
 

 

 

  

 

Tag der mündlichen Prüfung:  26.04.2016 

Hauptreferent:       Prof. Dr.-Ing. Dr. h.c. A. Albers 

Korreferent:        Prof. Peter Meckl 

Zur Erlangung des akademischen Grades 

Doktor der Ingenieurwissenschaften 

der Fakultät für Maschinenbau 

Karlsruher Institut für Technologie (KIT) 

genehmigte 

Dissertation 

von 

Dipl.-Ing. Hermann Sommer Obando 

Aus Mexiko Stadt / Mexiko 

Reinforcement Learning Framework for the self-

learning Suppression of Clutch Judder in 

automotive Drive Trains 

Reinforcement Learning Framework zur selbstlernenden 

Unterdrückung von Kupplungsrupfen in PKW-

Antriebssträngen 

 



 



 

 

 



  



 

Kurzfassung 

Mechanische Schwingungen in Antriebssträngen wirken sich negativ auf den 

Fahrkomfort aus und führen daher zu Akzeptanzproblemen beim Kunden. Ein Beispiel 

sind reibungsinduzierte Schwingungen während der Schlupfphase der Kupplung, die 

als „Rupfen“, „Shudder“ oder „Chatter“ bezeichnet werden. Es existieren zahlreiche 

Maßnahmen gegen Rupfen, denen konstruktive und tribologische Ansätze zugrunde 

liegen. Im Fall elektromechanisch aktuierter Kupplungen bietet sich darüber hinaus die 

Möglichkeit der aktiven Dämpfung von Reibschwingungen durch eine geeignete 

Regelung der Anpresskraft. Deren Umsetzung ermöglicht die Anwendung von 

Hochleistungswerkstoffen in der Reibpaarung, die als Folge eine kosten- und 

energieeffizientere Dimensionierung der Kupplung erlauben. Sie erfordert jedoch 

meistens den Einsatz komplexer Regler, für deren Design und Tuning möglichst 

genaue Modelle der Regelstrecke vorliegen müssen. Diese Regler sind oft auf die 

spezifische Regelstrecke angepasst und daher nicht ohne weitere Maßnahmen für den 

Einsatz in anderen Systemen oder bei Auftreten von beim Reglerdesign nicht 

berücksichtigter Änderungen geeignet. In dieser Arbeit wird eine mechatronische 

Maßnahme zur effektiven Unterdrückung von Rupfschwingungen vorgeschlagen, die 

sich modellunabhängig und selbständig auf die Regelstrecke und deren Änderungen 

anpasst. Sie besteht aus einem Reinforcement Learning Framework zur Regelung der 

Anpresskraft mit dem Ziel der aktiven Schwingungsdämpfung. In diesem Framework 

erlernt ein Algorithmus die optimale Kraftregelung indem er die Interaktion mit der 

Umgebung auswertet und sein Verhalten entsprechend anpasst. Die Entwicklung des 

Frameworks erfordert eine ganzheitliche Betrachtung der Systeme „Fahrer“, 

„Fahrzeug“ und „Umgebung“ mit allen Subsystemen und Komponenten sowie deren 

Wechselwirkungen untereinander. Aus diesem Grund wird in dieser Arbeit seine 

Entwicklung durch eine Kombination aus Simulation und Versuchen an physischen 

Prüfständen durch das IPEK „X-in-the-Loop“ Framework unterstützt. Zunächst wird ein 

Fahrmanöver als Testfall definiert und als Reinforcement Learning-Problem formuliert, 

bevor es auf einer abstrakten Ebene formuliert wird und alle wichtigen Parameter und 

Elemente identifiziert und definiert werden. Als nächstes wird das Framework in einer 

vereinfachten Simulations-umgebung implementiert, um mögliche Lösungskonzepte 

zu untersuchen. Anschließend wird das Framework mit den gewonnenen 

Erkenntnissen in einer simulierten Prüfstandsumgebung eingesetzt. Die viel-

versprechendste Konfiguration wird anschließend auf einem physischen Prüfstand 

implementiert. Durch das erarbeitete Reinforcement Learning Framework konnten die 

in Simulation und Versuch reproduzierten Rupfschwingungen signifikant gedämpft 

werden. Die Aussichten auf eine erfolgreiche Implementierung an Prototypen oder 

Serienfahrzeugen sind daher äußerst vielversprechend. 

 



  



 

Abstract 

The presence of mechanical vibrations in automotive drive trains has a negative effect 

on the durability of its components and the perceived comfort of the vehicle by the 

driver. An example of these vibrations is clutch judder, also known as chatter or 

shudder, which refers to those mechanical vibrations that originate at the clutch during 

its slipping phase. Numerous countermeasures against clutch judder exist and can 

usually be categorized as either constructive or tribological. In electromechanically 

actuated clutches, the active damping of vibrations by means of control of the clamping 

force allow the use of high performance materials in the friction pairing, which makes 

a more energy and cost efficient design of the clutch. However, most solutions have a 

high complexity, since they involve detailed and accurate models of the drive train and 

its environment as well as relatively advanced and abstract mathematical operations 

for the design and tuning of the required controllers. This also leads to the solutions 

often being only suitable for the specific system for which they were developed. For 

this reason, a mechatronic countermeasure that relies as little as possible on the 

accuracy and detail of models and that is able to adapt to changes of these without 

compromising its effectiveness is proposed in this work. It consists of a reinforcement 

learning framework for the control of the clamping force for the active suppression of 

judder vibrations. In the proposed framework, an optimal control of the clamping force 

is learned by evaluating its interaction with its environment and adapting its behavior 

accordingly. For the further development of the solution a holistic consideration of the 

“vehicle”, “driver” and “environment” systems and all their interactions is required. For 

this reason, a combination of simulation and physical experiments in the context of the 

IPEK “X-in-the-Loop” framework is proposed in this work. First, the test maneuver is 

analyzed and the judder reduction task is formulated as a reinforcement learning 

control problem. After identifying the relevant parameters and elements, the frame-

work is formulated on an abstract level and subsequently implemented on a simplified 

simulation model, where different solution concepts are analyzed. Afterwards, the 

results are used for the implementation of the framework on a simulated test bench 

environment. The most promising concept is later implemented on a physical test 

bench environment. The results, both on simulation and on the physical test bench, 

show a significant reduction of judder vibrations through the implementation of the 

proposed solution. Therefore, the reinforcement learning framework delivers very 

promising results in regards to an implementation on physical prototypes and series 

vehicles. 
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Introduction and Outline 1 

1 Introduction and Outline 

1.1 Introduction 

In the automotive development branch, the effect of noise, vibrations and harshness 

(NVH) play a decisive role. Also, the comfort perceived by the passenger of an 

automobile while driving is a determinant factor for his purchase decision. 0F

1 One of the 

most prominent NVH phenomena is that of clutch judder or chatter and refers to 

vibrations that generate in the clutch during the synchronization of the primary and 

secondary sides of the powertrain. 1F

2 Due to the ever increasing torque provided by 

modern combustion engines (c.f. Fig. 1.1) and an ever higher efficiency of modern 

drive trains, their susceptibility towards this kind of vibrations is heightened.1 

 

 

Figure 1.1: Development of the full load engine torque and speed of a 2.0 liter diesel engine2F

3 

For these reason, considerable effort has been invested in the prevention, or at least 

mitigation of clutch judder vibrations. The countermeasures can be categorized to 

belong into one of three types: constructive, tribological or mechatronic. 3F

4 However, 

most constructive and tribological countermeasures are either costly or present 

practical limitations. 4F

5 Furthermore, MOSBACH 5F

6 points at the fact that friction vibrations 

                                            

1 Albers in the foreword of Krüger 2003 
2 Albers / Herbst 1998 
3 Zink et al. 2010 
4 Albers 2010 / Albers / Herbst 1998 and Krüger 2003 
5 c.f. 2.1.4 
6 Mosbach 2002 

 



Introduction and Outline 2 

are generally avoided by means of case specific detail coordination and measures, 

which is only possible at the expense of high development and experimental effort. 

The implementation of mechatronic countermeasures requires the availability of an 

automatic or a semi-automatic transmission. However, the availability of such 

transmissions is ever higher. In the United States and Japan, they have long displaced 

manual transmissions and make up to 80% of the market (c.f. Fig. 1.2). In Europe 

however, manual transmissions remain the most prevalent. 6F

7  

 

 

Figure 1.2: Percentage of new car sales with manual transmission 7F

8 

In the ever more important Chinese market, the demand for automatic transmissions 
has also risen in recent years. 8F

9 

Most mechatronic countermeasures for clutch judder rely on active damping through a 

robust or adaptive control of the clutch actuator. However, in order to design these 

controllers, accurate models 9F

10 are often necessary and the effectiveness of the 

solutions depends on their quality. 10F

11 

Also, technical systems, and particularly automotive systems, are becoming ever more 

complex. This affects primarily their development, but also other aspects like their 

maintenance and servicing. Since vehicle components are usually conceived 

                                            

7 Albers / Matthiesen 1998 
8 Raia 2014 
9 www.researchinchina.com, 2012 
10 Such models include but are not limited to reference, adaption and simulation models. 
11 Åström / Wittenmark 2008 
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separately, their effect on the whole system is often unknown. 11F

12 Therefore, the 

application of systematic and highly integrating processes and development 

environments is required for the development of whole automotive systems.12F

13 

However, the complexity of the systems also imposes restrictions on the significance 

and conclusiveness of their models, particularly simulation models. Whereas the 

behavior of single components is relatively simple to model, their effect on the 

remaining system as the development process progresses becomes more difficult to 

describe and reproduce. Therefore, as the modelling/computing effort increases 

exponentially over the course of the process, the required discriminatory power and 

significance increase as well. This means that, in general, the effectiveness of 

simulation models decreases over the course of the development process. 13F

14 (c.f. Fig. 

1.3) 

 

 

Figure 1.3: Simulation in the development process according to ALBERS AND SCHYR14 

This rising complexity and increased information networking in technical systems, c.f. 

“System of Systems” and “Systems Engineering” 14F

15, has given rise to the use of more 

and more methods and concepts from the computational intelligence (CI) and similar 

areas to handle and manage the huge amounts of information. 15F

16  

Reinforcement Learning (RL) is one the three major subfields of machine learning. Its 

most distinctive feature is their ability to learn from their experienced direct interaction 

                                            

12 Drexl 1988 
13 Albers et al. 2008 
14 Albers / Schyr 2003 
15 Numerous definitions of “System of Systems” according to the field of application are available (e.g. 

for information-intensive orginizations by Carlock / Fenton 2001). An insight into the fundamentals 
and the application of “Systems Engineering” is provided by Haberfellner 2012. Also, a handbook for 
system engineering processes is provided by Haskins 2011 

16 Kroll 2013 
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with their environment. Although it originated in the field of robotics, the basic 

reinforcement learning framework is very flexible and thus applicable to a variety of 

tasks. In this work, reinforcement learning is proposed for the task of judder 

suppression as it is considered possible to develop a solution that does not rely on a 

specific model or individual system, e.g. test bench, prototype or series vehicle. 

