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1. Introduction

In this thesis we consider time-harmonic electromagnetic wave scattering at
impenetrable biperiodic surfaces in a homogeneous medium. Besides their
rigorous analysis in biperiodic Sobolev spaces, which aims at answering
the questions about existence and uniqueness of solutions, we will derive a
high order solver for its numerical approximation — a collocation method
based on trigonometric polynomials.

The propagation of electromagnetic waves is described by Maxwell’s equa-
tions. In its simplified form for time-harmonic waves, propagating in an
isotropic and homogeneous medium without charges and external currents,
this system reduces to

curl E —iwpH =0,

) (1.1a)
curl H + (iwe —o)E =0,

connecting the electric field E and the magnetic field H to each other.

Here, the material parameter €, u > 0 are the electric permittivity and

magnetic permeability, respectively, where o > 0 is the conductivity and

w > 0 denotes the frequency.

In general, given a domain 2 C R? (the scatterer) as well as some incident
waves E' and H', which satisfy Maxwell’s system in all of R3, scattering
problems by a perfect conductor consist of the determination of certain
fields E® and H® (the scattered fields) which satisfy Maxwell’s system in
R3 \ €, together with the boundary condition

nx (E'+E% =0 on 0f) (1.1b)

and a suitable radiation condition. Here, n denotes the unit normal vector
on 0f).
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In our context, the scatterer is unbounded and possesses a biperiodic
structure, i.e., it has a periodic shape in two spacial dimensions, say in z1-
and zo-direction. Many of such structures are conceivable. We assume its
boundary 0f) to be describable by the graph of a biperiodic and Lipschitz
continuous function f : R2 — R. Later, in view of the numerical treatment,
we require f to be smooth. Furthermore, we assume the incident fields to
be biperiodic as well, up to a certain phase shift.

Such problems appear often in applications, for instance in micro- and
nano-optics such as the design of thin solar cells, the design of photonic
crystals with a certain band gap structure, the construction of holographic
films and optical storage devices. Besides their practical relevance, they
contribute(d) an interesting and fascinating research area in mathematics
during the last 100 years.

1.1. State of the Art

The beginning of the last century can be seen as the starting point of
investigations of scattering problems in a periodic setting, when in 1907
Lord Rayleigh published his famous work about the behaviour of sound
scattered by a perfectly reflecting regularly grooved grating [46]. From this
time up to now many scientists provided valuable contributions, not only
for acoustic but also for electromagnetic scattering problems. Here, the
literature can be mainly divided into two parts: one for the oneperiodic and
the other one for, the already mentioned, biperiodic setting. In contrast,
oneperiodic structures exhibit periodicity only in one spatial direction, say
in xi-direction, while they are constant in the other, say in x,-, direction.
In such structures the time-harmonic Maxwell’s system reduces to scalar
valued Helmholtz equations — a simplification which is not longer possible
in the biperiodic setting. For oneperiodic structures, a good overview about
the state of the art at the beginning of the 1980s is given by Petit in [44]
and about the end of the 1990s by Bao, Cowsar and Masters in [13].

Existence and Uniqueness. In principle, there are two main approaches
to tackle the question about existence and uniqueness of boundary value
problems: the variational approach and the integral equation method.
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They also provide the basis for numerical realizations in form of finite
element methods and the numerical solution of boundary integral equations.
Both approaches are also applicable for scattering problems in a periodic
setting — and in the 1990s there were established a plenty of existence and
uniqueness results in this context.

For the variational approach, a domain truncation process is characteristic:
one truncates the domain to a unit cell, which covers one period, and
considers the weak formulation of the scattering problem only therein. This
process generates artificial boundary conditions, which take the radiation
condition into account via Dirichlet-to-Neumann maps or the Calderon
operator. The approach for the oneperiodic case is for instance shown
by Elschner and Schmidt in [28]. The corresponding approach for the
biperiodic case is treated by Abboud and Nédélec in [1], by Bao, Dobson
and Cox in [10, 11, 12, 14, 26], by Bonnet-Bendhia and Starling in [17]
and by Schmidt in [50]. It is worth mentioning the work of Arens in [7]
for an application of this approach to the Helmholtz equation in three
dimensions. All of them yield essentially one main result: unique solutions
exist for all frequencies outside a certain discrete set.

The integral equation method (to be more precisely the indirect one) con-
sists of a representation of the scattered field in form of a potential ansatz
with an unknown density, which is intended to determine by exploiting
certain jump relations to end up in a boundary integral equation for this
density. This equation is used for both the proof of existence and for
numerical computations. (In contrast, and for the sake of completeness,
the direct integral equation method uses formulations which are directly
based on the representation formulas of Green and Stratton-Chu for the
solution.) Important contributions for this approach came already in the
early 1990s from Nédélec and Starling ([43]) and Chen, Dobson and Fried-
man ([24],[27]). Current results in connection with non-self-intersecting
multilayered structures can be found in Bugert’s dissertation thesis [22].
In summary, again unique solvability can be ensured outside a certain
discrete set regarding some material parameters or the frequency.

The Numerical Treatment. The variational approach is very popular
among mathematicians, because it makes the application of the well-studied
finite element method possible. Hence, many of the above mentioned
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articles contain already implementations or provide at least the basis, see
for instance Bao in [10, 11]. For biperiodic structures an adaptive finite
element method can be found in [15].

The integral equation method yields a boundary integral equation for
which in general three approaches are available to obtain an approxi-
mate solution: Galerkin, collocation and Nystrom methods. A standard
reference for a good introduction into this subject is the monograph of
Saranen and Vainikko ([48]) or in a more general context the textbook
of Kress ([36]). An essential disadvantage of boundary integral equation
methods in comparison with finite element method is the solution of big
systems of linear equations with dense matrices.

Galerkin methods are projection methods and are encountered often in
the literature. There exists a complete theory with existence, uniqueness,
stability and convergence results also for the case of non-smooth boundaries.
The numerical implementation in form of boundary element methods is
well-established (see Sauter and Schwab in [49]).

Collocation methods belong to the projection methods as well and are often
used in applications, since they are in principle easier to implement. An
open question concerns stability in the case of non-smooth boundaries.

In combination with matrix compression techniques, both Galerkin and
collocation methods exhibit a complexity which is comparable to the cor-
responding one of finite element methods. Here, low algebraic convergence
rates with approximately linearly growing complexity are characteristic.
Those techniques include the fast multipole method, panel clustering and
adaptive corss approximation (see Rjasanow and Steinbach in [47]) as well
as the H-matrix calculus (see Hackbusch in [32]).

Nystrom (or quadrature) methods approximate the integral by appropriate
quadrature rules. For problems in two dimensions, Colton and Kress ([25])
or Meier, Arens, Chandler-Wilde and Kirsch ([41]) achieved for smooth
boundary curves any algebraic convergence rate. Furthermore, methods
with exponential convergence rate and a quadratic count of operations
are known, see Kussmaul ([37]) and Martensen ([39]). For smooth sur-
faces the method is easy to implement, as it requires only the composite
trapezoidal rule in combination with a rule that uses the same quadrature
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points and easy to determine weights to overcome the integration over the
singularity.

For problems in three dimensions the realization is more difficult because
of the more complicated structure of the kernel of the integral operators —
the singularity depends now on both the distance and the direction. In this
situation it is hard to find a quadrature rule with a high order convergence
rate. For the case of a globally parametrizable surface by means of a
sphere, a first implementation was successfully realized by Wienert ([52])
in 1990, who removed the singularity by using rotations and spherical
coordinates. A complete convergence analysis came more than 10 years
later, see Ganesh, Graham and Sloan ([30, 31]).

Another approach were chosen by Bruno and Kunyanski ([19, 20]) in
2001. To make the idea clearer, we assume the surface 92 to be globally
parametrizable by a map ¥ : Q := (—7,7)? — 99, which gives us finally
an integral equation of the second kind

o(t) - /Q KT () dr = (1), e Q.

whose approximate solution we are looking for. Using a cut-off function
x with x(t) = 0, for |t| > o, and x = 1 in a neighborhood of zero, the
singularity can be isolated,

o(t) - /Q K(t,7) x(7 — 1) o) dr
(1.2)
- /Q k() (- X(r — 1)) p(r) dr = (8),

for t € ). Substituting 7 in the first integral by polar coordinates centered
at ¢t and applying the transformation rule removes the singularity. As a
consequence, the Nystrom method realized by the composite trapezoidal
rule is applicable, leading to high order convergence. Although the idea is
pretty simple, the implementation is technically difficult and an analysis
how the convergence rate is related to the overall complexity was not given.
During the next 10 years some efforts have been made to fill this gap:

e Heinemeyer ([33]) interpreted this method as a method of locally
corrected weights (as suggested in [23]) and proved pointwise con-
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vergence of the discrete operators with super-algebraic convergence
rate, but did not give a convergence rate of the overall scheme.

e Arens interpreted in his habilitation thesis ([7]) the method as a
collocation method based on trigonometric polynomials and he was
the first who rigorously and completely showed stability and super-
algebraic convergence rate with quadratic computational complexity
for the semi-discrete scheme for a variant of this method. However,
the complexity estimate for the fully discrete scheme leaves room for
improvement.

e Bruno, Dominguez and Sayas published in [18] the most complete
analysis, but they limit themselves to scattering problems.

In this thesis, the scheme of Arens in [7] is improved by reducing the
overall complexity.

The Evaluation of Green’s Function. The implementation of the integral
equation method in a biperiodic setting requires the evaluation of the
(quasi-) periodic Green’s function for the Helmholtz equation (including
their partial derivatives) several times. Since for this purpose its usual
series representation is disadvantage, the availability of efficient evaluation
methods is a crucial issue. The lack of those methods might be the reason
for why Nédélec and Starling ([43]) as well as Dobson and Friedman ([27])
did not pursue or did not implement their ansatzes.

In his review article [38], Linton compared different expressions for Green’s
function and recommends Ewald’s method, which is to split up the function
into two exponentially convergent series, one of them containing the singu-
larity. This method was successfully picked up by Arens in [7], who derived
different representations which are best suited for numerics. Arens, Lech-
leiter, Sandfort and Schmitt performed in ([8]) evaluations of the Green’s
function (and their partial derivatives) based on the preparatory work
of [7] and gave rigorous error estimates for the numerical approximation
of the function.

There are also efforts to avoid the Green’s function, at least in the onepe-
riodic and multilayered setting, see [16] and [54, 55].
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1.2. Results Presented in this Thesis

Before we start to describe the electromagnetic scattering problem, that
we are interested in, in the necessary mathematical precision, afterwards
continue with investigations concerning the question about existence and
uniqueness of solutions and finally derive a high order solver for their
numerical approximation, it is indispensable to provide in a first step
the correct framework in form of the function spaces where solutions are
sought for. This will be done in Chapter 2. Here, we have chosen the
approach of [34] for arbitrary bounded Lipschitz domains (an elementary
and comprehensive presentation looking for its equals in particular regard-
ing Chapter 5 therein and which is managed without Sobolev-Slobodeckii
spaces) and transferred their ideas to the biperiodic setting. This pro-
ceeding differs from the usual procedure in the literature, such as in [7]
or [22] (where, by means of a special partition of unity, many results can
be obtained from corresponding ones for nonperiodic Sobolev spaces), and
appears to be new. Since the key idea from the approach of [34] is to
exploit results of periodic Sobolev spaces on cuboids, their methods seemed
to be the “natural choice” — and therefore best suited for our purposes.
We start with basis results for Sobolev spaces, where our main focus is on
Sobolev spaces for functions on cuboids for reasons which were mentioned
above. Theorem 2.30, Corollary 2.32, Lemma 2.37 (part (7)), Theorem 2.38
and 2.40, together with Theorem A.2, as well as the special choice of the
partition of unity in Theorem 2.42 resulted from discussions with Andreas
Kirsch. Some of those results refer to a multiplication operator in the trace
spaces of vector fields which appear not to have been published in this form
so far. Then we introduce the @Q-periodic setting, in particular the notion
of a cell set and give results which hold in this more general context before
we turn to cell sets of Lipschitz layer type, the setting which will be the
most important one in this thesis. Throughout this thesis we use the term
“@-periodic” as a synonym of “biperiodic”. Admittedly, the development
of all these results is pretty exhaustive, but allows a detailed analysis. In
Subsection 2.1.4 we connect both approaches from the literature, at least
for smooth surfaces. Last but not least, it is worth mentioning that the
setting for the variational approach requires the consideration of subspaces
where modified differential operators such as Vg or divg satisfy certain
conditions. The results in this context seem also to be new.
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Chapter 3 aims at a precise formulation of the scattering problem (1.1)
and at the investigation of its unique solvability by means of methods from
a variational approach. For this we fix the geometrical setting and take a
closer look at upward propagating waves. The latter one is the substitute
of the Silver-Miiller radiation condition from the nonperiodic setting and
the method of choice in our situation. This radiation condition was firstly
proposed by Lord Rayleigh in [46]. We carry over the ansatz from [7] to
electromagnetic scattering, see also [22], and give a more detailed analysis
adapted to our purposes, especially as a preparation for the Calderon
operator introduced later. After those preliminary considerations we are
able to give a precise weak formulation and show uniqueness in the standard
way. Afterwards, we introduce the Calderon operator and proceed with
a detailed analysis to obtain its most important properties for further
investigations. Such an analysis could not be found in the literature. By
means of this operator, we rewrite our scattering problem equivalently
into its variational form and continue to prove existence of solutions. For
this we were inspired by [35] and [42] (after personal communication with
Andreas Kirsch), where the solution space is split up into a direct sum
which allows a dissection of the problem in easier to analyse ones. Here, we
adapted the idea to the @-periodic setting and end up with Theorem 3.42,
the main result of Chapter 3.

The topic of Chapter 4 is the integral equation method — yielding the
boundary integral equation which will be later the basis for our numerical
scheme. At first we recall the definition of the Q-(quasi-)periodic Green’s
function for the Helmholtz equation and its most important properties
from [7]. By means of this fundamental solution we define vector potentials
and follow thereby very closely the presentation in [34], with corresponding
modifications for the Q-periodic framework. Here, special attention should
be paid to a certain transmission problem, as it provides the important
jump relations of the vector potentials and thus gives rise to the definition
of the boundary integral operators £, and M,. While £, can be written
as a compact perturbation of an isomorphism, a similar result in the case
of Lipschitz surfaces is not known for the operator M,. At this point we
have to impose more regularity on the surface and rely on results from [21].
A special technique, as described in the proof of [7, Theorem 4.22] or the
proof of [22, Lemma 4.15], then makes the results from [21] applicable.
With the tools derived so far at hand, the derivation of the boundary
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integral equation (for the unknown density from the potential ansatz for the
solution of our scattering problem) and the investigation of its solvability
is now straightforward. Finally, some technical efforts are addressed to the
verificaton of the assumptions on the kernels of the corresponding integral
operator, in particular on the weak singularity which is supposed to be of
a special kind, see Assumption 5.6.

In Chapter 5, the numerical scheme is presented. As mentioned above, it
is a variant of the method from [19, 20] and constitutes an improvement of
the scheme in [7], which consists in a reduction of the overall complexity
by introducing another orthogonal projection. A key tool is the removal of
the weak singularity by a transformation into polar coordinates for the first
integral in (1.2). As a consequence, the corresponding integral operator
takes on a non-standard form making the analysis of its mapping properties,
as well as for its approximation, technically complicated. Therefore, the
approach is demonstrated at first on single integral equations and later
generalized to systems. The scheme is a collocation method and achieves
super-algebraic convergence rate (provided the surface is smooth). As
another novelty, the analysis yields an explicit dependence of the constants
in the stability and convergence estimates on some number ¢ which couples
the support of various cut-off functions to each other. The results were
developed in collaboration with Tilo Arens and prepublished in [9]. Therein,
the application to typical boundary value problems such as potential and
scattering problems both for bounded obstacles and for biperiodic surfaces
is emphasized and numerical examples are presented which demonstrate
the expected convergence rates in practice.

1.3. Notational Conventions

Numbers, Sets and Operations. The symbol N denotes the set of natural
numbers with the exception of the zero element 0. We define Ny := NU{0}.
Moreover, we introduce for s € R, with s > 0, the set N>, := {n € Ny |
n > s}. As usual, we denote for s € R by [s] the largest integer smaller
than or equal to s, while [s] denotes the smallest integer greater than or
equal to s.
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To simplify expressions in some formulas, we make the convenient agree-
ment that 00 := 1.

If M is a set and A C M, then A° denotes the complement of A with
respect to M, ie., A:={me M |m ¢ A}.

As usual, for d € N and p, v € Z¢ the symbol 0, designates the Kronecker

delta, i.e.,
1 =
5u,u — y M v,
0, p#v

For ease of notation, we define for M € N¢
M :=min{My,..., My} and M :=max{My,..., Mg}. (1.3)

Given z € C we denote by Re(z), Im(z), |z|, arg(z) € (—m, 7] and Z the
real part, the imaginary part, the absolute value, the argument and the
complex conjugate of z, respectively.

For x = (w1, 29,73)" € C3, the vector # in C? and the vector x* in C? are
given by

3= (xl’xQ)T and x* = (x1, za, *xs)T (1.4)

Let a,b € C%. Then the (real) dot product a - b is defined by

d
a-b:= Zajbj. (15)
j=1
The cross product a x b for a,b € C? is defined as usual. If a,b € C? we
make the arrangement that
axb:= a1b2 — agbl. (16)

Moreover, for a = (ay,a2)" € C? we set

at = <‘Zi) . (1.7)

Given a multi-indez o € Ni, we define for x € C¢

=t agl. (1.8)
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Furthermore, we introduce for multi-indices o, 8 € N& the binomial coeffi-

cient (33) given by
6)-()-)

and mean by § < o that 8; < aj forall j =1,...,d.

The Size of some Mathematical Objects. Let d € N. For z € R?, |z
denotes the Fuclidean norm and |x|. the mazimum norm, while for a
multi-index o € N&, |a| denotes its order, given by |a| := oy + -+ + ag.
Moreover, for a Lebesgue measurable subset € of R?, |Q| means the
Lebesgue measure of Q2. The context should exclude any confusion.

For z € R% and r > 0 we set

Ba(z,7) :={z € R? ||z — 2] < r},

4 and S47!:=9By(0,1).
Bylz, 7] i={z e R | |x — z| < r}

Mappings. Let A and B be non-empty sets. Sometimes we will denote
the set of all mappings from A to B by B#. In this sense, for instance the
set CN consists of all sequences (¢, )nen in C.

Let ©Q,9 C R? such that Q C €. Furthermore, let d’ € N. As usual,
for a function u : ' — C%, we denote by u|q the restriction of u to Q.
Similarly in a converse manner, given a function u :  — C%, we define
ulf - QY — C¥ to be the extension of u by zero to .

To simplify notation regarding expressions for functions, we make the
following agreement: if the symbol “-” appears in an expression, then this
expression is to interpret as a function where “-” stands for the independent
variable, which domain of definition should be clear from the context. For
example, if a € C?, then by a-- we mean the function C? 3 z + a-z € C.

Normed Spaces and Linear Operators. Let X and Y be vector spaces
over the field F. For a linear mapping T : X — Y, the set ker(7") denotes
the kernel of T, that is

ker(T) :={x € X | Tz = 0}.
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The mapping T : X — Y is called antilinear if F = C and T (o x1+agxs) =
a1 T(z1)+ozT(z2), forall a; € C,z; € X, j=1,2.

Let A, B C X. Then A + B indicates the set given by

A+B:={a+bla€c A be B}.

Let now (X,| - ||x) be a normed vector space and A, B C X. Then
dist(A, B) denotes the distance between A and B, i.e.,

dist(A, B) := inf {[|z — y||x | r €A, ye B}.

Moreover, we denote by A and A the closure and the interior of A,
respectively.

Let U and V be closed subspaces of X such that X =U+V and UNV =
{0}. Then X is called direct sum of U and V, in sign

X=UaV. (1.10)

Let (Y, - ||y) be another normed vector space. The set £(X,Y") consists
of all linear and bounded operators from X to Y. If Y coincides with
X, then for simplicity we write £(X) instead of £(X, X). An operator
P € L(X) is called a projection if P2 = P. If T € L(X,Y) is bijective
such that 771 € L(Y, X), then we call T an isomorphism and set

Li(X,Y):={T:X =Y |T is a isomorphism }.

If for T € L(X,Y) there holds |Tx|y = ||z||x for all z € X, then T is
called isometric. If there exists an (isometric) isomorphism between the
spaces X and Y, then X and Y are called (isometrically) isomorphic, in
sign X ~Y (or X 2Y respectively).

With X — Y we denote an embedding from X to Y, that is, a linear,
bounded and injective mapping from X to Y. If X is a subspace of Y,
sometimes we would like to emphasize that this embedding is given by the

id
identity operator id : X — Y. In this case we will write X <% Y instead
of X - Y.
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We call L(X,F) the dual space of X and denote this space by X*. As
usual, the evaluation of £ € X* at x € X is expressed by the duality pairing
(¢,x) and X* is equipped with the operator norm, i.e.,

l,x
llx = sup Kool
zex\{0} ]| x

le X*.

As an easy to verify consequence, we have the implication

b, e X* neN, and £, >¢ = VreX:{l,z)— { ).
(1.11)

Classical Function Spaces. Let d € N. For a € N¢ the partial differential
operator 0% of order |« is defined by

olel

= (5% g )
Ox™"t -+ 0xy

0% :

and we consider 9% also for vector valued functions, see for instance [5].
By definition, 9% is the identity operator if & = 0. Sometimes we will use
the symbol 0; to denote the partial derivative of first order with respect
to Zj.

Let © C R? be open and let &’ € N. If u : Q — C? is differentiable, then
we denote by ' (x) the Jacobian of v in x € Q.

Furthermore, let m € Ny. The spaces of continuously differentiable func-
tions on €2, on its closure 2 and with compact support, respectively, are
defined as usual by

cm(Q,cd) = {u:Q—HCd/ V0 < o] <m:0%:Q—C¥

exists and is continuous},

cm(@,C?) {u € Cm™(Q,C) VO < |a| <m:0%u:Q—CT

can be continuously extended to ﬁ},
CS"(Q,(Cd/) = {u € C’m(Q,(Cd/) ‘ supp(u) is compact and
supp(u) C Q}
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We recall that the support of a function u : Q — C% is given by

supp(u) := {z € Q | u(x) # 0}.

If Q is additionally bounded, then as norms in C™ (€, C%) and C*(Q,C%),
we take

[ullem @0y = lullom@,cary = e 16%ul[oo, (1.12)

where || - || denotes the supremum norm. The corresponding spaces of
smooth functions are

c=(@,c”) = [ cH@.c?),

k=0

ck,c®).

DL

ce@c’) = ck@c?), cF@ct)=

k=0 k=0

Let Q' C R? be another open subset of R and m € Ny U {oo}. We call
u: Q= Q a C™-diffeomorphism from Q to €, if u is bijective and

uwe C™(Q,CYH  and uleC™(Y,CY).
We set

Diff™ (€, ) := {u Q5 |uisa Cm—diffeomorphism}.

1 (Q,C%) to be the set of Lebesgue
measurable functions which are Lebesgue integrable on all compact subsets
of Q. With L2(Q,C%) and L>(2,C%) we denote the Lebesgue spaces
of square integrable and essentially bounded functions, respectively. Of
course, we equip the space L?(2, (Cd/) with the inner product

Lebesgue Spaces. We define L}

(u|v)L2(Q,(Cd') = /Q“(CU) -v(z)dz

and the norm

1/2
U o= w(z)|? dz
[ ||L2(Q,<cd) (/Q‘ ()] )
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induced by this inner product. And in L ({2, (Cd/) we take the norm
[ull oo (0, cary == inf {c > 0| [u(z)| < ¢ for almost all © € Q},

where the function u on the right hand side is any representative of the
equivalence class u € L>®(Q,C%). We will often use the abbreviation “a.a.
for the term “almost all”. For an element u in Llloc(SL(Cd/), L2(Q,C%)
or LOO((L(Cd/), its essential support is also denoted by supp(u) and by
definition the smallest closed set such that v = 0 almost everywhere on

2\ supp(u). Sometimes we are encountering integrals of the form

)

/Q \(@) u(x) da,

with a scalar valued function y : 2 — C and a vector valued function
u:  — C% such that X u; is integrable, and understand this integral
taken componentwise. Here, u;, j =1,...,d’, are the components of u.

Fourier Series. If QO C R? has the special form of a cuboid Qg, that is
Q = Qq4, where

d
Qa = X (=Lj, L;) (1.13)
j=1
for some real numbers L; > 0, j = 1,...,d, then an element u in

L?(Qq, (Cdl) can be expanded into a Fourier series
o= X )
HEZ

where Tg; ) are the trigonometric monomials given by

1 igU) g
T(M)(I) = ==2=0 qéd ) T e Qd7 JUBS Zda

Qa /|Qd|

with the reciprocal lattice vector qg‘d) € R4 given by

qéﬁf i= (mp1/Lay ... mpa/La) ez, (1.14)
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and where u(® € C% denote the Fourier coefficients of u given by
ul = / u(z) Té?;#) (x) de, pezs. (1.15)
Qa

It is easy to see, that for u € L?(Qq, (Cd,) the Fourier coefficients ©" of
the complex conjugate @ of u and the Fourier coefficients u(*) of u are
connected to each other by the relation

aW =ul-w,  pezd (1.16)

It is well-known that {TC(QZ ) | € Z4} is an orthonormal basis of L*(Qq).

Furthermore, L?(Q, (Cd/) is isometrically isomorphic to the set of square
summable sequences (2(Z4,C%), i.e.,

L*(Qu,C") = (z4,c), (1.17)

where the isometric isomorphism is given by relating u € L2(Qq,C?%)
to its Fourier coefficients (u(“))uezd and where for p € [1,00) the space

(74, C4Y is given by
@4, ) = { () ez € (€| 3 1P < oo},
peZ
equipped with the norm
1/p
1) pezllon o oy = (3 1)
HEZ

The space of trigonometric polynomials is defined by
T(Qq,C%) := span {e(j) Tg‘d) ljed{l,....d}, pe Zd},

where e(?) denotes the j-th unit coordinate vector in RY and the linear
combinations are taken with respect to complex numbers. For p € Z2 we

denote by p%‘(l) € R3 the lattice vector given by

pd) = (u2Ly,....pa2Le)",  peZl. (1.18)
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Periodic Functions. A function u : RY — C% is called periodic, if
u(z +pl) = R? 74 1.19
Po,) = u(x), r€eRY peZ® (1.19)

If wis in L (Qq, (Cd/), then for periodicity we require that (1.19) holds

almost everywhere in Q)4. For m € Ny, we define
Cita(Qu, €)= {u € C™(Qu,C) | Jv € C™ (R, C7)
v is periodic and u = U‘Qd}

and set

pcr Qd? Cd ﬂ pcr Qd? (Cd/

Remark 1.1 Cgo(Qd,(Cd/) is a subspace of per(Qd,(Cd/)

Convention 1.2 In regard to the notation for the function spaces intro-
duced in this section and in following ones, if m = 0, then we will drop the
superscript in the symbol for the function spaces. Moreover, we will mostly
suppress the symbol for the co-domain, if we consider only scalar valued
functions, i.e., for example we will write C™(Q) instead of C™(Q2, C).

Modified Differential Operators. Besides the partial differential operator
0%, we now specify further basic differential operators. For u : R? — C
and F : R? — C3, both sufficiently smooth, we have for its gradient
Vu, its rotation curl F' and its divergence div F' (in a cartesian coordinate
system)

Oru 02F3 — 03Fy
Vu = s curl F =V x F = 83F1—81F3 y
Dq u 01 Fy — 0o F)

3
divF =V-F=Y 0;F,

Jj=1
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respectively. Often we will use modified versions of the last differential
operators in the following form. For 8 € R? we define

Vs =V +if (1.20a)

where i denotes the imaginary unit, and, considering again v : R? — C
and F : R? — C3, both sufficiently smooth,

curlg . :=Vg x F, divgF :=Vg-F and Agu:=divgVgu. (1.20b)
The Generic Constant. And last but not least, to make estimates in the

proofs more transparent, we denote by C' > 0 a generic constant, meaning
that C' may change in each occurence.



2. Sobolev Spaces for ()-periodic
Functions

In this comprehensive and exhausting chapter we provide the framework
for a detailed analysis of electromagnetic scattering in a @-periodic setting.
We follow thereby closely the concept of [34]. Although therein the authors
consider Sobolev spaces for bounded Lipschitz domains, their ideas seem
to be best suited for our purposes as they consistently make use of periodic
Sobolev spaces for functions on cuboids. The step from here to cell sets of
Lipschitz layer type (the domains that we are mainly interested in) is then
even easier than the corresponding step to bounded Lipschitz domains
in the sense that the technical argumentation with a certain partition of
unity can now be almost neglected.

In Section 2.1 we start with basic results for Sobolev spaces for functions on
arbitrary open sets. Here, we intend to pick up the reader and to introduce
into the notation. Then we look a little more in detail at functions on
cuboids for reasons which were mentioned above and present results which
are more extensive. Afterwards, we are ready to define the important trace
spaces, with corresponding trace and extension operators, entirely in the
spirit of [34]. This approach appears to be not so much represented in the
literature and at the end of Section 2.1 we connect it with the approach
used for instance in [22].

The introduction of the Q-periodic setting is topic of Section 2.2. We will
present results which hold in a more general context, similarly as in the
case for arbitrary open sets. Already here we are able to provide several
forms of Helmholtz decompositions which are an important tool in the
context of Maxwell’s equations.

Finally, in Section 2.3 we adopt the concept of [34] to introduce cell sets of
Lipschitz layer type, define trace spaces as well as corresponding trace and
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extension operators for each surface separately, prove Green’s formula and
derive compactness and many other results which are useful for further
analyses.

Special attention should be paid to the fact that we will be working in Q-
periodic Sobolev spaces instead of -quasi-periodic ones. As a consequence,
instead of the usual differential operators its modified versions as in (1.20)
will come into play and make the derivation of the results more involved.

2.1. Basic Results for Sobolev Spaces

2.1.1. Functions on Open Sets

Throughout this subsection let d,d’ € N. We start with the basic results
for scalar and vector valued functions defined on an arbitrary open set
Q1 € R%. Later, in the formulation of Sobolev spaces on the boundary

of a domain, of course we have to make some restrictions concerning the
boundary 0f2 of .

Definition 2.1 Let Q C R be open.

(a) For a € N¢, a function u € L*(Q,C%) possesses a variational
derivative (with respect to o), if there exists v € L?(Q,C?) such that

w(z) 0% (x)dx = (—1)l° v(x) y(z)dz
/Q()ﬁx()d (-1) /Q()x()d

for all x € C§° (). Then we set 0%u :=v.

(b) Supposed d = 3, a function u € L*(Q,C3) possesses a variational
curl, if there exists v € L?(Q, C3) such that

/Qu(a:)-curlx(x) dz = / o(@) - x(z) dz

Q

for all x € C§°(Q2,C3). Then we set curlu = v.
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(c) Supposed d = 3, a function u € L*(Q,C?) possesses a variational
divergence, if there exists v € L*(Q) such that

/ u(z) - Vx(z)dz = —/ v(x) x(z) dx
Q Q
for all x € C§(2). Then we set divu := v.

It is well-known that the variational derivative, variational curl and varia-
tional divergence, respectively, is unique, if it exists. Note that for « =0
we have 0%u = u.

Definition 2.2 Let Q C R? be open.
(a) For m € Ny, we define

H™(Q,C%) = {u € L*(,CY) | Va € N¢ with [a] <m :
9 € LQ(Q,cd’)},

where 0%u has to be understood in the sense of Definition 2.1, and
equip this space with the inner product

(w] V) g (q,cary = Z /Qaau(:c).aozv(x) dz

|a|]<m

and with the norm || - || gm o coy = /(| ) grm(,cays €., the norm

induced by the inner product.

(b) Supposed d =3, we define
H(curl, Q) := {u € L*(Q,C?) | u has variational curl}
and equip this space with the inner product

(ul U)H(curl,sz) = (u] U)LZ(Q,CB) + (curlu | CUﬂ”)LZ(Q,CS)

and with the norm || - || g (curl,0), induced by the inner product.



22 2. Sobolev Spaces for Q-periodic Functions

(¢) Supposed d = 3, we define
H(div, Q) := {u € L*(Q,C%) | u has variational divergence}
and equip this space with the inner product

(w] V) r(aiv,0) = (@) p2q oy + (divu |dive) e g

and with the norm || - || g (aiv,0), induced by the inner product.

It is well-known that H™(Q,C%), H(curl, Q) and H(div,Q) are Hilbert
spaces. Moreover, we have by definition that H°(Q,C%) = L2(Q,C%).

Recall that a function u: Q@ — C¢ is called Lipschitz continuous, if there
exists a constant L > 0 such that

In this case, L is one Lipschitz constant of u. Clearly, if u : Q) — Cc? is
Lipschitz continuous, then for x € Q) the function

. d’
u(l‘l,...,$j_1,'7$j+1,...,.%‘d) I —»C s

J =1,...,d, is Lipschitz continuous as well, where I C R denotes some
interval depending on €.

We will need that a Lipschitz continuous function u :  — C¢ belongs
to H! (Q,(Cd/), if Q is additionally bounded, see the next proposition.
For this let I = [a,b] C R be an interval. We recall that a Lipschitz
continuous function g : I — C is absolutely continuous and therefore in
I almost everywhere differentiable with integrable derivative ¢’ and with
the equation

b
9(b) - gla) = / g(t)dt, (2.1)

holding, see for instance the Paragraphs 9.22 and 9.23 in [51]. Furthermore,
thanks to Rademacher’s result, see [45], we have that ¢’ € L>(I).

Proposition 2.3 Let Q C R? be open and bounded. Furthermore, let
w:Q — C¥ be Lipschitz continuous. Then u e H'(Q,C%).

Moreover, Oju in the variational sense coincides almost everywhere with
the almost everywhere given partial derivative Oju in the classical sense.
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Proof: We only show the assertion for the scalar valued case, as then the
generalization to the vector valued case is obvious.

At first, we consider the case d € N with d > 1. Let x € C§°(£2). We
extend v and x by zero to R%. Then, by rewriting € R? in the form
r = (z1,2') 7, by decomposing supp x(+, 2’) in non-intersecting intervals
and by applying (2.1) together with the product rule in each interval,
which yields the integration by parts formula due to vanishing boundary
terms because of the compact support of x contained in €2, we obtain

[ w@ o) e = [ utw) drx(e) s

/ / (t,2") O x(t,z") dt da’

Rd—1

= / /61utx) x(t, ") dt dz’
Rd—1

-/, Aru(z) x(z) dz = */Qalu(x)X(I) da

Note that due to Rademacher’s result and due to the boundedness of (2
there holds dyu € L>=(Q) C L3(Q).

Analogously, one shows [, ud;x dz = — [, juxdz for j =2,...,d.
And finally, the assertion for d = 1 is shown in the same way. ]

Corollary 2.4 Let Q, Q' C R? be open, ' additionally be bounded, and
the function ® : Q' — Q be Lipschitz continuous. Then for u € C*®(Q,C%)
we have v := uo® € HY(Q,C¥). In particular, in the case d' = 1 its
variational gradient Vv := (01v,...,0qv)" is given by

Vo = (®)"(Vuo d)

and exists almost everywhere in Q' in the classical sense. Here, ®' is the
Jacobian of ®, see also Section 1.3.

Proof: Since v : ¥ — C% is Lipschitz continuous, the assertion follows
directly from Proposition 2.3. (]

Definition 2.5 Let Q C R? be open.
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(a) For m € Ny, we define the space Hy"(Q,C%) as the closure of
0 (Q, €4 in H™(Q,C7).

(b) Supposed d = 3, we define the space Hp(curl,Q) as the closure of
C§°(Q,C3) in H(curl, ).

(c) Supposed d = 3, we define the space Hy(div,Q) as the closure of
C§° (9, C?) in H(div, Q).

Theorem 2.6 Let Q C RY be a bounded open set and let m € Ng. Then
the embedding HJ*(Q,C%) 4, L2(Q,C) is compact.

For a proof regarding the scalar valued case we refer to [34, Theorem 4.14].
Again, the generalization to the vector valued case is obvious.

2.1.2. Functions on Cuboids

The authors in [34] use the following periodic Sobolev spaces with their
properties to define Sobolev spaces for functions on bounded Lipschitz
domains and to derive important results for the trace and extension
operators. Furthermore, this method seems to be best suited for deriving
analogous results for the @Q-periodic setting, as we will see later.

Throughout this subsection let Q4 C RY be a cuboid as given in (1.13).

Here again, d and d’ are assumed to be some natural numbers.

Definition 2.7 (a) Let s > 0. The space H}.,(Qa, CY is defined by

H;o(Qa, CY) = {u € L%(QuC") | 32 (L+1u?) )P < oo}

HEZ?

with inner product

(u] U)Hfier(QdaCd/) = Z (1 + |M|2)S u L p(e)
HEZL
and induced norm || - ||y (o, cay- Here, u™ denote the Fourier
per ’

coefficients of u, see Section 1.3.
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(b) The space Hper(curl, Qs) is defined by
Hyer(curl, Q) = {u € LA(Qs ) | D2 (WP + o) x u®)|?) < oo}
WEZS

with inner product
(u | U)Hper(curl,Qg,) = Z (u(u) W + ( (1) X U(M)) ( 22) X m>)7
WEZS

induced norm || - || m,.. (curl,@s) and where qgg is given by (1.14).

Note that H?,, (Qg4,C%) and Hpe(curl, Qs) are Hilbert spaces. Further-

per
more, there holds ngr(Qd,(Cd/) = L2(Qq,C%). Again, we will write
H3..(Qa) instead of H3,.(Qq,CY) if &' = 1.

Denseness and Compactness Results. The spaces of trigonometric poly—
nomials 7(Qq,C%) and T(Qs,C?) are dense in the spaces H3,,(Qq,C d'y
and Hpe,(curl, Q3), respectively, see the next proposition.

Proposition 2.8 (a) The space of trigonometric polynomials T (Qg, (Cd/)
is dense in the space HS..(Qa,C%).

(b) The space of trigonometric polynomials T (Qs3,C3) is dense in the
space Hper(curl, Q3).

Proof: (a). A proof can be found in [36], or by following the arguments
in part (b), with corresponding, quite obvious, modifications.
(b). Let u € Hper(curl, Q3) with Fourier coefficients u(") € C3, u € Z3.

For n € N, we set u,, := Z“LK" T(“) € T(Q3,C?). Then

7 2
||'LL - UTLH%Iper(curl,Qg) = Z (‘U(N)|2 + |qgs) X u(ﬂ)| ) — 0, n— o0,
lp|>n

because of convergence of the series Zuez3 (|u(u) 2 4+ |Q§53) x u# )|2)' O

Often we will need the estimates from the following lemma.
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Lemma 2.9 For qg‘d) from (1.14) there holds
(i) Je>0¥p ezt g4 < e/T+ [uP,
(ii) 3c> 0V p e Z\ {0} : [¢4)| > ¢ /T + [ul?.

Proof: (i). Let p € Z% and recall (1.3). Then |qu)|2 < 2—2(1 + ul?).
(ii). Let pu € Z¢\ {0}. Then \q%‘ﬂ > Zju| > %\%\/1 + |pf?. O

The next lemma gives a useful decomposition for the dot product defined
in (1.5).

Lemma 2.10 Let a,b € C3. Moreover, let p € C3 such that p-p = 1.
Then

a-b=(p-a)(p-b)+(pxa) (pxb).
Proof: Using (A.la) and (A.1b), we obtain
(pxa)-(pxb)=p-(bx(pxa)=p-((a-b)p—(p-ba)
=(a-b)(p-p)—(p-a)(p-b),

as asserted. O

Remark 2.11 For a,b € C? and p € C? with p-p = 1, we obtain from
Lemma 2.10, and with formula (1.6), that

a-b={(p-a)(p-b)+(pxa)(pxDb).

Indeed, here we only have to identify vectors from C? with vectors from
C3 whose third component is zero.

Clearly, for s > 0 the space ngr(Qd,(Cd/) is compactly embedded in

L2(Qq,C%), see the next proposition. Unfortunately, this is not the case
for the space Hper(curl, Q3). However, we are able to derive a similar com-
pactness result for a certain — divergence free — subspace of Hper(curl, @s)
as given in the following definition.
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Definition 2.12 Let 8 € R3. The space Hpe(curl,divs 0, Q3) is defined
by

Hper(curl,divg 0, Q3) := {u € Hper(curl, Q3) ‘
YueZ?: (qg;) +8) - uW = 0}.

If B =0, then the subscript 5 in the symbol Hper(curl,divg 0, Q3) will be
dropped.

Proposition 2.13 (a) Let 0 < t < s. Then we have that the embed-
ding H;er(Qd,(Cd/) 24, H;er(Qd,(Cd/) is compact. In particular,

Héer(Qd,(Cd') is compactly embedded in L*(Qq,C").

(b) The embedding Hpe,(curl, divg 0, Q3) N L?(Qs3,C?) is compact.

Proof: (a). For a proof we refer to [36, Theorem 8.3] with obvious
modifications for the cuboids considered here, and a straightforward gen-
eralization to the vector valued case.

(b). We denote the embedding from the proposition by J and define for
n € N the operator J,, : Hpe,(curl,divs 0,Q3) — L?(Q3,C?) by

Jou = Z ne ng), u € Hper(curl, divg 0, Q3).

[u|<n

Note that J, is compact, because of its finite dimensional range. Let
u € Hper(curl,divg0,Q3). Then, thanks to Lemma 2.10, we have for
w € Z3, with |u| large enough,

NE 1 2
u]? = PO (g% + ) - u | + PR (g0 + B) x ul)|".
Qs f Qs

Moreover, we have |qg? + 5| > %|qg‘3)| for such p. Thus, together with

Lemma 2.9,

i 2 1) |2 2 :
||(J77, ld)uHLZ(Qg,(C:}) = |'U/(")| — 7

62+ 8) )|
Iul>n lulon 90, + B
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1 1
< Oﬁ Z (\u(“)|2 + Iqéﬁfj X U(“)|2) < CﬁHu”%—Iper(curl,Qg)'
lu>n

Hence, (J;,)nen converges in operator norm to J, and from this we conclude
that J is compact. O

A Useful Characterization. Now, we continue with a characterization
of the space HI (Qq4,C%) and Hpe:(curl, Qs), respectively, which is more
useful to work with in some cases, in particular for the derivation of a
product rule in those spaces.

Definition 2.14 (a) For m € Ny, the space H, (Qd,(Cd/) is defined by

per
’Hgfgr(Qd,(Cd/) = {u S LZ(Qd,Cd’) ’ Va € Ng, with |a| < m,
Jv € L3(Qq,C¥) Wy € CZ(Qu) -

/ u(m)f)o‘x(x)dx:(fl)lo“/ v(x)x(x)dx}.

d d

Foru € Hpe, (Qa, C) we set for the moment Opertt 1= v, see also the

next remark. Furthermore, we equip this space with the inner product

(1 ')'Hg;r(Qd’(Cd/) and norm || - HH’ggr(Qd,Cd’) according to Definition 2.2.
(b) We define the space Hper(curl, Qs) to be

Hper(curl, Q) := {u € L*(Qs,C?) ] Jv € L*(Q3,C?)

Vx € Cher(Qs, C?): / u(x) - curl x(x) da = / v(z) - x(x) dx}.

For u € Hper(curl, Q3) we set for the moment curlpe, u 1= v, see
also the next remark. Furthermore, we equip this space with the
inner product (+[ )y, (cur,qgy) @nd norm || - [l (curl,qq) according

to Definition 2.2.
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For the definition of C22,(Qq, C%) see Section 1.3.

per

Remark 2.15 Thanks to Remark 1.1, for u from the space Hpcr(Qd, c?)
and Hper(curl, Qs), the element v in the definition of those spaces is unique
and coincides with 0%u and curlu from Definition 2.1, respectively, and
therefore we will write again 0%u instead of 05, u and curlu instead of
curlper w. In particular,

Per(Qda (Cd/) ' m(Qd7 (Cd/) and Hper(curla Q3) i> H(CHI‘I, QS)

Of course, the spaces . (Qd; C?') are subspaces of Hiper (Qu, C%) for all
n € No U {oo} with n > m. Lipschitz continuous functions are another
example for elements in Héer(Qd, C?) as shown in the next proposition,
compare also with Proposition 2.3.

Proposition 2.16 Letu: R¢ — C? be periodic and Lipschitz continuous.
Then ulg, € Héer(Qd,(Cd/).

Moreover, 0ju in the variational sense coincides almost everywhere with
the almost everywhere given partial derivative Oju in the classical sense.

Proof: Again, we only focus on the scalar valued case as the generalization
to the vector valued case is obvious.

We consider at first the case d > 1 and choose some x € Cp2.(Qq).
Supposing that u is differentiable in z = (z1,z ) € Qg, we apply the
product rule and obtain u(x1,2’) 1 x(z1,2") = —x(z1,2") Oru(zy,2’) +
O1(u(x1,2")x(x1,2")). Note that by (2.1) we have

Ly
O (u(t,2")x(t, 2")) dt
—I
= u(Llax,)X(Llax,) - u(_LhI/)X(_Llax,) =0,

because of the periodicity of the integrands. Following now the arguments
from the proof of Proposition 2.3, we obtain the assertion. O

per(Qds C?) and Hpe (curl, Q3), and also d*u and curl u,
respectively, can be expanded into a Fourier series. The next lemma con-
firms the well-known and useful connection between the Fourier coefficients

Clearly, u from H™
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of u with 0%u and with curl u, respectively, from the context of classical
functions. For this recall also (1.8).

Lemma 2.17 (a) Let m € Ny. For u € H".(Q4,C%) and o € N¢ with

per
|| < m there holds the following relationship between the Fourier

coefficients of u and 0%u

(0°u)™ = (i qg‘))’l ul), uezl

d

(b) For u € Hper(curl, Qs) there holds the following relationship between
the Fourier coefficients of u and curl u

(curlu)® = iqg;) x ) peZd

Proof: (a). Let u € H™,.(Q4,C%) and a € N¢ with || < m. Further-

per

more, let o € Z. Then TEM € 00 (Qq) and by definition of the space

d per

Hper (Qu, C%), together with (1.15), we obtain

(0%u)™) = o 9 u(z) Ty, (z) dz = (1)1 / du(x) 9Ty () da

= /Q u(x) (iqgj)aTé;#) (z)dz = (i qu))au(“).
d

(b). Let u € Hper(curl,Q3) and p € Z3. Furthermore, let j € {1,2,3} and
let el denote the j-th unit coordinate vector in R3. Then e(j)Té;” ) e

Crer (@3, C3) and again by the definition of the space Hper(curl, Q3), to-
gether with (1.15), we obtain

(curl u)g-“) = /Q curl u(x) - e(j)Té?;“) (x)dx
3

= / u(z) - curl (e(j)Té;“)) (z)da

3

:/ u(x) - (—iqg;) X e(j))Té?;”)(x)dx

3

e (iq%? x /Q u(@) Tg," (@) dx) = (igg) xu®) |
3
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and the proof is complete. ([l

Clearly, the trigonometric polynomials from 7(Qg, (Cdl) and T(Q3,C3)
are further examples for elements in ’Hper(Qd,(Cd/) and Hper(curl, Qs),
respectively. Furthermore, in the next proposition we will see that in those
subspaces the corresponding norms from Definition 2.7 and Definition 2.14
are equivalent or even equal. For this, the next lemma has preliminary
character. A recall of (1.8) might be appropriate.

Lemma 2.18 For all m € Ny there exists a constant ¢ > 0 such that for

all p € 72
Z u2a§|u|2m§c Z ’u2a

la|=m |a]=m

where o € N& denotes a multi-index. Moreover, we have

1 m
5 (L) < (U [pf?)™ <2 (U4 uf™),  pe 2, meN,

Proof: The assertion for the first inequalities follows by induction with
respect to d and by an application of the binomial theorem. In fact, let
d = 1. For arbitrary m € Ny we have |a| = m, if and only if oy = m and
therefore 3, _,, P2 = 3 = |u|®™, as asserted, with ¢ = 1.

For the inductive step from d to d + 1, we suppose that the assertion is
true for some d € N. Without loss of generality we assume that m € N;
otherwise if m = 0 the inequalities hold trivially. Then for u € Z?*!, and
with 3 € N2, v € Nd and o/ := (p1,...,pa) ",

Z ,u2 Z Z MQ’Yl_ 2’”'“3?-21

|al=m [Bl=m |v|=p1
2 2 1128, 2
< Z (B +---+u7) 1%%1 = Z || Bl/‘déﬁ
|B]=m |B]=

‘ 2m

< (0P + pin)™ = u
where in the second last step we have applied the binomial theorem. And
for the second inequality we obtain

m

P = (P + pia)™ = 32 (Ol PGy < e 37 P
k=0 |Bl=m
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<C Z Z ’u2“/1_ 2’”'“3%1 C Z /1*204

|Bl=m |y|=p1 la|=m

The last inequalities from the lemma are easy to show. O

Proposition 2.19 (a) Let m € Ny. On the space of trigonometric
polynomials T(Q4,C%), the norms H'”Hggr(Qd,Cd’) and ”'”H;?zr(Qd,Cd’)
are equivalent, i.e., there exist constants c1,co > 0 such that

cllull grm (Qu,cty < ||“||7-L (Qu,cy = C2||“HHm (Qq,C4Y)»

per per

for allu € T(Qq,C¥).

(b) On the space of trigonometric polynomials T (Q3,C3), the norms
H . ||Hper(cur1,Q3) and || : Hﬂper(curLQS) coincide, i.e.,

H“”Hpcr(curl,Qz) = H“HHpcr(curl,Qg)7 u € T(Q?n(cg)~
Proof: (a). First of all we note that for arbitrary a € N¢ with |a] <m
there holds

2|
) | \’u2a < (qgtd))mx

(

where for the number L we refer to (1.3). Now, let u € T(Qq, C%), that is,
there exists some n € N such that u = Z‘ ul<n ne Té?“ ). Then for arbitrary

<lgg) P, nez,

- d

llE]

a € N¢ with |a| < m we have ||8au||i2(Qd}Cd/ Zlul<n (qéd) \u(u)|27
see also Lemma 2.17. Therefore, we obtain with the second inequality
from above, together with Lemma 2.9, on the one hand

2
|‘“||3rt;"¢r(Qd,Cd’>: Z Haa“||2L2(Qd,cd' Z Z #) a2

la|<m la|<m |[p|<n
C( Z 1) Z (1 + |u|2)m|u(u)| CHu”Hm Q (Cd’)
la]<m  Jul<n

and with the first inequality from above, together with Lemma 2.18, on
the other hand

luliy guery = 2o (L) WP < €D (1 ) [l

[u|<n lu|<n
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<C Z <1+ Z u2a>|u(”)|2 <C Z (1+ Z (qgt;)2a)‘u(u)|2

ul<n ~ Jal=m ul<n © lal=m
()

= C (Hu”iQ(Qd,Cd/) + Z Haau||i2(Qd,C’i/ ) < C Hu||2 Qd,cd/)

|a]=m

(b) Let u € T(Qs3,C?), that is, there exists some n € N such that

= ju<n U () T(”) Then || curlu||L2(Q3 3y = 2jul<n \q(“) x ulM |2, see
Lemma 2.17, and We obtain

||uH’?-[pcr(curl,Q3) = ||UH%2(Q3,(C3 + | CUTIUH%Z(QS,CB)
= 3 R+ 3T 108 xR =3 )

[p|<n lu|<n

and the proof is complete. O

Now, we come to the characterization for the spaces H}¢ (Q4, C%) and
Hper(curl, Q3).

Theorem 2.20 (a) For m € Ny we have

per(Qd7 Cd ) per(Qd’ (Cdl)

with equivalent norms || || gm (g, cary and || - HHm (Qu,ce') therein.

per

(b) We have
Hper(curly QS) = Hper (curl, Q?))

with coinciding norms || - || g,.. (cur,Qs) And || - |3, (curl,@4) therein.

Proof: (a). Let u € Hp, (Qa, C?). Then u and d*u belong to L?(Qq, C¥),
for all @ € Nd with |a| < m. Therefore, we proceed as in the proof of
Proposition 2.19 to obtain the inequalities (*) therein, where we sum

now over p € Z%, and interchange at the end the sum signs because of

convergent series Zuezd (qg;)2a|u(“)|2 = ||@au||iZ(Q ciry the latter one

thanks to Parseval’s identity. This shows that u € Hggr(Qd,(Cd/) and
”uHHggr(Qd,(Cd') <c Hu”ﬂg;r(Qd,Cd’)’ with ¢ > 0 independent of u.



34 2. Sobolev Spaces for Q-periodic Functions

For the other direction, let uw € H™ (Qg, (Cdl). Since by Proposition 2.8 the

per

space of trigonometric polynomials T (Qq, (Cd/) is dense in Hpg (Qa, d/),

there exists a sequence (uy )nen in T(Qa, C¥) with ||t — ul| . (Qu,Cc?) —

e
0, as n — co. In particular, we have u,, — u in L?(Qy, c¥ ) as n — oo.
Let o € NJ* with |a| < m. By Proposition 2.19, (0%uy )nen is a Cauchy
sequence in L2(Qq, c?) ) and therefore convergent to some v € L(Qq, c ).
Now let x € C5e,(Qa). Then

/ u(z) 0%x(z)dr = lim un(x) 0% (x) dz

n— oo Qd

= (=)l 1im O%up(z) x(z)de = / v(z) - x(z)dz,
n—oo Qd Qd

where the boundary terms on the right hand side of the second equation

vanish due to the periodicity of all integrands. Hence, there exists 0%u = v,

and due to the choice of a we have u € HJ (Qq, C?). Moreover, we have

implicitly shown that ||un||H;,z\r(Qd,Cd/) — ||u||ngr(Qd’Cd,)7 as n — oo.

Thus, again thanks to Proposition 2.19,

||u‘|Hggr(Qd,<Cd’) = nh_)n;o ||Un||7-tgber(Qd,<Cd/)

< O lm flunllgy ucoy = Cllullag, @uco)-

(b). Let u € Hper(curl, Q3). Then u and curlu belong to L?(Qs, C?), and
by Parsevals’s identity, together with Lemma 2.17, we have

ull32 (g, co) = Z w2 and | eurl w72, csy = Z IQ&) x u®
HEZ3 pEZ3

which shows that u € Hpe (curl, Q3).

Now let u € Hper (curl, Q3). Analogous to part (a), there exists a sequence
(Un)nen in T(Qs,C?) with [Jun — ullg,., (cur,gs) — 0, as n — co. In
particular, we have u, — u in L?(Q3,C?) as n — oo. Moreover, by
Proposition 2.19, (curlu,),en is a Cauchy sequence in L?(Q3,C?) and
therefore convergent to some v € L*(Qs, C?). Now let x € C32.(Qs,C?).
Then

/ u - curl ydr = lim Uy, - curl y do
3

n— oo Q3
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= lim curlun-xdx:/ v - xdz,

o0 JQs Qs

where the boundary terms on the right hand side of the second equa-
tion again vanish due to the periodicity of all integrands. Hence, u €
Hper(curl, @3) with curl u = v. Moreover, we have implicitly shown that
unll 2o (cur,@s) = [[Ul22per (curl,@s)> @8 7 — oo. Thus, again thanks to
Proposition 2.19,

”uHHpcr(curLQs) = nh_{go HunHHpcr(curLQ3)
- T}LII;O ||un||Hper(Curva3) = ||uHHper(Cur17Q3)’
and the proof is complete. (]

As a first application of the previous characterization we will derive a
product rule for the spaces H{)’ér(Qd,(Cd) and Hper(curl, Q3). For this
recall (1.9).

Proposition 2.21 (a) Let m € No. Ifu € H;ZY(Qd,(Cd/) and ¢ €

Cper(Qa), then the product P u € Hp (Qa, C%) and for a € N¢ with
|a] < 'm there holds Leibniz’ product rule

0% (pu) =Y (3)0* Py o u.

B<a

(b) If u € Hper(curl,Q3) and ¢ € C3.(Q3), then the product Yu €
Hper(curl, Q3) and

curl(v u) = Vi X u + ¢ curlu.

In particular, for fized v the multiplication by v establishes a linear and
bounded operator in Hp (Qa, C%) and Hper(curl, Q3), respectively.

Proof: (a). Note that H (Q4,C%) = H™ (Qq,C?), see Theorem 2.20,
and that ¢ and all its partial derivatives are bounded as smooth and
periodic functions. Therefore, 9*~ 84 8%u € L2(Qq,C¥) for all o € N
with || < m and all 8 € N¢ with 8 < . Since T(Qq,C?) is dense in
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HT™ (Qa, (Cd/) =My (Qa, (Cd/) and the norms therein are equivalent, see

per
Proposition 2.8 and Theorem 2.20, there exists a sequence (up)nen in

T(Qa,C¥) converging to u with respect to || - ||3m (@uct)- Let a € N§
per ’
with |a] < m and let 3 € N¢ with 3 < . Then

up = u, 0°%u, - 8%°u in Lz(Qd,(Cd'),
and in particular
Gup = Yu, 9 PPpdPu, — 0 PYou in L2(Qq,CT),

as n — 00. Now, let x € Cp¢,(Qa). Then we obtain

/ Yud®xdr = lim/ Yu, 8%y dz = (—1)1 lim 0% (Y un) x da
Qa

n—oo Qd

|°“ lim 30‘ Bap 8Pu, x da

(b). Let x € C32.(Qs,C?). Then ¢ x € C32,.(Qs,C?) and
/ (Yu)(zx) - curl x(x) da = / u(x) - Y(x) curl x(x) dx
= / u(z) - curl (’(/J(J}) X(x)) dz — / u(z) - (Vw(x) X X(x)) dz
Qs

Q3

:/ curlu(z) - (¢(z) x(x)) dz +/ (Vip(z) x u(z)) - x(z) dz

3 3

= / (1/)(;6) curlu(x) + Vip(z) x u(az)) - x(z) dz,

3

as asserted.
And finally, the linearity and boundedness of the multiplication operators
are easy to see. U
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Trace and Extension Operators. In the following considerations the
cuboids Q)2 and Q3 are related to one another by

Q3N (R? x {0}) = Q2 x {0}.

While for the scalar valued case the trace space is given by H;éf (Q2), the
trace spaces for vector valued functions are more delicate. For a motivation
of the following definition we refer to [34].

Definition 2.22 Let s € R.
(i) The space HS..(Div,Qz) is defined as the completion of T(Qa,C?)

per
with respect to the norm

s 1/2
[l as,, (Div,@2) = ( ST ) (™2 + Iqéﬁ‘ﬁ _ ¢<M>|2>) .
WEZ?

(ii) The space HE, (Curl,Q2) is defined as the completion of T(Q2,C?)
with respect to the norm

s 1/2
el ccmnan == (D2 (1+ 1) (0902 + I x oW12)) .
HEZ?

Here, qgg) is given by (1.14) and p*) denote the Fourier coefficients of .

For the cross product recall (1.6).

For s < 0, the elements in H3,, (Div, Q2) and Hp,, (Curl, Q2) do in general
not belong to L?(Q2,C?) and it is not clear in which sense for those
elements there exists a Fourier series expansion. Later in Corollary 2.34
we will see that such an expansion exists and how convergence has to be

understood.

Theorem 2.23 (a) The trace operator

7Y0,per : H}ier(Q?n (Cd/) - Héé?(@% Cd/)> U = uleX{O}a
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is well-defined, linear and bounded. Furthermore, there exists a
bounded right inverse 1o per 0f V0,per; that is, a linear and bounded op-
erator 0o, per : HIl,éf(Qg7 (Cd/) — Héer(Qg7 (Cd/) with Yo, per 010, per = id.
In other words, the function u := 1o per ¢ € HJop (Q3, C?Y) coincides
with ¢ € Hé(/;f(QQ,(Cd,) on Q2 x {0}.

(b) Let in addition é := (0,0,1)7. Then the following assertions are
true.

(i) The trace operator
Yeper : Hper(curl, Q3) — Hpelr/Q(DIV Q2), ur—éxu(-0),

is well-defined, linear and bounded. Furthermore, there exists a
bounded right inverse 1 per : Hper/ (Div, Q2) — Hper(curl, Q3)
Of Vt,per-

(i) The trace operator
VT,per - I—Iper(cur1 Q3) - Hpe}r/2(curlv Q?)v u = (é X u('? 0)) X é:

is well-defined, linear and bounded Furthermore, there exists a
bounded right inverse nr per : H, per (Curl Q2) = Hper(curl, Q3)
Of YT ,per-

For a proof we refer to [34, Therorem 5.7 and Theorem 5.21], with slight
modifications for the cuboids considered here. Therein, the assertions for
Yo,per and 7o per Were shown for d’ = 1. Of course, for the case d’ > 1
the application of these operators has to be understood componentwise.
Moreover, we only use one symbol vy per and 1o per, although applications
with different d’ € N simultaneously are possible. Then from the context
it should always be clear in which concrete spaces these operators are
currently working.

Lemma 2.24 Let ¢ € O35, (Q3) with ¢ = 1 in a neighborhood of Q2 x
{0} C Q3. Then the following assertions are true.

(a) If u e per(Q37(Cd ), then Yo per (¥ U) = Y0, per U-



2.1. Basic Results for Sobolev Spaces 39

(b) If u € Hper(curl, Qs), then

Yeper(PU) = Yepert  and YT per(Pu) = VT per U-

Proof: We only show the assertion for part (), as the argumentation for
part (a) is completely analogous.

Since u € Hper(curl, Q3) and since by Proposition 2.8 the space of trigono-
metric polynomials 7(Q3z,C?) is dense in Hpe(curl, Q3), there exists a
sequence (uy, )nen in T(Q3, C?) with u,, — u with respect to - e (curl, @s) 5
as n — oco. Then, thanks to Theorem 2.20, u,, — u and curlu,, — curlu
in L?(Q3,C3), as n — oo. Hence, by exploiting Proposition 2.21 as well,

2 2
||’(/}un - u}u”Hpcr(curl,Qg) = ||1/J’U,n - wuHH(curl,Qg)

- / () Pt () — ()2 d + / V(@) x (un(@) — u(z))
Q3

Qs

+ ¢(z) (curl u, (z) — curlu(z)) ‘2 dz — 0, n— oo,

that is, Y u, — @ u in the space Hper(curl,@3). Note that the traces
Ve,per (Y un) and 7 per Uy, can be evaluated pointwise on Q2 x {0}, and
therefore we have ¥ per (¥ Un) = Vi,per Un, for all n € N, because ¢ = 1
in a neighborhood of @3 x {0} by assumption. Moreover, by continuity
of VYt,per, WE obtain ’Vt,per(w un) — 'Yt,per(w u) and Yt,per Un — Vt,per U, &S
n — 00. Thus, V¢ per (¥ w) = V¢ per U-

The assertion for 7 per is shown analogously. U

As we want to transfer trace and extension results from [34] to the @-
periodic framework (which will be introduced in Section 2.2), we need the
following observation concerning the extension operator 7; per from the
proof of [34, Theorem 5.21]. Therein, the operator

Tt per : Hrjelrm(DiV, Q2) = Hper(curl,Q3), © = Nper @ =t u
was constructed by taking

w08

=TT P (™ xa®),  pezd, (2.2)
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as Fourier coefficients for u, where ¢*), v € Z2, are the coefficients of ¢
with vanishing third component,

) — {|[11|2 (W|2é - H3N)7

=
AN
o o

wE 73, (2.3)

=
I

é,
and

-1
- 1
6y = _ , 72,
(Z 1+1/|2+j2> ve

Jj=—o0

Observation 2.25 If p € Hp_e}r/Q (Div, Q2), then u := 1y per @ s symmet-
ric, that is,
u=u*(-") on Qs,

where the symbol “*” denotes the reflection operator given by C* > a =
(a1,a2,a3)" — a* = (a1,a2,—a3)" € C3, see also Section 1.3.

Proof: Formally, for all z € Q3 there holds

u*(x*) _ Z (u(u))* TC(?I—;)(SL’*) _ L Z eiﬂ.g"c( Z (u(ﬁ,ug))* ei(—ﬂg)ﬂfg)-

WEZ3 |Q3| nez? H3€ZL

Therefore, the proof is complete, if we have shown that (u(#s))* =
uB=hs) for all € Z3. For this, because of

0%
L+ |ul?

<(¢<m)* " (am))*) _ _1+6,|1/ﬂ (¢ x (@)°)

(u(u))* —
by (2.2), it suffices to show that —(a(##s))* = q(#-=#3) for all y € Z3. So,
let 4 € Z3. If ji # 0, then by (2.3)

(fi,p3) ) * 1 2 4% * 1 “Hsln (fi,—p3)
—(alhs)) :_|ﬂ|2 (lul*e —MSN)Z—W —lésmz =ar :
—[ul® + p3

And if i = 0, then —(a(PH3))* = —¢* = ¢ = gl —H3), O
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Duality Results. As mentioned before, the elements in Hl;glr/2 (Div, Q2)

and H;elr/z(Curl,Qg) do in general not belong to L?(Q2,C?). It is the
objective of the following presentation to derive a useful characterization for

those trace spaces. For this, the dual space Hrl,éf(Qg7 C%)* of Hll,érg (Q2,C?)
plays an important role.

Definition 2.26 Let s > 0. We define H;;(Qd,(Cd/) to be the dual space
of Hyer(Qu, (Cd/) equipped with its canonical norm

¢, )]
[T Sup 11 @uct
Hper (Qa,C") YEHS, (Qaq,C¥ )N\ {0} 191l gz (Qa,C)

per per

for all £ € HI;SI.(Qd,Cdl). Here, (£,%) denotes the duality pairing as
introduced in Section 1.3.

The following theorem says that the spaces Hy., (Qa, C?) can be charac-
terized by certain spaces of sequences. The case s < 0 will be the more
important one.

Definition 2.27 Let s € R. We define the space C(éd, by

= {(C(M))Mezd € ((Cd,)zd ’ Z (1 + \,u|2)s |c(“)\2 < oo}

HEZ

and equip this space with the norm

1/2
II(C(“))ﬂedec;d/ = < >+ uP)’ Ic(”)|2> :

HEZ

For ease of notation, if d = 1, we will write C* instead of Clar-

Theorem 2.28 (i) For s > 0 we have H, er(Qd7(Cd ) =
metric isomorphism is given by (1.17).

Car- An iso-
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(i) For s > 0 we have H 3 (Qa, C¥) 75, An isometric isomorphism

cd’
is given by
HI;;(Qd’ Cd/) 5 — (c(#))MEZd S C(Cd/a
C§H) = E(e(])TC(g;M)), M c Zd’ J — 17 . ,d/, (2.4)

with inverse
Con 2 () ez €€ Hyt(Qa, CY),
l(u) := Z u Py e H;er(Qd,(Cd/).

HEZ

Here, Tg;) denote the trigonometric monomials and u® the Fourier

coefficients of u, see also Section 1.3, and e is the j-th unit coor-
dinate vector in R .

Proof: (i). This is easy to see.
(it). We follow the lines in the proof of [36, Theorem 8.10]. Let (C(#))Mezd

be a sequence in C_;; and define £ : (Qq,C%) = C by

per
= Z u(#) 'C(_#)7 u € H;er(Qd’ Cdl)’
HEZ

where u(*) are the Fourier coefficients of u. Then, using the Cauchy-
Schwarz inequality, we have

) < D> (L [pl) 5P 7 (1 [P
HEZD HEZD
Hence, ¢ is well-defined and bounded with
. 1/2
Wl @ueeny < (D2 @+ 1u) =1 2)
HEZI

In particular, for n € N the function u, :== 37, <, (1 + |u\2)_3c(—H)Tg§)
has norm -

(N s Znuw

B an =3 5 W

=1 |ul<n
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= D (L |uf) e

[u|<n

and we obtain
|£(un)| e ) e el

= Ny, . - 1/2
lwnllig.. ey (Z\mgn(H—|u|2)_5|c(“)\2)

= (s ep)”

[u|<n

161l 155 (@u ey

1/2
Passing to limits yields ”g”H’S(Qd cvy = (Z cza(1+ |M2)7s|c(u)‘2)
Hence, the mapping C.;» 3 (c (n )) ezd = L€ H 5 (Qq4,C ") which we just
constructed, is well-defined, hnear and isometric, and thus bounded and
injective.
To show its surjectivity, let £ € Hy3(Qa,C?) and define for y € Z4 and
j €{1,...,d'} the numbers CS»M) = K(e(j)Té;“)). For n € N define the
functions u,, as above and note that

Uun) = D7 (L [l 0(=0TGY)

[u|<n

= > @+ luP) (Z PUDTEN) = 3T (L)

lnl<n | <n

Hence, using the last estimate from above and passing to limits, we see
that (c!"),cza belongs to C_;. Now, let u € Hj, (Qa, C*) and define
for n € N the functions u,, := Z|H|<n (”)T(“) Consulting the proof

of Proposition 2.8, we know that u,, — u in Hscr(Qd,(Cdl), as n — 0o.
Therefore,

t(u) :nlggof( > ul T(“) 3 eWTY) = 3 Wl ),

lul<n uEeZA wEZ?
where we have again used that f(u(“)ng)) = Z?;l u§”)€(e(j)Té2‘;)). O

Compared to [36, Theorem 8.10], the reason for the slightly different
definition of the sequence (c(*) peza in the last theorem is the following
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theorem. Here, in difference to [36, Theorem 8.11], we would like to
constuct an explicit embedding from L%(Qq, C?) into Hy 5 (Qa, Cc).
Theorem 2.29 Let s > 0. The space L*(Qq,C%) can be embedded into
Hp_ei(Qm(Cd ) via the linear mapping

Jea : L*(Qa,C") — H 5 (Qa, c?), w— Jearw = (+|W) p2(q, cay

(for ease of notation, if d' =1, then we will write j instead of jear ).
Furthermore, the space jear (T(Qd, (Cdl)) is dense in H ® (Qd,(Cd,). Here,

per
T(Qd,(Cd,) denotes the space of trigonometric polynomials, see also Sec-
tion 1.5.

