(ν)
Q

〉
q,per

= γµδµ,ν , µ, ν ∈ Z2.

Here Q′ := [−L1, L1]× [0, L2] and δµ,ν denotes the Kronecker delta.

Proof: For convenience, we introduce f : R2 → R given by

f(σ) :=
∣∣ sin πσ1

2L1

∣∣+
∣∣ sin πσ2

2L2

∣∣, σ = (σ1, σ2)> ∈ R2,

and observe that f is an even and periodic function. Let µ, ν ∈ Z2. First
of all there holds, with Q1 := [0, L1]× [0, L2], Q2 := [−L1, 0]× [0, L2] and
the substitution σ = −τ ,∫

Q

1− e−iq(ν)·τ[
f(τ)

]2q+2 dτ =
∫
Q1

1− e−iq(ν)·τ[
f(τ)

]2q+2 dτ +
∫
Q1

1− eiq(ν)·σ[
f(σ)

]2q+2 dσ

+
∫
Q2

1− e−iq(ν)·τ[
f(τ)

]2q+2 dτ +
∫
Q2

1− eiq(ν)·σ[
f(σ)

]2q+2 dσ

=
∫
Q1

2− 2 cos(q(ν) · τ)[
f(τ)

]2q+2 dτ +
∫
Q2

2− 2 cos(q(ν) · τ)[
f(τ)

]2q+2 dτ

=
∫
Q′

4 sin2 ( q(ν)·τ
2
)[

f(τ)
]2q+2 dτ.

Thus, together with the definition of γµ and the calculation∫
Q

1− e−iq(ν)·τ[
f(τ)

]2q+2 dτ =
∫
Q

1− eiq(ν)·(−τ)[
f(−τ)

]2q+2 dτ =
∫
Q

1− eiq(ν)·t[
f(t)

]2q+2 dt,
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we have shown the first two identities from the lemma. Now, we observe
that[
T

(µ)
Q (t)− T (µ)

Q (τ)
][
T

(ν)
Q (t)− T (ν)

Q (τ)
]

= 1
|Q|

(
ei(q(µ)−q(ν))·t + ei(q(µ)−q(ν))·τ − ei(q(µ)·t−q(ν)·τ) − ei(q(µ)·τ−q(ν)·t)

)
.

Moreover, by interchanging the integration order, using that f is even and
interchanging finally the role of t and τ , we easily check the equation

∫
Q

∫
Q

ei(q(µ)−q(ν))·t[
f(t− τ)

]2q+2 dτ dt =
∫
Q

∫
Q

ei(q(µ)−q(ν))·τ[
f(t− τ)

]2q+2 dτ dt

and ∫
Q

∫
Q

ei(q(µ)·t−q(ν)·τ)[
f(t− τ)

]2q+2 dτ dt =
∫
Q

∫
Q

ei(q(µ)·τ−q(ν)·t)[
f(t− τ)

]2q+2 dτ dt.

Therefore, we conclude that

〈
T

(µ)
Q , T

(ν)
Q

〉
q,per

= 2
|Q|

∫
Q

∫
Q

ei(q(µ)−q(ν))·t − ei(q(µ)·t−q(ν)·τ)[
f(t− τ)

]2q+2 dτ dt.

Now, we calculate

∫
Q

ei(q(µ)·t−q(ν)·τ)[
f(t− τ

]2q+2 dτ = eiq(µ)·t
∫
Q

e−iq(ν)·τ[
f(t− τ)

]2q+2 dτ

= eiq(µ)·t
∫
t−Q

eiq(ν)·(σ−t)[
f(σ)

]2q+2 dσ = ei(q(µ)−q(ν))·t
∫
t−Q

eiq(ν)·σ[
f(σ)

]2q+2 dσ

= ei(q(µ)−q(ν))·t
∫
t−Q

e−iq(ν)·(−σ)[
f(−σ)

]2q+2 dσ

= ei(q(µ)−q(ν))·t
∫
−t+Q

e−iq(ν)·τ[
f(τ)

]2q+2 dτ = ei(q(µ)−q(ν))·t
∫
Q

e−iq(ν)·τ[
f(τ)

]2q+2 dτ,
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where we have applied in the second equality the substitution σ = t− τ ,
in the fifth equality the substitution τ = −σ and in the last equality the
periodicity of the integrand. Hence,