Despite reinforcement learning methods not needing models of their environment, in 

this work a combination of simulative and experimental approaches is preferred for the 

development of the judder suppressing controller. The synergetic effects of such a 

combination lead to an acceleration of the development process and a deeper 

understanding of the technical system and the task at hand. 16F

17 

1.2 Outline 

After the introduction provided in this chapter, the necessary fundamentals and an 

overview of the state of the art of clutch judder and reinforcement learning are 

presented. Furthermore, the IPEK X-in-the-Loop framework is introduced. 

In the third chapter, the motivation of this work and the objectives it pursues are 

deduced from the state of the art. 

The fourth chapter outlines the research design with which the objectives stated in the 

previous chapter are to be fulfilled. 

The preliminary, theoretical stage of this work, in which an abstract definition of the 

reinforcement learning framework and its components is provided, is found in chapter 

five. 

In the following chapter, the implementation of the reinforcement learning framework 

on an abstract simulation model of the drive train and the corresponding results are 

presented, evaluated and discussed. 

In the seventh chapter the reinforcement learning framework is implemented on the 

IPEK Mini Hardware-in-the-Loop test bench both in simulation and on the physical test 

bench. The results of different RL-algorithms, including one developed in the previous 

stage, are again presented, evaluated and discussed. 

Finally, a summary of the work and an outlook on future research topics is provided in 

the eighth and last chapter. 

                                            

17 Albers in the foreword of Krüger 2003 
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2 Fundamentals and State of the Art 

This chapter contains the necessary fundamentals regarding clutch judder and 

reinforcement learning. Furthermore, it provides an insight into the validation process 

in product development, more specifically, into the X-in-the-Loop framework. Finally, 

an overview of the state of the art research in the area is presented. 

First, the mechanical processes that underlie the generation of judder vibrations are 

presented. Subsequently, an overview of current methodology regarding the 

measurement and perception of judder vibration is provided. In the next part of the first 

subchapter an overview of countermeasures for clutch judder is provided, before the 

fundamentals of active damping of friction induced vibrations and a summary of state 

of the art solutions based on this principle is presented in the last part. 

In the second subchapter the reinforcement learning problem and the fundamental 

elements of its agent-environment interaction framework are introduced. In addition, 

an overview of the elementary solutions to the reinforcement learning problem is 

provided. Finally, an overview of reinforcement learning applications and state of the 

art research is presented. 

In the third and final subchapter, the engineering process is described. Particularly, the 

X-in-the-Loop framework for validation purposes is given special emphasis, since it is 

the foundation on which most models used for the validation of the simulation results 

of this thesis were designed. 

2.1 Clutch Judder in automotive Drivetrains 

Clutch judder is defined by WINKELMANN AND HARMUTH 17F

18 as well as ALBERS AND 

HERBST 18F

19 as a vibration in automotive drive trains during the slipping phase of the 

clutch. It occurs as a result of the periodically oscillating torque induced through the 

clutch to the remaining, dynamically separated drive train in the range of its 

eigenfrequency. 19F

20 

The DIN 1311 PART 120F

21 classifies vibrations according to their origination into 

autonomous and heteronomous vibrations. The frequency of autonomous vibrations is 

only dependent of the autonomous oscillating system itself, though there are 

                                            

18 Winkelmann / Harmuth 1985  
19 Albers / Herbst 1998 
20 Albers / Herbst 1998 and Albers / Herbst 2000 
21 DIN 1311 Part 1 2002 
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restrictions to this behavior in the case of non-linear systems4. In contrast, the 

frequency of heteronomous vibrations is determined by external influences on the 

oscillating system, e.g. the pulsating force excitation of a simple mass oscillator. 

Furthermore, heteronomous oscillating systems can underlie an additional 

autonomous excitation. 21F

22 

Clutch judder vibrations can be classified analogously into either self-excited or 

externally excited judder. 22F

23 The next two sections of this chapter offer an insight into 

the two types of judder. Afterwards, the perception by a passenger and quantification 

of judder are addressed. Finally, countermeasures against clutch judder are presented 

in the last two sections of this chapter. The last section emphasizes mechatronic, 

control based state of the art approaches. 

2.1.1 Self-excited Judder 

Self-excited oscillations are a common sight, since they appear in many technical 

systems where a friction contact is used to transmit a force or torque. Common 

examples are self-excited oscillations in brake systems 23F

24, but there are numerous 

other examples 24F

25. Self-excited oscillations of the drive train occur as a result of the 

changes of the friction coefficient 𝜇 as a function of the sliding speed 𝑣𝑏 between the 

clutch discs. 25F

26 A simplified model of a self-excited oscillator according to MAUCHER26F

27 is 

depicted in Fig. 2.1. 

 

Figure 2.1: Simplified model of a simple mass self-excited oscillator according to MAUCHER27 

                                            

22 DIN 1311 Part 1 2002 
23 Newcombe / Spurr 1972, Winkelmann / Harmuth 1985, Albers / Herbst 1998 and Albers / Herbst 2000 
24 Spurr 1961 
25 Krüger 2003 mentions examples such as tool machines, drill standards and rail vehicles and provides 

the respective references 
26 Newcombe / Spurr 1972, Winkelmann / Harmuth 1985, Albers / Herbst 1998, Albers et al. 2005a and 

Albers; Meid 2010 
27 Maucher 1990 

 

𝑚

𝑣𝑏

𝑔

𝐹𝑅

𝐹𝑁

𝑥
𝑑

𝑐

𝐹



Fundamentals and State of the Art 7 

For this simplified system and after a linearization at the operating point, the differential 

equation of motion yields as follows: 27F

28 

𝑚𝑥(𝑡) +̈ (𝐷 + 𝐹𝑁𝜇
′)𝑥̇(𝑡) + 𝐶𝑥(𝑡) = 0 Eq. 2.1 

As evidenced by Eq. 2.1, 𝜇′ is of great importance for the behavior of the friction 

system, the friction gradient 28F

29 can be formally defined as follows: 

𝜇′ =
𝛿𝜇

𝛿∆𝑣
=
𝛿𝜇

𝛿∆𝜔
 Eq. 2.2 

where 𝜇 is the friction coefficient and ∆𝑣 and ∆𝜔 are the relative speed and rotational 

speed in the friction contact, respectively. 

In reality, the friction coefficient, and thus its dependency on the sliding speed, is 

dependent on operating and environmental conditions 29F

30, but it is possible to identify 

three general cases according to ALBERS AND HERBST. 30F

31 This dependency is depicted 

in Fig. 2.2. 

 

 

Figure 2.2: Dependency of the friction coefficient on the relative sliding speed  

The upper curve in Fig. 2.2 corresponds to the case in which the friction coefficient 

falls with a decrease of the slipping speed. In this case the friction contact has a 

damping effect on the system. 31F

32  

The horizontal line in the middle depicts the case in which the friction coefficient 

remains unaffected by a change in the sliding speed. Accordingly, the oscillating 

system is undisturbed by the friction contact.  

                                            

28 Heilig et al. 2002 
29 Maucher 1990 
30 Krüger 2003 
31 Albers / Herbst 1998 
32 Albers / Herbst 1998 
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Finally, the course of the lower curve exemplifies the case in which a decrease in the 

sliding speed entails a rise in the friction coefficient, thus a negative friction gradient. 32F

33 

In this case, the damping in the system is reduced and oscillations are excited. 

The cycle by which self-excited oscillations in the drive train are generated in 

accordance with the previously presented mechanism is described by NEWCOMBE AND 

SPURR34 as follows: 

„Clutch judder is generally assumed to be caused by the coefficient of friction µ of 

the facing increasing as the sliding velocity decreases. The transmission line etc. 

deflects elastically under torque and the theory states that if for some reason the 

system is disturbed and the elastic deflection, for example, increased, the relative 

velocity between facing and opposing surface will be decreased momentarily and 

the µ increased. The increase in µ will result in a greater torque and a larger 

deflection so increasing µ and adding to the torque further still, and this will 

continue until the deflection reaches a maximum. The relative velocity between 

the surfaces now begins to increase reducing the µ and torque, and the stored 

elastic energy reduces the deflection until it becomes a minimum, when the whole 

cycle repeats itself and the system is set vibrating“ 33F

34 

In the case of clutch judder vibrations, the rotatory oscillation system is dependent on 

further factors, such as the amount and mean friction radius of the friction pairings as 

well as the clamping force between clutch plates. 34F

35 Furthermore, the description 

NEWCOMBE AND SPURR is limited to the case of self-excited judder and disregards 

external excitation sources. 

The simulation models used in the context of this thesis are limited to the reproduction 

of self-excited judder. 35F

36 The details will be presented in the corresponding chapters, 

however, they both rely heavily on the simplified dynamic model of the drive train 

according to MAUCHER37 and depicted in Fig. 2.3. 

 

 

                                            

33 Winkelmann / Harmuth 1985; Newcombe / Spurr 1972, Maucher 1990, Albers / Herbst 1998 and 
Albers / Herbst 2000 

34 Newcombe / Spurr 1972 
35 Maucher 1990, Albers / Herbst 1998; Maucher 1990, Albers / Herbst 2000 and Albers et al. 2001 
36 The presence of externally-excited judder on the physical test bench is unavoidable as will be clarified 

later on in this work. 
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Figure 2.3: Simplified model of the power train according to MAUCHER36F

37 

In this simplified three-mass-oscillator model, JCE is the inertia of the combustion 

engine, whereas JCG is the aggregated inertia of the clutch discs and the gearbox and 

JV is the inertia of the rest of the vehicle. Furthermore,  M(φ) is the clutch torque 

induced by the clamping force 𝐹 and 𝑐 and 𝑑 are the stiffness and damping in the drive 

train respectively. Finally,  nce,  nge and  ngo  are the rotational speeds of the 

combustion engine, the gearbox input shaft and the gearbox output, respectively. The 

differential equation of motion for this system can be formulated considering the 

balance of torque. Due to the fact that the inertia of the vehicle is much greater than 

that of the clutch and gearbox it can be regarded to be infinitely high, therefore only 

the latter are considered to be determinant for the oscillation: 

𝐽𝐶𝐺 ≪ 𝐽𝑉 = ∞ → 𝐽𝐶𝐺 = 𝐽 Eq. 2.3 

After this simplification, the equation of motion yields: 37F

38 

𝐽𝜑̈ + 𝑑𝜑̇ + 𝑐𝜑 = 𝑀(𝜑, 𝜑 ̇ ) Eq. 2.4 

Furthermore, the clutch torque is defined as follows: 

𝑀(𝜑,𝜑 ̇ ) = 𝐹(𝜑)2𝑟𝜇(𝜑) + 𝐴𝐶𝜑 ̇  Eq. 2.5 

In Eq. 2.5 the periodical clamping force is  𝐹(𝜑), whereas 𝜇(𝜑) is the friction coefficient. 