Proof: We follow the lines in the proof of [36, Theorem 8.11]. Let
w € L*(Qq,C%) and w® be the Fourier coefficients of w, for all p € Z4.
It is easy to check that (w()) ueza belongs to C.. Therefore, by expanding

u € Hjo (Qu, (Cd/) into its Fourier series and substituting this series into
the formula for jeaw, we obtain that jrarw belongs to Hp’csr(Qd,(Cdl),
and thus, that jca is well-defined. Its linearity is clear. And from
(jcd/w)(e(j)Té;“)) = wj(-“), forall j =1,...,d and all i € Z¢, we conclude
from Theorem 2.28 that jcar is also injective.

Let £ € Hp’ei(Qd,(Cd/) and cg“) = €(e(j)Té2;#)), for all 4 € Z% and all j =
L,...,d". For n € N we define £, := joo un, where u, :=37, c(“)Tg;).
Note that €n(e(j)Té;”)) = c;”) for all j =1,...,d and all |u| < n, and
zero otherwise. Hence, by Theorem 2.28,

o= eal?, S (0[P — 0, asn oo,

[u|>n

e (Qa,CY) =
and the proof is complete. O
Now, we have all the ingredients to prove the following theorem.

Theorem 2.30 Let s > 0. The spaces

Hpor (Div, Q2) := {K = H;;(QQ,CQ) for (C(“))MGW from (2.4) we have
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> (1) (1 + (g - ) < oo},
HEZ?

Hper (Curl, Qo) := {€ € HPC]F(QQ,(C2 ‘for C(M))uelz from (2.4) we have

Z (L 1) 7 (12 4 [ x e ]2) <oo},
€72

endowed with the norms || - ”H;esr(Div,Qz) and || - HH;&(Curl,Qﬂ given by
the square root of the series above, are Banach spaces which contain
Jc2 (T(QQ,CQ)) as a dense subspace, respectively. Here, jc2 denotes the
embedding from Theorem 2.29 and a X b := a1by — asby, for a,b € C?, see
also (1.6). Furthermore,

H 5 (Div, Q2) = H 5 (Div,Q2) and H 5 (Curl,Q2) = H 5 (Curl, Q7).

per per

Proof: We only show the assertions for H_; (Div, Q2) since the argumen-
tation for H . (Curl, Q2) is completely analogous. To simplify notation
we will write @ instead of Q5.

(i). To show that H 5 (Div, Q) is a Banach space, we follow the lines in
the proof of [36, Theorem 8.2]. So, let (£(™),,cn be a Cauchy sequence in
Hper(Div, Q) with corresponding sequences (c%“ )) pezz € Cooy m €N, see
Theorem 2.28. Then to given € > 0 there exists N(g) € N such that for all
n,m > N(g) we have [|¢(™) — €(m)HH;:T(DiV’Q) < g, which means that

(n) _ (M)|2 + |q(u) . (C(u) _ C(u))|2

|C Q n m 2
<
2 (4 )’ -

WEZ2

for all n,m > N(e). From this we conclude that for kK € N

(n) (M)|2 + ‘q(u) . (c£{‘> . c(u))‘Q

|C Q m 2
<
2 1+ |up) =°

|pl<k




46 2. Sobolev Spaces for Q-periodic Functions

for all n,m > N(g), which yields that for all 4 € Z? the sequence ( (“)) neN

is a Cauchy sequence in C? and therefore convergent to some a*) e C2.
Passing to the limit m — oo we obtain

(OREN ! |2 + |q<u> . (cﬁf‘) —am) |2

Z |C Q <2
(14 [u?)° -

[u|<k

for all K € N and all n > N(e). Hence, by applying the triangle inequality
Of || 1347 (Div.@2)

( Z |a(“)|2 + |qé2ﬂ)'0‘(”)|2>1/2
Y

N ( > [0 + \qu).cswy?)”

|pl<k (1 + uf?

<e+ g™ laizs Divig) S €+ e

for all k¥ € N and some constant ¢ > 0, the latter one because Cauchy se-
Ia(")\2+|q(Q")- a(“)\2 ]
quences are bounded. Therefore, 2#622 CEIMBE < 00. In partic-

ular, (a),cz2 belongs to o5 and therefore there exists £ € H;5(Q,C?)
with é(e(j)T(fﬂ)) = (“) for all u € Z% and j = 1,2, see Theorem 2.28.
Using the estimates from above, we conclude that £ € H 5 (Div, Q) and
") — ¢ in Hoo(Div, Q).

(ii). We show that jc2 (7(Q,C?)) is a dense subspace of 75 (Div, Q) and
proceed as in the corresponding part in the proof of Theorem 2.29. So, let

¢ € Hyo(Div, Q) be given with associated coefficients c(“) = é(e(f)T( )),
for p € Z% and j = 1,2. For n € N we define Z = Jc2Uy, where
c“)T(“). Note that £, (e(?) T( my = c for j=1,2 and

sy Q
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all |u| < n, and zero otherwise. Therefore, by definition of the norm
|| : ||’H;:r(Div,Q2)’ we obtain

‘C(mf + !qéj” .c(u)’2

per(Div,Q) s (1+|N|2)S

le =1,

— 0, asn — oo.

(iii). For the last assertion of the theorem it sufficies to show that
(T(@,C?), | - ||H’ex(Div,Q)) = (5e2 (T(Q,C%), | - HH;;;.(Div,Q))v because
then 7,5 (Div, Q) is a completion of (7(Q,C?),|| - ||H;e§_(Div,Q)) and two
completions of the same normed space are isometrically isomorphic.

To construct an isometric isomorphism, let u = ZI ul<n u(“)Té“ ) belong
to 7(Q,C?), we n € N is some natural number. We set £ := jc2u. Then

we have that £(eV T( “)) = u(”) for j = 1,2 and all |u| < n, and zero
otherwise. Hence,

)2 (1) (w2
602y = 3 L
Hper (Div,Q) (1 + |N|2)S

[p|<n

o 2
= Il oiv.g)

Hence, we have shown that the just constructed linear mapping u — £ is
isometric. The surjectivity of this mapping is easy to see. O

Corollary 2.31 Let s > 0. Then
H . (Div, Q2) = Cpy, and Hy 5 (Curl, Q2) = Ciphys

where the spaces Cpf and Cgl, are defined by

ot = { () € (€7 X (14 ) (< 4l ) < oo,
HEZ?

Cati= {() € (@7 | (4 1) " (0 +1df) <) < oo
HEZL?

with norms ||(C(M))||C55 and ||(c™)||.--  given by the square root of the
iv Curl
series, respectively.
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Proof: Using the isometric isomorphism from Theorem 2.28, it is easy
to see that Cpj, = H, 5 (Div,Q2). In fact, given () ,ez2 € Cpf we
have obviously that this sequence belongs to Cs’. By the isometric
isomorphism from Theorem 2.28, the corresponding linear and bounded
functional £ € H,5(Q2, C?) satisfies E(e(J)T( ”)) = c( " for all p € Z2 and
j =1,2. From this we obtain immediately that l belongs to H o (Div, Q2).
Moreover, it is easy to check that this just constructed mapping C;} >
(M) ez > L € H oo (Div, Q2) is isometrically isomorphic. The analogous
result for the spaces Cqy, and H 5 (Curl, Q2) we obtain with the same
arguments.

And finally, an application of Theorem 2.30 completes the proof. O

Corollary 2.32 Let s > 0. Then

(Q27(C2) per(DIV QQ) {90 € L2(Q27C2) }

S (1998 + (1 1) a9 2) < OO},

HEL?

L2(Q27C2) per(cur1 QQ) {90 € L2(Q27(C2) ‘
Z (“P(#)\Q—F (1+ |u|2)*s|qgtz) 5 (p(u)|2) < 00}7
HEL?

where p*) € C2, with cp§“) = ((p] |T(”))L2(Q forallp € Z? and j =1, 2,
denote the Fourier coefficients of . Furthermore,

‘ (SD | w)L2(Q27C2 < C”SO”H—l/?(DW Q2) W||H—1r/2(0ur17Q2)

for ¢ € L*(Q3,C2) N Hyet!*(Div, Qs), ¢ € L2(Q2,C2) N Hper!*(Curl, Q).

Here, the constant ¢ > 0 can be chosen as ¢ = max {1, M}

Proof: From the equalities we only show the first one since the argu-
mentation for the second one is completely analogous. The direction
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“D” is easy to see. For the direction “C” we observe that the statement
¢ € L*(Q2,C*)NH 5 (Div, Q2) means that £ := jc2¢0 € H 5 (Div, Q2) and
that its associated sequence (")) ,cz2 is just the sequence of the Fourier
coefficients of ¢, see Theorem 2.29 and Theorem 2.30. Therefore,

S (1) (WP + lag) - ¢1?) < oo
WEZ?

and together with 37 /. lo)|? < 0o the proof for the inclusion “C” is
complete.

To show the inequality, let ¢ and i belong to the given intersections and
let (") and ()| for u € Z2, denote their Fourier coefficients, respectively.

To simplify notation, set L := max{Ly, Ly}, ¢/ := qu) and Q = Q>. At
first let u € Z2 \ {0}. Then

2 2 2
g2 = w2 (4 + 45) = 35 2l = $ 5 (1+ |uP).
Moreover, with §(#) := ﬁq(“), we have thanks to Remark 2.11

w) ) = (@(u) . <p( )(d (1) . W)) (A(u) ™ Lp(n))(qA(u) ~ W)).

Therefore, using (ab + cd)? < (a® + d?)(b* + ¢?) for a,b,c,d € R,

- B2 < (13- o]+ ][5 W>|)2

_(‘q(u).(p(u” |¢(u)| N |(p(u)| |q(u)x¢(u)|)2
- |q(u)|1/2 |q(u)|1/2 |q(u)|1/2 |q(u)|1/2

W;(u)‘2 |q(u) . (p(u)|2 |¢(u)|2 |q(u) % ¢(u)|2
A gm q(r q# q(r
< (Cor + ) Cogor + o)

2L2 |2 4 |g) - ()2 ()2 4 |g(#) 5 4p(1) |2

< -
RV e e VI

Note that this estimate for | - ()| remains valid also for u = 0

if we replace 2% by ¢? with ¢ > 0 from the corollary. Hence, by the
Cauchy-Schwarz inequality,

(¢! wﬂ(@@"‘)‘ = ‘ Z Pl - ) ’ =c ||<‘0||H;e1r/2(Div,Q) ”wHH;elr/z(Curl,Q)’
HEZ?
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and the proof is complete. O

Thanks to the results from above, elements from the spaces H 5 (Qa,C ),
Hper(DIV, Q2) and H 35 (Curl, Qg) possess a series represention as shown
in the next corollary. In particular the series representation for ¢ €
H;elr/ 2(Div7 Q2) turns out to be helpful in connection with the explicit
formula for the Calderon operator, as we will see later. As a preparation,
we need to specify the meaning of the product of a vector a € C% and a
linear functional ¢ € H;(Qa) which is done in the following definition.
Furthermore, at this point we would like to take the opportunity to

introduce also the complex conjugate £ of £ € H; 5 (Qa)-

Definition 2.33 Let d’ € N and s > 0.
(i) Fora € C¥ and { € H;2(Qq) we define ol € per(Qd,(Cd/)

per

a€ 1/} Zaj E % ¢ € per(Qda(Cd/)

(i) For { € per(Qd,(Cd) its complex conjugate € per(Qd,Cd/) ]
defined by

@) = (L9), %€ H5u(QaCY).

Corollary 2.34 (a) For ¢ € H;’;(Qd,@d/) we have the unique series
representation

where (@(“))ueZd € C«:d’ denotes the sequence from Theorem 2.28

and convergence has to be understood in Hp_e‘i(Qd,(Cd/).
(b) For p € H 5 (Div,Q2) and ¢ € Hy;(Curl, Q2) we have the unique

series representation

=3 oWyTyy and =3 eIy,

HEZ? HEZ?



2.1. Basic Results for Sobolev Spaces 51

where (M) ,ez2 € Cpl and (YW),cz2 € C55, denote the se-
quences from Corollary 2.31, convergence has to be understood in
H_ . (Div,Q2) and Hper(Curl Q2), respectively, and where we have

identified Hy . (Div, Q2) with H, 5 (Div, Q2) and H_ 5 (Curl, Q2) with
Hper (Curl, Q).

Here, 3 denotes the embedding from Theorem 2.29.

Proof: (a). Let p € H,5(Qa, C%) and (o W) ez € Coa be its associated

sequence from Theorem 2.28. At first we show that the series on the right
hand side, that is (Z(p(”)j(Tg:))), is convergent in per(Qd,(Cd ). For

this let ¢ € Hy,, (Qa, cd ). Then, by Definition 2.33, the definition of the
embedding 7 from Theorem 2.29 and an application of the inequality of
Cauchy-Schwarz, we obtain for m,n € N, with m > n,

’< Z o) 5 T(u) >’ ‘ T(u) 7/1>’

n<|pl<m "<W‘<m

’ Z Z@E#)Q T(“) >‘

n<|p|<m j=1

’ () ’ _ ‘ (1) .w—m‘
Py ®

n<%:<m]z; ( Qd )LZ(Qd) n<%:<m

1/2 1/2
(X AP R T (X e eR)

n<|pl<m n<|pl<m

1/2

<( X AP IR) T 1l guery

n<|pl<m

where 1)(*) denote the Fourier coefficients of 1, and thus

1/2
E 1) (1) < ( E : 1 2y=s| (1) 2) —50
H #alTg,) Hyi(QaiCY) — A1l ’

n<|ul<m n<|ul<m

as m,n — oo, because of (@(N))uezd € C(;f,. Therefore, Cauchy’s conver-

gence test for series in Banach spaces implies now that (Z o) ](Tg; )))
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converges in H_5(Quq, C), say to £ € H 5 (Qu, cy.

We show that £ = . For this, thanks to the continuity of ¢ and ¢, it
suffices to restrict our considerations to the subspace 7 (Qq, (Cd,), because
it is dense in H3,(Qa,C¥). So, let v = 3, o, ¥WTY) € T(Qqa,CY),
where n € N is some natural number. Then, on the one hand, we obtain
from Theorem 2.28 that

(o) = > .o,

[u|<n

and, on the other hand, we obtain from the definition of ¢, the implica-
tion (1.11), Definition 2.33 and again by the definition of the embedding j
from Theorem 2.29 that

(€9) = Jim (3 AT v) = Jim 3 (eWATED. )
= |al<m
_ ( ) (n) -
—W}E)noo Z Z(p“ T“ z/1j>_w}£noo Z P L qp (=)
[p|<m j=1 [u|<m
- Z P L p=1),

[u|<n

(b). Let ¢ € H,5(Div,Q2) and (™) ,ez2 € Cpi be its associated
sequence, see Theorem 2.30 and Corollary 2.31. It is easy to check
that (¢("),ez2 belongs to Cos’. But now, from part (a) we know that
C:=3" cre gp(“)j(Té?‘;)) belongs to H_5(Q2,C?) and has to coincide with
@, because also ¢ € H;3(Q2,C?), with (M) 1ez2 as its associated se-
quence, and therefore £ is just the series representation for ¢ from part (a).
The series representation for ¢ € H_ 5 (Curl,Q2) is proven completely
analogous. O

Remark 2.35 Using Corollary 2.31 together with Corollary 2.32, in the
series representation from Corollary 2.34 the coefficients ™) and *) are
just the Fourier coefficients of @ and v if ¢ € L*(Q2,C?) N H . (Div, Q2)
and ¢ € L*(Q2,C?) N H,5(Curl, Q2), respectively.
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Remark 2.36 Using part (ii) from Definition 2.33 together with the defini-
tion of the sequence (C(“))Mezd from Theorem 2.28, the series representation

of the complex conjugate £ of £ € H 3 (Qa, (Cd/) is given by

0= Ty,

HEZ

where (c\™) ,cza is the associated sequence of £. Compare also with (1.16).

Multiplication Operators for the Trace Spaces. Similarly as in Propo-
sition 2.21, we want to derive multiplication operators for the trace spaces
Hp..(Div,Q2) and Hp,(Curl,Q2). For this purpose we make explicitly
use of the theorem of Young for series, see Theorem A.2. We will see that
this method can also be applied to the space H;, (Qq), where s > 0 is
now not necessarily a natural number. The results are needed later when
we will consider periodic and smooth surfaces and apply certain cut-off
functions to exploit results which hold for surfaces of bounded and smooth

domains.

Lemma 2.37 Let d € N and s > 0. Then the following assertions are
true.

(i) Vv € 2% (L+ ) (L4 = o) = £ (1+ )"
(”) S>g = Zﬂezdm < 0.

(i4i) Let T > 0. If x € HJ,(Qa) with o > 4 4 27, then there holds

Yo (1 uP) I < co.

pneZd

Proof: (i). Let p,v € Z%. If |u| < 3|v|, then we have

(U 1) (U o= o) > (14 (] = 1)) > (14 GID)°)

= (G +all?) = E=0+pP),
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and otherwise if |u| > $|v|, then we obtain

(T+1uP) M+ p—v?) > QO+ 1) > L+

(i3). At first we observe that for p € Z¢ and n € N we have

d d
di=En+1)'-2n-1)"=> () P> en) Rk

|pt]co=n k=0 k=0

with a constant ¢ > 0 not depending on n. Therefore,

Z(+\| +ZZ

pezd =1yl

> cn
<143 3 ¢ mzﬁ

n=1{ule
<1 71
sl+te Z n2s—d+1 .
n=1

From this the assertion follows, since 2s — d 4+ 1 > 1 by assumption.
(iii). We note that the sequence (W)uezd belongs to (2(Z%), see

part (ii). Therefore, by means of the inequality of Cauchy-Schwarz, we
obtain

T [ 1
L 1) ™) = 30 (1 + )W) —————
> ( ) > ( ) pACE

HEZ HEZ (

1+ Iu\

< Clxllas, (@) < 00,

per

as desired. O

Theorem 2.38 Let s € R. Furthermore, let o € R, with o > % +|s|, and
let x € HY.,(Qa). Then the following assertions are true.

(i) For s > 0 the mapping H er(Qd,(Cd) Sp = xp € ngr(Qd,(Cd/)
s well-defined, linear and bounded
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(i) For s > 0 the mapping Hp_ei(Qd,Cdl) 3¢ — xle H;ei(Qd,(Cd,) is
well-defined, linear and bounded. Here, x{ is defined by

<X€a ¢> = <€7 X’(/}>7 ’(/} € per(Qd7 )

Proof: (i). Since o > 0, we have x € L?(Qq4). Therefore, also Té;“)x be-

longs to L?(Qg) for all i € Z4. Now, let ¢ € H5..(Qq,C?). Furthermore,
let p1 € Z*. Then

=) g = v) () (—n)
/Q xe Ty, dx—/Q (Zgo( )TQd)XTQd dz
d d

vezd

-y (p(y)/ XIS dz = 37 60 x5 = o),

vezd vezd

where we have exploited the continuity of the L2-inner product in the
second equation. Hence, ¢ € C?" is well-defined for all w € Z2. Using
now part (%) from Lemma 2.37 and Theorem A.2 (which is also true for a
convolution of a vector valued sequence with a scalar valued sequence),
we obtain

Z (1+‘M| w(u)| Z ‘ Z 1+ |p ‘ 5/2 y = »|?

HEZD nezZd verzd

<> (X (B 1) IX(“‘”)I)2

HEZE  vezd

< C Z ( Z (1 + |V‘2)8/2 |S0(V)| (1 + |M o V‘2)5/2|X(H_V)|)2

nEZL  veZd

s/2 2
<Ol e (D0 (1) P x1)

HEZ

From this we conclude, with 7 := s/2 and part (%ii) of Lemma 2.37, that

Y WP P < Cllell, guer)

HEZ

In particular (w(u))uezd € €Q(Zd,(Cd/) and by the definition of (") we
have that (w(“))peld are the Fourier coefficients of 1 := x¢. Thus, in
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summary we have shown that xp € H5,.(Qq, C?') with Hx<pHH (Qa,ct) <

Cllell s (@ucay and the constant C' > 0 independent of ¢.
per )

(7). Let £ € ngﬁ(Qd,Cd') Furthermore, let ¢ € per(Qd,(Cd ). Then, by
part (i), also x¥ € H..(Q4,C%) and we obtain

[l ) =[x < HIXY s, @uncary < C TN ars,, (@u.cary:

per per

Hence, x{ € Hrjei(Qd,(Cd,) with [[x¢|| < C||4]|. O

Remark 2.39 The requirement from Theorem 2.38 at least for part (i) is
too restrictive, see Theorems A.36 and A.41.

Theorem 2.40 Let s > 0. Furthermore, let 0 > s+2 and x € Hg,.(Q2).
Then the following assertions are true.

(i) The mapping Ho5(Div,Q2) > £ +— xt € H 5 (Div,Q2) is well-
defined, linear and bounded.

(ii) The mapping Ho5(Curl,Q2) > £ +— xl € H 5 (Curl,Q2) is well-
defined, linear and bounded.

For the definition of x{ see also Theorem 2.38.

Proof: (i). Let ¢ € H 5 (Div,Q2) with coefficients (¢!")),,cz2 according
to (2.4). By Theorem 2.38 we have x/ € H 5 (Q2,C?) with coefficients

d§“) = <x£,e(j>TC(2;“’> = (E,Xe(j)Té?;“)> =Y @ <g,e(j)Té£<u—u>>>

vEZ?
_ ZX(V) (n—v) _ ZX(M u)

veZ? veZ?
where we have made the following considerations for the third equation:
by part (a) of Proposition 2.13 we have x € per(Qg) yielding that
eWlx =3, cp X(")e(j)T(V) with convergence in H, pcr (Q2,C?) and where
x*) denote the Fourier coefficients of y; since T ) e Crer(Q2), we con-

clude by the continuity of the multiplication operator with Té;“ ), see
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Theorem 2.38, that Xe(j)Té?;”) = e X(”)e(j)Tg;)Té?;“) with conver-
gence in H3, (Q2,C?); and finally we exploit the continuity of £.

We have to show that (d)),cz2 € Cpf. For this we apply part (i) of
Lemma 2.37 and Theorem A.2 to obtain on the one hand, similarly as in
the proof of Theorem 2.38

S () A = 3T ST (1) x|

HEZL? |
s Y
< 3 (X ()T )
,U«GZQ veZ2
2
<O (D () Wl (14 = v?) )
N€Z2 vez2
s s )
<O(X @+l IEP) (2 (1 1nP) )
nez? WEZ?

From this we conclude, with 7 := s/2 and part (%ii) of Lemma 2.37, that
> (L 1P IR < O ) el -
HEZL? v

Similarly, and in addition with the decomposition qég) = qg;) + q(” V), we

obtain on the other hand

S (1) gl R = 3T S (1 ) T ) )

HEZ? nEZ? vez?
5/2 L L—V 2
£ 3 (L) T (g )|
veZ?
—s/2 v v —v 2
<23 (30 () ) - ) )
HEZ2  veZ?
—8/2 v —v 2
£23 (30 (0 B) 1l )
WEZZ2  vEZ?

- il v © U—v 2
<O Y (X (PG (1 - o))

MEZQ vEeZ?
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- s v 2
+ Cy Z ( Z (1 + |V‘2) /2|c(u)| (1 g — V‘Z)( +1)/2 |X(# )|>

nEeZ2  veZ?

<X (1) el - 2) (2 (1+|u|2)5/2|x(u)|)2

WEZ? HEZL?

+ Cz( S+ \ulz)_slcwlg) ( S+ IMIQ)(SH)/ZIX(“)\)Q.

WEZ? HEZ?

From this we conclude again, with 7 := s/2 as well as 7 := (s 4+ 1)/2 and
part (iii) of Lemma 2.37, that

Do (L [P lag) - a9 < C I ezl -
#€Z2 iv

Summing up both results yields the assertion.
(i¢). This is shown completely analogous. a

2.1.3. Functions on Bounded Lipschitz Domains

In this subsection we give a brief introduction into the concepts the authors
in [34] used to work in Sobolev spaces for functions on bounded Lipschitz
domains. Since those concepts are based on results for Sobolev spaces
for functions on cuboids, it seems “natural” to pick up whose ideas for
establishing later an analogous framework for @-periodic functions.

We start by recalling the notion of a Lipschitz domain, see also the
beginning of [34, Section 5.1].

Definition 2.41 We call an open set Q C R3 with compact boundary 0
a Lipschitz domain, if there exists a finite number of open cylinders U; of
the form U; = {Rjz + 20) | x € Bo(0, ;) x (—28;,283;)} with 2\9) € R3,
rotations R; € R3*3® and Lipschitz-continuous functions f; : B3[0, ;] — R
with | fj(z1,22)| < Bj for all (x1,22)" € Ba[0, o] such that 9Q C UT:l U;
and

IONU; = {Rjx+ 29 | 7 € Ba(0,05), 23 = f;(2)},
QﬂUj = {Rj$+2(j) | T E BQ(O,O{j)7 r3 < fj(i‘)},
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Uj \ﬁ: {ij—i—z(j) | T € IB%Q(O,aj), xr3 > fJ(.’fi)}

Let  C R? be a Lipschitz domain. We call {(U;, f;) | j=1,...,m} a
local coordinate system of ). Without loss of generality we assume that
Bj > a;. Then we introduce the mappings

xq
Ui(z) := R; 2 + 20, x € B3(0, o)),
fi (T) + z3
and their restrictions ¥; to B2 (0, o;), that is,
X1 ]
\I’j(.’li‘) = Rj T —f—Z(]), x GBQ(0,0éj).
fi(x)
Thanks to Rademacher’s result, see [45], we have that f; is differentiable
almost everywhere on B3[0, ;] and that its gradient is essentially bounded
by the Lipschitz constant of f;. Therefore, ¥; is differentiable almost
everywhere on B2 (0, o;) and the surface patch 9QNU; can be parametrized

by y = ¥;(z) for x € B2(0, oj), with outward pointing normal unit vector
n(y) at a.a. y = ¥;(z) given by

0 = s (o« G @)

pj(z)
=4/1+|Vf;(x)%

We set Uj = W;(B3(0,;)). Then 00 C U7, Uj, B3(0,a;) N (R? x {0}) =
B2 (0, ;) x {0}, and

aNnN UJ/ = {\i/j(.’t) | x € IB%g(O,aj), xr3 = 0} = {\I’J(CC) | x € BQ(O,OZJ')},
QnU; = {T,(x) | € B3(0, ), x3 < 0},
UN\Q={U;(z) |z € Bs(0,0;), w3 > 0}.
)

where ow ow
) —|ZFd '}
pi(e) = | 2 (@) x G2 (@)

Note that the Jacobian \il;(a: € R3*3 is given by

1 0 0
\i!;(x) =R; aij ] afjl ) 0], fora.a. zeBs3(0,q;).
371(@ 372(51”) 1
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Hence, these Jacobians are regular with constant determinant det \i'; (x)=1

and \ilj are isomorphisms from B3(0, o) to U; for every j = 1,...,m. For
the case of vector valued functions, we will also need

6\11 ‘a\l’ ‘8\1’ 8\113' (.T) , fora.a. = € BQ(Ovaj)'

Fj(m) = {8:61( ) 8.’E2 axl z) X 81'2

We recall the notion of a partition of unity, see also [34, Section A.3] and
references therein. Here, the cut-off functions are chosen such that their
square roots are smooth functions as well.

Theorem 2.42 Let d € N and K C R? be compact. For every finite
family {O; | 7 = 1,...,m} of open sets with K C U;nzl O, there exist
x; € C®(RY) with supp(x;) € O;, j=1,...,m, and Z;nzl x;(x) =1 for
allz € K. We call the family {(O;,x;) | j =1,...,m} a partition of unity
on K.

Here, the cut-off functions x; can be chosen such that \/X; € C>(RY).

Proof: We refer to the reference from above for the existence of a partition
of unity {(O;,%;) |j=1,...,m} on K. We set

nzz 4+ ( Z)Z on R%.

Jj=1

Then n > 0 on R? and n = Z;nzl 5(? on K, which can be easily verified.
Hence, x; := )Z? /n form also a partition of unity on K with \/x; =

Xi/ Vi € C%(RY). O

Assumption 2.43 Let Q C R? be a Lipschitz domain with corresponding
local coordinate system {(Uj, f;) | j = 1,...,m}, corresponding mappings
W from B3 (0, ;) to Uj and their restrictions ¥; from Bo(0, ;) to U;NOQ.
Furthermore let {( j,xj) |j=1,...,m} be a partz’tz’on of unity on 09

according to Theorem 2.42. And ﬁnally, let Qq =X P 1( L;,L;),d=2,3,

where we assume that L; >0, j =1,...,3, is chosen so bzg that all of the
balls B3 (0, ;) are contained in Q3.
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Together with a partition of unity, the parametrizations \i/j allow us to
transfer the concept of periodic Sobolev spaces on two-dimensional cuboids
to Sobolev spaces for functions on the boundary 92 of 2. While for
the scalar valued case this procedure is straightforward, for the vector
valued case some modifications are necessary to make the transformation
curl-preserving, see Section 2.3 for details. Nevertheless, we would like
already here to state an important property of Lipschitz continuous func-
tions, which will later turn out as a crucial part of this curl-preserving
transformation.

Proposition 2.44 Let Q C R3 be a bounded Lipschitz domain and let
u, v :  — C be Lipschitz continuous. Then uVv € H(curl,Q) with
variational curl given by

curl(uVv) = Vu x Vu.

In particular, curl(uVv) ezists almost everywhere on Q as a classical
function.

Proof: First of all, thanks to Rademacher’s result, we have that Vu and
Vo belong to L*°(£2, C?), which implies that Vu x Vv € L*(Q,C?). And,
since  is bounded, we have L>(Q,C?) C L%(Q2,C?).

Moreover, due to Proposition 2.3, we know that u, v € H*(£). Therefore,
by Theorem 2.46, we can choose a sequence (u,)nen in C*°(€2) such that
up — u in HY(Q), as n — oo. In particular, u, — u and Vu,, — Vu in
L2(2) and L?(Q2,C3), as n — oo, respectively.

Now let y € C5°(2, C3). Note that for all n € N the functions [curl(u,x)];,
j = 1,2,3, belong to C§°(2) and therefore, by the definition of the
variational derivative,

/ Vo - curl(uy,x) dz = 7/ v diveurl(u,y) dz = 0.
Q Q S——
=0

Then, with the considerations above,

/ (uVv) -curl xdz = lim [ (u, Vo) - curl x dz
Q

n— oo Q

= lim [ Vv (u,curly)dz

n—oo 0
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n—roo

lim </ Vo - curl(u,x) de — / Vo - (Vuy, X x) dx)
Q Q

n—oo

lim [ (Vu, x Vo) - xda = /(Vu x Vv) - xdz,

Q Q
and the proof is complete. O
Let Q C R? be given as in Assumption 2.43 and let d’ € N. The space

L2(09, (Cdl) of square integrable functions on the surface 992 of €2 can be
characterized by ¢ € L?(99), (Cd/), if and only if ¢; € L?(Qq,C?) for all

j=1,...,m, where for j = 1,...,m the functions ¢; are given by
- X (U,(x U,i(x)), xe€By(0,q,),
5:(2) { 5(W5()) 9(W5(@), @ € B2(0,07) 25)
0, T € QQ \ BQ(0,0[j).

Furthermore, we define the subspaces of L?(99Q,C?) and L?(Q2,C3) of
tangential vector fields by

LE(09Q) := {p € L*(09,C?) | n(y) - ¢(y) = 0 for a.a. y € 90},
LY (Q2) = {u € L*(Q2,C?) | uz(z) = 0 for a.a. x € Q2 },

respectively. Again, we will mostly suppress the symbol for the co-domain
in L2(09,C%) if we consider only scalar valued functions.

Definition 2.45 Let Q C R? be given as in Assumption 2.43.
(a) We define the space HY/2(99, C) by

HY2(00,C%) = {@ e L2(99,C%) | vj e {1,...,m} :
95]' € H;érz(QQa(Cd/)}

with norm

m 1/2
o =~ 112
Illo/z ooy = (Z 1”%'IH;43<W>) /

where for j =1,...,m the functions ¢; are given by (2.5).
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(b) We define the spaces H='/2(Div, Q) and H~/?(Curl,0Q) as the
completion of

{p e L}(09) | ¢} € Hya/?(Div,Q2), j=1,...,m},

per
{p € L3(09) | T € Hyl/*(Curl, Qo). j = 1,...,m},

per

with respect to the norms

m 1/2
loll =12 (Div.00) = (Z 15 |Hp;,./2<Div,Q2>> ’

j=1

m 1/2

el rr-1/2(Curt,00) = (Z ||¢.7T||Hp;/2<cur1,cz2>> ,
j=1

where
@h(x) == pj (@)1 /x; (V;(2)) F; (@) o(¥;()),
21 (@) ==\ (W (2) ' (2) (95 (),

for a.a. x € By(0, ;) and extended by zero into Q2, respectively.

We remark that the spaces from Definition 2.45 do not depend on the local
coordinate system and on the partition of unity, see [34, Corollary 5.15].

Now, we come to the trace operators. They are defined by continuous
extension which is possible thanks to the following denseness result.

Theorem 2.46 Let Q C R? be given as in Assumption 2.43 and addition-
ally be bounded. Then the following assertions are true.

(a) The space C*°(€,C%) is dense in H™(Q,C%).
(b) The space C*°(Q, C3) is dense in H(curl, Q).

For a proof we refer to [34, Theorem 5.3 and Theorem 5.19]. Though
therein is only shown that C*°(Q) is dense in H'(2), the idea can be
applied with slight adaptions to the spaces H™(Q2) for m € N and m > 1
as well, see also Theorem 2.93. And again, the generalization to the case
d’ > 1 is obvious.
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Corollary 2.47 Let Q C R? be given as in Assumption 2.43 and addi-

tionally be bounded. Furthermore, let m,n € N with m > n. Then
a0, ¢y <% gro,c?),

with H™(Q,C¥) being dense in H"(Q,C).

Proof: This follows immediately from the definition of H™ ({2, (Cd/) and
Theorem 2.46. O

Theorem 2.48 Let Q) C R? be given as in Assumption 2.48 and addition-
ally be bounded.

(a) The trace operator
Yo : C®(Q,C%) = H'2(00,C%), u— ulsq,

has a bounded extension from H'(Q,C¥) to H'/2(8Q, C¥), which we
also denote by ~yo. Furthermore, there exists a bounded right inverse
no : HY2(9Q,C%) — HY(Q,C%) of .

(b) The following assertions are true.

(i) The trace operator
v : C®(Q,C3 — H™Y2(Div,8Q), w— n x ulsq,

has a bounded extension from H(curl,Q) to H~'/?(Div, ),
which we also denote by ;. Furthermore, there exists a bounded
right inverse 1, : H~/2(Div,9Q) — H(curl, Q) of ;.

(i) The trace operator
yp s C®(Q,C%) — H™V2(Curl, 09), u— (n X ulspq) X n,

has a bounded extension from H(curl, Q) to H~/?(Curl, 99),
which we also denote by yr. Furthermore, there exists a bounded
right inverse nr : H~'/2(Curl, 0Q) — H(curl,Q) of yr.

For a proof we refer to [34, Theorem 5.10 and Theorem 5.24], with similar
remarks as after Theorem 2.23.
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Corollary 2.49 Let Q C R? be a bounded Lipschitz domain, with charac-
teristic quantities as in Assumption 2.43. Then the following assertions
are true.

(a) The space
Do(99,C4 = {um | uwe ™, cd’)}

is dense in HY/2(9Q,C").
(b) The spaces

D, (99, C?) = {n X uloa | ueC=@, <c3)}7
D (99, C3) = {(n X uoq) x 1 | ue C®(Q, (C3)}
are dense in H=/?(Div,0Q) and H~/?(Curl, 98), respectively.

For a proof we refer to the proof of Corollary 2.108 which is very similar.

Moreover, further important results, such as compact embeddings, charac-
terizations for the kernels of the trace operators, Green’s formula and its
consequences, can be found in [34, Section 5.1].

We close this section by pointing out mollifiers as a key tool when working
in Sobolev spaces. In particular they are needed to prove the denseness
results from above. Since we intend to derive analogous results for Q-
periodic Sobolev spaces (see Section 2.2), we would like to take a closer
look at this tool. For a construction of such mollifiers, we follow [34] and
consider y : R — R defined by x(¢) := e~'/¢ for £ > 0 and by x(£) := 0
for £ < 0. Then we set

_ x(1-¢%)
e e

with C > 0 chosen such that fol #(€2)€2d¢ = 1/(47), and define for
0>0

¢s(x) := 5%(;5 ((31230|2> , x e R3. (2.6)

Then ¢5 € C§°(R?) with supp(¢s) C Bs[0,6] and [ps ds(x) da = 1.
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Theorem 2.50 Let § >0 and a € R®. For u € L*(R?) set

ul () == / u(y) ¢s(x + da —y) dy, z € R3.
R3

Then the following statements are true:

(i) ul € C®(R3) N L3(R®). Moreover, if K C R3 is compact and if u is
zero outside of K, then supp(ul) C K — {da} + B30, 4].

(i) |lud — ullp2@sy — 0, as § — 0.

For a proof, we refer to [34, Theorem 4.7].

2.1.4. Functions on Bounded and Smooth Domains

Our numerical scheme for solving electromagnetic scattering problems
on biperiodic surfaces is based on integral equation methods where the
solution is sought in form of a potential ansatz with an unknown density.
To ensure solvability of those equations, we have to impose stronger
requirements on the regularity of the surface, since a key ingredient will
be [21, Lemma 11]. It is the objective of this subsection to establish
the connection between the setting used in [21] and the setting we have
introduced in Subsection 2.1.3.

Definition 2.51 We call an open set  C R3 with compact boundary
0 a smooth domain, if the same statements from Definition 2.41 hold,
with the difference that instead of Lipschitz continuity we require now the
functions f; € C°(B20, oj]).

Of course, smooth domains are in particular Lipschitz domains and all
results obtained so far for Lipschitz domains carry over.

Let Q C R? be a smooth domain. We introduce the same quantities as in
the subsequent considerations of Definition 2.41 and observe that now the
mappings \i!j, V;, p; and F; are smooth. Recalling also Theorem 2.42, we
fix those quantities, associated with €, by the following assumption, see
also Assumption 2.43.
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Assumption 2.52 Let Q C R3 be a smooth domain with corresponding
local coordinate system {(U;, f;) | j =1,...,m}, corresponding mappings
W, from B3(0, ;) to Uj and their restrictions ¥ from By(0, a;) to U;NOY.
Furthermore, let {(U]/»,Xj) | j=1,...,m} be a partition of unity on 9
according to Theorem 2.42. And finally, let Qg = X;lzl(—Lj, L;),d=2,3,
where we assume that L; >0, j =1,...,3, is chosen so big that all of the
balls B3 (0, ;) are contained in Q3.

Let Q C R? be a smooth domain with characteristic quantities as in
Assumption 2.52. For m € Ny and d’ € N we define

Cm(00,€") = {p € C(02,C”) | Vj € {1,...,m}

(xj#) 0 U5 € C™ (B (0, 05),C") }

and the corresponding space of smooth functions

> (09,C%) = (] C*(99,C7).
k=0
Moreover, we define the spaces H~'/?(Div, Q) and H~/?(Curl, 0Q) as

in Definition 2.45. Concerning the spaces H'/2(9, C%) we allow now
more regularity, see the next definition.

Definition 2.53 Let Q C R3 be a smooth domain, with characteristic
quantities as in Assumption 2.52, and let d' € N. For s > 0 we define the
space H*(0Q,C?) by

H(09,C) := {¢ € L2(09,C%) | Vj € {1,...,m} : ¢; € H;er(Qz,cd’)}

with norm

m

1/2
||<p||Hs(BQ,(Cd/) = <Z |('5j||ilf)er(Q2,Cdl)> 3

Jj=1
where for j =1,...,m the functions ¢; are given by (2.5).
For s > 0 we define H*(0Q,C¥) to be the dual space of H*(9Q,C)

equipped with its canonical norm

g’ S
||£HH_S(6Q7C4’) = sup w
wGHS(OQ,(Cd’)\{O} H’l/)||HS(aﬂ7Cd’)
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for all £ € H=*(8Q,C%). Here, (-,)s.00 denotes the duality pairing as
introduced in Section 1.8, and with index “s,0S)” to make them distinguish-
able.

For s € R we define the spaces of tangential vector fields by

HE(0Q) = {gp € H (09,C%) | ¢-n = 0}7

where for s > 0 and £ € H=*(9,C3) the product £ -n € H*(09Q) is
defined by

(0-n,9)s 00 = ((,¥n)s 00, e H*(I9Q).

Note that for s > 0 and ¢ € H*(99) the product ¥n is well-defined by
Theorem 2.55, as the normal vector n is a smooth function.

Proposition 2.54 Let s € R. Then the following assertions are true.
(i) The space Do(9Q,C¥) is dense in H*(0Q,CT).

(i) If o € R, with o < s, then the space Hs(ﬁfl,@d/) is compactly
embedded into H° (0Q,C%).

(ii) If o € R, with o < s, then the space H7(0Q) is embedded into
H?(09).

Proof: (i) and (7). For the case s > 0, the first assertion follows from the
definition of the space H*(952,C?), the smooth parametrization ¥ and
the fact that the trigonometric polynomials are dense in Hp,(Q2, c?),
see Proposition 2.8. And for the case 0 < t < s, the second assertions
is shown similarly as in the proof of [34, Corollary 5.9] and by means of
Proposition 2.13. Note that in the sense of Gelfand triples we have
He <2 1t 2 gt e
)
where 1} denotes the adjoint operator of the embedding ¢;, which is, by
the denseness property of 1;, thus itself injective and has, by applying
the same argument to ¢; and ;" = ¢, (the latter equality holds thanks
to the reflexibility of Hilbert spaces), dense range as well. With these
observations we have shown the assertion also for the remaining cases, if
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we take additionally into account that for compact 2; also ©; is compact.
For details relating to properties of Gelfand triples we refer to [53].
(iii). The assertions follows from part (ii) and the definition of the dot

product. O

Multiplication Operators for the Trace Spaces. For Lipschitz domains
the spaces C™ (92, Cd/) are only well-defined for the case m = 0. Thus,
consulting Theorem 2.40, the regularity of x € C(952, (Cd/) is too less to
define a multiplication operator in H/2(9Q, C%), H~'/2(Div,d) and
H~'/2(Curl, 99), because (x;x) o ¥; is only Lipschitz continuous and
therefore only in H'(B3(0,a;),C%), see Proposition 2.3. The situation
changes if we consider smooth domains as in this subsection.

In the following presentation we assume 2 C R3 to be a bounded and
smooth domain.

Theorem 2.55 Let x € C*°(00). Then the following assertions are true.

(a) For s € R the mapping H*(0Q,C%) 5 ¢ — xo € H*(0Q,C) is
well-defined, linear and bounded.

(b) (i) The mapping D;(9Q,C3) > ¢ = xp € H~/?(Div,09) is well-

defined, linear and bounded and can be continuously extended to

a linear and bounded operator from H~'/%(Div,dQ) into itself.

(i) The mapping Dr(0Q,C3) > ¢ +— xp € H~Y2(Curl,00)
18 well-defined, linear and bounded and can be continuously

extended to a linear and bounded operator from H~*/?(Curl, 09)
into itself.

For a proof we refer to the proof of Theorem 2.132, which is very similar.

An Alternative Approach. To introduce the setting of [21] for smooth sur-
faces, we need some preparation. Recall the trace operator vo : H'(2) —
H'/2(09) from Theorem 2.48, which is also well-defined for the domain (2
considered here, and define for m,d’ € N

a3 (90,7 = {(p € L2(09,CY) | Jue H™(2,C) : p = Wou},
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equipped with the norm
”(p”I:Im_%(BQ,(Cd') := inf {HuHH"‘(SZ,Cd’) | u € H"l(Q, (Cd ),’VOU = L,O},

and let H~™+2(8Q) be the dual space of H™ 2 (8, C%) with respect

to L2(09, (Cd,) as pivot space, see also [42, page 44]. The corresponding

duality pairings will now be denoted by (-,-)™ 1 ..
3

Proposition 2.56 Let d' € N and m € Z. Then the following assertions

are true.

(i) HY?(9Q,C%) ~ ﬁ1/2(85~2, C) with both sets being equal. In partic-
ular, H=1/2(0Q,C%) ~ H=1/2(9Q,C%)

(i) H™%(0Q,C7) <5 A™=00,C7) with A" (0Q,C) being
dense in H™ 2 (9, C%).

Proof: (i). Let ¢ € H'/2(9Q,C%). Then there exists u € H'(Q,C%)
such that ¢ = you € HY/?(9Q,C%). Moreover, let & € H*(Q,C%) with
101 = . Then gz omcity < [0l 18] 7 g ary, which implies hat

el e aa.car ) . i / )
W < inf {”“HH%Q,W’) | @€ H'(Q,C),y00 = 90},

meaning that [|¢[| y1/290,cary < [0l 1€l g1200,c7)-

Conversely, let ¢ € HY/2(8Q,C%). Then nye =: u € H'(Q,C¥) with
You = ¢; here, ny denotes the extension operator from Theorem 2.48.
Hence, ¢ € H'/2(9Q,C%). Moreover,

||80||H1/2(0Q,<cd’) = inf{”’fL”Hl(Q,Cd') | ue Hl(Qv c? ), Yol = SD}
< ol g a,cery < ol el gz,

To show that also the corresponding dual spaces are isomorphic, we recall
that in the Gelfand triple setting, as in the proof of Proposition 2.54, the
space H~1/2 can be considered as the completion of L? with respect to
the norm

[ (pluy), |

ol_1:= s —_ 2 peL?
el 2 0APEH/2 lollgre ’
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see again [53] for details. And analogous, the space H '/ can be consid-

ered as the completion of L? with respect to the norm || - ||~,, which is
2

correspondingly defined and equivalent to || - || _ 1. Since two completions
of a normed space with respect to two equivalent norms are isomorphic,
see Proposition A.5, the proof for part (i) is complete.

(ii). We start with the case m € N. Let ¢ € H™2(9Q,C%). Then
there exists u € H™H1(Q, (Cd/) such that vou = . By Corollary 2.47, we
have also u € H™(Q,C%), which yields that ¢ = you € H™ 2(Q,C%).
Observing that the space {u € H™1(Q,C¥) | vou = ¢} is a sub-
space of the space {u € H™(Q,C%) | you = ¢} and that the estimate
lull g o,cary < Null grmsr(o,cary holds for all u € H™1(Q,CY), we see

that ||50||H'rn*% (agz’cd’)
H™H(Q, C%), you = ¢} and therefore

is a lower bound of the set {|[ul| gm+1(qcay | u €

||<)0Hﬁm*% (agvcd’) S ||¢||Hm+% (an(cd/)’

which proves the statement for the embedding.

To show the denseness, let ¢ € H™ 2(9,C%). Then there exists
u e H™(Q, (Cd/) such that you = ¢. Moreover, by Corollary 2.47, there
exists a sequence (up)nen in H™1(Q, C¥) converging to u in H™ (€, C%).
Consider ¢, = Yu, € H™ 2(00,C¥) C H™3(8Q,C¥), n € N.
Then

len =@l gm-3 o0.cay
= inf {Jollgmqcory | v € H™QC)700 = o0 — ¢}
< lun = ull gm(q,cery — 0, n— o0
For the remaining case m € Z \ N we use the same arguments for Gelfand
triples as in the proof of Proposition 2.54. (]
As a consequence of Proposition 2.56, for m € Ny and £ € H-m—3 (09, (Cd/)

! ~ 7
the requirement £ € H —mt3 (092, C?) makes sense as follows: the linear
and bounded functional ¢ : H™+2 (9, C%) — C can now be considered
as a linear and bounded functional with respect to the norm

|<€a ‘p>;l+%7ag‘

el = sup [
ped™ 3 (oa,c )\ {0y 1P a3 (90,00
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and therefore continuously be extended to a linear and bounded functional
ad 1 ’
¢ H™3(09,C%) — C.

And last but not least, for m € Ny and £ € ﬁ*m%(ag, C3) the product
¢ - n, where n denotes the unit normal vector on 0f), is for the case m =0
the usual dot product for functions, while for the case m > 0 it has to be
understood in the following way

() s g = (EU0)5 1 po, &€ H™2(00).

Note that for ¢ € H™2(91) the product ¥n € H™ 2 (9Q, C?) is well-
defined by Proposition 2.56 and Theorem 2.55, as n is a smooth function
on 0f.

Now, we are in the position to introduce the announced setting. For the
next two definitions we refer to (2.3), (2.4) and (2.5) from [3], slightly
modified for a more general setup.

Definition 2.57 For m € Ny and ¢ € ﬁ*mt% (09, C3), withn - p =0,
we define the tangential divergence divyq p € H‘m_%(aﬂ) by

_<30770(V1;m+1)>;;_%,397 m > ]-7
_fagzgo'v’(/)l dSa m =0,

for all ¢ € Efm*‘%(aﬂ), where Yy € H™ Q) is any extension of ¥
such that Yotm+1 = ¥, see also the preliminary considerations above.

(divan %W;H%,m = {

Definition 2.58 For m € Ny the space H‘m“‘%(divagﬁﬂ) is defined by
H™™+3 (divog, 99Q) = {(,0 e H"+5(00,C) |
p-n=0, divagg p € H*’”*%(aa)}
and equipped with the norm
ol st 4 e 00 = 1€+ I divaa ll, @ € H™™FE (divan, 09),

where the norm on the right hand side is the operator norm in the space
H="%2 (00, C3) and H=™+2(99), respectively.
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The embedding from [34, Lemma 5.27] turns out to be the correct candidate
for establishing the connection between the space H~1/2 (Div, 09Q) from
Definition 2.45 and H~/2(divaq, 9Q) from Definition 2.58.

Theorem 2.59 We have that H~'/?(divaq,dQ) ~ H~/?(Div,09) in
virtue of the mapping H='/?(Div,0Q) > ¢ — £, € H™Y/?(divaq, 0Q)
given by

(Lo, )1 o0 = (o, 77¥) 00, Y e HY?(00,C?),

where 1 € HY(Q, C3) is any extension of 1.

Proof: First of all, recall Proposition 2.56 for an identification of the
spaces H=1/2(8Q,C%) and H~1/2(5Q,C%).

(i). Let ¢ € H~Y/?(Div,09). For well-definedness we have to show
that £, -n = 0 and that divoq f, € H™/2(9Q). For the first one let
Y € HY?(0Q). By Corollary 2.49, there exists a sequence (up)ney in
C*>(Q) such that 1, == u,|sq — ¢ in H'/?(99Q), for n — co. Note that
n X (un|aon) = 0 for all n € N. Let 5, € H*(2,C3) be an extension of
Ppn € Dy(092,C3), n € N. Then y71, = n X (unlson) x n = 0 for all
n € N. Therefore,

<€<,D 1, 1/)>%,BQ = nh~>nolo<‘€<p 1, Qﬁn)%,ag = ’nll*)n;o<€tpv wn n>%,aQ

= lim (@, y7r7m)aq = 0.

n—oo

For the second one, let ¢ € H?/?(98). Then

(divan Lo, )3 90 = — (e, 10(V2)) 1 00 = — (0,77 (Via)) a0
= (Div ¢, 70%2) 3 90 = (Dive, )1 aq;

where we have applied [34, Lemma 5.27] in the second step and [34,
Definition 5.29] in the third step, with Divep € H~Y/2(d€). Hence,
divog £, : H3/2(9Q) — C is linear and bounded with respect to the
norm in H~1/2(99) as desired.

(t). To show boundedness, we know already from step (%) that divaq £, =
Div ¢ (considered as continuous extension) and therefore || divaq y|| =



74 2. Sobolev Spaces for Q-periodic Functions

| Div ||, for all ¢ € H~1/2(Div,d9). Hence, for ¢ € H~/2(Div,d9) and
Y € H'Y?(99, C?) we obtain, with

IV (o)l (curt.0) = V(0¥ | L2@.c3) < Imodllmro.co)
< lInoll 1411 12 a0,c9)
where 739 denotes the extension operator from Theorem 2.48, that
|(Div e, ¥)| = [{p, 77V (m0¢))aal
< |lell z-172iv,00) vzl 70l 101 g1/2(00,c9)-

(iii). To show surjectivity, let ¢ € H~/?(divag,d). Thanks to [3],
there exists ¢ € H(curl,Q) such that n x @g|lsgq = . We set @ =
7@ € H™Y2(Div,09), see Theorem 2.48. To show that £, = ¢ let
Y € HY2(9Q,C?) and set 1 := noyp € H' (2, C3), with 7o the extension
operator again from Theorem 2.48. Then on the one hand, we obtain
from [3, (2.1)] that

<<P,¢>%739 = / (curl@ =G curlz/;) dx
Q
and on the other hand, by [34, Lemma 5.27 and (5.19)], that
(s, ¢>§,BQ = (g, 'YT7/~)>8Q = /Q (curl@ . 1[, —p- curlq]}) dz,

as desired. |

2.2. Functions on Cell Sets

Later in the formulation of our scattering problem, the scatterer will be
the graph of a @-periodic and Lipschitz continuous function, and the
corresponding cell set under consideration will have a special form, see
Section 2.3. Nevertheless, in this section we would like to present results
which hold more generally for arbitrary cell sets.

From now on let @ denote a rectangle in R2, given by

Q = (—Ll,Ll) X (—LQ,LQ),
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where L; > 0 are some positive real numbers, j = 1,2. This rectangle will
be used to pick out a unit cell of the underlying periodic media as we will
see later.

2.2.1. )-periodic Domains and Functions

For the next definitions see also [7, Section 2.1].

We recall (1.18) and (1.14) for the definition of the lattice and reciprocal

lattice vector p(étd) and qég”d ), respectively. To define periodicity in R? only

in x1, zo-direction with respect to @, we similarly introduce
w124

W) = | pp2L 4 gw = (Pm/E ez? (27
p :LLQO 2 an q ,u27T/L2 ) H ( )

A set Q C R3 is called Q-periodic, if
x€Q = VueZ?:x+pW e Q.

Let © C R? be Q-periodic and d’ € N. A function u : Q@ — C? is called
Q-periodic, if

u(x 4 pW) = u(x), reQ, pez’ (2.8)
And w is said to be Q-quasi-periodic with phase shift a € R3, if
(1) _ picep™ 2
u(z+p)=e u(z), x€Q, pez-. (2.9)
If 2 is additionally open and if w is in L (€, (Cd,), then for Q-periodicity
and Q-quasi-periodicity we require that (2.8) and (2.9) holds almost
everywhere in {2, respectively.

We note that for x € Q, a Q-periodic function u can be (formally) expanded
into a Fourier series at the plane R? x {z3}

u(rag) = Y W (z3) Ty on R,
WEZ?
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with Fourier coefficients (u(")(x3)),cz2 given by

ul (23) = / u(z,x3) Tc(?_“) (2)dz, w e 72
Q

where Tcg“ ) are the trigonometric monomials from Section 1.3 and where
we have extended u by zero in (Q x {z3}) N Q°.

It is easy to see, that for a Q-quasi-periodic function u the function v
given by

v(x) == e ¥y (x), x € Q, (2.10)

is Q-periodic, and vice versa. Hence, for z € 2, a )-quasi-periodic function
u can be similarly rewritten in terms of a Fourier series expansion

u(s,x3) = Z ult) (z3) 1% Té?“) on R?, (2.11)
HEZ?
with
ul (23) = / u(z, x3) e 142 Té_“) dz, w € 72
Q

In the @-periodic context, the notion of a cell set is fundamental, see the
following definition.

Definition 2.60 An open set D C R3 is called a cell set, if there exists a
closed and Q-periodic set Q C R3 such that D = (Q x R)NQ. In this case,
Q is unique and we set Eg(D) := ) to be the Q-periodic extension of D.

Let D C R3 be a cell set, d € N and m € Ny. Similarly as in Section 1.3,
we define now for the @-periodic framework the function spaces

’

cy (D, = {u e c™(D,c?) | 3v e C™(Eg(D),C%) :
v is Q-periodic and u = ’U|D},

C(D,c") = {u e CH(D,C") | V0 < o] <m:
0%u can be continuously extended to ﬁ},

Co(D,C) = {u e C™(D,C%) | Jv e C™(Eq(D),CY) :
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v is Q-periodic, supp(v) C Eg(D),

supp(v) N (Q x R) is compact and u = ’U|D}.

And the corresponding spaces of smooth functions are
d d’
Ccy(D,C ﬂ CE(D,C
d d’ d d’
Cg(D,c") ﬂcQ ,C C&o(D,CY) ﬂcQO ,C

Note that for u € C°(D, (Cd/), by continuity, the v in the definition of this
space is unique. Thus, this holds in particular for the other subspaces.
Often we will call this v the @-periodic extension of u and denote it by
u. Furthermore, as before, in the names for these function spaces we will
often neglect the superscript “m” if m = 0. And again, we will mostly
drop the symbol for the co-domain in the case of scalar valued functions,
i.e., for instance we will mostly write C3’o (D) instead of CZo(D,C).

Remark 2.61 C5°(D,C%) is a subspace of CEQO’O(D,(Cd/). Furthermore,
on a cuboid Q3 C R3 we have

C(Q5,CY) € CF0(Q5,CY) € C2.(Q5,CY).

2.2.2. Basic Results

In this subsection we will define Sobolev spaces for Q-periodic functions
on cell sets and derive their most important properties.

Definition 2.62 Let D C R3 be a cell set.
(a) For m € Ny we define the space Hé”(D7Cd/) to be

HE(D,C?) = {u € L3(D,C%) | Vo € N3, with |a| < m,

Jv e L*(D,C?)¥x € C&o(D) :



78 2. Sobolev Spaces for Q-periodic Functions

w(z) 8% (z) dz = (1) v(z) x(x)dx .
| w@orx@yas = (-1 /D()x()d}

For u € H7Q"(D,(Cd/) we set for the moment 03u = v, see also
the next remark. Furthermore, we equip this space with the inner

product (- | ~)H81(D)(Cd/) and the norm || - HHgL(D’Cd/) correspondingly
to Definition 2.2.

(b) We define the space Hg(curl, D) to be
Hg(curl, D) := {u € L*(D,C?) ‘ Jv e L*(D,C?)

Vx € CFo(D,C?%) /
D

u(z) - curl x(z) de = /

D

v(x) - x(x) dm}.

For uw € Hg(curl, D) we set for the moment curlgu := v, see also
the next remark. Furthermore, we equip this space with the inner

product (- | -)HQ(CurLD) and the norm || - || g, (curl,p) correspondingly
to Definition 2.2.

(¢c) We define the space Hg(div, D) to be

Heq(div, D) = {u € L*(D,C?) ‘ Jv e LA(D)

Vx € C3o(D) : /D u(z) - Vx(z)de = —/D v(x) x(z) dx}.

For w € Hg(div, D) we set for the moment divgu := v, see also
the next remark. Furthermore, we equip this space with the inner

product (-] ')HQ(div py and the norm || - || g aiv,p) correspondingly to
Definition 2.2.

Remark 2.63 Thanks to Remark 2.61, for u from the space H' (D, (Cd/),
Hg(curl, D) and Hg(div, D), the element v in the definition of those spaces
is unique and coincides with 0%u, curlu and divu from Definition 2.1,
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respectively, and therefore we will write again 0%u instead of dgu, curlu
instead of curlg u and divu instead of divg w. In particular,

HE(D,c?) <% H™(D,CY),
Hg(curl, D) Jd, H(curl,D) and Hg(div,D) SN H(div, D).

Taking Theorem 2.20 into consideration as well, we have on a cuboid
Qs CR?

per(QBde ) (—> HQ (Q37(Cd,) (i> Hm(Q37(Cd/)7

with equivalent norms in per(Qg,(Cd ) and

Hyer(curl, Qs) < Ho(curl, Qs) << H(curl, Qs),

with coinciding norms in Hper(curl, Qs3).

With the same arguments as in [34], one shows that the spaces Hpy' (D, (Cd,),
Hg(curl, D) and Hg(div, D) are Hilbert spaces. Moreover, note that
C3o(D, C?) is a subspace of Hb"(D,(Cd/) and that CZo(D,C?) is a sub-
space of Hg(curl, D) and of Hg(div, D).

Further examples for elements in Hg(curl, D) are given by the next two
propositions.

Proposition 2.64 Let D C R® be a cell set. Furthermore, let u € Hj(D)
and 3 € C3. Then Bu € Hg(curl, D) with curl(Bu) = Vu x B.

Proof: Let x € CEQO’O(D,(CS). Then, by applying (A.3d) and exploiting
the fact that u € H, (D), we obtain

/6u-curlxdx:/uﬂ-curlxdx:/udiv(xxﬁ)da:
D D D

3

:/Duiaj(xxﬂ)jdx /(Z ) (xx 8) )

Jj=1
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:_/DVU.(Xxg)dxz/D(Vuxﬁ)-de

and the proof is complete. O

Proposition 2.65 Let D C R3 be a cell set. Then we have
HL(D,C% <% Hg(curl, D),
with
82u;3 — 8311,2

curlu = | Ozu; — dus |, u € Hé(D,C3).
81“2 — 82’11,1

Proof: Let u € H5(D,C?), ie., uj € H5(D), j = 1,2,3. Furthermore,
let x € CF (D, C3). Then, using the definition of the space H(}? (D), we
obtain

U Oax3 — 032
/ u-curlxdx:/ ug | - | Osx1 — O1xs | dz
D D \ug O1x2 — O2x1
= / (33U1 X2 — O2uq X3 + O1uz X3 — O3ug X1 + Oaug X1 — O1u3 Xz) dz
D
82113 — 83“2
= / Osuy — Orug | - xda.
D Blug — 82u1

Hence, v € Hg(curl, D) with curlu given as in the formula from the
proposition. By means of this formula it is easy to see that the identity
mapping yields indeed a bounded operator from Hé) (D, C?) to Hg(curl, D),
which completes the proof. O

Definition 2.66 Let D C R? be a cell set.

(a) For m € Ny we define the space H&O(D,Cd/) as the closure of
C&o(D,CY) in HE(D,C?).
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(b) We define the space Hq o(curl, D) as the closure of Co(D,C?) in
Hg(curl, D).

(¢c) We define the space Hqo(div, D) as the closure of CZo(D,C?) in
Hg(div, D).
Clearly, as closed subspaces of Hilbert spaces, we have that the spaces
HaO(D,Cd ), Hgo(curl, D) and Hg o(div, D) are itself Hilbert spaces.
As we want to exploit results from the periodic setting, see Subsection 2.1.2,
for this the next proposition turns out to be very helpful.
Proposition 2.67 Let Q3 C R? be a cuboid as given in (1.13).

(a) For m € Ny we have

m 7 id m ’
HQ,O(Q37 (Cd ) — Hpcr(Q37Cd )7
with equivalent norms in Hao(Qg,(Cd/).
(b) We have
Hg o(curl, Qs) 29, Hper(curl, Q3),

with coinciding norms in Hg o(curl, Qs).

Proof: (a). Let u € H 4(Qs, C?). Then there exists a sequence (up, )nen
in C&O(Qg,(cd') such that w, — u with respect to || - ||H$(Q37Cd/), as

n — oo. By Remark 2.61, we know that u,, € Hg}ar(Q&Cd/) for all n € N.
Hence, for a € N} with |a| < m, Lemma 2.17 yields for the Fourier
coefficients of u,, and 0%u,, the connection

(0%uy,) W = (iqg;))a(un)(“), pw€Z mneN.,

Let a € N3 with |a| < m and let u € Z®. By the convergence above, we
have

(%)W = 0%u(x) T(g“)(m) dz = lim 0%up(z) Té;“)(x) dz

Qs N0 Qs
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= (i qg;))a lim U () Té;”)(x) dz

n—oo
Qs

— o) [ u) 75 () do = (1) ),
Q3
Since u and %u belong to L?(Qs, (Cd/), we obtain by Parseval’s identity

ull7 (Qs,C) Z [u™|?  and Hao‘u||L2(Q3 cary = Z (qu))2a|u(u)|2.
WEZLS WEZLS

Now, we are in a position to regain the last two chains of inequalities from
part (a) in the proof of Proposition 2.19, where now therein the interchange
of the sum signs is allowed due to convergence of the series with respect
to . Thus, we have shown that u € HJ¢, (Qs, C?) and that the norms

Il - HH;;; (@s,cy and || - ||Hm (@s,cy I HG o (Qs,C ) are equivalent.
(b). Let v € Hgo(curl, Qd) Then there exists a sequence (up)nen in
C‘gf’O(Qg,C?’) such that u, — u with respect to || - || g, (curl,@s), @8 7 — 00,
and analogous to part (a) we have for the Fourier coefficients of u,, and

curl u,, the connection
(curlun)(“) = iqg;) X (un)(”), peZ?, neN.

Let pu € Z3. By the convergence above, we have

(curlu)® = / curlu(a:)Té;“)(a:) dz = lim curlun(a:)Té;“)(m) dz
3

= iqg;) X lim Unp () Té;“) (x)dx

n— oo Q3
—1q8) / u(m)Té;“)(x)dx—lqg) (),
Qs

Since u and curlu belong to L?(Q3, C?), we obtain by Parseval’s identity

lullfa@ue = D [P and [lewlulfaqq e = D la) x ul)P.
HEZL3 WEZS

From this we conclude finally ||ul| g, ., (curl,@5) = [t/ Hg (curt,s) < 00, and
the proof is complete.
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Restriction and Extension (by Zero) Operators. We continue with the
introduction of certain restriction and extension (by zero) operators. Al-
though they appear mostly in the background, their work should not be
underestimated. For their notation recall Section 1.3, page 11.

Let D, D’ C R?® be cell sets such that D C D’. Since u € L2(D,C%)
implies that ||u|{ l2(pr cary = llullp2(pcary and, conversely, since u €
L2(D',C%) implies that lulpllp2(p,cery < llullp2(pr cary, there holds that
the mappings
! . D/ ’ !’ . !
LQ(D,cd)LE(D’,Cd) and LQ(D’,Cd)BLQ(D,Cd)

are linear and bounded. The next proposition shows a similar result for
the spaces from Definition 2.62 and Definition 2.66.

Proposition 2.68 Let D, D’ C R? be cell sets such that D C D’.
(a) The following assertions are true.
(i) The mapping Hb"(D’7(Cd/) Sur ulp € Hg(D7(Cd/) is well-
defined, linear and bounded with
HU|DHH$'(D,(C‘1') < HUHHg(D’,(Cd')'
Moreover, 0“(u|p) = (0%u)|p for allu € Hg(D’,Cd/) and all
a € N3 with |a] < m.
(i) The mapping HaO(D,Cd/) 5 u - ulf) e Hao(D',Cd') is
well-defined, linear and bounded with
||U|£) ||H5L(D',(Cd’) = ||UHH5L(D,Cd’)'
Moreover, 8 (u|l}") = (8°u)|§" for all u € H&O(D,(Cd/) and
all € N} with |a] < m.
(b) The following assertions are true.

(i) The mapping Hg(curl,D’) 5 u — u|p € Hg(curl, D) is well-
defined, linear and bounded with

||U|D ||HQ(Cur1,D) < ||u||HQ(cur1,D’)-

Moreover, curl(u|p) = (curlw)|p for u € Hg(curl, D).
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(ii) The mapping Hoo(curl, D) 3 u — u|f" € Hgo(curl, D) is
well-defined, linear and bounded with

’
||u|(l)) ||HQ(cur1,D’) = ||u||HQ(Cur1,D)'

Moreover, curl(u|d") = (curlw)|y" for all u € Hg o(curl, D).