〈
T

(µ)
Q , T

(ν)
Q

〉
q,per

= 2
|Q|

∫
Q

ei(q(µ)−q(ν))·t

(∫
Q

1− e−iq(ν)·τ[
f(τ)

]2q+2 dτ
)

dt

= 2
(
T

(µ)
Q , T

(ν)
Q

)
L2(Q)

∫
Q

1− e−iq(ν)·τ[
f(τ)

]2q+2 dτ = δµ,νγµ,

which is the last identity from the lemma. �

Lemma A.34 Let q ∈ (0, 1) and ϕ ∈ Hqper(Q). Then

|ϕ|2q,per =
∑
µ∈Z2

|ϕ(µ)|2γµ,

with γµ from Lemma A.32 and where ϕ(µ) denote the Fourier coefficients
of ϕ.

Proof: Again, for convenience, we introduce f : R2 → R given by

f(σ) :=
∣∣ sin πσ1

2L1

∣∣+
∣∣ sin πσ2

2L2

∣∣, σ = (σ1, σ2)> ∈ R2,

and observe that f is an even and periodic function. Moreover, we need

|1− eiq(µ)·σ|2 = 1− eiq(µ)·σ + 1− e−iq(µ)·σ, µ ∈ Z2, σ ∈ R2.

Thus

|ϕ|2q,per =
∫
Q

∫
Q

|ϕ(t)− ϕ(τ)|2[
f(t− τ)

]2q+2 dτ dt

=
∫
Q

∫
−τ+Q

|ϕ(τ + σ)− ϕ(τ)|2[
f(σ)

]2q+2 dσ dτ

=
∫
Q

(∫
Q

|ϕ(τ + σ)− ϕ(τ)|2[
f(σ)

]2q+2 dτ
)

dσ
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=
∫
Q

1[
f(σ)

]2q+2
∥∥ϕ(·+ σ)− ϕ(·)

∥∥2
L2(Q)︸ ︷︷ ︸

=
∑

µ∈Z2 |1−eiq(µ)·σ|2|ϕ(µ)|2

dσ

=
∑
µ∈Z2

|ϕ(µ)|2
∫
Q

|1− eiq(µ)·σ|2[
f(σ)

]2q+2 dσ

=
∑
µ∈Z2

|ϕ(µ)|2 2
∫
Q

1− e−iq(µ)·σ[
f(σ)

]2q+2 dσ =
∑
µ∈Z2

|ϕ(µ)|2γµ

where we have used in the third equality the periodicity of the integrand,
in the fifth equality a corollary of the monotone convergence theorem and
in the second last and last equality Lemma A.33. �

Lemma A.35 Let q ∈ (0, 1) and ϕ ∈ Hq
per(Q). Then

|ϕ|2q,per =
∑
µ∈Z2

|ϕ(µ)|2γµ,

with γµ from Lemma A.32 and where again ϕ(µ) denote the Fourier coeffi-
cients of ϕ.

Proof: We set ϕN :=
∑
|µ|∞≤N ϕ

(µ)T
(µ)
Q for N ∈ N. Clearly, ϕN → ϕ in

L2(Q), as N →∞. Thanks to Lemma A.29, the reverse triangle inequality
(which also holds for seminorms) is applicable, and using the orthogonality
relation for the trigonometric monomials in Lemma A.33, we obtain for
M,N ∈ N with M < N∣∣ |ϕN |q,per − |ϕM |q,per

∣∣2≤ |ϕN − ϕM |2q,per

=
〈 ∑
M<|µ|∞≤N

ϕ(µ)T
(µ)
Q ,

∑
M<|ν|∞≤N

ϕ(ν)T
(ν)
Q

〉
q,per

=
∑

M<|µ|∞≤N
M<|ν|∞≤N

ϕ(µ)ϕ(ν)
〈
T

(µ)
Q , T

(ν)
Q

〉
q,per

=
∑

M<|µ|∞≤N

|ϕ(µ)|2 γµ

≤ C1
∑

M<|µ|∞≤N

|µ|2q |ϕ(µ)|2
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≤ C1
∑

M<|µ|∞≤N

(
1 + |µ|2

)q|ϕ(µ)|2 −→ 0, as M,N →∞,

where we have used in the second inequality Lemma A.32 and where the
convergence follows as ϕ belongs to Hq

per(Q). From this we conclude that(
|ϕN |2q,per

)
N∈N is a Cauchy sequence, and due to Lemma A.27 (after

convincing ourselves that its proof also works for the denominator in
| · |2q,per) we obtain

|ϕN |2q,per → |ϕ|
2
q,per <∞, as N →∞.

