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Abstract This paper presents a method to optimize the en-
ergy efficiency of walking bipedal robots by more than 50 %
in a speed range from 0.3 to 2.3m/s using elastic couplings
– mechanical springs with movement speed independent pa-
rameters. The considered robot consists of a trunk, two stiff
legs and two actuators in the hip joints. It is modeled as un-
deractuated system to make use of its natural dynamics and
feedback controlled with input-output linearization. A nu-
merical optimization of the joint angle trajectories as well as
the elastic couplings is performed to minimize the average
energy expenditure over the whole speed range. The elastic
couplings increase the swing leg motion’s natural frequency
thus making smaller steps more efficient which reduce the
impact loss at the touchdown of the swing leg. The pro-
cess of energy turnover is investigated for the robot with and
without elastic couplings. Furthermore, the influence of the
elastic couplings’ topology, its degree of nonlinearity, the
mass distribution, the joint friction, the coefficient of static
friction and the selected actuator is analyzed. It is shown that
the optimization of the robot’s motion and elastic coupling
towards energy efficiency leads to a slightly slower conver-
gence rate of the controller, yet no loss of stability and a
lower sensitivity with respect to disturbances. The optimal
elastic coupling discovered by the numerical optimization is
a linear torsion spring between the legs.
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1 Introduction

There are many and varied application scenarios of bipedal
robots. The most impressive ones are the humanoid as surro-
gate of workers in disaster response saving human lives and
the exoskeleton as enhancement of disabled people improv-
ing human lives. These applications share inherently high
mobility requirements, which prohibit an external power sup-
ply and therefore directly demand for high energy efficiency.
The newly developed robot ATLAS from Boston Dynamics
is employed in a disaster response scenario in the Robotics
Challenge of the DARPA Program Maximum Mobility and
Manipulation (M3). Its 23 kg lithium-ion-battery provides
energy for no more than 20 min of running – the program
consistently demands to improve the energy efficiency by a
factor of 20 [33]. In order to evaluate the efficiency of lo-
comotion, the dimensionless specific energetic cost of trans-
port cT = energy input/(weight×distance traveled) is ap-
plied. For example, the highly developed humanoid ASIMO
from Honda (cT = 3.2) has a 16 times higher specific cost of
transport than a human (cT = 0.2) at a low walking speed of
v = 0.4m/s [12]. Due to this performance gap between ar-
tificial bipedal systems and their biological counterpart, en-
ergy efficiency can be justifiably stated as one of the major
challenges in the development of walking bipedal robots.

There are essentially two reasons for the bad energy ef-
ficiency of todays bipedal robots. First the conservative con-
trol strategy: the robot is operated close to static equilibrium,
fights against gravitation and tries to suppress any natural
dynamics. Humans in contrast walk dynamically, they con-
stantly fall over their feet, swinging their legs like pendu-
lums during walking and therefore exploit their natural dy-
namics instead of struggling against them [30]. Second the
design: the robot consists of rigid links interconnected only
by actuated joints. Humans in contrast consist of both rigid
skeletons and elastic structures serving as elastic boundary
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layer to absorb shocks, as pogo-stick to redirect center of
mass motion and as return spring to buffer energy during
the redirection of the swing leg motion [3].

Elastic boundary layers acting as shock absorbers are
used in walking robots to reduce the load of the robots’
mechanical parts, especially the actuator gear boxes [24,25,
28]. Because of their high stiffness compared to other elastic
structures, they have a minor influence on the overall system
dynamics.

Elastic couplings acting as pogo-stick have been used for
a long time in hopping and running robots [2,36] and their
influence on the dynamics has been analyzed in detail with
the model of the spring loaded inverted pendulum [6,9,21,
37].

Elastic couplings acting as return springs have first been
used solely in passive dynamic running [29,38]. Later an
elastic coupling in the form of a hip spring was also used in
spatial passive dynamic walking to adjust the step frequency
to the frequency of the toddling motion for stabilization [26].
However, this is not a necessary measure [1]. The idea of ad-
justing the step frequency by a hip spring was also applied
to prevent stumbling by shortening the swing phase of pla-
nar passive dynamic walking robots with trunk in simulation
[41] and experiment [40].

By enhancing the simplest walking model [14,20] with
an elastic coupling in form of a hip spring, the preferred
speed–step length relationship of humans could be predicted
[27]. With the same model it could be shown that at a given
target speed the elastic coupling reduces the step length and
therewith the impact loss at touchdown of the swing leg
[17]. The robot Cornell Ranger used this effect to walk a
marathon at one battery charge [7].

Elastic couplings acting as return springs have also been
used in more complex walking models with segmented legs.
For a passive model comprising of trunk, two thighs and two
shanks it could be demonstrated that an elastic coupling be-
tween trunk and thigh is necessary for walking with upright
trunk [8]. Using an elastic coupling over multiple joints, a
trunkless model with impulsive push off force showed an
increase in speed at constant energy input [16].

In addition there was the attempt to rebuild the anatomy
of the biological example and its elastic couplings in detail.
The robot FastRunner was inspired by an ostrich and uses a
network of nonlinear elastic couplings with different modes
for the swing phase and the stance phase of each leg. This
allows for actuation of the six segmented leg by only one
hip actuator [13]. In order to approach human locomotion
capabilities, the robot BioBiped was designed [35]. How-
ever, its elastic couplings have only been investigated for a
hopping motion with given joint torque trajectories without
any optimization [34].

On the quest for an energy efficient bipedal robot a col-
lision free gait on level ground was found with a planar pas-

sive robot model consisting of trunk, two rigid legs and two
rotational springs between trunk and legs [22]. However, the
gait without energy costs holds only for one specific speed,
is unstable and comes along with a heavy oscillation of the
trunk. On an incline this model has shown a much more sta-
ble gait than a comparable model without trunk [11].

A big step towards an energy efficient and versatile robot
was made by enhancing this model with actuation in the hips
[18,31]. Stiffness and resting length of hip springs were op-
timized together with the robot’s motion. A significant re-
duction of actuation could be shown for one constant speed.
However, both studies have three major drawbacks, which
prevent their practical application: (1) the geometrical and
inertial parameters of the investigated robots were far away
from humanoid robots, (2) the objective function of the op-
timization – integral of square of actuator torques over one
step – has no physical relationship with energy used and
does not account for variable step length and (3) the elastic
couplings are optimized only for one specific speed whereas
a real robot has to be energy efficient over a range of speeds.

In order to enable the practical applicability of elastic
couplings in bipedal robots, these shortcomings are address-
ed. A process is developed to optimize the motion and the
elastic couplings simultaneously over a broad range of speeds
with respect to energy efficiency [5]. It allows for a thorough
investigation of the effects of elastic couplings to develop an
energy efficient robot [4].

This paper is organized as follows. Section 2 introduces
the investigated robot model. It consists of the mechanics
model (2.1), the actuator model (2.2) and the control strat-
egy (2.3). Section 3 describes the process of generating the
motion (3.1) as well as selecting the optimal elastic coupling
(3.2) of the robot by simultaneous numerical optimization.
Section 4 presents the effect of elastic couplings on the in-
vestigated robot. The reduction of specific cost of transport
by elastic couplings is explained (4.1) and the influence of
the elastic couplings’ topology, the robot’s mass distribu-
tion, joint friction, the coefficient of static friction and the
selected actuator (4.2) as well as stability and sensitivity of
the motion (4.3) is displayed. Section 5 concludes the in-
vestigation, the used methods and the resulting insights and
gives an outlook on future research aims. Appendix A pro-
vides a more detailed discussion of the results from Sec. 4.2.

2 Robot model

The model of the investigated robot consists of the mechan-
ics model (2.1), the actuator model (2.2) and the control
strategy (2.3). The approach of modeling the robot as under-
actuated system and control it with input-output lineariza-
tion was taken from [39].
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2.1 Mechanics model

The robot is modeled as planar rigid body system. It is com-
posed of two rigid kneeless legs which are separately con-
nected to a rigid trunk via two ideal revolute joints in the hip
as depicted in Fig. 1(a). The stance leg foot 1 is modeled a
priori as ideal revolute joint and the swing leg foot 2 is as-
sumed to move freely. It will be checked a posteriori, if the
unilateral contact and stiction conditions are fulfilled. The
ground penetration of foot 2 ("scuffing") is not considered,
since the planar model without knees cannot lift its foot. The
configuration (q = [q1, q2, q3]

T ) of the robot is described by
two joint angles (qJ = [q1, q2]

T ) and one absolute orienta-
tion (qA = q3). Two actuators between trunk and legs (cf.
Fig. 3(a)) apply torques (u = [u1, u2]

T ) along the respective
joint angles (qJ) and control their evolution. The dynamics
of the multibody system can be described by

M(q) q̈+Q(q, q̇) = Bu (1)

with the mass matrix M(q), the vector of generalized forces
Q(q, q̇) and the input matrix B. The elastic couplings are
introduced in Sec. 2.1.3, their restoring torques are included
in the vector of generalized forces.

The later prescription of the joint angle trajectories (qJ)
by the control (cf. Sec. 2.3) can be regarded as introduction
of virtual constraints. No torques are applied about the point
foot 1 or more precisely about the joint towards ground.
Therefore, the evolution of the absolute orientation is sub-
ject to the remaining dynamics. The bipedal gait consists of
two distinct phases which are distinguished by the number
of feet on the ground. Adding this discrete state variable to
the continuous state variables converts the system to a hy-
brid system.