Proof: We only show the assertion for part (b) as the argumentation for
part (a) is completely analogous.

(i). Let u € He(curl, D') and x € CFo(D,C?). Then x|§" € C&,(D’,C?)
and

/u|D(x)-curlx(x)dx:/ u(z) - curl x|P (x) d
D ’
:/ Curlu(x)-x|0Dl(x)dx=/(curlu)|D(J;)-X(a:)dx.
' D
Moreover,
ol ey = [ fulo@P da+ [ Jourl(ulp)(e)? dz
z/ |u(x)|2dx+/ | curl u(z)|* da
D D
< [ u@Pdet [ Jeurtu@)]P o = ol o

(ii). Let u € Hgo(curl, D). Then there exists a sequence (u,)pen in
C’&‘?O(D,CB’) converging with respect to || - ||, (cur1,p) to u. Note that

u, ¥ € C&o(D’,C?) with curl(un |P') = (curlu,)|P" for all n € N. Choose
some x € C&O(D', C?). Then, using the convergence from above and the
definition of the variational curl, we obtain

/ (u]f") - curl ydz = lim un P - curl y da
, n—oo | p,

= lim curl(un|0D/) -xdr = lim (curlun)|0D/ -xdx
n—r00 D’ n—oo D’

/ (curl u)|0D/ - x dz,
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ie., ulP" € Hp(curl, D') with curl(u|P') = (curlw)|P". Furthermore
) |0 Q ) 0 0 )

! ! !
ulf’ ||%{Q(curl,D’) = ||ul§’ ”%Q(D/,C?’) + || curl(ul’ )”%Q(D’,(CB)

= HU||i2(D,<c3) + | Cur1u||2L2(D,tc3) = HU‘H%IQ(Curl,D)'

Applying the last chain of equations to the difference u,|P" — u|P’, we
see that (u,|F )nen converges in Hg(curl, D’) to ulf and the proof is
complete. O

Compact Embeddings. In the context of compact embeddings, another
extension operator for the vector valued case is needed, which extends
functions from a certain subspace of Hg(curl, D) by zero to cuboids.
For the introduction of this subspace Hg o(curl,divg 4 0, D) in the next
definition and for the statements in the next proposition, it might be useful
to recall (1.20b) and the definition of the space Hpe,(curl, divz 0, Q3) from
Definition 2.12. Moreover, as a preparation for later purposes, see also the
beginning of Subsection 2.2.3, we introduce this subspace already here in
its most general form, that is, with respect to a matrix-weighted L2?-inner
product similarly as in [34].

Definition 2.69 Let D C R3 be a cell set. Suppose A € L*°(D,C3*3)

such that A(z) is symmetric for a.a. x € D and Re(Z" A(z)2) > c|z|? for
all z € C3, a.a. © € D and some constant ¢ > 0. Furthermore, let 5 € R3.

(i) The space Hg o(curl,divg 4 0, D) is defined by
Hgo(curl,divg 4 0,D) := {u € Hgo(curl, D) |
Ve € Hy (D) : (Au| V) oy cs) = 0
(i) The space Hg(curl,divg 4 0, D) is defined by
Hg(curl,divg 4 0,D) := {u € Hg(curl, D) |

Vi € Hbo(D) : (Au| Vav) ey = 0 -
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If 8 = 0 and A = I, where I denotes the identity matriz, then we
will drop the subscript 3 and A in the symbol Hg o(curl,divg 4 0, D) and
Hg(curl,divg 4 0, D), respectively.

Proposition 2.70 Let D C R3 be a bounded cell set and let Ls > 0 such
that D C @ x (—Ls, L3) =: Q3. Then the mapping

Hgo(curl,divg 0,D) > u u|g23 € Hper(curl, divg 0, Q3)
is well-defined, linear and bounded with

HU|OQ3 ||Hper(cur17Q3) = ||u||HQ(Curl,D)~

Proof: Let u € Hg o(curl,divg 0, D). From Proposition 2.68 and Proposi-
tion 2.67 we know that u|;® belongs to Hper(curl, @Q3) and that the equality
for the norms hold. It remains to show that (u$*)®) - (qg;) +5) =0 for all

p € Z3, where (u|823)(“) denote the Fourier coefficients of u\OQ3. For this let
(NS Hclg,o(D)- By the propositions from above, together with Theorem 2.20

and Lemma 2.17, we have between the Fourier coefficients of ¢|;® and
V(1|¢?) the connection [V (|¢?)]) = iqgg) (Y]¢*)) for all v € Z3. Note

that, again thanks to Proposition 2.68, there holds (V1)) (?3 =V (w|OQ3)
Hence,

0= (| Vs¥)2qmcn = (Wl | V5WIE) L o

_ Q3 (1) . 5(W) Qs3\ (v () | n(v)
- /LVZG:ZS(MOS) " - ilag, + AWIT)Y (TQ3 Tas )LQ(Qs,Ca’).

Since ¥ € H, clg,o(D) was arbitrary, we conclude from the last equality that
(u|$2)) - (qg? + ) =0 for all p € Z3, as desired. 0

Now, we come to the first compactness result in the @Q-periodic setting.

Theorem 2.71 Let D C R3 be a bounded cell set and 8 € R3. Then the
following assertions are true.

a) The embedding H} D,Cc? <i> L%(D,C%) is compact.
Q,0
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(b) The embedding Hqg o(curl,divg 0, D) 24, L*(D,C3) is compact.

Proof: Choose some Lz > 0 such that D C @ x (—Ls, L3) =: Q3.
(a). We decompose the embedding from the theorem by

Q !
Hgo(D, Cd) —>HQ o(Q?”(Cd) H{,’ér(QmCd)
L 12(Qa, ) % 12(D,C)

and observe that the first, second and last mapping are bounded, thanks
to Propositon 2.68, Proposition 2.67 and the remarks in front of Proposi-
tion 2.68, respectively. Now the assertion follows, as the embedding from
H: (Qs, C?) to L?(Q3,C?) is compact, see Proposition 2.13.

(b). We decompose the embedding from the theorem by

.93
HQ,O(curl div 0, D) 173 Hper(curl,dng 0,Qs)
LQ(QSacg) LQ(D (C3)

which yields, with analogous arguments as in (@), in particular with
Propostition 2.70, the assertion. O

Friedrich’s Inequality. It is well-known that in H{(2) there holds an
inequality of Friedrich’s type, saying that |ul|z2(q) < c¢||Vulp2(q,cs) for
all w € H}(Q2). Here Q denotes any open and bounded subset of R?,
and the constant ¢ > 0 is independent of u. In the @Q-periodic setting,
i.e. in H}, o(D), where D C R? is a bounded cell set, such an inequality
can be derived as well, see the next theorem. Therein a slightly more
general version is proven which turns out to be more useful later when we
transfer problems from the @-quasi-periodic into the Q-periodic setting
and therefore obtain modified operators for V, curl and div as in (1.20a)
and (1.20b).

Theorem 2.72 Let D C R? be a bounded cell set and RS R3. Then there
exists ¢ > 0 such that

lullz2(py < c|IVpullL2(p,csy, for allu e Hé’O(D).

Here, the operator Vg is given by Vg = V +10, see also (1.20a).
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Proof: We follow the lines in the proof of [34, Theorem 4.15]. Choose
some Lz > 0 such that D C Q x (—Ls, L3) =: Q3. Let u € CZu(D).
Extend u by zero to Q3 and choose some = € Q3. Then

T3

oy (z) = oiB- (1,22, Ls) T w(zy, 22, —L3) + 93(e " u) (21, 22, ) d€
—_———

—Ls

3 .
_ / el(Pra1+P2x2+B38) (33U(!E17!E2,§) + iﬁgu(ml,xg,ﬁ)) de,
—Lsg

and by the inequality of Cauchy-Schwarz

z3

() < <x3+L3)/ 05, 72, €) + 1Bsulzr, o2, )| dé

—Ls

Ls )
< 2L3/ |Osu(1, x2,€) + ifau(wy, 22, )| dE.

—Ls
Hence,
Ls Ls 9
| u@P das < @La)? [ [osutar.aa€) + iBauter, 22, dé
—Ls —Ls
and integration with respect to 1 and x» yields

HU”L?(D) ||u||L2(Q3)
Ly Ls Ls

<@re? [ [ [ |osutorn9) +issuten, 02 dgdr oy

—L3z —L3 —Lg3
< (2L3)? |V + iBullf2 gy 00 = (2L3)* [ VsullZz(p co)-

Since Oy (D) is dense in Hf o(D), the last inequality holds even for all
u € Hp (D). O

Corollary 2.73 Let D C R3 be a bounded cell set and f € R3. Then
there exists ¢ > 0 such that

||U‘HH$(D) <c ||Vﬁu||L2(D,C3), fOT’ allu € H(1270(D)
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Proof: Let u € Hé’O(D). Then an application of the triangle inequal-
ity yields ||Vullr2p,csy < [[Vu + iBul|L2(p,cs) + [iBulL2(p,cs), and we
conclude, together with Theorem 2.72,

||UH?J}Q(D) = lullZa(py + I VullZe(p,co)
< NullZ2(py + 21 Vu +iBullF2(p csy + 21812 1l 72 (py
< CHVU“Fi,@’U,H%Q(D)CS),

as asserted. O

In the proof of the next proposition we have a first application of Friedrich’s
inequality. The following lemma has preliminary character.

Lemma 2.74 Let D C R3? be a cell set and B € R3. Furthermore, let
(Pn)nen be a sequence in Hé7O(D) such that (pp)nen is a Cauchy sequence
in L?(D) and (Vspn)nen is a Cauchy sequence in L?(D,C3). Then for the
L2-limits p := limy, 00 pn and u := lim,,_, o, Vspy, there holds p € Hé),o(D)
with Vgp = u.

Proof: We know that Vp,, +i8p, — u and i8p,, — i8p, both in L?(D, C?),
as n — oo. Hence, Vp, = (Vp, +i8pn) — iBpn — u —ifp in L*(D,C?).
Let x € C&,(D). Then

n—oo

/pdex: lim pnVxdz = — lim / Vpnx dx

—/ (u — ifp) x dz,
D

showing that p € Hcl;)(D) with Vp = w — i8p, where the latter one is
equivalent to Vgp = u. Moreover, Hpn—p”%zw)+||Vpn—VpH%2(D)C3) — 0,
that is, p, — p with respect to || - ||H5(D). Since H (D) is a closed
subspace of Hcl2 (D), p belongs indeed to Hé,o(D)~ O

Proposition 2.75 Let D C R? be a cell set and 3 € R3. Then the
following assertions are true.
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(i) There holds
¥ € HY(D) = Vo € Ho(curl, D), with curl(Vgep) = Vip x if3.
(i) There holds
VsHp (D) € Hgo(curl, D).

If D is additionally bounded, then VgHéﬁo(D) is a closed subspace
of Hgo(curl, D).

Proof: (i). Let ¢ € H,(D). Take some x € CF,(D,C?). Note that
(curlx); € C&o(D) for all j = 1,2,3. Moreover, V¢ x i € L*(D,C?).
Then, by the definition of the variational derivative, on the one hand

3
/Dvw-curlxdx:Z/D@jz/}(curlx)jdx
:—Z/ ¥ 0;(curl x); /wdlv curl ) dz =

and on the other hand

/5¢ Ivd / ¢(gl> (gzm—gsxz) d
1 - cur r =1 2 . 3X1—01X3 x
D X D B3 81;2782;
= i/ (B1x203% — B1X302% + Bax301% — Bax103¢
D
+ B3x1021) — B3x201¢) dx

B3021p—PB203%
:i/ (afaaw—ﬁzsafw) ~de:/(v¢xiﬁ)-xdx.
D D

B2019—P102¢

Combining both results yields the assertion.

(i). Let ¢ € Hj o(D). From part (7) we know that Vs € Hg(curl, D)
with curl(ng/J) Vi) x i8. Moreover, there exists a sequence (¢, )nen
in CFy(D), converging to ¢ with respect to || - HHéZ(D)- Note that
Van € CFo(D, C3) and curl(Vse,,) = Vb, xi8 for all n € N. Therefore,
curl(Vgepy,) — curl(Vge) in L?(D, C?), as n — oo, and we obtain

IVstn — Vsl L2(p,c3) + || curl(Vpep,) — curl(Vs)) || L2(p,c3) — 0.
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Hence, (Vg1))nen converges with respect to || - || g, (cur, 0y to V¢, which
shows that Ve belongs to Hg o(curl, D).

To show the closedness property, let (p,)nen be a sequence in Hé,O(D)
such that Vgp,, — u in Hg o(curl, D), as n — oo. In particular, (Vapy, )nen
is a Cauchy sequence in L?(D,C?). Therefore, by Friedrich’s inequality
from Theorem 2.72, (pp)nen is a Cauchy sequence in L?(D) and thus
convergent to some p € L*(D). We have to show that p € H, ,(D) and
that Vgp = u. But this follows immediately from Lemma 2.74. O

Lipschitz Continuous Transformations. In the next section we will in-
troduce cell sets of Lipschitz layer type and derive in this setting trace
and extension operators. As mentioned before, this is done by exploiting
results from Subsection 2.1.2. For this a necessary tool is a transformation
which maps @-periodic functions defined on such cell sets to periodic func-
tions defined on (3. In this context, Q-periodic and Lipschitz continuous
functions are again important examples for elements in H, é(D), if D is
additionally bounded.

Proposition 2.76 Let D C R® be a bounded cell set. Furthermore, let
v: Eg(D) — C? be Q-periodic and Lipschitz continuous. Then u :=
v|p € Hy(D,C?).

Moreover, 0ju in the variational sense coincides almost everywhere with
the almost everywhere given partial derivative Oju in the classical sense.

Proof: The proof follows exactly the lines from the proof of Proposition 2.3
if we replace therein 2 by D, Cg° by C3; and R? by @ x R, and if we
take additionally into account that the boundary terms on D N (9Q x R),
for the case that this set is not empty, cancel out each other due to the
Q-periodicity of the integrands. If this set is empty, then we are exactly
in the situation of Proposition 2.3. O

Corollary 2.77 Let D, D' C R3 be cell sets, D' additionally be bounded,
u € Cgf(D,(Cd) and w its Q-periodic extension. Furthermore, let the

mapping ® : Eq(D') — Eq(D) be Lipschitz continuous such that v := o ®
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is Q-periodic. Then v := ¥|p: € Hb(D’,(Cd/). In particular, in the case
d’ =1 its variational gradient Vv is given by

Vo = (&) T[(Vu) o @]
and exists almost everywhere in D’ in the classical sense.

Proof: Since 7 : Eg(D') — C¥ is Q-periodic and Lipschitz continuous,
the assertion follows directly from Proposition 2.76. g

Product Rules. Later we will often multiply elements from Hg (D, (Cd/),
Hg(curl, D) and Hg(div, D) with certain cut-off functions to derive further
results. For this purpose, the following presentation will be of special
interest.

Proposition 2.78 Let D C R? be a cell set. Furthermore, let ) € cg (D)
be bounded. Then the following assertions are true.

(a) Let m € No. Ifu € H7Q"(D7(Cd/), then the product Y u € H7Q"(D7(Cd/)
and for a € N3 with || < m there holds Leibniz’ product rule

0*(pu) =Y (3)0* Py u.

Bla

(b) If w € Hg(curl, D), then the product ¢ u € Hg(curl, D) and

curl(¥ u) = Vip X u + ¢ curlu.

(c) If u € Ho(div, D), then the product ¢ u € Hg(div, D) and
div(yu) = divu +u - V.

In particular, for fized and bounded ¢ € C'EQO(D), the multiplication by 1 is

a linear and bounded operator in H' (D, C%), Ho(curl, D) and Hg(div, D),
respectively.
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Proof: (a). We only show the assertion for the case d’ = 1 since the
generalization to the case d’ > 1 is obvious.

In contrast to the corresponding proof of Proposition 2.21, here we cannot
use an approximation argument so far. Therefore, we show the assertion
by induction with respect to m. In fact, for m = 1 and j € {1,2,3}
we obtain for x € CZ’((D) that 9;(¢x) = x9;¢ + ¥0;x and thus, since
85(4x) € Ci5o(D),

/D(wu)ajxdx:/Duaj(wx)dx—/Dajwuxda:

For the inductive step from m to m+ 1, we at first observe that for & € N3
with |&| = m, for 3 € N} with 3 < &, for j € {1,2,3} and for

ﬂ/ = (617"'7ﬁj71707ﬁj+1a"'7ﬂ3>—r7
6// = (61a"'75j—17&j + 1vﬁj+1a"'763)—r7

there holds, with e(/) denoting the j-th unit coordinate vector in R?,

d,
27: (g;) [8d+e(]’)7ﬁu 661/1-’-8&7611, 85+e(.7’)1/):|
Bj=0
d]' ééj+1
A Ade(d) _ o Ade(d)
_ Z (tg;)aa+e 7 ﬁu aﬁ,(/) T Z (B?il)aoz—ﬂ—e] ﬁu a/ﬁw
B;=0 Bj=1
= aéﬁ-e“)—ﬂ u &P o+ Z [(g;) + (,6;111)} 8a+e(7)—5u 8B’¢
B;=1
4 gate=B"y, 3B”1/1
bj+1
L
B;=0
where we have used that (”;CH) = (3) + (") Now, we assume that

the assertion is true for some m € Ny. Let a € N3 with |a| = m + 1
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and write @ = & + eV with j € {1,2,3}. Note that |&| = m. Let
X € CFo(D). Then, with 8 € N3 such that 8 < &, with j € {1,2,3} and

with 0;(x %) = y 98+ + 98y d;X, we obtain
/ Yudxyder = / Yud*(9;x) dz
D D
— (=1)l /D ( 3 (§)o*Pu a%) 8;x da

B<a
1)lal+1 / aa“‘”*ﬁu P + 0% Py aﬁﬁ‘“w} ydz
D

ﬁ<a

Ia\/ aa B aﬁd))de
D j2

where we have applied the observation from above in the last step. For
this see also (1.9).

(b). The proof follows exactly the lines in the proof of Proposition 2.21 if
we replace therein Cp%, (Q3, C?) by CF(D,C?).

(c). Let x € CZo(D). Then ¢x € C’Q’O( ) and, with V(¢x) = ¥Vx +
x V1, we obtain

/(wu)oVde:/ u-YVydx
D D
:—/(divu)wxdx—/ u- xVipdo
D D
:—/(1/) divu + u - Vo) x dz,
D
as asserted.

And finally, the linearity and boundedness of the multiplication operators
are easy to see. O

Functions with Compact Support. Later when we multiply elements
from HZ (D, C), Hg(curl, D) and Hg(div, D) with certain cut-off func-
tions, the product will often again be multiplied with another cut-off
function. As a consequence, we will then end up in situations where the
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latter product vanishes in a neighborhood of dEq(D). For those situations
the following results will be useful, in particular the integration by parts
formulas.

In the following definition we specify the spaces for functions with compact
support.

Definition 2.79 Let D C R? be a cell set and m € N.
(a) The subspace 7—[870(D,(Cd,) of Hg(D,(Cd/) is defined by

0.0(D, c?y .= {u € Hg(D,(Cd/) | there exists a bounded cell set

Q C D such that Eg(2) C Eg(D) and supp(u) C Q}

(b) The subspace Hq o(curl, D) of Hg(curl, D) is defined by
Hgo(curl, D) := {u € Hg(curl, D) | there exists a bounded cell set
Q C D such that m C Eqg(D) and supp(u) C ﬁ}
(¢c) The subspace Hg o(div, D) of Ho(div, D) is defined by
Hgo(div, D) = {u € Hp(div, D) | there exists a bounded cell set

Q C D such that Eg(Q2) C Eg(D) and supp(u) C ﬁ}

Lemma 2.80 Let 2, D C R3 be cell sets such that Q is bounded and
EqQ()) C EqQ(D). Then there exists x € Cgo(D) with x(z) =1 for all
x €.

Proof: By compactness of Q and by Q-periodicity of Eg(Q) and Eg(D),
there exists & > 0 such that dist (Eq(2), 0Eq(D)) > . Let ¢= be the
mollifier from (2.6) and set

X(z) = ¢s(x—y)dy,  we€ Eg(D).

/EQ(Q)'H}Ba(Ovi)
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Then supp(x) € Eq(2) +B3(0, 5) and x(x) = 1 for all z € Eg(Q). Hence,
X := X|p has the desired properties. 0

Lemma 2.81 Let D C R? be a cell set. Then the following assertions are
true.

(i) we Hgolcurl,D) = [, curlu(z)dz =0.
(i) we Hqo(div,D) = [,divu(z)dz=0.

Proof: We only show the assertion for part (i), as for part (ii) the same
arguments can be applied.

By assumption, there exists a bounded cell set Q C D such that Eg(Q) C
Eg(D) and supp(u) C Q. Furthermore, due to Lemma 2.80, there exists
Xo € CZo(D) with xo(z) = 1 for all x € Q. Let el denote the j-th
unit coordinate vector in R® and let (curlu); be the j-th component of u,
j=1,2,3. Let j € {1,2,3} and set x(z) := W xq(x), for x € D. Then
X € CZ(D,C?) with curl x = 0 on , and therefore

/D (curlw);(z) dz = /D curlu(z) - x(z) do = / u(z) - curl x(z) da

D

= / u(z) - curl x(z)dz = 0.
supp(u)

From this the assertion follows. O

Now, we are in a position to prove the following integration by parts
formulas.

Proposition 2.82 Let D C R? be a cell set and ¢ € CF (D) be bounded.
Then the following assertions are true.

(a) |If|u € Hé”(D,Cd/) andpu € 7—[870(D,(Cd/), then for all a € N3 with
ol < m there holds

/8au(x)w(x)dx:(—l)|o“/ u(x) 0%(z) dz.
D D
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(b) If u € Hg(curl, D) and ¥ u € Hq o(curl, D), then
/ Y(x) curlu(z) de = 7/ Vi(z) x u(x) de.
D D

(c¢) If u € Hg(div, D) and Y u € Hqgo(div, D), then

/ Y(x) divu(z / V(x

Proof: (a). By assumption, there exists a bounded cell set Q C D
such that Eqg(Q2) C Eg(D) and supp(¢u) C Q. Furthermore, due to
Lemma 2.80, there exists x € CZo(D) with x(z) = 1 for all z € Q. In
particular, 1 x € Cgo(D). Now, let o € N§ with |a| < m. Then, applying
Leibniz’ product rule,

/ O%u(z) Y(x)da = /D O%u(x) ¥(x) x(z) dzx

= (D" | u(e) 0% (x) x(z) de

D
+ (—1)l [ u(z) 9Py (z) 0Py (x) da.
0 )

Taking now into account that for the integral in the left summand only
the set  is relevant and that y = 1 on 2, we have shown the assertion.
(b), (¢). The assertion follows immediately by combining the statements
from Proposition 2.78 and Lemma 2.81. (]

The next proposition shows how the spaces Hg o(D) and Hq,o(curl, D)
are related to the spaces Hp)' (D) and Hg, o(curl D) respectively.

Proposition 2.83 Let D C R3 be a cell set. Then the following assertions
are true.

(a) HE o(D,C¥) C HE ((D,CT).
(b) Hqo(curl, D) C Hg o(curl, D).
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Proof: We start with part (b) and postpone part (a) to the end of this
proof.

(b). Let u € Hg o(curl, D). By assumption, there exists a bounded cell
set Q@ C D such that Eg(Q) C Eg(D) and supp(u) C Q. Due to the
compactness of ) and the Q-periodicity of Eg(f2) and Eq(D), there exists
§ > 0 such that dist (Eg(2),0Eq(D)) > 6. Let 0 < & < §/3 and set

Ue 1= Ue|p, where

/(;55 x —y)u(y)dy, x € Eqg(D),

and 55 is the @Q-periodic extension of the mollifier given in (2.6). Note
that . is a smooth @-periodic function with u.(x) = 0 for x € Eg(D) \
(Eq(Q) + Bs(0, )) Hence, u. € Cg,(D,C?).

Let 2 € D. Then ¢.(z—-) € Cg (D) and by part (b) of Proposition 2.82

(o) = [ V.dula—9) xulo)dy == [ ¥, 6.0 =) % uly) dy
= /Q%s(:r —y) curlu(y) dy =: (curlw). ().

Now, let D := U< ({p'"™} + D) be the union of D and its eight

neighbors from Eg(D), where p(*) is the lattice vector given in (2.7).
Moreover, let v € {u,curlu} and ¥ be the Q- periodic extension of v from
D to D and then be extended by zero to R3\ D. And finally set

Ve(x) = . o (x —y)v(y) dy, x € R3.

Then v.(x) = v.(z) for all z € D and moreover v € L?*(R? C3) with
v = v almost everywhere in D. Then from Theorem 2.50 we conclude that
Ve — v in L2(R3,C?) and therefore in particular v. = v.|p — 0|p = v in
L*(D,C?), as € — 0. This means that u. — u with respect to |- || i (curl, 0),
as € — 0, and the proof for part (b) is complete.

(a). The proof follows very closely the lines from part (b), where we now
cite part (a) from Proposition 2.82. The details are omitted. O
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2.2.3. Helmholtz Decompositions

In the next section, when we introduce cell sets D C R? of Lipschitz layer
type, we will need a compactness result as in Theorem 2.71, but now
for a “divergence free” subset of functions from the space Hg(curl, D)
which do not have to vanish at the boundary. To derive such a result,
we will apply the curl-preserving transformation from the next section
to trace back to cuboids and to exploit already derived results therein.
As we will see later, this transformation will force us to consider matrix-
weighted L2-inner products, similarly as in [34]. Therefore, we have to
improve the result from Theorem 2.71 by allowing any matrix valued
function A € L (D, C3*3) in the sense of the setting from Definition 2.69.
This is one reason for the introduction of the Helmholtz decompositions
here. Another reason is its importance in the context of proofs for unique
solvability of boundary value problems in variational form in the space
Hq(curl, D), see for instance Theorem 4.14.

Definition 2.84 Let D C R3 be a cell set. Suppose A € L*°(D,C3*3)
such that A(z) is symmetric for a.a. x € D and Re(Z" A(z)2) > c|z|? for
all z € C3, a.a. x € D and some constant ¢ > 0. Furthermore, let B € R3.
The space L*(divg 4 0, D) is defined by

L2(divg A0, D) == {u € L2(D,C?) |
Wi € Hp o(D) : (Au| Vi) o ooy = o}.

If =0 and A =1, where I denotes the identity matriz, then we will drop
the subscript 3 and A in the symbol L?(divg 4 0, D), respectively.

For the direct sum in the next theorem recall (1.10).

Theorem 2.85 Let D C R? be a bounded cell set and oRS R3. Then
(i) L*(D,C?) = L2(dng7A 0,D)® VﬁHclg,o(D)v
(ZZ) HQ@(CIH‘L D) = HQ,()(CHI‘I, diV&A 0, D) (&) VgHé,O(D),

(iii) Hg(curl, D) = Hg(curl,divg 4 0,D) & VﬁHé’O(D).
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Remark 2.86 The Helmholtz decompositions from Theorem 2.85 have to
be read in the following way: uw = @ + v, where v is of the form v = Vgp
with p € He o(D) uniquely determined!

Remark 2.87 Provided X is a Banach space, it is a well-known result
from functional analysis that to a direct sum X = U @V there corresponds
a unique projection P € L(X) such that P(X)=U and (I — P)(X)=V.

Proof: (Theorem 2.85) (i). We show that L?(divg 40, D) is a closed
subspace of L?(D,C3). In fact, let (u,)nen be a sequence in the space
L3(divg, 4 0, D), converging to some u € L*(D,C?) with respect to the
norm || - [|r2(p,cs). Note that Au,, — Au in L*(D,C3), as n — co. Let
¢ € Hp o(D). Then

(A’LL | vﬂw)LQ(D,C3) = nh—)néo (Aun | vﬂw)L2(D,C3 =0.

We show that VgHéyO(D) is a closed subspace of L?(D,C3?). In fact, let
(Pn)nen be a sequence in Hcl;),o(D) such that Vsp, — u in L?(D,C?). In
particular, (Vspn)nen is a Cauchy sequence in L?(D,C3). Therefore, by
Friedrich’s inequality from Theorem 2.72; (p,)nen is a Cauchy sequence
in L?(D) and thus convergent to some p € L?(D). We have to show
that p € Hp, ,(D) and that Vgp = u. But this follows immediately from
Lemma 2.74.

We show that L?(divs 4 0, D) N VgH};O(D) = {0}. In fact, let u belong to
the intersection of L?(divg 4 0, D) and VsHp o(D). Then u = Vgep with
(NS Hclg,o(D) and we obtain

0 = Re (Au| Vs¥)r2(pcsy = Re /D Vﬁz/;(x)TA(x)ngb(x) dz

> /D V9@ dz = e[ Vavl2a .o,

Hence, Vgy = 0, and with Friedrich’s inequality we obtain ¢ = 0, i.e.,
u=0.

And finally, we show that L*(D,C?) C L*(divs,4 0, D) + VsH} o(D). In
fact, let u € L*(D,C?). Consider the sesquilinear form a : H, 4(D) x
H o(D) — C and the linear functional £ : Hf (D) — C given by

a(lbyp) = (V[ﬂ/) | Avﬁp)L2(D’C3) and 4(1/)) = (Vzﬂ/) | AU)L2(D7C3) .
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Then [£(y)] < [Vs¥llz2(p.c9) [[Aull2(p,c3) < e[|l 1y (p) and analogously
la(,p)| < elllluy o) Pl ) for all ¢, p € Hi, o(D). Furthermore,

Rea(y, ) = Re/D(ng(m))T A(x)Vpyp(x)dx
>C [ Vo) da > C iy o,

for all ¢ € Hé,o(D)v where we have applied Corollary 2.73. Therefore,
we are in the situation of Theorem A.8 and obtain a unique p € Hé’O(D)
such that (AVsp| V) 12 (p sy = (Au| V) 12 p sy for all ¢ € H (D).
Set @ :=u — Vgp. Then, for arbitrary ¢ € Hé},o(D)= we arrive at

(Aﬂ | V,Bq/))Lz(D’Cs) = (AU | Vﬁd’)Lz(D,Cz) - (AVgp ‘ VW/’)Lz(D,@) =0.

(it). We show that Hg o(curl,divg 4 0, D) is a closed subspace of the space
Hg o(curl, D). In fact, let (up)nen be a sequence in Hg o(curl, divg 4 0, D),
converging to some u € Hq o(curl, D) with respect to || - || g (curl,p)- In
particular, u,, — u and Au,, — Au, both in L?(D,C3). Let ¢ € HéO(D).
Then

(Au| Vﬂ¢)L2(D7C3) = nh_{go (Aup | vﬂ¢)L2(D7c3 =0.

We have to show that VsHp (D) is a closed subspace of Hg o(curl, D).
But this was already done in Proposition 2.75

We have to show that Hgq o(curl,divg 4 0,D) N VgH (D) = {0}. But
this follows with exactly the same arguments as in the corresponding step
from part (7).

We have to show that Hg o(curl, D) C Hg o(curl,divg 4 0, D)+VgH, (D).
In fact, let u € Hgo(curl, D). We consider again the sesquilinear form
a: Hp (D) x Hp o(D) = C and the linear functional £ : H}, ,(D) — C
given by

fl(%?) = (Vﬁ¢ | Avﬁp)L2(D7cs) and 5@) = (VB¢ ‘ Au)[ﬁ([)@g)

and repeat the arguments from the corresponding step in part (4) to obtain a
unique p € Hf o(D) such that (AVgp| V) p2(p csy = (Au | Ve¥) r2(p co)
for all ¥ € Hé,o (D). We set again 4 := u — Vgp and easily check that @
belongs to Hg o(curl, divg 4 0, D).
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(7ii). The assertion is proven very similar to part (7). We ommit the
details. 0

Now, we are in a position to improve the result from Theorem 2.71 by
allowing any matrix valued function A € L®(D,C3*3) as in the setting of
Definition 2.69.

Theorem 2.88 Let D C R3 be a bounded cell set. Then the embedding
Hq o(curl, divg 4 0, D) A, L3(D,C3) is compact.

Proof: We follow the lines in the proof of [34, Lemma 5.31]. Let (w)nen
be a bounded sequence in Hg (curl, divg 4 0, D). We decompose u,, =
@y, + Vspy, according to

Hg o(curl, D) = Hg o(curl,divg 0, D) @ VBHéO(D),

for all n € N, and have, thanks to Remark 2.87, that (@, )nen is a bounded
sequence in Hg o(curl,divg 0, D) with respect to || - ||z (cw1,p)- From
Theorem 2.71 we conclude that there exists a subsequence (denoted by
the same symbol) such that (@, )nen is convergent in L?(D,C?). On the
other hand, @, = u, — Vgp, is just the decomposition with respect to

L*(D,C%) = L*(divg 4 0, D) & VgHp o(D).

Taking again Remark 2.87 into account, we conclude that (u,)nen is a
Cauchy sequence in L?(D,C3) and thus convergent therein. O

2.3. Functions on Cell Sets of Lipschitz Layer
Type

In this section we focus on cell sets of special type, which will naturally arise
later when we pose scattering problems on Q)-periodic surfaces. Moreover,
for those cell sets we can introduce trace and extension operators by only
slightly modifying the concepts in [34].
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2.3.1. Geometrical Setting and First Consequences

Definition 2.89 We call an open set D C R3 a cell set of Lipschitz layer
type, if D is a cell set and if there exist Q-periodic and Lipschitz-continuous
functions f; : R? = R, j = 0,1, such that fo(&) < f1(€) for all ¢ € R? and

Eq(D) = {z e R*| fo(&) < 23 < f1(2)}.

Let D C R3 be a cell set of Lipschitz layer type with corresponding
functions f;, j = 0,1, as in Definition 2.89. We set

={zeR®| 7 €R?and z3 = f;(2)}, j=0,1, (2.12a)
j-Z{xeR‘”’lerandxszf]i} j=0,1,  (2.12b)

[s:=DnN(T; +B3(0,e)), j=0,1, 0<e<dist(To,T1). (2.12c)

We continue with the following result, which transfers the notion of a
partition of unity to the Q-periodic setting. This tool plays an important
role for the derivation of denseness results and for the construction of trace
and extension operators. We choose a partition of unity which consists
of three members. This has the advantage that functions defined on D
can be cut-off only near the boundary I'y and I'y, which is absolutely
sufficient and provides enough information for the definition of the trace
operators.

Theorem 2.90 Let D C R3 be a cell set of Lipschitz layer type and
recall (2.12a) for the definition of the set I'j, j = 0,1. Then there exist

aj € C&O(R‘g), j=0,1,2, such that
(i) ;>0 onR?, j=0,1,2,
(ii) 35 o d;(x) =1 for all x € Eq(D),

(iii) ¢0 = 0 in a neighborhood of F1 and gbl = 0 in a neighborhood of FO,
as well as (/)2 = 0 in a neighborhood of Fo U F1
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Proof: Since D is of Lipschitz layer type, we have § := dist(fo7 fl) > 0.
Let 0 <e < % Set Qg :=DnN (fo +Bg(0,€)), O :=DnN (fl + BS(O,s))
and Qg := D\ (QU ;). Note that Q; are cell sets, j = 0,1,2. Let
¢</3 be the mollifier given in (2.6) and define similarly as in the proof of
Lemma 2.80

(@) ::/ b a(z—y)dy, cEeR% j=0,1,2.
Eq(£2;)+B3(0,e/3)

Then the functions %j :R3 =+ R, j =0,1,2, given by

G0 =10, o1:=vP1(1—o) and ¢z =1l —o)(1 — ),
have the desired properties, if we take into account the fact as well that
the equation Y5_o¢; =1 — [[5_o(1 — ;) holds. 0
Now, we fix characteristic quantities describing D, similarly as the authors
of [34] have done for general Lipschitz domains, see Subsection 2.1.3.

Let D C R3 be a cell set of Lipschitz layer type with corresponding
functions f; and boundary patches I'; from (2.12b), j = 0,1, let L3 € R
such that

Ly >max {f1(€) — fo(€) | £€Q} >0

and set
Qs :=Q x (—L3,L3), Q5 :=Q x (—L3,0), QF :=Q x(0,Ls).
We introduce the mappings
- 3 T -
Uo(z) == (21,22, fo(Z) — x3) , r€Qy,
- ) T B
Uy (x) = (21,22, 1(E) +3) T €Q3,

and their extensions (and restrictions) to @ x {0}, that is,

Uo(z) = m; and Uy(x):= x; , x € Q.
fo(Z) fi(Z)

Again thanks to Rademacher’s result, we have that f; is differentiable
almost everywhere on ) and that its gradient is essentially bounded by the



2.3. Functions on Cell Sets of Lipschitz Layer Type 105

Lipschitz constant of f;. Therefore, ¥; is differentiable almost everywhere
on @ and the surface I'; can be parametrized by y = ¥,(x) for z € Q,
with outward pointing normal unit vector n;(y) at a.a. y = ¥,(z) € I';

given by
1 (o, 0y,
) = s (G0 G

where in “F” the minus sign holds for j = 0 and the plus sign for j =1

and where
=4/1+|Vfj(x)|?, foraa. zeQ.

| ov, oV
(2.13)

pi(x) = 3761(95) x 8752(96)
We set U := ¥;(Q3 ), j = 0,1. Note that the Jacobian \i/;(a:) € R¥3 is
given by

1 0 0
\ilg(:c): 80 81 0 |, foraa. zeQy,
(@) g T

where again in “F” the minus sign holds for j = 0 and the plus sign for
J = 1. Hence, these Jacobians are again regular with constant determinant
det V) (z) = F1 and W; are isomorphisms from Q3 to U; for j = 0,1.
Furthermore, we define

ow; |ow; |9, oV,

j(x) == [8:01 x ‘8352 x ’89:1 x) X R ()], for a.a. z € Q.

Finally, we choose 25]- eCy (R3) from Theorem 2.90 and set ¢; := $j|D,
7 =20,1,2. Then

® ¢; € CF(D) and ¢; >0on D, j=0,1,2,

° Z?:o ¢;j(z) =1for all x € D,

e ¢y =0 in a neighborhood of I'y and ¢; = 0 in a neighborhood of 'y,
as well as ¢ = 0 in a neighborhood of 'y U T .

Assumption 2.91 Let D C R? be a cell set of Lipschitz layer type with
corresponding number Lg, boundary I';, mapping \ilj from Q3 to U;, with
their restriction V; from Q to I';, j = 0,1, and partition of unity ¢;,
i =0,1,2, from above.
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The next lemma puts two kinds of neighborhoods in relation to one another.
Its statements are used several times in the sequel and their proofs make
explicitly use of the Lipschitz continuity of the considered surface patches
of D.

Lemma 2.92 Let D C R? be a cell set of Lipschitz layer type with corre-
sponding functions fo and f1 as in Definition 2.89. Recall (2.12a) for the
set I'; and define fort >0

Vi(t) == {x € R | |os — £;(3)] < t}, j=0,1.

Choose some & € R such that 0 < & < dist(To,T1). Furthermore, let
a:=(0,0,a3)" € R? be given with az > L + 2, where L > 0 denotes the
mazimum of the Lipschitz constants of fo and f1, and let j € {0,1}. Then
the following statements are true.

(i) For allt > 0 there exists € > 0 such that fj + B3(0,e) C V(t).
(ii) V;(t) +Bs(0,¢) CT; +B3(0,8"), forall 0<e<t+e<d <4.

(iii) For all 0 < e < ﬁg there holds

e z € D\Vi(§) ANy €Bslx +ca,e] = y3 < f1(9) —

NI N>

e x € D\ Vy(6) Ny €Bslx —ca,e] = y3 > fo(h) +
(iv) For all € > 0 there holds

e xeDANyeBsz+eacel = y3> fo(y)+e,

ez €D Ay€EBs[x—cae] = y3 < f1(g) —e.

. )
(v) In particular, for all 0 < e < 5 there holds

e z€ D\ Vi(0) = Bs[z+ea,e] C Eq(D)\ (Vi(

e x€D\Vy(0) = Bslz —ca,e] C Eg(D)\ (Vo
(vi) For all e > 0 there holds

exeDNVi(e) NyeD = y¢ Bs(x+ea,c),

) U VO(£))7
) UVi(e)).

NS N>

exeDNVy(e) NyeD = y ¢ Bs(x —ea,c).
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Proof: For part (iii) and (iv) we were inspired by the proof from [34,
Theorem 5.3].
(i). Let t > 0 and set € := 715,

y € fj and z € B3(0,¢). Then

Let x € fj +B3(0,¢), i.e., z = y + z with

w3 = f5(@)| = |f;(9) + 25 = f5(§ + 2)| < LIZ|[ + [z5] < (L +1)e = 1.

(ii). At first we consider the case e = 0, i.e., B3(0,e) = . Let = € V;(¢).
Then by definition |z3 — f;()| < t. Now define y := (%, f;(#))". Then
there holds for z := z — y that |2| = |z —y| = |z3 — f;(@)] <t < &,
Now, let € > 0 such that ¢ + & < ¢’. Then from the case ¢ = 0 we
conclude that V;(t) C I'; + B3(0,6" — ¢). Therefore, Vj(t) + B3(0,¢) C
fj + B3(0,8" — ) + B3(0,¢). Since B3(0,6" — &) + B3(0,e) = B3(0,9’), the
assertion follows.

(iii). Let « € D\ V1(0). Take some y € Bs[z + €a,¢]. Hence, |7 — §| < €.
Then

ys<zz+eaz+e< f1(z2) —0+¢e(l+as)
= f1(@) = f1() + f1(§) — 0 + (1 + a3)
< 1) = L@+ £1(7) — 0+ e(1 + as)
< LE =gl + f1(§) — 6 +e(1 + as)
<A@ —0+e(L+1+as) < [(H) - 3
The second assertion is shown analogously.

(iv). Take some z € D and some y € Bs[x + €a,¢]. Hence, |Z — | < ¢
Then

ys > x5 +eaz —e > fo(&) +e(ag —1)

—fo( ) = (fo@) = fo(2)) +e(az — 1)
fo(@) = [fo(@) — fo(@)| +e(az — 1)

>f0( y) — L|g — & +e(az — 1)

> fo(g) +elaz —1—L) > fo(y) +e.

The second assertion is shown analogously.
(v). This is a combination of part (%) and (iv).
(vi). Let x € DNVi(e) and y € D. Then x5 > f1(%) —e. If |§ — Z| > ¢,
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then we obtain immediately | +ca —y| > |Z — §| > €. Solet |§— Z| < e.
Then we conclude

|z +ea—y| > |z3 +eas —ys| > x5 +eas —ys3
> fi1(%) —e+caz — y3
= 1) —ys — (f1(9) — f1(Z)) +e(az — 1)
> —[f1(@) — fi(@)] +eaz — 1)
>—Lly—z|+elag—1)>¢clazs—L—1) >«

The second assertion is shown analogously. O

Denseness Results. Recall the integral identities (A.6) and consider D C
R3 to be a cell set of Lipschitz layer type. Due to the Q-periodicity, it is easy
to show that for ¢, € C4(D)NCq(D) and u,v € CLH(D,C*)NCqy(D,C?)
there holds

1
dzr = d 14
| @90 +0ve)da ;)/Fjwn 5 (214a)
1
/D(curlu-v—u-curlv)da::;/Fj(nxu)~vds, (2.14Db)

1
div -Vip)de = -u) ds, 14
/D(z/J ivu+u-Viy)de ;/Fjw(n u)ds (2.14c)

where n denotes the outward pointing normal unit vector on D. There-

fore, C&’(D) is a subspace of H' (D) and C’gf(ﬁ, C3) is a subspace of
Hg(curl, D) and of Hg(div, D). The next important theorem shows that
these subspaces are even dense therein.

Theorem 2.93 Let D C R? be a cell set of Lipschitz layer type. Then
the following assertions are true.

(a) The space C’gf(ﬁ, (Cd/) is dense in Hgy' (D, (Cdl).

(b) The space C& (D, C?) is dense in Hg(curl, D).
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(¢) The space Cg(D,C?) is dense in Hg(div, D).

Proof: Recall fj7 j=0,1, from (2.12a) and ¢;, j =0, 1,2, from Assump-
tion 2.91. Note that ¢; € CZF (D). Moreover, there exists > 0 such that
supp(¢po) C D\T{, supp(¢1) € D\ and supp(¢2) € D\ (TUT]), with
F? from (2.12c), j = 0,1. Set a := (0,0, L +2) ", where L > 0 denotes the
maximum of the Lipschitz constants from fy and f;.

We start with part (b), continue with part (¢) and postpone part (a) to
the end of this proof.

(b) Let u € Hg(curl, D). Set ul) := ¢;u. Then ul) € Hg(curl, D) and
supp(u?)) C supp(¢;), 7 = 0,1,2. Furthermore, Z?:o u) = u. We
define for 0 < ¢ < %(5

ul® (z) = / - (z + ca — y) u® (y) dy, x €D,
D

) :/ - (z — ca — y) uV (y) dy, z € D,

u /@w 2 (y) dy, reD,

where (ZE denotes the Q-periodic extension of ¢. from (2.6). Note that
) e C¥(D,C?), j = 0,1,2. Furthermore, by part (iv) from Lemma 2.92,

we have for all # € D that ¢.(z+ca—-) and ¢.(z—ea—-) vanish in a neigh-
borhood of I‘o and I‘l, respectively. Therefore, thanks to Proposition 2.82,
we obtain for x € D

curl ul® / Ve ¢(z +ca— y) x u® (y) dy
- [V dula+a—) < u )y
= /D be(z +ea — y) curl @ (y) dy =: (curl ul®)(z).
And analogously, we have for z € D

curl ul (z / be(x — ca — y) curluV (y) dy =: (curlu™)(z),
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curlu® (z / be(x —y) curl u® (y) dy =: (curlu?).(z).

Now we similarly proceed as at the end of the proof of Proposition 2.83
and set D =, < ({p"} + D). Moreover, let v € {u\9), curlu?)}

and 719 be the Q- -periodic extension of v@ from D to D and then be
extended by zero to R3\ D, j = 0,1,2. And finally set

(@)= | de(e+ea—y () dy, v ER,

551)@) = pe(x —ea—vy) 'ﬁ(l)(y) dy, z € R?,
R3

~(2) / ez — )v(2)( ) dy, x e R3.

Let j € {0,1,2}. Then Eéj)(ac) = véj)(x) for all z € D and moreover
V) € L2(R3,C?) with 91 = v) almost everywhere in D. Then from
Theorem 2.50 we conclude that 7) — ) in L2(R?,C3) and therefore
in particular v¥) = 39|, = 30)|p = v0) in L2(D,C3), as e — 0. This

U 40 with respect to | - |z (curl, 0y, @s € = 0.

means that ug
From this we finally conclude that for u. := Z? 0 ugj ) there holds Ue €

C%O(ﬁ, C?) and u. = Zj 0 ) - Z?:o u) = u in Hg(curl, D), as
e — 0, and the proof is complete.

(¢) Let u € Hg(div, D). We define u) and u, j=0,1,2, as in part (b)
and obtain with the same arguments, and again thanks to Proposition 2.82,
forx € D

div u(o) / Va ¢e +ea—y)- U(O)(y) dy
—Avy¢g<w+aa—y>-u<°><y>dy
- /D Ge(a +2a — ) diva® (y) dy = (divu®).(x),
and analogously

divu® (z /(/)E z —ea—y)divuV(y) dy =: (divu).(z),
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div u?)(m) = / ag (x —y) div u® (y)dy =: (div u(Z))E(x).
D

Now we follow the lines as in part (b) to obtain the desired result.

(a) We only show the assertion for the case d’ = 1 as the generalization
for the case d’ > 1 is obvious. A

Let u € H (D). We define u9) and ugj), j=0,1,2, as in part (b) and
obtain with the same arguments, and again thanks to Proposition 2.82,
for a € N3, |a| <m, and z € D

o) = [ 3 6uetza= ) u ) dy
= () [ 0 dutatca— ) u Oy
= [ e+ ea— )0 ) dy = (00 (a).
and analogously
0u@) = [ Guw = ca=1) 0D ) dy = ("), (o),
0u(@) = [ G =) 0u® ) dy = (00 (o).

Now we follow again the lines as in part (b) to obtain the desired result
and the proof is complete. O

Lower and Upper Boundary Patches. One of the most important prop-
erties of the geometrical structure of a cell set D C R3 of Lipschitz layer
type is, that only the lower and upper boundary patch I'g and I'y, described
by the graph of the function fy and f;, respectively, is interesting, since
contributions of the side patches on intergrals over the whole boundary
0D cancel out in the @-periodic framework. Therefore it seems quite
natural to focus on the lower and upper boundary patch separately and to
introduce also separate trace and extension operators. However, to realize
this concept, additional function spaces have to be defined.
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Let D C R? be a cell set of Lipschitz layer type with characteristic
quantities as in Assumption 2.91. Furthermore, let m € Ny and j € {0,1}.
We introduce

Chor, (D,C%) = {u e Cy(D, c?) | 3> 0 : supp(u) ﬂl? = @},

C&or, (D, c?) = ﬂ Cfg,o,rj (D,C™).
k=0

As before, in the names of these function spaces we will often neglect the
superscript “m” if m = 0. And again, we will mostly drop the symbol for
the co-domain in the case of scalar valued functions.

Definition 2.94 Let D C R? be a cell set of Lipschitz layer type and
j €{0,1}.
(a) We define Hey o p, (D,C%Y as the closure of Coor, (D,C%Y in the
space Hé"(D7(Cd/),

(b) We define Hq,o,r,(curl, D) as the closure of C3q (D, C?) in the
space Hg(curl, D).

Further Extension (by Zero) Operatos. Often we will need a variant
of the extension (by zero) operator from Proposition 2.68. For cell sets
of Lipschitz layer type, an upwards and downwards extension by zero
is possible if the function under consideration vanishes in I'f and I'g,
respectively, see the next result.

Proposition 2.95 Let D, D’ C R? be cell sets of Lipschitz layer type,
with characteristic quantities as in Assumption 2.91, such that D C D’.

(a) The following assertions are true.

(i) If To C 0D, then the mapping
Hpop, (D,CY P eny, (Dt
Gor, (D;CT)2u — uly € Q,o,r/l( ,C%)

is well-defined, linear and bounded.
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(ii) If Ty C 0D, then the mapping
HZoro(D,C") 3w = ulf” € HE (D', CY)
1s well-defined, linear and bounded.

In both cases we have |lul} /||H3(D/7cd’) < Hu||H$(D£d/) and further-
more 9*(u|P") = (0°w)|P" for all u e HFor, (D,C%), j=0,1, and
all a € N} with |a] < m.

(b) The following assertions are true.
(i) If Ty C OD’, then the mapping
Hgor, (curl,D) 5 u u|0D/ € Hg o (curl, D)
1s well-defined, linear and bounded.
(i) If Ty C 0D, then the mapping
Hgor,(curl,D) 5 u u|0D/ € HQQJ’\()(CUI‘],D,)
1s well-defined, linear and bounded.
In both cases we have ||u|0D/||HQ(Curl,D’) = |lull 1o (curt,p) and further-

more curl(ul®") = (curlw)|®" for all u € Hgqor,(curl,D), j =0,1.

Proof: This is shown with exactly the same arguments as in part (i) of
the proof of Proposition 2.68. O

Friedrich’s Inequality. Due to the special structure of a cell set D C R?
of Lipschitz layer type, we can generalize Friedrich’s inequality from
Theorem 2.72 and its Corollary 2.73 to situations where u € Hé(D)
vanishes only on one of both surfaces patches, see the next theorem.

Theorem 2.96 Let D C R? be a cell set of Lipschitz layer type and
B € R3. Then there exists ¢ > 0 such that

llullL2(py < c||VaullL2(p,csy, for allu € Héyoypj (D), j=0,1.

Here, the operator Vg is given by Vg = V +if3, see also (1.20a).
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Proof: For j = 0 we can exactly follow the lines in the proof of Theo-

rem 2.72 if we replace therein C,(D) by CFp (D) and H 4(D) by
H} o1, (D). The modification for j = 1 are then quite obvious. O

Corollary 2.97 Let D C R? be a cell set of Lipschitz layer type and
B € R3. Then there exists ¢ > 0 such that

HUHHé)(D) < c||Vsulp2(p,csy, forallu € Hé),o,l“j (D), 7=0,1.

Here, the operator Vg is given by Vg =V +if3, see also (1.20a).

Proof: This is shown by the same arguments as in the proof of Corol-
lary 2.73. O

We continue with the correspondents of Lemma 2.74 and Proposition 2.75.
For example, one of these results will be needed later for the definition of
the surface divergence.

Lemma 2.98 Let D C R3 be a cell set of Lipschitz layer type with char-
acteristic quantities as in Assumption 2.91. Furthermore, let j € {0,1}
and B € R3.

If (pn)nen is a sequence in Hégﬁo,rj (D) such that (pp)nen @s a Cauchy
sequence in L?(D) and (Vspn)nen is a Cauchy sequence in L?(D,C3),
then for the L2-limits p := limy_ o0 Pn and u := lim,, o Vgpy, there holds
p € Hj o p, (D) with Vgp = u.

Proof: The assertion is shown by copying the lines of the proof of
Lemma 2.74 and by replacing therein H, o(D) with Hég,o,rj (D). O

Proposition 2.99 Let D C R3 be a cell set of Lipschitz layer type with
characteristic quantities as in Assumption 2.91. Furthermore, let j € {0,1}
and B € R3. Then VBHclg,o,rj (D) is a closed subspace of Hq o r,(curl, D).
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Proof: The assertion is shown by copying the lines of part (i) in the
proof of Proposition 2.75 and by replacing therein the space Hé’O(D)
with Hp o r, (D), the space Hq o(curl, D) with Hg o,r,(curl, D), the space
Co(D) with CF, r (D), the space CF (D, C?) with Cor, (D, C?),
Theorem 2.72 with Theorem 2.96 and ﬁnally if we replace Lemma 2.74
with Lemma 2.98. a

Functions with Compact Support. Again, we will often be in situations
where the support of a function has some distance to the boundary of D.
Here two more possibilities are conceivable. Recall Definition 2.79 for the
space Hg,o(curl, D). In Proposition 2.83 we have seen that Hq o(curl, D)
is a subset of Hg o(curl, D), where D denoted therein an arbitrary cell set.
Hence, we have this result in particular for cell sets of Lipschitz layer type.
As mentioned above, we are now interested in spaces for functions which
only vanish in the neighborhood of one, the lower or the upper, boundary
patch, i.e., on I'§ or on I'], respectively. In this situation we obtain a
similar result, see the next proposition.

Definition 2.100 Let D C R3 be a cell set of Lipschitz layer type, m € N
and j € {0,1}.

(a) The subspace Hi o 1, (D,C%) of Hg(DACd/) is defined by

HGor, (D,C%) = {u € H&”(D,(Cd/) | 3e > 0: supp(u) ﬁﬁj = }

(b) The subspace Hq o, (curl, D) of Hg(curl, D) is defined by

Hq.or,(curl, D) := {u € Hg(curl, D) ’ e > 0:supp(u)NTE = @}.

Proposition 2.101 Let D C R? be a cell set of Lipschitz layer type and
let 7 € {0,1}. Then

(a) Hg,o,rj (Dacd/) c Hg,o,rj (Dacdl);
(b) Hqor,(curl, D) C Hgor,(curl, D).
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Proof: We start with part (b) and postpone part (a) to the end of this
proof.

(b). We only prove the assertion for j = 1, because the argumentation for
the case 7 = 0 is completely analogous.

Let u € Hg,o,r, (curl, D). By assumption, there exists § > 0 such that
supp(u) NTY = 0. Set a := (0,0,L +2)", where L > 0 denotes the
maximum of the Lipschitz constants from fy and f;. We define for e > 0

ue(x) := /qug(z—ksa—y) u(y) dy, z € D.

where 55 denotes the Q-periodic extension of ¢. from (2.6). By part (vi)
from Lemma 2.92, u. vanishes in a neighborhood of I'y. Therefore, u. €
C3or, (D, C3) for all & > 0~ Furthermore, by part (i) from Lemma 2.227
we have for all z € D that ¢.(x +ca — ) vanishes in a neighborhood of T'y.
Therefore, thanks to part (b) of Proposition 2.82, we obtain for z € D

curl uc(z) = / Vi be(z +ca —y) x u(y) dy
D

- /D Vy 55(x +ea—y) xu(y)dy
= /D e (z + ca —y) curl u(y) dy =: (curlw). ().

Now we similarly proceed as at the end of the proof of Proposition 2.83 and
set D := U, <1 ({p"} + D) to be the union of D and its eight neighbors
from Eg (D), where p(*) is the lattice vector given in (2.7). Moreover, let
v € {u,curlu} and ¥ be the Q-periodic extension of v from D to D and
then be extended by zero to R3\ D. And finally set

Ve(x) := S(bg(m—i—sa—y)ﬁ(y)dy, r € R3,
R
Then v.(x) = v.(z) for all z € D and moreover v € L*(R? C3) with
v = v almost everywhere in D. Then from Theorem 2.50 we conclude that
Ue — U in L%(R3,C3) and therefore in particular v, = 0.|p — 0|p = v in
L?(D,C3), as ¢ — 0. This means that u. — u with respect to || - || & (curt, DY
as € — 0, and the proof for part (b) is complete.
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(a). The proof follows very closely the lines from part (b), where we now
cite part (a) from Proposition 2.82. The details are omitted. O

2.3.2. A curl-preserving Transformation

Since Q-periodic functions on a cell set D of Lipschitz layer type and
periodic functions on a cuboid @3 are closely related to each other, we can
and will often reuse results from Subsection 2.1.2 when we are deriving
analogous results for Q-periodic functions defined on D. However, a
suitable transformation between those function spaces is needed. While
for the scalar valued case this procedure, realized by

urruoW,,

is straightforward, for the vector valued case this transformation doesn’t
work because it does not map vector fields of Hg(curl, D) into vector
fields of Hg(curl, Q3 ), see also [34]. Hence, for the vector valued case a
curl-preserving transformation, realized by

U (@;)T(u 0 ;)

has to be introduced. This requires a little more effort, see the next lemma,
with the following proposition as preparation. The lemma contains two
more results which are later of importance when we will consider the trace
operators.

Proposition 2.102 Let D C R? be a cell set of Lipschitz layer type and
let u, v : Eg(D) — C be Q-periodic and Lipschitz continuous. Then for
u:=1u|p and v :=7|p we have that uVv € Hg(curl, D) with variational
curl given by

curl(uVv) = Vu x Vu.

In particular, curl(uVv) exists almost everywhere on D as a classical
function.

Proof: Thanks to Proposition 2.76 and Theorem 2.93, we can, by re-
placing the space C>° by Cg and Cg° by Cg, follow the proof from
Proposition 2.44 line for line to obtain the assertion. O
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Lemma 2.103 Let D C R3? be a cell set of Lipschitz layer type with
characteristic quantities as in Assumption 2.91. In the following arguments
we will drop the index “j”. Let 0 < ¢ < Lz and R := Q x (—£,0). For

ueCy (U(R),C?) set
v(z) = ' (2) Tu(P(2)), for a.a. x € RU(Q x {0}).

Furthermore, define é := (0,0, :Fl)T € R3, where in “F” the minus sign
holds for j = 0 and the plus sign for j = 1. Then v € Hg(curl, R) and,
with y = ¥(z),

(i) curlv(z) = (\i”(x))_l(curlu)( (z)), fora.a. z€R,

(i) p(z)(n(y) x u(y)) = F(z)(é x v(z,0)), fora.a. z€Q,
(iii) (n(y) x u(y)) xn(y) = F(z)""[(é x v(z,0)) x €], for a.a. x € Q.
Proof: We proceed similarly as in the proof of [34, Lemma 5.22] and note

that for any regular matrix M = [a|b|c] € R3*3, with column vectors a, b
and c, the inverse M ! is given by
M—l

[bx cle x ala x b]T [bx cle x ala xb]T.

1
- (a><b) = det M

In the following arguments the subscript j denotes the j-th component of
the vector under consideration.
(7). At first, with y = ¥(z), we show that

Z V(uj 0 W) (x) x V¥ (z) = (\il’(x))_l curlu(y),

holds for a.a. € R. In fact, due to the smoothness of u and the Lipschitz
continuity of ¥, we have for a.a. x € R that the following equations hold
in the classical sense

3

S Vo 0)@) x V(@) = 3 [(¥@) Vuy(y)] x V()

_ ZJ 1 akuJ V\I/k( ) X V\i/](a:)]
= [(VI2 x VI3)(2) | (V5 x VIT)(2) | (VT x VTs)(z)] curlu(y)
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= (\il’(x))fl curl u(y),

where we applied the observation from the beginning to (‘i/(x))T Now,

we note that uj o ¥ and ¥; are Lipschitz continuous functions as in
Proposition 2.102. Therefore, (uj o V) V¥; € Hg(curl, R) with

curl ((uj o U) V) = V(ujo ) x VI,  j=1,2,3.

Hence, for arbitrary x € CZy (R, C3) we obtain

3 - -
/Rv(x) ~curl x(x)dz = ijl /Ruj (¥(2))VV(z) - curl x(z) dz
3 - -
= Zi:l/}% [V(uj o ¥)(z) x V¥(2)] - x(x)dz
= /R (\I"(a:))_l curlu(¥(z)) - x(z) dz,

which shows that v € Hg(curl, R) with variational curl given as asserted.
(#i). The following equations have to be understood only almost everywhere
in R. We have v = (u- U, u- DU, u- 83\11)—'— and therefore é x v =
(£u- 020, Fu-0,¥,0)" on the boundary z3 = 0. Consequently,

Féxv)=2(u-029)0YF (u-01¥) RV =F("T XY Xu=phxu).

(#it). Again, the following equations have to be understood only almost
everywhere on the boundary of R for x3 = 0. At first, we observe that

|02 0|2 —01V -0, ¥ 0
A= (=000, ¥ [0 0)* 0| =p(FTF) " =pF'F T
0 0 p?

From above we have p(n x u) = £v9 81V F v 92¥. Hence,

p2(n X u) XN = —Uy 61\11 X (81\1’ X 82‘1/) + v 62\11 X (81\11 X 82\11)
= —Vg [(81‘11 . 8211/)81\1’ — |(91‘I/|282\I/] + U1 [|02‘I/|281‘I/ — (81‘11 . 82\1’)62\1/}
=FA(v1,v2,0)" = pFF'F~T (v1,02,0) " = pF~ " ((é x v) x &).

This completes the proof. O
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Theorem 2.104 Let D C R? be a cell set of Lipschitz layer type with
characteristic quantities as in Assumption 2.91. Furthermore, let 0 < { <
L3 and R := @ x (—=¢£,0). In the following arguments we will drop the
index “j 7 and consider U restricted to R. Then the following assertions
are true,

(a) The mapping
HH(U(R) 2 u = vi=uoW € HY(R)

is well-defined and belongs to Lis (Hé)(ﬁl(R)), HY(R)). Its inverse is
given by HH(R) 3 v = u:i=wvo Tle Hé(\il(R)) Furthermore,

Vo = (U)T[(Vu) 0 9], u € Hy(¥(R)),
Vu=[(U)"T o U [(Vu) o T, v e HH(R).

(b) The mapping

Ho(cur, (R)) > u + v:= (V)" (uo¥) € Hg(curl, R)

is well-defined and belongs to Lis(Heq(curl, ¥(R )) HQ(curl R)) Its
inverse is given by Hg(curl, R) 3 v = wu = ol 1)~ T(vol 1) €
Hg(curl, ¥(R)). Furthermore,

curlv = (¥")~(curlu) o W], u € Hg(curl, U(R)),
curlu = (U o U~ H[(curlv) o U1, v € Hg(curl, R).

Proof: (a). Let u € H}Q(\i!(R)) By Theorem 2.93, there exists a sequence
(Un)nen in CF (\TJ(R)), converging to u with respect to || - HH}Q(@(R)). Set
Up 1= up o U for all n € N. Due to Corollary 2.77, v, € Hé(R) with

Vo, = (V)T [(Vu,) o ¥] for all n € N. Therefore, the convergence from
above, together with the transformation formula, implies

Up oW — v in L?(R),
Vo, — (V)T [(Vu) o U] in L*(R,C?),
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the latter because of essential boundedness of the entries in ()7, see
Rademacher’s result. Let x € CFy(R). Then

/Rv(x)V)g(x) dz = lim | (un, o ¥)(z)Vx(z)dz

n— oo R

= lim [ Vu,(z)x(z) de = / (P') () [(Vu) 0 ¥](x) x () dz,
which shows that v € Hj(R) with Vv = (U)T[(Vu) o ¥]. Hence, the
mapping is well-defined. Its linearity is clear and its boundedness follows
easily by means of the formulas for v and V.

Analogously, one shows that the mapping Hé (R)2v = u:=vo¥ !¢
H é?(\i/(R)) is well-defined, linear and bounded. And finally, the bijectivity
follows from v = uo Vo ¥t and v =voU~loW.

(b). The assertions are shown with the same arguments as in part (a),
while we cite here Lemma 2.103 instead of Corollary 2.77. (]

To use results from Subsection 2.1.2; after having transformed a @-periodic
function defined on a cell set D of Lipschitz layer type to a @Q-periodic
function defined on the half-cuboid Q)3 , we often have to extend those
functions in a further step to Q-periodic functions defined on the cuboid
Q@3 by a reflection technique as described in the following proposition. For
this recall (1.4) for the definition of the reflection operator “*”.

Proposition 2.105 Let ¢ > 0 and set R :== Qx(—¢,{), R~ = Q x(—{,0)
and R™ := Q x (0,¢). Then the following assertions are true.
(a) Forv e H5(R™) define
. v on R™, and Vo on R,
v i= w =
v(-*) on RT, (Vu)*(+*) on RT.
Then v € H&-?(R) with VO = . Moreover, the mapping H}Q(R_) >
v € H};,(R) is linear and bounded.
(b) Forv e Hg(curl, R™) define

5. on R, and i curlv on R,
" lv*(-*) on RT, " | —(curlv)*(-*) on RT.
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Then © € Hg(curl, R) with curld = . Moreover, the mapping
Hg(curl, R™) 3 v+ 0 € Hg(curl, R) is linear and bounded.

Proof: We only show the assertion for the vector valued case as the
argumentation for the scalar valued case is completely analogous.
Let T:R? - R3 x — T(x) := 2* = (21,22, —x3) . Then

1 0 0
T(x)=10 1 0 |, z € R3,
0 0 —1

with | det(T"(z))| = 1 for all € R®. Moreover, there exists T~! coinciding
with T. We need this observation in the following arguments when we
apply the transformation theorem.

Let v € Hg(curl, R™). Take some x € Cgo(R,C?). Choose a sequence
(Un)nen In Cgf(?, C?) with v, — v in Hg(curl, R7), as n — co. Due to
v, — v and curlv, — curlv in L2(R~,C?) and because of

Je

2

o (T(x)) — v (T(@)|* dz = / | (vnly) — ()" dy

B / [vn(y) = v(y)[* dy,
.

for all n € N, we have v} (-*) — v*(+*) and analogously (curlv,)*(-*) —
(curlv)*(+*) in L2(R*,C?), as n — oo. Let n € N. Then, using Equa-
tion (A.6b), we have

/f}n(x) -curl x(z) dz
= /7 curl v, (z) - x(z) do — /Q><{O} ( (%) X Un(x)) -x(z) ds.

Using in addition curl(x*oT~1)(y) = —[(curl x)*oT ] (y), for ally € T(R),
we analogously obtain

[ o) culx@yde = [ i) [url) o 7w dy
R+
— [ ol (el o T (0 dy
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= / i v (y) - curl(x* o T7Y)(y) dy

_ / curlog(y) - (o T (y) dy

+/QX{O} (((‘1%) X vn(y)) ' (X*iY*’(_l))(y) ds

= — /R+ (curlv,)*(T(x)) - x(x) dz
o ((8) @) xwas

where we have exploited the fact, that in the last cross product the third
component is zero. Note that in the sum of both integral identities the
boundary terms vanish. Hence,

/R 8(z) - curl y(z) da
:/_v(x) curl () dx—i—/R+ v*(@*) - curl x(2) do
~ 1im /R () - curl x(z) da + /R uila) - cwrlx(@) de)
= lim_ (/R— curlv, (z) - y() dx—/m(cuﬂvn)*(x*) (@) d:):)
- / curlo(e) - y(e) da - /R (o) (@) - (@) d,

which shows that © € Hg(curl, R) with variational curl as given in the
formula from the assertion. Furthermore, it is easy to see that

[v*(zz2r+ c3) = vl L2 (r- 03>

||(CUY1U)*(‘*)||L2(R+,<c3) = | CUTIUHLZ‘(RaC?’)-

Therefore, ||9|| 7 (curl,r) = ﬁ”UHH(curl,R*) and the proof is complete. [
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2.3.3. Trace and Extension Operators

Next, we want to derive trace and extension results for Q)-periodic functions
defined on a cell set D of Lipschitz layer type by following the ideas in [34]
for bounded Lipschitz domains. This requires some technical efforts.