Moreover, with the considerations above it is easy to see, that |ϕN |2q,per =∑
0≤|µ|∞≤N |ϕ

(µ)|2γµ and that the series on the right hand side possesses
a convergent majorant. Therefore the limit exists and has to coincide with
|ϕ|2q,per, as we wanted to show. �

Now, we come to the main theorem of this subsection.

Theorem A.36 Let s ∈ R with s ≥ 0. Then

Hs
per(Q) = Hsper(Q).

Furthermore, on Hs
per(Q) (and thus on Hsper(Q)) the norms ‖ · ‖Hsper(Q)

and ‖ · ‖Hsper(Q) are equivalent.

Proof: The assertion for s = m ∈ N0 follows from Theorem 2.20. There-
fore, we assume that s = m + q with m ∈ N0 and q ∈ (0, 1). Moreover,
without loss of generality, we assume m ∈ N, as the case s = q is a special
case of the following considerations.
Let ϕ ∈ Hsper(Q). Thanks to Lemma 2.18 there holds (recall that 00 = 1)(

1 + |µ|2
)s ≤ 2s|µ|2q|µ|2m

≤ 2s
(

m
bm/2c

) (
L
π

)2m
|µ|2q

∑
|α|=m

π2m| µ1
L1
|2α1 | µ2

L2
|2α2 ,

for all µ ∈ Z2\{0}. Then, by Lemma 2.17, Lemma A.32 and Lemma A.34,∑
µ∈Z2

(
1 + |µ|2

)s|ϕ(µ)|2 ≤ ‖ϕ‖2
L2(Q) +

∑
µ∈Z2\{0}

(
1 + |µ|2

)s|ϕ(µ)|2
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≤ ‖ϕ‖2
L2(Q) + 2s

(
m
bm/2c

) (
L
π

)2m ∑
|α|=m

∑
µ∈Z2

|µ|2q
∣∣(∂αϕ)(µ)∣∣2

≤ ‖ϕ‖2
L2(Q) + 2s

C0

(
m
bm/2c

) (
L
π

)2m ∑
|α|=m

∑
µ∈Z2

γ(µ)∣∣(∂αϕ)(µ)∣∣2
= ‖ϕ‖2

L2(Q) + 2s
C0

(
m
bm/2c

) (
L
π

)2m ∑
|α|=m

|∂αϕ|2q,per ,

and thus ‖ϕ‖2
Hsper(Q) ≤ max

{
1, 2s

C0

(
m
bm/2c

) (
L
π

)2m }
‖ϕ‖2

Hsper(Q).
Conversely, let ϕ ∈ Hs

per(Q). Thanks to the embedding Hs
per(Q) ↪→

Hm
per(Q) and Theorem 2.20 we have that ϕ ∈ Hm

per(Q) = Hmper(Q) and that
there exists a constant c > 0, independent of ϕ, such that

‖ϕ‖Hmper(Q) ≤ c ‖ϕ‖Hmper(Q) ≤ c ‖ϕ‖Hsper(Q).

Let α ∈ N2
0 with |α| ≤ m. Then, by Lemma 2.17,∣∣(∂αϕ)(µ)∣∣2 ≤ ( πL)2|α||µ|2|α||ϕ(µ)|2 ≤

(
1 + π

L

)2m(1 + |µ|2
)m|ϕ(µ)|2,

for all µ ∈ Z2. From this we conclude ∂αϕ ∈ Hq
per(Q). Thus, Lemma A.35

is applicable and using again Lemma A.32 together with the last estimate
from above we obtain∑
|α|≤m

|∂αϕ|2q,per =
∑
µ∈Z2

∑
|α|≤m

γµ
∣∣(∂αϕ)(µ)∣∣2 ≤ C1

∑
µ∈Z2

∑
|α|≤m

|µ|2q
∣∣(∂αϕ)(µ)∣∣2

≤ C1
∑
µ∈Z2

∑
|α|≤m

(
1 + π

L

)2m(1 + |µ|2
)s|ϕ(µ)|2

≤ C1
(
1 + π

L

)2m
( ∑
|α|≤m

1
)
‖ϕ‖2

Hsper(Q).