Its torsion angle dependency is mainly due to geometrical deviations. Finally, 𝐴𝐶 is a 

factor that describes the excitation due to the friction pairing in the clutch. Considering 

Eq. 2.3 – Eq. 2.5 the equation of motion can be reformulated and yields: 

𝐽𝜑̈ + (𝐷 − 𝐴𝑐)𝜑̇ + 𝐶𝜑 = 𝐹(𝜑)2𝑟𝜇(𝜑) Eq. 2.6 

The eigenfrequency of the simplified model is given by: 

                                            

37 Maucher 1990 
38 Albers / Herbst 1998 
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𝜔 = √
𝐶

𝐽
 Eq. 2.7 

In modern drive trains, the eigenfrequency lies in the range of approx.  8𝐻𝑧 − 12𝐻𝑧. 

KRAUSE 38F

39 performed some of the first experiments on judder vibrations in dry and wet 

clutches. He observed the vibrations on friction pairings where the friction coefficient 

rises with a falling slip in the clutch. Furthermore, he exposes discrepancies between 

static friction coefficients and dynamic friction coefficients during judder vibrations. 

On the basis of this experimental analysis, GÖRLICH39F

40 shows the effects of a variation 

of the stiffness, damping, the friction gradient and the inertia of a simulated two-mass 

rotational oscillator. Furthermore, he shows that the amplitude of the judder vibration 

decreases with an increasing stiffness and/or inertia in the drivetrain. This was also 

later observed by MAUCHER40F

41. Also, PFEIFFER 41F

42 offers an insight into friction vibrations 

and offers clutch judder among other cases as an example. 

In the context of this work only dry clutch systems are considered. For a summary of 

references regarding self-excited judder in wet clutch systems please consult 

KRÜGER42F

43. 

2.1.2 Externally excited Judder 

Judder vibrations in service are often observed, even when friction facings known to 

have a nearly constant friction gradient are in use. This is mainly due to geometrical 

deviations in the system and / or external periodical excitation sources. 43F

44  

A simplified model can be obtained analogously to the self-excited one-mass oscillator 

depicted in Fig. 2.1 by substituting the constant force   𝐹  by a periodically oscillating 

external exciting force  𝐹(𝑡). The simplified model is shown in Fig. 2.4. 

                                            

39 Krause 1965 
40 Görlich 1968 
41 Maucher 1990 
42 Pfeiffer 1992 
43 Krüger 2003 
44 Newcombe / Spurr 1972 
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Fig. 2.4: Simplified model of a simple mass externally excited oscillator according to 

MAUCHER44F

45 

According to ALBERS AND STIER 45F

46, there are two basic mechanisms of forced excitation: 

forced movements of the entire clutch system and a superposition of geometrical 

deviations. Forced movements of the clutch can occur as a result of the higher 

combustion pressures in modern combustion engines. The high pressures lead to an 

axial oscillation of the crankshaft and the clutch system, consequently causing an 

oscillating actuation of the clutch.  

WINKELMANN AND HARMUTH 46F

47 and later ALBERS AND HERBST 47F

48 analyzed the dependency 

of misalignments and judder vibrations. According to WINKELMANN AND HARMUTH47 at 

least two deviations from different types need to occur in order to cause clutch judder 

vibrations, whose excitation frequency is dependent of the rotational speeds of the 

underlying deviations. 

The Geometrical deviations that can lead to clutch judder are classified according to 

ALBERS AND HERBST48 and ALBERS AND KRÜGER 48F

49 in three categories: deviations 

rotating with engine speed, deviations rotating with gearbox speed and static 

deviations or misalignments. An overview of these deviations and a list of examples 

are contained in Table 2.1. 

  

                                            

45 Maucher 1990 
46 Albers / Stier 2010 
47 Winkelmann / Harmuth 1985 
48 Albers / Herbst 1998 
49 Albers / Krüger 2003b 
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Category 1 

Deviations rotating with engine 
speed 

𝜔 = 𝜔𝑒𝑛 

Category 2 

Deviations rotating with gearbox 
speed 

𝜔 = 𝜔𝑔𝑏 

Category 3 

Static deviations / 
misalignments 

𝜔 = 𝜔𝑠𝑡 = 0 

Crankshaft axial and radial run-out 

Periodic run-out of the diaphragm 
spring fingers 

 

Skewed lift-off of the clutch 
pressure plate 

 

Run-out or parallelism deviations of 
the clutch pressure plates 

Thickness variation of the clutch disc 

Irregularities of the clutch facing 
spring 

 

Radial run-out of the gearbox input 
shaft 

Radial and angular misalignment of 
gearbox and the engine 

 

Skewed clutch engagement 

Table 2.1: Classification of deviations and misalignments according to ALBERS AND STIER49F

50 

Depending on the combination of deviations present in the drive train, three 

characteristic types of externally excited judder are observable: 50F

51 

 Engine speed dependent judder 

Result of the superposition of deviations from the first and third category. The excitation 

frequency of the oscillation results from the difference of the rotational speeds of the 

deviations involved: 

 Gearbox speed dependent judder 

Result of the superposition of the second and third category of deviations. Analogously, 

the excitation frequency of the oscillation yields: 

 Differential speed dependent judder 

Result of the superposition of deviations of the first and second category. The 

excitation frequency of the oscillation is given by: 

                                            

50 Albers / Stier 2010 
51 Albers / Herbst 1998, Krüger 2003 and Albers / Stier 2010 

 

𝜔𝑒𝑥𝑐 = 𝜔𝑒𝑛 − 𝜔𝑠𝑡 = 𝜔𝑒𝑛 Eq. 2.8 

𝜔𝑒𝑥𝑐 = 𝜔𝑔𝑏 −𝜔𝑠𝑡 = 𝜔𝑔𝑏 Eq. 2.9 

𝜔𝑒𝑥𝑐 = 𝜔𝑒𝑛 −𝜔𝑔𝑏 = 𝜔𝑑𝑖𝑓𝑓 Eq. 2.10 
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It is worth mentioning, that all three types of externally excited judder are present to a 

certain extent in real drive trains. 51F

52 This is due to the fact that all deviations fluctuate 

within a (sometimes extremely narrow) set of tolerances, which makes externally 

excited judder a statistical problem. 52F

53 

ALBERS AND HERBST53 and KRÜGER 53F

54 offer a more detailed description of the three types 

of externally excited judder, whereas ALBERS AND STIER52 perform an experimental 

investigation of the effect of variation of geometrical deviations on judder vibrations. 

Furthermore, they present an approach for the modelling of judder excitation 

mechanisms. 

The focus of this work lies on systems with dry clutches, however, BAUER54F

55 lists 

additional deviations that can lead to externally excited judder vibrations in systems 

with wet clutches. 

2.1.3 Perception and Quantification of Judder 

As has been mentioned above, the main cause for judder is an oscillating torque 

induced through the clutch to the remaining, dynamically separated drive train. 

However, the passengers perceive it in the form of an oscillation of the longitudinal 

acceleration of the vehicle.53 These oscillations are perceived more or less strongly by 

the passengers in dependence of their amplitude and frequency 55F

56 

The consideration of customer comfort and the perception of it during the use phase 

of a product is a main requirement for a successful product development, especially 

so in the automotive industry. 56F

57 Depending on the task at hand, it makes sense to 

differentiate the measurement of physical parameter values from their perception by a 

human being. 

A common evaluation or assessment method in drive train development is the so called 

ATZ-scale, in which a grade of 1 to 10 is given by an evaluator according to his 

perception of noise and vibrations in a vehicle. Whereas the scale offers a basis for 

the comparison and evaluation of NVH phenomena, it is highly subjective, since 

different evaluators tend to have a different perception of comparable situations, 

depending on their experience and training. 

                                            

52 Albers / Stier 2010 
53 Albers / Herbst 1998 
54 Krüger 2003 
55 Bauer 1993 
56 Verein Deutscher Ingenieure 2009 
57 Albers / Albrecht 2002, Albers / Albrecht 2004 and Albrecht 2005 
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For this reason, considerable effort has been invested in the objectivization of the 

perception of comfort and the evaluation of NVH phenomena such as judder. It is often 

difficult to formulate a statement about customer comfort perception in early stages of 

development, since some effects on it might only become apparent late in the product 

development process. For example, DREXL 57F

58 points at the fact, that it is hard to make 

predictions regarding the vibration of a fully assembled drivetrain from the vibration of 

its components. For this reason, ALBERS AND ALBRECHT 58F

59 analyzed possibilities to 

predict the perceived comfort of passengers on a real life vehicle during start-up 

maneuvers. The work includes the standard regression modelling of passenger 

comfort as well as a method employing an artificial neural network (ANN). The basis 

for the modelling are tests with laymen evaluators in a test vehicle with start-up 

properties that could be varied in a customer-relevant range. The perception of comfort 

is measured with the help of an evaluation scheme. Afterwards, the approximation and 

prediction qualities of both methods, the standard regression and the ANN-method, 

are compared and the ANN-based method considered superior upon comparison. The 

result is consistent throughout real and simulated start-up procedures, allowing an 

estimation of customer comfort at early stages of the development process. Later, 

LERSPALUNGSANTI 59F

60 developed a user friendly platform for the use of the ANN-based 

method so that it allows the developer to vary experimental parameters such as the 

clutch actuation or the damping in the system in order to determine their effect on 

customer comfort. Furthermore, he extends the applicability of the method to the NVH-

phenomenon of gear rattling. 

Often, however, it is necessary to provide a measure of clutch judder in the form of a 

measured numeric value, free from human interpretation. Based on the work of 

MÜLLER60F

61, KRÜGER 61F

62 and KARRAR 62F

63 present a method to evaluate judder vibrations with 

the help of a numeric value. Instead of taking the oscillation of the clutch torque into 

consideration, the value of the area of the envelope curves around the gearbox input 

speed is used to evaluate the judder vibrations. The value is called the “area index”. 

The upper and lower envelope curves of the gearbox speed during a start-up and 

synchronization maneuver are depicted in Fig. 2.5. 

                                            

58 Drexl 1988 
59 Albers / Albrecht 2002, Albers / Albrecht 2004 and Albrecht 2005 
60 Lerspalungsanti 2010 
61 Müller 2002 
62 Krüger 2003 
63 Karrar 2009 
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Figure: 2.5: Envelope curves of the gearbox speed after KRÜGER62 

The “area index” is computed as follows: 

However, KRÜGER62 points at three disadvantages this method of evaluation bears: 

 The sensors in conventional drive trains do not allow recognition of the direction 

of rotation and are considerably inaccurate when the rotational speed is close 

to zero. Thus, leading to a faulty calculation of the area index. 

 The engine-speed decrease during a clutch synchronization maneuver has a 

major effect on the area index. In some cases, strong judder can be present 

despite a small area index. 

 The area index does not provide information about the frequency range of the 

drive train vibrations. 

Furthermore, KRÜGER also describes the possibility of describing the judder vibration 

with the transfer function of the drive train. The transfer function is determined using a 

multi-mass model of the drive train and allows to determine the frequency and 

amplitude of the judder vibrations. 

GRIFFIN 63F

64 presents a detailed description of the effects of vibrations on human beings. 

Later, he focused on the effect of vibrations in vehicles on the passengers and 

introduces the application of the “Vibration Dose Value (VDV)” 64F

65 to measure vibrations. 