Let d € N, D C R? be a cell set of Lipschitz layer type, with characteristic
quantities as in Assumption 2.91, and let j € {0,1}. The space L?(TI';, C%)
of square integrable functions on the surface patch I'; of D can be charac-
terized by ¢ € L*(T';,C%), if and only if p o ¥; € L*(Q,C%), because of

ol e, = [ le@Pds = [ (@) dn, (2150

where p; was defined in (2.13), and the estimate

1<pj(x) <A1+ VFill%, for a.a. x € Q. (2.15Db)

We define the subspace of L?(T';, C?) of tangential vector fields by

L{(T;) == {p € L*(I';,C*) | n(y) - ¢(y) = 0 for a.a. y € I';}.

Definition 2.106 Let D C R? be a cell set of Lipschitz layer type, with
characteristic quantities as in Assumption 2.91, and let j € {0,1}.

(a) We define the spaceH %(r i C) by
HY(r;,¢") = {p € I(1;,C) | po U5 € HY2(Q,C7)}
with norm
1/2
lell sz, cany = 100 Uillgap g oy @ € He (05, C7).

(b) We define the spaces Hg 1/2 (Div,T';) and H, 1/2(Cu1r1 I';) as the
completion of

{p e LAT) | ¢' € H,/*(Div,Q)},
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{p e LUT;) | ¢" € Hy i/ (Curl, @)},

with respect to the norms

st
||(10||H51/2(Div71"j) = ||§0 HHp_Clrm(Div,Q)’
=T
H‘PHHC;”?(Curl,rj) =@ ”H;:r“(curl,(g)v
where
@'(z) :== pj(z) Fj_l(x) o(¥;(x)), foraa z€Q, (2.16a)
¢l (x) == F]»T(x) o(¥;(x)), fora.a. x€Q, (2.16b)
respectively.

Note that in contrast to Definition 2.45 no partition of unity is required here.
Furthermore, due to (2.15) and Proposition 2.13, there exist constants

c1,c2 > 0 such that for all ¢ € HgQ Ty, (Cd/) there holds
el 2qr; cory < erllo o ¥l L2 (g,cary
< alleo¥ill gz g ery = 2ol gyzr, coy-
A closer look at Proposition 2.13 even shows that the embedding
YA (r;,Cc?) <% LTy, CY) (2.17)

is compact, see Theorem 2.122.

Theorem 2.107 Let D C R3 be a cell set of Lipschitz layer type, with
characteristic quantities as in Assumption 2.91, and let j € {0,1}.

(a) The trace operator
or,  CF(D,CY) — HY*(T;,CY), uws lr,,

has a bounded extension from Hé(D,(Cdl) to Hé/Q(I‘j,(Cd,), which
we also denote by vor,. Furthermore, there exists a bounded right

inverse 1no,r; Hé/z(l"j, Cc?) Hy(D, C?) of Yo,r;. Moreover,

Mo.ro (Hy (Do, €)) € Hb o r, (D, C),
o,y (HY*(T1,C%)) € HE o, (D, CT).
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(b) The following assertions are true.

(i) The trace operator
Y Cgo(ﬁ, C*) — HQ_1/2(DiV,Fj), u > nj X ulp,,

has a bounded extension from Hg(curl, D) to H61/2(Div,Fj),
which we also denote by vy r,. Furthermore, there ewists a

bounded right inverse nyr; : Hél/z(Div,l"j) — Hg(curl, D) of
Yt,r; - Moreover,

Mt,To (H61/2(D1V» To)) € Hgor, (curl, D),

Mt.Ty (Hél/Q(Div, Fl)) C Hg.o.1,(curl, D).

(i) The trace operator
YT, - 03(57((33) — ltlél/Q(Curl,l"j)7 u = (n; X ulp,) X ny,

has a bounded extension from Hg(curl, D) to Hél/z(Curl,Fj),
which we also denote by YT, - Furthermore, there exists a
bounded right inverse nrr; : Hél/Q(Curl,Fj) — Hg(curl, D)
of yr,r,. Moreover,

NT.To (Hél/2(Curl, o)) € Hoor, (curl, D),
nT7F1 (Hél/Q(Curla Fl)) g HQ707F0 (Curl, D)

Proof: We start with part (b) and postpone part (a) to the end of this
proof. -
(b). Let u € CF(D,C?). We start with j = 0 and show that for

@' (z) == po(z) Fy H(z) (no x u)(Yo(z)), for a.a. x € Q,
there holds ¢! € Hp_elr/ 2 (Div, Q). For this we consider the product ¢ou
and note that by construction of ¢, we have ¢gu € Cg?o(D, C?) with ¢g u
vanishing in a neighborhood of Ty and with ng X u|r, = ng x (¢ v)|r,-
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By Proposition 2.95 and Proposition 2.101, (¢q u)|§’°(Q;) belongs to

Heg(curl, ¥o(Q3)) and we have that this operation is bounded. Set

v(@) = ()" [(dow) Vo@D 6 by ()], for aa. @ € Q5 U(Q x {0}).

Now, by Theorem 2.104, v € Hg(curl, Q3 ) and, by Lemma 2.103, ¢' =
é x v(+,0) almost everywhere on @, where é = (0,0, —1)T. Define

(2) = {v(aj), for a.a. x € Q3 U(Q x {0}),

v*(z*), fora.a. z € QF,

()

0

where the symbol “*” denotes the reflection operator given by C3 3 a =
(a1,as,a3)" + a* := (a1, as,—az)" € C3, see also Section 1.3. Due to
Proposition 2.105, we have © € Hg(curl, Q3). By Proposition 2.83, we
even have 9 € Hg o(curl, Q3). Moreover, é x 9(-,0) = é x v(+,0) almost
everywhere on (). Therefore

|é X ﬁ('a O)

o xuulro | 5272 e gy = 16 1272 iy, = | 5272 iv,0)

S Cl||®||Hper(C“rlaQ3) = Cl||@||HQ(curl,Q3) S C2||v||HQ(curl,Q3_)

To(Q3)
< Caf| (@0} ],"*” | <c
< Cs|(¢ou) |, Ho(eurl Bo(Qg)) = 3|90 Ul g (curt, )

S C4||u||HQ(Curl,D)7

where we have applied Theorem 2.23, Proposition 2.67, Proposition 2.105,
Theorem 2.104, Proposition 2.95 and finally Proposition 2.78.

Now to the construction of the extension operator 7, r,. Again, this is
done by continuous extension. First of all we note that by Theorem 2.90
¢o = 1 in a neighborhood of 'y in D. Therefore, there exists 0 < § < L3
such that ¥o(Q x (—4,0)) is a subset of this neighborhood. As part of the
construction, this § is assumed to be fix.

Let ¢ € {4 € L2(Ty) | ¢ € Hpa!*(Div,Q)}. Then @' € Hpa!*(Div, Q)
and by Theorem 2.23, there exists 0 € Hper(curl, Q3) such that v perd = @t
Note that by Observation 2.25 there holds |+ = (@|Q;)*(*) on Q7.

Next, consider

we= [ B seq
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where (E s denotes the @Q-periodic extension of ¢ s from (2.6). Then xo €
Ce:(@3) with xo = 1 in a neighborhood of @ x {0} and with xo =0 in
Q x ((—Ls,—36)U (36, L3)). We set v := xod. Then, by Proposition 2.21,
v € Hper(curl, Q3) and, by Lemma 2.24, 4t perv = V¢ per® = @'. Moreover,
we still have v|Q; = (1)|Q3—)*(°*) on Q7. Furthermore, due to Remark 2.63,
v € Hg(curl, Q3). Finally, we define

w = T_1’1)|Q;,

with T : Hg(curl, o(Q3)) — Hg(curl,Q3) denoting the curl-preserving
transformation from Theorem 2.104, and we define u as restriction of w
onto D. Then u € Hg(curl, D) and all operators involved in the construc-
tion were bounded, see in particular Proposition 2.68.

Now, we show that v r,u = ¢. In fact, due to the choice of §, we have
¢ou = u, meaning that u € Hq o r, (curl, D), which yields that u can be
extended by zero to an element of Hg(curl, ¥o(Q3)) coinciding with w.
Therefore, T(¢pou) = v|Q;. From above we know that v|Q;r = (”|Q;)*(*)
on Q:{. Therefore, the image of v| Q5 under the reflection operator given

by (%) coincides with v and we are done, because from above we have
VYt,perV = ¢t~

For the case j = 1 we follow the lines from above completely analogous.
And finally, the statements with respect to yrr; and nrr;, j = 0,1, are
obtained analogously as well.

(a). We only show the assertion for the case d’ = 1 as the generalization
to the case d’ > 1 is obvious.

Let u € CF (D). Similarly to part (b) we have that ¢ u vanishes in a neigh-

borhood of I'; and that therefore (¢ u)|0‘lj°(Q;) belongs to H} (Wo(Q3))-
We set

o(@) = (dou)| %) 0 Fo(z), =€ Q5 U(Q x {0}).

Note that v(z,0) = u(¥o(x)) for all z € Q. By Theorem 2.104, v belongs
to Hé(Q;) We define

@) = {vm, r€Q; U(Qx{0}),

v(z*), x€ Q}f
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and have that ¢ € Héz(Qg,)7 see Proposition 2.105. By Proposition 2.83,
we even have o € H}, ((Q3). Moreover, #(+,0) = v(-,0). Using now the
same arguments as in part (b), we obtain

Il e 2qe,y = 10Ol azz ) < € lulls o

Now to the construction of the extension operator 1y r,. Let ¢ € H, 22/ 2(I‘o).

Then ¢ o ¥ € Hpl (Q) and by Theorem 2.23 there exists 0 € H},(Q3)
such that v per = @ 0 Uy. Now we follow the arguments as in part (b)
but for the scalar valued case and obtain w € Hé(\ilo(Qg)). Again, we
define u as restriction of w onto D. Then u € Hcl2 (D) and all involved
operations were bounded. To show that vy r,u = ¢, we apply now the
separate operations in the construction of vo r, to u. Indeed, analogous to
part (b), these operations yield v = xo®. Applying Lemma 2.24 and then
Y0,per from Theorem 2.23, we arrive at ¢ o ¥g as desired.

Finally, the case j = 1 is shown completely analogous and the proof is
complete. (Il

By means of the trace and extension operators we easily obtain the next
denseness results.

Corollary 2.108 Let D C R? be a cell set of Lipschitz layer type, with
characteristic quantities as in Assumption 2.91, and let j € {0,1}. Then
the following assertions are true.

(a) The space
Dao(Ty,C”) i= {ulr, |u e €5 (D, ")}
is dense in Hé/g(Fj,Cd').
(b) The spaces
Da(T;,C?) = {n; x ulr, [u e CF(D,C*)},
Dor(T;,C3) = {(nj x ulr,) x n; | u e C (D, C3)}

are dense in H51/2(Div, I';) and Hél/Q(Curl, T';), respectively.
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Proof: (a). The proof follows closely the argumentation as in part (b)
from below and we leave the details to the reader.

(b). Let j € {0,1}. We only show the assertion for Dg +(I';, C?) since
the argumentation for DQyT(F]—,C‘g) is completely analogous. By The-

orem 2.107, Dg+(T';,C3) is a subspace of Hél/Q(Div,I‘j). Let ¢ €
H§1/2(Div, I';). Then again by Theorem 2.107, u := n; r, ¢ € Hg(curl, D).
Since C& (D, C?) is dense in Hg(curl, D), there exists a sequence (tn)nen
in O (D, C3) converging to u in Hg(curl, D). Therefore, again by The-
orem 2.107, (7V¢,r;Un)nen is a sequence in Dg +(T';,C3) with Ve, Un —
Y., U = @, as 1 — 00.

Remark 2.109 Consulting the proof of Theorem 2.107 and (2.16), we
have for ¢ € Dg +(T;,C3) and ¢ € Do r(T;,C3) that @' and YT belong to
L?(Q,C%) N Hp_e}/Q (Div, Q) and L*(Q,C?)N Hp_e}rp (Curl, @), respectively,
j=0,1.

Trace Operator in Hg(div, D). To show later the existence of a solution
to the variational formulation of our scattering problem of interest, we
will also need a trace theorem for elements in Hg(div, D). Thanks to
the integral identity (A.6c¢), this can be done with almost no effort by
interpreting the right hand side in (A.6c) as duality pairing, see below.
We follow closely the lines at the end of [34, Subsection 5.1.1], see in
particular [34, Definition 5.17], where the authors introduced the normal
derivative for elements from a certain subspace of H'(Q), with Q C R?
therein a bounded Lipschitz domain.

Definition 2.110 Let D C R3 be a cell set of Lipschitz layer type, with
characteristic quantities as in Assumption 2.91. Furthermore, let j € {0,1}.

We define Hcgl/z(l"j,(cd/) to be the dual space of Hégﬂ(Fj,(Cd/) equipped
with its canonical norm

. 6,9)

Wl =172 0. cary o= T
o (ED) YeHY?(1;,c4)\{0} W”Hg/z(rj,«:dv

for all ¥ € H,Y? I‘-,(Cd/ . Here, ({,1) denotes the duality pairing as
Q J
introduced in Section 1.3.
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In the following considerations let D C R? be a cell set of Lipschitz
layer type, with characteristic quantities as in Assumption 2.91, and let
j €{0,1}. Take some u € CF(D,C?) and ¢ € Hj5(D). Since CF (D) is
dense in Hég(D), see Theorem 2.93, there exists a sequence (¥, )pen in

C& (D) which converges to ¢ with respect to || - HHé(D). The continuity

of the trace operators then implies that yor;v¥n — 7o,r;% in Hclg/z(I‘j),
as n — oo. And by (2.17) we have that (yo,r; ¥ )nen converges to yo,r; 4
also in L?(T';). Therefore, taking also (2.14c) into account,

/(1/1divu+u~V1/1)dx: lim (Y divu + u - Vib,) da
D

n—oo D
1 1
= lim Z/ (- u)yo,r,%nds = Z/ (n-u)~yo,r,ds.
n— o0 iz r; iz r;

Hence, the element u € CFy (D, C3) can be assigned traces n; - ulp,, which

in turn can be considered as linear functionals from Hclg/ 2 (T;) to C via
the surface integral over I'; on the right hand side or, even better, via
the integral over D on the left hand side. Since the latter integral is also
well-defined for elements from Hg(div, D) and since, by Theorem 2.93,
C¥(D,C?) is dense in Hg(div, D), via this formula the just constructed
trace operator can be continuously extended to the whole space Hg(div, D),
see the next theorem (definition).

Theorem 2.111 (and Definition) Let D C R? be a cell set of Lipschitz
layer type, with characteristic quantities as in Assumption 2.91, and let

J €{0,1}. The mapping vnr; : Ho(div, D) — Hél/Q(Fj) given by

<7n,rju,¢> = /D (1; divu +u - Vi;) dz, (aS Hém(l“j),

is well-defined, linear and bounded. Here, for the case j = 0, =
Hég,o,rl(D) is any extension of v into D such that vor,¢¥ = v, while
for the case j =1, 1) € Hle,O,FO (D) is any extension of ¥ into D such
that vo,r,¥ = ¥. We call the mapping ynr; trace operator for elements in
Hq(div, D) with respect to T';.
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Proof: To see that the mapping v, r, is well-defined, first of all recall from
Theorem 2.107 and Proposition 2.101 that by 1) := 70,1, % such an extension
exists. Let now v, and v, be such extensions. Then, by part (a) from
Theorem 2.116 (inspecting the proof of this part we will note that we are
using arguments that we have already on hand), ¥ := ¢ — ), € Hclg,o(D)-

Hence, there exists a sequence (U, )nen in C&o(D) which converges to ¥
with respect to || - || HY (D) and the definition of the variational divergence

yields

/ (@divu+u~V1{~1)dx: lim (z/;ndivu—i—u-Vz/;n)dx:O.
D

n—oo D

The linearity of v, r, is easy to see. To show its boundedness, let u €
Hg(div,D) and ¢ € Hé/z(l"o). Then, by means of the inequality of
Cauchy-Schwarz and the boundedness of 1y r,, we obtain

[{(Yn,row, )| = ’ /D (10,00% div e +u - V(10,04%)) df’

< |[divulzz(pyllno.re ¥l 22 (o) + llullz2(p,c3) IV (0.0 ¥) | L2(D,c3)

< 2)|ull g (aiv.0) 10,00 | 11, (0) < 2wl g (aiv, 0 70,0 ||¢HH$/2(FO)~

Hence, H'yn’FOUHH51/2(FO) < 2{|no,ro |l vl g (aiv, 0y Which shows that the

operator v, r, is indeed bounded.
The assertion for the case j = 1 is shown completely analogous. g

Remark 2.112 Since the definition of the trace operator v, r, is moti-
vated by (A.6c), the sign changes in situation where the normal vector
points into D.

2.3.4. Greens Formula and Applications

In this subsection we will derive analogous formulas to (2.14), but now in
the context for functions in H}Q (D), Hg(curl, D) and Hg(div, D), respec-
tively. The formula (2.18b) is often referred to as Green’s formula.
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Theorem 2.113 Let D C R? be a cell set of Lipschitz layer type with
characteristic quantities as in Assumption 2.91. Then the following asser-
tions are true.

a) For u,v € H}(D) there holds the integration by parts formula in the
Q
following form

1
/ (uVv + vVu) dz = Z/ (7y0,r,;u) (v0,r;v) nds. (2.18a)
D =0T

(b) For j € {0,1} the bilinear form
<-, '>I‘j : 'DQ,t(Pj, CS) X DQ’T(FJy(Cg) — C
defined by
(9,) = (@, r, == (& | 07 2oy

where @' and T are given by (2.16), has a continuous extension
from H61/2(Div,Fj) X H51/2(Curl,Fj) to C, which we also denote
by (-,-)r;. There holds

‘<§07w>1‘_7" <C H('OHHcsl/Q(Div,Fj) HwHHélﬂ(Curl,Fj)’

for all g € Hy'*(Div,T;), ¥ € Hy'*(Curl,T;) and j = 0,1, where
C > 0 can be chosen as in Corollary 2.32. With these bilinear forms,
there holds Green’s formula in the following form

/(curlu-v—u-curlv)dx
g (2.18b)
= <%FU7TFU Z<’7trv’7Tr u>
=0

for all u,v € Hg(curl, D).
(¢) Foru e Hq(div, D) and ¢ € H,(D) there holds the formula

1
/ (Ydivu+u-Vy)d Z Yn,T; Us Yo,r; ) (2.18c¢)
D =

Here, (-,-) denotes the duality pairing from Theorem 2.111.
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Proof: (a). Let u,v € H}(D) and let (un)nen, (vn)nen be sequences
in C (D) such that u, — u, v, — v in H5(D), as n — oco. Then
Yo,r;Un — Yo,r;u in Hé/Z(Fj), j = 0,1. In particular, we have this
convergence in LQ(F]-)7 j = 0,1. Therefore, by applying the integral
identity (A.6a) and exploiting therein the Q-periodicity of the smooth
functions,

/ (uVv 4+ vVu)dz = lim (un, Vo, + v, Vu,) de
D

n—oo D

1 1
- HIL%j%L? (Yo,r;un) (Yo,r;vp) nds = JZZ(:)/Fj (7o,r;u) (Yo,r;v)nds.

(b). Due to Remark 2.109 and Corollary 2.32, the bilinear form is well-
defined on Dg+(T'j,C3) x Do r(I';,C?) and bounded. Hence, Corol-
lary 2.108 allows the continuous extension with the given estimate.

To verify the formula, take at first some u,v € Cgy (D,C3)and let j € {0,1}.
Set ¢ :=n; X ulr, and ¢ := (n; x v|p,) x n;. By the definition of v, r,
and yr,r, we can rewrite ¢ and ¥ in the form ¢ = Ye,r;w and ¥ = yrp,v.
Then

[ erue e, vds = /Q p3() F () o (0 () - F (2) 6 (¥,()) da

J

J

= /ngt(as) ) @T(l’) dz = (p,¥)r; = <’Yt,FJU,’YT,FjU>F .

Now, let u,v € Hg(curl, D) and let (un)nen, (vn)nen be sequences in
C%O(D,(Cg) such that u, — u, v, — v in Hg(curl,D), as n — oc.

Then v r;un — 7yer,u and yrr,;v, — yr,r;v in Hél/z(Div, I';) and

H&l/Z(Curl, I';), respectively, j = 0,1. Therefore, by applying the inte-
gral identity (A.6b), exploiting therein the @-periodicity of the smooth
functions and using the observation from above, we obtain

/ (curlu - v — w - curlv)dz = lim (curl uy, - v, — uy, - curlv,) dz

1
= lim E Vt,0; Un * YT,0;Vn A8
n—00 4 r;

j=0
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1 1
= lim Z (Y,0,Un, YT,0,Un ) = Z <%,Fju,’YT,Fjv>Fj~
=0

n—00 4 J
j=0

The second equation follows by interchanging the roles of v and v.

(c). Let u € Hg(div,D) and ¢ € Hé(D) Then there exist sequences
(Un)nen in CF (D,C?) and (¥n)nen in C&O(b) converging to u and
with respect to || - ||, (aiv,p) and || - ||Hé2(D), respectively. Using the
partition of unity from Assumption 2.91, there holds ¢ = Z?:o DY =
Z?:o lim,, o0 5% and, together with Proposition 2.78,

[ V]

2

Vi = V(g0) =Y (6;VY +9Ve;)
=0

Jj=0 J=
2 2
=D i (6;Vn + V) =D Tim V(e;n),
j=0 Jj=0

where the limits are taken in L?(D) and L?(D, C?), respectively. For n € N
and j € {0,1} set 1@9) = 1o,r;Y0,r;¥n- Note that 1,27(10) € Hég,o,rl(D)
and ¥ € HY or,(D), n € N. Furthermore, by the boundedness of
the trace and extension operator the sequence (~7(lj ))nGN converges to
n0,r;Y0,0, % =: $) in Héz(D)7 j=0,1. Let n € N. Then, by the definition
of the cut-off functions ¢;, by the Q-periodicity of all involved functions
and by (A.6¢), we obtain

Iy

2
jzz(:)/aD(¢ﬂ/)n>n-und5=/Fo<’7071“0¢n)n.unds+/ (’YO,Fli/Jn)D'unds

= / (P80 divu, + up, - VL) dz + / (P div uy, + up, - V) da.
D D

Hence, using the observations from above and again (A.6¢),

/D(wdivu—&—u-vw)dx:jz:;)/D((quw)divu—i—u-ijz/}))dx

2
=D Jim / ((&54n) div g + ty - V(5¢0)) do

=0 b
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2
:Z lim/ (¢jn)n - upds
jzonﬁoo 9D

1
_ 1) di R vane)
- JE&Z /D () divun + up - Vi) do

1
_ Z/ w(ﬂ) divu +u - Voo Z Yn,T; U Yo,1; %),
7=0
where the last step holds by the definition of the trace operator 7, r;, see
Theorem 2.111. ]

Duality Results. As a first application of Green’s formula in Hg(curl, D)

we show that the spaces Hél/Q(Div, I';) and Hél/z(Curl, I';) are dual to
each other, up to isomorphism. The next corollary states more precisely
what we mean by this formulation.

Corollary 2.114 Let D C R? be a cell set of Lipschitz layer type with
characteristic quantities as in Assumption 2.91. To simplify notation we
will drop the index “j”.

(i) The dual space Hél/z(Div,F)* of H51/2(Div,F) is isomorphic to

Hcsl/Q(Curl,l"). An isomorphism is given by
Ji: Hy'*(Cwl,T) — Hy'/*(Div,I)*, ¢ — Ji¢b = (-, ¢)r.
(i) The dual space Hél/z(Curl,I‘)* of Hél/Q(Curl,F) is isomorphic to
H, 1/2(D1V T). An isomorphism is given by

Jo : Hy'/*(Div,T) — Hg'*(Curl, 1), ¢ = Jag == (g, )r.

Proof: We follow the proof of [34, Theorem 5.26] and show at first that J;

is surjective. For this let £ € Hél/z(Div, I')*. Since £ o is an element
of the dual space Hg(curl, D)* of the Hilbert space Hg(curl, D), by the
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theorem of Riesz there exists a unique v € Hg(curl, D) such that for all
u € Hg(curl, D) we have

/ (curlw - curlv 4+ u - v)dz = K(%,ru).
D

From this we conclude

/D(curlx ~curlv + x -v)dx =0, for all x € C‘gf,o(D,(C3).

Hence, curlv € Hg(curl, D) with curl>v = —v. Set ) := ~rrcurlv. To
show that Jiyp = /£ let p € H§1/2(Div,l‘) and set u := 7 ¢. Then

o) =L(pru) = / (curlw - curlv — u - curl® v) dz
D

= (ye,ru,yrr curloy L = (p, )1 = (J19) ().

The surjectivity for Jo is shown completely analogous.

To see that J; is injective, let ¢ € Hél/Q(Curl,F) such that J1¢ = 0. By
a corollary of Hahn-Banach’s theorem, there exists ¢ € H51/2(Curl, r)*
with ||€]] = 1 and ¢(v)) Due to the surjectivity of Jo,

there exists ¢ € Hél/Q(Div, ') such that Jyp = £. Therefore,

= ||w||H51/2(Curl,F)'

”@ZJHH&Uz(Cur]I) = €(¢) = <<P,¢>F = (le) (90) =0.

Again, the injectivity of Js is obtained with the same arguments. O

Further Extension (by Zero) Operators. As a next application of The-
orem 2.113 we show a generalization of the extension result from Proposi-
tion 2.95.

Proposition 2.115 Let D C R? be a cell set of Lipschitz layer type with
characteristic quantities as in Assumption 2.91 and let D' C R3 be a cell
set such that D C D’'.

(a) The following assertions are true.
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(i) If To C OD’, then the mapping
ker(yor,) > u = ulf € Hy(D',C¥)
is well-defined, linear and bounded.
(i) If Ty C 0D', then the mapping
ker(vor,) 2 u — u|g)/ € H}Q(D/,Cd/)
is well-defined, linear and bounded.
(iii) The mapping
ker(yo,r,) Nker(yor,) 3 u — u|é), € Hég(D’,(Cd,)

is well-defined, linear and bounded.
In all cases we have ||U|OD/HHé(D/7C{1/) < Hu||Hé(D7C(1/) and further-
more 8*(ulf") = (8°w)|®" for all o € N3 with |o| < 1.
(b) The following assertions are true.
(i) If v € {ve.,r,,yr,r, } and Ty C OD’, then the mapping

ker(y) 3 u — ul? € Hg(curl, D)
is well-defined, linear and bounded.
(it) If v € {v,ro. Y110} and 'y C OD’, then the mapping
ker(y) 3 u — ul? € Hg(curl, D)
is well-defined, linear and bounded.
(151) If y1 € {veres vy b and o € {Ve,ro: Y100 }» then the mapping
ker(y1) Nker(yo) 3 u — uld € Ho(curl, D')

is well-defined, linear and bounded.

In all cases we have ||u|{)3/ | & (curt, 07y < Ul 1 (curt, 0y and furthermore

curl(u\OD/) = (curl u)|5’,.
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Proof: We only show the assertion for part (b) as the argumentation for
part (a) is completely analogous.

(i). Let v =, r, and u € ker(y). Since ker(y) C Hg(curl, D), there exists
a sequence (uy )nen in CF (D, C3) with u,, — u in Hg(curl, D), as n — oc.
In particular, yu, — yu = 0 in Hél/Z(Div,Fl). Let x € Cg,(D’,C?).
Note that by Theorem 2.113

|<’7un77T,F1X>F1’ <C ”’VURHHélﬂ(Div,pl)HPYT,HXHHél/?(Cur]’Fl) — 0,

as n — 0o. Using now Green’s formula (2.18b) from Theorem 2.113 and
the fact that vz r,x = 0, we obtain therefore

/ ull (z) - curl x(2)de = lim [ w, () - curl x(z) d

n—roo D

n—oo

/D curlu(x) - x(z)dz = //(curl WP () - x(x) da.

= lim </ curl uy, () - x(z) dz + <’YUm’YT,F1X>F1>
D

This proves that the mapping is well-defined. Its linearity is clear and its
boundedness is easy to obtain, see the proof of Proposition 2.68.

Thanks to the second equality in (2.18b), we can proceed analogously for
the case v = yrr,.

The assertion in (%) is shown with the same arguments. And the assertion
in (%) is proven by combining the arguments for (i) and (). O

The Kernels of Trace Operators. Recall Definition 2.94 for the spaces
Hpor,(D,C%) and Hgor,(curl,D), j = 0,1. It turns out that these
spaces are the kernels of the corresponding trace operators on I'g and T'y,
respectively. This will be shown next.

Theorem 2.116 Let D C R? be a cell set of Lipschitz layer type with
characteristic quantities as in Assumption 2.91 and let j € {0,1}. Then
the following assertions are true.

(a) (i) ker(yor,) = Hb o p (D,CT),
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(ii) Hp o(D, c?) = Hp o1, (D, Cd>ﬂHQ0r(D(C )-
(b) (i) ker(ve,r;) = Hq,o,r, (curl, D) = ker(yrr, ),
(it) Hgo(curl, D) = Hg or,(curl, D) N Hg o, (curl, D).

Proof: Set a := (0,0,L +2)7, where L > 0 denotes the maximum of the
Lipschitz constants from fy and f;.

We start with part (b) and postpone part (a) to the end of this proof.
(b). (i). We only show that ker(y:r,) = Hgq,or,(curl, D), since the
argumentation for the second equation is completely analogous.

Let j € {0,1} and u € Hg,or,(curl, D). Then there exists a sequence
(un)nen In CFg p, (D,C3) with u,, — u in Hg(curl, D), as n — co. By
the continuity of v, we obtain v, u, — ¢ r;u. And since v, u, =0
for all n € N, we conclude v; r,u = 0.

To show the other direction, let u € ker(vy r,), i.e., u € Hg(curl, D) with
~e,r, 4 = 0. Choose some cell set D’ C R3 such that D € D' and 'y C 0D'.
Then u|y" € Ho(curl, D'), see Proposition 2.115. We define for & > 0

0= [ Ge+za-pudy.  zeD.
| belatea—y)ulg'(y) dy, (+)

where ¢ denotes the Q-periodic extension of ¢ from (2.6). From part (vi)
of Lemma 2.92 we know that for € D with z3 > f1(Z) —¢ and for y € D
there holds y ¢ Bs(x + €a,e). Hence, u. € Cg,p, (D,C?). Combining
part (iv) with part (i) of Lemma 2.92, we obtain that ¢ (z+ca—-) vanishes
in a neighborhood of Ty for all € D. Therefore, thanks to part (b) of
Proposition 2.82; we obtain for x € D

curl uc(z) = Va 55(:6 +ea—y) X uly /(y) dy
DI

—/D/ Vy be (@ +ca —y) x u|P(y) dy

e (@ +ca — y) curlu| P (y) dy
D/

= /D b (x + ca — y) curl u(y) dy =: (curlu). ().
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Now we proceed as at the end of the proof of Proposition 2.83 and set
D=, <1 ({p"™} + D). Moreover, let v € {u,curlu} and ¥ be the

Q-periodic extension of v from D to D and then be extended by zero to
R3\ D. And finally set

Ue(z) = | ¢(z+ea—y)o(y)dy, xeR
RB

Then . (z) = ve(x) for all z € D and moreover v € L*(R3,C3) with v = v
almost everywhere in D. From Theorem 2.50 we conclude that v, — v in
L?(R3,C3) and therefore in particular v. = v.|p — v|p = v in L*(D, C3?),
as € — 0. This means that u. — u with respect to || - || g(cu, 0y, as € = 0,
and this shows that v € Hq o, (curl, D).

To show the assertion for u € ker(v;r,), we use the same argumentation.
We only have to interchange the indices “1” and “0” and to replace
¢e(x +ca—y) by ¢p=(z —ca —y).

(@i). The direction “C” is easy to see. To show the other direction, let
u € Hgor,(curl, D) N Hqg o1, (curl, D). By part (i) we have v, r,u=0=
Yer,u. Let D' C R3 be a cell set such that D C D’ and ToUT'; C D'.
Again thanks to Proposition 2.115, u|}" € Hg(curl, D'). For j € {0,1,2}
set ull) := $j|D/ ulP’, where {¢p | k = 0,1,2} is the partition of unity
from Theorem 2.90. One of its important properties implies that there
exists § > 0 such that supp(u*)) € D\ '}, supp(u®) C D\ T and
supp(u?) C D\ (T) UTY). Furthermore, 23:0 uP|p =wu. For 0 <e <

s we set as in part (4)

2(L+2)
W@ = [ dula—ca=y)ulpm)ay reD,
() = /D Fe(w + 2 — y)uD| p(y) dy, reD,
u(z) = /D Bl — y)u®|p(y) dy, reD,

and note that analogous to (*) we can rewrite these integrals as integrals
over D’. Furthermore, we observe that we can use the same arguments

from part (i) to see that ul™ vanishes in a neighborhood of I'; and that
¢e(x + €a — +) vanishes in a neighborhood of T'y for all x € D. To
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see that ug) also Vanishes in a neighborhood of Ty, let x € D with

x5 < fo(Z) + (36 — $e(L +2)). This implies that z + ca € Vo(3), with V;

from Lemma 2.92. Usmg part (%) of this lemma, we have z + ca € F6/2.

Since € < S , we obtain therefore Bs(x + ca,e) C I‘O, meaning that the

integrand in the definition of ugl) is indeed zero. Hence, uél) € Cgfo(D, (C3)

and furthermore for curlu( )

(0) (2)

we obtain the same result as in part (7).

For us ’ and us™’ we can argue completely analogous. Now we can follow

the lines at the end of the proof of Theorem 2.93 and obtain ug 9) — \D

with respect to || - || g (curl, 0y, as € = 0, 7 = 0,1,2. From this we finally
conclude that for u, := Zf Ouéj) there holds u. € C&O(D,C?’) and
U = Z?—o uEJ — Z?:o uP|p = u in Hg(curl, D), as ¢ — 0, and the
proof for part (b) is complete.

(a). The proof follows very closely the lines from part (b), where we now
cite part (a) from Proposition 2.82. The details are omitted. O

Corollary 2.117 Let D C R? be a cell set of Lipschitz layer type with
characteristic quantities as in Assumption 2.91. Furthermore, let 0 < { <
Lz and R := Q x (—=¢,0). In the following arguments we consider \i'j
restricted to R. Moreover, let S; and T; denote the isomorphism from
Theorem 2.104 for the scalar and vector valued case, respectively. For ease
of notation we denote by T\, and T} the lower and upper boundary patch
of @j(R), j =0,1, respectively. Then the following assertions are true.

(a) For the scalar valued case we have

S;(Ho, o(¥;(R))) = Hbo(R), j=0,1,
SO(HQOF’ (\I/O( ))) HQOQx{O}( ) S1 (Hclg,o,r’l(‘i’l(R)))v
So (HQOF’ ‘IJO ) HQOQX{ e}( ):Sl(Hé,o,Fg(‘i’l(R)))-

(b) For the vector valued case we have

Tj(Hq,o(curl, ¥;(R))) = Hgo(cwl,R), j=0,1,
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To (HQwo’Fg (curl, \TIO(R))) = Hg,0,0x{0}(curl, R)
=T (HQ,O,F’l (curl, \ill(R))),
Ty (Hg,o,r, (curl, Uo(R))) = Hg,0,0x (¢} (curl, R)
=Ty (Hg,o,r; (curl, U1 (R))).

Proof: We only show the assertion for the vector valued case as the
argumentation for the scalar valued case is completely analogous.

Let v € Ty(Hg,o(curl, \i/O(R))), i.c., there exists u € Hg g(curl, Uo(R))
such that v = Tou. Moreover, there exists (up)nen in Cgﬁo(\ilo(R),C?’)
converging to u with respect to || - ||y, (cur,do(r))- Hence, Toun —
Tou in Hg(curl, R) and therefore 0 = v, gx 0y Toun — V¢,@x {0y Tou and
0 = vox{—03Toun — Y,ox{—ryTou, as n — oo. Consequently, v €
ker(v,0x{0}) N ker(v,0x{—¢}), which yields with Theorem 2.116 that
v € Hg o(curl, R).

For the other direction let now v € Hg o(curl, R). Since Tj is an isomor-
phism, we can use the same argumentation from above to obtain that
u := Ty 'v belongs to Hg o(curl, ¥g(R)) and we are done.

The remaining equalities are shown analogously. ([l

Intermediate Layers. Thanks to Theorem 2.113, piecewise defined func-
tions whose traces coincide can be clued together, as shown in the next
proposition.

Proposition 2.118 Let D—, Dt C R3 be cell sets of Lipschitz layer type
with corresponding surfaces I’; and I‘;r, 7 = 0,1, respectively, such that
D= ND* =0, but 'y =T =:T. For simplicity, set D := D~ UT UD™*.

(a) If v e HY(D™) and w € HY(DT) with ~yorv = ~orw, then

w, on DT,
U= B
v, onD

belongs to H}Q(D) with Vu = Vv on D~ and Vu = Vw on DT.
Moreover, the mapping Hb(D*) X Hé(D*) S (v,w)—u € Hé)(D)
is linear and bounded.
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(b) If v € Hg(curl, D7) and w € Hg(curl, DV) with y;rv = —y: rw or
with yr,rv = yr,rw, then

w, on DT,
u = 3
v, onD

belongs to Hg(curl, D) with curl u = curlv on D~ and curlu = curl w
on Dt. Moreover, the mapping Hg(curl, D7) x Hg(curl, D) >
(v, w) — u € Hg(curl, D) is linear and bounded.

Proof: We only show the assertion for part (b) as the argumentation for
part (a) is completely analogous.

Moreover, we only show the assertion for the case yr rv = vy rw, because
the assertion for the other case is shown by very similar arguments. So,
let x € C’g)")o(D,Cig). Note that v rx|p- = —7v.rx|p+ and Vt,FgX|D* =
*yt,rlﬂd p+ = 0. Using the second equality from Green’s formula (2.18b),
we obtain therefore

/u-curlxdx:/ v~cur1xdm—|—/ w - curl y dx
D - D+

= / curlv - xdz + {(v¢,r X|p-,yr,r vV)r

+/ curlw-xdx+<%,FX\D+7W’T,F“J>F
D+t

:/ curlv-xdx—i—/ curlw - x dx,
_ D+

which shows that v € Hg(curl, D) with variational curl as given in the
proposition. The linearity and boundedness are easy to see. O

Otherwise, if a cell set D of Lipschitz layer type can be divided by an
intermediate Lipschitz surface I' into two cell sets of Lipschitz layer type
which contact each other, then for the traces on both sides of I we have
the following result.

Proposition 2.119 Let D C R3 be a cell set of Lipschitz layer type
with characteristic quantities as in Assumption 2.91. Furthermore, let
f:R? = R be Q-periodic and Lipschitz-continuous, and set

Ii={zeR?®|Z€qQ and 23 = f(Z)}.
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Moreover, suppose that T' C D and set

Dt :={2eR®|%€Q and f(3) < z3 < f1()},
D™ :={zeR’|Z€Q and fo(¥) <3 < f(Z)}.

Then the following assertions are true.
(a) If u € Hé(D, C), then vo,rulp- = ~o.rulp+ .
(b) If u € Hg(curl, D), then

Ve, rU p- = =Y. ru|p+ and  ~yrrulp- = yr,rulpr.

Proof: We only show the assertion for part (b) as the argumentation for
part (a) is completely analogous.

Let u € Hg(curl, D). Also here, we only show the first equation, since the
proof for the second one uses analogous arguments.

Let ¢ € Hél/z(CurL I'). Thanks to Theorem 2.107 we have v~ :=npry €
Ho.or, (curl, D7) and v := nrry € Heoor, (curl, DT). Now, Proposi-
tion 2.118 implies that

v, on DT,
vi=
v~, on D~

belongs to Hg(curl, D). In particular, v € Hg o(curl, D). Due to Propo-
sition 2.83, there exist a sequence (Xn)nen in C’gfo(D,(C?’), converging
to v in Hg(curl, D). Now, by Proposition 2.68 we have x,|p- — v~ in
Hg(curl, D7) and x,|p+ — v* in Hg(curl, D*), as n — oo. Therefore,
by continuity of the trace operators, yrrxn|p- — ¥ and yr,rxn|p+ — ¥
in Hcsl/z(CurLl"), as n — oo. Hence, using Green’s formula (2.18b),

(ve,rulp- + ve,rulp+, Y)r
= lim (v, rulp-,y7r,rXnlp-)r + lim (v rulp+,y7.rXnlD+)r
n—oo n—oo

= lim [/ (curlw - x5 — u - curl xp, ) dz

n—oo

+/ (curlwu - xp — u - curl x,, ) da
D+
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= lim (curlw - xp — u - curl x,, ) dz = 0,
n— oo D
where the last equality holds by definition of the variational curl. Since

(NS Hcsl/Q(Curl7 I') was arbitrarily chosen, Corollary 2.114 yields now the
assertion. 0O

Surface Divergence. To show later existence of a solution to the varia-
tional formulation of our scattering problem of interest, we also need the
notion of the surface divergence. In classical terms, its definition and some
applications can be found in the appendix of [34]. Here we will focus on
a definition in variational sense, and this in particular for the Q-periodic
setting. However, for this purpose again [34] will be our basis.

Theorem 2.120 (and Definition) Let D C R? be a cell set of Lipschitz
layer type with characteristic quantities as in Assumption 2.91. Further-

more, let j € {0,1} and 3 € R3. For ¢ € H51/2(D1V7].—‘j) the mapping

Hé/z(rj) 5Y = —<<P77T,PJV—,87/~)>PJ eC

is well-defined, linear and bounded. Here, 1) € Hé(D) is any extension of
¥ into D such that 70,1“]-1/; = 1. We call this mapping surface divergence
of @, in sign Divg ¢ (if B = 0, then we will drop the index “S7” in this
symbol). Hence, for ¢ € Hél/z(DiV, I';) we have that Divg ¢ € Hél/Q(I‘j)
and

(Divg ¢, ¥) = —(, v, Vog¥)r,, ¥ € HF (T)).

In particular, there holds the identity

<D1VB @770,Fj¢> = _<<)077T,Fj V—5¢>FJ~7 (219)
for all ¢ € H§1/2(Div,l“j) and all ¢ € HY(D).

Proof: We only show the assertion for the case j = 0, as the assertion for
the case 7 = 1 is shown completely analogous.

To see that the mapping is well-defined, first of all recall from Theo-
rem 2.107 that by z/; = 10,r,% such an extension exists. Let now 1/;1 and
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z/:Jg be such extensions. Then, by part (a) from Theorem 2.116, =
Y1 — b € Hp o p, (D). Furthermore, V_gHf o, (D) € Hg o1, (curl, D),
see Proposition 2.99. Hence, yrr,V_g¢ = 0.

To show the boundedness, let ¢ € H51/2(Div,F0) and ¢ € Héf(l“o).
Then, by part (b) of Theorem 2.113, by the boundedness of vyrr,, the
estimate ||V_g(n0,r0%) || Hg(cur,p) < C ||7’]071‘0'(/JHH22(D) (thanks to Proposi-
tion 2.75) and by the boundedness of 7y r,, we obtain

|(Divg @, ¥)| = |{, vr,00 V-5 (10,r0%)) 1, |
<C ||<‘0||H51/2(Div,l—‘g) ||7T,F0 H ||v—5(77071—‘0¢)”HQ(curl,D)

<C ||()0||H(;1/2(DiV,FO) ||770,1"0|| Hw”Hé}m(Fo).

(o) < C, which shows that Divg ¢ is indeed bounded.

For the symbol C, which appeared here several times, recall again the
convention from the end of Section 1.3.

The identity (2.19) is clear, because ) € Hé (D) is an extension of vy,
with the required property. ([

Hence, H Dng <'OHH(51/2

Hél/z(Div, T';) as a Subspace of Hal/z(I‘j,C?’). As in [34, Lemma
5.27], in the following presentation we will show that for a cell set D C R?
of Lipschitz layer type, with characteristic quantities as in Assumption 2.91,
the space Hél/Q(DiVIj) can be embedded into Hél/Q(Fj, C?),j=0,1.
We will need this result for the proof of existence of a solution to the
variational formulation of our scattering problem of interest and, moreover,
for the definition of vector surface potentials.

Recall Proposition 2.65. Hence, for u € Hé?(D,(C?’) its trace yr,r,u is
well-defined and belongs to H51/2(Curl, r;),j=0,1.

Theorem 2.121 Let D C R? be a cell set of Lipschitz layer type, with
characteristic quantities as in Assumption 2.91, and let j € {0,1}. Then
we have

H,'/*(Div,Tj) — Hy'/*(I;,C?),
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where the embedding is given by HQSI/Q(Div7 I'j)op— L€ Hélﬂ(F]’, C3),
with £, defined by

(o) = (pyrr, D), W€ HY (T, C).

Here, (-,-) denotes the duality pairing with respect to H§1/2(Fj,(C3) and
Ve Hég(D,(C?’) is any extension of ¥ such that ’yo,quz = .

Proof: Let j € {0,1}. Furthermore, let ¢ € H&l/Q(Div,Fj). We fol-
low the lines in the proof of [34, Lemma 5.27] and show at first that
l, € Hy''*(T;,C?) is well-defined. For this let ¢y, € Hb(D,C?) be
two extensions of ¢ € H(l;,/z(Fj,(CS). Then ¢ := 1)1 — ¥, belongs to
H&O,FJ_(D,C:‘), see Theorem 2.116 (applied to each component of ).
Due to Definition 2.94, there exists a sequence (Xn)nen in CF 1, (D, C3)
converging in HQ (D,C3) to ¥. By Proposition 2.65, this sequence con-
verges even in Hg(curl, D) to 1. Therefore, 0 = lim,,_, oo YT,r; Xn = VT, .
Moreover, for ¢ € Hé)/z( ;,C3) and Y= no,r; ¥ € HQ(D,(C?’) we obtain

(e, )] = (@ vrr, ), |

<c ”()0”}[651/2(1)1\,’{*].) ||7T7Fj || ||770,Fj ” H’L/}HHé/z(Fj,(Iﬁ)'

Both together shows indeed that £, is well-defined.

Clearly, the mapping H51/2(Div,l“ i)>¢—Ll,€e H, 1/2( I';,C?) is linear,
and its boundedness follows easily from the last estlmate. It remains to
show its injectivity. For this let ¢ € Hél/z(DiV, I';) such that £, =
Let ¢ € Hél/Q(Curl, I';) and set Y= nr.r;v € Hg(curl, D). Then there
exists a sequence (Xn)nen in CF (D, C?) converging to 9 in Hg(curl, D).
Note that for n € N the function x,|r, belongs to D¢ o(L';,C?), yielding

that x,|r, itself belongs to Hclg/Q(Fj, C3), see Corollary 2.108. Hence, since
£, =0, we have

(o, ¥)r; = hm <<P YT.r; Xn)T; = hm <£Lann|F )y =0.

Therefore, ¢ has to vanish because of the isomorphism J; from Corol-
lary 2.114. O
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2.3.5. Compactness Results

The following theorem is an analog of Theorem 2.71. It might be useful to
recall Definition 2.69.

Theorem 2.122 Let D C R? be a cell set of Lipschitz layer type, with
characteristic quantities as in Assumption 2.91, and let j € {0,1}. Fur-
thermore, let 3 € R3. Then the following assertions are true.

(a) (i) The embedding Hé/2(Fj,Cd/) 24, L2(T;,C%) is compact.
(it) The embedding Hé(D,(Cd/) SN L2(D,C%) is compact.

b) The embedding Hq(curl,divs 0, D (i} L%(D,C?) is compact.
Q B

Proof: (a) (i). Let at first d = 1. We decompose the embedding in the
following way

H*(0) 2 HY2(Q) = LA(Q) = LA(Ty),
where the operators S; and T} are given by S := ¢ o ¥; and Tj¢ :=
Yo \Ilj_l, respectively. By the definition of the space H, é—/ 2 (T';), the operator
S; is bounded, and the boundedness of T; we obtain from (2.15). Now the
assertion follows from Proposition 2.13.

For d’ > 1 we conclude from the case d’ = 1 that for a bounded sequence
in H, é/ 2 (T, (Cdl) each sequence for the components has a convergent sub-
sequence in LQ(I‘J—); and from this it is easy to see that the sequence where
we started from has a convergent subsequence in L?(T';, Cd,).

(a) (ii). We only show the assertion for the case d’ = 1 as the generalization
to the case d’ > 1 is obvious, see also part (7).

Let at first u € HY(D) be arbitrary and define ul) := (¢ju)|OUj with ¢;
and U; from Assumption 2.91, j = 0, 1. Note that u® ¢ Hclg,o,l‘l (D) and
uM) € Hé o, (D). Let j € {0,1}. We define

09 =D o5 € HL(QF)
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as in Theorem 2.104 and observe that v() vanishes in a neighborhood of
x {—Ls}. We set

@(J) — U(j)a on Q;a
’ U(j)(.*% on Q;

Due to Proposition 2.105 and Proposition 2.83, we have 6U) € Hé 0(Q3).

Let now (uy)nen be a bounded sequence in Héz(D) The quantities u(])

0¥ and 6$ correspond to the quantities from above. Then (85)ncy is

bounded in HéVO(Q:g) and possesses therefore, thanks to Theorem 2.71, a
converging subsequence in L?(Q3) (which we denote by the same symbol).
Hence (v,(Lj))neN converges in L?(Q3 ), yielding that (u S))neN converges in
L?(U;). And this implies that (¢;un)nen converges in L?(D).

Recall ¢o from Assumption 2.91. Then (@t )nen is @ bounded sequence
in Hé’O(D) and possesses therefore, again due to Theorem 2.71, a subse-
quence (denoted by the same symbol) which converges in L?(D).

Since 23:0 ¢; = 1, in summary we have shown that the bounded sequence
(tn)nen from above contains a subsequence which converges in LQ(D).
(b). We follow the lines in the proof of [34, Theorem 5.32], but in contrast
we have to apply the argument of Lax-Milgram twice to get rid off the
extra summand in (x4) caused by if in Vj.

Let at first u € Hg(curl, divz 0, D) be arbltrary and define u9) := (¢; u)|0
with ¢; and U; from Assumption 2.91, j = 0,1. Note that u(o) €
HQ,o,pl(curl,D) and vV € Hoor, (curl,D). Let j € {0,1}. Note that
for ¢ € Hclg,o(Uj) we have ¢;1 € H};)’O(D) and that we therefore obtain

0= (ul Vﬁ(¢j¢))L2(D,c3) = (u|gj

= (4 959) g+ (00

Consider the sesquilinear form a : H, o(U;) x Hp 4(U;) — C and the
linear functional £ : H o(U;) — C given by

at,p) = (Vb | Vo) o s o) and (1) i= = (ulg” | 0¥

-+ 6,V + 80,0

L2(U;,C9)

')L2<Uj,<c3> '

)L2 U; C3)
Then [£(y)] < Cllullz2w, e 1¥llz2w,) < CllYllmy ;) and analogously
la(y,p)| < C ||1/)||H1 ;) Hp||H1 ) for all ¢, p € HQ o(U;). Furthermore,
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Rea(y,v) = ||V51/JHL2(U ) 2 C |3 L ) for all 4 € H},(U;), where

we have applied Corollary 2.73. Hence, by Theorem A8, there exists a
unique pU) € H} o(Uj) such that

(%0 [95%) s, = = (8

for all ¥ € HQ o(U;). From this equation we conclude, if we choose p(?)
for 9,

(*1)

.>L2(Uj,(CS)

||Vﬁp(j)|\2L2(UJ,Cd) <C ||U||L2(D C3) Hp(j)HL2(U )s (*2)
V50| L2, 02y < Cllull2(p,co), (*3)

where for the second inequality we have applied Theorem 2.96. We set
@) = ul) — Vgpl) and have that @) belongs to Hg(curl,divs 0, U
Moreover, if j = 0, then @) is zero above from T'y, and if j = 1, then u{J)
is zero below from I'y; otherwise by taking 1 € HQ,O(U]-) such that its
gradient does not vanish above from I'; and below from I'g, respectively,
we would get a contradiction to (x;). We define

39 = (W)@ o ¥;)) € Hy(cwrl, Q3)

as in Theorem 2.104 and observe that 5 vanishes in a neighborhood of
Q x {—L3}. Take some 9 € Hp ((Q3) and set ¢ := ¢ o (¥;)~'. Note
that 1) € H (Uj), thanks to Corollary 2.117. Therefore, together with

the identity (V¢)) o ¥; = (¥;)~ T V4 and the transformation formula, we
obtain

0= (uo)

= (A@(J)

= (a0 ¥, | () 7TV +i8v)
+ () T5

vﬁd})m U;,C3)

vy)

L?(Q5 ,C?)

1/31/)) (#4)

L2(Q; %)’

L2(Q5 ,C?)

where we have set A(x) := (\i/;(x))’l(\i/;(x))’T for almost all z € Q5.
Now we consider the sesquilinear form a : Hp ,(Qz) x Hp 4(Q3) — C
and the linear functional £ : Hj ((Q3) — C given by

a(th,q) == (VU AVQ) aq- oy L) = — (i@ ( (@;)—T@m)

L2(Q5,C3)
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Note that A € L>(Qj , C3*3) satisfies the assumptions from for instance
Definition 2.84. Therefore, we can proceed analogous to above to obtain a
unique ¢\7) € H 4(Q3) such that

(Avq(j) ’ W}) 2@y .00 ((‘ilg‘)qﬁ(j)

i)

L2(Q5,C?)

for all ¥ € Hclg,o (Q3). And from this equation we conclude again

IV 12 g ey < CIEPNpaor ) 169 sy (3)
HV‘I(j)HLz(Q;,CB) <C ‘w(j)HL?(Q;,C?’)’ (x6)

where we have used for the first estimate also the coercivity of A. We
define w) := ) — vql) ¢ Hg(curl, Q3 ) and observe again that w(@)
vanishes in a neighborhood of @ x {—L3}. We set

o {0 oy,
(wP)*(-), onQy,

A, on Qy,
A = —Ai(-*), on Qg‘, Lke{l,2yorl=k=3,
Ai(+*),  on QF, else.
Due to Proposition 2.105 and Proposition 2.83, we have that @) belongs

to Hg o(curl, @3). Moreover, for ¢ € HaO(Qg) an elementary calculation
yields

—A(z*) wD () - (V) (x) = A(z) 0 (z) - Vop(z), for aa. =€ QF.

Let 1 € Hpo(Q3) and set ¢ := ¢|Q; - w(-*)\Q;, which belongs to
Hclg,o(Qs_)~ Moreover, V(x) = Vi(z) — (Vp)*(x*) for almost all z € Q5 .
Therefore, using the definition of w@),
— (AW ’
0 ( w ch) L2 0r o)

= | A@)w(z) - Vi(r)dz - +A(m*)w(j)(x*)~(V1/J)*(m)dx
Q3 Q3
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:/QA e

= / A(z) 09 () - Vip(z) de,

3

A(z) oWV (z) - Vip(z) de + /Q+ A(z) 0D (z) - Vip(z) da

3

meaning that w0 € Hq o(curl,div 4 0,Q3).

Let now (upn)nen be a bounded sequence in Hg(curl, divg 0, D) and let
j € {0,1}. The quantities ug), p§3>, ﬂ%j) ﬁéj), qﬁlj), wﬁlj) and wﬁf’ corre-
spond to the quantities from above. Using (x3) and Corollary 2.73, we

)

see that (p%j))neN is a bounded sequence in Héyo(Uj). By Theorem 2.71,
there exists a subsequence (which we denote by the same symbol) which
converges in L?(U;). Then the estimate (*2) applied to pl(j ) _ pg) yields
that (Vsp$)nen is convergent in L*(U;,C3).

Now, (ﬂg))neN is bounded in Hg(curl, divs 0,U;). Hence, (ﬁslj))neN is
bounded in Hg(curl, Q3 ). Using (%) and again Corollary 2.73, we see
again that (q,(Lj))neN is a bounded sequence in HéQ,O(QLS_)' By Theorem 2.71,
there exists a subsequence of (q,(f ))nEN (which we denote by the same
symbol) which converges in L?(Q3 ). The estimate (x5) yields now that
(Vg )nen is convergent in L2(Q5 , C?).

Furthermore, (uAJ,(lj))neN is now bounded in Hg o(curl,div ;4 0,Q3). There-

fore, by Theorem 2.88, there exists a subsequence of (121,(1] ))neN (which
we denote by the same symbol) which converges in L?(Q3,C?). Then
(ng))neN converges in L?(Q3,C3) and therefore (17,(lj))n€N converges in
L?(Q5,C3) which yields that (aﬁ,,j))neN converges in L*(U;,C?). From
this we conclude that (ug))neN is convergent in L?(U;, C3) and therefore
(¢jun)nen is convergent in L2(D, C3).

Finally, take ¢o from Assumption 2.91 and define ug) ‘= ¢aUn, n € N. Let
n € N. Note that ugf) € Hgo(curl, D). Moreover, by repeating from the
beginning of this part (b) of the proof the first chain of equalities and by
considering the same sesquilinear form and linear functional, but now with
U; replaced by D, we obtain a decomposition qu) = ~£LQ) + Vgpg) with
) e Hj (D) and i) e Hgq o(curl, divg 0, D), where for the latter one
we also take Proposition 2.75 into account. Using again the corresponding

estimates (x3) and (x3), we obtain analogous to above that (Vgp%Q))neN
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possesses a subsequence (denoted by the same symbol) which converges
in L2(D,C3). Furthermore, we see again that (i\?),ey is a bounded
sequence in Hg o(curl, divg 0, D), which implies thanks to Theorem 2.88
that this sequence possesses a subsequence (denoted by the same symbol),
which converges in L?(D, C?). Therefore, also (¢ouy)nen is convergent in
L?(D,C3).

Since again Z?:o ¢; = 1, adding it all up we have shown that the bounded
sequence (u,)nen from above contains a subsequence which converges in
L?(D,C3). a

Further Helmholtz Decompositions. Due to the special structure of a
cell set of Lipschitz layer type, further Helmholtz decompositions are
possible and also needed. Their main application, in connection with the
compactness results from Theorem 2.122, will be in the next chapter when
we introduce vector surface potentials and their corresponding boundary
operators.

For the following results compare also with Definition 2.69 and Theo-
rem 2.85.

Definition 2.123 Let D C R? be a cell set of Lipschitz layer type with
characteristic quantities as in Assumption 2.91. Furthermore, let 3 € R3
and j € {0,1}. The space Hg o, (curl,divg 0, D) is defined by

Hgo,r,(curl,divg 0, D) := {u € Hgor,(curl, D) |
Ve € Hyor, (D) s (] Vo) o p sy = 0.
Theorem 2.124 Let D C R? be a cell set of Lipschitz layer type with

characteristic quantities as in Assumption 2.91. Furthermore, let 8 € R3
and j € {0,1}. Then

Hgqor,(curl, D) = Hq o, (curl,divg 0, D) @ VBHég,O,Fj (D).

Proof: We can exactly follow the lines in the proof of part (%) from
Theorem 2.85, if we replace therein the cited results with their analogs for
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cell sets of Lipschitz layer type, i.e., in particular Corollary 2.97 instead of
Corollary 2.73. We ommit the details. O

2.3.6. Conclusions for Flat Surfaces

Later in the variational formulation for our scattering problem of interest,
the unit cell, i.e., the domain of integration, will be a cell set D C R3
of Lipschitz layer type where the upper surface patch I'; is flat, that is,
where the function f; which describes I'y is given by f1(£) := h, £ € R?,
where h is some real number such that h > maxeegz2 fo(§). Hence,

Ty
Ui(z) = |22 |, T € Q,
h
which implies that p;(z) =1 and Fj;(z) = (é g %) for all z € Q. For the
definition of those quantities see the presentation before Assumption 2.91.

This gives rise to the following convention.

Convention 2.125 Let D C R3 be a cell set of Lipschitz layer type with
characteristic quantities as in Assumption 2.91. The function f1 we suppose
to be given by f1(€) := h, for all £ € R?, where h is some real number
such that h > maxecre fo(€). To make this situation more apparent, the
surface patch T'y is renamed as T'y,. We identify

o HY(Th,C7) with HY2(Q,C?), and thus the space Hy"/* (T, C%)
with Hyer!*(Q,C),

o Hc;l/z(Div,Fh) with H;;elr/Q(DiV7Q) and

. Hél/z(Curl,Fh) with Hye'*(Curl, Q).

Consequently, an element ¢ from the space Hél/Q(Fh, Cd/), Hél/g(DiV, ')

and Hél/z(Curl,Fh) has a series representation of the form

o= Z w(")J(TC(g”)),
HEZ?
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~1/2 »=1/2

-1/2 )
o’ Cpiy~ and Ccur/1 , respectively; see also Corol-

with (pW),,cz2 from C
lary 2.34.

As a consequence of those identifications, we can and will derive some
convenient formulas for the trace operators, the surface divergence and the
embedding from Theorem 2.121, what is the objective of this subsection.
In particular, those formulas will be useful when we prove existence of a
solution to the variational formulation.

We start with a result which has preliminary character.

Proposition 2.126 Let D C R3 be a cell set of Lipschitz layer type as
in Convention 2.125. Furthermore, let u € Cgf(ﬁ, C¥) and define for
aeN}

p(xz) == 0%u(x1, 22, h), T E€Q,

i.e., ¢ denotes the restriction from the continuous extension (from D to
D) of 8*u onto T'y. Then p € C2.(Q,C") with

8P = 0BrP20 (o). ), B e N2

Proof: Let a € Nj and set for simplicity v := 9%u. Furthermore, let
j€{1,...,d}, take some (a,75)" € Q and let n € N. Then, by applying
Taylor’s formula for functions of several real variables, see for instance [5],
we obtain for z1 € (—L1,L1) \ {a}

vi(z1, @9, h = 5) — vj(a, 22, h — 3) = 0v;(a, zo,h — 1)
- J ? ) n

r1T —a

1
b a) [ (0000 (ot 0w )0 2) b
0

n
Therefore,

pi(z1,22) —pjla,x2) _ vj(z1, 2, h — =) —v;(a,z0,h — L)
1 —a n—00 1 —a

1
= O1v;(a, 2, h) + (21 — a)/ (1—0)07vj(a+0(z1 — a),z,h) db,
0
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which converges to 01v;(a,z2,h), as 1 — a. Hence, d1p; = 01v;(+, h),
and O1¢; is therefore also continuous. The remaining part of the assertion
follows now by induction. O

Now, we come to the announced formulas for the trace operators.

Lemma 2.127 Let D C R3 be a cell set of Lipschitz layer type as in
Convention 2.125. Furthermore, recall ¢ from (2.7), and (1.7) for the
definition of a*, for a € C?.
(a) If B € R® and u € CF (D), then i r, Vsu and yr.r, Vgu belong to
C52.(Q,C?) and possess the Fourier series expansion

Y, Veu =1y (¢" + B)tu T(H)
HEZL?

v, Vau=1iY_ (g% + B)ul 1.
HEZL?

Here, u™) € C denote the Fourier coefficients of u(-,h), B is given
by (1.4) and convergence is uniform. Moreover, by replacing Tg‘) with

](Té“)), where j denotes the embedding from Theorem 2.29, we have
convergence in Hél/z(Div7 T'y) and Hél/Z(Curl, T'y), respectively.

(b) Ifu e C’g’(b, C3), then vi,r,u and yr.r, u belong to Coar (@, C?) and
possess the Fourier series expansion

(1) ul
—U
Yer,u= ) ( ) )Té“) and yrpu= ) ( (u)) Ty,

WEZ? ! WEZ? Uz

Here, u™ € C? denote the Fourier coe}fﬁcz’ents of u(+, h) and conver-
gence is uniform. Moreover, by replacing T ) with j(T(“)), we have

convergence in H, 12 (Div,T'y,) and Hél/ (Curl,I‘h), respectively.

Proof: (a). Let u € Cgf( ). We observe that 0%u(-,h) € C2.(Q) for

per

any o € N3, see Proposition 2.126. Let (Z#EZQ u(")Tg‘)) be the Fourier
series expansion with respect to u(-,h). Note that by the observation
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above the series converges uniformly to u(-, h). Furthermore, by the same
observation, there holds

dju(-,h) = Z iq§”)u(“)T<§”), j=1,2,
WEZ?

where convergence is uniform too. Finally, let (> pEz? 9(“)Té” )) be the
Fourier series expansion with respect to dsu(-,h). Here we have again
uniform convergence by the observation above. Then

i@ +pu®
Vau(h) = 3 |i(g” + Bo)ute) | T3
pezz \ ) 4 iBau )

and

0 . n L
e, Vau = ((1)) x Vgu(+, h) =1 Z (g™ + B)*F uw Té“),
HEZ?

where uniform convergence has passed on and we have implicitly made
use of Convention 2.125. Since u(*) are the Fourier coefficients of u(+, h) €
Cper(@), we conclude from the last equation that v r, Vsu belongs to
C22.(Q,C?). And now, we obtain from Remark 2.35 that its series rep-

resentation converges even in H51/2 (Div,I'y) to v, Vau, if we replace

therein the trigonometric monomials Té”) with ](Té?“ )).
The assertion for yrr, Vgu is shown by the same arguments.
(b). Let u € C’g’(D,(C?’). Then, again thanks to Proposition 2.126,

u(+,h) € Coe(Q,C?). Let (X2,cz0 u(“)TgL)) be the Fourier series expan-
sion with respect to u(-, h). Again, the series converges uniformly to u(-, h).

Therefore,

o= (1) e = 30 ()18
1

HEZ?

where again uniform convergence has passed on and we have implicitly
made use of Convention 2.125. Now we follow the arguments as in part (a)
and obtain that v r,u € C2.(Q,C?) and that its series representation

per
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converges even in Hél/z(DiV, T'y), if we replace therein Té”) with j(Té”)).
The assertion for 7, u is shown by the same arguments. O

As announced above, in the following lemma we give a convenient formula
for the surface divergence and the embedding from Theorem 2.121.

Remark 2.128 The embedding from Theorem 2.121 reads now as
Hy'/*(Div,Ty) «— Hg'/*(Ty, C2),

where C* was replaced by C2, because for the flat surface T'y, elements from
the trace space Hél/z(DiV, I') do not have a component in xs-direction.

Lemma 2.129 Let D C R3 be a cell set of Lipschitz layer type as in
Convention 2.125.

(i) Let B € R3. Furthermore, recall ¢ from (2.7) and 3 from (1.4). If
s Hél/Q(Div,Fh), then Divg ¢ € Hél/Q(l"h) possesses the series
representation

Divgp =1y o - (¢ + ) 5(T4"),

HEZ?

where (ga(")) € C];ilv/g are the associated coefficients of v, see also
Convention 2.125.

(i) The embedding from Theorem 2.121, that is (see also Remark 2.128)
Hy'/*(Div,Ty) «— Hy'/*(Ty, C2),

is given by

ol == oWy
HEZL?

where (80(”))uez2 € C;i\l,/Q are the associated coefficients of ¢ €
H,'"*(Div,T}).
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Proof: (i). Let ¢ € Hél/Q(Div,Fh). Then ¢ possesses the series repre-
sentation p =3 ;. cp(“)j(TCg“)) with coefficients (p(")),cz2 € 6511\//2. It
is easy to see that the sequence (i(¢") + j) - gp("))ueZ2 belongs to C~1/2,
Therefore, due to Corollary 2.34,

=i Z oW - (¢ + B)](Té?”))
HEZ?

belongs to HI;;/Q (Q). We have to show that Divg ¢ and ¢ coincide. Since

Dg,o(Th) is dense in Hég/2(Fh), see Corollary 2.108, and since Divg ¢ and ¢
are continuous, it suffices to check coincidence for this dense subspace. So,
let ¥ € Dg,0(I's), i.e., there exists ¢ € CZ(D) such that ¢ = ¢|r,. We
expand 1)(+, h) into its Fourier series ¢ (-, h) = > ez QL(“)TQSM) and obtain
from Lemma 2.127 that y7.r, Vsi(-, k) = =13, 52 (™) + B)qﬁ(V)](TC(Q_V)).
Therefore, by definition of Div ¢, see Theorem 2.120, by definition of
(-, )1, , see part (b) from Theorem 2.113, and by an application of (1.16),
we obtain

<DiV5 (,O,E> = *<§0, ’YT,Fh@%“h
=i Y T (AT )+ )T )

I'n
w,vEZ?
=i Y G (¢ +B) (13| 1) |
= Q)
L —=(—p) _ _
=13 oW (g BT = 0($(h) = (D),
HEZ?

as desired. For the second last step we have applied Theorem 2.28.