Hence ‖ϕ‖Hsper(Q) ≤
(
c2 + C1

(
1 + π

L

)2m(∑
|α|≤m 1

))1/2
‖ϕ‖Hsper(Q), and

the proof is complete. �

Definition A.37 Let s ∈ R with s ≥ 0 and K ⊆ Q be compact. We
define

Hsper,K(Q) :=
{
ϕ ∈ Hsper(Q) | suppϕ ⊆ K

}
.
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If K ⊆ Q is compact, then Hs
K(Q) from the last subsection coincides with

Hsper,K(Q) for all s ∈ R with s ≥ 0, as shown in the next theorem. The
following lemma has preliminary character.

Lemma A.38 Let K ⊆ Q be compact and q ∈ (0, 1). Then Hq
K(Q) =

Hqper,K(Q) and on both spaces the seminorms | · |q,Q and | · |q,per are equiv-
alent.

Proof: Choose some open subset O ⊆ Q such that K ⊆ O and O ⊆ Q.
In the following considerations we proceed similarly as in the proof of
Theorem A.26. We define f, g : (Q \O)×K → R by

(t, τ)→ f(t, τ) := 1
|t− τ |2q+2

(t, τ)→ g(t, τ) := 1(∣∣ sin π(t1−τ1)
2L1

∣∣+
∣∣ sin π(t2−τ2)

2L2

∣∣)2q+2 .

Then f, g > 0 and, by continuity of f, g as well as by compactness of their
domain of definition, there exist constants cf,1, cf,2, cg,1, cg,2 > 0 such
that

0 < cf,1 ≤ f(t, τ) ≤ cf,2 and 0 < cg,1 ≤ g(t, τ) ≤ cg,2,

for all (t, τ) ∈ (Q \O)×K. Therefore, if ϕ ∈ Hq
K(Q) then

2 cf,1
∣∣Q \O∣∣︸ ︷︷ ︸

=:Cf,1

‖ϕ‖2
L2(Q) = 2 cf,1

∣∣Q \O∣∣ ∫
K

|ϕ(τ)|2 dτ

= 2 cf,1
∫
Q\O

∫
K

|ϕ(τ)|2 dτ dt

≤ 2
∫
Q\O

∫
K

|ϕ(τ)|2

|t− τ |2q+2 dτ dt ≤ 2 cf,2
∣∣Q \O∣∣︸ ︷︷ ︸

=:Cf,2

‖ϕ‖2
L2(Q),

and analogously, if ϕ ∈ Hqper,K(Q) then

Cg,1 ‖ϕ‖2
L2(Q) ≤ 2

∫
Q\O

∫
K

|ϕ(τ)|2(∣∣ sin π(t1−τ1)
2L1

∣∣+
∣∣ sin π(t2−τ2)

2L2

∣∣)2q+2 dτ dt



A.5. Sobolev-Slobodeckǐı spaces 327

≤ Cg,2 ‖ϕ‖2
L2(Q).

Moreover, there holds for ϕ ∈ Hq
K(Q)

|ϕ|2q,Q =
∫
Q\O

∫
Q

|ϕ(τ)|2

|t− τ |2q+2 dτ dt+
∫
O

∫
Q

|ϕ(t)− ϕ(τ)|2

|t− τ |2q+2 dτ dt

=
∫
Q\O

∫
K

|ϕ(τ)|2

|t− τ |2q+2 dτ dt+
∫
O

∫
Q\O

|ϕ(t)|2

|t− τ |2q+2 dτ dt

+
∫
O

∫
O

|ϕ(t)− ϕ(τ)|2

|t− τ |2q+2 dτ dt

= 2
∫
Q\O

∫
K

|ϕ(τ)|2

|t− τ |2q+2 dτ dt+
∫
O

∫
O

|ϕ(t)− ϕ(τ)|2

|t− τ |2q+2 dτ dt

and analogously for ϕ ∈ Hqper,K(Q)

|ϕ|2q,per = 2
∫
Q\O

∫
K

|ϕ(τ)|2(∣∣ sin π(t1−τ1)
2L1

∣∣+
∣∣ sin π(t2−τ2)

2L2

∣∣)2q+2 dτ dt

+
∫
O

∫
O

|ϕ(t)− ϕ(τ)|2(∣∣ sin π(t1−τ1)
2L1

∣∣+
∣∣ sin π(t2−τ2)

2L2

∣∣)2q+2 dτ dt.