The VDV is a value meant to evaluate the effect of mechanical vibrations on human 

beings. A technique called root-mean-quad is used to ensure its sensitivity towards 

                                            

64 Griffin 1990 
65 Griffin 2007 
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peaks in the acceleration levels. Thus, the VDV for a vibration with the duration 𝑇 is 

given by:  

The VDV would be an appropriate measure to evaluate judder vibrations and provide 

a numeric value to them. However, in this work a comparison of different methods to 

evaluate judder vibrations, including the VDV, is performed in 5.4 and the most suitable 

is used for the definition of the reward-signal. 

2.1.4 Countermeasures for Clutch Judder 

There are different approaches and methods to reduce judder vibrations in drive trains 

and they can be classified in three groups: constructive, tribological and control based 

(mechatronic) approaches. In this subchapter an overview of the first two groups is 

presented, before the mechatronic approaches, referred to as active damping 

approaches, are emphasized in the next. 

2.1.4.1  Constructive Countermeasures for Clutch Judder 

The effect of judder vibrations can be reduced in different ways according to their 

underlying causes. 

The occurrence of externally excited judder vibrations due to geometrical deviations 

and assembly errors can be reduced by narrowing the production and assembly 

tolerances, however, this necessarily translates to higher costs in both fields. 65F

66 

Keeping in mind that externally excited judder requires deviations of two different types 

to occur, it might prove sensible to tackle only the one that is easier / cheaper to 

handle. 66F

67 A further possibility is the development of robust clutch systems as proposed 

by ZINK ET AL. 67F

68. In their approach, the authors show a reduction of axial oscillations of 

the crank shaft by an optimized bearing of the clutch force actuator. 

Constructive solutions also include the deployment of additional components meant to 

ameliorate the occurrence of vibrations in the drive train, despite any deviations and 

errors in it. For example, JÖRG68F

69 proposes a rotational vibration damping unit in the 

form of an additional component built in behind the gearbox. It can be described as an 

additional inertia, thus a flywheel, mounted on a damping ring of polymer material. 

However, the use of these components is only possible at the expense of higher costs 

                                            

66 Albers / Herbst 1998 and Krüger 2003 
67 Krüger 2003 
68 Zink et al. 2002 
69 Jörg 1988 
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due to their production and assembly cost. Furthermore, their inclusion in the drive 

train necessarily imposes restrictions on space and weight.   

Finally, it is possible to reduce the amplitude of vibrations in the drive train by 

increasing its damping. This can be achieved either by increasing the damping of its 

components individually and/or that of the assembled drive train. However, an increase 

in damping implicates a lower degree of energy efficiency due to dissipation effects.  

A very interesting and promising concept is presented by KOOY69F

70 where the concept of 

a centrifugal pendulum is applied to the clutch, thus realizing a long-sought-for 

compromise between a “merely” dampened clutch disc and dual mass flywheel. 

However, in high torque systems, such as heavy load vehicles, its implementation 

often leads to load spikes leading to so called “impact situations”. These may lead to 

a stalling of the engine or similar, undesired scenarios. This issue could be addressed 

through an accordingly customized engine control and / or the implementation of high-

capacity-springs in the clutch. 

2.1.4.2  Tribological Countermeasures for Clutch Judder 

As mentioned in chapter 2.1.1 self-excited judder occurs when the friction coefficient 

in the contact decreases with the slip, but disappears if it either remains constant or if 

it rises with a decrease in slip. 

ALBERS ET AL. 70F

71 point at the fact that the use of friction pairings showing a positive 

friction coefficient gradient would avoid self-excited judder entirely and would 

additionally have a dampening effect on externally excited vibrations. However, they 

also point at the fact that no friction pairings known to date present such behavior 

throughout the whole temperature scale in dry running systems and would therefore 

require an improved heat removal at friction contact.  

MAUCHER71F

72 also points at the dependence on the temperature of the friction coefficient 

gradient of pairings that showed a constant or slightly positive gradient during 

experiments. High thermal stress can lead to the gradient becoming negative, thus the 

effect is known as “fading”. 

JÜRGENS AND FISCHER 72F

73, however, show that a positive friction coefficient gradient can 

be obtained in wet running systems with organic friction pairings in combination with a 

certain type of oil and additives. 

                                            

70 Kooy 2014 
71 Albers / Herbst 1998 
72 Maucher 1990 
73 Jürgens / Fischer 1988 
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Furthermore, some tribological systems are known to show a negative, thus self-

exciting, friction coefficient gradient only in the run-in period. This effect is known as 

“green shudder”. 73F

74 

2.1.5 Mechatronic Countermeasures for Clutch Judder 

This subchapter is dedicated to offer an overview of different mechatronic approaches 

and implementations of judder suppression through active damping of vibrations. 

RABEIH AND CROLLA74F

75 formulate the mathematical description of judder vibrations and 

determine its dynamics to be entirely predictable as long as all required input variables 

regarding the state of the drive train are known, thus they conclude it should be 

possible to reduce the torsional vibration using an intelligent controller in the form of a 

robust or an adaptive controller. However, they do not present nor specify a concrete 

solution, which hints at the questionable practicality of the approach. 

ALBERS AND KRÜGER75F

76 demonstrate the possibility of implementing such controllers on 

a drive train simulation and a corresponding test bench. Later, they introduced the 

simplified model for the control of friction induced vibrations, depicted in Fig 2.6. 

 

 

Figure 2.6: Simplified model for the control of friction induced vibrations according to ALBERS 

AND KRÜGER 76F

77; left: translational friction vibration system; right: rotational friction vibration 
system 

On the basis of this simplified model, KRÜGER77F

78 presents an active clamping force 

control using the root-locus method and a full state feedback (FSF) method both in 

simulation and on a reduced drive train test bench. The results show a significant 

improvement compared to open loop clutch engagement. Also, high requirements on 

                                            

74 Mosbach 2002 
75 Rabeih / Crolla 1996 
76 Albers / Krüger 2002a 
77 Albers / Krüger 2003b 
78 Krüger 2003 

Control
Control



Fundamentals and State of the Art 19 

actuator dynamics and sensor signal quality are found to be of great importance. 

However, neither the effect of wear in the system in the long term nor the influence of 

different degrees of externally excited judder on the controller performance is 

considered. 

A synchronization assistance solution, as well as an optimal standing start controller 

for automated manual transmissions is presented in DOLCINI ET AL. 78F

79. Furthermore, a 

"friction-coefficient observer" is introduced. The observer includes a least square 

algorithm in order to react to slow changes in the relationship between the clamping 

force and the hydraulic piston position due to wear and squashing of the flat spring. 

The results are validated on a real life vehicle. 

ALBERS ET AL. 79F

80 introduce both a PI and a Fuzzy-Logic controller for an 

electromechanical clutch actuator on a reduced drive train test bench. The PI controller 

was implemented using operating maps calculated in real time. The fuzzy logic 

controller was implemented following the Mamdani approach. The simulation and test 

bench results are promising, but a need for adaption of the controllers over the lifetime 

of the clutch is deemed necessary. 

A robust controller to suppress clutch judder is presented by NAUS ET AL. 80F

81. The authors 

apply the H∞-controller synthesis for the robust controller design. Furthermore, 

additional control of the rotational speed of the motor is necessary for this solution. The 

validation of the concept takes place in drive train simulations. The simulation model 

includes the actuation and the dynamics of measurement devices. 

Finally, PINTE ET AL. 81F

82 and later DEPRAETERE ET AL. 82F

83 use a policy search reinforcement 

learning algorithm for the hydraulic open-loop engagement of a wet clutch. The authors 

employ a policy gradient method with parameter exploration unlike the value based 

method employed in this work. In their approach, no feedback of the system state is 

considered, although it is mentioned that information about possible state variables 

such as oil pressure and temperature could be included in future research. In their 

work, the authors already hint at the fact that reinforcement learning algorithms do not 

require a model of the environment, in this case the test bench, to compute a working 

operation strategy. However, the authors note that even an inaccurate model can be 

used to compute preliminary solutions in simulations. The lack of feedback about the 

state of the system leads to a process more comparable to a Monte Carlo method in 

which an evaluation is only possible after a whole synchronization maneuver is 

                                            

79 Dolcini et al. 2010 
80 Albers et al. 2010b 
81 Naus et al. 2008 and Naus et al. 2010 
82 Pinte et al. 2010 
83 Depraetere et al. 2011 
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completed. In this thesis, better results are expected from the implementation of an 

incremental value based method with system state feedback. 

2.2 Reinforcement Learning 

Machine learning is a subfield of computer sciences and artificial intelligence that 

focuses on systems capable of learning data instead of merely following programmed 

routines. 83F

84 A more specific definition is provided by MITCHELL 84F

85, who defines artificial 

intelligence as follows: “A computer program is said to learn from experience E with 

respect to some class of tasks T and performance measure P, if its performance at 

tasks in T, as measured by P, improves with experience E”. 

The learning entity in a machine learning algorithm or system is commonly 

denominated as agent. However, providing a definition of an agent that is widely 

accepted is rather difficult, as WOOLDRIDGE AND JENNINGS 85F

86 point out. In the context of 

reinforcement learning, SUTTON AND BARTO 86F

87 describe the agent simply as the learner 

and decision maker but do not provide any particular characteristics to it.  

In machine learning, there are three main categories of methods: supervised learning, 

unsupervised learning and reinforcement learning. They differ from each other in the 

mechanism by which the learning entity, the agent, acquires and evaluates new 

information regarding a learning task. 

According to MOHRI ET AL., supervised learning is the machine learning task of inferring 

a function from labeled training data. This implies that the learning entity is given 

feedback about the desired outcome of the learning process by a perfect teacher, thus 

supervised. Training data is required to learn an inferred function, which can later be 

used for mapping new examples. Some common approaches and algorithms that 

belong to this category are most artificial neural networks 87F

88, decision trees88F

89 and case-

based reasoning technology 89F

90 among many others. 

In unsupervised learning the learner attempt to find a pattern in a set of data without 

any information regarding an error or a reward during the recognition. The examples 

the learner works with are unlabeled and its purpose is generally to find a hidden 

structure in the data, thus of data mining. Some of the most prominent approaches in 

                                            

84 Mohri et al. 2012 
85 Mitchell 1997 
86 Wooldridge / Jennings 1995 
87 Sutton / Barto 1998 
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unsupervised learning include different clustering approaches like hierarchical 

clustering 90F

91, a type of artificial neural networks called self-organizing maps (SOM) or 

Kohonen network 91F

92 and association rule learning algorithms like the Apriori 

algorithm 92F

93. 

Finally, in reinforcement learning (RL) algorithms, the learning takes place in the form 

of an interaction between the learner, or agent, and its environment. They differ from 

supervised learning methods in that they lack the knowledge provided by an external 

teacher. The acquisition of information results from a trial-and-error mechanism, 

throughout which the agent strives to learn by itself through interaction. This is of 

particular advantage when knowledge about the right behavior at given situations is 

not available. However, the inherent problem to RL is the so called “curse of 

dimensionality” 93F

94 that describes the exponential growth of the state space as a 

response of a linear growth in state variables and the explosion in the computing effort 

RL applications might incur as a consequence. 