(ii). We proceed similarly as in part (a). So, let ¢ € Hél/Q(Div, Ty).
Then ¢ possesses the series representation ¢ = ) uez? o) j(Tq()H )) with
coefficients (")) ,eze € Cr_)ilv/Q. It is easy to see that this sequence be-

longs to C(Ezl/z as well. Therefore, ¢ € H51/2(Fh,(c2). To show that
the continuous mappings ¢ and £, the latter one from Theorem 2.121,
coincide, is suffices to restrict our considerations to the dense subspace

Dg.o(Th, C?) of Hél/z(l‘h,(cg). So, let ¥ € Dg o(T', C?), i.e., there ex-
ists 1 € C&(D,C?) such that ¢ = Y|p,. We expand (-, h) into its
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Fourier series ¢(+,h) = 3,z ’(/N)(V)Téu) and obtain from Lemma 2.127

that WT,F,JE => em zﬁ(”)j(Tg)). Therefore, by definition of £, from The-
orem 2.121 and the definition of (-, )r, from part (b) of Theorem 2.113,
we obtain

<€<Pa ¢> = <9037T,F1L1/;>Fh = Z <p(u) ’ 1/;(”) (Tgi)

w,veZ?

(—u))
T
@ Jrg)

= 5" oW PR = (o (-, b)) = (0, 9),

WEZ?

as desired, where we have again applied Theorem 2.28 in the second last
step. [l

2.3.7. Some Results for Smooth Surfaces
In this subsection let f € CF5, (Q) be real valued and define
T:= {x6R3|5:€Qanda:3:f(i")}.

Furthermore, we introduce the set f, the parametrization ¥ : Q — I and
the mapping F : Q — R3*3 as above from Assumption 2.91 and observe
that now the functions are smooth.

For m € Ny and d’ € N we define
Cg;(l“,(Cd,) = {cp = @|r | pE C’(f,(Cd') is @-periodic
and o € Cg;r(Q,@d’)}
and the corresponding space of smooth functions
CF(r,c?) = () ch(r,c?).
k=0

Moreover, we define the spaces H&l/Q(DiV,F) and H§1/2(Curl, T) as in

Definition 2.106. Concerning the spaces Hclg/Q(l", (Cd/) we allow now again
more regularity, see the next definition.
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Definition 2.130 Let the surface I' be given as above. For s > 0 we
define the space Hé(F,Cd ) by

Hy(D,C) = {(p € LX(1,C%) | po W € H;er(Q,(Cd/)}

with norm

||30||H5(F,(Cd') =l o Wlg, (.o

For s > 0 we define HéS(I‘, (Cd/) to be the dual space of HE) (T, (Cd/) equipped
with its canonical norm

| <£a w>Q,s,F
1]l == (p cary = sup T o e
@ vemg e oy 1Vl

for all £ € HéS(F,(Cd,). Here, (-,)g,s,» denotes the duality pairing as
introduced in Section 1.3, and with index “Q,s,I'” to make them distin-
guishable.

For s € R we define the spaces of tangential vector fields by

1y, (1) 1= { € Hy(,C%) | ¢-n =0},

where for s >0 and ¢ € HéS(I‘,(CS) the product £ -n € Hy*(L) is defined
by
<€ -1, ¢>Q,5,F = <£7'(/)H>Q,s,l“7 ¢ € Hé(r)

Note that for s > 0 and ¢ € Hp)(T') the product ¢n is well-defined by
Theorem 2.132, as the normal vector n is a smooth function.
Proposition 2.131 Let s € R. Then the following assertions are true.
(i) The space D o(T,C) is dense in Hé(F,(Cd/).
(i) If o € R, with 0 < s, then the space Hgg(F,(Cd/) is compactly
embedded into HZ (T, Cc?).

(iii) If o € R, with o < s, then the space Hg) ,(T') is embedded into
HE (T).
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Proof: This is shown with the same arguments as in the proof for Propo-
sition 2.54. O

Clearly, all results we have achieved so far for Lipschitz continuous surfaces
hold in particular for smooth surfaces.

As already mentioned at the beginning of Subsection 2.1.4, we intend to
exploit results from [21]. Since those results are given for the trace space
H~12(divgg, 09Q), where Q C R? is a bounded and smooth domain, and
since H™1/2(divaq,9) ~ H~'/2(Div,d9) due to Theorem 2.59, we have
somehow to relate the spaces H~'/2(Div,dQ) and Hél/Q(Div, I') to each
other. A key ingredient will be a certain partition of unity on I'. Hence,
we have to ensure that ¢ € Hélm(Div, I') multiplied by x € CZ(I'), with
supp(x) C T as well as supp(x) C 99, and extended by zero to 9 belongs
to H’l/z(Div, 092), and that the operator describing this mapping is linear
and bounded.

Note that these investigations seem not to be trivial, since for the case
of Lipschitz continuous surfaces the spaces Cg(l") are only well-defined
for m = 0. Then for x € Cq(T") the function x o ¥ is only Lipschitz
continuous and therefore, by Proposition 2.16, only in H],(Q). Hence,
according to Theorem 2.40, the regularity of this product is too less to
give rise to a linear and bounded operator in H51/2(Div, I'). For smooth
surfaces as considered in this subsection the situation is better, see the

next theorem.

Theorem 2.132 Let x € C&O(F). Then the following assertions are true.

(a) For s € R the mapping H‘é(l",(cd/) S = xp € H‘é(l",(cd/) is
well-defined, linear and bounded.

(b) (i) The mapping Do +(T,C3) 2 ¢ — xp € H51/2(Div,F) is well-
defined, linear and bounded and can be continuously extended to
a linear and bounded operator from Hél/z (Div,T') into itself.

(ii) The mapping Do r(I,C3) 3 ¢ — xp € Hél/Q(Curl,F) is
well-defined, linear and bounded and can be continuously ex-
tended to a linear and bounded operator from Hél/Q(Curl,l")
into itself.
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Proof: We consider only part (b), as the argumentation for part (a) is
very similar.
(i). Note that by assumption yoW belongs to C52,(Q). Let ¢ € Dq (T, C?).

Then @' € Hye!?(Div, Q) (recall (2.16a) for the definition of @*). More-
over,

(x0) (x) = p(@)F M (@)x (W (2)p(¥(2)) = x(V(@)@ (z), x€Q.

Therefore, thanks to Theorem 2.40, we have that (x?p)t € Hp_elr/2 (Div, Q)
with H(X<p)t||H;elr/2(Div7Q) < C”‘ﬁt”H;;/"‘(Div,Q) and the constant C' > 0

independent of . Thus, xp € Hél/Q(Div, I') with

||X(‘0||H51/2(Div,l—‘) = H(XQO)tHH;elrﬂ(DiV,Q)

<C ||¢t||H;e1,/2(Div,Q) =C ”(‘OHHél/Q(DiV,F)’

which shows that the mapping is well-defined and bounded (its linearity
is clear). Since Dg (T, C3) is dense in H631/2(Div7 I'), this multiplication
operator can be continuously extended as desired.

(ii). The assertion is shown completely analogous. O

Now, we come to the main theorem of this subsection.

Theorem 2.133 Let I'g C I'y C I', such that I'g is relatively closed and
'y is relatively open in T, and let Q C R® be a bounded and smooth domain
such that T'y C 9Q. Furthermore, let x € C*°(09Q) with supp(x) C Ty.
Then the following assertions are true.

(i) The mapping Do (T,C?) > ¢ +— (xp)|8% € H~Y?(Div,00)
is well-defined, linear and bounded and can be continuously ex-
tended to a linear and bounded operator from Hél/z(Div,I‘) into

H~'/2(Div, 09).

(ii) The mapping Dy (0Q,C3) 3 ¢ — (xp)|r € Hél/z(Div,(‘)Q) is well-
defined, linear and bounded and can be continuously extended to a lin-
ear and bounded operator from H~1/2(Div,d9) into Hél/Z(DiVJ‘).
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Proof: As a preparation, recall Assumption 2.52. Without loss of
generality, there exists m’ < m such that T’y C Um, Uj € Ty and
TogN U 1 U = (). Moreover, without loss of generality we assume that
B, (0, ozj) CQforj =1,...,m.

(i). Let p € D (T, C3?). Then x¢p belongs to Dg (', C3) as well. We
consider x also extended by zero to 02 and use the same symbols. Then
x¢ belongs to D;(99Q, C?) which is a dense subspace of H~/2(Div,dQ).

t
We consider the Fourier coefficients of (Xgp) determined with respect to
Q,j=1,...,m'. It sufficies to show that

’I’TL
Z XQO J H71/2(D Q C”(XSO) ||§‘I;C1r/2(DiV,Q)’

where by definition
(o) () = 2)/x; (¥;(2) F; ' (x) (x0) (¥ (x)), z € Ba(0,05),

J O, l‘EQ\BQ(O,&j),
(x9) (@) = p(@) F ' (z) (x9)(T(2)), € Q.

~ ot
Note that (Xgo)j =0forj=m'+1,...,m. Let j € {1,...,m'}. Due to
our assumptions, the parametrization ¥; can be built up by means of the
parametrization ¥ as follows

ui zij)
\I/j(u17u2) = U2 4 + Zéj) , u e BQ(O,O(J‘),
Flur + 29 ug + 25) 0

with p;(u) = p(us + 2, ug + 2§) and Fl(u) = F~ (uy + 29 g + 280
for u € By(0, vj). Therefore,

) = Vx5 (W + 29, s+ 28)) (000) (n + 27, + 28 ()

for all w € B2(0, ;). Hence, by an application of the transformation
formula we obtain with (z1,22)" = (u; + 29), ug + z(]))T that

v /Q () () e du
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ia(W) (2D LGNT ~ \t —ig(m).
= AT [ ) 0 e,

which shows that the Fourier coefficients differ only by a phase shift factor.
Therefore,

~ ¢t Y
1)l 272 piv,g) = IWXG 0 9) (X0) Nl 22 b
~ ot
< Cll(xp) ||Hl;elr/2(Div,Q)’

where we have applied Theorem 2.40 after recalling that /xj o ¥ is a
smooth function by the choice of our partition of unity on 92. This shows
that the mapping is well-defined and bounded (its linearity is clear) and
thus can be continuously extended to a linear and bounded operator from
Hél/z(Div, I') into H~'/2(Div, 99) as desired.

(i1). Let ¢ € D(09Q, C3?). We consider x¢ also restricted to I' and use the
same symbols. Then y¢ belongs to Dg +(I', C?). Note that for y € T'y we

have (x¢)(y) = Y72, x;(y) (x¢)(y). Therefore, using in addition () and
again the transformation formula,

1

1 ~ CigW g / ~ .t Zig) g
— T)e dx = T)e dx
b [ o' 75 Sy, 00

.
* VIR Jy—1(rgnsupp(x;))

i (1), Z<j>AZ(j) T ~ \t —i (b),u
AT [ ) e e
J

Hence, | [(X;O)t] (H)|2 <C Z;n:ll H(\/ﬁo v) (){gp);} ") |2 and

(U (@) (x) (x) e do

I

J

3

1

[ )T <0 3 [a" - (v o) ()] )7,

j=1

which yields that

-t . -t
[ (xe) ||§{;elr/2(Div’Q) <C Z [CVARERD (X(p)jH?{;elr/?(Div,Q)
=1
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<CZ” XSD 1/2 (Div,Q)’

where we have again applied Theorem 2.40 and the fact that (){gp)é =0
for j =m/+1,...,m. Thus, the mapping is well-defined and bounded (its
linearity is clear) and can again be continuously extended to a linear and
bounded operator from H~/2(Div,dQ) into HCSI/Q(Div7 ') and the proof
is complete. O






3. Electromagnetic Scattering —
Variational Formulation

One of the two main approaches to treat questions about existence and
uniqueness of solutions to boundary value problems are functional ana-
lytic methods based on variational formulations. To make this approach
accessible to scattering problems we have to truncate the domain and to
impose another boundary condition by means of the Calderon operator.

In this chapter we will take this route and start in Section 3.1, after a short
derivation of the time-harmonic Maxwell’s equations, with the geometrical
setting as well as the introduction of upward (and downward) propagating
waves as analogs of the Silver-Miller radiation condition. After these
preparations, we are in a position to give a precise weak formulation of
the scattering problem (1.1) and to show uniqueness of solutions.

In Section 3.2 we use a special extension operator, given by the unique
solvability of a certain exterior boundary value problem, to define the
Calderon operator. The latter operator allows us to rewrite our scattering
problem from the previous section equivalently into its variational form —
the starting point for investigations of existence of solutions.

This will be the topic of Section 3.3. For this, we follow the idea from [35]
and [42], which is to split up the solution space into a direct sum, where
one summand is “curl-free” and the other one is “divergence-free”. By
means of this decomposition, we are able to divide the scattering problem
given in its variational form into two smaller ones, which are easier to
analyse. Nevertheless, some technical efforts have to be overcome for the
second auxiliary problem before we finally can state the existence result.
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3.1. Problem Formulation and Uniqueness of
Solution

3.1.1. Time-Harmonic Maxwell’s Equations

The following presentation is an extract of [34, Chapter 1].

In general, electromagnetic wave phenomena are described by Mazwell’s
equations, which connect five vector fields, namely the electric field £, the
electric displacement D, the magnetic field H, the magnetic flux density B
and the current density J, and one scalar field, namely the charge density
0, to each other by

oB
e +curl, £E=0 (Faraday’s Law of Induction),

D
aa—t —curl, H = —-J (Ampere’s Law),

div,D=0p (Gauss’ Electric Law),
div, B=0 (Gauss’ Magnetic Law).

We assume that all fields behave periodically with respect to time ¢t > 0,
with the same frequency w > 0. Then the complex valued functions

E(x,t) =e “'E(z), H(z,t)=e “'H(x), etc., (3.1)

as well as their real and imaginary parts, satisfy the time-harmonic
Mazwell’s equations

—iwB + curl E = 0,
iwD 4+ curl H = J,
divD = p,

divB = 0.

Incorporating now the constitutive equations for an isotropic and homoge-
neous medium

D=¢FE and B =uH,
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where € > 0 denotes the electric permittivity and p > 0 the magnetic
permeability, and Ohm’s law

J=0cFE+ J,

where o > 0 is the conductivity and J, is the external current density, we
arrive at

curl E —iwpH =0,
curl H + (iwe — 0)E = Je,
divE = p/e,
divH = 0.

3.1.2. Geometrical Setting

Material Parameters. In the sequel, ) C R? will denote the rectangle
given by
Q = (—Ll,Ll) X (—LQ,LQ)

for some constants L; > 0, 7 = 1,2. Furthermore, o € R3 will be a vector

of the form
aq

Recall from the beginning of Section 2.2.1 the definition for @Q-(quasi)-
periodicity (with phase shift «). Throughout this thesis the term “biperi-
odic” will be considered as a synonym of the term “Q-periodic”.

We are interested in time-harmonic electromagnetic wave scattering at
impenetrable biperiodic surfaces. We suppose the scatterer I'y C R? to
be the graph of a Q-periodic Lipschitz continuous function fy : R? — R,
ie.,

To:={z R |7 € R? and z3 = fo(%)}, (3.2)

which is illuminated from above. Since the scatterer is impenetrable, the
domain of interest is above from I'g. For the material parameters we make
the following assumption.
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Assumption 3.1 We assume that €, > 0 and o > 0. Furthermore, we
suppose Jo and p to be zero.

Definition 3.2 We call the number k € C, satisfying Re(k) > 0 and
Im(k) > 0 as well as
E? = wlep + iwpo,

wave number.

Consequences for Maxwell's Equations. As incident fields we will con-
sider Q-quasi-periodic vector fields, with phase shift «, which are smooth
solutions to the time-harmonic Maxwell’s equations and impact the scat-
terer from above. We denote them by E! and H!. As a consequence, by
taking also the @-periodicity of the scatterer into account, the scattered
fields £, and H; can be assumed as ()-quasi-periodic, with phase shift «,
as well, which satisfy the time-harmonic Maxwell’s equations too. Due to
Assumption 3.1, those equations read now as

curl B, —iwuH, =0,

curl H, + (iwe — 0)E, = 0,
divE, =0,

divH, =0.

(3.3)

Using the first equation in (3.3) to substitute H, in the second equation
in (3.3) and using (A.2b), it is easy to check that E, and H, solve (3.3),
if and only if E,, satisfies

curleurl E, — k*E,, =0

and H, = ﬁEa. Therefore, it suffices to concentrate on vector fields

Uq : R3 — C3 which are Q-quasi-periodic, with phase shift o, and solve
curl curl uy, — k*uq = 0. (3.4)
The Unit Cell. A key ingredient to any scattering problem is a suitable

radiation condition, see [7]. For this we follow in the next section the
Rayleigh expansion ansatz in [7], which requires the introduction of a
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certain planar auxiliary surface. It turns out to be a great convenience to
introduce the following sets, which will later keep the notation simple.

Let T C R3 be the graph of an arbitrary Q-periodic Lipschitz continuous
function f : R?2 — R and let " denote the patch of I' whose orthogonal
projection onto R? gives Q, i.e.,

F::{xER3|i‘€Qandx3:f(i)}.

For a,b € R, we define

Di:={zeR®|i€Qand f(Z) <z3 <a}, (3.5a)
DY :={zeR®|7€Qand f(i) < 23 < o0}, (3.5b)
DI ={zeR’|z€Qanda<uz;<f(Z)}, (3.5¢)
D = {zeR®|F€Qand —oco <3< f(Z)}, (3.5d)
D):={zeR’|7€Qanda<uz;<b}, (3.5¢)
DY :={zeR’|z€Qand a<z3 < oo}, (3.5f)
D*  :={zeR®|ieQand — oo <z3<a} (3.5g)

and last but not least

Ip:={zeR’®|iecqQandaz;=a}. (3.6)
Note that there are choices of a and b such that some of those sets are
empty.

Now, recall fy from above, whose graph describes our scatterer fo. Since
the scattered wave v, is assumed to be -quasi-periodic as well, it sufficies
to restrict our considerations to the surface patch

Iy := {x e R? |z € @ and z3 = fo(i‘)}.

We fix h* € R such that h* > maxecge fo(€) and b~ < mingege fo(€).
Furthermore, we define
D:= D} (3.7)

and call D the unit cell. Note that D is a cell set of Lipschitz layer type
according to Definition 2.89. This set will be later the domain of greatest
interest for the variational formulation of our scattering problem.
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The Scattering Problem in Classical Terms. With the preliminary con-
siderations from above, we will now give a first (vague) formulation of the
scattering problem we are interested in. We start with the incident field
for which we will make the following assumption.

Assumption 3.3 The incident field ul, is assumed to be a smooth function
ul, € O (D19‘;,C3), which is Q-quasi-periodic, with phase shift o, and
solves (3.4).

Given an incident field u!, as in Assumption 3.3, we are looking for a
function u,, : Dy — C3, the total field, such that

curleurluy — k?up =0  in Dry,
nxu, =0 onIy, (3.8)

S

Uy

= uq —u!, is upward propagating in D73,

where n denotes the unit normal vector on I'y, pointing in the downward
direction. In the next subsection we will state more precisely what we
mean by the term “upward propagating”. And in the subsection after the
next, we will be in the position to give a precise (weak) formulation of our
scattering problem.

Connection to the (Q-periodic Framework. To work out answers to the
questions of existence and uniqueness of solutions to our scattering problem
and to develop a high order solver for its numerical solution, the necessary
tools were provided in Chapter 2 not for the Q-quasi-periodic but for the
Q-periodic framework. As already mentioned in Subsection 2.2.1, both
situations are closely related to each other by the transformation (2.10).

Convention 3.4 Let Q C R? be a cell set and d' € N. Recalling (2.10),
for given uqy : 2 — C¥ | which is Q-quasi-periodic with phase shift a, we
denote by u its Q-periodic counterpart, i.e., u is the Q-periodic function
uw:Q— C¥ given by

u(z) == e Ty, (1), x € Q.

Conversely, for given Q-periodic function u : Q@ — C%, we denote by uq
its Q-quasi-periodic counterpart, with phase shift «.
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Having Convention 3.4 in mind and using (1.20b), it is easy to check that
U satisfies (3.4), if and only if u satisfies

curly, curly, u — k*u = 0. (3.9)

3.1.3. Upward and Downward Propagating Waves

We follow the Rayleigh expansion ansatz in [7, Section 2.2] to define a
suitable radiation condition. Since a bounded and Q-quasi-periodic solution
uq to the Helmholtz equation in D} is an analytic and @Q-quasi-periodic
function on any plane {z3 = h}, where h > h*, u, can be expanded
on such planes into a Fourier series of the form (2.11), see [7]. Inserting
this expansion into the Helmholtz equation, in [7] were derived conditions
on the Fourier coefficients to ensure u, to be an upward or downward
propagating wave. Since solutions of the time harmonic Maxwell system
are divergence free solutions to the vector Helmholtz equation, see [34,
Lemma 1.3] and the remarks after it, we choose the next conditions for an
upward and downward propagating wave in our electromagnetic context.
For this, recall ¢/*) from (2.7) and define for y € Z?

pW = (k* — |d(”)|2)1/2 eC, where d™ :=a+ ¢ e R2. (3.10)

Assumption 3.5 Throughout this thesis we assume that p'*) % 0 for all
e 72

Definition 3.6 (i) A function u : D — C? is said to satisfy the
upward propagating Rayleigh expansion radiation condition (URC),
if there exists a sequence (“(”))MEZQ in C3 such that

u(z) = Z uW i@ 3+p") (g —a)) xr € D, (3.11a)
WEZ?
with uniform convergence to w on Dy° for all b > a.
(ii) A function u : D* _ — C3 is said to satisfy the downward propagat-
ing Rayleigh expansion radiation condition (DRC), if there exists a
sequence (U(#))peﬁ in C3 such that

)= S e, e (@
WEZ?
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with uniform convergence to u on D® _ for all b < a.

Multiplying (3.11a) by the factor e=“! from (3.1) yields for the sum-
mands

i i(a). 54,1 _
e~ iwt o, (1) oi(@"- E+p'" (w5 —a))

— W m(p")(@s—a) gi(a™) - +Re(p)) (w5 —a)—wt)

for all z € D° and all € Z?. Note that in this equation for fixed y € Z?
and for fixed & € Q the term ¢ - & + Re(p™)(x3 — a) — wt is constant
for growing ¢ > 0, only if x5 > a is growing as well. Hence, each summand
in (3.11a) represents indeed an upward propagating wave. Similarly, we
see that the summands in (3.11b) are downward propagating waves.

Moreover, note that the function u from Definition 3.6 is @-periodic. And,
having still Convention 3.4 in mind, it is easy to see that a function
u: D — C3 satisfies the (URC) from Definition 3.6, if and only if its
(Q-quasi-periodic counterpart u, satisfies

U () = Z u() i@ 01 (2 —a)), zr € D, (3.12)
HEZ?

with the same sequence of coefficients (u(")),cz2. Condition (3.12) will
be referred to as (URC),. Of course, the analogous result we have for
functions satisfying the (DRC).

Remark 3.7 It is easy to check that u : D — C? satisfies (DRC) if
and only if u*(+*) : D=, — C? satisfies (URC). Here, recall (1.4) for the
definition of z* for some z € C3. Therefore, in the following presentation
it suffices to restrict our attention to functions satisfying (URC).

Functions Satisfying (URC). Now, we will show that functions which
satisfy the (URC) are smooth functions. Recall Lemma 2.9 for some
convenient estimates for the quantity ¢(*). Similar estimates for the
quantity p) will be of interest and are derived in the next lemma.

Lemma 3.8 For the quantity p*) from (3.10) there holds
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(i) 3C >0VueZ?: [pW| < C/1+ |uf?,
(ii) 3C >0V pueZ?: [pW|>Im(p™W) > C\/1+ [uf?.

Proof: We observe that |¢(*)| — oo, as |u| — oo, which implies that
& + ¢W| — oo and arg(p™) — Z, as |u| — oo. The convergence for
arg(p(™) results from Definition 3.2.

(i). By the observation above, there exists N € N such that for all y € Z?
with |u| > N we have |& + ¢ |2 > |Re(k?)], |& + ¢ |* > (Im(k?))? and
lg")| > |a|. Let u € Z? with || > N. Then 0 < |& + ¢¥|? — Re(k?) <

2|a 4 ¢ |? and we obtain, together with (i) from Lemma 2.9,

P2 =/ (1a+ g2 — Re(k?))? + (Im(k2))?
<V5la+g¢W P <av5igWP < C* (1 + |pl).

Set M := max {| 14+ |uf?
Note that m > 0. Now, let p € Z? with || < N. Then

P < M = TV P < VLTl

Finally the assertion follows by choosing C' := max { M

(ii). By the observation above, there exists N € N such that for all
p € Z? with |u| > N we have |a + ¢™)2 > 2|Re(k?)|, [¢"W| > 2|@| and
sin (arg(p™)) > 1. Let p € Z? with |u| > N. Then |a+¢")|? —Re(k?) >
1@+ g2 > 0 and we obtain, together with (4) from Lemma 2.9,

m(p®) = /(16 + g~ Re(k2))” + (Im(k2))” sin (arg(o™))
> sla+ ¥ = Sild?| = HI0VI+ ul

Set m := min {Im(p(*)) | lul < N} and M :=max {y/1+[uf? | |u] < N}.
Note that m > 0. Now, let again u € Z? with |u| < N. Then

(r) > — 2> m 2
Im(p'*) > m = m\/ + |pl? = M\/1+ ]2
And finally the assertion follows by choosing C' := min {— —%CN' } O

The next lemma gives a useful quantification for the convergence rate for
the coefficients u(*) of a function u which satisfies the (URC).
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Lemma 3.9 Let u: D — C? satisfy (URC). Then for its coefficients
(ult),,cz2 there holds

(u(“) eip(H)(b_a))#EZQ € (*(Z*,C?), forallb > a.

Proof: By definition of the (URC), we have uniform convergence of the
series representation for u on DE’;’ +b)/2 tO U Therefore, by the continuity
of all summands, v is continuous on DE’;’ +b)/2° Hence, u(-,b) has a Fourier
series expansion, i.e., u(-,0) = > s a T((;,“). Since uniform conver-
gence is stronger than L2-convergence (on bounded measurable sets), we
obtain, by uniqueness of the Fourier coefficients, (u(“) ei”(“)(b_“))#ez2 =
1 2(72 3
(W U(/“))MEZQ c E (Z ,(C ) D

Using the statements of the last two lemmas, we obtain the following
important result, saying that a function which satisfies the (URC) is a
smooth function.

Proposition 3.10 Let the function u : D — C3 satisfy (URC). Then
u € CF(D3e, C*) with

Pus(z) = 3 0Pull) e s+ @ama) e pee,
HEL?

for all j = 1,2,3 and all B € N, where convergence holds uniformly on
Dpe for allb > a.

Proof: Thanks to Lemma 3. 8 there exists a constant C' > 0 such that
for all y € Z? we have $Im(p") > C'\/1+ |u[?. Let b > a. Moreover,

let n € N and z € Dy°. For,uEZ2 we define h(p) := C(b—a)/1 + |ul2.

Note that b —a > 0. Therefore, % is bounded for all yu € Z2.
Furthermore,

| (VT + )" e i(q")-2+p") (23—a))

_ W) ) ot s ) ]
e%Im(p(M))(zg, a) 1+ |/1“‘2
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n+2
o Vi) (9] o= $m(e ) o—a) 1
= (OV/IHuE (b-a) 11 |42

S (h(p)" "2 ()] e~ 1m (o) (b-0) 1
Co—aT 2 b EamE

1

< C W) e me")-a) =
=l T P

for all pu € Z2, where b := 1(a+b) > a. Using the parts (i) from Lemma 2.9
and Lemma 3.8, using Lemma 3.9 and the Cauchy-Schwarz inequality
(note that (Tlﬂp)uez"‘ belongs to ¢(Z?) according to Lemma 2.37), we
obtain from the last estimate, that the series of each partial derivative
0; from the j-th component of the continuously differentiable summands
in (3.11a) converge uniformly on Dp°. In particular, they converge locally
uniformly on DZ°. Therefore u; € C'(D°), and hence u € C1 (D, C3).
Now, by induction and again by the last estimate, we finally obtain the
assertion. O

Remark 3.11 Applying the argumentation in the proof of Lemma 3.9 to
the series representation in Proposition 3.10, we see that for a function
u: D° — C? which satisfies (URC) there holds for its coefficients u(*)

((\/1 ) eiﬂ“"@*“)) € (2(Z2,C%), forallb>a, ne N,

HEZL?

3.1.4. Weak Formulation and Uniqueness of Solution

We are now in a position to give a precise (weak) formulation of our scat-
tering problem under consideration, see also (3.8) and Convention 3.4.

Problem 3.12 Given an incident field u! as in Assumption 3.3, find
u: D — C* such that for all h > b there holds u € Hg(curl, Dt ) and

Vv € Hg o(curl, D?O) : / (curly u- curl, v — k*u - 7) dz = 0,
o
Yt LU = 07
u® =u —u' satisfies (URC) in D2
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For a solution to Problem 3.12 we can derive the following properties,
which turn out to be quite useful, in particular later when we show that
Problem 3.12 is equivalent to the variational formulation based on the
Calderon operator, see next section.

Proposition 3.13 Let u : DY — C3 be a solution to Problem 3.12.
Furthermore, let h > h™. Then the following assertions are true.

(i) curly u belongs to He(curl, D) with
curl(curly u) = k*u — (i x curlyu), i.e., curl,curl, u = k?u,
holding in L*(Df: ,C?).
(i) u|DZ°+ belongs to C’ggo(D;’Li,(C?’) and solves the equation in (i) in the
classical sense. In particular, this is true for uS|ch+.

(iii) For allv € Hg o.r,(curl, D) there holds

/ (curla w-curly, v — k2u -E) dr = —(vr,, curla u|lp,yrr, , V)1, -
D

Proof: (i). Let x € C&O(D’ﬁo,@:g) and set v := X. Then v belongs to
Hg (curl, D#O) and we obtain, using the first equation in Problem 3.12,

/ curl, u - curl y dz
oy,
= / [curly u - (curl X + i X X) + curlq u - (ia x x)] dz
Dl’io
= / [curla u - curly, v — (i X curly w) - X] dz
Dlﬁ‘o
= / [K*u — (i x curly u)] - y da.
D,
(it). Since u® satisfies (URC) in DpS, we have due to Proposition 3.10
that uS|D;o+ € CZ(Dps,C%). Mgreover, u' belongs to O (Dp2, C?) by
definition. Therefore, u|pe = (u' +u®)[p= € C¥(Dps,C?).
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(iii). Let v € Hg or,(curl, D). Due to part (i) and according to part (i) of
part (b) of Proposition 2.68, we know that curl, u € Hg(curl, D) and that
curl, curl, u = k?u in L?(D,C3). Therefore, an application of Green’s
formula (2.18b) yields

/ (curla w-curly v — k2w - ﬁ) dx
D
= / [curly u - curlv + curly u - (0 x ia) — k*u - o] dz
D

= / (curly curly u — k%u) - vda — (ve,ro curly ulp, Y10, U)r,
D N——

=0 =0

— (.1, cwrly ulp,yrr,  O)r, |
= —(mr,; cutlaulp,yrr, , O)r,

and the proof is complete. (I

Theorem 3.14 IfIm(k) > 0, then Problem 3.12 has at most one solution.

Proof: Suppose u, v : D — C? are solutions to Problem 3.12 to a
given incident field u! : Dp; — C3. Set w := uw — v. Then, for all
h > h*, w e Hg(curl, D'F’O) and satisfies the first equation in Problem 3.12.
Furthermore, v, r,w = 0 and w = (u — u') — (v — u!) satisfies (URC) in
Dps e,

ip(H) _pt ia(1) 5
w(z) = E w) glp " (x3=hT) gl 2 x e DS,
HEZ?

with a certain sequence (w(")),cz2 in C®. From Propostion 3.10 we know
that w € CF(Dp%, C?) and that the series (and its derivatives) converges
uniformly on Dj° for all h > h™. Moreover, by Proposition 3.13, there
holds curl, curl, w — k2w = 0 even in the classical sense. From this we
conclude that div, w = 0. For any h > h™*, from the uniform convergence
on I';, we obtain therefore

0 = dive w(-, h) = ! Z a -w<“)eip(“)<h—h+)Té2“).

V |Q| WETZ? p(,u)
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Since div, w(-, h) is continuous on T'y, it can be expanded into a Fourier
series and by uniqueness of Fourier coefficients we conclude from the last
equation

dgﬂ)

d | -w =0, forall ueZ? (%)

P

Now, let h > h™ and p € Z2. Then

0 dgﬂ) dgl‘) wgl‘)
0 x| [l | xwt || -wld = wf | gl | = o) [0 | | - w
1 p(#) 0 0

_ 7W‘w§#)‘2 . p(“)(\w§”)\2 + \wé“)\2)7

where we have applied the complex conjugate of (). Again by uniform
convergence of the series representation of w (and its derivatives), we
obtain now

/Fh [(%) X curlaw} -wds

o1 (£ () o (o)

HEZ?

(g ) v

vEZ?

i () —oTm (o™ Y (h—ht
= —i|Q| Z (p(“)(\wg“)|2+ |w§“)\2) + o |w§#)\2>e 20m(p() (h—h*)
WEZ?

Let a > h" and consider for 1 € Z? the functions g, : (a,00) — C defined
by

0 —oIm (oMY (6 —ht
9u(€) = (1) (2 4wl [2) + o0 [l [2) =20 e

for € € (a,00). Then |g, ()] < C\/T+ a2 w2 =2 (U1 for
all € € (a,00), because of Lemma 3.8. Thus, by Remark 3.11, the series
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(3" g,) of continuous functions g, converges uniformly to a continuous
function g. Hence, the interchange of limits is allowed and we obtain

lim g [(%) xcurlaw} -wds = 0.

h—o0
Using the previous observations, an application of Green’s formula (2.18b)

yields now, with —(v; r, curly w, yr,r,@W)r, = (V,0,W, Y,1, CUrly W)r, =
0, that

/ (curla w - curl, w — k2w - @) dx
D

h
To
/D

Dividing the last equation by k, taking then the imaginary part and passing
finally to the limit for h — oo, we obtain w = 0 almost everywhere on
Dp? and the proof is complete. O

[ =l=]

(curla curlaw—ka) -wdx—/rh [( ) X curlau)} -wds.

h
To =0

3.2. Calderon Operator and Variational
Formulation

A Special Extension Operator. As a preparation for the definition of the
Calderon operator, we now construct a certain extension operator, which
turns out to be the unique solution of the following exterior boundary
value problem.

Problem 3.15 Given ¢ € 17{651/2(Div7 Lp+), findw: DS — C3 such that
u satisfies (URC), u € Hg(curl, DZ+), for all h > h™, and

curly, curl, u — k2u =0 in Dy,
YT+ U = P-
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Note that by Proposition 3.10 the function » in Problem 3.15 is smooth
and that therefore the first equation therein holds in the classical sense.
Recall Convention 2.125 for the identification of the spaces H&l/z (Div,Tp+)

and H;elrﬂ(DiV, Q). Hence, we have for ¢ € Hcgl/z(DiV7 I'p+) its series
representation

N\
p=> wiﬂ) 2(Tg"), (3.13)
WEZ?

with associated sequence (p(")),cz2 € Cgilv/ ? and convergence to be under-
stood in Hél/Q (Div, T+ ). Moreover,

Il omer, ) = 2o (L BT ( 0 4 g %) < oc.
WEZ?

Taking for ¢ € Hél/Q(DiV, I',+) this sequence (") ,cz2, we recall (3.10)
and define the sequence (E"),cz2 in C* by

dgu) (pgu)
pw._ L L o € 72 (3.14)
: w | 9 2o R :
Q1 P\ i 0
and consider the extension
E(x):= Y BEW el # @t e Do (3.15)

WEZ?

Note that the coefficients E*) in (3.14) are well-defined thanks to As-
sumption 3.5 and that they are motivated by plugging the ansatz for F

from (3.15) into Problem 3.15 and using in particular v;r, , £ = ¢ and

divy, F £ 0. Our next goal is to show that E from (3.15) is the unique
solution to Problem 3.15.

Lemma 3.16 Let ¢ € Hél/Z(Div,I‘th), define for p € 72 the coefficients
EW by (3.14) and furthermore the coefficients
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5”) dgu) qgu)
FW .= qgu) x B th“) — dg“) x BEW G .= qéu) % F(g“)-
p p) p)

Then the following assertions are true.
(i) 3C >0VpuecZ?: |[EW| < ClpW|.
(i) 3C >0V € 72 : |F(u)| <C (|<p(u)| + ‘q(u) .SO(H)D'
(iii) 3C >0V p e Z2: |FM| < C (jo)| + g - o)),
(iv) 3C>0VpeZ?: |GW| < C(lp®|+ g - pW)).

Proof: (i). Let u € Z?. Then, using the definition (3.14) for the coeffi-
cients E(®) | we have

1 1
B0 < s i 0+ 10 [0

Now, the assertion follows immediately from Lemma 2.9 and Lemma 3.8.
(ii). Let u € Z?. Using the definition (3.14) for the coefficients E()
and (A.1b), we have

(1)

(1
oo _ 3 900 [y | PP+ () +q)a (P
\/@P(”) 2 \/@p(u) 12
p(#) A

Note that g2+ (p")? = g |2 + k2 — |a+¢W|* = k2 —|a|* —2a- ¢,
Therefore

k2] + 6] + |a] lg*] g% - '] [qun]?

1.
Nl Jor ViewE ™"

Now, we obtain the assertion again immediately from Lemma 2.9 and
Lemma 3.8.
(iii). Since F{ = Fw 4 (o1, 0,0) T x EW | the assertion follows easily

|F(u)| < |(p(u)| +
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from (i) and (ii).
(iv). Let u € Z%. We obtain, similarly to step (%),

()
po 3 49 d%Z) K o

e L By )

where we have exploited that |d*)|? + (p"))2 = k2. Hence,

(r) (w)

2 q ¥
G = q(u) P i) X ag 7k qéu) X SD%IL)
V1Q[ p p(“) V@[ p™ o) ?)

and therefore

1 [(uﬂ 18P %) + Ja] g - o] .

And again, the assertion follows now immediately from Lemma 2.9 and
Lemma 3.8. ]

Remark 3.17 The coefficients F), FY and GW from Lemma 3.16
correspond to the application of curl, curl, and curlcurl, to the u-th
summand of E from (3.15), respectively.

Lemma 3.18 Let p € H(;/Q(Div,l";ﬁ) and define for u € Z? the coef-
ficients EW), F1) Fa(f‘) and G according to Lemma 3.16. Further-

more, let (H(#));LGW € {(E(M))[LEZ2a (F(”))HGZ% (Fa(zu))uez% (G(#))}LEZ2}
and consider the series

ip(H) —_htTY g .5
= E H W glo™" (w3 =) gia™" - ze DX
WEZ?

Then the following statements are true.



3.2. Calderon Operator and Variational Formulation 187

(i) H € C>(Ds5,C?) and the series converges uniformly to H on D5°
for all h > h*. In particular, E from (3.15) satisfies (URC) and

furthermore
curl, curl, E(r) = k*E(x), x € D3,
in the classical sense.

(i) Let h > h*. The series converges in L*(Dh',,C?) to H|pn . In
ht
particular, the series representation for E and curl, E converges in
Hg(curl, DZ+) to E and curl, E, respectively.

(iii) For E from (3.15) there exists C > 0 such that for all h > h* we
have curl, E € Hg(curl, DI',) and

| curl, E |\H(Cur1,DZ+) <C|E ||H(Cur1,DZ+).

Proof: (i). Thanks to Proposition 3.10 and Remark 3.17, it sufficies to
show that E from (3.15) satisfies (URC). For this we proceed similarly
to the proof of Proposition 3.10 and observe that there exists a constant
C' > 0 such that for all u € Z? we have Im(p") > C\/1+ |u[?. Let
h > ht and z € D°. For p € Z? we define b(u) := C(h — hT) /1 + |u>.

Note that h — ht > 0. Therefore, (b()l) is bounded for all u € Z?. Now,
let 4 € Z2. Then, using the observations from above and Lemma 3.16, we
obtain

|E(M) ol (w3 —h™) eiq(“)-i‘| — o~ Im(p(w)(zs—h™") |E®)]
< Oe*é\/ 1+|p2(h—ht) |90(H)|

R O e 1
— 10 _ 5/2 .
[C (h—h1)] eb(p,) (1—|—|/,L‘2)1/4 1+ |,U|2

Hence, since z € D;° was arbitrarily chosen,

(k) (1) . p(H)

i) (z3—ht) g .z '] + g @] 1
supoc|E(M)eP (z3—h™) oig |<cC . T e
z€D} (1+ [pf?) H

Now, Cauchy-Schwarz’s inequality yields

Z sup ’E(“ ip) (z3—hT) 1q ’<C’||<p|| 71/2

e (Div.T )
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which shows that E satisfies (URC) since normal convergence implies
uniform convergence.

We show that E solves the differential equation in the classical sense.
In fact, since E satisfies (URC), Proposition 3.10 implies now that all
differential operations can be applied componentwise. In particular,

ip(H) —htY) g .z
curl, curl, E(x) = E HW glp" (23 =h7) ola"-2 x € Dpe,
HEZ?

where, by recalling Remark 3.17, (3.14) and (3.10),

d(#) d(#)
1 1
HW =i | gl [ x || g | x BW| =k EW,  pez?
p(u) p(u)

From this the assertion follows immediately.
(ii). Let m,m € N such that n < m. Then, using Fubini’s theorem,
Lemma 3.8 and Lemma 3.16, we obtain

/ ’ Z HW oip™ (zs—h") Gig™ &
Dh

nt n<|pl<m

h
i0) (pa—h™T
:‘Ql/,ﬁ H E H W oo (z3—h )Tégu)‘

n<|p|<m

h
—lo 3 |H(u)|2/ e—2Im() @s—h") g0
ht

2
dx

2

d$3
L2(Q,C?)

n<|p|<m
h 5
< Q| Z |H(u)|2/ e—C\/1+|u\2(xa—h*)dx3
n<|p|<m ht

1 e, 2 (h—ht
= 0| HWP = (1 e CV/1HIuP( >)
n<%:<m c % L+ |M|2

1
<C e (|<p(u)|2 + g - (p(u)|2).
n<%:§m V1 [uf?

Since ¢ € Hél/z(Div,Fm), Cauchy’s convergence test for series in Ba-
nach spaces yields now that the series converges in L? (DZ+,C3) to some
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Hel? (D'.,C3). By Riesz-Fischer’s theorem, there exists a subsequence
of the sequence of partial sums, converging pointwise almost everywhere
on DI, to H. From part (i) we know that this subsequence of partial
sums also converges (in particular) pointwise to H on DZJr. Hence, H and
H coincide almost everywhere on DZ+.

(iii). Let h > h™. From part (4), together with Remark 3.17, we ob-
tain £ € Hg(curl, D). Note that curl, E(z) = curl E(z) 4 ia x E(x).
Furthermore, by part (i),

curl curl,, E(x) = curl, curl, E(x) —ia x curl, E(z)
= k?E(x) —ia x (ia x E(zx)) — i x curl E(z).

Moreover, from part (4) we know that E and curl E belong to L?(D, , C?).
Together with the last observation, the asserted inequality follows immedi-
ately. a

Theorem 3.19 Let ¢ € H&l/Q(DiV,Fm), define for u € 7?2 the coeffi-
cients E by (3.14) and consider E from (3.15), i.e.,

E(z) = Z Jol0) ei(q(“)-iﬂ(“)(ms—h*))) z € DX
HEZ?

Then E is the unique solution to Problem 3.15. Moreover, for all h > h™
the mapping H51/2(D1V,Fh+) 5> ¢+ E € Hg(curl, DZJr) is bounded (with
a constant not depending on h).

Proof: (7). We have to show that E satisfies (URC) and that E solves
the first equation in Problem 3.15 in the classical sense. But this follows
from Lemma 3.18.

(ii). Let h > h*. We have to show that E belongs to Hg(curl, D, ). In
fact, from part (7) we know that E satisfies (URC). Therefore, Proposi-
tion 3.10 gives us that curl E exists in the classical sense and it allows us
furthermore to apply the curl operation componentwise such that we end
up in the situation of Lemma 3.18, if we take Remark 3.17 into account as
well. Hence, E and curl E belong to L?(DJ,,C3).

(iii). We show that v, , E = ¢. In fact, let h > h*. In Lemma 3.18
we have shown that the series representation for E converges also in
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Hg(curl, DI, ). Moreover, Yt,r,, from Hg(curl, DI',) to Hél/z(Div,Fm)
is bounded. Therefore, by recalling (3.14), (3.13) and Convention 2.125,
we obtain

0 ()
Yr =Y 0] x EWVQIry’) = (ﬁ“)) HTY) = .
2

NEZ? -1 WETZ?

(iv). We show uniqueness of Problem 3.15. Suppose u : DS — C3 is a
solution to Problem 3.15 for ¢ = 0. Let h > h'*. Since u satisfies (URC)
we have

—u(“)

2
~ ) (o () -
’Yt,Fhu(x) _ Z u(lﬂ) elp% (h—h") elql ZL” ic Q
HEZ? 0
Let v € Z? and set
—ug”) o -
v(z) = u§”> el (ws—ht) =12 r e Dy
0

Then v belongs to Hg(curl, DI',), even to C*°(Dg%, C3). Therefore, we
can apply Green’s formula from Theorem 2.113 and obtain

/ Yer, - yrr,vds + (e, U, YT, L V)T, |
Ty \\,0_/

= / (curlu - v — u - curlv) dz.
Dh
ht
Since the right hand side converges to zero as h tends to h™, we have

v v —2Im(p))(h—=ht
Q| <|Ug )|2 + |ug )|2) e~ 2Im(p™)(h=hT) :/ Yo, -y, vds — 0,
I'n

as h — hT. From this we conclude that u{*) = u{") =0 for all u € Z2.
Moreover, u satisfies curl, curl, v — k*u = 0 in the classical sense. There-
fore, div, u = 0. Furthermore, thanks to Proposition 3.10, all differential
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operations go through componentwise to the series representation for u.
Since div, u(+, h) is continuous, it can be expanded into a Fourier series.
Hence,

dg#)
0=divou |Q| Z dg”) ) ol (h=h™) Té“),
HEZ? p(/*l')

and by uniqueness of the Fourier coefficients we obtain (d§” ) dé” ) pNT

u®) =0 for all u € Z2. And from this we obtain finally ué“) = 0 for all
p € 72, since p() #£ 0.
(v). We show boundedness of the solution operator. For this let h > hT.
Moreover, for n € N we set

() i) 5
E,(z):= Z B ol (25 =hT) gig" -3 x € Dy,
lul<n

and obtain very similar to part (ii) from the proof of Lemma 3.18 that for
all n € N, and with £ from Lemma 3.16,

h
—2TIm(p™ ) (za—hT
HE”H?LI(curl,DZ+) =1Q| Z (|E(u)‘2+|p(u)‘2) /h+e 2Im(pH ) (x5 =h") qgq

| <n
(1))2 (1) (1) |2
(I + g - o]
X |
<Cllel? ik

(Div,I'y4)°

Using that F, — F in HQ(C111r1,Dh+)7 as n — 0o, see Lemma 3.18, from
the last estimate the assertion follows now immediately. (]

The Calderon Operator. Theorem 3.19 yields a linear and bounded
operator

H, 1/2(D1V Th+) 3¢ = E € Hg(curl, D),
where E is given by (3.15) and is the unique solution to Problem 3.15.
Here, h is any real number such that h > h™. Furthermore, taking this E,
by part (%) of Lemma 3.18 the operator

Hg(curl, DIy ) 3 E — curl, E € Hg(curl, DJ',)
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is also linear and bounded. Finally, recall that v r, , is a linear and

bounded operator from Hg(curl, D) to Hél/Q (Div,T'y+). These obser-
vations give rise to the following definition.

Definition 3.20 The linear and bounded operator
H§1/2(Div,l“h+) 3¢ = mr,, curly B € Hél/Q(Div,Fm)

given by the composition of the three linear and bounded operators from
above is called Calderon operator. We denote this operator by A,,.

Remark 3.21 Note that in the definition of the Calderon operator there
goes into the trace operator yir,, . Since curly E belongs for any h > ht
to Hg(curl, D,};), Y1, operates by definition with respect to the normal
vector (0,0,—1)T, because it’s showing outside of D}, .

Remark 3.22 For the Calderon operator we have the explicit formula

1 < dgu)dgu) (dg“))Q—kZ

Ayp =1 —_—
ugz p(u) k2 _ (d§“))2 —dg“)dé“)

) P Ty

. 1
=i Z o) {]ﬁ(@(u))l — (d®) . gp(“))(d(“))ﬂ ](Té?”))
WEZ?

for all p € Hél/Q(Div, Ty+). Here, convergence has to be understood in
H51/2(Div,Fh+), and a* = (—az,a1)" for a € C2, see (1.7). For the
coefficients o) of ¢ see (3.13).

Proof: Let ¢ € H61/2(Div, [';+). Moreover, let p € Z? and recall (3.14)
for the definition of the coefficients E*). Then

0 X |1 dg‘u) X E('“') = — Eg'u déﬁ") — p(”) Eé#)
-1 p(u) 0 0
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: i e
_ 1 AW LW _ g ) W | _ ()2 (1)
(dy" ¢y 1%2) | d (") —p

(p) 2 1
VIRl 0 0

i dg”)dgu) (dé”))Q k2
—— |2 (1)\2 (1) (1) (»)

\/@p(ﬂ) k? — (di") —di"dy P,
0 0

where we have applied (p(*))? = k2 — |d® |2, see (3.10). Now, thanks to
Lemma 3.18 and Remark 3.17, we have

ip(H) _htY) e .5
curl,, E(iE) — Z Féﬂ) elP M (zz—h )elq 5 z’ = D}OL?H
WEZ?

with £ from Lemma 3.16, and where we have convergence also in
Hg(curl, D7) for all h > h*. Therefore, we can apply the trace operator
Yt,r, . componentwise and obtain

o) (ca—h 1) igW) T
Yer,, curly B = E Yer, . FC(J‘) ol (-a—=h*) GigW) =
WEZ?

Using the calculations from above and recalling Convention 2.125 together
with (3.13), the explicit formula for the Calderon operator follows now
immediately. |

The Variational Formulation. By means of the Calderon operator, we
are now in a position to give an equivalent formulation of Problem 3.12 in
variational form. We will take this formulation to show later existence of
solutions.

Problem 3.23 Given an incident field u! as in Assumption 3.3, find
u € Hgor,(curl, D) such that for all v € Hg o r,(curl, D)

/ (curla w-curl, v — k2u - 6) dz + <Aoé(w,ph+ u), Y11, +E>
D ' Tyt

= <Aa('yt,l"h+ (WD) = ver,, Curla(ui\p),’YT,rh+5>F

ht
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Remark 3.24 Ifu € Hg or,(curl, D) solves Problem 3.23, then we have
/ (curlau -curl, v — k2u~ﬁ) dr =0
D

for all v € Hgo(curl, D). Hence, from Proposition .18 we conclude that
curl, u € Hg(curl, D) with curl, curl, u = k*u holding in L*(D,C3?).

Theorem 3.25 Problem 3.12 and Problem 3.23 are equivalent.

Proof: (i). Let u : D> — C? be a solution to Problem 3.12. Using
Proposition 3.13, we see that uS|D}ocJr is a solution to Problem 3.15 for

© =T, 4 uS|DZ+ for any h > h*. Since E defined by (3.15) solves this

problem too, we have by uniqueness E = u5| D, - Therefore,

Aqp def Y1, curly B =y r, | curla(uS|DZ+) = =T, curly, (v’|p).
Moreover, thanks to Proposition 2.119,
Ao = Aoy, (Wlpr, ) = =Aaver,, (07|D).
This yields
Yr, . cwla(ulp) =yir,, curls(ulp — v |p) + Yer,, curls(v'|p)
= Aai,r,, (ulp — u'lp) + Yer, . curly (u'|p).

Let v € Hgor,(curl, D). Then, by part (i) of Proposition 3.13, we
have

/ (Curla w-curl, v — k2u - @) dz = —<7t7ph+ curly (ulp), ’)/T,Fh’+5>ph+.
D

Using the observations from above, from the last equation the assertion
follows now immediately.

(7). Let w € Hg o, (curl, D) be a solution to Problem 3.23. Thanks to
Remark 3.24, curl, u belongs to Hg(curl, D). Therefore, we can apply
Green’s formula (2.18b) to curl, u and an arbitrary v € Hg 0., (curl, D),
and obtain

/ (curla w-curly v — k2u - @) dx
D
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2 _ _
= / (curla curl,u — k u) -vdr — (y,r,, cwrla u,yrr, )1, 4
D
=0

where we have again applied Remark 3.24. Let ¥ € H (5 1/2 (Curl,T'y+) and

set v :=nrp,, ¥ € Hp(curl, D). Note that v is even in Hgo,r,(curl, D),
see Theorem 2.107. Then the variational equation in Problem 3.23 yields,
together with the last equation from above,

<’Yt71"h+ curly (u — u'|p) — Aover, , (u— u'|p), 1/1>F = 0.
ht
Since ¢ € H§1/2(Curl, T'y+) was arbitrary, Corollary 2.114 and a well-
known conclusion from Hahn-Banach’s theorem yield that

V.1, 4 curly (u — u'lp) = Aaver, y (u— ul|p).

Let u™®: D% — C3 denote the solution of Problem 3.15 to the boundary
data ¢ = =1, , (u — v![p). Furthermore, set ut = ul\,:);>gr +uts and
define 4 : D — C3 by

U=

u, on D,
u, on D.

Note that by construction u™* satisfies (URC) and that u™ is smooth
with curl, curl, u™® = k?u™5. Furthermore, u** € Hg(curl, D1, ), for all
h>h*, with yp ,ut®=¢=—yr , (u—up)and ., curlyuts =
Aoy = —Aoyr, . (u — u')|p. Therefore, ut € Hg(curl, D}, ), for all
h > h*, and

Ve, uT =y, (0 - ui|DZ+) + T, . (ui|Dg+)
= =T, + (U - Ui|D) — Y, (ui|D) = —MTr,4+ U

Hence, by Proposition 2.118, we have @ € Hg(curl, D{io), for all h >
h*. Moreover, ;1,4 = Yy r,u = 0. Finally, let o > ht and v €
Hg o(curl, D{lo). Then, by applying Green’s formula (2.18b) and using the
observations from above,

/ (curla ut - curl, v — K2t -E) dx
D

h
ht
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= / (curla curly, ut — k?ut ) -vdr — (y,r,, curly u', YT,r, s O)T, ¢
Dh
ht =0

= - <’yt7F}L+ Curla (U+_ ui |D:+)7 ’YT7F}L+6>F;L+_ <’yt7F}L+ (ui|DZ+)? ’VT,Fh+E>Fh+

= (Aavr, . (u—1'p),yrr, . V1, + (ver,. WD), Y10, O, -
Therefore, the first equation in Problem 3.12 follows now from

/ (curla @ - curl, v — k24 - @) dx = / (curla w-curly v — k2w - ﬁ) dx
D

h
To D

—I—/ (curla ut - curly v — K2ut ~E) dx
D

h
ht

together with the variational equation from Problem 3.23. g

3.3. Existence of Solution

From Theorem 3.14 we know, that for special values of k Problem 3.12 has
at most one solution. It is the objective of this section to investigate when
there also exists a solution. For this we will take its equivalent formulation
in variational form, namely Problem 3.23, as a basis and apply standard
tools from functional analysis.

Since the functionals, which will appear here, are antilinear (see Section 1.3

for a definition), we will need a variant of the theorem of Lax—Milgram as
given by Corollary A.9.

3.3.1. The ldea of Proof

Recall Problem 3.23. For ease of notation, we set

V := Hgor,(curl, D)
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and define for u,v € V the sesquilinear form B(u,v): V x V — C and the
antilinear functional ¢ : V — C by

B(u,v) := /D( curly u - curly v — k*u - v)dx + (Aa(yt,r, . u), ’yT,pH@FH,
(3.16)
{(v) = (Aa(yer,, (@[p) = wr,. cwla(w|p),yrr,, T)p - (3.17)
Then Problem 3.23 reads as: find u € V such that
B(u,v) = £(v), for all v € V.

Inspired by [35] and [42, Section 10.3], we define the subspaces W and X
of the space V' by

W=Hor,(D) and X :={a@ €V [V € W : B(&l, Vorp) = 0}. (3.18)
Suppose for the moment that the space V can be decomposed into
V=XoV,W

and that u = a+ V,p € V is the solution to Problem 3.23. Then we obtain
for arbitrary v = ¥ 4+ V¢ € V that

B(u,v) = £(v) & B(i,v) = £(v) — B(Vap,v)
A B(fl,, f]) + B(ﬂ, Vaw) = E(ﬁ) + K(Vaiﬁ) - B(vapa f1) - B(vapv Va¢)~
=0
This gives rise to introduce the following two auxiliary problems and to
solve them separately.

Problem 3.26 Find p € W such that
B(Vap7 voﬂ/}) = E(Vad)); Jor allyp e W.

Problem 3.27 For given p € W find @ € X such that
B(@,7) = £(0) — B(Vap, 9), forall v € X.

In the following presentation we will show that both problems are uniquely
solvable and that indeed V' = X &V, W. Then, by the chain of equivalences
from above, @ + V,p =: u solves Problem 3.23, where p is the solution to
Problem 3.26 and @ is the solution to Problem 3.27 for this p.
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3.3.2. The First Auxiliary Problem

Motivated by Problem 3.26, we introduce the sesquilinear forms By, Bs :
W x W — C, defined by

Bi(p,¥) :== (VP V¥) r2(p sy + |af? (1Y) 12Dy

1 -
T2 <Aoz ('7t,1"h+ Vap), YT,r, + Vaw>rh+ ’ (319&)
By(p,¥) := (Vpliay) p2(p cay + (ip | V) 2 p s 5 (3.19Db)

and consider the following problem.

Problem 3.28 To given antilinear and bounded g : W — C, find p e W
such that

Bi(p,¥) + Bz2(p,¥) = g(¥),  forallyp € W. (3:20)
Remark 3.29 [t is easy to verify that there holds the equation

1
Bl(pa¢)+B2(pa¢) = _ﬁB(VOJ))VOﬂ/})a fOT’ allp,¢6W
Hence, choosing the antilinear and bounded functional g : W — C from
the form

g() == —% LVa1)), for ally € W,

Problem 8.26 is a special case of Problem 3.28.

In the next Proposition we will show that B; and By are bounded and
that Bj is in addition coercive. This gives rise to rewrite the variational
equation (3.20) to an operator equation. The operator therein will turn
out to be a compact perturbation of the identity operator. Finally we show
that this compact perturbation is injective. Then, an application of Riesz’
third theorem will finish the proof for the solvability of Problem 3.28.

For the terms appearing in the next lemma consult for instance Theo-
rem A.8.
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Proposition 3.30 The sesquilinear forms By and Bs, given by (3.19a)
and (3.19b), respectively, are bounded. Furthermore, By is coercive.

Proof: (i). We show that Bs is bounded. In fact, let p,¢ € W. Then

|Ba(p, V)| < | IVpllz2(p,coy 19l L2y + el Ipll2 o) IVl L2 (p,c3)
<lalllpllar oy ¢ e (-
(ii). We show that B; is bounded. In fact, let p,¢p € W. At first, we

observe that by the boundedness of A, and v, r, , , see Definition 3.20 and
Theorem 2.107,

ht?

||Aa (’Yt,l"th Vap)HHél/Z(DiV,Fth) S C HvapHH(curl,D)
<C (vaHH(Curl,D) + ||iapHH(curl,D))
= C (IVBllz.co) + \flaplZap s + (VD) % @l cs))

< Cllpllar(py-

Therefore, by consulting also Theorem 2.113, we obtain now from (3.19a)
easily

[B1(p, )| < Cllpll 2oy [1€] 1 ()
(iii). We show that Bj is coercive. In fact, let p € Cg,p (D). By
Lemma 2.127, the series representation therein for v r,  Vop converges

in Hy, 1/ 2(Div, Tp+). Therefore, we can apply the Calderon operator
componentwise, which yields

N L T2 0 g0 ) () (gL Y (gL ()
Aa’ytﬁthrVapl#%?p(“)[ ik“p\*d ip (d E((i) ) )(d ) }j(TQ ).

Here, p'*) denote the Fourier coefficients of p(+, h1). Again by Lemma 2.127,
we have

v Vo = 1 3 PO
vEZL?

with convergence in Hél/z(Curl, I',+). Hence,

<Aa/yt,l—‘h+ val’, ’YT,F}H, Vap>ph+
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k2p(M) — y
= > S AT, (T )

w,vEZ? Tnt
— iR Z P(“)Iﬁd(u) 4™ (T(u) ‘T(V))
=t ¢ 17 I
. 1
= k2 Z W|d(u)‘2|p(u)|2’
HEZL?

where we have applied the definition of the bilinear form (-,-)r, , from

Theorem 2.113. Note that Re (ﬁ) > 0, for all i € Z2. Therefore,

Re [Bi(p,p)] = ||Vp||2L2(D,<c3) + |04|2||p‘|%2(D) + Z Re(,,(i))|d(“)|2\p(”)|2
HEZ?

> min{1, |a|*} |plFn p)-
If & = 0, then one shows the last inequality by means of the inequality of
Friedrich’s type, see Theorem 2.96. o
Finally, let p € W. By definition, C&, r (D) is dense in W. Therefore,

the assertion follows from the last estimate by a standard approximation
argument. g

As a consequence of Proposition 3.30, by a conclusion of the theorem of
Lax—Milgram, see Corollary A.9, there exists a unique linear and bounded
operator K1 : W — W and a unique b € W such that

Bl (K1p7’(/)) = BQ(p7¢), for all paw S W (321)
Bl(b7¢) = 9(1/’)a for all QZ} ew.

Now, it is not difficult to see that Problem 3.28 is equivalent to: to given
be W, find p € W such that

(I+K1)p=0b, (3.22)

where I : W — W denotes the identity operator.

Proposition 3.31 The operator K1 : W — W, given by (3.21), is com-
pact. Moreover, the operator I + K1 : W — W is injective.
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Proof: (7). We show compactness of K;. For this let (p,)nen be a
bounded sequence in W. By Theorem 2.122, there exists a subsequence
(Pry(1))ien Of (Pn)nen which converges in L?(D). Since Ky : W — W is
bounded, also (K1p,, ))ien is bounded in W, and again by Theorem 2.122,
there exists a subsequence (K1py,q))ien of (K1pp,(1))ien which converges
in L?(D). Hence, using the coercivity of B, Equation (3.21) and the
definition of By, we obtain

1K1 (o) = Praen)) 7
< C|B1(K1(Pnyt) = Pratm))s K1 (Pra@) = Pra(m)))|
= C|B2 (Dot = Pra(m)» K1 (Prat) = Pratmy)) |
< C(I9 @) = Prscm) l22(0,69) 10K Byty = Py (o)l 22(0.09)

+ Py @y = Pram)llL2(0,c3) IVEL(Pry ) *pnz(m))HL?(D,@))-

Since the terms where the symbol “V” appears are bounded and the other
terms are convergent, we conclude that (Kip,,())ien is a Cauchy sequence
in W and therefore convergent in W.

(7). We show injectivity of I 4+ K. For this let p € W with (I + K;)p = 0.
This is equivalent to Bj(p,¥)+ Ba(p, ) = 0 for all » € W. In particular

0= Bi(p,p) + Ba2(p.p)
1 -
= ||vap||%2(D’<C3) - E<Aa ('Yt,Fh+ Vap)7 YT,r, + vap>1—~h’+ :

From part (77) in the proof of Proposition 3.30 we know that
1 N
Re <k2 <Aa (’Yt,Fth vozp)a YT,r, + Vap>rh+> <0.
This implies together with the equation before that ||Vap||2L2(D csy = 0.

Finally, Friedrich’s inequality, see Theorem 2.96, yields p = 0 and the
proof is complete. U

Theorem 3.32 Problem 3.28 and Problem 3.26 are uniquely solvable.

Proof: The assertion for Problem 3.28 follows from the equivalent problem
represented by (3.22) and from Proposition 3.31 together with Riesz’ third
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theorem, see for instance [36, Theorem 3.3].
And the assertion for Problem 3.26 is now a consequence of the unique
solvability of Problem 3.28 and Remark 3.29. g

Proposition 3.33 The spaces X and VoW are closed subspaces of V.
Furthermore, we have V=X ® V,W.

Proof: (i). To see that V,W is a closed subspace of V, we repeat
the argumentation in the proof of Proposition 2.75 with corresponding
adaptions for the situation considered here, where the functions vanish only
on I'y. For instance, we have to cite Theorem 2.96 instead of Theorem 2.72.
(ii). We show that X is a closed subspace of V. For this let (i, )nen be a
sequence in X which converges to some % € V' with respect to ||- | 7 (curl, D)-
Let p € W. Then B(ay, Vo) = 0 for all n € N and we obtain

0= lim B(iin, Vatb) = B(i, Vat),

where the last step holds thanks to the convergence of (i, )nen With respect
to || - [l o (curt,py and the definition of B, see (3.16).

(iii). We show that V = X + V,W. The inclusion “D” is obviously
true. For the inclusion “C”; let u € V. Define p € W as the unique
solution of Problem 3.28 to given g(v) := — 75 B(u, V1), for all ¢ € W,
see Theorem 3.32. Set @ := u — V,p. Then, by the first equation in
Remark 3.29,

15 B0, Vat) = 15 B, Vat) — 15 B(Vap, Vat)

k2
= —g(¥) + Bi(p, ) + Ba(p,) =0

for all 1) € W, and hence u € X. ~
To see that X NV, W =0, let & € X N V,W. Then @ = V,p for some
p € W and we obtain

0=~ B, V) = 3 B(Vap, Vo) = Bu(p, ) + Bo(p. )

for all ¢ € W. From this we conclude, since Problem 3.28 is uniquely
solvable, that p = 0. Hence, @ = V,p = 0 and the proof is complete. O
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3.3.3. The Second Auxiliary Problem

Unfortunately, the investigation of the solvability of Problem 3.27 is
more involved, because the Calderon operator considered in the situation
here does not give rise to a coercive sesquilinear form, see the following
observation, and has therefore to be split up into a coercive and compact
part. Especially the proof of the compactness result requires some technical
efforts. For this, we need in particular to introduce several auxiliary
operators and to study their mapping properties. Nevertheless, the main
procedure is very similar to the investigation of Problem 3.26.

Observation 3.34 The sesquilinear form
X X X > (71,17) — <Aa(7t7Fh+ ﬂ)’fYTth,+5>Fh,+ eC

is in gemeral not coercive.

Proof: Let @ € O, (D,C?). By Lemma 2.127, the series representa-
tion therein for Yer, . U and yr,r, U converges in H51/2(Div,Fh+) and
Hé 1 2(Curl, T'j,+), respectively. In particular, the Calderon operator can
be applied componentwise yielding

o 1 - ~
Aoyer, . =i _ W [ _ g2 (d(u) . (u(u))L)(d(u))l ] g(Té”)),
ne

where here and for the rest of this proof @(*) € C2? denote the Fourier coef-
ficients of (-, hT) orthogonally projected from C? onto C2. Therefore,

~ = . 1 ~ ~
<Aa’Yt,Fh+ u, ’YT,Fh_{. U>Fh+ =1 E p(/L) ( — k’2‘u(/"')|2 + |d(:u') . (u(ﬂ))LP)’
HEZ?

where we have applied the definition of the bilinear form (-,-)r,, from

Theorem 2.113. Note that Re (p(—lu)) > 0, for all 4 € Z2. However, the

summands containing the factor —k? destroy in general coercivity due to
Definition 3.2. O
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As mentioned before, because of Observation 3.34 we have to split up the
Calderon operator A, into a coercive and compact part. For this purpose
we write

Aap = AP+ AP, pe Hy*(Div,Tys),

where the operators AS), A H(Sl/z(Div,Fm) — H51/2(Div, I'y+) are
given by

. 1 '
AWM = —j Z W(d(u) : (p(u))(d(u))LJ(Tg ),

WEZ?
, 1
AP =ik ) W(s@(“))LJ(Té“)%
WEZ?

see also Remark 3.22, in particular for the coefficients (w(/‘))uep € C];ilv/Q.

To see that the operators are well-defined, we have to show that the
. 4. o) 7.2

coefficients ( — i p(ﬁ (d("))J-)MeZQ and (L& (gp(“))l-)uez2 belong to

p(
C];ilv/2. But, thanks to Lemma 2.9 and Lemma 3.8, this is easy to see.