Furthermore, by Lemma A.30 part (ii), there exist constants C1, C2 > 0
such that for all ϕ ∈ Hq

K(Q) ∪Hqper,K(Q)

C1

∫
O

∫
O

|ϕ(t)− ϕ(τ)|2

|t− τ |2q+2 dτ dt

≤
∫
O

∫
O

|ϕ(t)− ϕ(τ)|2(∣∣ sin π(t1−τ1)
2L1

∣∣+
∣∣ sin π(t2−τ2)

2L2

∣∣)2q+2 dτ dt

≤ C2

∫
O

∫
O

|ϕ(t)− ϕ(τ)|2

|t− τ |2q+2 dτ dt <∞.

Altogether, we obtain for ϕ ∈ Hq
K(Q) and with C := max

{
Cf,2
Cg,1

, 1
C1

}
|ϕ|2q,Q =

∫
Q

∫
Q

|ϕ(t)− ϕ(τ)|2

|t− τ |2q+2 dτ dt
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≤ Cf,2 ‖ϕ‖2
L2(Q) + 1

C1

∫
O

∫
O

|ϕ(t)− ϕ(τ)|2(∣∣ sin π(t1−τ1)
2L1

∣∣+
∣∣ sin π(t2−τ2)

2L2

∣∣)2q+2 dτ dt

≤ C

(
Cg,1 ‖ϕ‖2

L2(Q) +
∫
O

∫
O

|ϕ(t)− ϕ(τ)|2(∣∣ sin π(t1−τ1)
2L1

∣∣+
∣∣ sin π(t2−τ2)

2L2

∣∣)2q+2 dτ dt
)

≤ C
∫
Q

∫
Q

|ϕ(t)− ϕ(τ)|2(∣∣ sin π(t1−τ1)
2L1

∣∣+
∣∣ sin π(t2−τ2)

2L2

∣∣)2q+2 dτ dt = C |ϕ|2q,per

and analogously for ϕ ∈ Hqper,K(Q)

|ϕ|2q,per ≤ max
{
Cg,2
Cf,1

, C2

}
|ϕ|2q,Q.

Hence, the last two estimates show that Hq
K(Q) = Hqper,K(Q) and in

particular that also the seminorms therein are equivalent. �

Theorem A.39 Let K ⊆ Q be compact and s ∈ R with s ≥ 0. Then

Hs
K(Q) = Hsper,K(Q)

and on both spaces the norms ‖ · ‖Hs(Q) and ‖ · ‖Hsper(Q) are equivalent.

Proof: Without loss of generality we assume that s > 0. Moreover, since
K ⊆ Q is compact, there exists χK ∈ C∞0 (Q) such that χK(t) = 1, for all
t ∈ K. In particular, ∂βχK(t) = 0, for all t in the interior of K and for all
β ∈ N2

0 \ {0}.
We start with the case s = m ∈ N. Let ϕ ∈ Hmper,K(Q) and α ∈ N2

0 with
|α| ≤ m. By Remark 2.15, there exists ∂αϕ = ∂αperϕ ∈ L2(Q). Therefore,
ϕ ∈ Hm

K (Q). Now, let ϕ ∈ Hm
K (Q) and note that suppϕ ⊆ K. Let α ∈ N2

0
with |α| ≤ m. Then, by Proposition A.12, supp ∂αϕ ⊆ K. Take some
χ ∈ C∞per(Q) and observe that χK · χ ∈ C∞0 (Q). Then∫

Q

(∂αϕ)(t)χ(t) dt =
∫
Q

(∂αϕ)(t)χK(t)χ(t) dt

= (−1)|α|
∫
Q

ϕ(t) ∂α(χK · χ)(t) dt
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= (−1)|α|
∫
Q

ϕ(t)
∑
β≤α

(
α
β

)
∂βχK(t) ∂α−βχ(t) dt

= (−1)|α|
∫
Q

ϕ(t)χK(t) ∂αχ(t) dt = (−1)|α|
∫
Q

ϕ(t) ∂αχ(t) dt.