In the following subchapters an overview of the reinforcement learning problem, the 

basic elements of its framework and the elementary solution methods are introduced 

in accordance to SUTTON AND BARTO 94F

95, whose work is widely regarded as the most 

influential in the subject. 95F

96 Afterwards, an overview of the state of the art of RL-methods 

and their application in different domains is presented. 

2.2.1 The Reinforcement Learning Problem and its Elements 

In this subchapter an overview of the elements of reinforcement learning is provided. 

Subsequently, the Markov property and Markov decision processes (MDP) are 

introduced. 

In simple words, a reinforcement learning algorithm can basically be described as an 

algorithm which learns what to do in a given situation in order to maximize a numerical 

reward-signal. Thus, its result is a mapping of the actions the agent can perform and 

the different states of the environment. 

As mentioned previously, RL is different from supervised learning since it lacks the 

external input provided in the form of examples by an external teacher. Whereas this 

feature may seem disadvantageous, it is a key element of RL since the learning agent 
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should be able to learn based on its own experience when confronted with uncharted 

territory. This feature is also the reason for one of the characteristic challenges in 

reinforcement learning: the trade-off between exploration and exploitation. On the one 

hand, the agent has to take the actions it has learnt to be more effective in a given 

situation, but on the other hand, it needs to discover what these actions are first. 

The final distinction made by SUTTON AND BARTO 96F

97 is that RL considers the whole 

problem of the goal-oriented agent-environment interaction, where other approaches 

generally are restricted to subproblems. In RL, other machine learning methods (e.g. 

supervised learning methods) are used for specific reasons, in order to achieve a goal. 

This characteristic has led to a greater contact between artificial intelligence and other 

engineering disciplines. 

Finally, a reinforcement learning problem or task can be episodic or continuous. 

Episodic tasks have at least one clearly defined terminal state. Such is the case of a 

game of chess, where a game ends with a checkmate or a draw. There is a vast 

number of different states that can be regarded as a terminal state, since they all 

represent the end of the game. A continuous task, on the other hand, has no specified 

terminal state, although very extensive episodic tasks are sometimes regarded as 

continuous. An example would be the temperature controller of a fluid container in any 

chemical plant. At some point in the future the plant will no longer stand, but since the 

precise end is not known, this very lengthy episodic task can be regarded as 

continuous. 

Two elements of reinforcement learning have been identified so far, the agent and the 

environment. Beyond these two, there are four important subelements of a RL system: 

a reward function, a value function, a policy and a model of the environment, whereas 

the latter is optional. 97F

98 

2.2.1.1  Reward function and returns 

A reward function is used to define the goal in a RL problem. Its purpose is to associate 

a perceived state, or the combination of taking an action at a certain state (state-action 

pair), with a numerical signal that indicates the desirability of that state or state-action 

pair. The sole purpose of a RL agent is to maximize the reward-signal in the long run. 

However, a reward-signal defines what immediate good or bad events for the agent 

are, regardless of what can happen later on. Reward-signals cannot be altered by the 

agent and can, in general, be of stochastic nature. 

It is essential that the design of the reward actually describes what the goal of the agent 

is. While it might make sense to reward subgoals achieved by the agent, it might also 
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lead to an undesired behavior or simply learning the wrong task. An excellent example 

is yet again provided by the game of chess. In order to win a match, it might make 

sense to gain control over the middle of the board or take the opponents pieces. 

However, the game is only won by achieving a checkmate, regardless of how many 

pieces each of the players have remaining. It is therefore sensible to reward the agent 

for winning a match only. 

Thus far, the concept of a long term reward has been used without providing a proper 

formal definition of it. In the simplest of cases, the long term reward yields the sum of 

rewards accumulated after each decision. However, knowledge about future rewards 

may not necessarily be without error, thus RL seeks to maximize the long term 

expected return, where the return  𝑅𝑡 is a specific function of the reward sequence.98 

In the simplest case, the return  𝑅𝑡 at the time  𝑡 for an episodic task yields: the sum of 

the rewards: 

where  𝑇 is the final step. 

However, this approach is problematic since it weighs all rewards equally and it 

requires the existence of a terminal state at the time  𝑇. For continuous tasks, the latter 

is a problem since it can easily lead to the return being infinite since  𝑇 = ∞. 

Maximization is not possible if the return for all policies is infinite. For episodic tasks, 

even if  𝑇 < ∞, weighing all rewards equally only makes sense if the transition into 

future states is deterministic. This is often not the case due to the explorative nature of 

action selection methods and/or a stochastic environment, where only the probability 

of future rewards can be determined. 

Thus, the concept of discounting is introduced in order to determine how short- or 

farsighted an agent should be when assessing future rewards. The return  𝑅𝑡 is now 

computed considering a discount rate 𝛾 and yields: 

The discount rate has to satisfy the rule  0 ≤ 𝛾 ≤ 1. For  𝛾 = 0 the agent takes only 

immediate rewards into consideration when selecting an action. Future rewards are 

taken into account more strongly as  𝛾 approaches 1. 

2.2.1.2  Value function 

The value function is used to determine what behavior is good in the long run. The 

value of a specific state is the total amount of reward an agent can expect to 

accumulate over the future, starting from this state. In contrast to reward functions, the 

value functions take into account the long term desirability of a state (or state-action 

R𝑡 = 𝑟𝑡+1 + 𝑟𝑡+2 + 𝑟𝑡+3 +⋯+ 𝑟𝑇 Eq. 2.13 

R𝑡 = 𝑟𝑡+1 + 𝛾 ∗ 𝑟𝑡+2 + 𝛾
2 ∗ 𝑟𝑡+3 +⋯ =∑ 𝛾𝑘 ∗ 𝑟𝑡+𝑘+1

∞

𝑘=0
 

Eq. 2.14 
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pair), taking into consideration the states that are likely to follow and their desirability. 

A very simple example of the difference between reward and value can be provided by 

looking at the simple binary tree depicted in Fig. 2.7. 

 

Figure 2.7: Exemplary binary tree: The transition from the state 𝑠0 to the state 𝑠11 bears the 

reward  𝑟 = 1. Rewarding the transition into other states is analogous. For simplicity 
purposes the rewards are not labeled. 

It is evident that if an agent transitions down the tree solely pursuing the greatest 

reward at any given state it will achieve a maximal reward of  𝑟 = 4  when it ends up 

in  𝑠24. The greatest possible reward, however, is achieved if the agent ends up in  𝑠21 

where he would have acquired  𝑟 = 6. In this simple case, the value of  𝑠11 is higher than 

the value of  𝑠12, even though the reward perceived by the agent for transitioning 

into  𝑠12 is initially higher. 

SUTTON AND BARTO 98F

99 offer an analogy with human beings by considering the reward to 

be like pleasure (if high) and pain (if low), whereas the values correspond to our more 

refined and farsighted judgment. Sometimes human beings will accept pain or forgo 

pleasure in the short term to achieve goals that are important to them. 

Even though one could argue that without rewards there can be no value and that the 

purpose of considering value is only to maximize rewards, it is values with which it is 

more worthwhile working. Thus, estimating values is a central activity in most 

reinforcement learning methods. 

SUTTON AND BARTO99 state that methods that do not rely on value function estimation 

have been used to solve RL problems. Most of these methods search directly for a 

solution (policy) in the solution space. The authors denote these methods as 

evolutionary due to the fact that the solutions (individuals) produced with these 

methods are incapable of learning during their individual life time. They deem these 

methods appropriate for tasks in which the solution space is sufficiently small or the 

environment feedback to the agent is problematic. 
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The definition of the value function at a given state  𝑠 can be defined as the expected 

return 𝑅𝑡 described previously, when following a given policy  𝜋 starting from said state: 

Thus far the value of the states has been considered regardless of the actions taken, 

whereas in RL it makes more sense to take the interaction with the environment, thus 

the action available for selection, into account as well. Therefore, action-value 

functions are introduced in order to evaluate the value of state-action pairs, i.e. to 

evaluate the value of performing an action  𝑎 at a given state  𝑠: 

Analogously,  𝑄𝜋(𝑠, 𝑎) describes the expected return when starting from the state  𝑠 

and selecting the action  𝑎 while following the policy  𝜋. 

One fundamental property of value and action-value functions in the context of RL (and 

dynamic programming) is that they satisfy a set of particular recursive relationships. 

For every policy  𝜋  and every state  𝑠  the following can be formulated about the value 

of  𝑠  and the value of the probable successor states: 

Analogously, this recursive relationship can be formulated for the action-value function 

as follows: 

𝑉𝜋(𝑠) = 𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠} = 𝐸𝜋{∑ 𝛾𝑘 ∗ 𝑟𝑡+𝑘+1
∞
𝑘=0 |𝑠𝑡 = 𝑠} Eq. 2.15 

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} = 𝐸𝜋{∑ 𝛾𝑘 ∗ 𝑟𝑡+𝑘+1
∞
𝑘=0 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} Eq. 2.16 

𝑉𝜋(𝑠) = 𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠} =  𝐸𝜋{∑ 𝛾𝑘𝑟𝑡+𝑘+1
∞
𝑘=0 |𝑠𝑡 = 𝑠}

= 𝐸𝜋{𝑟𝑡+1 + 𝛾∑ 𝛾𝑘𝑟𝑡+𝑘+2
∞
𝑘=0 |𝑠𝑡 = 𝑠}

=∑𝜋(𝑠, 𝑎)∑𝑃𝑠𝑠′
𝑎 [𝑅𝑠𝑠′

𝑎

𝑠′𝑎

+ 𝛾𝐸𝜋{∑ 𝛾𝑘𝑟𝑡+𝑘+2
∞
𝑘=0 |𝑠𝑡+1 = 𝑠′}

=∑𝜋(𝑠, 𝑎)

𝑎

∑𝑃𝑠𝑠′
𝑎 [𝑅𝑠𝑠′

𝑎

𝑠′

+ 𝛾𝑉𝜋(𝑠′)] 

Eq. 2.17 

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} =  𝐸𝜋{∑ 𝛾𝑘𝑟𝑡+𝑘+1
∞
𝑘=0 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎}

= 𝐸𝜋{𝑟𝑡+1 + 𝛾∑ 𝛾𝑘𝑟𝑡+𝑘+2
∞
𝑘=0 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎}

=∑𝒫𝑠𝑠′
𝑎

𝑠′

[ℛ𝑠𝑠′
𝑎

+ 𝛾∑𝜋(𝑠′, 𝑎′)

𝑎

𝐸𝜋{∑ 𝛾𝑘𝑟𝑡+𝑘+2
∞
𝑘=0 |𝑠𝑡+1 = 𝑠

′, 𝑎𝑡+1 = 𝑎
′}]

=∑𝒫𝑠𝑠′
𝑎

𝑠′

[ℛ𝑠𝑠′
𝑎 + 𝛾∑𝜋(𝑠′, 𝑎′)𝑄𝜋(𝑠′, 𝑎′)

𝑎  

 ] 

Eq. 2.18 
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Each of these equations is a so called Bellman equation 99F

100. It expresses a relationship 

between the value of a state-action pair and the values of its successor pairs. 