Moreover, the convergences have to be understood in Hél/Q (Div,T'p+)
and the operators are linear and bounded.

Now motivated by Problem 3.27, we introduce the sesquilinear forms
B3, By : X x X — C, defined by

Bs(u,0) := (curla | Curl'ﬁ)Lg(D7C3) + (o x @ |ia x 'D)L2(D7C3)
+ (17, ‘ 6)L2(D,C3) + <A((;y1)(7t,l—‘h+ ﬂ)v VT,Fh+ 5>I‘h+a (323&)
By(it,9) := —(1+k?) (@] f))Lz(D’Cg) + (i x @ | curlf))m(D’Cg)

+ (curld [ia X ) 12 cs) + (AP (r, . @), yrr, B)r, 4 s
(3.23b)

and consider the following problem.

Problem 3.35 To given antilinear and bounded g : X — C, find & € X
such that .
Bs(a,0) + Ba(a,0) = g(v), forallv € X. (3.24)
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Remark 3.36 It is easy to verify that there holds the equation
Bs(it, ) + By(t,9) = B(i,9), for all u,7 € X.

Hence, choosing the antilinear and bounded functional g : X — C from the
form

g(0) 1= £(0) — B(Vap, V), forall v € X,
for some p € W, Problem 3.27 is a special case of Problem 3.35.

Similarly as for Problem 3.28, in the following presentation we will show
that B3 and B, are bounded and that Bs is in addition coercive. Again,
this gives rise to rewrite the variational equation (3.24) to an operator
equation. The operator therein will turn out to be a compact perturbation
of the identity operator. Unfortunately, to verify the compactness property,
more work has to be done. Finally, we will show again that this compact
perturbation is injective. Thus, as before, an application of Riesz’ third
theorem will yield the solvability of Problem 3.35.

We start with a useful characterization of the space X.

Proposition 3.37 The space X from (3.18) can be characterized by
X = {12 € V[ divy @ =0 and Divy(Aavyer, @) = —kZ’anth&}.

Moreover, the embedding X N L?(D,C3) is compact.

Proof: (i). To show the characterization, first of all, for ¢ € Hj (D) we
have ia x (Vi) + ia)) = ia x V4 and, thanks to Proposition 2.75, that
curl(Vytp) = V4 x ia, which implies that curl, (Vo) = 0.

Let @ € X. Choosing some x € C&,(D) C W, from B(i, Vax) = 0 we
conclude, with the observation above, that

/&-Vyda::—/(—iawl)ydx.
D D

Hence, @ € Hg(div,D) with divi = —io - @, which is equivalent to
div, @ = 0. Now, let v € W. Then from B(@, V49) = 0 we conclude,
with (2.18¢) and (2.19), that

0= —k‘2/ - Vo dr + (Aa(yer,, @), v7r,; Vo)1, o
D
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= k2/ Y dive @ dx — k* (1, @ Y0,r, ) — (Diva Aa(Ye.r,. @), 0,0, ,9)
D ~——

= —<I€2’yn$rh+ﬁ+DiVaA (’yt Fh+ ) Yo Fh+¢>

From this we obtain, together with the surjectivity of the trace operator
Yor,s € LHSD), Hl/Q(Fh+)) and a well-known conclusion from Hahn-
Banach’s theorem, that indeed Divy (Aa7er, @) = —]C2’Yn’1“h+71

To show the reverse inclusion, let &« € V such that div, 4 = 0 and
DiVa(Aa’ytypth ) = —l<:2’yn)ph+ . Furthermore, let ¢ € W. Exploiting
again (2.18¢), we then have

= / o divy tda = —/ - Vo dz + (Y1, . @ Y0,0, . )
D D
and again by (2.19) that

(Diva (Aot . @) Y0,r,, ) = —(Aa(Yer,, @), v7r, Vo)1, -

From this, together with curl, V41 = 0, we conclude finally B(a, V,1) = 0,
as desired.

(ii). To show compactness of the embedding, by consulting the definition
of the space X from (3.18), it is easy to see that X is a subspace of the
space Hg(curl, div, 0, D) from Definition 2.69. Therefore, the assertion
follows now immediately from Theorem 2.122. g

Proposition 3.38 The sesquilinear forms Bs and By, given by (3.23a)
and (3.23b), respectively, are bounded. Furthermore, Bs is coercive.

Proof: (i). We show that Bs is bounded. In fact, let @,@ € X. Then, by
the boundedness of the operators Aa s VT, 4 and yr, Ty there holds the

estimate HA((X (ver < C@]| g (curl, 0y and furthermore

nt “)HH—”"‘(DW T4) =

||7T7Fh,+5||H51/2(Curl T4) = <C ||’U||HQ(C111‘1 D), and we obtain

|Bs(@, )| < || curldl|p2p sy || curl 9| 2(p,c3)

+ (L4 )il L2 oo 18]l 2 (p,c2)
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+C ”At(xl)(%’l“w 71)||11r51/2(Div,Fh+) HVTTH5“H§1/2(cur1,rh+)
<C ||aHHQ(curl,D) ||1~}HHQ(curl,D)'

Again, for the constant C', which appeared here several times, see the
convention at the end of Section 1.3.
(ii). We show that By is bounded. In fact, let @, € X. Then, with the
same arguments as above, we obtain

|Ba (@, 9] < |1+ K| ||@i]| p2(p,c2) 9] 2 (p,c2)
+ lal |l z2(p,c2) | curl 9| 2 (p sy
+ |a| || curl @l 2 (p sy |0 L2 (D c3)
2 - =
+C AP (nr, . “)||H51/2(Div,rh+) ”’YT’Fh,'FvHH(El/Q(Curl,Fth)

<C ||71HHQ(CUI‘17D) ||1~)HHQ(curl,D)~

(iii). We show that Bj is coercive. In fact, let @ € CZg (D,C?). By
Lemma 2.127, the series representation therein for v r, , @ converges in

Hc;l/z(DiV7 I'jp+). Therefore, we can apply the operator A

wise, which yields

component-

o 1 ~
AS)%IHU =i Z (d(“)- (u(u))L)(d(#))J_](Té;)).

Here, @®) € C? denote the Fourier coefficients of @(+, h*), orthogonally
projected from C? onto C2. Again by Lemma 2.127, we have 7T7ph+ﬁ =

D e fa(”)j(Té_V)), with convergence in H51/2(Curl7 [+ ). Hence,
1 - =
<A& )’Yt,FthU, YT,T, 4 U>Fh+

—id® . (gmyL _
Z <d—()(d(“))lj(Té2“)),ﬂ(”)j(TQ V))>

prer? p(l‘) T+
(1) . (gL N
iy W(dm)ya(y) (19| 7$)
ez plr ~— L2(Q)

——d (@)L

3 1 L ~(H
=i Z e d™) - (@) )2,
HEZ?
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where we have applied the deﬁnition of the bilinear form (-,-)r, , from
Theorem 2.113. Note that Re ( P —15) >0, for all u € Z2. Therefore,

Re [Bs (@, @)] = || curlalf22(p co) + lia x a@ll2s(p.coy + la@ll2e(p.co
+ 3 Re(5hy)[d®) - (@)t?
HEL?

2 ||{L||2HQ(cur1,D)'

Finally, note that Bj is even well-defined in V. Since, by definition,
C&or, (D, C?) is dense in V, by a standard approximation argument we

conclude that Bs is coercive in V, and therefore in particular in X. [

Note that X is a Hilbert space, see Proposition 3.33. Hence, again as
a consequence of Proposition 3.38, by a conclusion of the theorem of
Lax-Milgram, see Corollary A.9, there exists a unique linear and bounded
operator K3 : X — X and a unique b € X such that

Bs(Ksii, 0) = By(i,9), for all @,7 € X, (3.25)
Bs(b,7) = g(d), for all o € X.

And again, it is not difficult to see that Problem 3.35 is equivalent to: to
given b € X, find @ € X such that

(I + K3)a=b, (3.26)

where again I : X — X denotes the identity operator.
The next goal is to show that the operator K3 is compact. For this, as we
will see below, that the compactness of the mapping

Xsa = APy, ae Hy'?(Div,Ty+) (3.27)

is a key ingredient. To prove this property, we recall Convention 2.125,
together with Lemma 2.129, and observe that for ¢ € HC51/2(DiV7 Tp+) we
have

[l 12w,y = 2 A T2 (P + 10" +6 = @) - o »P)
w7
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< (1 + 2|a‘2) Z (1 + ‘M|2)—1/2‘(p(ﬂ)|2
HEZ?
£2 3 (4 D)2 + ) - o0
HEZ?
= (1 + 2|O[‘2) ||90||i[51/2(1—‘h+,((:2) + 2 || DiVa (‘0||§151/2(F

h+).

Therefore, the compactness of the mapping given by (3.27) follows easily,
if we have shown that the mappings

X3 = APvyr,, ae Hy*(Tye,C?), (3.28a)
X 3@ = Diva (AP yr,, 0) € Hy'/*(Ty+) (3.28b)

are compact. This is the statement of the following lemma.

Lemma 3.39 The mappings given by (3.28a) and (3.28b) are compact.
In particular, the mapping given by (3.27) is compact.

Proof: (a). To verify compactness of the mapping given by (3.28a),
we note, thanks to the boundedness of the trace operator v r,, and
the embedding from Lemma 2.129, that it suffices to show compactness
of the mapping Hél/Z(Fh+,C2) S ¢ A((f)go € Hél/Q(l"hh(CQ). We
call this mapping A and consider for n € N the compact mappings A,
Hg'?(Ty+,C2) — H;/Q(rh+,<c2) given by

=ik? »

[u|<n

p(u) VAT, € HY (s, C).

Then, for ¢ € Hél/z(FM,CQ) we obtain, by applying Lemma 3.8,

(1)|2
B 9 L4 2 71/2|90 ‘
1O = D) @l , ooy = IR D (L 172 G5

[u|>n

—1/2 “P ‘ C 2

[p|>n
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Hence, (An)nen converges to A in operator norm, as n — oo, which shows
that A\ is compact too.

(b). To verify compactness of the mapping given by (3.28b), let @ € X.
Then, thanks to Proposition 3.37 and Theorem 2.111, we obtain

|| Div, ()‘1(12)7t7F;L+ 1]) ||H51/2(1“h+) = |k|2 “7n7F;L+a||H51/2(ph+)

/
< C il gaiv,py = C (Iall32(p.co) + | diva @ —iac- @[3 )
=0
< Cllill2(p,co).-

Taking now the embedding from Proposition 3.37 into account, we have
indeed shown that the mapping given by (3.28b) is compact.

And finally, the compactness of the mapping given by (3.27) follows
now immediately from the compactness of the mappings given by (3.28a)
and (3.28b), together with the estimate after (3.27). O

Proposition 3.40 The operator K3 : X — X, given by (3.25), is com-
pact. Moreover, provided Problem 5.12 has at most one solution, the
operator I + K3 : X — X is injective.

Proof: (i). We show compactness of K5. For this let (i, )nen be a bounded
sequence in X. By Lemma 3.39, there exists a subsequence (ﬂnl(z))leN of
(Un)nen such that (A((f)'yt’ph+ T, (1y)1eN is convergent in Hcsl/z(DiV, Tp+).
Moreover, thanks to the embedding from Proposition 3.37, there exists a
subsequence (i, (1))ien Of (@n, (1))ien Which converges in L?(D,C?). And
last but not least, since the sequence (K3, (;)ien is bounded in X, there
exists a subsequence (i, ())ien Of (@n,))ien such that (K3, ) )ien
converges in L?(D,C?), thanks again to Proposition 3.37. Hence, using
the coercivity of Bz, Equation (3.25) and the definition of By, we obtain

HK'?’(and(l) - ﬂ77/3(770)||§{Q(curl,D)
< C|B3(K3(lng (1) = Ty (m))s K (Ting (1) = Tng(m)))|
= C [ Ba(ling (1) = Tny(m)s K3 (Tng 1) = Ung(m)))|

<C (Hﬁng.(z) — Uy (m)ll22(D,c3) 53 (Uny (1) = Ung(m))lL2(D,c?)
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H g 1y = Gng(my |20, || curl (K (@ng ) = Tng(m)) | 12 p )
+ || curl (ﬂn3(l) — ﬂn3(m)) HLz(D,(C?‘ ||K3(un3( ) — U”n,g )HLZ(D C3)

+ ||A(oz2)7t,Fh+ (ﬂng(l) - aﬂs(m))HH5l/2(Div,Fh+)
||K3(’an3(l) - ﬂTLS(WL))”HQ(Curl,D)) — 0, asl,m— oo,

because both terms containing the curl-operator and the term measured in
the || - || 7o (curl, 0y norm are bounded and the remaining terms converge to
zero by the considerations from above. Hence, (K 3ﬂn3(l))l€N is a Cauchy
sequence in X and therefore convergent in X, because X is a Hilbert space,
see Proposition 3.33.

(ii). We show injectivity of I + K3. For this let @ € X with (I + K3)a = 0.
This is equivalent to Bs (@, ) + Ba(@,7) = 0 for all & € X. Thanks to
the first equation in Remark 3.36, the composition V = X & V,W and
B(@, Va1) = 0, this is equivalent to B(@,v) =0 for all v =0+ V,ip € V.
That is, 4 is a solution of Problem 3.23 to u' = 0. Since this problem has
by assumption at most one solution, see also Theorem 3.25, it follows that
= 0. |

Theorem 3.41 Provided Problem 3.12 has at most one solution, Prob-
lem 3.35 and Problem 3.27 possess exactly one solution.

Proof: As in the proof of Theorem 3.32, the assertion for Problem 3.35
follows from the equivalent problem represented by (3.26) and from Propo-
sition 3.40 together with Riesz’ third theorem.

And again, the assertion for Problem 3.27 is now a consequence of the
unique solvability of Problem 3.35 and Remark 3.36. O

3.3.4. Summa Summarum

Thanks to the preliminary considerations from above, we are now in a
relaxed position to prove the main theorem of this chapter.

Theorem 3.42 If Problem 3.12 has at most one solution, then it possesses
exactly one solution.
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Proof: This follows as outlined at the end of Subsection 3.3.1, together
with Theorem 3.25. O



4. Electromagnetic Scattering —
Boundary Integral Equations

The integral equation method is the other main approach for investigations
of existence and uniqueness of solutions to boundary value problems and
well-suited for exterior (such as scattering) problems. In its indirect
variant, we will use a fundamental solution (the Green’s function) and
look for the solution of the problem in form of vector potentials with an
unknown density. In order to determine this density, we exploit certain
jump relations of those potentials on the boundary and obtain a boundary
integral equation, whose solvability has to be studied next. Furthermore,
this equation can be used to derive high order numerical schemes.

In Section 4.1 we will recall the definition of the Q-(quasi-)periodic Green’s
function for the Helmholtz equation from [7] and collect its most important
properties.

Then we continue in Section 4.2 to define vector potentials and investigate
first properties. A key tool will be a special transmission problem as it
provides the important jump relations and thus the boundary integral
operators L, and M. So far, we have followed very closely the ideas
in [34] with corresponding adaptions to the @-periodic framework. Those
methods allow us also the write £, as a compact perturbation of an
isomorphism. Unfortunately, such a result is not known for the operator
M, in the case of Lipschitz surfaces and we have to impose more regularity
on the surface. Then we are able to fall back on results of [21], which allow
us by means of a special technique to show compactness of M,,.

Finally, in Section 4.3 we will derive the boundary integral equation and
obtain its unique solvability in a straightforward manner. Technically
more involved is the verification that the weak singularity of the kernels
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meets the requirements of the numerical scheme. These investigations will
close this chapter.

4.1. The ()-periodic Green’s Function

A key ingredient for the integral equation method is a suitable Green’s
function. In our framework a @Q-(quasi-)periodic variant of Green’s function
for the Helmholtz equation is needed, as worked out in [7]. Based on this
reference, it is the objective of this section to recall the definition of the
Green’s function and to collect its most important properties being relevant
for the definition of vector potentials as well as for an application of the
numerical method from Chapter 5.

Recall Convention 3.4 for the notation involving the phase shift a.

Let Q:= Q x R and set Q, := {(x,z) | = € Q}. We look for a function
Gro: (2 xQ)\ Qs — C, depending also on the wave number k, such that
for fixed y €  the function Gy, o(+, y) has a Q-quasi-periodic extension to
R3 with phase shift o and that

Gralz,y) = Pr(z,y) + Yralz—y), 2,y (@xQ\Q,, (41

where @ denotes the fundamental solution to the Helmholtz equation in
free fields conditions,

1 elklz—yl
Py (x =— T 4.2
k( 7y) A |$_y‘a #yv ( )
and ¥y, , is an analytic solution to the Helmholtz equation in 2. Moreover,
we require that Gy, o(+,y) must be propagating away from y € Q and that
this function is bounded on € except for neighborhoods of y.

In [7] there were tackled two approaches to solve this problem: the Green’s
function in form of a Fourier series expansion or in form of a superposition
of point sources placed on a periodic array.

Recall the definition of d*) and p*) from (3.10) and of p*) from (2.7).
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Proposition 4.1 The Q-quasi-periodic Green’s function Gp o @ (2 x )\
Qs — C, with phase shift a, has a representation

(i) in form of a Fourier series expansion

(w). (k)
Cho(z,y) Z i(d¥(2—g)+p'" |23 — ysl)

T3 # Y3,

where for fized y € Q and € > 0 convergence of the series (and all
of its derivatives) is uniform with respect to x in {z € R | z3 ¢
[ys — &,y3 + €]}, and vice versa.

(it) in form of a superposition of point sources

o eiklz—y=p]|

- _ ()
w—y—p] © y#p

1 -
Gralz,y) = In Z er

HEZ?

where for fized y € Q convergence of the series (and all of its deriva-
tives) is um'form with respect to x in every compact set K C R3 such
that y + p* ¢ K, and vice versa.

In particular, the Green’s function can be extended analytically to the line

x3 =y forx #y.

For a proof we refer to the derivation in [7, Section 3.1]; for the state-
ment regarding the convergence of the Fourier series expansion see also
Lemma 4.3.

Remark 4.2 The corresponding representations from Proposition 4.1 for
the Q-periodic counterpart of G o read as

g (z— ()|
Grlz,y) = 2|Q| Z p(“ (@=g)+p " ws—yal) 3 #ys, (4.3a)

4 elklz=y=—p"|

|z —y—pW|’

(u)

Gﬂww)= T ED N T gler T—y#p

HEZ?
(4.3b)

see also Convention 3.4.
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eiklwfyfp(m\
|z —y—pln)]

u(z) := e~ @@=0y(z), for z # y. Note that Av = —k?v. Then, on the
one hand, because of (1.20b), we have

Fix for the moment p € Z? and y € Q, and set v(x) := and

Ayu = div, Vau = Au + 2ia - Vu — |al?u,
and on the other hand from the definition of u we obtain
Vu(z) = (—i (6;}) v(z) + Vu(z)) e la(@=0)
Au(z) = ( — |a\20(x) — 2ia - Vo(z) + Av(x)) e ia(@-9)

Both together yields A u(z) = —k?u(z). An important consequence of
Proposition 4.1 is that we can interchange differentiation and summation.
This and the observation we just have made imply from (4.3b) that

Aa,ach(z7y) = *kQGk(va” = Aa,ka(xvy)a T,y € RS: r—y 7A p(#)'
(4.4)
Furthermore, from this observation and the representation (4.3b) we obtain
an explicit expression for the function Uy, , in (4.1).

Lemma 4.3 Let y € R? and ¢ > 0. Furthermore, let 3 € N3. Then the
series

(> L §Pei" (=00l

eze p(ll«)

converges uniformly in {z € R3 | 23 ¢ [y3 — €,y3 +¢]}. Here, the partial
derivative 0° can be taken with respect to x or .
The statement remains true if we interchange x and y.

Proof: In the following presentation let 97 be taken with respect to x or ¥.
Furthermore, let = belong to the set from the lemma. Then |z3 —ys| > €
and we obtain, thanks to Lemma 2.9 and Lemma 3.8,

< O (T i
VA7 M < (oY Bl LA

<C . = — .
- eAVAERIIEE (Ce)lBl+3 oC\/THInlPe (14 |pl?)?

‘L 561 (a™)-C=5) ") -5 —ys])

p(l‘)




4.2. Vector Potentials and Boundary Integral Operators 217

1
<O
(14 [pf?)?

(Cy/T+[uPe) 71+

eCV 1+ ulZe

pez? W < 00, see also Lemma 2.37. |

because of the boundedness of the term . The assertion

follows now from

Lemma 4.4 Recalling the notation from Subsection 3.1.2, let h > h* and
x € D§°. Furthermore, let 3 € N§. Then the Fourier series representation
for 0°Gy(z,+)el9) converges also in Hg(curl, D), j = 1,2,3. Here, e\9)
denotes the j-th unit coordinate vector in R3, j =1,2,3, and the partial
derivative is taken either with respect to x or y.

Proof: This is an immediate consequence of the uniform convergence of
the Fourier series representation, see part (7) from Proposition 4.1. O

We close this section by citing the following theorem which will ensure the
applicability of the numerical method from Chapter 5.

Theorem 4.5 In our setting concerning the wave number k and the phase
shift a, see also Assumption 3.5, there holds

cos(k|lx —
Gralz,y) = cos(klz —yl)

o ||

+P(k2|l‘—y|2), x#ya |I—y‘§

9

|z —y|

with an analytic function P. For the number L recall (1.3).

For a proof we refer to [7, Theorem 3.8].

4.2. Vector Potentials and Boundary Integral
Operators

This section is devoted to solutions of Maxwell’s equations which are of
special form: wvector potentials built up with an unknown density. Choosing
those potentials as an ansatz for the solution to Problem 3.12 and making
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use of their properties established in this section, will enable us in the next
section to pose an integral equation of Fredholm type of index zero for the
unkown density. Those integral equations will be solved numerically with
high order convergence in the next chapter.

4.2.1. Vector Potentials and First Properties

To define vector potentials and to derive their most important properties,
we follow the lines in [34, Section 5.2] and adapt the presentation therein
to the @-periodic framework.

Let f: R?2 = R be Q-periodic and Lipschitz-continuous and set
F:={zeR’|iecqQanduas=f(T)]}, (4.5)
r:= {zeR® |z €R® and a3 = f(3)}.

Furthermore, let ¢ € Hél/Q(DiVJ‘). So far, the duality pairing (@, ¥)r
has made only sense for ¢ € H (51/ Q(Curl, T'). In the following presentation
it will be convenient to give it a meaning also for the case that 1 is a
scalar valued function, i.e., for ¢ € Hl/2 D).

Convention 4.6 Let T' be given by (4.5). For ¢ € H, 1/2(Div,F) and
Y e Hé)/z(r) we mean by (@, Y)r the expression

23:<<P yr,r(e (])¢)> @,

Jj=1

where 1) € Hé(D) is any extension of ¥ such that 7071“@[1 =1 and where
D C R3 is any cell set of Lipschitz layer type, with characteristic quantities
as in Assumption 2.91, such that either To =T or I'y = T'. Again, e\9)
denotes the j-th unit coordinate vector in R?, j = 1,2,3. Note that by
Proposition 2.64 it doesn’t matter whether we choose D such that Ty
coincides with I' or whether we choose D such that I'1 coincides with I'.
Therefore, the right hand side of the expression above is well-defined.

If 1 belongs to Hé(D), then we set

(@, V)1 = (@, Y0r¥)r-
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Now, for a density ¢ € H&l/z(DiV, I') we introduce the function

w(z) := (o, Gr(z, ), zeR3\T, (4.6)

and call it single layer vector potential.

Proposition 4.7 For the single layer vector potential w, see (4.6), the
following assertions are true.

(i) w € C&o((Q x R)\ I, C?) with 0°w(z) = <¢,85Gk(x,-)>r for all
r€(QxR)\T and B € N3.

(i) Let a > maxgegz f(§), b < mingege f(§) and set DV := D2 as well
as D™ := Db __, see also (3.5) for the notation here. Then

—0o07

G _ L< *i(q(“)::tp(“)'s)> B gi(q) -akp()as)
0" w(x) 20| Z By P, e 1‘8 e
HEZ?

for all x € D* and B € N3. Furthermore, the series converges
uniformly in DF.

Proof: (i) Obviously, w is Q-periodic. Let j € {1,2,3} and consider
Y(x) == (¢, yr,r (e(j)Gk(x, -))>F, for x € (Q x R?) \ T'. Due to Conven-
tion 4.6, it suffices to show that ¢ € Cgf((Q x R) \F) with 9% (z) =
<<p,'yT’r(e(j)8ka(:c,-))>F, for all z € (@ x R)\ I and 3 € N3. For
this purpose, let x € (Q x R) \ . Then there exists ¢ > 0 such that
Bs(x,e) C (@ x R) \ I'. Without loss of generality we assume that z is
above from T', and hence also B3(z,¢) is above from I'. Let D C R? be
any cell set of Lipschitz layer type, with characteristic quantities as in
Assumption 2.91, such that I'y =T.

Set Z := B3(x,e) x D and consider for the moment the smooth function

g:7Z—C, z:=(,2") = g(z) = Gi(7,2"),

where Z has to be understood as a subset of R6. Then thanks to Taylor’s
formula for functions of several real variables, see for instance [5], we
have

g(z+h) =g(z) + 9g(2)h + /0 (1 —1)0%g(z +th)[h)*dt,
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and hence
1
l9(z + h) — g(2) — g(2)h| < /0 (1—1))|0%g(z + th)|||n|? dt,

for z € Z and h € RS such that {z+th |t € [0,1]} C Z, and where dg and
0%g denote the first and the second derivative of g, which are in our case
continuous mappings from Z to L£(R%, C) and £(RS RS; C), respectively,
where the latter space denotes the set of all bilinear and bounded mappings
from RS x R® to C. Choosing now z € Z such that 2’ = z and 2" € D,
setting y := 2’ and letting h = h1é(!), where |h;| < € and é(1) denotes the
first unit coordinate vector in R®, we obtain from the last inequality

|Gk I+h16( ) Gk(x y) h151,mGk($ay)| < C’|hl|27

where the constant C' > 0 does not depend on y € D. Analogously, the
considerations we just have made yield, by replacing in the definition for
g the expression G (2',2") by ) .»Gi(2',2"), where [ is some number in
{1,2,3},

|01,y Gi(z + hieM,y) — 81, Gr(z,y) — h101,201,,Gr(z,y)| < C'|h]?,

for |h1| < e and where the constant C’ > 0 does not depend on y € D and
1 €{1,2,3}. Consequently,

/ ’[Gk(x + hieW y) — Gu(z,y) — h101 2 Gr(z,y)] e(j)|2dy < C|hy|*,
D

for |h1| < €. Analogously, by means of the observation

|curly ([Gule + hae®,y) = Gi(@,y) = M1 uGi(w,y)]e )|

‘V w(@+ hie® y) — Gk(:c,y)—hlal,wc—k(x,y)]xem]

IA

‘V x-i—hle(l) y) — Gi(x ,y)—h151,zG—k($ay)]‘

3
< Y[+ hrel? ) = 0y Guli ) = i 01y Gute)
=1

I /\

‘hl‘gﬂ
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we obtain
/ |Cur1 [Gk(x+hle(1 y) — Grlz,y) — hlalymGk(x,y)] e(j))|2 dy
< C'hy|*
for |hi| < e. After these preliminary considerations we obtain finally
’Wl‘ + hieM) —(z) — h1<§077T,F (e(j)5’1,a;Gk($, ))>‘
S e

He(j) [Gk(:v + hle(l)7 ) — Gi(z,+) — h101,.Gr(z
§ C//|h1|27

’ .)] HHQ(curl,D)

for |hi| < e. Hence, we have shown that d1¢(z) exists and coincides
with <¢,7T7p(e(j)81,sz(x,-))>F, for x € (Q x R)\ I'. Similarly, one
shows that 019 : (@ x R)\IT' = C is continuous. Since j € {1,2,3} was
arbitrarily chosen, we conclude that ¢ € C}Q ((Q x R) \I‘) The property
¥ € CF((Q x R) \ I) follows now by induction.

(71). Fix some h € R such that maxecge f(§) < h < a and choose some
cell set D C R3 of Lipschitz layer type, with characteristic quantities
as in Assumption 2.91, such that 'y = I and I';y = Ty, see also (3.6).
Furthermore, let 3 € N and x € D2°. Then, thanks to the first part of
this proposition and to Lemma 4.4,

3
Z 0,1 (eD0]Gr(x, ) ) e

2.Q|izp(”><(p 7”( 19]ela )+p(m(x37'3))>pe<j)

j=1 /LEZ2

o i —i(g™ T p(W).g) 8’8 i(q) - 24p*M z3)
== To X e :
20Q . p r
see also Convention 4.6. To verify uniform convergence, we observe that

/ ‘e—i(q<“)~z}+p(“)ya)e(j)‘2dy:/ o2Im () )y dy
D D
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// QIm(p(‘))ysd 5 d¢
f(f

2Im(p<“>) Q —go—’

|Q‘ eQIm(p(“)h
- QIm(p(H))

and, similarly,

/ ‘ curl e_i(q(“)~z}-&-p<“)ys)€(j)‘2 dy
D

(1)
:/ ’71 q}m % e e=i(d" -g+p M ys) 2
D p(u)
()
(‘q(u)|2 + |p(u)|2) / 2 (P )ys gy
D

Q) ()12 4 [(1)(2) 2Tm(p®) R
< 21m(p(#>)(|q ?+1p")%) e ,

dy

IA

and therefore

He,i(q(m:+p(ur>.3 E(j)‘ 2 < |Q| 1+ |q(“)|2 + |P(#)|2 e (u))h'
Hg(curl,D) — QIm(p(“))

Hence, by Lemma 2.9 and Lemma 3.8,

1 ) ey (i .
’m<%’}’T,F(e_l(q( ) )‘3)6(3))>
p

<G ‘H@HH s iy Il o

!

—i(g® .:+p(u),3)e(j) H

Hg(curl,D)
1 L+ ul® oy
<C H‘PHHJ/?(DW,F) \/1 + |2 \/1 + |pl? ¢
1 Im (1) h
= CH‘PHH;”(DW,F)We o,

Moreover, we have

Beila™ - +p"as)| _ |3 (q§u))f31 (qgu))ﬂ’z(p(u))ﬁi‘ei(q(“)'i+p(“)ws)
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<C(V1+ wp)‘ﬁ‘e—lm(p(u))ws'

Using all these observations, we obtain
‘ 1

L —i(g™ ) 3) () >
() e”)

<¢77T7F (e Faﬁei(qm_ﬂp(mms) e(j)‘

1 2\ 181/2 _1tm(p))(z5—h
SCHSO”H(;”(DW,F)WO—F|M‘) e~ Im(p")(z3—h)

2|8]—1

< 0”@”}151/2(]31\,’1")(14_ ‘:u|2) *

_C 2(q—
o~ CV1H Il (a=h)

21B|+7

o 1ol ey (C/TH ulPla— 1)) = 1
(Cla- h))% oCV/THIHE (a—h) (1+ |p)?)?

bounded

1
<C ||80||H51/2(Div,r) W

Since x € D$° was arbitrarily chosen and since > uez? W < 00, wWe
conclude from the last estimate that the series representation for 0%w
converges uniformly in Dg°.

And finally, the assertion for D® __ is shown analogoulsy. O

o}

Taking again some density ¢ € H, Y 2(Div7 T'), we define now, by means
of the single layer vector potential w, the functions

P = curl2 w(z), z € R3\T, (4.7a)
v(z) := curly (@, Gr(z, ) = curly w(x), zeR*\T, (4.7b)

u(x) := curl,, curl, <<p, Gr(z, )>

and call them electric and magnetic vector potential, respectively.

Proposition 4.8 The electric and magnetic vector potential u and v,
see (4.7), belong to C’&O((Q x R)\ T, (C3) and satisfy the equation

curl, curl, w — k*w =0 in (@ xR)\T

as well as the (URC) in DY for any a > maxecrz f(§) and the (DRC) on
D®  for any a < mingegz f(§).
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Proof: The first assertion is an immediate consequence of Proposition 4.7.
For the second assertion, we observe that v(x) = curl, w(z), for z € R3\T,
where w denotes here the single layer vector potential from (4.6). Using
now (A.4c), (A.4a) and (4.4), we obtain for x € (Q x R) \ T, that

curl? v(z) = curl, curl? w(z) = curl, V, div, w(z) — curl, Aqw(z)
=0
= — curly (—K*w(x)) = k?u(z).

The equation for v is shown analogously.
For the last assertions regarding the radiation condition, take at first some
a > maxgere f(§). Note that

curly (¥x) = Voo X x + Y eurl x +ia x (¥x) = (Vb)) X x + 9 curl x
for smooth enough x : D — C3 and 1 : D° — C. Then, by Proposi-

tion 4.7, we obtain for x € Dg°

v(x) = curly (@, Gr(2, )1

-2 d(#)
Z 1 1 u ><<<p, g T p(h) g )>Fei(q(u).j+p(u)zs)
2Q pt \ %)

HEZ2
() .5 (1)
i(g\" -z+ xr3—a
E ’U(“) e i( P (23 ))’

WEZ?

where d*) was defined in (3.10),

N () 24 ()
)= — () —i(q™) Tp)3) 2
v\ = X (p,e , S/
2Qlo™ < ) (o o

and where convergence is uniform in DZ2°, and therefore in particular
in Dp° for all b > a. Applying the operator curl, now to this rep-
resentation of v on DZ°, we obtain, again thanks to Proposition 4.7,

(L) (B) (e —
u:Z/LEZQ u(“’)e( ! +P‘ (3 a)),where

g ) e
W - 1 (m () —i(q") T 4p1) )
u = X df‘ X ()079 ,
- 2[Qlp o o < )r
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for € Z?, and where convergence is uniform as above.
And finally, the assertion regarding the (DRC) is shown in a very similar
way, again thanks to Proposition 4.7. O

4.2.2. A Special Transmission Problem

Further properties of the vector potentials, like boundedness and the
important jump relations, we will derive as in [34] by means of a special
transmission problem. As we will see in a moment, its unique solution
is connected to the vector potentials by the following version of the well-
known Stratton-Chu formula. To prove this version, we need the result
given by the next lemma.

Lemma 4.9 Let D C R? be a cell set of Lipschitz layer type with char-
acteristic quantities as in Assumption 2.91. For uw € Hg(curl, D) and
Y € HY(D) we have

1
Z(%,I‘,‘U,%,Fﬂ/ﬁrj = / (¢ curlu + Vip x u) da
D

j=0

Proof: Due to Convention 4.6, we obtain, by means of Green’s for-
mula (2.18b),

1 1 3
> er o, P, =Y Y <’Yt,FJU,7T,Fj (6(")¢)>Fv e
7=0 Fi

j=0n=1

3
— . e(n) (n)
; (/D (curlu- ™y —u- curl(e(™1)) ) dx) e

=V xeln)

3
— 1 .e(Mq (n)
nz_:l(/D(¢curu+V¢><u) e x)e

:/ (1/)(:ur1u+V1/) X u) dz,
D

which is the desired result. O
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Theorem 4.10 (Stratton-Chu Formula) Let D C R3 be a cell set of
Lipschitz layer type with characteristic quantities as in Assumption 2.91.
Furthermore, let Gy, denote the Q-periodic Green’s function. For any
weak solution u € Hg(curl, D) of curl, curl, u — k*u = 0, d.e., for u €
Hg(curl, D) satisfying

Vv € Hgo(curl, D) : / (Curla w-curly v — k2w - @) dr =0,
D
we have the representation

1

— Z curl, <%,rjU7 Gi(x, )>1“

J
7=0 =0

_ {u(x), reD,

1
1
~ 12 Z curl? (., curly u, Gi(z, )>F

J

0, z ¢ D.

Proof: We follow the lines in the proof of [34, Theorem 5.49] and note at
first that u is a smooth solution of curly, curl, v — k?u = 0, see also the
first paragraph in the proof of [42, Theorem 9.2]. Second, we choose x € D
and r > 0 such that for B := Bs(x,r) there holds B C D. Next, we divide
D into two cell sets of Lipschitz layer type Dt and D~. The cell set Dt is
bounded by the surfaces I'" and I'y, while the borders for D~ are I'g and
I'~. I'" and I'* share the same surface, except for B. Here, I'" consists of
the upper part of B and I'™ of the lower part, respectively. This situation
is visualized by the picture below, which can similarly be drawn also for
cell sets of Lipschitz layer type with max¢ecge fo(€) > mingegz f1(§).

To

Due to Lemma 4.9 we obtain now

(ye.0ou, Gi(, '>>Fo + /lt(n_ x u) Gy (z,-) ds
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= / ) (Gr(=,-) curlu + V,Gy(z, ) x u) dy,

(v,r1u, Gi(z, ')>r1 + /+(n+>< u) Gy(z,-)ds
r
= / (Gi(=,-) curlu + V, Gy (z, ) x u) dy,
D+

where n~ and nt denote the normal unit vectors on I'™ and I't, pointing
outward of D~ and D, respectively. Adding up both equations yields

1

> Gury i Galan)g, = [ () Gul, ) ds

j=0 ’
= /D\B (Gr(z,-) curlu + V,Gy(z, ) x u) dy, (%1)

where n denotes the normal unit vector on 0B pointing outward of B.
Analogously we obtain

1
Z <’Yt71"j curly, u, Gg(z, )>F — / (n x curly w) Gg(z,-) ds
§j=0 ’ OB

= / (Gr(z,+) curlcurly u + VyGi(z, ) x curly u) dy.  (x2)
D\B

For the next calculations we need the observation that for v € Hg(curl, D)
and ¢ € Hj(D) there holds

Y eurlv+ Vi x v =19 curlp v+ V_,¢ X v,

what can easily be verified. Moreover, we note that (V,a,ka (z, )) XU =
—curly 4 (Gk(ac7 ‘) u) Now, we take a closer look at the right hand side of
the equations (1) and (*2) and calculate

curla/ (Gk(x, yeurlu + V,Gi(z, ) x u) dy
D\B
= curl, / (Gk(a:, Jeurly u+ V_g Gr(z, +) x u) dy
D\B

= / (curla,w (Gk(a:, -) curl, u) — curli@. (Gk(x, )u)) dy
D\B
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as well as, by means of curl, curl, = V,div, —A, and curl, V, = 0,
see (A.4), and A, Gi(z,+) = —k*Gg(x, ), see (4.4),

1
- curl?, / (Gk(:c, -)curlcurly w + VG (z, +) x curl, u) dy
k D\B

1
=3 curli / (Gk(sc, -)curly curly u + V_q Gr(z, ) X curl, u) dy
k D\B
1
=3 curli / (kQGk(x, Ju—curly 4 (Gk(x, -) curl, u)) dy
k D\B
= / (curlim (Gr(w,-)u) — curly, (Gi(z,-) curl, u)) dy.
D\B

Hence, adding up both equations yields zero. Using this result, we obtain
from (x1) and (*2) that

1 1
1
curl, E <7t’pju7 Gz, ')>1“j + = curl? E <’Vt,rj curly, u, Gi(z, -)>Fj
j=0 =0

1
= curla/ (n x u) Gg(x,-)ds + e curli/ (n x curl, u) Gi(x, ) ds
oB oB
= —ula)

by the classical Stratton-Chu formula, see for instance [34, Theorem 3.27],
whose proof justifies also its application for the slightly modified equation
here.

Finally, the case x ¢ D is handled in the same way by applying Lemma 4.9
in all of D. g

Now we specify the transmission problem which was mentioned above.
First of all, we fix some L3z > 0 such that f(¢) € (—Ls, L3) for all
£ € @, and set Q3 := @ x (—Ls,L3). Here, f denotes the function
describing I, see also (4.5). Furthermore, we fix the direction of the
unit normal vector on a Lipschitz surface of the form (4.5) to point
upwards and introduce the cell sets of Lipschitz layer type Q3 and Q;“ with
corresponding boundaries '™ and I' as well as I and I't", respectively, such
that Q3 UTUQYF = Q3, see the picture below. Recalling Proposition 2.119,
we have for u € Hg(curl,Q3) that 'yt’ru|Q3— = —'yt’ru|Q;. To simplify
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F+
- 3
| o |
G
| |
e :
—

Figure 4.1.: The geometrical setting for the special transmission problem.

notation, in the following presentation we will sometimes use the symbols
for the classical traces n x |y instead of "}/t71“u|Qj:, i.e., we define
3

nxul_:= ul,- and n X ul|r = —yrulo+ onT
| T |Q3 |+ 7t,v ‘Qg
and analogously
n X ulp- :=—yp-u onl~ and nXulp+ =y pru on r+,

where the minus sign appears by definition of the trace operator v;r,,
which is applied to functions from Hg(curl, D) with surfaces I';, j = 0,1,
and normal unit vectors pointing outside of the cell set D C R3 of Lipschitz
layer type, recall also Theorem 2.107. For the next results, see also [34,
Theorem 5.51].

To write in the following presentation the formulas more compact, the
symbol > a*, where a~ and a* are some (summable) mathematical
objects, has to be understood as >, at:=a" 4a".

Problem 4.11 Let n € C with Im(nk) > 0 and K+ : Hél/Q(DimFi) —
Hcsl/z(Curl, I't) be a linear and compact operator such that (1, K+)px
are real valued and (1, K*)p+ > 0 for all 1 € H61/2(Div,I‘) \ {0}. For

given ¢ € Hél/Q(Div,F), find v € Hg(curl, Q3) such that

Vo € Hg o(curl, Q5) : /i (curly u-curl, v — k*u - 7) dz = 0,
Q3
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nXul-=nxuly, nxcurlyuly —nxcurlyul-=¢ onT
nxcurlyu+nnx K- (nxu)=0 onT™,
nxcurlyu —nnx K (nxu)=0 on TT.

In wvariational form this reads as: for given ¢ € Hél/Q(Div,F), find
u € Hg(curl, Q3) such that

/ (curlau -curl, v — k2u - 6) dz

3
- Wzi <%,Fi@ Ki(’Yt,Fiu)>[‘i = (¢, y7r,r)r (4.8)

for all v € Hg(curl, Qs).

To verify (4.8), we observe, similarly to Proposition 3.13, that the first
equation in Problem 4.11 implies that curl, u belongs to Hg(curl, Qgt)
with curl, curl, v = k%u holding in L? (Q?%, C3). Therefore, an application
of Green’s formula (2.18b) yields for v € Hg(curl, Q3)

/ (curla w-curl, v — k2w - 5) dx
Qs

:/ (curleurlyu- v — curly u - (i X ©) — k*u - 0) dz
Q

3

- <7t,1‘* curlg, u, 'YT,F*E)F* - <7t,r curly u, “YT,r@)r
= / (curla curl, u — kQu) -vdx
Qs 0
- <7t,1‘* curlg, u, 'YT,F*E)F* - <7t,r curly u, “YT,r@)r

and similarly for v € Hg(curl, Q3)
/ (curla w-curly v — k2u - @) dz
Qf

= —(v,rcurly u, yr,r0)r — (ye,r+ curly w, yp p+0)p+

Adding the last two equations and incorporating the boundary conditions
yields finally for v € Hg(curl, Q3)

/ (curla w-curly v — k2w - ﬁ) dx
3
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= (= curly ulg- — 310 curla ulg s, y7,00)r

— (ye,r- curly u, v p-0)r- — (Y, 0+ curly u, yp,r+0)p+
= (—n x curly u|— +n x curl, u|4, Yy, rO)r

+ (n x curly u, Y7 p-U)p- — (0 x curly w, Y7 p+U)r+
= {p,y7,r0)r — Uzi@l X K (0 X ), yp,p0)rs
= (p,y7,r0)r — 1 Ziﬁt,ri (K™ (y,r+u)), Y7,0+0)r+
= (p,y7,r0)r + 1 Ziﬁf,,riﬁ, K*(ye,reu))rs,

as asserted.

Our next goal is to show that Problem 4.11 is uniquely solvable. For this
purpose the modified Helmholtz decompositions

1

Hg(curl, Q3) = Hg(curl, div, 0, Q3) & EVaHéO(Qg) (4.9a)
1

= Hg(curl,div, 0, Q3) ® Zvalﬁfgm(c%), (4.9b)

see also Theorem 2.85 and Definition 2.69, will be applied. The following
two lemmas have preliminary character.

Lemma 4.12 The variational formulation of Problem 4.11 is equivalent

to: for given ¢ € H51/2(Div,l“) find (uo,p) € Hg(curl,div, 0,Q3) X
H 0(Q3) such that

/ (curla wg - curly vy — k2ug - Ty + Vap - Vaq) dz
3
—n). <’Yt,ri (v0 — V), K= (.0 (uo + %p))>Fi
= —1iv, 4.10
<90,%,F(Uo % Q)>F ( )
for all (vo, q) € Hg(curl, div,, 0,Q3) x Hp, 4(Q3).

Proof: Let u € Hg(curl, Q3) be a solution to Problem 4.11. We write u =
g + 1 Vap according to (4.9a). Note that (ug,p) € Ho(curl, divy 0, Q3) X
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Hé’O(Qg) =: X. Let (vo,q) € X and set v :=vg — % »q. Substituting u
and v into (4.8), exploiting (A.4a) and Definition 2.69 yields then (4 10).
Conversely, let (ug,p) € X be a solution to (4.10). Set u = ug + Vap.

Furthermore, let v € Hg(curl, @Q3) and write v = vy — Vaq accordmg
0 (4.9b). Then (vo, q) € X and substituting (ug, p) and (UO, q) into (4.10)
yields then (4.8). O

Lemma 4.13 Recalling (3.6) and Convention 2.125, let a € R and con-
sider K : H, 1/2(D1V,Fa) — Hél/z(Curl,Fa), given by

cp—Zgo T(” —>ch::Z

WEZ? HEZL?

L+ [pl? o15(14”).

Then K is well-defined, linear and compact. Moreover
@ Ko)r, €R, p € Hy'*(Div,T,),
(@ Kor, >0, p € Hy'/?(Div,T0) \ {0}.

Proof: For n € N we consider the operators K, : Hél/z(DiV, r,) —

Hél/Q(Curl,Fa), given by Knp =37 <, ﬁw(“)](Tgﬂ), and note
that they are linear and compact. Recalling Remark 2.11, we have for

1 # 0 that |<P(“ 2 = |q(") (p(u)|2 + |q(“) % (p(u)|2 where q(u) |q<“>\q( ).
Hence,

|q(u) ~ (p(u)| |q(u E |q(u) > 50(“)|2 |q(/t)| |¢(u)|2 — |q(u) .(p(u)|2’ w# 0.

Using this observation and Lemma 2.9, we obtain for ¢ € Hél/z(DiV, I'y)
and n € N

(Curl,I'y)

_ Z (1t Py ( () |2 N lg™) x go(u)|2>
= (a2 " O+ [uP)?

— Z (1 + |/’L‘2)_1/2 (1 + |q(#)|2 |<p(p)|2 _ |q(#) i 410(”)|2)
P (T + )2 T+ 2

[ = B
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C1jp L4 |pf?
<O A+ P W)

= T+ 1uP)

1 .
<O D (L) P

lul>n

1 - " L "
<Oy 20 ()2 ([P + g - 0P)

lul>n

1
< Oﬁ ”(p”Hél/Q(Div,F@)'

From this we conclude that the operator K is well-defined and compact.
Finally, let ¢ € Hél/Q (Div,T';). Then, by means of Remark 2.36,

_ _ Ty (1) 1 V), ()
(@, Ko)r, = Z <90( #)](TQH )’ 1+ V]2 @l )](TQ )>F

n,veZ?

1 —_ _
_ = . W) () (=v)
=) 1+|y|290( R (o R R PP

w,vEZ?

1
> ™)? > 0,
2
veZ? 1+ |V|

a

and the proof is complete. O

Theorem 4.14 Problem 4.11 is uniquely solvable. The solution operator
Hy'(Div,1) 3 ¢ = u € Hg(curl,Qs)

is bounded; here, u € Hg(curl,Q3) denotes the unique solution to Prob-
lem 4.11. Furthermore, the operator

—1/2 1 —1/2 1
H, / (Div,T) 3> ¢ +— %71““|Q; € Hy, / (Div,T)

is an isomorphism.

Proof: First of all we note that thanks to Lemma 4.13 the operators
K¥* from Problem 4.11 indeed exists. Moreover, due to Lemma 4.12,
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Problem 4.11 is equivalent to (4.10). Now, we divide the proof into several
steps.

(7). We define the space X := Hg(curl, div, 0, Q3) X H61270(Q3) and equip
it with the inner product

((wo,p) | (vo,q)) x == (uo| UO)Lz(Qa,CS) + (curly ug | curly UO)Lz(Qs,cs)

+ (p| Q)LZ(Qg) + (Vap | VaQ)L2(Q3,C3) ’

for (ug,p),(vo,q) € X. Then, (4.10) can be rewritten to: for given
P e Hél/z(DiVa I') find (ug,p) € X such that

((u0,p) | (v0,9)) x — (1 + k) (ug [00) £2(Qq,c2) — 1 @) 12(04)
). <% r+(v0 = +Va@), K (ye,0+ (uo + %p))>Fi

<<p v, (vo — = aq)> (4.11)

for all (vg,q) € X. Thus, by the well-known representation theorem of
Riesz, there exist (wp,r) € X and A € £(X) such that for (ug, p), (vo,q) €
X we have

(A(uo,p) | (vo,9)) x = —(1 + k) (uo | UO)LZ’(Q&C?’) — (p| q)L2(Q3)
- 772 <”/t r+(vo — aQ)v K* (ve,r+ (uo + %Vap)>>

(wo, ) | (v0.@))x = (07 (v0 = % 20))

T+

which yields that (4.11) can be equivalently rewritten to: find (ug,p) € X
such that

(Uo,p) + A (Uo,p) = (UJO,T).
(ii). We show that the operator A is compact. For this let (uq,p), (vo, q) €
X. Then, by using a;b; + azbs < (a3 + a§)1/2(b% + b%)l/2 for aj,b; > 0,
7 = 1,2, we obtain
‘ (A(’U/Q,p) | (U07 q))X |
< Cill (w0, D)l 22(Qs.3)x £2(Qs) 11 (W0, D) | L2(@s,08) x L2(@s)

+ o3 s = Ve -1z o s
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: HKi (e, (w0 + £ Vap)) HH;/Q(Curl,Fi)
< O (w0, Pl 2(@avc5)x22(@0)
+ Zi HKi (e, (w0 + £ Vap)) ’|H51/2(Cur1,ri)) 1o, q) | x-

Here, we have chosen the £2-norm in L?(Q3,C3) x L?(Q3). From the last
estimate, with the special choice (vg, ¢) := A(uop, p) we obtain

|G, p)llx < € (1|0, )lz2(@s,c0) < 22(0s)

+ Zﬂ: HKi (’Yt,Fi (’LLO + %v@p)) ||H51/2(Curl7].“i)) .

Now, let ((ugn),p(")))nel\z be a bounded sequence in X. Then (uén))neN,
(p™)en and (uén) + %Vap("))neN are bounded in Hg(curl, div, 0, Q3),
H (12 (Q3) and Hg(curl, Q3), respectively. With these observations, together
with Theorem 2.122, we conclude now from the last estimate, that there
exists a subsequence ((u™), p™))),en such that (A(ul™, p(™))),ex con-
verges in X.

(iii). We show that the operator I + A is injective. For this let v €
Hg(curl, Q3) be a solution of (4.8) to given data ¢ = 0. Then we obtain
from (4.8), with v := ku,

E||Curlau||%2(Q3,(C3) - k|k|2|‘ul|iz(Q3,C3)

- UEZ:‘: <W7 Ki (’)/zf,l‘iu»Fi =0.

>0 for u#0

Taking from this equation the imaginary part yields then |lu|z2(g,,c3) = 0,
and thus v = 0.

As a consequence from step (4i) and (iii), we obtain now from Riesz’ third
theorem, see for instance [36, Theorem 3.3], that Problem 4.11 is uniquely
solvable.

(iv). We show that ¢ — ’)’t’FU|Q; is an isomporphism. But this follows
from the unique solvability of the following two problems: for given
W € Hy'?(Div,T) find u~ € Hg(curl, Q3) such that

Vv € Hgo(curl,Q3) : / (curly u™ - cwrly v — k*u™ -2) dz =0,

3
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nxu =1 onl,

nxcurlyu” +nux K (nxu")=0 onI~

and ut € Hg(curl,QF) such that

Vv € Hg o(curl, QF) : / (curla ut - curly v — k2ut -f) dx =0,
+
3

nxut=v¢% onT,

nxcurl,ut —npnx Kt (nxut)=0 onTT,
see step (v). In fact, let 4~ and u™ be the solutions to 1) € Hc;l/Q(Div,F).

ut in QF, .
Then v := . 27 belongs to Hg(curl, Q3), see Proposition 2.118,

u”  in Q3
and solves (4.8) for given data ¢ := —v; r curly, ut — 4 p curl, u™. Hence,
Q= U=y ru” =n Xy~ =1, which shows surjectivity.

To check injectivity, let ¢ € Hélﬂ(Div7 I') with 0 = ’yt,pu|Q; = —%,pu|Q§r,
where u € Hg(curl,Q3) is the unique solution to Problem 4.11. Then

u” = o and ut 1= u oF solve the corresponding problems from above
to ¥ = 0. From their unique solvability we conclude that u~ = ut = 0,
and thus u = 0. Therefore, 0 = —v; r curl, u\Q;r —Y,reurly ulg- = @.

3

It remains to show that ¢ — 'ytypu|Q_ is continuous (because of the
3

open mapping theorem). For this let ¢ € Hél/Q (Div,T"). We know that
(I+A)~1 € L(X), see for instance [36, Theorem 3.4]. Hence, in the setting
from step (%), the solution to Problem 4.11 is given by u := ug + %Vap,
where (ug,p) := (I + A)~'(wp,r). Furthermore, we know from Riesz’
representation theorem that

1
||(w0 T‘)HX _ sup ‘<90aIYT,F(UO - z aq)>p|
7 (v0,0)EX\ {0} [ (vo, @)l x

Using this relation, we obtain

H'UO - % aqHHQ(curl,Qs)

|  sup

[ (wo, ") x < ll@ll =172 pio oy IVT T
Ho '"(Div,T) (v0,q)EX\{0} [ (vo, @)l x

< C”‘PHHC;”“’(DW,F)'
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From these observations, we finally conclude that

ull g (curt,@s) = 110 + 3 Vabll o (eurl,05) < C ll(uo,p) |l x
<O+ Al (wo, )l x

<C ||50||H51/2(Div,r)'

Hence, on the one hand we have shown that the solution operator is
bounded. On the other hand, by applying further the bounded operator
Ye,r to u|Q$—7 we have also shown that the mapping ¢ — 'yt,pu|Q3_ is
bounded.

(v). We show that both problems from step (iv) are uniquely solvable.
For this we consider only the first one, because the second one can be
treated in the same way. We follow the hint in the corresponding proof
of [34, Theorem 5.51] and make the ansatz v~ = 4 + u, where 4 :=
N, ry. Note that & € Hg(curl, Q3 ) vanishes in a neighborhood of I'", see
Theorem 2.107. Hence, the first problem in step (v) is equivalent to: for

given ¢ € H61/2(Div, I') find w € Hg(curl, Q3 ) such that

Vv € Hgo(curl, Q7)) : / (curly u-curl, v — k*u - 7) dz

3

= —/ (curla @ - curl, v — K24 - @) dz,
Q@3
nxu=0 onT,
nxcurlyu+nnx K (nxu)=0 onI~.
The condition n x v = 0 on I' suggests the test space Hg or(curl, Q3 ).

Now, we obtain, similarly to the verification of the variational form (4.8)
after Problem 4.11, that for v € Hg o (curl, Q3)

/s
/s

(curla w-curly v — k2w - ﬁ) dx = / (curla curl, u — k2u) -vdx

3 Qs
— (2, curlq u, ¥ r0)r — (¢, r- curly u, Yy p-0)p-,
0

(Curla @ - curl, v — K24 - ﬁ) dx = / (curla curl, 4 — k2ﬁ) -vdx
Qs

3
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— (v curly @, y7,r0)r — (v, r- curly @, y7 p-0)p-.
~—— —_—————

=0 =0

Summing up both equations and exploiting that

J

yields the variational formulation

(curla curl, u — k2u) -vdx + / (curla curl, @ — kzﬁ) -vdx =0,
Qz

3

/ (curla w-curly v — k2w - W) dz — 1 (v r-7, K~ (v r-u))r-
Q3
= / (k211 -0 — curl, @ - curly, v) dx.
Qs
Now, we compare this formulation with (4.8) and recognize, by taking the
decomposition

Hgor(curl,Q3) = Hg,or(curl,div, 0,Q35) & VaHé7O7F(Q3_),

from Theorem 2.124 into account as well, that we can apply the same
method as in step (i), (i7) and (%) of this proof to show that the last
variational formulation is uniquely solvable. (|

4.2.3. Jump Relations and Boundary Integral Operators

We are now in a position to derive further properties of the vector potentials.
These properties will enable us in the next section to derive the already
mentioned boundary integral equations.

Theorem 4.15 Let the surface T' be given by (4.5), choose any cell set
D C R3 of Lipschitz layer type, such that T' C D, and denote the upper
part of D with respect to (and without) T' by DV and the lower part by
D™, see also Figure 4.2.
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(i) The operator Ly : H51/2(Div,f‘) — Hg(curl, D) and the operators
ME Hcgl/Q(Div7 I') — Hg(curl, D¥) given by

(Lap)(z) := curly (o, Gy(z,-))r,  z€D,
(Mp)(@) = curla (o, Gr(z,))r, € D¥,

are well-defined, linear and bounded.

(ii) For ¢ € H61/2(Div, ') the electric and magnetic vector potential u
and v, see (4.7), satisfy u|p+,v|p+ € Hg(curl, D¥) with the jump
conditions

Yt,rU p- + e rulp+ =0 and Y0V p- + Yerv|pr = —,
respectively.

(iti) The boundary operators Lo, M, : Hél/Q(Div,F) — Hél/z(Div,F),
given by R
£a§0 =T (‘ca@) |D*7
1 - B
Moy = 3 (%,F (Mye) —vr (M§¢)>a

are well-defined, linear and bounded. With these notations the jump
conditions for the electric and magnetic vector potential u and v from
part (i) read as

1
%,Fu|Di =Lap and + %,FU|Di = i§¢ + Mgy,

respectively.

(iv) The boundary operator Lo from part (i) can be splitted into the sum
Lo =LA+ K with £ € Eis(Hél/Q(Div, I')) and a compact operator
K : Hy"?(Div,T) — Hy'?(Div,I).

Proof: We follow the lines in the proof of [34, Theorem 5.52] and fix some
L3 > 0 such that L3 > maxecR? f1 (f) and —L3 < miH§€R2 fo(f), and set
Qs := Q x (—Ls, L3); here f; denotes the function which describes the
surface I'j of D, j = 0,1, see Assumption 2.91. Hence, Q3 is a cuboid
which contains D, including its surfaces I';, j = 0, 1, and which is divided
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Figure 4.2.: The cell set D of Lipschitz layer type is contained in the
cuboid Q3. Both sets are divided by the surface I" into D~ and D% as
well as Q3 and QF .

by I' into the upper part Q; and the lower part Q5 too. The situation is
illustrated in Figure 4.2.

(i). Let ¢ € Hél/z(DiV7 I') and let w € Hg(curl, Q3) denote the solution
to (4.8), see Theorem 4.14. We show that

Loy = K (w|p 4+ 0) in Hg(curl, D), (%1)
MEp = curl, w|p= + curl, @] p+ in Hg(curl, D%), (%2)
where

e) =Y ((curlafyrew, Gule, )rs

1
+ 72 curl? (ye.r= curly w, G (x, ')>Fi> (*3)

for x € D. To show these decompositions, we fix some € DT and apply
the Stratton-Chu formula from Theorem 4.10 to w with respect to Q;‘

as well as to Q3 , i.e, to wt := w|53 and w™ = w|c_237 respectively, and
obtain

1
w(z) = — curl, <’yt7pw+, Gz, )>F - — curli <")/t71‘ curl, wt, G (, )>r

k.2
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— curly (v, r+w, Gi(w, -)>F+ k2 curl? (y,r+curlqw, Gy (z, -)>F+,

0 = — curl, <%,pw_, Gz, )>F ﬁ curl? <%,p curl, w™, Gy (z, )>1‘
— curl, <% r-w, Gi(z >F, curl <% r-curl,w, G (z >F,
Now we recall the boundary conditions —v; r curl, wt — Yereurly w™ = ¢
and y;rw~ = —y;,rw" to obtain, by summing up both equations,

w(zx) = % curl <g0, Gz, )>1“ —w(x),
from which the asserted decomposition (*;) follows immediately for this
case. For x € D\ DT we argue similarly. Note that @ belongs to
C’gf(D,C?’), see for instance Proposition 4.7, with all derivatives being
integrable, since the domain of definition D of w is away from some neigh-
borhoods of the surfaces I'* and therefore far away from any singularities
of the Green’s function Gj. Hence, the operator L., is well-defined. Its
linearity is clear and its boundedness follows from the decomposition ()
together with the boundedness of the solution operator from Theorem 4.14.
To obtain the corresponding properties for the operators ./\;lﬁ, we observe
that away from the boundary I' we can apply Proposition 4.8 to ﬁaga,
which yields for z € D*

curly (Lap)(z) = cwrl? curl, (o, Gi(z, Ny = k? curl, (@, Gy(z, D).
= k(MG 0)(2) (4.12)

and shows the decomposition (x3). Hence, we have shown that the op-
erators ./\;li: are well-defined. Again, their linearity is clear and their
boundednes follows similarly to above from properties of w.

(7). The jump conditions follow easily from the decomposition (x;) as well
as (#2) and the boundary conditions for the solution w to Problem 4.11.
In fact, by using v, r@|p- = —7;,r@|p+, there holds

%,rulpf = 'Yt,l“(‘éa‘P”D* =k (%7FUJ|Q; + ’Yt,l“w'D*)
= —k? (%,Fw|Q§r +%,F@\D+) = —%,r(ﬁaw)\m = —,rulp+
and, since v, curly, W|p- = —r curly W|p+, we have

Ye,r0 p- + ¥.0v]p+ = Yer (Mg @) + ver (M)
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=Yr ( curl, w|Q; + curly, ’LTJ|D—) +Yr ( curl, w\Q; + curl, 1D|D+)

= 7y,r curly, w|Q3— + 7,r curly “"Q; = —0.

(7ii). The statements follow easily from step (i) and (7).

(iv). The decomposition of the operator L, follows by an application of
the trace operator ;. r to the decomposition (x;) and by Theorem 4.14.
For the compactness of the operator K it suffices to show that the mapping
T : Hy/(Div,I) = (C3(D,C*), || - | ca(p,csy)» given by ¢ — Tp 1=,
where 1 is defined by (*3) (with domain of definition extended to D), is

bounded, because then the mapping K : H, 1/2 (Div,T") — H, 1/2(DiV,F)
can be split up into

Hy'*(Div,T) 5 C3(D,C?) — C5M(D, C%) < 05N D, C%)
«— HY(D,C%) < Hg(curl, D) K H,'/*(Div,T)

with the compact embedding Cé’l(ﬁ, C?) Sy C’é?”\(ﬁ, C3), see [2, Theo-
rem 1.34] and the other mappings being bounded. For the Holder spaces
C™A(Q), for 0 < X < 1, we refer to [2] as well, with slight modifications
for C’g’/\(ﬁ, C3). For the norm || - lo2(B,csy in the definition of T' see

also (1.12).
To show that the linear operator T' is bounded, we introduce for ¥+ €

Hél/z(Div, ['*) the functions

gt (x) = curly (W, Gr(z, )=, xr €D,
hE(x) == curl? (*, Gi(z, ), r € D.

Note that by Convention 4.6 we have for z € D and 8 € N3

Mw

aﬂgi( aﬁ(curl 7’>/T Fi (j)Gk(zv'))>F:(: e(j))

j:l
3
=073 (V(6F Arps (€DVGi(, ) ) x V)
7j=1

+ (0F, yp s (€D Gy, ) ) peiar x e(j))
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3
=> <V<wi,%p,ri (DG (,+)))ps x )

j=1
+ (Y s (DG (, ) ) pria em),

where we also applied Proposition 4.7, and analogously

) = 33 (T s (01 )

+ V(E, s (€D G2, ) ) i - €D
+ia (V(0*, yrre (e900Gr(2, ) ) s - €9)
+ia (F, yp e (D0 Gy (x,+)) Vs (i )
— [(@F s (€D 2,00Gu(w, ) )

+ %0 V(F, yrps (DO Gy (, ) )

— | (F, yr s (€D Gi(z, .))>Fi} e(j)>,

Now we choose some cell sets QF C R3 of Lipschitz layer type, both with
flat upper and lower surfaces, such that QF C Q3, QF N D = @ and the
upper surface of O coincides with I't while the lower surface of Q™
coincides with I'~. Then we obtain for € D and 3 € N} that

)

3 3
() B .
§ c ||7T,Fi || Z (Z H6 al,mam Gk(’l’, )HHQ(curl,Qi)

j=1 \i=1

3

0 %(a z(z\w e (90,2026 (x, )

+ |Oé‘ ‘<wi77T,Fi (e(J)aka({L', '))>Fi

<Cy

+ | P0iGr(a, )|

+
Hg (curl, Q) > % ”H,gl/z(Div,riy

<Cs
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where the constants C; > 0, j = 1,2, do not depend on z. To see this,
we note that for the calculation of the Hg(curl, 2)-norms some partial
derivatives of Gy, are used, while the function Gy is only considered on
DxQF, which is a set far away of any occurrence of singularities. Therefore,
the supremum of the absolute value of any partial derivative of G with
respect to D x QF is finite and can be drawn out the integrals during the

calculation of the norms. Hence, for g%, and similarly for ¥, we obtain
for 8 € N}

10°9F | < C HWIIHCSW and [|0°h* o < C||¢i|\H51/2

(Div,I'%) (Div,I'+)"

Now, we choose ¢+ := Ve, r+w, with w € Hg(curl, Q3) the unique solution
to Problem 4.11 for given ¢ € Hél/Z(Div, I'). Then

9% b2ty < I | ol g a0y < C s 1l 12 oy

where the last inequality holds by the boundedness of the solution operator,
see Theorem 4.14. Finally, we choose * := Ve,r+ curly w, with w from
above. Since w is the solution to Problem 4.11, we have curl, w* €
Ho(curl, QF) with curl, curl, w* = k?w*, where we have set w® := |+
for simplicity. Therefore, ’

< C(chrla w2

HLZ(Q,?,(F') + chrli w

[|curl, w®

(F—— )2 gt o)
Hg (curl, Q ) L2(Q3 ,C3)

+
<C ||’LU HHQ curl, Q) <C ||wH§—IQ(curl,Q3)7

where the last inequality holds by part (%) in part (b) from Proposition 2.68.
Hence, also for this choice of ¢ we obtain

+ +
¥ ||H51/2(Div7pi) < H'YLFiH | curly w HHQ(curl,Qg:) <C ”"O”H;”(Div,l‘)‘

In summary, we have now for € D and 8 € N}, with |3| < 2, that

‘65171(33)’ S (‘35 curly (v rew, G >Fi

+W’8ﬁcurl (y,r+ curly w, Gi(z,-))

r+

)
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1
<03, (10°0* . + gllo®*]..)

<C ”5"”1151/2(Div,1“)7

where g* and AT in the second inequality were defined with the corre-
sponding choices of 1)* from above. Observing that the constant C' > 0
can be chosen not depending on 3, the proof is complete. (Il

4.2.4. On the Compactness of the Operator M,

Unfortunately, for Lipschitz surfaces the boundary operator M, fails
to be a compact operator in Hél/Q(Div,F), since this operator can be
considered as the counterpart of the double layer potential for the scalar
valued case. For the latter operator, examples can be constructed involving
domains with corners which violate the condition % < C, a crucial
property for establishing compactness. But for smooth surfaces, by means
of the following result from [21] with regard to an operator Cj, which is
the analog of M, for smooth and bounded domains, we are able to show
compactness of M. It might be useful to recall the alternative approach
from Subsection 2.1.4 for the notation used therein.

Theorem 4.16 Let Q C R3 be a bounded and smooth domain. Further-
more, let s € R. Then the operator Cy, is linear and bounded as an operator
Cr : HF(0Q) — HTH(09Q) and as an operator Cy : H=/?(divaq, 0Q) —
H'Y?(divag, 09).

For a proof we refer to [21, Lemma 11].
Corollary 4.17 Cj, : H='/?(divaq, 99Q) — H~?(divaq, Q) is compact.