Hence, there exists ∂αperϕ ∈ L2(Q), coinciding with ∂αϕ. Consequently,
ϕ ∈ Hmper,K(Q). Thus, we have shown that Hm

K (Q) = Hmper,K(Q) and by
the definition of the norms there holds also ‖·‖Hm(Q) = ‖·‖Hmper(Q) therein.
Now we turn to the remaining case s = m+ q with m ∈ N0 and q ∈ (0, 1).
Since we already know that Hm

K (Q) = Hmper,K(Q), it sufficies to take a
closer look at the seminorms. Let ϕ ∈ Hs

K(Q). Again, take some α ∈ N2
0

with |α| ≤ m and note that supp ∂αϕ ⊆ K. Then, by Lemma A.38, there
exists a constant c2 > 0, not depending on ∂αϕ, such that |∂αϕ|q,per ≤
c2|∂αϕ|q,Q. And by the same argument there exists a constant c1 > 0 such
that for all ϕ ∈ Hsper,K(Q) and for all α ∈ N2

0 with |α| ≤ m there holds
c1|∂αϕ|q,Q ≤ |∂αϕ|q,per. From this we conclude that Hs

K(Q) = Hsper,K(Q)
and that the norms ‖ · ‖Hs(Q) and ‖ · ‖Hsper(Q) therein are equivalent, as
desired. �

Multiplication and Transformation. We proceed similarly as in the non-
periodic case and show that the multiplication with differentiable and
periodic functions gives rise to a linear and bounded operator in Hsper(Q).
Afterwards, we are able to carry over the transformation theorem from
the last subsection to the periodic framework.

Lemma A.40 Let χ ∈ C1
per(Q). Then there exists a constant C > 0 such

that∫
Q

∫
Q

|ϕ(τ)|2 |χ(t)− χ(τ)|2(∣∣ sin π(t1−τ1)
2L1

∣∣+
∣∣ sin π(t2−τ2)

2L2

∣∣)2q+2 dτ dt ≤ C ‖ϕ‖2
L2(Q),

for all ϕ ∈ Cb(Q) ∪ L2(Q). Here, C = π
1−q 22−q L

4 ‖χ‖2
C1
b

(Q).
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Proof: We denote by χ̃ the periodic extension of χ to R2 as in the
definition of C1

per(Q). In particular χ̃ ∈ C1
b (Q) and the mean value

theorem is applicable. Hence,∫
Q

∫
Q

|ϕ(τ)|2 |χ(t)− χ(τ)|2(∣∣ sin π(t1−τ1)
2L1

∣∣+
∣∣ sin π(t2−τ2)

2L2

∣∣)2q+2 dτ dt

=
∫
Q

|ϕ(τ)|2
(∫
−τ+Q

|χ(σ + τ)− χ(τ)|2(∣∣ sin πσ1
2L1

∣∣+
∣∣ sin πσ2

2L2

∣∣)2q+2 dσ
)

dτ

=
∫
Q

|ϕ(τ)|2
(∫

Q

|χ̃(σ + τ)− χ̃(τ)|2(∣∣ sin πσ1
2L1

∣∣+
∣∣ sin πσ2

2L2

∣∣)2q+2 dσ
)

dτ

≤ 2L2q+2 ‖χ‖2
C1
b

(Q)

∫
Q

|ϕ(τ)|2
(∫

Q

1
|σ|2q

dσ
)

dτ,

where we have applied in the last step the mean value theorem and part (i)
from Lemma A.30. From this the assertion follows immediately. �

Theorem A.41 Let s ∈ R with s ≥ 0. Furthermore, let χ ∈ Cdseper(Q) and
ϕ ∈ Hsper(Q). Then χϕ ∈ Hsper(Q) and there holds Leibniz’ product rule

∂α(χϕ) =
∑
β≤α

(
α
β

)
∂α−βχ ∂βϕ, α ∈ Nd0 with |α| ≤ bsc.

Moreover, there exists a constant C ≥ 0, not depending on χ and ϕ, such
that

‖χϕ‖Hsper(Q) ≤ C ‖χ‖Cdse
b

(Q) ‖ϕ‖Hsper(Q).