Fig. 1 Mechanics model of the robot (a) with single support phase as
rotation of the total system about foot 1 (b) and double support phase
as instantaneous impact of foot 2 (c)

2.1.1 Single support phase

During the single support phase solely foot 1 is on the ground.
It corresponds to a rotation of the total robot about foot 1

powered by the torque due to the weight rCoMx mg about
foot 1 as depicted in Fig. 1(b). The resulting motion can be
described by the angular momentum theorem

L̇1 =−rCoMx (qJ ,qA)mg (2)

with the angular momentum L1 of the total system about
foot 1. Since the trajectories of the joint angles qJ are pre-
scribed by the control input u, Eq. (2) corresponds to the re-
maining dynamics. In order to reflect this situation in the de-
scribing equations and to facilitate the control design, Eq. (1)
is transformed into the mixed partial feedback linearized
normal form. The mass matrix M does not depend on the
absolute angle qA and the torques u do not directly act on it.
Therefore, the equation of motion (1) can be subdivided into[

MJJ (qJ) MJA (qJ)

MAJ (qJ) MAA (qJ)

][
q̈J
q̈A

]
+

[
QJ (q, q̇)
QA (q, q̇)

]
=

[
BJ
0

]
u . (3)

The angular acceleration of the absolute orientation

q̈A =−M−1
AA (qJ)(MAJ (qJ) q̈J +QA (q, q̇)) (4)

can be calculated with the second row of Eq. (3) and elimi-
nated in the first row. Inverse dynamics determine the joint
torques

u = B−1
J
(
M(qJ)v+Q(q, q̇)

)
, (5)

M(qJ) =
(
MJJ (qJ)−MJA (qJ)M−1

AA (qJ)MAJ (qJ)
)

, (6)

Q(q, q̇) =
(
QJ (q, q̇)−MJA (qJ)M−1

AA (qJ)QA (q, q̇)
)

(7)

as a function of the angular acceleration of the joint angles
v = q̈J , which becomes the new control input. Furthermore,
the absolute orientation of the trunk qA is substituted by the
absolute orientation of the stance leg (cf. Fig. 1(c))

θ = q1 +q3 = cθ q . (8)

The canonical change of coordinates

q̃ =

[
qJ
θ

]
=

[
I 0
cθ

][
qJ
qA

]
= Hq (9)

transforms the mass matrix to

M̃(qJ) =
(
H−1)T M(qJ)H−1 . (10)

The total angular momentum with respect to foot 1

L1 =
[
M̃AJ (qJ) M̃AA (qJ)

][q̇J
θ̇

]
(11)

is the generalized momentum conjugate to θ and can be
determined directly with the mass matrix M̃ and the angu-
lar velocities ˙̃q. Hence, the system equation for the robot’s
stance phase in first order form can be displayed as

ẋ =
d
dt


qJ

θ

q̇J
L1

=


q̇J

M̃−1
AA (qJ)L1−M̃AJ (qJ) q̇J

0
−rCoMx (qJ ,θ)mg

+


0
0
I
0

v

=: f(x)+g(x)v (12)
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with M̃AJ (qJ) = M̃−1
AA (qJ)M̃AJ (qJ).

The ground contact force acting in foot 1 can be derived
from the free model in Fig. 1(c) and the introduction of the
constraint equation

r1 = ṙ1 = r̈1 = 0 . (13)

The configuration vector qa =
[
qT ,rT

1
]T is augmented by

the position vector r1 of foot 1. The equation of motion of
the free model is given by

Ma (qa) q̈a +Qa (qa, q̇a) = Bau+F1,a +F2,a (14)

with the mass matrix Ma (qa), the vector of the generalized
forces Qa (qa, q̇a), the input matrix Ba and the vector of the
generalized external forces F1,a, F2,a of the augmented sys-
tem. Since the swing leg’s foot does not interact with the
ground during the single support phase, F2,a = 0. The gen-
eralized external force

F1,a =

(
∂r1

∂qa

)T

F1 =

[
0

F1

]
(15)

can be expressed as projection of the ground contact force
acting on foot 1 with the position vector r1 onto the config-
uration space. Writing Eq. (14) as[

Mqq (qa) Mqr (qa)

Mrq (qa) Mrr (qa)

][
q̈
r̈1

]
+

[
Qq (qa, q̇a)

Qr (qa, q̇a)

]
=

[
B
0

]
u+

[
0

F1

]
(16)

and substituting Eq. (13) into the second line results in

F1 (q, q̇,u) = Mrq (q)M−1 (q)(Bu−Q(q, q̇))+Qr (q, q̇) ,
(17)

after elimination of q̈ with Eq. (1).

2.1.2 Double support phase

During the instantaneous double support phase both feet are
on the ground. It is modeled as plastic impact of foot 2 onto
the ground with simultaneous contact opening in foot 1 (no
interaction: F1,a = 0), as depicted in Fig. 1(c). After the
touchdown, foot 2 is at rest. It neither slips horizontally nor
rebounds vertically. The impact duration is assumed to be
infinitesimally short, therefore the configuration of the sys-
tem

q+
a = q−a (18)

does not change over the impact, whereby +(−) indicates the
respective quantity directly before (after) the impact. The re-
sulting motion can be described by the momentum theorem
in integral form

Ma
(
q−a
)

q̇+
a −Ma

(
q−a
)

q̇−a = F̂2,a = lim
t+→t−

∫ t+

t−
F2,a(t)dt (19)

with the generalized impulse

F̂2,a =

(
∂r2 (q−a )

∂qa

)T

F̂2 (20)

of the augmented system. The condition for plastic impact

ṙ2
(
q+

a
)
=

∂r2 (q−a )
∂qa

q̇+
a = 0 (21)

is stated on kinematic level. After combining Eq. (19) - (21)
into a system of linear equations they can be solved for the
unknowns. The angular velocity of the enhanced system af-
ter impact as well as the impulse acting on foot 2[

q̇+
a

F̂2

]
=

[
∆∆∆ q̇a (q−)
∆∆∆ F̂2

(q−)

]
q̇− (22)

result as linear mapping of the angular velocity before the
impact using the identities and abbreviations

q−a =

[
I
0

]
q− , q̇−a =

[
I
0

]
q̇− , (23)

∆∆∆ F̂2
= −

(
∂r2

∂qa
M−1

a

(
∂r2

∂qa

)T
)−1

∂r2

∂qa

[
I
0

]∣∣∣∣∣∣
qa=q−a

, (24)

∆∆∆ q̇a = M−1
a

(
∂r2

∂qa

)T

∆∆∆ F̂2
+

[
I
0

]∣∣∣∣∣
qa=q−a

. (25)

After the impact the role of the legs is switched, the former
stance leg becomes the new swing leg and vice versa. Left
and right leg are not distinguished, since only symmetrical
gaits are investigated. Using the switching matrix

R =

0 1 0
1 0 0
0 0 1

 (26)

the mapping of the multibody state variables over the in-
stance of impact can be stated as[

q+

q̇+

]
=

[
∆∆∆ qq−

∆∆∆ q̇ (q−) q̇−

]
, (27)

∆∆∆ q = R , (28)

∆∆∆ q̇
(
q−
)
= [R0]∆∆∆ q̇a

(
q−
)

. (29)

The angular momentum about foot 2 does not change during
impact

L+
2 = L−2 . (30)

By changing the reference point of the angular momentum
from foot 1− to 2− just before the impact and switching the
role of the legs from 2− to 1+ just after the impact the an-
gular momentum of the total system with respect to foot 1
is

L+
1 = L−1 − r2x

(
q−J ,θ

−)m
drCoMy

(
q−J ,θ

−)
dt

. (31)
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In order to obtain a robust numerical process the impact
event – the end of the step and therefore the switching be-
tween the single support phase and the double support phase
– is defined by the absolute orientation of the stance leg

S : θ = θ
− (32)

as depicted in Fig. 1(c). To guarantee physically reasonable
results of the contact model, the conditions

r2y

(
q−J ,θ

−)= 0 (33)

for contact closing of foot 2 at the end of the step and

ṙ2y

(
q+

J ,θ
+
)
> 0 (34)

for contact opening of foot 1 without interaction at the be-
ginning of the step are introduced.

For both single and double support phase it has to be
checked a posteriori, whether the solution fulfills the contact
conditions unilaterality

F1y ≤ 0 , F̂2y ≤ 0 , (35)

and stiction1

|F1x | ≤ µ0
∣∣F1y

∣∣ ,
∣∣F̂2x

∣∣≤ µ0
∣∣F̂2y

∣∣ . (36)

2.1.3 Elastic couplings

The investigated elastic couplings act with respect to the
relative angle ϕ between two bodies. There are two differ-
ent elementary elastic couplings, the elastic coupling of the
legs (l_l) and the elastic coupling of the trunk and the legs
(t_l), the general case is a combination of both as depicted
in Fig. 2.

Fig. 2 Elastic coupling of the legs (l_l) (a), the trunk and the legs (t_l)
(b) and the general case as combination of both (c)

1 The coefficient of static friction µ0 is assumed to be the same for
the continuous motion and the instance of impact. It has been observed
that µ0 varies in the impact [10], which is neglected in this paper.

The characteristics of each elastic coupling – the torque-
angle-relationships – are described by a piecewise power
law

Tec (ϕ) =

{
−k+ (ϕ−ϕ0)

ν+
, ϕ−ϕ0 ≥ 0

k− (ϕ0−ϕ)ν− , ϕ−ϕ0 < 0
(37)

as approximation of a general nonlinear relationship. These
characteristics can be realized via linear springs with ge-
ometric nonlinearities and end stops. The respective joint
torque is calculated by

TJ (ϕ) = Tec (ϕ)∇qϕ (38)

with the torque angle relation (Tec) and the gradient of the
relative angle (ϕ) with respect to the configuration variables
(q) and is included in the generalized force Q(q, q̇) of Eq. (1).

The elastic coupling between the legs acts on the rela-
tive angle ϕl_l = q2 − q1. It has a vanishing resting angle
ϕl_l0 = 0 and a symmetric torque angle relation (k+l_l = k−l_l =

kl_l ,ν+
l_l = ν

−
l_l = νl_l). Hence, it is defined by two parame-

ters

βββ l_l = [kl_l , νl_l ] . (39)

The elastic coupling between the trunk and the legs con-
sists of two identical springs which act on the relative angles
ϕt_l1 = q1 and ϕt_l2 = q2. It is defined by five parameters

βββ t_l =
[
ϕt_l0 , k+t_l , k−t_l , ν

+
t_l , ν

−
t_l

]
. (40)

The general elastic coupling is a combination of the ele-
mentary elastic couplings. It is described by the parameters

βββ =
[
βββ

T
l_l , βββ

T
t_l

]T
. (41)

These are physical parameters of the robot and therefore
movement speed independent. The values of βββ are deter-
mined by numerical optimization as described in Sec. 3.2.