Proof: According to Theorem 4.16, we only have to show that the space
H'2(divyq, 0Q) is compactly embedded into H~'/?(divpg,d2). But,
thanks to Proposition 2.54, this follows from the compact embedding
HY?(99Q,C3) — H~Y2(9Q,C?). In fact, let (¢n)nen be a bounded
sequence in H'/?(divaq, 99). By definition of the norm in H/2(divag, 09),
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(©n)nen and (divaq ©n )nen are bounded sequences in H/2(99Q, C?) and
there exists a subsequence (¢y,;)jen such that (¢, ) en and (divao ¢n;)jen
are convergent in H~1/2(09,C?). Now, by definition of the norm in
H~1/2(09,C3), (©n,)jen is a Cauchy sequence in H~/2(09,C3) and
therefore convergent therein. |

For the rest of this section we assume the surface I' to be smooth, i.e.,
I:= {$€R3|16Qand$3:f(i')}7

where f € CF¢,(Q) is real valued, see also Subsection 2.3.7. Now we come
to the important compactness result for the boundary operator M, for
the case of smooth surfaces.

Theorem 4.18 Let I' be smooth. Then the operator M, is linear and
bounded as an operator M, : Hél/Q(DiV,F) — Hé/f(F), and for s >0
also as an operator Mg : Hp 4(I') — Ha'tl(I‘). Furthermore, M, is

compact as an operator M, : Hél/z(DiV, r) — Hélm(Div,F).

Proof: For the following arguments we were inspired by the proof of [7,
Theorem 4.22] or the proof of [22, Lemma 4.15]. We only show the
compactness property, as the other mapping properties are shown in a
very similar way. We divide the proof into several steps.

(i). Let {(Oj,f((j)) | 5 = 1,...,N} be a partition of unity on Q as
in [7, Proof of Theorem 4.22] or in [22, Definition 2.29], i.e., it is a
partition of unity as in Theorem 2.42, with the additional property: if
supp ¥ N supp x(™ # @, then there exists a translation Q' of Q such
that supp YY) Usupp ¢ C Q'. We set xU)(y) := xU)(g) for y € T
and j € {1,...,N}. Note that 37, x")(y) = E;V:1 L9 (g) = 1 for
y € T and that x¥) o ¥ = % on Q for j = 1,...,N. Let N :=
{1,...,N} x{1,...,N} = N; UN; with

Ny = {(m,j) € N[ suppx™ Nsuppx ) =0} and Ny := N\ N

For (m, j) € N> we choose smooth and bounded domains Qm,; C R3 such
that

Lpji={z€ R? | Z € supp {™ Usupp ¥V and x5 = (&)} C Q.
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Without loss of generality we consider x/) as Q-periodic functions and
define its @-quasi-periodic counterparts by

X W) =e®xXV(y),  yeT, j=1...N,

see also (2.10). Moreover, without loss of generality we assume for (m, j) €
N> that supp ¥ Usupp x¥) C Q (otherwise we have by assumption that
supp ¥ U supp \¥) C Q" and we integrate later over Q' instead of Q
which makes no difference due to the Q-periodicity of the integrands).
(ii). We show that for (m,j) € Na, ¢ € Dg(I',C3) and z ¢ T

curl, <X ), Gy(x, )>F = e &% o] /652 Xfxm)<ﬁ Gra(z,-)ds.

In fact, first of all we observe that for x # y, ¥ € Dg+(I',C?) and 9,
according to Convention 3.4 we have

szk ($7 y) = vx (e_i&.(i_g)Gk,a(‘T7 y))

e a2 (V Gr,alr,y) — iO‘Gk,a(zvy))’

VaGr(z,y) x e (y) = e ¥V Gra(@,y) X a(y)
—ia x Y(y)Gr(z,y)

531

and therefore

curl,, /wak ds—/ [Curlx (¢ Gr(a,-)) + i (ka(x,-))]ds
/ [v Gr(z, ) x ¥ + ia x (ka(x,-))} ds

= “/v Gra(®,) X hods = e~ a'icurl/rzpaak,a(x,-)ds

Hence, by the definition of the bilinear form (-, ) from Theorem 2.113
we obtain for z ¢ T

curl, <X(m)ap, Gy (z, )>F = curl, / x™ © G (z,-) ds
r

=07 curl/ X Gp.olz,-)ds
r
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as desired. ‘
(iii). Let ¢ € Dq(T,C3). Then with Map = Y0 - xD M (x™y)
we obtain

Map= 3 XIMalx™)
(m,j)ENL
+ 3 (M) x0T )
(m,j)EN>
+ Y Y (),
(m,j)EN2

where C,gm’j ) denotes the operator from [21] with respect to the surface
0y, j, which is the analog of M, but for the non-periodic setting consid-
ered there and built up with the kernel (4.2). Note that by Theorem 2.132
the operator x) M, (x(™) : Hcgl/z(Div,I‘) — Hél/z(DiVJ‘) in the first
summand is linear and bounded. Moreover, its kernel is smooth, yielding
that this operator is compact. For the operator X(_JLOIE’”’J )(X&m).) from
Hél/z(Div, ') into itself in the third summand we recall Theorem 2.133,
Theorem 2.59 and Corollary 4.17 and see that this operator can be decom-
posed into two linear and bounded outer operators and a compact inner
operator, yielding that this operator is compact too. And last but not
least, by means of the first equation from the step (i), Equation (4.1) and
the definitions of the operators M, and C,gm’J ), we see that the kernel of
the operator difference in the second summand is also smooth and gives
rise to a compact operator as well.

In summary we have shown that the restriction of M, onto Dg +(I', C?) is
compact. And the compactness of M, : H&l/Q (Div,T) — Hcgl/z(Div7 I)
follows now from Proposition A.6. g
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4.3. The Boundary Integral Equation of Interest

In this section we will derive a boundary integral equation, which enables
us to determine the solution to Problem 3.12 explicitly by an ansatz in
form of vector potentials with an unknown density. Beside their derivation
and the investigation of their solvability, we will prove that the kernels of
the corresponding integral operator have a singularity of a certain kind — a
property which is fundamental for an application of the numerical scheme
introduced in the next chapter.

For the notation used in the following presentation concerning the geomet-
rical setting, we recall the explanations from Subsection 3.1.2, in particular
for the unit cell D and its variants D#O, and require now in the definition
of Fo,

I‘O:{xeR3 |# € Qand xngo(aé)}, (4.13)
instead of Lipschitz continuity the function fy to be in CF¢, (Q). Some-
times we will also need the whole surface which was denoted by fo, see
also (3.2).

4.3.1. Derivation and Solvability

In the next chapter we will introduce a high order solver for the elec-
tromagnetic scattering problem as given in Problem 3.12, see also (3.8).
In Theorem 3.42 we have seen that this problem is uniquely solvable, at
least for special values of the wave number k (see also Theorem 3.14). To
determine in those cases the solution explicitly we make an ansatz for the
scattered field in the form

ut =Ml

for some ¢ € Hélm(Div,Fo). Let h > h™. From Theorem 4.15 we know

that «® and curl, v® belong to Hg(curl, D{lo). Hence, from Proposition 4.8
we conclude, similarly as in the proof of part (%ii) from Proposition 3.13,
that for arbitrary v € Hq o(curl, Df: )

/ (curla u® - curly, v — k2u® ~ﬁ) dz = 0.
D

h
To
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Furthermore, again by Proposition 4.8, u® satisfies the (URC) in DjS.
Therefore, so far, u := u®+u' seems to be a good candidate for the solution
to Problem 3.12. From the boundary condition -y, r,u = 0 therein, together
with the jump relations from Theorem 4.15, we obtain

1o+ Map=7ru  in Hy'/*(Div,Ty), (4.14)

the boundary integral equation of greatest interest for our numerical
method. The following theorem shows that this equation is uniquely
solvable, and thus u is indeed the solution to Problem 3.12. For this, the
next lemma has preliminary character.

Lemma 4.19 Let I'* := {z € R® | & € Q and a3 = £f(%)}, where
f € O3 (Q) is Lipschitz continuous and real valued. Furthermore, let
h > maxgege f(§). Then the following assertions are true.

(i) w € Ho(curl, D,) < 4 € Hg(curl, DT}), and in this case we have
curl @ = —(curlu)*(+*) as well as v, p-4 = —(ye,r+u)*.

(i) u € Hg(curl, D) solves

Vv € Hg o(curl, D{L) : / (curla w-curly v — k2u - 6) dr=0

h
DF+

if and only if & € Hg(curl, DT, solves

Yo € Hgo(curl, DY) : / (curly @ - curly v — k*@ - v) dz = 0.
Dy

Here, we have defined @ := u*(-*), where for z € C3 the vector z* is given
by (1.4).

Proof: We will similarly proceed as in the proof of Proposition 2.105 and
take from there the observation (curlw)*(-*) = — curl(w*(-*)). Moreover,
we note that for a,b € C* we have a x b* = —(a* x b)* and (—a)* = —a*,
which can easily be verified. Furthermore, we recall the definition of «

which yields o = «. And last but not least, x € D{i+ if and only if
Tt € DSI, where the absolute value of the Jacobian of this transformation



4.3. The Boundary Integral Equation of Interest 251

is constant and equal to one.
(i). Let u € Hg(curl, Dk,). Furthermore, let x € C&O(Dgh, C?). Then,
with the observations from above, we obtain

/ () - curl x(x) da = / w*(z*) - curl x(z) dz
DT DTy
= / u*(z) - curl x(z*) dz = / u(zx) - (curl x)* (z*) dx
Dh D
r+ r+
= 7/ curlu(z) - x*(z*)de = 7/ (curlw)*(z*) - x(z) dz,
D" DT
+ —h
where we have applied that x*(-*) € C&O(D’§+,(C3). The other direction
is shown in the same way. The formula for the traces can be easily verified
for smooth functions and then we use an approximation argument.
(ii). Let u € Hg(curl, Dk,) solve the first variational equation in the
lemma. From part (i) we know already that @ € Hg(curl, DV, ). Let
v € Hgo(curl, DV, ). Note that v*(-*) € Hg o(curl, Dk, ), which is shown
by approximation and a similar calculation as in part (4). Then, again
with the observations from above, we have

/ (curlaﬁ~cur1av—k2ﬁ~ﬁ) dm:/
DT

B [(Curlu*(m*) +ia x u*(z*))
DT,

- (cwrlv(z) +io x v(z)) — k*u*(z*) 5(33)} dz

= /DF‘ [— curly u(z*) - ((curlv)*(z) + (i x v(z))*)

),

= /D (curly u(z) - (curly v*(+*))(2) — K*u(z) - v*(z*)) dz = 0,

h
r+

— K*u(z*) - v*(a:)} dx

. [— curly u(z) - ((curlv)*(z*) + (i x v(z*))*)

— k?u(x) m} dz

as desired. And the other direction is again shown by very similar argu-
ments. (Il
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Theorem 4.20 Let u' be an incident field as in Assumption 8.8. If Ty is
a smooth surface (as introduced above) and if Problem 3.12 has at most
one solution, then the operator equation in (4.14) possesses exactly one
solution.

Proof: Thanks to the compactness of M, as an operator from the space
H51/2(D1V7I‘0) onto itself and thanks to the third theorem of Riesz, it
suffices to show that 17 + M, : H§1/2(D1V,FO) — Hél/z(Div,Fo) is
injective; here I denotes the identity operator in Hél/Q (Div, Tg).
For this let ¢ € Hél/Q(Div, o) such that $¢ + My = 0. We choose cell
sets DF of Lipschitz layer type as in Theorem 4.15, with the T' therein
now being I'y. Furthermore, we set

vt = ./\;lifgo in DT,

= Lop in D.

Note that by the jump relations from Theorem 4.15 we have v p,0ot =
—(3¢+ Myp) = 0. Arguing similarly as at the beginning of this section,
we see that vT solves Problem 3.12 for an incident field which is zero. By
assumption, this problem has at most one solution and we conclude that
vT = 0. Thus, also curl, v™ = 0. Since by definition u|p+ = curl, v™", we
obtain therefore u|p+ = 0. Again by the jump relations from Theorem 4.15,
we have v¢ r,u|p- = Ve, u|p+ = 0. Let h < h™. Arguing again as at the
beginning of this section, and taking again Proposition 4.8 into account,
we see that u~ := u|p- solves u~ € Hg(curl, D;°) and

Yw € Hg o(curl, D}°) : /F (curlyu™ - curly w — k*u™ - w) da = 0,
D;°
’Vt,Fou_ = 07
u” satisfies (DRC) on D" __.
Now, Remark 3.7 and Lemma 4.19 come into play, which yield that
(u™)*(+*) solves Problem 3.12 (with another I'y) for an incident field
again being zero. Therefore, one more time thanks to our assumption,
(u™)*(-*) = 0, and hence v~ = 0. Thus, v = 0 and in particular
curl, u|p+ = 0. Using (4.12), we obtain

0 = curly u|p+ = curly (Lap)|ps = E*MEp = k2o,
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Finally, we exploit the jump relations from Theorem 4.15 a last time and
arrive at
—9 =10 + 0 =0,

and the proof is complete. O

4.3.2. On the Weak Singularity of the Kernels

As mentioned above, the numerical method from the next chapter requires
the singularity of the kernels of M, to be of a special kind, see Assump-
tion 5.6. It is the objective of the following presentation to show that
those kernels indeed satisfy this assumption.

We start with Equation (4.14) and rewrite it equivalently to: for given
Y € Hy'/?(Div,Ty) find ¢ € Hy'/*(Div, T) such that

90+2M04(P = 1/1,

where the operator M, was given by

1 } N
Map =3 (%,ro (M3 ¢) — e, (Miw)),

see Theorem 4.15. Now, we make two observations: For s > 0 and
P e Hélm(Div7 [o) N Hg, 4(T'), we obtain from Theorem 4.18 and Propo-
sition 2.131 that the solution ¢ = ¢ — 2M,p belongs to Hp) ,(I'o) as well,
i.e., the solution has the same regularity as the right hand side. Taking
Sobolev’s embedding theorem as well as the smoothness of 'y, recall (4.13),
into account, for smooth enough right hand side ¥ the action of M, to
peH 52)15(1“0) can therefore be described by an ordinary boundary integral
of the form

(Magp)(x) = n(z) x curl, A Gr(z,y) p(y)ds(y),  z €Ty,

see for instance [34, Theorem 3.34]. Here, the unit normal vector n(zx)
points into the upward direction of I'y. And the second observation is, that
for ¢ € H, ,(To) there holds (n(y) x ¢(y)) x n(y) = ¢(y), for all y € I'y.
Therefore, we can and will build in this projection onto the tangential
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plane into the operator, which has at the moment no effect, and consider
from now on the operator M, given by

(Map)(z) = n(z) x curl, g Gr(z,-)(n x p) xnds, xz€Tly. (4.15)

The introduction of this artificial projection has numerical advantages,
since now we can widen our solution space based on H, 5(F0, C3) instead of
H fN(FO) and need not care about tangential fields, because ¢ = ¥ —2M,p,
with M, according to (4.15), is automatically a tangential field, if the
right hand side is.

Lemma 4.21 The boundary integral operator M, can be rewritten to

(Mag)(a) = [ 00 [9,Gral0) (nle) = 0(1) |
—1(2) Vo Ghaley) I|C(y) ds(y), @ €Ty,

forp e Hélﬂ(Div,Fo)ﬁH&t(Fo) and s > 0 big enough. Here, Gy, o is the

Q-quasi-periodic Green’s function, see (4.1), I3 := (é 2 %), ¢:=(nxp)xn

and the unit normal vector n is pointing in the upward direction of T'y.

Proof: First of all, by recalling also Remark 4.2, we obtain for x,y € I'y,
such that © —y # p(#

ctrla o (Gi(2,9) () = curly (¢TI G (w,9) ()
+iax (Grlz,y) C(y))
= &) (V,Gra(w,y) —ia Grale,y)) x ()
+ (i G(z,y)) * ¢(y)
= T DY, G (2,) X (1)

and furthermore, by (A.1b) and because of n(y) - {(y) =0,

1(@) x (VaGraly) x ¢0)) = [(1@) = n(y)) - (W)| VaCrala,y)
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—|n(z) - vak,a(‘rvy)} C(y).

Note that (a-b)c = ca'b for all a,b,c € C3. Using now the last results to-
gether with (4.15) and considerations as in the proof of [34, Theorem 3.34],
the assertion follows immediately. O

Now, choose some cut-off function x € C§°(R?) with 0 < x <1, y =1
in a neighborhood of the origin and with supp(x) C B3(0, %), see (1.3)
for the definition of L. We define x to be the @-periodic extension of y.
Furthermore, let K denote the kernel of M,, i.e.,

K(z,y) := 09 |V, Gy o(2,y) (n(z) —n(y))

—n(2) "V.Gr (2, y) 13}

T

for z,y € Ty with z # y+p) . By means of the Q-periodic cut-off function
X we can split up K into

K(z,y) =X(z —y) K(z,y) + (1 = X(z —y)) K(z,y)
= Kl(x,y)+K2(I,y), I7y€f03 I#y+p(u)7

with a Q-periodic (in both variables) and smooth part Ky and a Q-periodic
(in both variables) part K, the latter one containing the singularities.

Remark 4.22 Note that the singularities of K1 are isolated, meaning that
K1 has support only in a neighborhood of the singularties. Moreover, all
singularities of K1 are of the same nature, which can be described, thanks
to the choice of X, by the representation of Gy o from Theorem 4.5.

Recalling the representation of G o from Theorem 4.5, we have for =z # y
and |z —y| < %

7cos(k|x—y|) sin(k|x — yl)

szk,a(xay) = (xfy)fk ($*y)+H(£L’,y),

drlz —y3 drlz — y|?

with some smooth function H. We set for z,y € Iy and z # y + p®

1

Kia(2,y) = —E;((m —y)e

) | cos(klz —y|)

iG-(§—a
|z —yl?
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sin(k|z — yl)

+k
|z =yl

] (= 9) (n(z) — n(y) "
cos(k|z — yl)

47

Lo & (§—
+ —X(z —y) vl )[ P—E

sin(k|x — yl)

+k
|z — y[?

]n(ff)T(ny) I,

where we consider the terms on the right hand side, where necessary,
Q@-periodically extended, and furthermore for z,y € T’

T

Kia(,y) = Xa—y) e [H(z,y) (n(x)—n(y)) " —n() " Hz,y) 1]

Note that by Remark 4.22 we have K; = K;; + K2 and that the
singularities are now only contained in K ;. Taking into account that for
x,y € I'y there holds, since I'y is smooth,

n(z)-(z —y)| < Cle—yl* and [n(z)—n(y)| < Clz —yl,

we see already from the definition of K ; that their singularities are
weak. Finally, we recall the parametrization ¥, of I'y and consider it
Q-periodically extended, i.e.,

ty
o (t) = t ., teR?
fo(ti,t2)

and define for ¢,7 € R?, and additionally ¢t # 7 + p(®) for the first
definition,

kl(t,T) = Klvl(\llo(t),\lfo(’r)) 1+ |Vf()(7')|27
a(t,7) = [Kr2(Wo(), Wo(r) + Ko (¥o(t), Wo(r)) | VI+ V(TP

Proposition 4.23 The functions k1 and ko from above satisfy Assump-
tion 5.6.

Proof: By the considerations from above we have already shown that
the assumptions for ko are satisfied. Thus, it remains to take a closer
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look at kj. Again by the considerations from above we have already
that ky is @Q-periodic with respect to both arguments and that their
entries kgi’j) belong to C=((Q x Q) \ {(t,t) | t € Q}). Furthermore, the
assumption for the bounds regarding the partial derivatives of k:g” ) can
be easily verified by means of the product rule and by the kind of a certain
reproducing structure while differentiating the terms ws‘(ﬁizl_ﬂy‘)(xl — )

e
and W(Iz )

Let 0 < go < m be small enough and let 4,5 € {1,2,3}. To show that
0:Q % [—00,00] xS' = C, (t,r,v) = L(t,7,0) :=|r| kgi’j)(t,t—&—rv)

belongs to C*°(Q x [—00, 00] X S'), we only have to concentrate on those
terms in k1 which are relevant for the singularyties, namely

ha(t,7) = Wo(t) — Wo(r) [ 01%o(t) x B2Vo(t)
BT () - (P VI VAW

T
 uW(7) % anIJO(T)) e

1+ |V fo(r)?

(81%0(t) x 02W(t)) - (Po(t) — V(7))

hat,7) := OB TCIE !

for t,7 € @ with t # 7, because the other terms are smooth factors.
Thanks to Taylor’s theorem, see for instance [5], we have for a smooth
function ¢ : Q — C? a representation for its differences in the following
forms

1
o(r) — g(t) = / dg(t + E(r — 1) (r — 1) de, (+1)
— g(t)(r — 1) + / (1— ) gt +E(r— D) —t.7 — ] (s2)

for all t, 7 € Q, where 8?¢(s) is a bounded bilinear form from R? x R? to
C?, see [5] for details. Moreover, we observe that

1 9 1,1
( / 8\Ilo(t+§rv)vd§‘ - / / 0T O (t + rv) TOW (1 + frv)v dEdS.
0 0 0
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Since ¥y is regular and since (¥o(t)) T OWy(t) is the first fundamental form
of T'y, the latter expression is uniformly positive definite. Hence, due to
continuity, there exist rg,d > 0 such that

1 2
‘/ OV (t + &rv)v d{‘ >0, (t,r,v) € Q x [—rg,70] x St.
0

In particular, there holds

‘/016\110(t+§m)vd§’3: ‘/Olallfo(t—kﬁrv)vdgr

\/‘ /01 OV (t + Erv)v df‘z,

which yields that Q x [—rg, 7] XS' 5 (¢,7,v) — | fol 0¥ (t+E&rv)v d§|3 eR
is a smooth function.
Applying now (%) to the smooth functions ¥g: @Q — R3 and g : Q — C,

t— g(t) == (010 (¢)x02Wo(t));
' 14|V fo(t)]2

we obtain

fol AW (t + Erv)vdE fol Ag(t + Erv)vd¢
|7| | fol OV (t + Erv)v d§‘3

hgi’j)(t7 t+rv) =

with smooth enumerator and denominator and the latter one always away
from zero, such that the quotient rule is applicable and yields a smooth
fraction as well. For the enumerator in hy we apply (*2) and note that
(81\110(15) X 82\110(t)) X 6\110@)’[} =0. Hence,

(D1Wo(t) x B2Wo (1)) - [ (1 =€) > W (t + Erv)[v, v] dE
7| | fol Vo (t + Erv)v df‘S

ha(t,t 4+ rv) =

)

where with the same arguments as before this fraction is smooth. With
those results it is now easy to see that ¢ satisfies the requirement from
above and the proof is complete. O



5. The High-Order Numerical
Scheme

It is the objective of this chapter to introduce a high order numerical
method for a system of integral equations

w(”(t)—Z/k(i"j)(t,T)@(j)(T)dTZw(i)(t), te@, i=1,...,n,
j=1"¢

(5.1)
where the kernel functions k(7)) of the underlying integral operators are
weakly singular and Q-periodic with respect to both arguments. Precise
assumptions will be given in Section 5.2. Such systems appear quite
often in applications, e.g. for boundary value problems which can be
solved by the integral equation method — and after having rewritten the
boundary integrals by means of the parametrization to integrals (or system
of integrals) over the parameter domain . An example is of course the
electromagnetic scattering problem introduced in this thesis. Provided
the surface is smooth (what we tacitly do because of Theorem 4.20),
the numerical scheme achieves super-algebraic convergence rate. Most of
the results were already prepublished in [9]. Therein, for the case of a
single integral equation, other examples can be found including numerical
experiments and complexity estimates. The scheme is a variant of the
approach from [19, 20] and improves the scheme of [7] by reducing the
overall complexity.

The numerical method can be interpreted as a collocation method based on
trigonometric interpolation, and Section 5.1 collects corresponding results
which will be needed later.

In Section 5.2, the main idea of the method is demonstrated and analysed
on a single biperiodic integral equation. As already indicated in (1.2),
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a key ingredient will be a transformation into polar coordinates for the
first integral to remove the singularity. However, now the corresponding
integral operator takes on a non-standard form which makes its analysis
much more involved, in particular for its approximation with respect to the
fully discrete system. By means of certain auxiliary spaces and operators,
we finally obtain all desired results in order to state the two main theorems
of this section about stability and convergence.

The generalization to systems of biperiodic integral equations is then
straighforward and shown in Section 5.3.

To simplify notation, especially for the convergence analysis, we assume
in this chapter, without loss of generality, our rectangle @Q to be of the
form

Q= (—mm) X (—m,m).

5.1. Trigonometric Interpolation

As mentioned above, an essential component of the numerical method
is trigonometric interpolation. In this section we will collect all relevant
results.

First of all, we recall the space H, (Q, C?) from Definition 2.7 and the
well-known Sobolev’s embedding theorem, which says that H., (Q, c?)
is compactly embedded in (C’per(c;),(cd/)7 I “lloo), provided s > 1. As an
important consequence, it makes then sense to introduce an interpolation

operator based on
Tn(Q,C%) := span {e(j) Té“) lje{l,....d}, pe Z?\,},

which is a finite dimensional subspace of 7(Q, (Cd/) from Section 1.3. Here,
for N = (N1, No) T € N? we have set

Zy ={p€Z’|—N; <p; <Nj;, j=1,2}
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Furthermore, for the interpolation operator we also need an appropriate
grid of interpolation points (tfy)ueZ} and choose it as

.
H1T 2T
tﬁ] = (tﬁlvtﬁf,ﬁT = <N1’ N2> , mEZLy.

Lemma 5.1 Suppose that s > 1 and 0 < o < 5. Given u € H;er(Q,(Cd/),
for every N € N? there exists a unique interpolation polynomial Pyu €

Tn(Q,C%) such that
u(t/]j) = PNu(t/]:[) , e 7.

The linear operator Py : H..(Q, C¥) = HZ..(Q,C%) is bounded with

per
-0

1Py = ulgg @y < € 3w Il @y
where C' > 0 is a constant depending on o and s. For N and N recall (1.3).

For a proof we refer to [7, Lemma 5.1], which holds also for vector valued
functions. Here, the symbol Py relates to both the scalar and vector
valued case. From the context it should always be clear on which spaces
Py is currently working.

An alternative way to express the interpolation operator is using the
Lagrange basis representation,

Pyu= Y u(t)) L), (5.2)

HELE,

with the Lagrange basis functions given by

s
INit)= — TW (¢ — Y teR?.
;L(t) 2N1N2 Z Q( H)7 S

verzd

For t € Q\ {t;}, there also holds the expression

2
1
Ny . (4 4N
Ly () = AN N, j|:|1 sin (N (t; — ;)

2

t; —tN.
i+cot]’“].
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This follows from the corresponding one-dimensional result in [36, Section
11.3], with some obvious modifications due to a slightly different choice of
the space Tn (Q).

Lemma 5.2 The set {e(j)Lﬁ/ | je{l,....,d}, pe Z?V} is an orthogonal
basis of (TN(Q,Cd/), Il - HLz(Q7cd/)) with

2

N | TN m 2
(L;L |LI/)L2(Q) NlN 5;LV; ,UfaI/GZN.

Proof: From Py(Tn(Q,C%)) = Tn(Q,C%) and (5.2) it follows, that
Tn(Q,C%) = span {e(j)Lfy |je{l,...,d'}, p€Z%}. Moreover,

2

LN Ny __T (T(’\) C MY [ 7O (N )
( o V)LZ(Q) 4N12N22 )\%2 Q ( u)| Q( u) L2(Q)
7L N

2)2
(%) >y (TC(?A) ‘Tg)) T () T (~eY)

N2 N2 e, L2(Q)
3 2 2
TN — ) = T INY) = 5,
2N2N22 )\ZZQ @ )= N1 Ny (1) NiNy "
which completes the proof. O

In some instances, products of functions from Hp,(Q, C?) with smooth

and scalar valued functions occur. For m € Ny and x € C72.(Q,C Y w
set

[Xllsosm = sup [x(t)| + max sup|0°x(t)].
teQ [Bl=m teqQ

Lemma 5.3 Let s > 0 and 0 € N>,. Suppose ¢ € per(Q,Cd ) and let
€ C7(Q)- Then x € Hyeo(Q,C) and

Ix¢llms, (@.cay < (QC¥)

per

where the constant C' > 0 is independent of ¢ and x.
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Proof: The assertion follows from the equivalence of || - || (g car) With
the Sobolev-Slobodeckii norm, see Theorems A.36 and A.41. O

In particular, we are interested in an estimate of this kind when the smooth
factor is a trigonometric monomial.

Lemma 5.4 Let 0 € N. Then ||T(“)||OOU < o (14 [p|?) for all p € Z2.

Proof: Let 8 € N2 with |3| = 0. Then, for u € Z? and t € Q, we have
8ﬁTé2“) (t) = ilfl ﬂfl M§2 TCS”) (t) and hence

Pl |l
8ﬁT(M) )] < |M1‘ M2 < )
‘ Q ( )‘ - 21 - 27
Since |ufoo < |ul, we obtain | T4 oo < o (14 |1]”). O

In the later analysis, functions which are Q-periodic with respect to several
independent variables will occur. Such functions can be expanded into a
Fourier series with respect to one of these variables. The behaviour of the
Fourier coefficients in such expansions will be of importance.

Lemma 5.5 Let F' € C°(R? x R? (Cd/) be Q-periodic with respect to both
arguments and define

FO () = / Ft,r) TSV (r)ydr,  AeZ?, teRe
Q

Then
=Y FY0TV (), tTeR?
\€Z?

holds pointwise, where (F™)ycz2 is a sequence in Crer(@Q, C?). Moreover,
for any m € Ny and 3 € N2 there exists a constant C' > 0 such that

sup sup (1-+[A2)" [07FO (1)) < C||F ooz -
AEZ2 teR?
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Proof: We expand F into a Fourier series with respect to the second
argument. Pointwise convergence holds due to the smoothness of F(¢, ) for
all t € R2. In particular, the definition of F(*) and well-known facts about

parameter-dependent integrals yield FOV) e Coar (@, (Cd'). Furthermore,

0P FN ()] <27 || Fllocyp . tER?, FENG.

For m € Ny, we have |[\|]?™ = ZQGNQ laj=m m)\2a1>\2a2_ Let A € Z2,
t € R?, B € N2 and o € N2 with |a| = m. Then

)\2&1 )\2&2 |aﬂF )\) )|

O¢1'0’2

/ OfF(t,7) (=)A= A TG (1) |

- al'a2

—9(2a1 ,2a2)Té—k)(T)

/ P o2 202) (g, T)Téf’(ﬂdT\s% a1 F o 812 »

al'a2 a1|a2|

where we have used integration by parts in the third line. Hence,

AP OPFN (0)] < 2m [ Flloogsream D arta = 2" I F ooy sazm -

aqlas!
la|=m

From (1+ [A?)™ < 2™(1+ |A[*™), X € Z2, we obtain
L+ )PP FD®)] < 277 (I1Flloosis) + 27 IF llocsil+2m) -

Since A € Z? and t € R? were chosen arbitrarily, the proof is completed by
observing the boundedness of the embedding from C}Iﬁlrﬂm (Q,C%) into

CHHQ,c?). O

5.2. The Approach for a Single Biperiodic
Integral Equation

In this section we reduce the system (5.1) to a single integral equation and
introduce the numerical scheme for it. The generalization to systems is
then straightforward and topic of the next section.
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We consider an integral equation
o)~ [ Kerelndr v,  teQ, (53)
Q

and impose the following assumptions on the kernel function and the right
hand side:

Assumption 5.6 Let k = ki +ka, where k1 € C°(QxQ\{(t,t) | t € Q})
and ko € O (R? x R?) are Q-periodic with respect to both variables. For
every multi-index o € N3, there exists C > 0 such that the estimate

C

min,eze [t — 7 — 2m v|tlal’

|0%ky (¢, 7)| < t, 7 €R?, t £ 7+ 270,
is satisfied. For some 0 < o < m, setting £(t,r,v) = |r|ki(t,t+1v), t € Q,
r € [—00,00], v €S, we assume that £ € C®(Q x [—00, 00] x S1).

We also assume ¢ € H.,.(Q) for some s > 1.

Hence, k; is assumed to have a particular type of weak singularity that
can be removed by a transformation to polar coordinates around the
singularity.

Examples of such kernels are the entries of the kernel function of M,, see
Proposition 4.23. Further examples are discussed in [9].

Isolating and Removing the Singularity. To make use of Assumption
5.6 in the numerical method, we require appropriate cut-off functions. For
0 < d <e <7 we define

1, 7] <d,
v =% (), s<i<e,  req
0, |7| > €,
with
e—l/s
X(s) == , s€(0,1)
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Note that x; . is infinitely often differentiable. On all of R?, ys . is assumed
to be @-periodic. Furthermore, an argument by induction shows that

m
- E—|T
0%Xs,e(T E |T|2m4X(€)<€5|), a€NZ, |a]=meN,
e:1

where py are either homogeneous polynomials of degree m or the zero
function. From this representation, we obtain the estimate

m

feY - €
|0%x5,(t)] < Cq Z m ) t e R?. (5.4)
=1

Fixing numbers 0 < §; < Jz, (5.4) implies
|aaX5197520(t)| < 00751752 o™, 0<o< 7T'/(52, (55)

with a constant C, s, 5, independent of o.

With the help of these cut-off functions, we localize the singularity in
the integral operator from (5.3). Fixing numbers 0 < 1 < g2 < 1 and
0 < o < g, define

ksmootn (£, 7) = k1 (t,7) (1 — Xe,0,e00(T — 1)) + ka(t, 7), (5.6)
and introduce the operators
Jip(t) == /Q k1(t, 7) Xeyoie20(T = 1) Xeno,o(T — 1) (7) dT,

teq@.
Jop(t) = /Q Esmootn (t, 7) () dT,

Then (5.3) can be rewritten as

o—Jip—Jp=1 on Q. (5.7)
The reason for introducing x.,,,, Will be explained below.

Next, we rewrite J1¢(t) using polar coordinates around t. We set

e =rf (Gr9) . p=) e,

7 \sin?d
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and

r| o

272

kpolar(t7p) = kl(tat + H(p)) XE1Q,EQQ(H(p)) ) ta p= (T7 19)T S Q .

Substituting 7 = ¢ + II(p) in the expression for the operator J; gives

Tiplt) = /Q Fpotar (1:0) Xenoo D) 0t +TI(p)) dp, £ Q. (58)

By Assumption 5.6 and kpolar(t,p) = 0 for [II(p)| > €20, we have that
Epolar € C*°(Q x Q) can be extended Q-periodically with respect to both
arguments to C°°(R? x R?). The reason for introducing xe,,,, becomes
clear now: Xeyp,0(II(+)) @(t +II(+)) can also be Q-periodically extended to
C>(R?).

The Semidiscrete Problem and Modifications. We want to solve (5.7)
numerically using a collocation method on the space Ty (Q). Thus, the
semidiscrete problem is to find ¢pn € Ty (Q) such that

(pN—PlegoN—PNJQQDN:PNw on Q (59)

A fully discrete method is obtained in several steps. Firstly, both integrals
are replaced by composite trapezoidal rules which are highly efficient for
periodic functions. For M, N € N2, we set for ¢ € Hp. (Q)

Jimp(t) = /QPM [kpotar (£, ) Xezo,0(TL(+)) (¢ + T1(+))] (p) dp

2
v
= 3L 2 Footar(t 1) Xeso o (1)) (2 + T1(81))
1 21/62%4
(5.10)
Tapei®)i= | Py oo (8,5 ¢] () dr
Q
i N N
- NN > Famootn(t, 1)) (£ (5.11)
I/EZ?\]

While both operators are discrete in principle, only Js y can be used
directly. The expression for J; js involves the evaluation of ¢(t + II(t})).
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An exact evaluation requires the knowledge of Lﬁ’ (TI(tM)) for all p € Z3,
and v € Z3%,, which amounts to O(N*M?) operations. In [19, 20, 18] the
quadrature rule in radial direction is slightly perturbed and the values
of ¢(t 4+ II(+)) in the quadrature points are obtained to high accuracy by
fixed degree polynomial interpolation. However, this approach limits the
asymptotic convergence rate.

The approach of [7] is a collocation method and uses the exact values
of ¢(t +II(+)) in the quadrature points. Here, we modify the scheme by
reducing the cost in the approximation of J;. We require the orthogonal
projection Oy from L?(Q) onto T (Q),

M M.
Omv:i= Y (v] Téj‘))Lz(Q) Ty = % Yo @Iy e L
neZ?, REZ2,
(5.12)
for v € L?(Q), where the second representation is due to Lemma 5.2.
Let 1 < e3 denote a number such that €30 < gg. A scaled projection for

functions on @, := (—e30,£30)* is given by

Oprv = Oy [U(E?’—Qﬂ (” > . weL(Q,).

™ €30

We define for M, M € N2,
JLM,]\;[()O(t) = /QPM |:kp01ar(t7 ')

Onr [{Xez0.0 Ot [Xores0 9t + )]} OH]](p) dp. (5.13)

The operator Oy was already used in [7]. It makes the derivation of
(5.20) below possible which is central to the proof of Theorem 5.15. The
projection O 57 reduces the complexity of the scheme when compared to
the approach in [7], see also [9, Section 5].

Mapping Properties. For the remaining part of this section, we focus
on the convergence analysis of the approach introduced above. We will
start with properties of the operators J, and J; y which are simpler to
analyse.
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Theorem 5.7 Let s > 0. Then Jy : Hi (Q) — HEENQ) is well-defined,

linear and bounded with ||.Jy|| < C o~ 15543} for all o < oo with the
constant C' dependent on the kernel k and the numbers 1, 5.

Proof: We write kgmootn using its Fourier series representation from
Lemma 5.5,

ksmooth t 7— Z k()\) T()\ )7 t, T € R2.
\EZ?

Let ¢ € H:,.(Q) and set o := |s], see also the beginning of Section 1.3

per

for the meaning of this symbol. By Lemma 5.3, there holds

P I

s <O

Hoo;a+2

for all A € Z2. Therefore, by applying the triangle inequality with respect
to the norm || - || =41y,
per

12l g () < >, /TC(QA)(TW(T)dT £ ||Hg;;1(Q)
aez2 M@
Z Al Hk(/\)HH;jrl(Q)
AEZ?
1/2
< Cllellas,. (Z (L+A2) ||k(”||ooa+2>
AEZ2

< Cllellmg@ sup | (1 AR)"TE ROV

x (Z (1+ )\|2)_2> -

NEZ?

oo;a—i-Q}

< ¢ ||SD||H1§€[‘(Q) HksmOOthHoo;a+2+max{2—a,0}

=C ||Lp||H1;cr(Q) HksmOOthHoo;max{4,o'+2} ’

where the last estimate is due to Lemma 5.5. Recall that C' a generic
constant that may be different in each occurence.
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Define the set Q, = {(t,7) € R* x R? | [t — 7 + 27| > e90 for all v € Z?}.
We proceed to bound for m € Ny using Assumption 5.6 and (5.5)

||ksm00thHoo;7n = ||k2||oo,'m + ||k1“oo
+C Y 0%k )lsese, 107(1 = Xeypez0) ooz < Co™™ !
lee|+[Bl=m
for o < pp, which completes the proof. O

Theorem 5.8 Let s > 1 andt € [0,s]. Then Jo n : H3 (Q) = HIEH(Q)
is well-defined, linear and bounded. Moreover,

e N1, No})
Ty — . < p—2e—6 (max{Ny, No})*
||( 2 2,N)()0||Hp:rr1(Q) = o (mil’l{Nl,NQ}) ||<)0||Hper

for all p € Hy. (Q), 0 < 00 and all N € N2, where C depends on k, €,
and €s.

Proof: Let 0 € N>;. From Cauchy-Schwarz’s inequality and Lemma 5.1,
we conclude

’/ Yo — Py[T5Y ) T)dT‘g%HTg)‘P_P Vel o)

per

(max{Ny, No})! H H
(min{Ny, No})s Hier

From Lemmas 5.3 and 5.4, we obtain

178" ¢llrs ) < CITE oo Il a15.0@ < € (1IN 0l 0

per per

<C(1+ ) gl

pe:

so that

| [ @9 - Purg ) myar]

(max{Ny, No})t

S O i {Ny, Ny 1)

1+ M) el e,

per
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Thus, by applying the triangle inequality with respect to || - || HEEN Q)
102 = To) el

< Z ’/ T(/\ ¥ — Py [T( dT’ HksmoothHH;‘é}l(Q)
AezZ?

(max{Ny, No})*! 0/2
(oo IN. AN\ || ||chr (@) Z (1 + ‘)" HksmoothHoo-cH»l
(min{ Ny, No}) et ;
and again Lemma 5.5 completes the proof as the remaining argument is
very similar to that at the end of the proof for Theorem 5.7. O

The derivation of a similar result for the approximation J; j, y; of Ji as
introduced in (5.13) is more complicated. Although the singularity has
been removed, the integral operator now takes on a non-standard form
which makes the analysis of its mapping properties much more involved.

To simplify the considerations, let us rewrite J; in terms of expressions
that are easier to analyse. Writing kpolar as a Fourier series with respect
to p,

polar t p Z kpolar TQA)( )7 tup € Q7 (514)
AEZ?

we formally have
Jip(t) = 3" kN @) | T (0) Xeaoo (WD) (¢ + 1(p)) d
polar 0 Q D) Xez0,0 b))y p p-
ANEZ2

The later analysis will show that interchanging integration and summation
is indeed justified.

Recalling Q, = (—e30,£30)?%, with corresponding trigonometric monomi-

als )
(1/) . T
Qg() 2539exp<1€3g7'~u), TEQ,,

consider now functions u of t € @ and 7 € (),. These can be expanded
into Fourier series with respect to both variables,

ST o, TS0 TS (7).

u,VEL?
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For s > 0, we introduce the vector space

Ho.Q, = {“ € L*(Q x Q,) | ps.o(v) < oo for all o > 0}7
where

Poo(@) = 3 (L |uP) (L4 - ZvP) P, o> 0.
u,VEL?

Remark 5.9 The space ’HSQng is a subspace of ’HtQ’QQ, forall0 <t <s.

For v € HZQ,QQ and o > 0, we also set

Gso(u)i= Y (L4 |Z5v) (1 + | — o) up .
wu,vEL?

Between p, , and ¢, there holds a certain equivalence relation. For
u € 7—[227% and o > 0, we estimate

Poolw) = S (L4 1u?) (1 + |1 — Zv?) 2

n,veZ?
<2 S (U fa— 4 ) (L o= )
pvEL?
<20 Y (LI5S (U F = Z5vP) gl = 20 gsors(w),
v EL?

(5.15)

and by similar arguments also ¢s o (1) < 2° ps o15(u).
Two technical lemmas are required to establish the mapping properties of

the operator J;.

Lemma 5.10 Denote by Xp.c,0 the Fourier transform of the extension of
Xoesolo to R? by 0. Then for any o € Ny and e30 < go,

sup [(1+[2]*)7 [Xgeso(@)]] < C 07742,
TER?

where the constant C' depends only on o and 3.
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Proof: We note that x,.c,0(0t) = X1,6,(t), for all t € @, and obtain

@(I) - / Xo,es0(t) e At = 92 / X1,e5(t) e~letT gt
B2(0,e30) B2 (0,¢5)

Let R > 0 and consider = |z| & with |z| > R. We rewrite the integral
using the divergence theorem as

B2(0,e3)

/ {x Vxie (et o [w X1z <t>e—“—"“'T } a
= . - Vitr .
BQ(O,&g) 1|‘CC| Q 1|'CB| Q

1 olal 88
= & Vx1.e,(t) e ielelt2 g
io|z| B2(0,e3)

We repeat this argument 20 — 1 times to obtain

2

— Y

Xocso(®) = 7/ h(t) e telel i gy
9539( ) (19|x‘)20 B2 (0,e3) ()

with some function h depending on €3 and continuously on Z. The assertion
follows by applying the triangular inequality for integrals and taking the
maximum with respect to z.

For |z| < R, we use |m(x)| < C(g30)? and €30 < 0p. O

Lemma 5.11 Let s > 0, €30 < gg-
(i) For ¢ € HSer(Q) define
M@(t,’]’) = Xg,s;;g(T) (P(t + 7_) i (t,T) € Q X QQ'

Then My € Han, and for all o > 0,

Poo (M) < Ca* 2 lelh, @)

per

where the constant C' depends only on o and 3.
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(ii) For A € Z* and u € Ho.q, set

T MNuft) :=/QT“)(p)xm,g(H(p))U(taﬂ(p))dp, teq.

(j(A))Aezz is a family of linear operators which map the space "HSQQQ
to H33M(Q) and with

HJ(A)UHH;:QI(Q) <Co ' (1+ M y/psa(u), ue Mo, NE 72,

where C' > 0 is a constant only depending on €2, €3 and s.

(iii) (TN o M)aezz is a family of linear and bounded operators mapping
H3..(Q) to HSXY(Q). In particular,

per per

1TV Ml gstq) < Co™® A+ NP)Iellag, @) © € Hpee(Q),

per

and for all X € Z2, where the constant C > 0 only depends on €2, €3
and s.

Proof: (i). Let s > 0 and p € H;,,(Q). In a first step, we calculate the

Fourier-coefficients u,, ,, of u = M. Therefore, let p,v € Z?. Then
Uy = / / u(t, ) Té;”) (1) Tc(g:l/) (r)drdt
QJQ,
1

im 1 .
_ —igZpvr [ L ¢ —ip-(t+7—7) dt ) d
2250 Jo, Xeeso(T) € 7 (27r /Q p(t+7)e T

1 —i(Zpv—p) T 1 / N —ipet’ g4t
= <3¢ — t whde | d
230 /]R? Xoeso(T) € 58 2r o p(t)e T

1

= 2250 Xg,asg(g:*gV = 1)®p,

where the last step holds due to the @-periodicity of ¢. Now, in a second
step, for o > 0, there holds

o+2
v—nl?)

1 , (1+|L
s,0 = § 1 %) =2
P ) (U) (2539)2M ( +|:u’| ) (1 ™ v—p

2
N2 |@M|2‘X/g,;9(£7”_ﬂ)‘ .
WEZL2 +‘€39 ‘)
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From

1 1
__ > p2 P — h>0
/Rz e 2P L G MO

ez?
V1,270

and similar estimates for the remaining terms in the sum, we see that the

-2
value of the series ), ;> (1 + |£91/ — M|2) is uniformly bounded in p

and g for 30 < gg. Thus from Lemma 5.10, the assertion follows.
(7). Using the Fourier series expansion of u, there holds

TVu="3" ., /Q T5 (9) Xeaono (1(p) TS (I(p)) dp T

n,veZ?

Suppose v # 0. We write (v1,v2)" = ¢,(cos¥,,sin9,)T for some ¢, > 0
and some ¥, € (—m, 7], and obtain

ng) ((p)) = 2;3@ exp (iqy (r/e3) cos(¥ —9,)), p=(r9)eqQ.

Hence, the substitution ¥/ = ¢ — 9, and the 2m-periodicity with respect
to ¢ yield

A v L A
/Q TG () Xeaoo (T1P) T, (M(p)) dp = 5% /Q 5 (')

x [Xé‘zQ,Q 0 H] (Tv 19/ + ﬂu)ei av (r/es) cos v d(ﬁ 19/)

The behaviour of the integral in this expression with respect to A\ and v
can be estimated by the method of stationary phase. A detailed proof is
given in [7, Lemma 6.2]. We obtain

HTCF;\) [Xew’g oIl] (+,- + 191,)”
Qv

00;2
. .

’/QT&\)(Z?) {Xew,g TCS)V)} olI(p) dp’ <C

Similarly as in the proof of Lemma 5.10 we observe that

e o040 = e (£ (6090

™
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is independent of p. Hence

‘/ T(’\) XsQQQT(V)} oIl(p dp‘
I N I
Q@ (14 [v|2)1/2- '

Note that the final estimate is also true for v = 0. Using Lemma 5.4,
gives

L+ A2

M) () L Ll N
‘/QTQ (p>stg,9<H(p))TQQ (H(p))dp‘ < C(l +|v2)1/2”

We proceed with

2
. 1|72
|7 HH+ <C* Z<1+Iu2)9“< <1+|u||2>1/2|““’”|>
vEZL?

WEZ2

2
= C2 L+ AP D0 ([l (Z (L) |UW|>

HEZ? veZ?

SCHLHP)? Y A+ Py

HEZ?

2
B . (Lt o)/
SCPo (L4 AP D (14 [ul?) (Z ﬁ| u,u|> :
€30

HEL? veZ?
(5.17)

-2
As in the proof of part (i), the series ) o (1 + | — 559V|2) is bounded

independently of p and ¢ < 1, so that we can apply the Holder inequality
for £2-series to obtain

Jg®ul . <C o ARy

H3ENQ) —

ST W P A = )
w,vEL?
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=C?p % (1+ |)\\2)2ps73(u) .

(#ii). The assertion follows directly by combining (%) and (7). O

With these preliminary considerations, we are now able to investigate the
mapping properties of J;.

Theorem 5.12 Let s > 0. Then J; : H3.(Q) — H3IN(Q) defined

per per
in (5.8) is a linear and bounded operator with

I 7ellzs @) < €07 lellmg..@

per

for eso < oo with C depending only on k, s, €1, €2 and €3.

Proof: By definition, J; is a linear integral operator. To show boundedness
from H3 . (Q) to HSH(Q), we insert X, e50(II(+)) in the integrand and

per per
expand Kpolar into its Fourier series (5.14). With JN from Lemma 5.11
we obtain

Jip(t) = 3" kL0 TN Me(t).

AEZ2

This is justified by the estimates for any o € N>4y; using Lemma 5.11

1710l s53i0) < C D Ikpmarllooio [TP M@l o110
AEZ2

S CQ H()OHHSer (Q) Z 1+ |>‘| |kpolar||00 N

NEZ2
2\31.(N)
H<)0||Hpe, Q) Z 1 + |)\| 1+ ‘)‘| ) Hkpolar”OO;U'
)\eZ2

The series converges as the two last factors are bounded by Lemma 5.5
with
A
sup (14 A2)° [kt llosio < C IEpotar e o -
AeZ2
With ¢, p = (r,9)" € Q and setting p = (cos 9, sin ) ", we write kpolar(t, p)

as
o or T
kpolar(t,p) E( ) 7p> Xe1,e2 (; p)
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with the function £ from Assumption 5.6. It follows that ||kpolar[| o, ;16 < C

uniformly for €30 < g9 with C' depending only on o, €1 and 5. This
completes the proof. a

We next derive an analogue of Theorem 5.8 for Ji, i.e. an estimate for the
difference J; — Ji. a7+ To this end, we write

Jr = Iy v = [Jl Jy M} + [ju\?[ - Jl,M,]\?[} ;

aame:l@kmmam>H%w@aquwww@+»uonumdp

(5.18)
for t € Q). Note that, using the projection

=3 Y w IPOTY ), weHyo,.  (5.19)

WEZ2 V€Z2
we can write J; 7 as J, NP = D oneze kpolar TNO M.
Lemma 5.13 Let s > 0, e30 < 0o, M € N? and recall the definitions of

TN and M from Lemma 5.11.
(i) For allu € Hg o and A € v/

”J()\)UHHI‘;:;I(Q) < C«Q_l (1 + |)“2) QS,erS(u) )
where C' depends only on s, €2 and €3.

(i)) For0<t<s,0=>0and allu €M, ,

Qt,a((I_OM) ) (fM) QSJ( )
Here T denotes the identity operator and for M recall (1.3).

(iii) Let0 <t <s, A € Z*. Then J™M(T—On)M : H3 (Q) — HLENQ)
is bounded with

[T~ Or)IM el s gy < € 272~ (L INP) M gl o)

per

for all p € H;..(Q), where the constant C > 0 only depends on s, t,
€9 and 3.
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Proof: (i). This follows from Lemma 5.11 (i) together with (5.15).
(ii). Let 0 <t < s and o > 0. Then

Go(Z—0mu) =3 > (1+IZvP) 0+ — Zv) fup,

MEZL? vEZ2 \Z2

Z Z 1+\V| (1+|@V| ) (1—|—|,u—§gl/|) Uy,

HEZ2 veZP\Z3,
< (vV2M)* g0 ()

holds for all u € Hg, ¢ .

(iii). Let ¢ € HSCY(Q) and set u = My. Then, by Lemma 5.11 (i) and
Remark 5.9, u € ’H ,» and hence also (Z — Omu € HQQ From
part (i) and (i) together with (5.15) and Lemma 5.11 (i), we obtain the

estimate
[TV ~ Onr) ull s gy < C ot (14 IAP) Jaeres (T — Onr)u)

SCo " (1+ [AP)Y M \/qs,s43(w)

2

SCo (14 AP) M /s 2ss(w)
SCo P+ AP M ellag,, @)

per

which is the desired result. O

Theorem 5.14 Let M € N?, s > 0 and t € [0,s]. Then the operator
J| i D HE o (Q) — HEEN(Q) defined in (5.18) is well-defined, linear and

bounded with

162 =Ty )l g < C o7 M el @)

per

for all p € H}.(Q) and e30 < 0o, where C > 0 only depends on k, s, t,
€9 and 3.

Proof: Let ¢ € H5,.(Q) and 0 € N>41. Proceeding analogously as in

per

the proof of Theorem 5.12, from Lemma 5.13 (iii) we obtain

A
1= T i@l @) < € D Ikatarllosio [T = O Mg 11
AEZ?
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SCQ_QS 5 “rt—s

el @ D (1+ AP S llooso
AEZ2

For the remainder of this proof we proceed as at the end of the proof of
Theorem 5.12. O

Theorem 5.15 Let M, M € N?, s >0 and t € [0,s]. Then the operator
Jynar Hyer(Q) = Ht+1(Q) defined in (5.13) is well-defined, linear and

per per
bounded. Moreover, there exists some T > 0 such that

~ .

1y = Jyvain) Pl < C e G ol 22

per

for all p € H3,.(Q) and €30 < g9, where C > 0 only depends on k, s, t,

per
T, €2 and €3.

Proof: We follow the proof of [7, Theorem 6.5]. Let ¢ € HE). We set
v(p) == {Xes0.0 Ofi [Xocso 9t + )]} o I(p),  pEQ,
and write the operators as

A
Z kpolar /QTC(Q )(p) ’U(p) dp7

AEZ2

IMM(p_ Z kpolar/ [T( )OMU:|( )dp

AEZ?

A central observation regarding this representation of J; 5, y is

/Q PulT0uo] () dp = 3 TS (M) Onpo(e) /Q LY (p) dp

2
LEZLY,

2
T EMY 0ot
LGZZ; Q(L)MlMQM(L)
M

S 10 g (X M5 [ st an )

€73, verz?,
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= Z Tg‘)(tfw)/Qwa(p)v(p) de/Qv(p) PMTg\)CU) dp,

2
LEZE,

so that we obtain

(J 1MM Jo = Z kpolar/ {TC(QA)( )— P IT(X)( )] dp.
Aez?
(5.20)
Moreover, let 7 > 3 and w > s —t 4+ 7. By Sobolev’s Imbedding Theo-
rem, the space HJ,, (@) is continuously imbedded in the space of twice
continuously differentiable @-periodic functions. Hence, by Lemma 5.1

78"~ P TQ)H 2 <CITSY = PuTg’ | 7 ()
MT w/2
< O e ||T(A)||chr(Q) =C W(l + )

Setting u := M with M from Lemma 5.11 and recalling O; from (5.19),
we obtain

/Q (T8 (0) = PuTS (1)) Xeso0 (1)) O (-, T(p)) dp
Z Z Uy, y/ T()\ PMT()\))(p) [Xazg,g TCFQVQ)} o II(p) deé?u)'
WEZ2 y€Z2

Hence, by a slight modification of the estimate in (5.16), we can proceed
as in (5.17) to obtain

H /Q (Tg\)(p) - PMTCF)/\) (p))Xew,g(H(p)) Ojru(-, (p)) dp ‘

HiEH Q)
_ 1/2
MT (1+|>\|2)w/2 t 14| p|2)1/2 2
<o Um0 () (3 G )

2 2
WEL VGZM

M"' (1 + |>\|2)w/2 1/2
<O — (X0 Q) (= o) ll?)
- ueZ?
VEZ?\Z

=T

M w/2
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Now, by setting o := [t], from (5.20) we conclude that

||( 1o — N I\/IA,M)(IDHH;‘)Z':(Q) <C Z ||k1(3i\)%ar”0¢§0+2
A€Z2

/Q (T8 () = PuTSY (9)) Xenono (1L(P) O (-, T(p)) dp]

MT / o\ w/2
< c Ms—t-‘rT D, 3 Z ||kpola,r||oo 0’+2(1 + ‘)‘| ) .

AEZ2

X

HEEN Q)

Using Lemma 5.11 (%), Lemma 5.5 and arguing as in the proof of Theo-
rem 5.12, we establish the bound

5T

- M
H (JLM - J1,M,M)90||H;;1(Q) <C—=+ Ms—t+7— ||90||H{)er(Q
From this, the assertion follows due to the continuous imbedding of H,,(Q)
in Héer(Q) O

The Fully Discrete System. We now consider the approximation of the
solution of the integral equation (5.7) by the fully discrete version of (5.9)
which is to find ¢n € Ty (Q) such that

onN — Pn (leM,M—FJQ,N)(pN = Pyt (5.21)

Based on our results so far, we now prove stability and convergence for
Equation (5.21). To simplify expressions in the following analysis, let us
assume N1 = Np and introduce the meshsize h := 7/N;. We next set
M, := My := [p/h], M := M and furthermore

A= J1+J2, Ah ::PN(J17M7N1+J2,N)~
We will assume that I — A is boundedly invertible on any H3, (@), s > 0.

per
This is no restriction with respect to our application of electromagnetic scat-
tering in mind, see Theorems 4.20 and 4.18, and many other applications,

see [9].

Theorem 5.16 Lett > 1 and assume that o = h* for some a € (0, ﬁ)
Then there exists ho > 0 such that I — Ay, € Lis(H].,.(Q)) for 0 < h < hy,
with uniformly bounded inverse.
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Proof: We write
A—Ap= (N —Jy ) + (2= Jon) + = Pn) (Jy a0+ J2,n) -

From Theorems 5.8, 5.15 and 5.14, we have the estimates

oA ”Mmmm@@><chel(2“&+@3Hﬂm@@w

[(J1 = MM)‘PHH”}(Q) <C(e 407" ||<PHHer
1(J2 = J2,n)¢llme,.@) < Cho 7 [loll

per

Mb—hmw%m@gcg2|mm

per

per

By Lemma 5.1, the norm of I — Py : H{EHQ) — Hlier(Q) is bounded by
the number Ch. Thus

1A= An) el < Cho ™ ol @ — 0 (h—0).

per

The assertion follows now from standard results for operator approximation,
see for instance [36]. O

Theorem 5.17 Let a € (0,1/3) and o = h*. Assume thatt > 0 and s >
max {1, ¢, 1083y - Byrthermore, let (5.21) be a stable approzimation
of (5.7) in H5.(Q), i.e. there exists ¢ > 0 such that ||onlms (@) <

per per

cllellas, (@) for sufficiently small h. Then there exists ho > 0 such that

o — ‘Ph”Héer(Q) < Ch<87t)(173a)/2||<p||ngr(Q)
for all 0 < h < hyg.

Proof: From py, = Py + Appn = Py (o — Ap+J) ap xppn + Jo,npn) we
obtain

(I = A)(p—on)

=@ —Ap+Jy yrpen + J2nen = on = (Jy arar + 2,8 — A)pn

= = Pn)(p—Ap+ Jy praren + Jonen) — (Jyarar + 2,8 — A)pn
From Theorems 5.8, 5.14 and 5.15, we have

HJ1MM‘Ph+J2 N‘PhHHS <||A||+Ch9 2 6) lonll e

pﬁr per
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Similarly, [|(J a0 + Jov — A enlla, @ < Ch° 0 %7 lonllms, ()

Thus from the boundedness of (I — A)~! in L?(Q), Lemma 5.1 and the
stability estimate, we conclude

o = enllzz@) < C I — A)(p —en)llrz@) < Ch* o™ [lollms. (@)

for all A < hg such that also o < gg.
For the general result, we observe that for T € Tn(Q), the estimate
1Tl ae () < Ch™"||T||L2(q) follows directly from the definition of the

per

norm in Héer(Q). Using the orthogonal projection Oy, we have

le = enllae, ) <lly—Onvlla:, (@) + IONe — enlla:, (@)

per per per

<l = Onolluz, @)+ Ch™" [One — enllL2 )

per

< |l —Onella: @ +Ch7" e —enllrzq)

per

where the last estimate follows from the Pythagorean theorem. For ¢ —
On ¢, bounds as for ¢ — Py have been shown in the proof of Lemma 5.1.
Thus

le = enllms,. @) < Ch~ (14075 7%) |lollms.. () -

From s > 109439ttt follows (s — ¢)(1 — 3a)/2 > a(5 + 3t). Thus

ps—t Q_35_5 _ hs—t—a(33+5) _ h(s—t)(l—?)a) h—a(5+3t) < h(s—t)(1—3a)/2 )

This concludes the proof. O

By assumption, the Equation (5.7) is uniquely solvable and the solution
¢ := (I — A)~' ¢ belongs to H} (Q) for any s > 0, provided the right
hand side 1 does. In this case, Theorem 5.17 establishes a super-algebraic
convergence rate, i.e., for fixed t > 0 and any n € N there exists C,, > 0
such that

lle — SOhHH}ger(Q) < C,h", 0 < h < hg.
5.3. Extension to Systems of Biperiodic Integral
Equations

As we want to apply the numerical scheme from the last section to elec-
tromagnetic scattering problems, we have it to generalize to systems of
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biperiodic integral equations as given in (5.1). This is topic of the present
section. The procedure is straightforward and involves matrix operators,
which will be indicated by bold letters.

Inspecting (5.1) again, now of course we require each kernel function
k(7)) and each right hand side ® to satisfy Assumption 5.6 (see also
Proposition 4.23 for our application in mind). Then, by exploiting the
results from Section 5.2, the operators

() (t) = /Q Kol (6, ) Xea0,0 (1(P)) (t + T1(p)) dp,
(S5 o)(t) = /Q Fodoun (t,7) o(7) dr,

with kl(fofir and ki;{))oth as in Section 5.2, but now for kgi’j ) and ké” )
instead of ky and ko, respectively, satisfy Theorem 5.12 and Theorem 5.7,
respectively. And for their discrete analogs jl(zjél), J1(Z1\]/f) 5 and Jz(f}é),
see (5.18), (5.13) and (5.11), there hold the statements from Theorem 5.14,

5.15 and 5.8, respectively.

The following lemma gives a useful result concerning the mapping proper-
ties of certain matrix operators.

Lemma 5.18 Let (X,] - ||x) and (Y,| - ||y) be normed spaces, and for

fixedn € Nlet X := X" and Y := Y™ be their product spaces, endowed
with the norm

n 1/2
lellx = (D leilk) s e =(er0n) € X,
i=1

n 1/2
Iy = (D Iwil}) . =) €Y.
=1

Moreover, consider the matrixz operator T := (T(i’j))zljzl, with entries
T € L(X,Y) such that [T |y < C;ijllellx for all ¢ € X and all
i,j € {1,...,n}, and acting in terms of the usual matriz-vector product.

Then T € L(X,Y) with

ITelly <Cllelx,  ¢eX,
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where C? = 2n=1 57"

zgl

Proof: Let ¢ € X. We estimate

IToly =3 | ST, || <o SO 1 |

'Llj— =1 j=1

<ZH%IIX2” 120 < Clelx,

as asserted. O

For s > 0 we set
H;..(Q) = (Hp..(Q))"

and endow this space with the norm
S 2 1/2 s
||(p||HSer(Q) = (ZH(‘DJHHSCT(Q)> y P = (9017"'7‘10774) € Hper(Q)'
j=1

Analogously, we set L*(Q) := (L*(Q))" and Ty (Q) = (Tn(Q))", for

N € N?, and consider therein the norm || - ||g2(q) :== || - |10, (@), because
of L*(Q) = H},,.(Q) and the definition of the norm at the right hand side.

It is easy to check that
pcr(Qa (Cn) = chr(Q), L2(Q7Cn) = Lz(Q) and TN(Qv(Cn) = TN(Q)

This justifies the use of the bold variants in the following analysis, where
we are especially interested in the case n = 3.

Now, in the spirit of Lemma 5.18, we define for N € N? the operators Oy
and Py given by

Oy -+ 0 Py -+ 0
Oy:=| : . and Py=1|: . |,
0 - Oy 0 .- Py

and furthermore,

Ji = (Jl(i’j))zj:p Jygr = (j;fljéf))jjzp Jiv = (Jl(f}\i[),zﬁj)Zj:1’
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n n

Boim () T o= (59)

And last but not least, we connect again all indices to the meshsize h
by assuming N; = Np and setting h := 7w /Ny, My := Ms := [o/h] and
M := M, introduce

A= J + Js, Ay = Py (Jl,M,NI+J2,N)’

and assume that I — A is boundedly invertible on H?_ (Q) for any s > 0,

per

i.g=1’ ij=1

where I denotes the identity on H3, (Q). Then the system (5.1) reads as:
for given ¢ € H3, (Q) find ¢ € H}, (Q) such that
(I-A)p =1, (5.22)

and we consider approximations of its solution by the fully discrete system:
find @5, € Tn(Q) such that

(I —Ap)pn =Py (5.23)

Theorem 5.19 Let t > 1 and assume that ¢ = h® for some « € (0, ﬁ)
Then there exists ho > 0 such that I — Ay, € Lis(H].(Q)) for 0 < h < hy,
with uniformly bounded inverse.

Proof: We copy the proof for Theorem 5.16 line for line and replace the
lean symbols by their bold analogs. Then, thanks to Lemma 5.18, in
particular to the special form of the constant C' therein, we factor out all
common constants from the estimates for the lean operators. This allows
us to continue our argumentation as in the remaining part of the proof of
Theorem 5.16, which finally yields the assertion. (Il

Theorem 5.20 Let o € (0,1/3) and o = h*. Assume thatt >0 and s >
max{1,t, 103ty - pyrihermore, let (5.23) be a stable approzimation
of (5.22) in H3..(Q), i.e. there evists ¢ > 0 such that ||@nllHs_(0) <

per per

cllell s, () for sufficiently small h. Then there exists ho > 0 such that

per

(s—t)(1—-3a)/2 ”SOHH* @

per

le = enlla:, @ <Ch
for all0 < h < hg.

Proof: We copy the proof of Theorem 5.17 line for line and proceed as in
the proof of Theorem 5.19. (]






A. Elementary Results from
Calculus and Functional
Analysis

Throughout this thesis we use elementary results from calculus and func-
tional analysis. For convenience, those results are collected in this appendix.
Some of them in Section A.2 and A.3 are extracted from the appendix
of [34].

An exception makes Section A.5. Therein the results for the biperiodic
case were not found in the literature and it seemed appropriate to give
them the opportunity for an appearance at least here.

A.1. The Theorems of Fubini and Young for
Series

Theorem A.1 (Fubini for series) Let d,d’ € N and let ') € C* for
p,v € 2. Assume that (3, cza |a*)|) converges for all p € Z and

c:= Z ( Z |a(“”)\) < 0.

nEZL  veZd

Then (Zuezd |at)]) converges for all v € Z% and

Z ( Z \a(“”)|> =c.

vEZY  peZ?
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Proof: This is a special case of the theorem for double series, see for
instance [4]. O

Theorem A.2 (Young for series) Let d,d € N and let p € [1,00).
Furthermore, let (a)),cza € £1(Z4,CY), (b)), cza € €2(Z4,CY) and

define
o). Z at=) ) u ez

veza

Then (¢'M) ,cza € (24,CY and
||(C(H))uel"'||ep(zd,<c<i’) < ||(a(#))ueld||el(zd,<cfi’) H(b(m)uez”’Hzn(zd,cd’)'

Proof: (i). We start with the case p = 1 and show that

5= (3 a0 = @ ezl 6 ezl

HEZL  veZd

In fact, }° cza lat=)||p)| = |b(”)|||(a(“))uezd||zl, for all v € Z4, and
>z (Speza [0 D) = /@)l [ (6),czall, . and thus
Theorem A.1 yields the desired equation. With this result, the assertion
follows immediately.