Analogously, for state-value functions, it expresses the value of a state and its 

successors. 

The concept of optimal value functions and optimal action-value functions will be briefly 

introduced after the characteristics of Markov decision processes are defined later in 

this subchapter. 

2.2.1.3  Policy 

A policy defines the behavior of the learning agent at any given time. It can be 

described as a mapping of perceived states of the environment to actions to be taken 

when in those states. Roughly speaking, the numeric values in a policy can be 

considered a mapping from states to probabilities of selecting each possible action. 

Policies may have the form of simple lookup tables or functions, in some cases 

however, they may require extensive computation. A policy corresponds to the set of 

stimulus-response associations in psychology. 100F

101  

In order to find a good, or even an optimal policy, the agent needs to address the 

previously mentioned trade-off between exploration and exploitation101F

102. Therefore, an 

appropriate action selection method is almost always part of the policy. On the basis 

of the values of the value function at a given state, the action selection method 

determines which action is to be taken next. The simplest selection method involves 

always selecting the action that yields the highest value, thus its name: a greedy 

selection method. This method consists of exploitation of knowledge only. However, 

pure exploitation is likely to lead to a non-optimal policy.  

One of the simplest, yet effective, action selection methods is the ε-greedy method. In 

this policy a percentage ε of the actions taken is selected at random. This explorative 

behavior of the agent may lead him to find better policies instead of converging towards 

                                            

100 Bellman 1957 
101 The Russian Nobel Prize holder Ivan Petrovich Pavlov is widely regarded as the pioneer in the study 

of stimulus-response associations and his work on classical conditioning is considered the basis of 
behaviorism. His most famous experimental contribution involves the conditioning of a dog using an 
acoustic signal and food. Over an extended period of time, Pavlov rang a bell before feeding a dog. 
He then realized that afterwards, he could induce the dog to salivate after it heard the bell ring even 
in the absence of food after the sound. The dog had associated the acoustic signal with the imminent 
feeding. For an insight into behaviorism theory refer to Baum 1994. 

102 The exploration vs. exploitation trade-off is known in control engineering as the conflict between 
identification (or estimation) and control, for example c.f. Witten 1976. In the context of genetic 
algorithms, Holland 1992 refers to it as the conflict between the need to exploit and the need for new 
information. 
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suboptimal ones. SUTTON AND BARTO 102F

103 demonstrate the effectiveness of the ε-greedy 

action selection in an example regarding an n-armed bandit problem 103F

104. 

 

 

Figure 2.8: Average performance of ε-greedy methods on the 10-armed bandit 

problem over 2000 tasks. One task consists of 1000 plays.103 

Initially, the greedy selection method outperforms the explorative methods over the 

course of a very small number of plays. Shortly afterwards, the explorative ε-greedy 

methods discover better policies and are able to achieve higher rewards. However, 

higher exploration rates hinder the convergence behavior of the policy, so an optimum 

rate needs to be computed, usually empirically. Also, the value of the exploration 

rate, 𝜀, is usually reduced over time in order to explore more at the beginning of a task 

and exploit later on, when more information has been gathered. In the context of this 

work, 𝜀 was defined to obey the following rule: 

𝜀𝑘+1 = 𝜀𝑘 ∗ 𝜇,   where  0 < 𝜇 < 1 
Eq. 2.19  

The resulting dynamic progression of 𝜀 over the episodes of a RL task can be taken 

from Fig. 2.9. 

 

                                            

103 Sutton / Barto 1998 
104 An n-armed bandit game can be seen as a slot-machine with n levers that can be pulled by the 

player. At every turn the player can choose to pull one lever in order to cash the jackpot. The goal is 
to maximize the cumulative reward through jackpots over a certain number of turns. 
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Figure 2.9: Progression of the exploration rate  𝜀  for  𝜀1 = 0.3  and  𝜇 = 0.9. 

The ε-greedy action selection method is an effective and popular approach to balance 

exploration and exploitation. However, it has one main drawback: it is as likely to 

choose the worst appearing action as it is to choose the best appearing one during 

exploration. Whereas it might seem unimportant at first glance, it can be substantially 

detrimental in tasks where the worst actions lead to very bad results. An approach to 

counter this disadvantage is to provide a distribution of selection probability according 

to the value of the actions. The greedy selection would still be assigned the highest 

selection probability, whereas the selection probability of the remaining actions is 

weighed according to the actions value.  

These action selection methods are called softmax methods. 104F

105 Commonly, softmax 

methods use a Gibbs or Boltzmann distribution and the probability of choosing an 

action 𝑎 at 𝑡-th play yields: 

where 𝜏∗ is a positive parameter called temperature. High temperatures cause the 

actions to be nearly equally probable, whereas low temperatures cause a greater 

difference in selection probability for actions that differ in their value estimates. For  𝜏 →

0 the softmax selection becomes the same as greedy selection. 

It is unclear whether ε-greedy or softmax selection is better and no careful comparative 

studies had been found by SUTTON AND BARTO 105F

106. The two methods have only one 

parameter that has to be set, however, setting  𝜀 is more intuitive, whereas setting  𝜏 

requires knowledge of the likely action values. Due to its simplicity and its easier 

                                            

105 Though the method was apparently first introduced by Luce 1959, the term softmax is attributed to 
Bridle 1990. 

106 Sutton / Barto 1998 
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implementation, all approaches in the context of this work use an ε-greedy action 

selection method. 

2.2.1.4  Model of the environment 

The final element of a reinforcement learning system is a model of the environment. 

This element is meant to reproduce the behavior of the environment. SUTTON AND 

BARTO106 consider the use of a model of the environment only as a planning tool, which 

they use to predict the resultant next state and reward in order to decide on a course 

of action considering future situations. They consider the fact that the agent could 

simultaneously learn by trial-and-error, learn a model of the environment, and use the 

model for future decision making. 

Nevertheless, especially in the case of technical tasks, a model of the environment can 

be used to make predictions about how the physical plant might react to the RL agent. 

In particular, a policy can be computed in simulation and then applied to the physical 

task in order to reduce the risk of harming hardware as a result of especially harmful 

explorative actions. Furthermore, a simulation model of the environment can 

accelerate development of RL solutions if the computation time is actually shorter than 

the time step itself. 

However, a model of the environment is not necessary and its use is often not even 

desired, since producing an accurate model might require a considerable amount of 

effort. 

2.2.2 Agent-Environment Interaction Model 

Thus far, all elements of the RL framework have been introduced. However, the 

framework becomes much easier to understand after regarding the actual agent-

environment interaction procedure.  

As was mentioned earlier, the agent is the entity considered the learner and decision 

maker. It interacts with the environment, which comprises everything outside the agent. 

The interaction takes place continually; the agent taking actions and the environment 

transitioning into new states and giving rise to rewards in accordance to these actions. 

The sole purpose of the agent is to maximize these rewards in the long run. A task is 

defined by a complete description of the environment. 

Formally, at each time step  𝑡 , the agent interprets a representation of the 

environments state,  𝑠𝑡 ∈ 𝑆, where  𝑆  is the set of possible states, and selects an 

action,  𝑎 ∈ 𝐴(𝑠𝑡) , where  𝐴(𝑠𝑡) is the set of available actions in  𝑠𝑡 . A time step later 

the agent receives a numeric reward,  𝑟𝑡+1 ∈ 𝑅, as a consequence of the selected 
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action and finds itself in a new state  𝑠𝑡+1 .The agent-environment interaction model in 

accordance to SUTTON AND BARTO 106F

107 is depicted in Fig. 2.10.  

Whereas this framework is conceived to be very specific about the interaction of an 

agent with its environment, it is remarkably flexible and abstract at the same time. 

Virtually any task could be conceived to conform with the framework if it is represented 

properly. Time steps have not necessarily have to be actual time intervals, they could 

easily be assumed to be any other process describing element such as a play during 

a game or a turn in a match. Consider a robot designed to play tennis; actions can be 

as low level as the current applied to the joints of the robot in order to move, as they 

can be complex and/or abstract such as choosing a forehand over a backhand shot. 

The same goes for states, they can describe the physical parameters of said robotic 

joint as well as they could describe a game situation such as a service. 

 

Figure 2.10: The agent-environment interaction framework 

Furthermore, the boundaries between an agent and its environment are worth 

discussing. Generally, the boundaries are generally different from the physical 

boundaries in a RL task. One might intuitively consider the robot in the tennis playing 

task the agent, however, its joints and links are actually considered part of the 

environment, since their behavior does not entirely underlie the agent’s control. 

Therefore, a general rule to define the boundary between an agent and its environment 

is to consider everything that cannot be changed arbitrarily by the agent a part of its 

environment. 

2.2.3 The Markov Property and Markov Decision Processes (MDP) 

The only information available to the agent before making a decision is contained in 

description of the environments state. It is therefore of great importance that this 

description accurately describes all the elements of the environment that the agent 

requires in order to make appropriate decisions. 

                                            

107 Sutton / Barto 1998 
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One important requirement is that the information about any given state includes all 

the information about its history. Ideally, a state-signal should be able to retain all 

relevant information successfully. A signal that satisfies this requirement is said to be 

Markov, or to have the Markov property.107F

108,
108F

109 

In general, the response of the environment at the time  𝑡 + 1 to an action taken at the 

time  𝑡 can be formulated in the form of the probability  𝑃𝑟  for the expected state and 

the expected return: 

for all  𝑠′,  𝑟 as well as for all states, actions and returns in the past 

𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡−1, 𝑎𝑡−1, … , 𝑟1, 𝑠0, 𝑎0. However, if the environment or the state-signal that 

describes it has the Markov property, Eq. 2.18 can be simplified as follows: 

Thus, an environment that has the Markov property allows the prediction of any future 

states and rewards given the current state and action. Since decisions and values are 

assumed to be a function of the current state only, i.e. of its one step dynamics, the 

Markov property is of great importance in RL. 

An example of a Markov environment, or the Markov description of an environment, is 

a snapshot of all the figures and the board at any given turn during a game of chess. 

As long as the position of all the figures is included in the description of the state, all 

possible outcomes of the game can be predicted regardless of how the game situation 

came to be, i.e. regardless of the game’s history. 

SUTTON AND BARTO 109F

110 consider it still appropriate to think of the state in RL as an 

approximation of a Markov state, even if the signal is in fact non-Markov. However, 

they insist that RL systems will perform better as the state-signal approaches the ability 

of Markov states. 

A RL task that satisfies the Markov property is called a Markov decision process or 

MDP. If the state and action spaces are finite, then it is called a finite MDP. Even 

though most technical problems are of continuous nature, thus involving theoretically 

an infinite amount of states and actions, they are usually modelled as finite MDPs, e.g. 

by discretizing the state and action spaces into a finite number. 