2.2 Actuator model

Permanent magnet DC motors with transmission by cable
and pulleys are selected as actuators as depicted in Fig. 3(b).
The realization of the transmission by cable and pulleys com-
bined with a low transmission ratio iT leads to a low fric-
tional resistance. Hence, the actuator is easily backdrivable.
Under the assumption of a rigid drive train, the inertia of the
actuator is reduced onto the inertia of the attached rigid body
and the friction of the actuator is reduced onto viscous joint
damping of the actuated joint with the coefficient of joint
damping dJ . Due to the lower time constant in comparison
to the mechanical dynamics of the robot, the electrical dy-
namics are neglected. The actuator remains an ideal torque
source within a bounded torque range.
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Fig. 3 Actuator installation circumstances
(a) and realization by electric motor with
cable and pulley transmission (b)

Fig. 4 Geometry and in-
ertia parameters of the
rigid body model

In order to quantify the used energy for walking, the
electric power input of the actuator

pA = RAi2A + kT iAωA . (42)

is considered with resistance RA, current iA and angular ve-
locity ωA of the armature and torque constant kT . Employing
the torque current relationship TA = kT iA, the actuator-joint
torque relationship u = iT TA and the actuator-joint angular
velocity relationship ωA = iT q̇ the electric power

pA = cstatu2 +uq̇ , cstat =
RA

(kT iT )
2 (43)

is displayed using merely variables of the rigid body model.
The first term in Eq. (43) represents the electric power ap-
plied to produce a static torque without performing mechan-
ical work. The second term represents the mechanical power.
The coefficient of static electric power cstat determines how
active power is distributed into dissipation power, which is
lost as thermal output in the resistance of the armature and
usable mechanical power. It is assumed that no electric en-
ergy can be recuperated during the operation of the electric
motors in generator mode, since the electric circuit is not
modeled and its efficiency is unknown. Hence, one actua-
tor’s energy consumption during one step

WA =
∫ T

0
max

(
cstatu2 +uq̇,0

)
dt (44)

is calculated by integration of the positive electric power in-
put over the step duration T .

2.3 Control

The task of the controller is to realize a predefined motion of
the robot by influencing the dynamics of the system. There-
fore, the trajectories of the robot’s joint angles qJ are con-
trolled. There is a multiplicity of applicable control strate-
gies for nonlinear systems [24,25,28,36,42]. The hereinafter
presented control approach has not been developed by the
authors but is taken from [39].

2.3.1 Reference trajectory

The strictly decreasing orientation θ of the stance leg (cf.
Fig. 5) is used as independent variable of the reference tra-
jectories’ definition. Compared to time as independent vari-

Fig. 5 Strictly decreasing orientation θ of the stance leg as indepen-
dent variable for the reference trajectories’ definition

able this has the advantage of resulting in an autonomous
system. The controller does not enforce the system’s phase
and the natural dynamics can evolve freely. The reference
trajectories are discretized by means of a Bézier curve of
degree nα

hr (θ) =
nα

∑
j=0

ααα j

(
nα

j

)(
θ −θ+

θ−−θ+

) j(
1− θ −θ+

θ−−θ+

)nα− j

(45)

normalized by the orientation of the stance leg at the be-
ginning θ+ and end θ− of a step. The Bézier curve has a
smoothening characteristic and contributes to a numerically
robust process. It allows for analytical expressions of func-
tion value and derivatives at the beginning (θ+) and the end
(θ−) of a step

hr
(
θ
+
)
= ααα0 ,

∂hr

∂θ

(
θ
+
)
=

nα (ααα1−ααα0)

θ−−θ+
, (46)

hr
(
θ
−)= αααnα

,
∂hr

∂θ

(
θ
−)= nα (αααnα

−αααnα−1)

θ−−θ+
(47)

as function of the Bézier coefficients ααα i. Only periodical
gaits with symmetrical steps of left and right foot are in-
vestigated. With the impact map Eq. (27) and

q = H−1
[

hr (θ)

θ

]
, q̇ = H−1

∂hr (θ)

∂θ
1

 θ̇ (48)

the Bézier parameters at the beginning of the step[
ααα0
θ+

]
= H∆∆∆ qH−1

[
αααnα

θ−

]
, (49)

ααα1 =
[
I 0
]

∆∆∆ q̇H−1
[

αααnα
−αααnα−1

nα

θ−−θ+

]
(

cθ ∆∆∆ q̇H
[ nα

θ−−θ+ (αααnα
−αααnα−1)

1

])−1

+ααα0

(50)
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can be derived from the Bézier parameters at the end of the
step (αααnα

,αααnα−1,θ−) (cf. [39, pp. 141–143]). Hence, the ref-
erence trajectories of the joint angles and therefore the mo-
tion of the robot can be described by the Bézier parameters

ααα =
[
ααα

T
2 , . . . ,ααα

T
nα
, θ
−]T . (51)

These describe the robot’s motion and are therefore move-
ment speed dependent. Their values are determined by nu-
merical optimization as described in Sec. 3.1.

2.3.2 Hybrid zero dynamics

The control of the joint angles qJ is realized by input-output
linearization. The system’s output

y = h(x) = hr (θ)−qJ (52)

is defined as the deviation of the joint angles from the refer-
ence trajectory. Differentiating the output twice with respect
to time using chain rule and Eq. (12)

ẏ =
∂h(x)

∂x
f(x) =: Lfh(x) , (53)

ÿ =
∂Lfh(x)

∂x
f(x)+

∂Lfh(x)
∂x

g(x)v

=: L2
f h(x)+LgLfh(x) v

(54)

relates it to the input v = q̈J . A linear PD controller deter-
mines the behavior of the output’s second derivative

ÿ =−KDẏ−KPy (55)

and achieves an asymptotically stable characteristic for

y = h(qJ ,θ) = 0 . (56)

In the case of perfect joint angle reference trajectory track-
ing, the output as well as its time derivatives vanish (ÿ = 0).
However, the system has remaining dynamics, the so called
zero dynamics, corresponding to the rotation of the total sys-
tem about foot 1. The states of these dynamics are not ob-
servable by the output and define the zero dynamics mani-
fold

Z = {x | y = 0, ẏ = 0} . (57)

The zero dynamics are asymptotically stable, achieved by
the linear controller (cf. Eq. (55)), and invariant with respect
to the impact (∆∆∆ (S ∩Z ) ⊂ Z ) due to the design of the
Bézier parameters (cf. Eq. (49) and (50)). The analysis of
the multibody system can thus be reduced to the analysis of
the hybrid zero dynamics2.

2 Zero dynamics of a hybrid system are called hybrid zero dynamics.

The single support phase of the hybrid zero dynamics is de-
scribed by constraining Eq. (52) – (54) to

qJ = hr (θ) , (58)

q̇J =
∂hr (θ)

∂θ
θ̇ , (59)

v0 =−LgLfh(x)−1L2
f h(x) (60)

as well as the remaining dynamics from Eq. (12)

d
dt

[
θ

L1

]
=

[
M̃−1

AA (qJ)L1−M̃AJ (qJ) q̇J
−rCoMx (qJ ,θ)mg

]
=

[
fθ (θ)L1
fL1 (θ)

]
.

(61)

The special structure of Eq. (61) allows for solving the dif-
ferential equation by quadrature as proposed in [39, pp. 128–
131]. The time free formulation

dL1

dθ
=

fL1 (θ)

fθ (θ)L1
(62)

is solved with separation of variables for the angular mo-
mentum3

L1 (θ) =−
√(

L+
1

)2
+2V0 (θ) . (63)

The term

V0 (θ) =
∫

θ

θ+

fL1 (θ
′)

fθ (θ ′)
dθ
′ (64)

as well as the time

t (θ) =
∫

θ

θ+

1
fθ (θ ′)L1 (θ ′)

dθ
′ (65)

are determined by quadrature as functions of the orientation
of the stance leg θ .

The double support phase is described by

L+
1 = δ0

(
θ
−)L−1 (66)

δ0
(
θ
−)= 1− r2x

(
hr
(
θ
−) ,θ−)m

∂ rCoMy (hr (θ
−) ,θ−)

∂θ
fθ

(
θ
−) (67)

as linear mapping of the angular momentum over the impact
event using Eq. (31) for the zero dynamics. The factor δ0
only depends on the orientation of the stance leg at the end
of the step and has to be determined only once for a specific
set of reference trajectories (ααα).

3 Because the definition of θ is in mathematically positive direction
it strictly decreases (cf. Fig. 5) and the angular momentum is negative.
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The gait consists of a sequence of single support phases and
double support phases. It can be described by the Poincaré
map

P
(
L−1
)
=−

√(
δ0 (θ−)L−1

)2
+2V0 (θ−) , (68)

which maps the angular momentum L−1 at the end of the
step4 onto the end of the next step, using Eq. (67) in Eq. (64).
Its fixed point states the periodic solution of the gait and is
explicitly given by

L−1
∗
=−

√
2V0 (θ−)

1−δ0 (θ−)
2 . (69)

The stability of the periodic solution L−1
∗ is evaluated by

means of the absolute value of the Floquet multiplier, the
eigenvalue of the monodromy matrix∣∣∣∣∣∂ P

(
L−1
∗)

∂L−1

∣∣∣∣∣= δ0
(
θ
−)2

< 1 . (70)

The sensitivity of the stable, periodical solution L−1
∗ is

evaluated by means of the relative size

sB =
L−1

max−L−1
min

L−1
∗ (71)

of its basin of attraction B which is bounded on both sides.
The upper bound

L−1
max

=−
√
− 2

δ0 (θ−)
2 min

θ+<θ<θ−
V0 (θ) (72)

ensures the forward rotation of the robot, the lower bound

L−
min

1,F1y
= inf

{
L−1

∣∣∣∣ max
θ+<θ<θ−

F1y
(
θ ,L−1

)
≤ 0

}
(73)

L−
min

1 = inf

{
L−1 > L−

min

1,F1y

∣∣∣∣∣ max
θ+<θ<θ−

∣∣∣∣∣F1x
(
θ ,L−1

)
F1y
(
θ ,L−1

) ∣∣∣∣∣≤ µ0

}
(74)

ensures the contact conditions of unilaterality and stiction5.

2.4 Model parameters

The model parameters used for the investigation of the influ-
ence of elastic couplings on the energy efficiency of bipedal
robots are displayed in Table 1 and the process parameters in
Table 2. In order to analyze effects relevant for practical sys-
tems, a 1.80 m tall and 80 kg heavy robot is investigated. The

4 The touchdown of foot 2 defines the beginning of the step.
5 Substituting Eq. (58) – (67) into Eq. (17) yields the contact force

F1 = F1
(
θ ,L−1

)
of the hybrid zero dynamics.