Proof: Since χ is bounded, there holds χϕ ∈ L2(Q). Moreover, since
T (Q) is dense in Hs

per(Q) = Hsper(Q) and the norms therein are equivalent,
there exists a sequence (ϕn)n∈N in T (Q) converging to ϕ with respect to
‖ · ‖Hsper(Q). Let α ∈ Nd0 with |α| ≤ bsc. Furthermore, let β ∈ Nd0 with
β ≤ α. Then

ϕn → ϕ, ∂βϕn → ∂βϕ in L2(Q), as n→∞,
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and, since χ and its derivatives are bounded, in particular

χϕn → χϕ, ∂α−βχ∂βϕn → ∂α−βχ∂βϕ in L2(Q), as n→∞.

Let θ ∈ C∞per(Q). Then∫
Q

χ(t)ϕ(t)∂αθ(t) dt = lim
n→∞

∫
Q

χ(t)ϕn(t)∂αθ(t) dt

= (−1)|α| lim
n→∞

∫
Q

∂α(χϕn)(t)θ(t) dt

= (−1)|α| lim
n→∞

∫
Q

∑
β≤α

(
α
β

)
∂α−βχ(t) ∂βϕn(t) θ(t) dt

= (−1)|α|
∫
Q

∑
β≤α

(
α
β

)
∂α−βχ(t) ∂βϕ(t)

 θ(t) dt.

Hence, there exists ∂α(χϕ) ∈ L2(Q) and is given by the Leibniz product
rule. Moreover, we have shown that χϕ ∈ Hbscper(Q).
Now, let s = m + q with m ∈ N0 and q ∈ (0, 1). And again, let α ∈ Nd0
with |α| ≤ m and β ∈ Nd0 with β ≤ α. Then

‖∂α−βχ∂βϕ‖2
L2(Q) ≤ ‖χ‖

2
C
dse
b

(Q)
‖∂βϕ‖2

L2(Q) ≤ ‖χ‖
2
C
dse
b

(Q)
‖ϕ‖2

Hsper(Q).

Note that by Lemma A.40 there holds∫
Q

∫
Q

|∂βϕ(τ)|2 |∂α−βχ(t)− ∂α−βχ(τ)|2(∣∣ sin π(t1−τ1)
2L1

∣∣+
∣∣ sin π(t2−τ2)

2L2

∣∣)2q+2 dτ dt

≤ C1 ‖χ‖2
C
dse
b

(Q)
‖ϕ‖2

Hsper(Q),

where C1 does not depend on ϕ and χ, and thus we continue with

∣∣∂α−βχ∂βϕ∣∣2
q,per =

∫
Q

∫
Q

∣∣∣∣∣ ∂α−βχ(t)[∂βϕ(t)− ∂βϕ(τ)](∣∣ sin π(t1−τ1)
2L1

∣∣+
∣∣ sin π(t2−τ2)

2L2

∣∣)2q+2

+ ∂βϕ(τ)[∂α−βχ(t)− ∂α−βχ(τ)](∣∣ sin π(t1−τ1)
2L1

∣∣+
∣∣ sin π(t2−τ2)

2L2

∣∣)2q+2

∣∣∣∣∣
2

dτ dt
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≤ 2 ‖χ‖2
C
dse
b

(Q)

∣∣∂βϕ∣∣2
q,per + 2C1 ‖χ‖2

C
dse
b

(Q)
‖ϕ‖2

Hsper(Q)

≤ C2 ‖χ‖2
C
dse
b

(Q)
‖ϕ‖2

Hsper(Q),

where C2 := 2 (1 + C1). Consequently, by applying Leibniz’ product rule,
the triangle inequality and the results above, we obtain

‖χϕ‖2
Hsper(Q) =

∑
|α|≤bsc

‖∂α(χϕ)‖2
L2(Q) +

∑
|α|≤bsc

|∂α(χϕ)|2q,per

≤
(
1 + C2

) ∑
|α|≤bsc

∑
β≤α

(
α
β

)
‖χ‖

C
dse
b

(Q)‖ϕ‖Hsper(Q)

2

,

and from this we see immediately that also the last assertion from the
theorem holds. �

Theorem A.42 Let the sets Ω,Ω′ ⊆ Q be open, s ∈ R with s ≥ 0 and
ζ ∈ Diffbsc+1(Ω,Ω′). Furthermore, let O ⊆ Ω be open and bounded such
that O ⊆ Ω, and set O′ := ζ(O). Then the mapping

Hs
per(Q) 3 ϕ 7→ ϕ ◦ ζ ∈ Hs(O)

is well-defined, linear and bounded.