                                            

108 Markov / Nagorny 1988 
109 The groundwork of MDPs goes as back as Bellman 1957, but they are named after the Russian 

mathematician Andrey Markov. The theory of MDPs is treated by, e.g., Bertsekas 1995, Ross 1983 
and White 1969. 

110 Sutton / Barto 1998 

𝑃𝑟{𝑠𝑡+1 = 𝑠
′, 𝑟𝑡+1 = 𝑟|𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡−1, 𝑎𝑡−1, … , 𝑟1, 𝑠0, 𝑎0} Eq. 2.21 

𝑃𝑟{𝑠𝑡+1 = 𝑠
′, 𝑟𝑡+1 = 𝑟|𝑠𝑡 , 𝑎𝑡} Eq. 2.22 
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In addition to its state and action sets, a finite MDP is characterized by the one step 

dynamics of the environment. The transition probabilities for a transition from  𝑠  to  𝑠′ 

after performing the action  𝑎  yields: 

Analogously, the expected value of the next reward can be formulated as follows: 

The elementary solutions presented later in this chapter assume implicitly that the 

environment is a finite MDP. 

It is possible to define optimal policies and optimal value functions for finite MDPs.110 

A policy  𝜋 is defined to be better than or equal to a policy  𝜋′ if its expected return is 

greater than or equal to that of  𝜋′ for all states (or state-action pairs). There can be 

more than one optimal policy, but they are all denoted as  𝜋∗ and they all share the 

same optimal state-value function  𝑉∗: 

They also share the same optimal action-value function  𝑄∗: 

The relationship between   𝑉∗ and  𝑄∗ can be expressed as follows: 

For optimal value and action-value functions, the consistency condition expressed by 

the Bellman equation can be written in a special form without referencing any specific 

policy called the Bellman optimality function. 110F

111 For optimal value functions it yields: 

Analogously, for optimal action-value functions it yields: 

                                            

111 For a detailed derivation of the Bellman optimality equation please refer to either Bellman 1957 or 
Sutton / Barto 1998 

𝑃𝑠𝑠′
𝑎 {𝑠𝑡+1 = 𝑠

′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} Eq. 2.23 

𝑅𝑠𝑠′
𝑎 {𝑟𝑡+1|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝑠𝑡+1} Eq. 2.24 

 𝑉∗(𝑠) = max
𝜋
𝑉𝜋(𝑠) Eq. 2.25 

𝑄∗(𝑠, 𝑎) = max
𝜋
𝑄𝜋(𝑠, 𝑎) Eq. 2.26 

𝑄∗(𝑠, 𝑎) = {𝑟𝑡+1 + 𝛾𝑉
∗(𝑠𝑡+1)|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} Eq. 2.27 

𝑉∗(𝑠) = max
𝑎∈𝐴(𝑠)

∑𝑃𝑠𝑠′
𝑎

𝑠′

[𝑅𝑠𝑠′
𝑎 + 𝛾𝑉∗(𝑠′)] Eq. 2.28 

𝑄∗(𝑠, 𝑎) =∑𝑃𝑠𝑠′
𝑎

𝑠′

[𝑅𝑠𝑠′
𝑎 + 𝛾max

𝑎′
𝑄∗(𝑠′, 𝑎′)] Eq. 2.29 
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Having  𝑉∗(𝑠) or  𝑄∗(𝑠, 𝑎) allows it to turn the optimal expected long term reward into a 

quantity available locally and immediately for each state so that a one-step-ahead 

search yields the optimal results. 

2.2.4 Elementary Solution Methods 

SUTTON AND BARTO 111F

112 define reinforcement learning (RL) not by the characterization of 

the learning methods, but by characterizing the learning problem and considering any 

method suited to solve such problems a reinforcement learning method. However, they 

recognize three fundamental methods: dynamic programming (DP), Monte Carlo 

methods (MC), and temporal difference learning (TD). All of them have particular 

strengths and weaknesses that often determine their suitability for a certain task. DP 

methods are well developed mathematically, but a complete and accurate model of the 

environment is necessary for their implementation. MC methods, on the other hand, 

require no model of the environment, but are not suitable for step-by-step incremental 

computation. TD methods combine the advantages of the former methods, i.e. they 

require no model of the environment and are fully incremental, but their analysis is 

more complex. At last, it is possible to combine these methods in order to obtain the 

best features of each of them. In the context of this work, eligibility traces are briefly 

introduced as such a possibility. 

2.2.4.1  Dynamic Programming 

Dynamic programming is a term that refers to algorithms used to compute optimal 

policies under the assumption of a perfect model of the environment as a MDP. It is 

precisely the assumption of a perfect model of the environment and the high computing 

effort they require that limits their utility. They are, however, of great theoretical 

importance since they provide an essential foundation for the understanding of the 

other presented methods. Essentially, these methods can be considered an attempt to 

reproduce the effect of DP with less computation and without the assumption of a 

perfect model of the environment (or no model at all). 

The main idea behind DP (and RL generally) is the use of value functions to organize 

and structure the search for good policies. As discussed in the previous subchapter, 

optimal policies are easily found when the optimal value or action-value function, 𝑉∗(𝑠) 

and  𝑄∗(𝑠, 𝑎) respectively, are known. 112F

113 Ultimately, DP algorithms are obtained by 

turning Bellman equations into update rules for improving approximations of the 

desired value functions. 

                                            

112 Sutton / Barto 1998 
113 cp. chapter 2.2.3 
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The DP process can be reduced to two fundamental, interdependent procedures. The 

first consists of computing the state-value or action-state value function for a policy. 

This step is called policy evaluation. Once the value function has been computed it is 

used to find better policies. Thus, the second step is called policy improvement. Once 

the policy has been improved, its value function can be computed and used to improve 

the policy yet again. This cycle of policy evaluation and policy improvement is known 

as policy iteration. 

Policy evaluation 

For the policy evaluation, the initial approximation of the value function  𝑉0 is chosen 

arbitrarily. Every successive approximation is computed using the Bellman equation 

for 𝑉𝜋 as an update rule: 

The sequence  𝑉𝑘 can be shown to converge to  𝑉𝜋 for  𝑘 → ∞.  

Each successive approximation of the value function means iterative policy evaluation 

is applied to every state, i.e. the value of  𝑠 is replaced by a new value obtained from 

the old values of its successor states and the expected immediate rewards. The update 

is applied to all possible one-step transitions under the policy under evaluation; 

therefore, this kind of operations is called a full backup. 

Finally, in order to implement a policy evaluation algorithm it is necessary to introduce 

a halting condition since iterative policy evaluation would otherwise never stop. 

Policy improvement 

Once the value function has been computed or approximated, it can be used to find 

better policies. This can be achieved by deviating from the current policy and selecting 

an action that is outside of it when in a given state and following the policy again 

thereafter. The value of this behavior is given by: 

𝑄𝜋(𝑠, 𝑎) =∑𝒫𝑠𝑠′
𝑎

𝑠′

[ℛ𝑠𝑠′
𝑎 + 𝛾𝑉𝜋(𝑠)  ] 

Eq. 2.31 

If this value is greater than  𝑉𝜋(𝑠), then it was better to select the new action when in 

this particular state and thereafter follow the policy all the time. The so called policy 

improvement theorem113F

114 specifies that, when this is the case, it is better to always 

                                            

114 A derivation of the policy improvement theorem is provided by Sutton / Barto 1998. The authors also 
point out, that even though the presented case is for deterministic policies it can easily be extended 
to stochastic policies. 

𝑉𝑘+1(𝑠) = 𝐸𝜋{𝑟𝑡+1 + 𝛾𝑉𝑘(𝑠𝑡+1)|𝑠𝑡 = 𝑠}

=∑𝜋(𝑠, 𝑎)∑𝑃𝑠𝑠′
𝑎 [𝑅𝑠𝑠′

𝑎 + 𝛾𝑉𝑘(𝑠′)]

𝑠′𝑎

 Eq. 2.30 
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choose the new action when in that state and therefore, that the new policy that 

requires this selection is better than the old one. 

 

Figure 2.12: Pseudo algorithm of the generalized policy iteration 

Generalized policy iteration 

Once a policy has been improved with policy improvement, its value function can be 

evaluated in order to improve it once again. A sequence of monotonically improving 

policies and value functions is obtained: 

 

Figure 2.11: Policy iteration. Here, “E” stands for a policy evaluation and “I” stands for a 
policy improvement. 

A simplified pseudo algorithm for the generalized policy iteration (GPI) procedure can 

be formulated after SUTTON AND BARTO 114F

115 and is depicted in Fig. 2.12. 

                                            

115 Sutton / Barto 1998 

1. Initialization

𝑉 𝑠 ∈ 𝑅 and  𝜋(𝑠) ∈ 𝐴(𝑠), arbitrarily for all  𝑠 ∈ 𝑆

2. Policy Evaluation

Repeat

∆ 0

For each  𝑠 ∈ 𝑆:

𝑣   𝑉(𝑠)

𝑉(𝑠)  ∑ 𝜋(𝑠, 𝑎)𝑎 ∑ 𝑃𝑠𝑠′
𝑎 𝑅𝑠𝑠′

𝑎 + 𝛾𝑉 𝑠′𝑠′

∆ max ∆, 𝑣 − 𝑉 𝑠

until  ∆<  ( is a small positive number)

3. Policy Improvement

𝑝 𝑙𝑖𝑐 − 𝑠𝑡𝑎𝑏𝑙𝑒  𝑡𝑟 𝑒

For each  𝑠 ∈ 𝑆:

𝑏  𝜋 𝑠

𝜋 𝑠  a  max
𝑎
∑ 𝑃𝑠𝑠′

𝑎 𝑅𝑠𝑠′
𝑎 + 𝛾𝑉 𝑠′𝑠′

If  𝑏  𝜋 𝑠 , then  𝑝 𝑙𝑖𝑐 − 𝑠𝑡𝑎𝑏𝑙𝑒  𝑓𝑎𝑙𝑠𝑒

If  𝑝 𝑙𝑖𝑐 − 𝑠𝑡𝑎𝑏𝑙𝑒, then stop; else go to 2

Output  𝑉  𝑉𝜋

𝜋0 → 𝑉𝜋 → 𝜋1 → 𝑉𝜋 → 𝜋2 → ⋯ → 𝜋 ∗ → 𝑉∗
E E EI I IE
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A final important characteristic of DP methods is that they update estimates of values 

of states based on estimates of the successor states. The general idea of estimating 

on the basis of estimates is called bootstrapping. 

2.2.4.2  Monte Carlo Methods 

On the context of this work, Monte Carlo (MC) methods are only briefly introduced. The 

fact that value function is updated only at the end of an episode makes it unsuitable 

for incremental computation. Furthermore, the high variance of the returns has a 

negative influence on the convergence of MC methods. 115F

116 

MC methods can still be very effective due to the fact that they do not require a model 

of the environment at all. Instead, they can be used to compute good policies on the 

base of sample episodes that can be generated quite easily. For example, a set of 

games of black jack can be used to compute a policy with MC-methods, whereas a DP 

method would require a comprehensive model of all possible game situations. 