Table 1 Model parameters

Parameter Value Unit

` total body length 1.80 m
m total body mass 80.0 kg
mt mass trunk 48.2 kg
ml mass leg 15.9 kg
`t length trunk 0.533 m
`l length leg 0.892 m
rt center of mass position trunk 0.289 m
rl center of mass position leg 0.335 m
Jt moment of inertia trunk 3.09 kgm2

Jl moment of inertia leg 1.29 kgm2

g standard gravity 9.81 m/s2

µ0 coefficient of static friction 0.6 -
iT transmission ratio 30:1 -
cstat coefficient of static power 1.81e-3 W/(Nm)2

dJ reduced joint damping parameter 8.00 Nms/rad
nα degree of Bézier curve 11 -

segmentation and distribution of mass is assumed to be hu-
man like. Therefore, the geometrical and inertial parameters
(cf. Fig. 4) are determined by regression according to [15].
The rigid bodies’ centers of mass, masses and moments of
inertia already include the inertia and reduced inertia of the
actuators. The coefficient of static friction µ0 is estimated
conservatively (cf. Sec. 4.2). The parameters concerning the
actuators (iT , cstat , dJ) are derived from the actuators of the
walking robot MABEL [23,32]. The determined joint damp-
ing parameter dJ is merely used for a realistic quantification
of the specific cost of transport savings in Sec. 4.2. In the
remainder of the paper, the joint damping is neglected. The
selected degree of Bézier curve nα is sufficient and does not
constrain the optimal motion.

3 Optimization process

In this section the generation of motion as well as the selec-
tion of elastic couplings by means of numerical optimization
is described.

3.1 Trajectory optimization

In order to find an energy efficient motion, the trajectories of
the joint angles qJ are optimized by determining the Bézier
parameters ααα for a specific movement speed. As objective
function

fminα
(ααα,βββ ) = cT =

∑
2
i=1
∫ T

0 max
(
cstatu2

i +uiq̇i,0
)

dt
mgr2x (θ

−)
(75)

the dimensionless specific cost of transport is selected, de-
fined as energy input of the actuators (cf. Eq. (44)) divided
by weight and step length.
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Table 2 Process parameters

Parameter Value

nθ Number of quadrature sampling points 401
TolFun SQP algorithm termination function tolerance 1e-2
TolCon SQP algorithm termination constraint tolerance 1e-5
nv Number of averaging sampling points 10
TolMesh PS algorithm termination mesh tolerance 1e-5

Besides minimizing the objective function, the trajectory
of the solution ααα∗ of the optimization has to fulfill equality
and inequality constraints. The equality constraints ci (ααα) =

0 are given by

v− r2x (θ
−)

t (θ−)
= 0 , (76)

r2y

(
θ
−)= 0 (77)

and consist of the desired average horizontal velocity v, in
this paper referred to as speed, and contact closing at the end
of the step (cf. Eq. (33)). The inequality constraints ci (ααα)≤
0

F1y ≤ 0 , F̂2y ≤ 0 , (78)

|F1x |−µ0
∣∣F1y

∣∣≤ 0 ,
∣∣F̂2x

∣∣−µ0
∣∣F̂2y

∣∣≤ 0 , (79)

−ṙ2y

(
θ
+
)
≤ 0 (80)

consist of unilaterality (cf. Eq. (35)), stiction (cf. Eq. (36))
and contact opening without interaction (cf. Eq. (34)). To
solve the nonlinear, constrained optimization problem the
SQP algorithm is utilized.

Fig. 6 Process of optimizing the motion (ααα) (a) and the elastic cou-
plings (βββ ) (b)

Figure 6(a) illustrates the process of optimizing the Bézi-
er parameters ααα implemented in MATLAB. For a given pa-
rameter set ααα i the limit cycle is determined in the hybrid
zero dynamics by trapezoidal quadrature of Eq. (64) at nθ

sampling points and subsequent evaluation of the fixed point
Eq. (69). Afterwards, the state variables of the hybrid zero
dynamics (θ , L1) are mapped onto the state variables and an-
gular accelerations of the full multibody system (q, q̇, q̈) by
using Eq. (58) – (60) and (4). The respective joint torque u
is determined by evaluating Eq. (5). The objective function
is evaluated by trapezoidal quadrature of Eq. (75) at nθ sam-
pling points with linear interpolation of zero crossings. The
constraint function is also evaluated at nθ sampling points.
Objective and constraint function are forwarded to MAT-
LAB’s implementation of the SQP algorithm, which calcu-
lates the parameter set ααα i+1 for the next iteration using a
quasi Newton approach. The optimum described by the pa-
rameter set ααα∗ is reached, if the termination tolerance for
the function TolFun and for the constraints TolCon are ful-
filled. At this point it has to be mentioned, that there is no
iteration in the determination of the limit cycle, neither in
the full multibody system nor in the hybrid zero dynamics.
The limit cycle is given directly by Eq. (69). Hence, this
approach is numerically very efficient and allows for the op-
timization of the elastic couplings in an outer loop.

3.2 Structure optimization

While the Bézier parameters ααα are changed and optimized
separately for each speed v, the structure and therefore the
parameters of the elastic couplings βββ are fixed after design
and independent of movement speed. Hence, they have to
be a trade-off for different speeds. In order to find an energy
efficient robot in a broad region of operation, the elastic cou-
plings βββ are optimized for the speed range vi ∈ [0.3, 2.3] m/s.
As objective function

fminβββ
(βββ ) = cT =

1
nv

nv

∑
iv=1

fminα

(
ααα

iv ,βββ
)

(81)

the mean specific cost of transport for the speed range is
selected. Whereas the interval [0.3, 2.3] m/s is subdivided
in nv subintervals evaluated at their midpoints.

Fig. 6(b) illustrates the process of optimizing the elas-
tic coupling parameters βββ implemented in MATLAB. For
a given parameter set βββ

i the motion ααα iv is optimized for
nv single speeds vi separately. The optimization of motion is
performed in an inner loop displayed in Fig. 6(a). The objec-
tive function is determined by averaging the single specific
costs of transport of the different speeds. Since the process
of optimizing motion adds numerical noise, the optimization
problem becomes non-smooth and nonlinear. It is solved by
a gradient free direct search algorithm called pattern search.
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The approach varies consecutively each parameter around
the reference point βββ

i by steps ∆βββ of the same magnitude.
The point in the mesh with the lowest value becomes the
new reference point, if the new point equals the old point,
the mesh size will be halved until the pattern search termi-
nation mesh size tolerance TolMesh is reached.

4 Results

In this section the effect of elastic couplings on the robot
is presented. The focus of the investigation is on the re-
duction of the specific cost of transport. The robot’s mo-
tion and energy turnover are analyzed to identify the major
energy loss component as well as to suggest counter mea-
sures (Sec. 4.1). Subsequently the influence of the elastic
couplings’ topology, the legs’ inertia, joint friction and the
coefficients of static friction as well as static power are pre-
sented (Sec. 4.2). A detailed discussion of those parameters
is provided in Appx. A. Finally, the influence of the elastic
coupling on stability and sensitivity with respect to distur-
bances of the robot’s motion is analyzed (Sec. 4.3).

4.1 Reduction of cost of transport

In order to isolate the effect of elastic couplings a robot with-
out elastic couplings is considered first. Its motion (ααα) is op-
timized for each speed by the process described in Sec. 3.1.
Fig. 7 illustrates the resulting motions for the lowest (v =

0.3m/s), medium (v = 1.3m/s) and highest (v = 2.3m/s)
considered speed at five equidistant instances of time.

The step length as well as the inclination angle of the
trunk of the robot increase with increasing speed. In order
to investigate the energy turnover of the robot, the specific
energies6

cT =
∑

2
i=1
∫ T

0 max
(
cstatu2

i +uiq̇i,0
)

dt
mgr2x (θ

−)
, (82)

e+mech =
∑

2
i=1
∫ T

0 max(uiq̇i,0)dt
mgr2x (θ

−)
, (83)

e−mech =−
∑

2
i=1
∫ T

0 min(uiq̇i,0)dt
mgr2x (θ

−)
, (84)

eimp =−
Ekin (θ

+)−Ekin (θ
−)

mgr2x (θ
−)

, (85)

eela =
max(Vela)−min(Vela)

mgr2x (θ
−)

, (86)

estat =
∑

2
i=1
∫ T

0 cstatu2
i dt

mgr2x (θ
−)

(87)

6 In this paper the term specific energies refers to the quantities in-
troduced in Eq. (82) - Eq. (87) although some of them are works (pro-
cess, not state quantities).

(a) v = 0.3m/s

(b) v = 1.3m/s

(c) v = 2.3m/s

Fig. 7 Comparison of the robot’s motion without elastic coupling at
three different speeds v at five equidistant instances of time

are introduced. Analogous to the specific cost of transport
cT , these quantities are related to the robots weight mg and
the distance traveled which is the step length r2x (θ

−). While
the specific cost of transport cT corresponds to the electric
energy intake of the actuators, the specific positive mechan-
ical work e+mech corresponds to the mechanical energy in-
put in motor or accelerating mode and the specific negative
mechanical work e−mech to the mechanical energy takeout in
generator or breaking mode. The specific impact loss eimp
is defined by the loss of kinetic energy during the impact
and the specific elastic energy eela by the maximum energy
stored in the elastic coupling. The specific static energy estat
is defined by the heat loss in the resistance of the actuator’s
armature and corresponds to the electric energy effort nec-
essary to statically supply a torque.

Figure 8 depicts the specific energies of the robot with-
out elastic coupling. The specific cost of transport cT in-
creases with speed v and consists mainly of specific posi-
tive mechanical work e+mech. At a speed of v = 2.3m/s the
specific positive mechanical work contributes 81.1 % of the
specific cost of transport. This implies that the positive me-
chanical work e+mech is not negligible and the specific static
work estat , commonly used in optimal control approaches
[18,31] is not a suitable objective function, if energy effi-
ciency is considered. The energy input by positive specific
mechanical work e+mech is primarily dissipated by the spe-
cific impact loss eimp. At a speed of v = 2.3m/s 94.8 % of
the specific positive mechanical work is consumed by the
specific impact loss. This implies that the optimization tries
to minimize the braking mode of the actuators which means
that a strategy to reduce the specific cost of transport has to
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Fig. 8 Comparison of the specific energies of the robot without elastic
coupling

decrease the specific positive mechanical work by reducing
the specific impact loss.