(ii). Now, let p € (1,00) and set p’ := p/(p — 1). Since (|a")]), ez« and
(|p%)[P), cza belong to £1(Z?), we can apply the theorem for the case p = 1
and obtain

> (3 106 < @ ezl 1067)ez|

uEZd veza

p
op°

In particular, the sequence (|a(#=")[1/P |b(”)|)yezd belongs to £(Z%) and
an application of Holder’s inequality yields

Z la+=)| b | = Z |a(uﬂ/)‘1/p’ la(r=2)|1/P |p())|

vezd vezd

< (X 1) (3 )

veZ? vEeZ?
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for all 4 € Z%, and thus
3 (Z |a(u—V)||b(v)|) < [|(a®), ez P/P 3 (Z |at— V)wap)
HEZL  veZd nezd  verzd

< H(a(u) 1+p/p’ H b(u)

Jvezallp Jvezal|gp:

which completes the proof. O

A.2. Differential Operators

For x,y, z € C3 there holds

z-(yxz)=y-(zxz)=z - (xxy) (A.1a)
X(yxz)=(z-2)y—(z-y)z (A.1b)

For sufficiently smooth scalar valued function u : R* — C and vector
valued functions F, G : R3 — C3 we have

curl Vu = 0, (A.2a)
diveurl F =0, (A.2Db)
curlcurl FF = Vdiv F — AF, (A.2¢)

where in the last equation the Laplacian operator is taken componentwise.
Moreover, there holds

div(uF) = F - Vu+u div F, (A.3a)
curl(uF) = Vu x F +u curl F, (A.3b)
V(F-G)=(F)"G+(G)'"F, (A.3c)
div(F xG) =G -curl F — F - curl G, (A.3d)
curl(F x G) = FdivG — GdivF + F'G — G'F, (A.3e)

where F'(z),G'(x) € C3*3 are the Jacobian matrices of F' and G, respec-
tively. Recalling the modified versions of the differential operators from
the end of Section 1.3, the analogs of (A.2) read then as

curlg Vgu = 0, (Ada)
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divgcurlg F' =0, (A.4b)
curlg curlg F' = Vg divg F' — AgF. (A.4c)

In fact, to verify for instance Equation (A.4c), we obtain for smooth enough
F :R?® — C? on the one hand

curlg curlg F' = curlcurl F' + curl(if x F) +if x curl F +i8 x (i x F)
=curlcurl F +iBdivF —iF'8 —iB x curl F + (i3 - F)i8 — (i8 - iB)F,
where we have applied (A.3e) in the second step. Note that
Ba(O1Fy — O2F) — B3(0sFy — 01 F3)
if xcurl F =i | B3(02F3 — O3F2) — B1(01Fy — 02F7)
B1(0sF — 01F3) — B2(02F3 — 03F»)
On the other hand, we have
divVF; +div(isFy) +i8 - VF, +i8 - (iFy)

)
ABF = div VFQ + le(lﬁFQ) + 15 VFQ + lﬁ (lﬁFQ)
divVF3 + le(lﬂF{;) +i8-VF3+ip - (15F3)
(iB

=AF +iF'g+iF'8+ (iB-iB8)F
and therefore

Vsdivg F — AgF =V divE +V(if - F) +idiv F +if(i8 - F) — AgF
=curl®> F +ifdivF —iF'8+ (i8 - F)if — (iB - iB)F + V(i - F) — iF'p.

Using finally the fact that

V(i F)—iF'g=1i((F')" - F)p

0 81F2 —(92F1 —(83F1 —81F3)
=1 —(81F2 — 82F1) 0 82F3 — 83F2 ﬁ
83F1 —61F3 —(82F3 —(93F2) 0
=18 x curl F,

we have indeed shown the Equation (A.4c). The remaining equations
in (A.4) are shown analogously, but even easier.
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A.3. Integral Identities

Theorem A.37Let Q C R? be a bounded Lipschitz domain. For F €
CL(Q,C3) N C(Q,C3) there holds

/ div F(z)dz = / F(z)-n(z)ds, (A.5)
Q aD

where n denotes the outward pointing normal unit vector on 0S2.

For a proof for Lipschitz domains we refer to [40]. For smooth domains a
proof can be found in [29].

The last theorem is often referred to as Theorem of Gauss or as Divergence

Theorem. As a simple application we obtain the following result.

Theorem A.4 Let Q2 C R3 be a bounded Lipschitz domain. Furthermore,
let u,v € CHQ)NC(Q) and A, B € CH(Q,C3)NC(Q,C3). Then

/qudx—l—/vVudx:/ uvnds, (A.6a)
Q Q o)
/(B~cur1A—A-curlB)dx:/ (nx A)- Bds, (A.6D)
Q o)
/(udivA—!—A-Vu)dx:/ u(n-A)ds, (A.6¢)
Q o0

where n denotes the outward pointing normal unit vector on OS).

A.4. Results from Functional Analysis

Proposition A.5 Let X be a vector space endowed with two equivalent
norms || - |1 and || - ||2. Furthermore, let X1 and Xy be the completion of
X with respect to || - ||1 and || - |2, respectively. Then

X1 >~ Xg.
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Proof: By a well-known construction, we have X; 2 C;(X)/N;(X), where
Ci(X) and N;(X) denote the set of all Cauchy sequences and all null
sequences in (X, || - ||;), respectively, i = 1,2. Since C1(X) = C3(X) and
M (X) = Na(X), clearly Ci(X)/N1(X) = C2(X)/N2(X). Moreover, by
construction, the norms in C; (X) /N7 (X) and Co(X)/N2(X) are equivalent.
Therefore, we obtain

X122 C1(X) /N1 (X) 2 Co(X) /Na(X) = X,

as asserted. O

Proposition A.6 Let X be a normed vector space, Y a Banach space
and U be a dense subspace of X . Furthermore, let Ty : (U,]| - ||lx) = Y be
compact. Then the continuous extension T : X —Y of Ty is compact too.

Proof: Let (z,)nen be a bounded sequence in X. Choose a sequence
(Zn)nen in U such that (|2, — x| < % for all n € N. Then (&, )nen is
a bounded sequence in U and there exists a subsequence (2, )jen with
(ToZn,)jen converging in Y to some y € Y. Therefore,

1T, = yll < [T (@, = d0))l| + | Todn, — 9l < ITIZ + [T, — yll
for all j € N, which shows that (T'z,,) en is convegent in Y. a

The following result can be regarded as a corollary of the well-known
extension theorem for linear and bounded operators.

Corollary A.7 Let (X, | - |lx) and (Y, - |ly) be Banach spaces and let
U C X be a dense subspace of X and V CY be a dense subspace of Y.
Moreover, suppose Ty € L(U, V) and Sy € L(V,U) such that

T()SO = idv and S()T() = idU .

Then for the continuous extensions T € L(X,Y) of Ty and S € L(Y,X)
of Sy we have
TS =idy and ST =idx .
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Proof: Let y € Y. Then there exists a sequence (yp)neny C V such that
yn =y in (V)] - |ly), as m — oco. Hence,

TSy =T( lim Soy,) = lim TpSoy, = lim y, =y.
n—00 n— 00 n—r00

The other equality is shown completely analogous. O

Theorem A.8 (Lax—Milgram) Let X be a Hilbert space over the field
C and ¢ € X*. Furthermore, let a : X x X — C be sesquilinear, bounded
and coercive, that is, there exist c1,co > 0 such that

0w, 0)] < e Jullxollx  for all uyv € X,
Rea(u,u) > o ||ul|% for allu € X.

Then there exists a unique u € X such that

a(,u) = £L(V) forally € X.

Furthermore, there exists a constant ¢ > 0, independent of u and ¢, such
that JJul|x < ||| x>.

For a proof we refer to, e.g., [29, Section 6.2].

If the functional ¢ : X — C is antilinear (see Section 1.3 for a definition)
and bounded, then the statement of Theorem A.8 has to be slightly
modified, see the following corollary.

Corollary A.9 Let X be a Hilbert space over the field C and £ : X — C
be antilinear and bounded. Furthermore, let a : X x X — C be sesquilinear,
bounded and coercive. Then there exists a unique u € X such that

a(u, ) = L(V) forally € X.

Furthermore, there exists a constant ¢ > 0, independent of u and ¢, such
that [lul|x < cf|€][x~.

Proof: Consider a(u,v) := a(v,u) and £(u) := £(u), for all u,v € X.
Then

Vi e X ia(u,y) =L(y) & YeX:al,u)= €~(1/)),

and the assertion follows now immediately from Theorem A.8, because a
and ¢ satisfy its assumptions. O
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A.5. Sobolev-Slobodeckii spaces

In this thesis we could manage the analysis without Sobolev-Slobodeckii
spaces, even in the case of Lemma 5.3, albeit with a less strong statement
(see Theorem 2.38). For stronger results as in Lemma 5.3, the use of
Sobolev-Slobodeckil spaces seems inevitable. For periodic functions in one
dimension corresponding results can be found in [36]. However, for their
counterparts in two dimensions it is hard to find analogs in the literature.
It is the objective of this section to provide such results. Although that
will be given for periodic functions in R?, the generalization to R? then
can be easily realized.

But before, we give a short introduction into general Sobolev-Slobodeckil
spaces and provide some key tools which will facilitate the handling
therein.

A.5.1. Fractional Sobolev Spaces

In this subsection we give a short introduction into Sobolev-Slobodeckii
spaces. For this, a good reference is [53], which was also the basis here.
For our applications, only Sobolev-Slobodeckii spaces based on the Hilbert
space L%(9), where (2 is an open subset of R?, are of interest.

Throughout this subsection let £ be an open subset of R.

We recall the spaces CJ*(2) and C§°(£2) from Section 1.3. Additionally,
we define the spaces C}"(2) and C;°(2) to consist of all m-times and
infinitely often continuously differentiable functions x : 2 — C, where all
partial derivatives are bounded, respectively. Clearly, C*(2) is a subspace
of CI*(2). In C*(Q2) we choose the norm

m(Q) 1= o°
Ixllem @ max iggl x(@)],

similarly as in (1.12).

Recalling furthermore the notion of the variational derivative from Defini-
tion 2.1, the following lemma gives a useful criterion to decide whether
¢ € L?(2) possesses such a derivative.
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Lemma A.10 Let o, € L*(Q)) and o € Nd. If there exists a sequence
(‘pn)nEN m Cla‘(Q) such that

lon =@l =0 and  [[0%n — Y|l12(0) — 0,

as n — 0o, then ¢ possesses the derivative 0%p = 1 in the variational
sense.

Proof: Let x € C§°(Q2) and set B := supp x. Then

n—oo

i (1) / 0 ) ) ds = () [ 40) ) d

and the proof is complete. ([l

/Qsoma“x( ryde = lim [ pa(x) 9°x(z) dz

To make in the following presentation the notation easier, we introduce
for ¢ € (0,1) and for suitable ¢, € L?(£2) the quantities

Y(z) — Y(y)
/ / |x _)y(|d+2q Y ) dy dz,

[elg.0 = 1/{®: )0

Moreover, for ¢ € Llloc(Q) we recall that its essential support supp ¢ is the
smallest closed set such that ¢ = 0 almost everywhere on Q \ supp ¢.

Definition A.11 Let Q C R? be open and let s = m + q, where m € Ny
and q € (0,1). We define

H(Q) = {(p € H™(Q) | Va € N with |a] <m : 0%], o < oo}
and endow this space with the inner product

(| Vas@ = (@ | Vam@ + Y (0%, 0%), -

3

la|<m
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Here, the space H™ () was defined in Definition 2.2. For s € R with s > 0,

we choose in H*(SY) the norm || - ||gsq) := /(- | -)m+(q). Furthermore, we
set

H:(Q) :={p € H*(Q) | suppy C Q is compact }
and, for compact K C €,
Hy () = {p € H*(Q) | suppp € K }.
It is well-known, that for s > 0 the space H*(f2) is a separable Hilbert
space, see for instance [53, Theorem 3.1].
Regarding the space Hj(€2) we make the following observation.
Proposition A.12 Let ¢ € H3-(Q). Then for all « € N& with |a| < |s]

there holds
supp 9% C K.

Proof: Let y € C5°(Q\ K). Then x|} belongs to C§°(2) and, by definition
of the derivatives in the variational sense, we conclude

/ (3aw)xdm=/(0as@)x\§zdx=(—D'“‘/soaaxléldw
Q\K Q Q

= (—1)‘“'(/ @ 0°x|¢ dx+/ @ 8axdx) =0.
K~ Q\K

Since x € C§°(2\ K) was arbitrarily chosen, by a well-known theorem it
follows that 0% = 0 almost everywhere on 2\ K. |

In the next lemma we will see that the notation |- | 4.0 from above is
advisable since it shows that |- | 4,0 1S & seminorm.

Lemma A.13 Let g € (0,1). Then |-|, o is a seminorm in H?(S2).

Proof: Let ¢, € H1(2) and A € C be arbitrary. Then it is easy to
see that [p| o > 0 and that [Ap|, o = [A|[p], o To show the triangle
inequality, we set

r)— Py
bo) = DDA, )0
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and define ¥ : Q x Q — C analogously. Then ®, ¥ € L?(Q x ) and we
obtain

2 1/2
w+wuﬂ=<éljwm”+“”)(””+¢@»|@¢Q

o — gl

=[|® + ¥[[z2axq) < | Pllz2(ax) + [[¥]z2(2x) = [¢l,0 + ¥,
as desired. O

Mollifiers. A main tool when working in Sobolev spaces are mollifiers.
One possibility to construct them is to take ¥ € C5°(RY) defined by

~(SC) _ exp(—l/(l— |(E|2)), xEBd(Oal)v
A0, z € R4\ By(0, 1),
and to consider modifications y and y. of ¥ as follows

1 - d

x(z) = mx(m) and  xc(7):=¢" X(gl’)7

for z € R4 and € > 0. Then 0 < x. € C°(R?), x-(z) > 0 if and only if
2| <&, xe =0 on R\ By(0,¢) and | xc||p1 ey = 1. For ¢ € L*(Q) we
extend ¢ by zero to R? and set

nwerwMﬂgxwwwdyAwmﬁgawza@

= / Xe(2)p(z + 2) dz, for z € R%.
Bd(O,E)

Then T € C(RY),
suppT-¢ C supp ¢ + Bg[0, €], (A7)
||T590||L2(Q) < HTEQOHLZ(JRd) < ||XsHL1(Rd)||<PHL2(Rd) = ||80||L2(Q) (A.8)

and
T.o — ¢ in L*(Q), ase—0.

For ¢ € L?(§) with variational derivative 9%y € L%(Q), for some o € N¢,
there also holds

0T =T. 0% — 0% in L*(Q), ase— 0. (A.9)
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Multiplication Operators. As a first application of the mollifiers, we
now introduce multiplication operators with respect to differentiable and
bounded functions. We start with an important consequence from the
mean value theorem given in form of the following lemma.

Lemma A.14 Let x € C}H(R?). Then there exists a constant C > 0 such
that

.
Ix(#) — x| <C | y|> z,y € R

T It r—y
The constant C' can be chosen as C' = 2 ||X||C;(Rd) max {2, Vd}.

Proof: Let x € C}(RY). If [x — y| > 1 then

|z — y] 1
— <2 =2 1
Ix(x) = x(y)| < HXHC,}(Rd) HXHC,}(Rd) [ + iz — ]

And if |z — y| <1 then 1 < 2/(1+ |z — y|) and the mean value theorem
yields

|z -y

Ix(7) — x(y)| < \/‘EHX”Cg(Rd) |z —y| < 2\/g”X||Cg(]Rd) mv

where we used the fact that ||0x(z)|]? = 22:1 |a%kx(x)’2 <d ”X”ég(Rd)'
Now the assertion follows immediately. O

Theorem A.15 Let Q C R? be open and let s € R with s > 0. Further-
more, let x € Cbm (RY) and ¢ € H*(Q). Then x ¢ € H*(Q) and there
holds Leibniz’ product rule

*(xp) = (5) 0 x %,  aeNg with|a| < |[s).
BLla

Moreover, there exists a constant C > 0, not depending on x and ¢, such
that

Ix el e @) < C||X||Cbm (R) ol s () -
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Proof: Since x is bounded, there holds x ¢ € L%(9). Let a € Ng with
la| < |s]|. Furthermore, let 8 € Nd with 8 < a. By (A.9) we have

Tep =@, °T.o=T.0% — 3%  in L*(Q), ase — 0,
and, since x and its derivatives are bounded, in particular
xTep = x @, 0°Px0PTop — 0 Px 9P in L?(Q), as ¢ — 0.
Let § € C&°(€). Then

/Qx(:r) o(z) 0%0(z)dz = lim [ x(z) Top(x) 0“0(x) dx

e—=0 Jo
= (=1/* 1im a(szso)(x)(?(w)dx

D)l lim 80‘ Px(x) 0P T () O(z) da
e—0 Q6<a

:(_1)la\/Q S (2)0°Px(2) () | 6() de.

B<a

Hence, there exists 9%(y ) € L*(2) and is given by the Leibniz product
rule. Moreover, we have shown that x ¢ € HL31(Q).

Now, let s = m + ¢ with m € Ny and ¢ € (0,1). And again, let a € N¢
with |a| < m and 8 € N¢ with 8 < . Then

||3a75X36S0||%2(Q) < HXHQCbrﬂ(Rd)||36<PH%2(Q) < HX”ébrsw (R4) ||<P||§15(Q)-

Note that by Fubini’s theorem and by Lemma A.14 there holds

a—f3 ) — a—f3 2

o — g1

1
< 2 Fo(y)|?
= 4||X||Cbm (RY) max{4,d}/ﬂ 1070 (y)] (/Rd (14 |2])?]z|¢+2a—2 dz) dy

=:C1 <

< 4max{4, d} Cl ||X||20b(ﬂ (R4) HQOHiI*(Q)’
and thus we continue with

‘804 ﬁxaﬁ(p‘qﬂ //

9 Px(x 6%() P o(y)]
—y|dt2a
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8 () [0°x(x) — 0°Px(v)]|
|z — y| 42

dy dx

<2 ||XHCr 1(Re) |07 W‘qg + 8max{4,d} Cy ||XHCr 1(Re) Il (q)

< Ca I gy I s

where Cy := 2 + 8max{4,d} C;. Consequently, by applying Leibniz’
product rule, the triangle inequality and the results above, we obtain

Ixelde@ = D 1o+ > 10°9)2q

lal<[s] la|<[s]
<(1+0) 3 | S Gl |
la|<[s] \B<La

and from this we see immediately that also the last assertion from the
theorem holds. O

Denseness Results. Now, we will derive an important denseness result
for the space H*(f2). The following lemmas have preliminary character.
Lemma A.16 Let Q C R¢ be open.

(i) If O C Q is open and bounded, then there exists a constant C' > 0
such that

el o s dvde < Clilo

for all ¢ € Cy(2) U L2(Q).
(ii) Let q € (0,1). If ) # K C Q is compact and O C ) is open such
that K C O, then there exists a constant C > 0 such that

1
—dz < C, re K.
/—x+Q\O |z]4+24
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Proof: (i). Since O is compact, there exists 7o := max {|z| | z € O} < occ.
Hence,

1
[, e vt = [ ([ | ) a
/\80 / e ) Ay,
Ba(0,2r0) 1291247

=:C

(ii). Set ro := dist(K,R%\ O). Then ry > 0. Note that —K + Q\ O C
R9\ B,4(0,70), because: if z € —K +Q\ O then z = —2 +y with z € K
and y € Q\ O, meaning that |z| =| — x4+ y| > ro. Let € K. Then,

1 1
0< / ——dz < / —dz
_etono0 |2[4T2 _Kkto\0 21T

1
< / ———dz =:C < o0,
RA\B4(0,r0) |2]972

as asserted. O

Lemma A.17 Let Q C R? be open and let s € R with s > 0. Then

cll@) c H: ().

Proof: For s = m € Ny, the assertion is clear. So, let s = m + ¢
with m € Ny and ¢ € (0,1). Let x € CJ""(2). We know already that
X € H™(Q). Extend x to R%\ Q by zero and set K := suppy. Let
a € Nd with |a] < m. Then 0%y € C}(R?Y) and therefore there exist
C o = max,cpa [0x(2)] < 00 and Cy o = max, cpa [|[0(0%X)(2)] < o0.
In particular, by the mean value theorem,

0% (z) — 0°Xx(y)] < Caalz—yl,  x,y€R™

Moreover, there exists an open and bounded set O C R? such that K C
O C Q. Consequently,

a2 |0%x () — 0“x(y)|?
10%Xlg.0 —/Q/Q |z — y[d+2a dydz
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|0°x(z) — 0% / / |0 x(
= dydm—i— dy dx
/o/n |z — |d+2q oo Ji [T — \d+2q
%X (@) — X () [ [l
= d d 2 dyd
N e " e Jao by |d+2q !
1 1
SCQQ//idydx+202a// S
2% Jo Jo o — y|d+2a=2 M ke Jano | —yldt2a

Using Fubini’s theorem and the substitution z = y — x we obtain

1 1
————dydx z/ / dz | d.
/K/Q\O |z — y|dt+2a K ( _erao 242

Using this identity in the last estimate and applying Lemma A.16, the
proof is complete. O

Lemma A.18 Let Q C R? pe open and let s € R with s > 0. Furthermore,
let ¢ € H3(Y). Then there exists g > 0 such that {T.p | e € (0,£9)} is
dense in H3(Q). In particular, C3° () is dense in HZ(1).

Proof: Let p € H2(). Set gq := dist(supp ¢, R\ Q). Then gy > 0, and
for e € (0,e0) by (A.7) we have T.p € C§°(€2), and thus by Lemma A.17
also Tro € H2(2). Let a € N¢ with |a| < [s]. Then by (A.9),

0°T.o — 0% in L*(Q), ase—0,
yielding that [|T.¢ — ¢/ 1)) converges to zero, as ¢ — 0. Thus, it
remains to consider the case s = m + ¢, with m € Ny and ¢ € (0,1), and

to show that |0*T.¢ — 6%0\(1 o converges to zero, as € — 0, with a from
above. To this end, we observe, with B := B4(0,¢),

(0T o(x )—8“ () — (0°Tep(y) — 0%0(y))|*
- ‘ / Xe(z ol +2)—0%(y + z)) — ((“)‘Xgp(x) — (’“)O‘gp(y))}dz‘2

(/Bxe< (@ p(a+2) - () — (0 ele) —0°p(0)| dz)
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< /B X=(2)] (9%(x + 2) — 0%(y + 2)) — (0%p(x) — D (y)) |7 dz - 1.

=:f(2,y,2)

Hence,

9T — 0° / /
0°Te0 — 0%pl2 A

2
_0"Tep(y) — 0%(y)
| — y|dt2a

2
|f(z,y,2)]
< Xe (2 / - d(z,y) dz
/Bdm,a) ) axq |z —yldt2a (z-9)

2
| f(z,y,2)|

< 1-sup/ e d(z,y)

zj<e Jaxa |z —yldt2

. |(0%p(z+2) — 0%p(y+2)) — (0%p(z) — 0%p(y)) ‘2
= sup /Q

|z — y|@+2d

0T p(x) — 0%p(x)
T

dy dx

d(z,y).

|z|<e X
By assumption, Q x Q 3 (z,9) — |0%0(x) — 0%p(y)|/|z — y|[PT%/? belongs
to L2(Q x Q) and is therefore mean continuous (see the second condition
in Remark A.19). This means, that we can make the last expression in
the last estimate as small as we like. Thus, we have shown the first part
of the lemma.

Since {T.¢ | £ € (0,£0)} C C§°(€2), also the second part of the lemma is
true. |

The next statement was used in the proof of the last lemma and is also
known as the Kolmogorov-Riesz compactness principle, see for instance
[53, page 4].

Remark A.19 Let M be a subset of LP(Q2), 1 < p < oco. M is relatively
compact if and only if the following three conditions are satisfied:

(i) M is bounded in LP(2), i.e., supy,epr |l@llLr (@) < 00.

(i) limp—o [q, lo(x + h) — ()P dz = 0 holds uniformly for o € M.
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(7i1) lim, oo f{|m|>r}ﬁQ |o(2)|P dz = 0 holds uniformly for ¢ € M.
For a proof we refer to [53] and references therein.

Theorem A.20 Let Q C R? be open and let s € R with s > 0. Then
C>(Q)N H*(Q) is dense in H*(Q).

Proof: Set Q, = {z € Q| |z| < n, dist(z,0Q) > 1/n} for n € N. Then
(2,, is open and bounded, and Q,, C Q,, C Q,41 C Q for all n € N. Note
that Uy~ @ = Q and Q = U,y Q1 \ Qne1, where Qo := Q4 := 0.
There exist functions 0 < x,, € C§°(2) such that supp xn € Qpi1 \ Qn1
and Y07 xn(z) =1 forall z € Q.

Let ¢ € H?(2) and € > 0. Note that x, ¢ € H:(2), see Theorem A.15.
Then, thanks to Lemma A.18, for all n € N there exists d,, > 0 such that
Ts,,(Xn ¢) =t O € C5°(Q), supp 0,  supp(xn ) +Bal0, 0n] € Qy1\Qn—1
and [|6, — xn ¢l ms(0) < 27"e. Define 6(x) := 3", 0,(x) for all z € Q.
Since any B,4[0,7] C € intersects only finitely many of the sets Q, 11\ Q,_1,
we obtain 6 € C*°(Q2), because the sum is finite on each Bg4[0, r].

Since [|0n, — xn @z () < 27" and H*(Q) is a Banach space, there exists
Y € H*(Q) such that v = > 07 (6, — xn¢). Let x € C5°(R2). Set
K :=suppy and N :=max {n € N| KN (Qy41\ Q1) # 0}. Then for
n > N there holds 6 — ¢ = Y7, (0r — xi ) almost everywhere on K.
Consequently,

/Q[zb—(@—so)]xd:v= lim - [Z(Qk_XkQP)_(e_SD)] xda

n—oo
k=1
n n
= lim lz Ok — Xk ) — ZakaSD]XdIov
N<n K [p—1 1

i.e., v = 0 — ¢ almost everywhere on Q. Hence, § =0 — o + ¢ € H*(Q)
and |0 — ¢l =) < 3207 100 — Xn llme=(0) < e O

Transformation Theorem. Our next goal is to give a simplified version
of the transformation theorem which is tailor-made for many situations in
applications. We start with a lemma which ensures the application of the
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mean value theorem also for the case where the subset under consideration
is not convex.

Lemma A.21 Let Q C R? be open and let O C RY be open and bounded
such that O C Q. Then the following statements are true.

(i) For all x € C*(Q) there exists a constant C > 0 such that

Ix(z) = x(y)| < Clz -y, z,y€0.

(ii) For any open set ' C R? and any ¢ € Diff' (Q, Q) there exist
constants C,C" > 0 such that, with O' := ((O) and 2’ = ((x),
z €0,

l2" —y'| < Cle—yl and |z—y| <C'[z" -y,

for allz,y € O and all 2',y' € O'.

Proof: (i). For 2,y € R? we set [z,y] := {z+&(y—2) | € € [0,1]}. Since
O is compact, we find some open and bounded set O; C R¢ such that
O C Oy and O; C Q. Set § := dist (O,R%\ Oy). Then § > 0. Choose
some ¢ € (0,68). Thus, for z,y € O with |z — y| < &, we have [z,y] C O,
and therefore

Ix(z) = x(y)| < max [ox(=) |||z = yl-

And if 2,y € O such that |z —y| > ¢, then
2
Ix(z) = x(y)| < 2max |x(z)| < - max |x(z)[|lz —yl.
z€0 € 2€0

Choosing C := max { max_ - [|0x(2) |, 2/e max_ 5 |x(2)|}, the first part
is finished.

(7). The proof follows exactly the proof from the first part. For the second
estimate we note that |z — y| = [(71(2/) — (71(y)], for 2,y € O’, and
that O’ = ¢(O) C ' is compact. O

The next formula for the chain rule in higher dimensions is convenient and
meets our requirements.
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Proposition A.22 Let O,0" C R? be open and let m € N. Suppose
¢eC™0,0") and ¢ € C™(0O"). Then for all a € N¢ with |a| <m

*(poQ)(@) = Y pap(@) ((0%) 0 )(x), w€O,
161<lal

where pog : O — R is a polynomial of degree less or equal to |B] in the
derivatives up to order |a| of the components of (. To be more precisely,
the summands of pag(x) are of the form

(@G aw) - (00 ata) 07

(d,Bq)

Gal@)),

where ¢ € Ny, 1) € N¢ with |y*9)| < |a| and the k-th factor in the
expression above is equal to one if B, = 0.

Proof: We show the statement by induction. For |«| = 0, the equation is
trivially satisfied with pgo = 1. Now, suppose the formula holds for some
o € N¢ with 0 < |a| < m. Choose i € {1,...,d} and denote by e the
i-th unit coordinate vector in R¢. Then

gocke® lpod] = ae(“{aa[gao ) = oe? Z Pags - ([0°¢] 0 €)

1BI<]al
_ Z {[36(1)}%[5] . ([3690] ° C) +paﬁz ([aﬁ+e(])g0] OC) aeij}-
1BI< ]| j=1

From the last line, we already see that in the expression on the right hand
side of the plus sign there appear only pag 86(1)@, meaning that the

summands of the old polynomial p,g are only multiplied by 36(1)@, and
hence, these products contribute already summands of the new polynomial
in the form as asserted. For the expression on the left hand side of the
plus sign, we proceed with an extra step to recognize the spe(nal form also
for these contributions. In fact, for the summands in ae" pag we have

j=1 k=1

) < (s k) d (%) & (3.k) d d (t,p)
AT =3 for | T | T (1)
e 2
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Sle i i

=1 k=1 n=1 1=1 \p=
nk i)
d b (R o) G d B
“exy (e Tlo ) (M)
=1 k=1 n=1 =1 p=1
n#k I#j

from which we see that also the summands of the new polynomial, generated
by the derivatives of the summands of the old polynomial, are of the
asserted form. And finally, ¢ € Ny results from the consideration, that
during the process of generating the summands of the new polynomial, as
described above, it may happen that some of those are equal. O

We define the pullback operators *¢ and (*¢)~! in the next transformation
theorem by continuous extension, thanks to Corollary A.7.

Theorem A.23 Let Q. C R? be open, s € R with s > 0 and let
e ]}ﬁlsHl(Q, Q). Furthermore, let O C RY be open and bounded such
that O C Q, and set O’ := ((O). Then the mapping

(C(O)NH(O), |- -0 3 ¢+ @0 ¢ € HY(O)

is well-defined, linear and bounded. Its continuous extension to H*(0'),
denoted by *C, belongs to the space Lis(H*(0'), H*(O)). The inverse
(*¢)~t: H*(O) — H*(O') is the continuous extension of

(C=(O)NH*(O), || - [ms(0y) 2% = o™t e HY(O')
to H*(O).
Proof: Note, by Theorem A.20 the subspace C*°(0O’) N H*(O’) and
C*>*(0) N H*(0) is dense in H*(0O') and H*(O), respectively. Further-

more,
prrpolrpolol =9 and Yot Yool =1,

for ¢ € C*(O'YNH*(0O') and ¢ € C*°(0O) N H*(0). Therefore, thanks to
Corollary A.7, we only have to show, that the mappings from the theorem,
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defined on the dense subset, are indeed well-defined, linear and bounded.
And since both of them play the same role, it sufficies to consider only one
of them, say the first one.
Without loss of generality, we assume s = m + ¢ with m € Ny and
€ (0,1), as the case s = m € Ny is a special case from the following
explanation. We start by choosing some x € C§°(2) with x|5 = 1. Now,
let ¢ € C>(0') N H*(O'). Furthermore, let a € N¢ with |a| < m. Then,
by Proposition A.22,

QDOC Z Pap - C)

1BI<lal

Let 8 € N¢ with |3] < |a|. Note that p,sx € C3(Q) and by extension
by zero to R? we have pagx € C(R?). Set C¢ := || det d(¢™Y)||¢, 0y and
Cp = maX{prHcg(o) | |&] < |yl Iyl < m}. By the transformation
theorem for Lebesgue integrable functions we have

1167 OCHZ ) < G107 ¢z o)

19%e] o c], o<Cd+2qCC 0%¢ly00

where we also applied part (%) from Lemma A.21 in the second estimate and
where C denotes the corresponding constant therein. Hence, [0%¢] o ¢ €
H4(0) and by Theorem A.15 we obtain pagx ([0%¢] 0 () € H(O) as well
and moreover
2 2 2
Hpaﬂ([aﬁg0]0<> HLQ(O) —+ |pa5([aﬂ90] o C) ‘q,O = HpaﬂX ([aﬂw] ° C) HH‘I(O)

< 3G 19°¢) o 1000,

2 2
<G50 Ce (Haﬂ‘PHLQ(o') +C1 G |8ﬁ¢|q,0’)
< C3C2C(1+ 070 C) Nl o),

:ZC3

where Co denotes the corresponding constant from Theorem A.15. With
the triangle inequality for the L?-norm and the seminorm we conclude
that

0% 2 Ol 720y + 1002 )
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<( 1) Y (las@d 0 Q320 + Ipas (97610 O )

1BI<|al — [BI<]e]

< C3 C el s (o)

where we have set Cy := Z‘ gl<m 1- From this we get finally the estimate
100 €l 0y < Cs €2 l@27e (o) as desired. 0
(0) (07

Corollary A.24 Let 9,9 C R? be open, s € R with s > 0 and let
¢ € DiffITY(Q, ). Furthermore, let K C Q be compact and let O C RY
be open and bounded such that K C O and O C Q. Set K' := ((K) and
O’ :=((0). Finally, let *¢ € Lis (HS(O’),HS(O)) be the pullback operator
from Theorem A.23. Then

*<|H;‘(,(O’) € Lis (Hf(/ (0", H;((O))

Proof: It sufficies to show that ¢ € H,(O') implies supp(*¢ ¢) C K. For
this let ¢ € Hj,(O'). By definition, *( ¢ = lim, 00 ¢n © ¢, where the
limit is taken with respect to || - || s (o), for some sequence (¢, )nen in
C>(0") N H?(O') converging to ¢ with respect to || - || g=(or). Take any
X € C§ (O \ K) and set 2’ := ((z) for x € O. Then

/ (Co) () x(@)dz = lim [ (@) x(@) de
O\K

n—00 O\K

= Iim on(2') x (¢ (")) [det O(¢ 1) (2))] da’

n—o00 O\K'
- / o) x (¢ (@) |det D¢ ()] da’ =0,
ONK'

as supp ¢ C K’. This shows that *C ¢ is zero almost everywhere on O \ K,
as desired. |

Auxiliary mappings. Let ' C Q C R? and both be open. For ¢ € L?(1)
recall its restriction p|o: and for ¢ € L2(£)) its extension (by zero) |
from Section 1.3. Now, we would like to introduce restriction and extension
(by zero) operators for the space H*(2) and Hj,(§)'), respectively.
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Lemma A.25 Let ¥ C Q C R¢ and both be open. Moreover, let s € R
with s > 0 and o € Nd with |a| < |s]. Then

(i) ¢ € H*(Q) = 30%(¢lar) = (0°¢)
(ii) K C Q' compact, ¢ € H5 () = F0%(p|}) = (0%)|§ € L?().

o € LA(€Y),

Proof: (i). Let ¢ € H*(). Clearly, (0%¢)|o € L?*(€Y'). Take any
X € C§°(R). Of course, x|} € C§°(2) and supp x|} C €. Hence,

/ ploy 0%x do = / P 0°x[§ da = (=1) / (0%¢) x[g dz
% Q Q

= (_1)‘04 /Q/ (8a<p)|9/ x dz.
(7). Let ¢ € Hj. (). By Proposition A.12, the support of 0%p is
contained in K. Since 0%p € L?(Q), of course (0%¢)|§} € L*(Q). Take
some x € C§°(2). Choose n € C5°(Y') such that n = 1 in a neighborhood
of K. By extension by zero, we can consider n € C5°(§2) as well. Then

x = nx + (1 —n)x with suppnx C Q" and supp(1 —n)x C K¢. Therefore,
by considering also nx € C§°(§'),

/Q o2 0%y da = /Q |9 0% (nx) da + /Q o207 ((1 — n)x) da

:/ soaa(nx)dx+/ ol§ 0*((1—n)x) dz
«Q K —

=0

=0 [ oretmde+ (-0 [ 0 (1= ds
% O\K
=0l [ eraimdes [ @R (- )
= 0 ( [ @+ [ @I (1= nx) o)
= (1)l [ (@l

This completes the proof. O
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Theorem A.26 Let Q' C Q C R? and both be open. Moreover, let s € R
with s > 0. Then the following assertions are true.

(i) The restriction operator H°(Q) 3 ¢ — ¢|q € H*(Y) is well-defined,
linear and bounded, i.e.,

lelarllmzs @y < llells@)s € H* ().

(ii) Let in addition Q be bounded and K C Q' be compact. Then the
extension operator H3- () > ¢ w |} € H3(Q) is well-defined,
linear and bounded, i.e.,

lelo N0y < cllellae@y, @ € Hi ().

The constant ¢ only depends on K, ', Q and s.

Proof: At first we assume that s = m + ¢ with m € N and ¢ € (0,1).
(7). The assertion for the restriction operator is obviously true.

(it). In the following considerations, co > 0 denotes the constant from the
second part of Lemma A.16. Let ¢ € H (). Take some a € N with
|a] = m. Note that also supp 0%¢ C K, see Proposition A.12. Then

s
yar = ydx
Q' Jo\ |~T—y|d+2q Q\Q |z — y|d+2a

< |\ Haa(pHLZ(Q’

Hence, thanks to Lemma A.25,

- |0°(p|2) () — (D) (v)]”
0% (5| qQ // |x— |d+2q dydz

(0% ?
//| |0x_ |(d+2q)0(3/)| dy d

8% |0°p(a) — 0%p(y)|”
2/ / ‘ dy dz +/ / dy dx
Q" Jo\ |z — y|d+2q Q Jor |ff — yldt2a

<26 |Q\ Haa@Hw(Q/) + |aa¢|qvﬂ’ :




314 A. Elementary Results from Calculus and Functional Analysis

Therefore, again with the help of the two lemmas,

lel&N7s ) = lel6 17200y + Z 10 (Ll 132 + Z ESCHI

le]= o=

gnwﬁﬂw>+(r+maM\ﬂﬁ)§j|m%w§mq+ > 10l

lae|=m lee|=m

Thus, the extension operator is well-defined. Its linearity is clear and its
boundedness follows immediately from the last estimate.
Finally, the remaining cases for s are similarly treated, but easier. O

A Useful “Continuity” Result. We conclude this subsection with a “con-
tinuity” result concerning the seminorm, as stated in the following lemma.
This result is needed later, when we show norm equivalences in periodic
Sobolev spaces. Nevertheless, we outsource the corresponding step from
there already here in form of this lemma, since the result may also be seen
in a general context and its proof contains some useful ideas. The ideas
were taken over from [53, page 63].

Lemma A.27 Let Q CR? be open, q € (0,1) and let @, ¢, € L?(Q) for
allm € N, such that @, — ¢ in L*(Q), as n — oo. Moreover, suppose that
(|<pn\z,9 )nEN is a Cauchy sequence. Then

2 2 2
q <00 and lonl2 o — el o, asn— oo.
4 a a;

Proof: By the Theorem of Riesz-Fischer, there exists a subsequence
(¢n,, )ken, converging pointwise to ¢ almost everywhere in 2. Hence,

[P (@) = P W1, o(2) — 9 (y)]?

|:C*y|d+2q |f177y|d+2q ) as k—>oo7

for almost all (z,y) € Q x Q. Since (|<,0n|3Q )neN is a Cauchy sequence, it
is in particular bounded, say by 0 < M < oo, and together with Fatou’s

lemma
9 lo(z) — o(y)?
— AR Z PN 4y
= [, o — gz W
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- 2
< lim inf/ / [Pns () f:; () dydz < M.
k—o0 Q |z — y|d+2a

Moreover,

Iwnk —en WP o) = o(y)?
yld”q |z — y|*H2a

— 0, as k — oo,

for almost all (z,y) € Q x Q. Applying now a corollary of Fatou’s lemma,
see for instance [6, Korollar 3. 8] yields

2 . 2
[Pne () —@n WI° Jo(2) — @(y)] dydz
Ix—yld“q v — y|dt2a

— oW le(@) — o)

— gl o — gl

0 < limsup

k—o0

< limsup//
k— o0

2 . . .
Because ( |on] 0.0 )n oy IS a Cauchy sequence in R, it is convergent. There-

(%)

dydx <0.

2 . o
fore, also (|¢n,| 2.0 )k cn 18 convergent and converges to the same limit.
Hence, there exists

lim ||on, 26 = 1017 0| = | Jim on,l2q — Il
| Pny g0 7.9 S [P lg.0 .|

Since in the case of convergence the limit and the limit superior coincide,
we obtain from the last identity, together with (*) and the remark from
above about the limit of subsequences, indeed the convergence result from
the lemma. O

A.5.2. Results for Biperiodic Sobolev Spaces

In this subsection we will transfer the results for Sobolev-Slobodeckii spaces
from above to the biperiodic setting. For this purpose, let throughout this
subsection the rectangle Q@ C R? be given by

Q= (=L, L1) x (—Lo, La),

where L; > 0 are some real numbers, j = 1,2, and recall the notion of
periodic functions (with respect to @) from the corresponding paragraph
in Section 1.3.
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Clearly, with C7*(Q) from the last subsection there holds C7:.(Q) €
Ci(Q), i.e., we can also equip CJ;,(Q) with the norm || - | cm(Q)-

As in (2.7) (see also (1.14)) we define

¢ = g — pam/ Ly 2
=4y <M2W/L2 ) JSy/A

Now, we want to introduce Sobolev-Slobodeckii spaces based on periodic
functions and investigate their relation to H;,,(Q) from Definition 2.7. To
this end, the space H, (@) from Definition 2.14 turns out to be the correct
starting point, similarly as its analog H™(Q2) in the last subsection. For
ease of notation, we introduce for ¢ € (0, 1) and for suitable ¢, € L?(Q)

the quantities

- / ) (GO NN

2q+2
51n ﬂ(tl Tl) + |sin m(t2—72)
2L,

|SO q,per = <<)07 30>q7per'

As we will see in Lemma A.33, such suitable o, € L?(Q) are for instance
the trigonometric monomials.

Definition A.28 For s =m + q with m € Ny and q € (0,1) we define

Hper(@) = {0 € Uy (@) | Vo € NG with |a < m: |05, < o0}

and endow this space with the inner product

(@] V)@ = @ Vg @+ Y (0°0,0), per -

la]<m

Here, the space H]. (Q) was defined in Definition 2.14. For s € R with
s > 0 we choose in "Hf)er(Q) the norm || - ||Hf)er(Q) = /(] ')H‘Ser(Q)'

Again, the choice of the symbol |-[ .

lemma shows that || g,per 1S & seminorm.

is advisable since the following
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Lemma A.29 Let g € (0,1). Then |- | is a seminorm in Hi,.(Q).

q,per
Proof: The proof is a repetition of the proof of Lemma A.13. So, let
0,9 € H,(Q) and A € C be arbitrary. Then it is easy to see that
|l per = 0 and that [Ap| = [Al ], per- To show the triangle inequality,

= q,per
we set

(I)(t, 7_) — (p(t) — 90(7)

(t,7) €QxQ,
('sin mltizm)
2L,

)"

and define ¥ : Q x Q — C analogously. Then ®, ¥ € L?(Q x Q) and we
obtain

. ‘IT(tz*TQ)
+ ’sm 3L,

1/2
2
Y(t)) — (p(r) + (1)
0+ Yl per = / / it z)q|+2 drdt
Sln tl ‘l'1 +‘ Tr(t;L;TQ) )
=@+ ¥l L2 (@) < ||‘I’||L2(QxQ) + 1]l L2(0x @)
= |80|q7per + ‘Qp‘q,per b
as desired. 0O

Correlation between 7], (Q) and Hy,(Q). From Theorem 2.20 we
know already that for the special case s = m € Ng we have H3, (Q) =
H;er(Q). In the following presentation we will derive that this equality
even holds for all s € R with s > 0. For this, we follow [36]. However,
we have to overcome some effort when transfering the results therein to
the two dimensional case. We proceed in several steps. The next lemmas
are of particular importance to get a grip on the fractional part of the
Sobolev-Slobodeckii norm for the periodic case.

Lemma A.30 (i) Vte@: %|t| < |sin Z2 ’ + | sin 7= ’ < Zlt.

(i) Let K C @ be compact. Then there exist constants ¢1,c2 > 0 such
that

cl|t—7-|§|sin%ﬁ|+‘sin%ﬁz)|§cﬂt—ﬂ, t,T€K.
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Proof: (i). Weuse 2[¢| < |sin&| < [¢] for £ € Rand |¢] < 7/2 to estimate
fort € Q

LIt < 2 (Ital + [tal) < |sin F74] + [ sin §72 | < g7 (Jta] + [t2]) < Ft).
(i7). For g € (0,1) we observe that %m <|sing| < [¢] for £ € R and
|€] < om. Since K C @ is compact, there exists g; € (0,1) such that for all
t,7 € K there holds |7T(t =T | < g;m, i = 1,2. Now, with the observation
from the beginning, the assertion follows s1m11arly as in part (7). The

sin(o;m) D

constants can be chosen as ¢; = % min;—p o 0 and ¢y =

\Nﬂ

Lemma A.31 Let g € (0,1). Then there exist constants ¢g > 0 and
c1 > 0 such that

Sil’l2 q(“)~7'
coluf™ < /Q |r(2q+22) dr <ei|uf?,  pez?

where Q' := [—L1, L1] x [0, La].
Proof: We note that the existence of the integral follows in particular
from the second inequality. Furthermore, the inequalities

2lel < |sing| < ¢,  EER, f¢<m/2

will be helpful. Clearly, the assertion of the lemma holds if u = 0. So, let’s
assume p € Z2\ {0}. We start with the observation

. 271 g
= |¢) |2 / s (ilg(‘”\ 9) do
B N T

and proceed to derive bounds for the last integral. For this, on the one
hand we estimate

2 (lﬂ. 112

S5 g0 ‘7) / Tlo| 1

SR TIC2I AP a0 g, / 4
/q(u)|Q/ |U|2qJr2 B2 (0,7) |0‘2q+2 R2\B (0,7) ‘o—|2q+2
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O | < 1
éi/o 77“2(1_1d7“—|—277/7r 7r2q+1dr

20 q Jr7r(1>2‘1 550
= —( = =:C
2 2-2¢ ¢\« L

which yields with ¢; := & (7/L)%® the second inequality. On the other
hand

(1)

2 (1 g% 2
Si (2|q<m\ .U)d S Si (2\ W] U)d
o] 2+2 7=/ o] 2a+2 o
|q(#)‘Q’ = Q’
1 q(u) ]
>i/ 4 |‘1(“)‘ 0-‘ dO’
= 2 2q+2
s ) g
4fQ | |
Now, we set F(f f 20 |[|ft‘2”q+2 do, for £ € S*. We observe that F is

continuous and that F(¢ ( ) > 0 for all £ € S'. Since S! is compact, there
exists & = minjcq: F() > 0. Finally, setting co := (¢p/72)(7/L)? yields
the first inequality and completes the proof. O

Lemma A.32 Let g € (0,1). Define

(H),t
sin® (45—
%::8/ (57) s dt,  pelZ?
Q (| sin ’Tfl ‘ + |51n ;F D
where Q' := [—Ly, L1] x [0, La]. Then ~y, is well-defined and there exist

constants Coy, C1 > 0 such that
Colpl*? < < Cilu*,  peZ’
Proof: The assertion follows from Lemma A.31 together with part (7)

from Lemma A.30. The constants can be chosen as Cp = 8 CO(%)QHQ and

Ci=8c1 qu+2, both greater than zero. O
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Lemma A.33 Let g € (0,1) and v, be the number from Lemma A.32.
Then

7Tt1 ’ ‘
sin + | sin 2L,

/ 1— e:l:lq<“)-t 1
= t-
Q (| . Tty |)2q+2

sl +
Sin + | sin 2Ly

sin2 (£211)
’Yll _S/Q, (‘ 2 o ’>2q+2 dt

Moreover
<Tg>,Tg>> = b v €T

q,per

Here Q' := [—L1, L1] x [0, Ly] and 6, denotes the Kronecker delta.

Proof: For convenience, we introduce f : R? — R given by

flo):= ‘sin LAY | + ’sm Io2 o= (o1, O'2)T € R?,

2L5

and observe that f is an even and periodic function. Let pu,v € Z2. First
of all there holds, with @ := [0, L1] x [0, La], Q2 := [—L1,0] x [0, Ls] and
the substitution ¢ = —7,

o) ) o)
1—eia)r 1—eia)r 1—eld”o
7d7'=/ 7d7+/ ———do

2q+2 2q+2 2q+2
/Q )] . [f(T)] ! . [f(ff)] !
+ / Lo s / -
2 Tz 47 2 = d
: [f()]™ Qs [f !
_ (v) . (v) .
:/ 2 — 2 cos( gq+2 d7'+/ 2— 2cos 2q+2 T) dr
1 [f(T)] Q2
)
4 sin® (L=
= / ( 2q2+2 ) dr
()]
Thus, together with the definition of 7, and the calculation

1— e_iq(V).T 1— eiq(U)‘(_T) 1— eiq(V).t
- dr= | ——————dr= | ——dt,
/Q [f(r)] >+ /Q [f(=m)] /Q [F)])>
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we have shown the first two identities from the lemma. Now, we observe
that

7870 -1 ] [157 () = 73]

1 i(a) — gy, i(g™) —g()y. () (1) g,
(emq 4"t 4 Qi@ —g")r _ Gi(qWt—q™7) _ ie® g t)).

el

Moreover, by interchanging the integration order, using that f is even and
interchanging finally the role of ¢t and 7, we easily check the equation

i(q) —q).t Qg =)
/ / 2q+2 drdt = / / 2q+2 drdt

and

/ / 1(q(*> t—q™).7) b / / ei(q(ﬂ)ﬁr_q(v}.t) d
t= —— 5 drdt.
2q+2 0Jo [f(t . T)} 2q+2

Therefore, we conclude that

(u) ( ) l(q(u),q Yt ( ) g—q®).7)
T o’ / / dr dt.
< Q Q qper \Q| 7_)]2(1—~-2

Now, we calculate

/ ei( ) g—q®).7) b eiq(u).t/ e,iq('/)..r "
@ [ft—7"" @ [f(t—m)]""
ig) .o

Cw i) -(o—1) i w iq
= elq( )'t/ &£ 5472 do = e‘(q( )—q( ))'75/ e 5073 do
-Q [f(0)] -Q [f(0)]
—igW . (—
_ (@™ gt / e (2q :2 do
t-Q [f(~0)]
i)y

—ig™.r i
B i(qm,q(u)).t/ e 1 dr — i(q(m,q(u)),t/ e 4
=¢€ 2qr2 47 = ¢€ 2q+2 97
—t+Q [f(7)]™ Q [f(m)]™
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where we have applied in the second equality the substitution ¢ =t — 7,
in the fifth equality the substitution 7 = —¢ and in the last equality the
periodicity of the integrand. Hence,

o)
2 () () 1—e™ 7

W T\ / oi(a#) =) / ar | dt
< Q Q@ >q,per Q| Q Q [f(T)]QQ+2

, 1— e_iq(V).T
o

which is the last identity from the lemma. 0

Lemma A.34 Let q € (0,1) and ¢ € HZ.,(Q). Then

HEZ?

with vy, from Lemma A.32 and where o denote the Fourier coefficients
of .

Proof: Again, for convenience, we introduce f : R? — R given by
f(o) == |sin 72 | + |sin 322 o= (01,00)" €R?,
and observe that f is an even and periodic function. Moreover, we need

(1) .5

ig(H). ig(H). —i .
1—e" 7P =1-e9"741-e"7  pecZ’ ocecR%.

p(t) — o(1)]?
q’per —/ / 2q+2 drdt
. 2
:// p(r +0) 2qf2(T)| dodr
—7+Q f U)]

/ /"p7+" 2q+§ )|2d7)do

0'

Thus
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:/QW (- +0) = ()2 do

:Z = |1—eia)- |2 g2
W

|1 —ela™o?
= S
HEZ?
ol (1) .o
2:‘@“” ‘/ 2q¢+2 §:|¢#”7
WEZ2 [ ( )] HEZ2

where we have used in the third equality the periodicity of the integrand,
in the fifth equality a corollary of the monotone convergence theorem and
in the second last and last equality Lemma A.33. O

Lemma A.35 Let q € (0,1) and ¢ € H{,(Q). Then
qper - Z |§D(H ‘ Y
WEZ?

with 7y, from Lemma A.32 and where again oM denote the Fourier coeffi-
cients of .

Proof: We set pn 1= Z\u\ <N G )T ") for N € N. Clearly, pny — ¢ in
L?(Q), as N — co. Thanks to Lemma A 29, the reverse triangle inequality
(which also holds for seminorms) is applicable, and using the orthogonality

relation for the trigonometric monomials in Lemma A.33, we obtain for
M,N € Nwith M < N

2 2
| |§0N|q,per - |¢M|q,per ’ < |SDN - SDM|q,per

M<|plee <N M<|v|oo <N q,per

= Y w(“)@(”><Té“),Tg)> = Y WP
M<|ploo<N PP M<ulo <N
M<|v]|ow<N

<G Y ulPr e

M<|ploo <N
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<y Z (1+\,u|2)q\<p(“)\2 — 0, as M, N — oo,
M<|p|leo <N

where we have used in the second inequality Lemma A.32 and where the

convergence follows as ¢ belongs to H. (Q). From this we conclude that

(|<pN|(21 per)NeN is a Cauchy sequence, and due to Lemma A.27 (after
convincing ourselves that its proof also works for the denominator in

E |(21,per) we obtain

2 2
|90N|q,per — |<,0|q’per < 00, as N — oo.

2
gper —
EOS\#IOCSN |¢(#)|25,, and that the series on the right hand side possesses
a convergent majorant. Therefore the limit exists and has to coincide with
|<p|§ pers 88 we wanted to show. O

Moreover, with the considerations above it is easy to see, that |pn|

Now, we come to the main theorem of this subsection.

Theorem A.36 Let s € R with s > 0. Then

Ho(Q) = Hper(Q)-

Furthermore, on Hg..(Q) (and thus on Hy. (Q)) the norms || - ||us_ (@)

and || - |35 (@) are equivalent.

per

Proof: The assertion for s = m € Ny follows from Theorem 2.20. There-
fore, we assume that s = m + ¢ with m € Ny and ¢ € (0,1). Moreover,
without loss of generality, we assume m € N, as the case s = ¢ is a special
case of the following considerations.

Let ¢ € H3.,(Q). Thanks to Lemma 2.18 there holds (recall that 0° = 1)

(14 11?)" < 2%l
—\ 2m
<2 (o) (B) e D0 w g e,
|a]=m
for all 1 € Z?\{0}. Then, by Lemma 2.17, Lemma A.32 and Lemma A.34,

S+ IR < el + D (L |uf) e
ez pEZ?\{0}
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< ||¢||%2(Q) +2S(\.m/2j (%) Z Z "u|2q’ 80‘ (l‘)|

|a|=m pez?

s —\ 2m
<llelFe + & (a) (£) 7 X 2 A®l@ )@

|a|=m pneZz?

i m )" [}
= Ielaay + & (ia) (B) D0 107012 per
|a]=m

—\ 2m
and thus ||QO||H5 Q) < max{ ([mn/l2j) (L) } el %;QY(Q)'

Conversely, let o € Hp.(Q). Thanks to the embedding Hp,,(Q) <
Hp: (@) and Theorem 2.20 we have that ¢ € H[. (Q) = H[.,(Q) and that
there exists a constant ¢ > 0, independent of ¢, such that

el @ < cllellmn @ < cllelln:,, @-

per

Let o € N3 with |a| < m. Then, by Lemma 2.17,

0%0)®|* < (3) 2ol ® 2 < (14 2)*™ (14 )" et 2,

for all € Z?. From this we conclude 8% € HZ,.(Q). Thus, Lemma A.35
is applicable and using again Lemma A.32 together with the last estimate

from above we obtain

ST 0% e = D me%)(m?éaz 3 |ufPe|@2p) @)

la]<m HEZ? |a|<m HEZ? |a|<m
<CL YL D (L)) P
HEZ? |a|<m
2m
<a(+p™( X 1)||so||?qger(@)
la|<m

7\ 2 1/2
Hence [|¢]|ws,, @) < ((32 +C1(1+ Z) L(Z|a\gm 1)) el s, (@)> and
the proof is complete. O

Definition A.37 Let s € R with s > 0 and K C @ be compact. We
define

er i (Q) = {o € M5 (Q) | suppyp € K }.
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If K C Q is compact, then H§ (Q) from the last subsection coincides with
ser i (@) for all s € R with s > 0, as shown in the next theorem. The
following lemma has preliminary character.

Lemma A.38 Let K C Q be compact and q € (0,1). Then H}(Q) =
H! o k(Q) and on both spaces the seminorms |- |4, and |- | are equiv-
alent.

q,per

Proof: Choose some open subset O C @Q such that K C O and O C Q.
In the following considerations we proceed similarly as in the proof of
Theorem A.26. We define f,g: (Q\ O) x K — R by

1
[t — r2a+?

(t,7) = flt,7):=
1

(t,7) = g(t,7) := (| sin TG | 4 | sin TUem2) )20+

Then f,g > 0 and, by continuity of f, g as well as by compactness of their
domain of definition, there exist constants cy 1,cy2,¢4,1,c42 > 0 such
that

0<cp1 < f(t,7)<cpa and 0<cg1 <g(t,7) <cyo,
for all (t,7) € (Q\ O) x K. Therefore, if ¢ € H{(Q) then

2671 [@\ O] g0y = 2¢11 [T\ O / o(r)2dr
—_——— K
=:Cy

:2cf,1/7 /|<p(7')\2d7'dt

< 2/@\0/ \t—7‘|2 pe; drdt < 2c¢yo |Q\O| ||90||L2(Q)7
—
::Cf72

and analogously, if ¢ € H!_ ;(Q) then

()2
Con 112 <2/ / ar dt
g L Q\O S]n tl T1 | + | Sln I;ZTTQ) |)2q+2
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< Cyallelizo

Moreover, there holds for ¢ € H}(Q)

lp(t) — o(7)[?
|<P|qQ /Q\O/Q|t—7|2q+2d dt+/ o ‘t_T‘Qq-‘r? drdt

/Q\o/ \t—ﬂwd d”/ /Q\o |t—r|2q+2 drdt

o) = eI
+/O dr dt

|t — 7|?0+2

o(t) = ()
2, o rans [ [ E ara

and analogously for ¢ € H!  ,(Q)

o f L o) i
q per — 3\0 s1n 7r(t1 'r1) ’ + ‘ sin 7r(t22L27—2) ’)2q+2

lo(t) — o(7)?
dr dt.
/ / Sln 7T(t1 T1 ’ + | Sln 7T(t2L27'2) ’)2‘]“1’2

Furthermore, by Lemma A.30 part (i), there exist constants C;,Cy > 0
such that for all € Hj(Q) UH], x(Q)

lp(t) — () ?
C]_/ / Wdet
|p(t) — ()
// tl Tl (tQ 7'2) 2q+2 det
sm |+ |s1117|)
lo(t) — ()I2
§02/6/5 [t drdt < oo.

Altogether, we obtain for ¢ € H}(Q) and with C := max { Or.2 i}

|o(t) — o(7)[?
lo|2 o = / P2 grdt
q,Q oJo |t _ 7-|2q+2
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f.21lP LZ(Q) |sin 7r(t1 n)| n ’Sm 7r(t2 Tz)|)2q+2 T

<G llolagg + [o(t) = () ardt
Cy1lle L2(Q) sm Tr(tl Tl)|+}sm m(ta— 72)|)2q+2 T

(t) - ( )12
<
C‘/ / Sll'l ﬂ-(tl T1)| + |SIHM|)2(I+2 drdt=0C ‘¢|q per

and analogously for ¢ € H!_ ,(Q)

2 C 2
|%p|q per Smax{cg2? }'SD| ,Q
Hence, the last two estimates show that Hj(Q) = M/, (Q) and in
particular that also the seminorms therein are equivalent. O

Theorem A.39 Let K C Q) be compact and s € R with s > 0. Then

H;((Q) - f)er,K(Q)

and on both spaces the norms | - || g=(q) and || - ||l (q) are equivalent.

per

Proof: Without loss of generality we assume that s > 0. Moreover, since
K C @ is compact, there exists xx € C§°(Q) such that xx(t) = 1, for all
t € K. In particular, 0°xx (t) = 0, for all ¢ in the interior of K and for all
B eNg\ {0}.

We start with the case s =m € N. Let ¢ € H (Q) and o € Nj with
la| < m. By Remark 2.15, there exists 9%¢ = 9%, € L*(Q). Therefore,
¢ € H?(Q). Now, let p € H(Q) and note that supp p C K. Let o € N3
with |a| < m. Then, by Proposition A.12, supp9®p C K. Take some

€ C%,.(Q) and observe that xx - x € C§°(Q). Then

per

/ (0" )(8) x(t) dt = / (0% (1) X ()X (1) dt
Q Q
— (1)l / o(1) 0% (e - ) (1) dt
Q
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— (~1)lel /Q o) S () 9 xxc(t) 0P x(t)

Bsa

= (-1l /Q () xrc () (1) dt = (~1)l /Q o(t) 0 (t) dt

Hence, there exists 9%, ¢ € L*(Q), coinciding with 9%¢. Consequently,
¢ € H, 1 (Q). Thus, we have shown that H(Q) = H]¢, (Q) and by
the definition of the norms there holds also || || (@) = || |4, (@) therein.
Now we turn to the remaining case s = m + ¢ with m € Ny and ¢ € (0,1).
Since we already know that H(Q) = Hp,, x(Q), it sufficies to take a
closer look at the seminorms. Let ¢ € H3-(Q). Again, take some a € N2
with |a] < m and note that supp 9%¢ C K. Then, by Lemma A.38, there
exists a constant ¢y > 0, not depending on 0%y, such that |8°‘<,0|q per <
c2|0%¢|q,0- And by the same argument there exists a constant ¢; > 0 such
that for all ¢ € H5,, ,(Q) and for all & € Nj with |a| < m there holds
110%plg,@ < [0%¢l, per- From this we conclude that Hy(Q) = Hpe, 1 (Q)
and that the norms || - [|g=(q) and [ - [, (@) therein are equivalent, as
desired. (]

Multiplication and Transformation. We proceed similarly as in the non-
periodic case and show that the multiplication with differentiable and
periodic functions gives rise to a linear and bounded operator in H;.,(Q).
Afterwards, we are able to carry over the transformation theorem from
the last subsection to the periodic framework.

Lemma A.40 Let x € C}.(Q). Then there exists a constant C > 0 such
that

[x(t) = x(7)[? 2
lo(7)[? drdt < Oy :
/Q /Q (| sin 7t1 T | + | sin 4t2L27'2) |)24+2 L2(Q)

—4
for all p € Cp(Q) U L*(Q). Here, C = %q 2279L ||X||%‘§(Q)'
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Proof: We denote by ¥ the periodic extension of x to R? as in the
definition of C!. (Q). In particular ¥ € C}(Q) and the mean value

per
theorem is applicable. Hence,

, x(®) = x(7)]?
o drdt
/Q/Q| " (| sin TH7md | 4 | sin Tezr2) )

ooy (o +7) = x(7) (M>m
|1t </>+Q (oo 1 oz

2L, 2L

2
- wﬂﬁ< X“*”_X“”MzmﬁdT
/Q /Q(|sm2L|+|smm’2|) *

2L
—2q+2 2 2
<27 |y /Wﬂﬂ|( <w)w,
Q) 0 o lof?

where we have applied in the last step the mean value theorem and part (7)
from Lemma A.30. From this the assertion follows immediately. O

Theorem A.41 Let s € R with s > 0. Furthermore, let x € C’;[il (Q) and
© € Hper(Q). Then x ¢ € Ho (Q) and there holds Leibniz” product rule

*(xe) = (5)0°Px%,  aeN with|a < [s].

B<a

Moreover, there exists a constant C > 0, not depending on x and ¢, such
that

Ix Pl (@ < C Ixll g I9ll3..0@

Proof: Since x is bounded, there holds x ¢ € L?(Q). Moreover, since
T(Q) is dense in H3,, (Q) = Hf)er(Q) and the norms therein are equivalent,
there exists a sequence (¢, )nen in T (Q) converging to ¢ with respect to
|- 13z..(@)- Let o € N¢ with |a| < |s]. Furthermore, let 8 € N¢ with

8 < a. Then

on =@, %0, — 0% in L*(Q), as n — oo,
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and, since x and its derivatives are bounded, in particular
Xn = X@, 0P80, = 0P8  in L2(Q), as n — 0.

Let 6 € C$5,(Q). Then

per

/Q (B0 dt = lim | x(t)pn(£)0°0(t) di

n—o0
Q

= (=Dl lim 3(x<pn)(t)9(t)dt

n— oo

| lim 50 Fx () 87 () O(t) dt

:(_1)la/Q S (207 P (t) 0% (t) | 0(t) .

Hence, there exists 9%(x ¢) € L?(Q) and is given by the Leibniz product

rule. Moreover, we have shown that x ¢ € ’HFL,SeJr(Q)
Now, let s = m + ¢ with m € Ny and ¢ € (0,1). And again, let o € Ng
with |a| < m and 8 € N¢ with 8 < . Then

||8a_ﬁX8’B<P||%2(Q) < ||X||20brs1 (Q)||8'B<P||%2(Q) < ||X||20brs1 ||‘P||H* Q)"

per

Note that by Lemma A.40 there holds

//|35s0(7)|2 0°7Px(t) = O Px(r)” drdt
QJq

(| sin ZGEm2 |+ [ sin G [0

2 2
< HX”Cb(sw @ leli3e.. @
where C; does not depend on ¢ and x, and thus we continue with

0°~Px()[07(t) — 09 (T)]

in 7T(t1 7'1) ’ + ‘ sin Tf(tz 7—2) ’)2q+2

[0°7"x

q per

S

P o(r )[3‘“"3X() 9> Px(7)]

2
(| sin Thzm) | 4 | sin TU2oTe) )20 drdt

+
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2

<2 ||X||QC£M(Q) [ ——Te ||X||20b(sw @) lell3es. .

per

< C2 HXHZ{S] @) ||SDH’?-[;H(Q)’

where Cs := 2 (1 + C4). Consequently, by applying Leibniz’ product rule,
the triangle inequality and the results above, we obtain

@ v 2
el = X 10°@)liag + D 10°(¢P)gpe
lor|<|s] lo<[s]

2

<(1+C) Y| 2 @l glelng.@ |

lal<[s] \B=Za

and from this we see immediately that also the last assertion from the
theorem holds. |

Theorem A.42 Let the sets Q,Q) C Q be open, s € R with s > 0 and
(e IZiffLSJH(Q, Q). Furthermore, let O C Q be open and bounded such
that O C Q, and set O’ := ((O). Then the mapping

Hy (Q) 3 ¢ pol e H(O)

is well-defined, linear and bounded.

Proof: Similar to Theorem A.23 we use a density argument, i.e., we
show that the mapping 7(Q) 3 ¢ — @ o ( € H*(O) is well-defined, linear
and bounded; then the assertion from the theorem follows by continuous
extension, because 7(Q) is dense in H}, (Q) = H;,,(Q) and the norms
therein are equivalent.

Without loss of generality, we assume s = m+q with m € Ny and ¢ € (0, 1),
as the case s = m € Ny is a special case from the following explanation.
We start by choosing some x € C§°(2) with x|5 = 1. Now, let ¢ € T(Q).
Furthermore, let o € Nd with |a| < m. Then, by Proposition A.22,

0%(po¢)= > pap-([0°¢]0().
161<]al
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Let 8 € N¢ with |3] < |a|. Note that p,sx € C3(Q) and by extension
by zero to R? we have pasx € Cf (R?). Set C¢ := || det d(¢C™1)|| ¢, 0y and
Cp = maX{prHc}}(o) | || < |yl,|y] < m}. By the transformation
theorem for Lebesgue integrable functions there holds

2 2
071 o cll120) < Ce 107 ] 12y
0% o ¢[2 < C2F2 2 (0%

q,per ’

where we also have applied part (%) from Lemma A.21 and part (%i)
from Lemma A.30 in the second estimate and where C; summarizes
the corresponding constants therein. Hence, [0°¢] o ¢ € HI(O) and by
Theorem A.15 we obtain pagx ([65@} OC) € H?(O) as well and moreover

1P (9791 0 O[30y + Pas (079 0 Q)1 = IPasx (0°%] © O[30
2
< C3 Gy [107¢] 0 €Il a0
9 2
< A CHC (107l + G20 0%
< C3C2C(1+ O C0) Nellis, (o)

=:C3

where Cy denotes the corresponding constant from Theorem A.15. With
the triangle inequality for the L?-norm and the seminorm we conclude
that

16920 O[30y + 10°(0 0 QL

(X 1) Y (Ipas@ 10 Q) + IPas (06 0 QL2 )

1BI<lef — [BI<]al
< C3CE el

where we have set Cy := Z\mgm 1. From this we get finally ||<po§||qu(0) <

Cs3C} Hw”%-tge,.(Q)’ as desired. 0
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