Proof: Similar to Theorem A.23 we use a density argument, i.e., we
show that the mapping T (Q) 3 ϕ 7→ ϕ ◦ ζ ∈ Hs(O) is well-defined, linear
and bounded; then the assertion from the theorem follows by continuous
extension, because T (Q) is dense in Hs

per(Q) = Hsper(Q) and the norms
therein are equivalent.
Without loss of generality, we assume s = m+q with m ∈ N0 and q ∈ (0, 1),
as the case s = m ∈ N0 is a special case from the following explanation.
We start by choosing some χ ∈ C∞0 (Ω) with χ|O ≡ 1. Now, let ϕ ∈ T (Q).
Furthermore, let α ∈ Nd0 with |α| ≤ m. Then, by Proposition A.22,

∂α(ϕ ◦ ζ) =
∑
|β|≤|α|

pαβ ·
(
[∂βϕ] ◦ ζ

)
.
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Let β ∈ Nd0 with |β| ≤ |α|. Note that pαβχ ∈ C1
0 (Ω) and by extension

by zero to R2 we have pαβχ ∈ C1
b (R2). Set Cζ := ‖det ∂(ζ−1)‖Cb(O) and

Cp := max
{
‖pγκ‖C1

b
(O)

∣∣ |κ| ≤ |γ|, |γ| ≤ m
}

. By the transformation
theorem for Lebesgue integrable functions there holds∥∥[∂βϕ] ◦ ζ

∥∥2
L2(O) ≤ Cζ

∥∥∂βϕ∥∥2
L2(Q),∣∣[∂βϕ] ◦ ζ

∣∣2
q,O
≤ C2q+2

1 C2
ζ

∣∣∂βϕ∣∣2
q,per ,

where we also have applied part (ii) from Lemma A.21 and part (ii)
from Lemma A.30 in the second estimate and where C1 summarizes
the corresponding constants therein. Hence, [∂βϕ] ◦ ζ ∈ Hq(O) and by
Theorem A.15 we obtain pαβχ

(
[∂βϕ]◦ζ

)
∈ Hq(O) as well and moreover∥∥pαβ([∂βϕ] ◦ ζ

)∥∥2
L2(O) +

∣∣pαβ([∂βϕ] ◦ ζ
)∣∣2
q,O

=
∥∥pαβχ ([∂βϕ] ◦ ζ

)∥∥2
Hq(O)

≤ C2
2 C

2
p

∥∥[∂βϕ] ◦ ζ
∥∥2
Hq(O)

≤ C2
2 C

2
p Cζ

(∥∥∂βϕ∥∥2
L2(Q) + C2q+2

1 Cζ
∣∣∂βϕ∣∣2

q,per

)
≤ C2

2 C
2
p Cζ

(
1 + C2q+2

1 Cζ
)︸ ︷︷ ︸

=:C3

‖ϕ‖2
Hsper(Q),

where C2 denotes the corresponding constant from Theorem A.15. With
the triangle inequality for the L2-norm and the seminorm we conclude
that∥∥∂α(ϕ ◦ ζ)

∥∥2
L2(O) +

∣∣∂α(ϕ ◦ ζ)
∣∣2
q,O

≤
( ∑
|β|≤|α|

1
) ∑
|β|≤|α|

(∥∥pαβ([∂βϕ] ◦ ζ
)∥∥2
L2(O) +

∣∣pαβ([∂βϕ] ◦ ζ
)∣∣2
q,O

)
≤ C3 C

2
4 ‖ϕ‖2

Hsper(Q),

where we have set C4 :=
∑
|β|≤m 1. From this we get finally ‖ϕ◦ζ‖2

Hs(O) ≤
C3 C

3
4 ‖ϕ‖2

Hsper(Q), as desired. �
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Birkhäuser, Basel-Boston-Berlin, 1. ed., 1998.

[5] , Analysis II, Grundstudium Mathematik, Birkhäuser, Basel-
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