Fig. 9 Explanation of the impact loss by an
inverted mathematical pendulum (a) and a
multibody model with extended trunk (b)

Fig. 10 Explanation of
the double step fre-
quency by a pendulum

In order to reduce the impact loss, its origin is inves-
tigated with the simplest walking model consisting of an
inverted mathematical pendulum as depicted in Fig. 9(a).
During the single support phase the hip, containing the total
mass, moves on a circular path around the foot of the mass-
less stance leg. The double support phase corresponds to the
transition from one circular path to the next meaning that
the impact is described by a projection of the hip velocity
v+h = v−h cosψ into the new tangential direction. Therefore,
the specific impact loss of the inverted pendulum

eimpip =

(
v−h
)2

2glB
sinψ cos 1

2 ψ (88)

can be determined analytically and is valid in the stiction
domain of the leg opening angle ψ ∈ [0, 2arctan(µ0)].

Figure 11 displays the specific impact loss of the in-
verted pendulum model eimpip determined with Eq. (88) and
the specific impact loss of the multibody model eimp deter-
mined with the impact map Eq. (27). The comparison shows
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Fig. 11 Comparison of specific impact loss eimp for the multibody
model and the inverted pendulum model

a good match in the lower and medium speed range v =

0.3− 1.6m/s, in the higher speed range v = 1.6− 2.3m/s
the inverted pendulum model systematically overestimates
the specific impact loss. The deviation originates from the
different positions of the center of mass of the inverted pen-
dulum model and the multibody model. The inverted pen-
dulum model assumes the center of mass of the robot in the
hip. In the multibody model the trunk of the robot contribut-
ing 60 % of the total mass has its center of mass at a position
far away (rt = 0.289m) from the hip. Figure 9(b) illustrates
the configuration of the robot for a speed of v = 2.3m/s at
the instance of impact. The direction of the resulting impact
force F2 at foot 2 almost coincides with the leg orientation
(the deviation of 5.3° is due to the small mass and moment
of inertia of the legs). By changing the relative orientation
q2 between the impacting swing leg and the trunk, the robot
can change the lever arm rt sinq2 of the impact force with
respect to the center of mass of the trunk. With increasing
lever arm more translational kinetic energy is transferred
into rotational kinetic energy and less energy is lost during
the impact. At a speed of v = 2.3m/s the lever arm almost
reaches its maximum with q∗2 = 271°, which corresponds to
a minimum in the specific impact loss. If the trunk is paral-
lel to the impacting leg’s orientation (vanishing lever arm),
the specific impact loss of the multibody model is equal to
the one of the inverted pendulum model. Besides reducing
the impact loss at the cost of a higher static torque the trunk
orientation changes the horizontal center of mass position
of the robot rCoMx and so the lever arm of weight and the
applied torque for the robot’s rotation about foot 1.

Figure 12 depicts the mean center of mass position rCoMx

of the robot. It corresponds to the energy source of the ro-
tation about the stance leg (cf. Eq. (2)) and is necessary to
overcome the impact loss 1−δ0 (cf. Eq. (66)). Summing up,
the inclination angle of the trunk results in a higher applied
torque for the robot’s rotation, the impact loss of the robot
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Fig. 12 Horizontal center of mass position rCoMx as lever arm of weight
and applied torque for the robot’s rotation

is reduced by the orthogonal orientation of the trunk with
respect to the swing leg and can be described pretty well by
Eq. (88) for small trunk inclination angles.

On the other hand Eq. (88) suggests an opportunity to
reduce the specific impact loss. By reducing the robot’s leg
opening angle ψ and therewith the step length r2x (θ

−) the
specific impact loss of the inverted pendulum eimpip decreases
and finally vanishes. This raises the question why the opti-
mization does not converge to this solution. Since the robot
has to walk at a specific speed, a decrease of step length
means an increase of step frequency. In order to evaluate the
double step frequency7 of the optimized motion, the swing
leg, which is the body with the highest acceleration in the
single support phase, is modeled as physical pendulum (cf.
Fig. 10). By linearizing the equation of motion about the
lower rest position, the eigenfrequency

fSM0 =
1

2π

√
grl + kl_l/ml

i2l + r2
l

(89)

of the swing leg model can be determined using the leg’s ra-
dius of gyration il . In the entire speed range the double step
frequency fDS of the optimized motion of the robot is sig-
nificantly above the eigenfrequency fSM0 of the swing leg
model (cf. Fig. 13). At a speed of v = 1.8m/s the double
step frequency equals 2.86 times the eigenfrequency of the
swing leg model. This means the optimized motion is al-
ready far above resonance operation and to diverge further
by doing smaller steps is not energetically efficient. How-
ever, the swing leg model also shows an opportunity of in-
creasing the eigenfrequency of the swing leg model by intro-
ducing an elastic coupling of the swing leg with the stiffness
kl_l (cf. Eq. (89)).

In the remainder of this section a robot with linear elas-
tic coupling between the legs is investigated (cf. Fig. 2(a)).

7 One double step corresponds to one cycle of walking and consists
of one step with the right and one step with the left leg.

0 0.5 1 1.5 2 2.5
0

1

2

3

speed v [m/s]

fr
eq

u
en

cy
f
[H

z]

fDS with e.c.
fSM0 with e.c.
fDS w/o e.c.
fSM0 w/o e.c.

Fig. 13 Comparison of the double step frequency fDS of the optimized
motion with the eigenfrequency fSM0 of the swing leg model for the
robot with and without elastic coupling

The robot’s motion (ααα) for each speed as well as the elas-
tic coupling (βββ ) are optimized by the process described in
Sec. 3. This results in the movement speed independent stiff-
ness kl_l = 940Nm/rad as well as the associated motions.

(a) v = 0.3m/s

(b) v = 1.3m/s

(c) v = 2.3m/s

Fig. 14 Comparison of the robot’s motion with elastic coupling at
three different speeds v at five equidistant instances of time

Figure 14 illustrates the resulting motions for the low-
est (v = 0.3m/s), medium (v = 1.3m/s) and highest (v =

2.3m/s) considered speed at five equidistant instances of
time. By comparing the kinematics on position level of the
motion of the robot without elastic coupling (Fig. 7) with
the motion of the robot with elastic coupling (Fig. 14) two
patterns emerge.



Optimization of energy efficiency of walking bipedal robots by use of elastic couplings 13

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

speed v [m/s]

st
ep

le
n
g
th

r 2
x
(θ
−
)
[m

]

with e.c.
w/o e.c.

Fig. 15 Step length r2x (θ
−) of the robot with and without elastic cou-

pling

First, the step length r2x (θ
−) of the robot with elastic

coupling is considerably smaller than the step length of the
robot without elastic coupling as depicted in Fig. 15. This
indicates the expected phenomenon of reduction of impact
loss. Furthermore, the step length of the robot with elastic
coupling is almost a linear function of the speed, which in-
dicates a motion with constant double step frequency.
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Fig. 16 Trunk inclination angle q3 of the robot with and without elastic
coupling

Second, the trunk inclination angle q3 of the robot with
elastic coupling is much smaller compared to the trunk incli-
nation angle of the robot without elastic coupling as depicted
in Fig. 16. This indicates that the impact loss is reduced else-
where and the lever arm of the impact force does not need to
be maximized. This hypothesis is further confirmed by the
reduced trunk inclination angle sway; the trunk inclination
angle of the robot with elastic coupling stays almost con-
stant.

Figure 13 displays the double step frequency fDS of the
optimized motion and the eigenfrequency fSM0 of the swing

leg model of the robot with and without elastic couplings.
Over a broad speed range (v = 0.6− 2.0m/s) the double
step frequency of the optimized motion is within a neighbor-
hood of 1.5 % of the eigenfrequency of the swing leg model.
Therefore, we conclude that the robot moves in resonance.
For higher speeds the linear model looses its eligibility and
the double step frequency decreases due to nonlinear effects.
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Fig. 17 Comparison of the specific energy loss of the robot with and
without elastic coupling

Figure 17 shows the different specific energy losses of
the robot with and without elastic coupling. The sum of the
specific negative mechanical work e−mech and the specific im-
pact loss eimp has to be compensated by specific positive
mechanical work e+mech and therefore determines the spe-
cific cost of transport cT . Introducing the elastic coupling
mainly reduces the specific impact loss eimp. This confirms
the aforementioned hypothesis. Moreover, the specific neg-
ative mechanical work e−mech is reduced. In the lower and
medium speed range v = 0.3−1.6m/s it almost disappears
and increases in the higher speed range v = 1.6− 2.3m/s.
Because of a growing step length the restoring torque of the
elastic coupling and therewith the horizontal ground reac-
tion force increase. At a speed of v = 1.6m/s the ground
reaction force approaches the stiction limit and therefore the
robot has to break against the restoring torque. Ideally, the
double step frequency fDS of the optimized motion should
be infinitely large to avoid any impact losses. However, in
this case the horizontal ground reaction force tends to infin-
ity so that the coefficient of static friction µ0 restricts the re-
duction of the specific cost of transport by elastic couplings
which is investigated in Sec. 4.2.

Figure 18 depicts the specific energy efforts of the robot
with and without elastic coupling. By introduction of the
elastic coupling the specific cost of transport cT is reduced in
the entire speed range. The mean specific cost of transport
cT for the speed range v = 0.3− 2.3m/s is reduced from
cT = 0.117 to cT = 0.0509 which is a saving of 56.6 %.
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Fig. 18 Comparison of the specific energy effort of the robot with and
without elastic coupling

The mean specific static energy effort estat , which corre-
sponds to the energy dissipation in form of heat in the ac-
tuator’s armature resistor, is reduced from estat = 0.0216 to
estat = 0.00503 which is a saving of 76.9 %. The elastic cou-
pling does not only reduce the specific cost of transport sig-
nificantly, it also allows for a downsizing of the actuators,
which might lead to a further reduction of specific cost of
transport since this changes cstat .

Summing up, the elastic coupling increases the natural
frequency of the swing leg motion and therefore allows for
a resonance operation with small step length which reduces
the specific impact loss and therewith the specific cost of
transport significantly.

4.2 Influence of model parameters and topology of elastic
couplings

A thorough study of all spring topologies as well as the
model parameters has been performed. To the best of our
knowledge, no systematic investigation of all possible spring
topologies has been reported in literature, therefore the re-
sults are presented in detail. Furthermore, the influences of
the legs’ inertia, joint friction and the coefficients of static
friction as well as static power are discussed. The influences
of the elastic couplings’ topology and the model parameters
are discussed in more detail in Appx. A.

The results for all topologies from Sec. 2.1.3 are col-
lected in Tab. 3. The minimal mean specific cost of trans-
port c̄T is achieved by the most complex topology, namely
a combination of nonlinear elastic couplings between the
legs as well as between the trunk and the legs (2nlin. l_l +
t_l). Compared to the model without elastic couplings, this
topology allows for savings of 58.2 %. This is, however,
only marginally better than a linear torsion spring between
the legs (lin. l_l), which results in savings of 56.6 % and is

considerably less complex to implement in a real applica-
tion. Therefore this is considered as the optimal elastic cou-
pling and used in the further parameter studies. The elastic
coupling between trunk and leg cannot be used optimally
in the studied speed range on its own or in combinations,
because the inclination angle of the trunk is speed depen-
dent. A detailed comparison of all topologies is presented in
Appx. A.1.

The energy savings due to elastic couplings originate
from an increase of the model’s natural frequency. The nat-
ural frequency can be increased either by adding stiffness to
the model, or by reducing the legs’ inertia (cf. Eq. (89)). The
question arises, if the same savings can also be achieved by
changing the legs’ inertia (in a practically realizable range).
To study the influence of the inertia, the position of the legs’
center of mass rl as well as their radius of gyration il are var-
ied by 2

3 and 3
2 times about their nominal value (r∗l , i∗l ). The

influence of the position of the center of mass on the mean
specific cost of transport c̄T is significantly lower than that
of the radius of gyration. The mean specific cost of trans-
port decreases by 6.6 % (il = 2

3 i∗l ) and increases by 0.8 %
(rl =

2
3 r∗l ), 1.2 % (rl =

3
2 r∗l ), 9.0 % (il = 3

2 i∗l ) respectively.
Compared to the savings by the elastic couplings, this ef-
fect is negligible. A detailed comparison is performed in
Appx. A.2.

The previous studies considered an academic model with-
out joint friction. While the increase of the model’s natu-
ral frequency due to the elastic coupling results in reduced
impact losses, it also accelerates the angular velocities and
therewith viscous damping losses. To identify which effect
predominates, the mechanical model depicted in Fig. 1 is en-
hanced by linear rotational joint dampers with damping co-
efficient dJ ∈ [0, 4, 8, 16] Nms/rad (dJ = 8Nms/rad is the
coefficient of the assumed reduced drive train in Sec. 2.2).
This corresponds to the damping ratio D ∈
[0, 0.158, 0.316, 0.632] of the linearized swing leg model
without elastic couplings. The optimization of the motion
for the model without damping results in the mean specific
cost of transport of c̄T _0 ∈ [0.117, 0.135, 0.154, 0.192] with-
out the elastic coupling. The absolute saving
∆ c̄T ∈ [0.0664, 0.0622, 0.0604, 0.0581] due to the elastic
coupling is almost independent of the viscous joint damping.
However, the relative saving (∆ c̄T/c̄T _0) ∈
[56.6%, 45.9%, 39.3%, 30.3%] decreases with increasing
damping, since c̄T _0 increases. For the assumed reduced drive
train with joint damping coefficient dJ = 8Nms/rad the mean
relative saving or the reduction of the mean specific cost of
transport cT decreases from 56.6 % to 39.3% and the reduc-
tion of the mean heat strain or the mean specific statical en-
ergy estat from 76.9 % to 68.0 %. By the transition from the
academic case without joint damping to a realistic value, the
relative saving of specific cost of transport by elastic cou-
plings decreases. However, it stays in a range relevant for
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Table 3 Comparison of different elastic couplings by parameters βββ and resulting mean specific cost of transport cT with their relative saving
∆cT /cT _0 related to cT _0 the specific cost of transport of the robot without elastic coupling

leg – leg (l_l) trunk – leg (t_l)
e.c. kl_l [Nm/rad] νl_l ϕ0_t_l [rad] k+t_l [Nm/rad] k−t_l [Nm/rad] ν

+
t_l ν

−
t_l cT ∆cT /cT _0

w/o 0.1173

l_
l lin. 940 1 0.0509 56.6 %

nlin. 864 0.93 0.0509 56.6 %

t_
l

lin. 3.42 201 1 0.1051 10.4 %
nlin. 3.40 3390 7.20 0.0696 40.7 %
2lin. 3.81 61.8 1820 1 0.0769 34.4 %
2nlin. 3.40 3590 3390 7.20 8.64 0.0691 41.1 %

l_
l+

t_
l lin. 883 1 3.15 26.9 1 0.0506 56.9 %

nlin. 883 0.99 3.13 37.0 1.85 0.0506 56.9 %
2lin. 814 1 3.86 1.37 1520 1 0.0498 57.5 %
2nlin. 814 0.98 3.86 14.9 37800 11.6 2.31 0.0490 58.2 %

practical application. A more detailed investigation of the
effect of viscous joint damping is presented in Appx. A.3.

In Sec. 4.1 the stiction limit was identified as limiting el-
ement for the eigenfrequency fSM0 of the swing leg model,
for the double step frequency fDS of the optimized motion
and therefore for the reduction of the specific cost of trans-
port by elastic couplings. To investigate the quantitative in-
fluence of the coefficient of static friction on the reduction
of the specific cost of transport by elastic couplings, the op-
timization is performed for three values µ0 ∈ [0.6, 0.8, 1.0].
While it has no influence on the motion without the elastic
coupling, the savings with the elastic coupling increase from
56.6 % for µ0 = 0.6 to 65.3 % for µ0 = 1.0. The selected
coefficient of static friction (µ0 = 0.6) is conservatively es-
timated in a reasonable range and does not further increase
the observed reduction in the specific cost of transport by the
elastic coupling. There are reports of significant energetic
improvements for models with slippage phases in recent lit-
erature [19]. This case is not investigated in the presented
study. The influence of the coefficient of static friction is
presented in detail in Appx. A.4.

Another parameter which influences the specific cost of
transport cT is the coefficient of static electric power cstat
which determines the distribution of active power into dis-
sipated and usable mechanical power. The robot’s motion
changes with cstat since the optimization’s objective func-
tion depends on it. To analyze the influence of the chosen
value c∗stat = 1.81e-3W/(Nm)2, it is varied up (cstat =

10c∗stat ) and down (cstat = 0.1c∗stat ) by one order of mag-
nitude. Increasing cstat further increases the relative savings
from 56.6 % to 72.0 %, while decreasing is has only a mar-
ginal effect and changes the savings to 55.0 %. A detailed
investigation for the coefficient of static electric power is
presented in Appx. A.5.

4.3 Stability and sensitivity

Optimization is always a specialization. This paper focuses
on energy efficiency by optimizing the robot’s elastic cou-
pling as well as the motion. This raises the question if the in-
crease in energy efficiency sacrifices stability and increases
the sensitivity with respect to disturbances of the motion.
Through the use of input-output linearization, the dynam-
ics of the robot are completely described by its hybrid zero
dynamics. Hence, the stability and sensitivity of the robot’s
motion can be evaluated by analyzing the stability and sen-
sitivity of the solution of the hybrid zero dynamics. The sta-
bility of the robot’s motion is investigated by means of the
absolute value of the Floquet multiplier of the Poincaré map
of the trajectory of zero dynamics just before the instance
of impact (cf. Eq. (70)). The sensitivity of the robot’s mo-
tion is investigated by the relative size of the basin of attrac-
tion of the stable trajectory of the zero dynamics evaluated
in the Poincaré map just before the instance of impact (cf.
Eq. (71)).

Figure 19 depicts the Floquet multiplier’s absolute value
δ0

2 for the robot with and without elastic coupling. In both
cases the absolute value of the Floquet multiplier is less than
one, accordingly the solution and therewith the motion of
the robot is stable. Since the reduction of specific cost of
transport by elastic couplings is based on the reduction of
impact loss, δ0 has to approach the value 1 (cf. Eq. (66)).
Therefore, the Floquet multiplier of the robot with elastic
coupling is bigger than the version without elastic coupling.
This results in a slower decay of disturbances in the total an-
gular momentum and thus a slower transition to the desired
average speed.

Figure 20 displays the relative size of the basin of at-
traction sB for the robot with and without elastic coupling.
For speeds above v = 0.5m/s the relative size of the basin
of attraction of the stable solution of the robot with elastic
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Fig. 19 Comparison of the Floquet multiplier’s absolute value δ0
2 for

the robot with and without elastic coupling
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Fig. 20 Comparison of the basin of attraction’s relative size sB for the
robot with and without elastic coupling

coupling is bigger compared to the version without elastic
coupling. In the important medium speed range v = 0.6−
1.2m/s the relative size of the basin of attraction of the sta-
ble solution of the robot with elastic coupling is almost twice
the size of the variant without elastic coupling. The reason
for this gain in size of the basin of attraction is the smaller
step length which lowers the impact loss (cf. Eq. (67)) as
well as the threat to fall backwards and thus raises the upper
bound (cf. Eq. (72)).

The utilization of elastic couplings to reduce the spe-
cific cost of transport results in a motion with slightly slower
convergence rate with respect to disturbances and even in-
creases the size of the relative basin of attraction.

5 Conclusion and outlook

It is known from literature [12] that a bipedal robot will only
walk efficiently if its control does not fight against its natural
dynamics but allows for it to evolve. For a given robot design

elastic couplings are the only possibility to shape the natural
dynamics. Hence, the aim of this paper was to investigate
the influence of elastic couplings on the energy efficiency
of a bipedal walking robot. For this purpose an 1.80m tall,
80kg heavy, underactuated robot was considered, feedback
controlled with input-output linearization and analyzed in
the hybrid zero dynamics as proposed by [39]. The gained
knowledge is transferable to every bipedal robot provided
that its control allows for the evolution of natural dynamics.

In order to quantify the energy efficiency and to evalu-
ate the influence of the elastic couplings, the specific cost
of transport was introduced as energy input divided by dis-
tance traveled and weight. The energy input was defined as
the integral over the electric power intake of the joint actu-
ators. For the development of an energy efficient robot an
optimization process was designed, minimizing the mean
specific cost of transport in the walking speed range v =

0.3−2.3m/s by optimizing the motion and the elastic cou-
pling of the robot simultaneously. The considered param-
eters of the elastic coupling are movement speed indepen-
dent.

The energy turnover of the robot was analyzed in detail
to explain the effect of reduction of specific cost of trans-
port. For the robot without elastic couplings the energy input
by the actuators is mainly dissipated by the plastic impact at
touchdown of the swing leg foot in the double support phase.
By an orthogonal orientation of the trunk relative to the im-
pacting leg the impact loss is partly reduced at high speeds.
By modeling the robot during the double support phase as
an inverted mathematical pendulum it could be shown that
the reduction of step length is a measure to further reduce
the impact loss. At a given desired speed, the reduction of
step length directly increases the double step frequency. By
modeling the swing leg during the single support phase as a
physical pendulum, it could be shown that the double step
frequency of the robot without elastic coupling is far above
the resonance frequency of the swing leg motion. By use
of the elastic coupling between the legs the resonance fre-
quency of the swing leg motion is increased, so that the ef-
fect of decrease of impact loss by reduction of step length
can be exploited. Using the optimized elastic coupling be-
tween the legs the robot moves in resonance over a broad
range of speeds and the specific cost of transport is reduced.

The mean specific cost of transport is reduced by 56.6 %
for the academic robot without joint damping and by 39.3 %
for the robot with realistic joint damping using optimal elas-
tic coupling which is a linear torsion spring between the
legs. While the relative reduction decreases with increasing
joint damping, the absolute reduction is retained.

The mean static electric energy, the heat load of the ac-
tuators, is reduced by 76.9 % for the academic robot with-
out joint damping and by 68.0 % for the robot with realistic
joint damping using the elastic coupling between the legs.
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This allows for downsizing of the actuators and thus reduc-
ing weight and friction of the robot.

By moving the center of mass of the leg towards the foot,
the relative saving of specific cost of transport is decreased
insignificantly, by raising the radius of gyration and so the
mass moment of inertia of the leg, the relative savings in-
crease significantly.

The double step frequency is restricted by the stiction
limit because of a suspension of the joint torques by the
stance leg foot. With higher permitted coefficient of static
friction in the optimization, both double step frequency and
the reduction of the mean specific cost of transport increase.

Lowering the coefficient of static electric power by us-
ing a different actuator the relative saving of specific cost of
transport decreases only marginally, while raising the coef-
ficient of static power the relative saving increases notably.

The optimization of the robots motion and elastic cou-
pling towards energy efficiency does not interfere with sta-
bility and sensitivity of the motion. Using elastic couplings
the motion of the robot stays stable, however, the speed of
decay of perturbations decreases as a matter of the reduced
impact loss. The motion of the robot even becomes less sen-
sitive using elastic couplings because the relative size of the
basin of attraction of the stable solution increases.

It can be summarized that using elastic couplings, the
specific cost of transport of the robot can be reduced signif-
icantly with slightly slower convergence rate but no loss of
stability and lower sensitivity with respect to disturbances of
the motion.

In the future the effect of elastic couplings on a more re-
alistic robot model comprising of the five rigid bodies trunk,
thigh and shank will be investigated. The increase of the
number of rigid bodies results in an increase of number of
different topologies of elastic couplings and so options to re-
duce the specific cost of transport. Besides the influence of
elastic couplings on the walking gait their influence on the
running gait will be analyzed. The ultimate aim for the robot
with knees is the validation of the effect of elastic couplings
in a hardware experiment.

A Detailed parameter studies

The appendix presents detailed studies of the influences of the elastic
couplings’ topology (A.1), the legs’ inertia (A.2), viscous joint damp-
ing (A.3) and the coefficients of static friction (A.4) as well as of static
electric power (A.5). The results of those studies are summarized in
Sec. 4.2.

A.1 Influence of the elastic coupling’s topology

In Sec. 4 the reduction of the specific cost of transport is illustrated by
the example of the linear elastic coupling between the legs. In this ap-
pendix the influence of the elastic coupling’s topology is investigated

in detail. Therefore, all elastic couplings depicted in Fig. 2 with charac-
teristics described by Eq. (37) are evaluated regarding their efficiency
by means of the specific cost of transport cT and their contribution by
the specific elastic energy eela. In each case the motion as well as the
elastic coupling is optimized with the process described in Sec. 3. The
elastic coupling’s parameters are independent of the robot’s movement
speed v.

The optimal nonlinear elastic coupling of the legs (nlin. l_l) leads
to a stiffness kl_l = 864Nm/rad and to an exponent νl_l = 0.93. In the
investigated speed range this results in the same quantitative behavior
as the linear elastic coupling of the legs (lin. l_l) (cf. Tab. 3). Their dif-
ference in specific cost of transport is 0.1% and the linear configuration
is easier to design. Therefore, the linear elastic coupling of the legs is
used as benchmark for the remaining topologies.
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Fig. 21 Comparison of the specific cost of transport cT of different
elastic couplings between trunk and leg (t_l)

Figure 21 displays the specific cost of transport cT of the robot
with linear (lin.), nonlinear (nlin.) and piecewise linear (2lin.) elastic
couplings between trunk and leg (t_l) and the benchmark of the robot
with linear elastic coupling between the legs (lin l_l) and without elas-
tic coupling (w/o e.c.).

The curve of the specific cost of transport of the robot with lin-
ear elastic coupling between trunk and leg (lin. t_l) is for low speeds
v = 0.3−0.6m/s above and for medium and higher speeds v = 0.6−
2.3m/s not far below the specific cost of transport of the robot without
elastic couplings (w/o e.c.). Simultaneously, the mean specific cost of
transport c̄T is reduced compared to the robot without elastic couplings
(cf. Tab. 3). Because of a movement speed dependent mean inclination
angle of the trunk, the elastic coupling’s movement speed independent
parameters (resting angle ϕt_l0 = 3.42rad, stiffness kt_l = 201Nm/rad)
have to be a compromise for the regarded speed range.

The curve of the specific cost of transport of the robot with non-
linear elastic coupling between trunk and leg (nlin. t_l) follows the
curve of the specific cost of transport of the robot without elastic cou-
plings (w/o e.c.) for low speeds v = 0.3−0.8m/s and then approaches
the curve of the specific cost of transport of the robot with linear elas-
tic coupling between the legs (lin. l_l). With the resting angle ϕt_l0 =
3.40rad, the stiffness kt_l = 3390Nm/rad and the exponent νt_l = 7.20
the nonlinear elastic coupling between trunk and leg has the behavior
of a two sided end stop. For low speeds, the amplitude of the leg swing
is too low to reach the end stop. The resulting motion and specific
cost of transport of the robot with nonlinear elastic coupling between
trunk and leg coincide with the version without elastic couplings. For
medium and higher speeds, the leg swing reaches the end stop on both
sides and the specific cost of transport decreases.
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The curve of the specific cost of transport of the robot with piece-
wise linear elastic coupling between trunk and leg (2lin. t_l) is above
the curve of the specific cost of transport of the robot without elas-
tic couplings (w/o e.c.) for low speeds v = 0.3− 0.8m/s and then al-
most coincides with the curve of the specific cost of transport of the
robot with nonlinear elastic coupling between trunk and legs (nlin.
t_l). With the resting angle ϕt_l0 = 3.81rad and the two stiffnesses
k+t_l = 61.8Nm/rad and k−t_l = 1820Nm/rad the piecewise linear elas-
tic coupling between trunk and leg has the behavior of an one sided end
stop and mainly supports the torque of the weight of the trunk caused
by its inclination angle.

The curve of the specific cost of transport of the robot with piece-
wise nonlinear elastic coupling between trunk and leg mainly coincides
with the nonlinear variant and is omitted for the sake of clarity.

At all considered speeds v = 0.3− 2.3m/s the specific cost of
transport of the robot with elastic couplings between trunk and leg is
above the version with elastic coupling between the legs, independent
of particular linear, nonlinear, piecewise linear or piecewise nonlinear
characteristic of the torque angle curve. Hence, the linear elastic cou-
pling between the legs, which was already selected as benchmark is the
optimal elementary elastic coupling.

After the investigation of all single elastic couplings, the determi-
nation of the optimal combination of elastic couplings remains. For
this purpose different combinations of linear, nonlinear, piecewise lin-
ear and piecewise nonlinear elastic couplings between trunk and leg
and between the legs are investigated.
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Fig. 22 Comparison of the specific cost of transport cT of different
combinations of elastic couplings between the legs and between trunk
and leg (l_l + t_l)

Figure 22 illustrates the specific cost of transport cT for the dif-
ferent combinations of elastic couplings. The mean specific cost of
transport cT as well as the parameters of the elastic coupling βββ for all
combinations are assembled in Tab. 3. The curves of the combinations
are all very close to the curve of the robot with merely linear elastic
coupling of the legs (lin. l_l).

The curves of the combinations of linear (lin. l_l + t_l) and non-
linear (nlin. l_l + t_l) elastic couplings are slightly below the specific
cost of transport of the version with linear elastic coupling of the legs
(lin. l_l) at high speeds v = 2.0−2.3m/s.

The curve of the combination of piecewise linear (2lin. l_l + t_l)
elastic couplings is first below the specific cost of transport of the ver-
sion with linear elastic coupling of the legs (lin. l_l) and then increases
steeply at high speeds v = 2.0−2.3m/s. With the resting angle ϕt_l0 =
3.86rad and the stiffnesses k+t_l = 1.37Nm/rad and k−t_l = 1520Nm/rad

the component of the elastic coupling between trunk and leg has the
behavior of a one sided end stop.

The curve of the combination of piecewise nonlinear (2nlin. l_l +
t_l) elastic couplings is equivalent to the combination of piecewise lin-
ear elastic couplings and is not displayed.
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Fig. 23 Comparison of the specific elastic energy et_l
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elastic coupling between trunk and leg of different combinations (l_l+
t_l) and the specific elastic energy el_l

ela stored in the single linear elastic
coupling between the legs (l_l)

Figure 23 shows the specific elastic energy et_l
ela stored in the elastic

coupling between trunk and leg of different combinations (l_l + t_l)
and the specific elastic energy el_l

ela stored in the single linear elastic
coupling between the legs (l_l). The stored elastic energy is a measure
of activity of the single elastic coupling and allows for an evaluation
of the contribution in the combination. The comparison of the specific
elastic energy et_l

ela stored in the elastic coupling between trunk and leg
of a combination (l_l+t_l) to the specific elastic energy el_l

ela stored in a
single linear elastic coupling between the legs (lin. l_l) shows, that the
elastic coupling between trunk and leg has a minor contribution in the
combinations. Merely for the piecewise linear variant the contribution
rises at higher speeds, which however becomes detrimental.

The mean specific cost of transport cT of the piecewise combina-
tions (2lin. and 2nlin. l_l+ t_l) are slightly better than the value of the
single linear elastic coupling of the legs (lin. l_l)(cf. Tab. 3), since the
values at the edges of the speed interval (v = 0.3m/s and v = 2.3m/s)
are not used for averaging (cf. Sec. 3.2).

The elastic coupling with optimal mean specific cost of transport
comprising of the piecewise nonlinear combination (2nlin. l_l+ t_l) is
1.6 % better compared to the benchmark configuration comprising of
the linear elastic coupling between the legs (lin. l_l). Considering the
additional effort to design and manufacture the spring between trunk
and leg (t_l) as well as the additional weight, it is concluded that the
linear elastic coupling between the legs is still optimal for the practi-
cal application in the considered robot. By using only one elastic cou-
pling in form of a simple mechanical spring, the mean specific cost
of transport cT for the speed range v = 0.3− 2.3m/s is reduced from
cT = 0.117 to cT = 0.0509 which is a reduction of 56.6 %.

A.2 Influence of the mass distribution

In Sec. 4.1 the increase of the resonance frequency of the robot by elas-
tic couplings was identified as a reason for the reduction of the specific
cost of transport. The possible reduction of the specific cost of trans-
port by the elastic coupling is therefore higher, the lower the resonance
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frequency of the robot without elastic coupling. In order to identify the
influence of the mass distribution on the resonance frequency of the
robot, it is approximated with the eigenfrequency of the swing leg mo-
tion (cf. Eq. (89)). Without elastic coupling (kl_l = 0) the resonance
frequency of the robot only depends on the position of the center of
mass rl and the radius of gyration il of the leg. Hence, the investigation
of the influence of the mass distribution on the reduction of the specific
cost of transport by elastic coupling can be reduced to the investigation
of the influence of the center of mass rl and the radius of gyration il
of the leg. Both parameters are varied by 3

2 and 2
3 times about their

nominal value (r∗l , i∗l ).
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Fig. 24 Comparison of the relative eigenfrequency fSM0/ f ∗SM0
of the

swing leg model without elastic coupling over relative center of mass
rl/r∗l or radius of gyration il/i∗l of the leg

Figure 24 shows the relative eigenfrequency fSM0/ f ∗SM0
of the swing

leg model without elastic coupling over relative center of mass rl/r∗l
and radius of gyration il/i∗l of the leg.

In order to evaluate the influence of the position of the center of
mass and radius of gyration of the leg on the saving of specific cost of
transport by elastic coupling the motion as well as the elastic coupling
of the robot are optimized.

The position of the center of mass rl of the leg has an insignificant
influence on the relative saving in specific cost of transport ∆cT /cT _0.

Figure 25 displays the relative saving in specific cost of transport
∆cT /cT _0 by elastic coupling for different radii of gyration of the leg il .
As reference value cT _0 the specific cost of transport of the robot with-
out elastic coupling is selected. The radius of gyration has a significant
influence on the reduction of specific cost of transport by elastic cou-
plings. Increasing the radius of gyration by 50 % the reduction of the
mean specific cost of transport cT can be raised from 56.6 % to 62.9 %.

A.3 Influence of the viscous joint damping

In Sec. 4 the academic case of a robot without joint friction was con-
sidered. In this section the influence of viscous joint damping on the
reduction of specific cost of transport by elastic couplings is inves-
tigated. As shown in Sec. 4.1 the reduction is mainly caused by in-
creasing the resonance frequency of the swing leg motion and thus
by increasing the joint angular velocity. The joint torque caused by
viscous joint damping counteracts the motion and is proportional to
the angular speed. Hence, a decrease of the reduction of specific cost
of transport by elastic couplings is anticipated. In order to quantify
the influence of viscous joint damping the mechanical model depicted
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Fig. 25 Comparison of the relative saving in specific cost of transport
∆cT /cT _0 by elastic coupling for different radii of gyration of the leg
il

in Fig. 1 is enhanced by linear rotational joint dampers with damp-
ing coefficient dJ ∈ [4, 8, 16] Nms/rad corresponding to the damping
ratio D ∈ [0.158, 0.316, 0.632] with respect to the eigenfrequency of
the swing leg model without elastic couplings. The numerical value
dJ = 8Nms/rad corresponds to the value of the assumed reduced drive
train (cf. Sec. 2.2). The motion as well as the elastic coupling of the
robot are optimized for each joint damping coefficient if applicable.
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Fig. 26 Comparison of the absolute saving of specific cost of transport
∆cT by elastic coupling for different joint damping coefficients dJ

Figure 26 illustrates the absolute saving of specific cost of trans-
port ∆cT by elastic coupling for different joint damping coefficients dJ .
Surprisingly the absolute saving in specific cost of transport by elastic
couplings depends only weakly on the joint damping coefficient.

In order to explain this circumstance, the specific energy dissipa-
tion by viscous joint damping is estimated for the joint between trunk
and swing leg (q2) with the joint torque Td =−dJ q̇2. The reasoning for
the joint between trunk and stance leg (q1) follows analogously. During
one step or single support phase the angle between trunk and swing leg
proceeds from q+2 = q−1 just after the impact to q−2 just before the the
impact. At the end of the step the legs form an isosceles triangle with
the edge lengths `l and r−2x

= 2`l sin((q−2 − q+2 )/2) (cf. Fig. 1). For a
small step length r−2x

the approximation of the circular arc with the se-
cant and of the sine with its argument and therefore r−2x

≈ `l(q−2 −q+2 )
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holds. The estimation of the specific energy dissipation by viscous joint
damping

cd =
1

mgr−2x

∫ q−2

q+2
−dJ q̇2dq2

≈ −dJ

mg`l

1
q−2 −q+2

∫ q−2

q+2
q̇2dq2 =

−dJ

mg`l
q̇2 ≈

−dJ

mg
v

(90)

shows merely a dependence on the average speed v and especially not
on the actual angular velocity q̇2. Therefore, the contribution of the en-
ergy dissipation by viscous joint damping to the specific cost of trans-
port is only depending on the joint damping coefficient dJ and equal
for the robot with and without elastic couplings. This contribution con-
sequently vanishes when the two specific costs of transport are sub-
tracted from each other to evaluate the absolute saving of specific cost
of transport by elastic coupling.
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Fig. 27 Comparison of the relative saving of specific cost of transport
∆cT /cT _0 by elastic coupling for different joint damping coefficients
dJ

Figure 27 shows the relative saving of specific cost of transport
∆cT /cT _0 by elastic coupling for different joint damping coefficients
dJ . Since the specific cost of transport of the robot without elastic
coupling cT _0 increases with increasing joint damping coefficients dJ
while the absolute saving ∆cT stays constant, the relative saving of the
specific cost of transport ∆cT /cT _0 decreases. For the assumed reduced
drive train with joint damping coefficient dJ = 8Nms/rad the mean rel-
ative saving or the reduction of the mean specific cost of transport cT
decreases from 56.6 % to 39.3% and the reduction of the mean heat
strain or the mean specific statical energy estat from 76.9 % to 68.0 %.
By the transition from the academic case without joint damping to a re-
alistic value, the relative saving of specific cost of transport by elastic
couplings decreases, however, it stays in a range relevant for practical
application.

A.4 Influence of the coefficient of static friction

In Sec. 4.1 the stiction limit was identified as limiting element for the
eigenfrequency fSM0 of the swing leg model, for the double step fre-
quency fDS of the optimized motion and therefore for the reduction of
the specific cost of transport by elastic couplings. In this section the
quantitative influence of the coefficient of static friction on the reduc-
tion of the specific cost of transport by elastic couplings is investigated.

Figure 28 displays the specific cost of transport cT of the robot
with and without elastic coupling for three different coefficients of
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Fig. 28 Comparison of the specific cost of transport cT of the robot
with and without elastic coupling for different coefficients of static fric-
tion µ0

static friction µ0 ∈ [0.6, 0.8, 1.0]. For each parameter value the mo-
tion as well as the elastic coupling are optimized if applicable. While
the particular value of the coefficient of static friction has no influence
on the specific cost of transport of the robot without elastic coupling, it
has an essential influence on the specific cost of transport of the robot
with elastic coupling. By shifting the permitted stiction limit by the co-
efficient of static friction from µ0 = 0.6 to µ0 = 1.0, the mean specific
cost of transport of the robot with elastic coupling is improved from
cT = 0.0509 to cT = 0.0407 and the relative saving of mean specific
cost of transport from 56.6 % to 65.3 %. Depending on the prevail-
ing contact conditions and safety requirements, more or less specific
cost of transport can be saved. The selected coefficient of static friction
(µ0 = 0.6) is conservatively estimated, is in a reasonable range and
does not further increase the observed reduction in the specific cost of
transport by the elastic coupling.

A.5 Influence of the coefficient of static electric power

The coefficient of static electric power cstat determines the distribution
of active power into dissipation power and usable mechanical power
and directly affects the calculation of the specific cost of transport (cf.
Eq. (44)). The used numerical value (c∗stat ) is given in Tab. 1 and is
derived from the actuators of the walking robot MABEL. In order to
investigate the influence of the coefficient of static power its numerical
value is varied up (cstat = 10c∗stat ) and down (cstat = 0.1c∗stat ) by one
order of magnitude. For each parameter value the motion as well as the
elastic coupling are optimized if applicable.

Figure 29 illustrates the relative saving in specific cost of transport
∆cT /cT _0 due to the elastic coupling for different coefficients of static
power cstat . As reference value cT _0 the specific cost of transport of the
robot without elastic coupling is selected. Increasing the coefficient of
static electric power, for instance by selecting a stronger motor with
lower transmission ratio, the relative saving of specific cost of trans-
port increases significantly. Decreasing the coefficient of static electric
power, the relative saving of specific cost of transport declines only
marginally. Only in the range of high speeds (v = 1.6− 2.3m/s) the
decline is observable. The selected coefficient of static electric power
(cstat = c∗stat ) is in a reasonable range and does especially not further
increase the observed reduction in the specific cost of transport by the
elastic coupling.
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