Furthermore, MC methods do not bootstrap, unlike the previously presented DP 

methods. This makes MC methods less susceptible to violations of the Markov 

property, since they do not require estimates for the estimation of new values. 

The main idea behind MC methods is to estimate the state-value function of a given 

policy in a given state by simply averaging the returns observed after visiting it. With 

time, the average should converge to the expected value. 

SUTTON AND BARTO116 differentiate between two main types of MC methods. The first 

considers only the first visit to a state during an episode for the average of the return 

for that state. This so called first-visit MC method ignores any latter visits to the state 

during that episode. On the other hand, the every-visit MC method averages the 

returns of all visits to all states during an episode. 116 

In order to find an optimal policy, MC methods rely on a variation of the GPI previously 

presented for DP methods and described in detail by SUTTON AND BARTO116.  

Analogously to the DP method, SUTTON AND BARTO116 offer the pseudo algorithm for a 

first-visit MC method depicted in Fig. 2.13. 

                                            

116 Sutton / Barto 1998 
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Figure 2.13: Pseudo algorithm for a first-visit MC method 116F

117 

2.2.4.3  Temporal Difference Learning 

Temporal difference (TD) learning can be describes as a combination of ideas from 

DP and MC methods. On the one hand, they can learn from direct experience without 

a model of the environment and/or exact transition probabilities. On the other, they 

estimate the value of new estimates on the basis of old estimates, i.e. they bootstrap, 

and they are suitable for step-by-step incremental computation like DP methods. 

In its structure, TD methods are very similar to DP and MC methods. At first, the focus 

of these three methods lies in estimating the value function  𝑉𝜋 for a given policy  𝜋, 

often referred to as the prediction problem. Afterwards, in order to find a better and 

eventually an optimal policy, a form of GPI is performed. The main difference between 

the three lies in the approach used for the prediction problem. 

Both MC and TD methods use experience for the prediction problem. The main 

difference between them is that MC methods wait until the return  𝑅𝑡 is known at the 

end of an episode to update the value function, whereas TD methods need only wait 

until the reward  𝑟𝑡+1 is known in the next time step to do so. This becomes apparent 

when comparing the update rules for an MC method: 

𝑉(𝑠𝑡)  𝑉(𝑠𝑡) + 𝛼[𝑅𝑡 − 𝑉(𝑠𝑡)] Eq. 2.32 

and a comparable TD method: 

𝑉(𝑠𝑡)  𝑉(𝑠𝑡) + 𝛼[𝑟𝑡+1 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡)] Eq. 2.33 

In both cases  𝛼 denotes the learning rate, which determines how newly acquired 

information is weighed against previous estimations. In Eq. 2.33,  𝛾 denotes the 
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1. Initialization

  policy to be evaluated

𝑉  arbitrary state-value function

𝑅𝑒𝑡 𝑟𝑛𝑠 𝑠  an empty list, for all 𝑠 ∈ 𝑆

Repeat forever:

(a) Generate an episode using  

(b) For each state  𝑠 appearing in the episode:

𝑅  return following the first occurence of s

Append 𝑅 to 𝑅𝑒𝑡 𝑟𝑛𝑠 𝑠

V   𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑅𝑒𝑡 𝑟𝑛𝑠 𝑠 )
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discount rate introduced in Eq. 2.14. These update rules show how the estimation in 

MC and TD methods is based on single samples rather than a complete distribution of 

all possible states (or state-action pairs). For this reason they are said to perform a 

sample backup, whereas DP methods perform a full backup. 

The core of most RL algorithms is the update rule for the estimation of new values. 

The update rule for the simplest of TD methods, the TD(0) method, is given by Eq. 

2.33. SUTTON AND BARTO 117F

118 offer the following pseudo algorithm for the TD(0) 

estimation of the value function: 

 

 

Figure 2.14: Pseudo algorithm for the TD(0) estimation of  𝑉𝑠 

Once the prediction problem has been dealt with, TD is used to find an optimal policy. 

This second part of the procedure is often referred to as the control problem. There 

are two main approaches to implement a TD method: on-policy and off-policy. A third 

type of approaches called actor-critique methods is an extension of the former two but 

was not considered in the context of this work. 

SARSA: On-Policy TD control 

The on-policy implementation of TD methods is commonly known as SARSA 118F

119. The 

name is an acronym derived from its update rule, since it involves the current state and 

action, and the reward received for transitioning into the next state and selecting one 

of the next available actions. It is called on-policy because the policy in use is also the 

one being updated. The changes to the policy after an agent’s interaction with the 

environment immediately influence future decisions. 

On- and off-policy TD control methods aim at the estimation of an action-value function 

and consequent optimization of a policy, i.e. estimate  𝑄𝜋(𝑠, 𝑎) for all states and actions 

and afterwards improve it until  𝑄𝜋(𝑠, 𝑎)  𝑄∗(𝑠, 𝑎). SUTTON AND BARTO 119F

120 provide the 

                                            

118 Sutton / Barto 1998 
119 Rummery / Niranjan 1994 
120 Sutton / Barto 1998 

Initialize 𝑉𝑠 arbitrarily,𝜋 policy to be evaluated 

Repeat (for each episode)

Repeat

𝑎  action given by  𝜋 for  𝑠

𝑉 𝑠𝑡  𝑉 𝑠𝑡 + 𝛼 𝑟𝑡+1 + 𝛾𝑉 𝑠𝑡+1 − 𝑉 𝑠𝑡

𝑠  𝑠′

until  𝑠 is terminal
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general form of a SARSA-algorithm in the form of the pseudo algorithm depicted in Fig. 

2.15. 

 

 

Figure 2.15: Pseudo algorithm for on-policy TD-control120 

The convergence of SARSA is considered to be guaranteed in the limit for policies like 

ε-greedy as long as ε decreases with time. SINGH ET AL. 120F

121 provide the convergence 

results of on-policy algorithms. 

Q-learning: Off-policy TD control 

The off-policy control algorithm known as Q-learning121F

122 is considered one of the most 

important breakthroughs in RL. The main difference to the SARSA algorithm is that in 

this case the learned value function directly approximates the optimal value function 

independently of the policy being followed, hence off-policy. Not only does this simplify 

the analysis of the algorithm but also enables early convergence proofs. However, off-

policy algorithms are often found to underperform on-policy methods. 122F

123 

SUTTON AND BARTO120 provide the pseudo algorithm for off-policy TD control depicted 

in Fig. 2.16. 

                                            

121 Singh et al. 2000 
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123 Frietsch 2011 
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Figure 2.16: Pseudo algorithm for off-policy TD control 123F

124 

2.2.4.4  Eligibility Traces: TD(λ)-algorithm 

Finally, the possibility of extending the one-step TD algorithm, the TD(0), to consider a 

more farsighted approach is achieved through the implementation of eligibility traces. 

Generally, eligibility traces can be understood as a bridge between the TD(0) algorithm 

at one end and an MC algorithm at the other. A more mechanic view of them would be 

to describe them as a temporary record of states visited and actions taken. The first 

option is considered the forward view, whilst the second is known as the backward 

view. However, they both describe one and the same method.124 

The forward view requires that the agent decides how to update each state by looking 

forward to future rewards and states and is, thus, not practical. The backward view, on 

the other hand, can be regarded as an incremental mechanism for approximating the 

forward view.124 

In the backward view, an additional memory variable for every state, the so called 

eligibility trace (e-trace), is used to determine which states are “eligible” for being 

updated as a result of an interaction of the agent with the environment. The traces do 

not have a constant value; they are incremented by 1 when the state they are 

associated with is visited and decay with time by the constant value  𝛾𝜆. The value of 

the e-trace  𝑒𝑡(𝑠) at the time  𝑡 for the state  𝑠 is given by the following definition: 

𝑒𝑡(𝑠) = {
𝛾𝜆𝑒𝑡−1 + 1  𝑖𝑓  𝑠 = 𝑠𝑡
𝛾𝜆𝑒𝑡−1          𝑖𝑓  𝑠  𝑠𝑡

 
Eq. 2.34 

whereas  𝛾 is again a decay parameter. The trace decay factor,  0 ≤ 𝜆 ≤ 1, determines 

how farsighted the TD(𝜆) algorithm is, since it determines how strongly the value of a 

trace diminishes after a visit to its state. For  𝜆 = 0, the algorithm becomes the one-

step TD algorithm, thus the TD(0) algorithm. For  𝜆 = 1 the algorithm becomes the 
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Initialize 𝑄(𝑠, 𝑎) arbitrarily

Repeat (for each episode)

Initialize  𝑠

Repeat (for each step of episode):

Take action 𝑎 observe  𝑟 and  𝑠′

Choose  𝑎′ from  𝑠′ with policy derived from  𝑄 (e.g. ε-greedy)

𝑄(𝑠, 𝑎)  𝑄(𝑠, 𝑎) + 𝛼 𝑟 + 𝛾max
𝑠′
𝑄(𝑠′, 𝑎′) − 𝑄 𝑠, 𝑎

𝑠  𝑠′;  𝑎  𝑎′

until  𝑠 is terminal
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corresponding MC algorithm. Analogously, the value of  𝑒𝑡(𝑠, 𝑎) for action-value 

functions yields: 

𝑒𝑡(𝑠) = {
𝛾𝜆𝑒𝑡−1 + 1  𝑖𝑓  𝑠 = 𝑠𝑡 , 𝑎 = 𝑎𝑡
𝛾𝜆𝑒𝑡−1             𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          

 
Eq. 2.35 

The value of an e-trace depends on the number of visits to its state (or state-action 

pair), as depicted in Fig. 2.17. 

 

 

Figure 2.17: Value of e-traces as a function of time and the amount of state visits 124F

125 

Despite the advantages of a more farsighted algorithm and eventually faster learning, 

eligibility traces require significantly more computation than one step methods such as 

TD(0). Furthermore, SUTTON AND BARTO125 point out that implementation of a relatively 

simple TD(𝜆) approach is a challenge to implementations on conventional serial 

computers and might require the use of single-instruction, parallel computers or neural 

systems. However, they also point out that the value of most of the eligibility traces at 

a given time is almost always nearly zero for conventional values of  𝛾 and  𝜆. Despite 

this fact, the implementation of eligibility traces still poses a challenge to online 

implementations due to the restriction on real time communication and data 

processing. 

Further aspects on practical issues regarding TD(𝜆) algorithms125F

126 and their application 

on a game of backgammon (TD-gammon) 126F

127 are offered by TESAURO. 

2.2.5 Applications of RL and State of the Art Research 

In this section, a selection of RL applications in a diversity of fields of study is 

presented. Subsequently, an overview of state of the art research in RL algorithms is 

provided. 
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2.2.5.1  Applications of Reinforcement Learning Algorithms 

The RL framework is of a very flexible character, which in turn allows it to be used as 

an approach for very diverse tasks, as long as they can be formulated as MDPs and 

the Markov property can be assumed for the environment. Even if the property is 

infringed, there are several methods and approaches in order to apply RL algorithms 

successfully. ALBERS, FRIETSCH and SOMMER OBANDO among others researched the 

application of RL approaches for control purposes in the context of the development 

of humanoid robots such as ARMAR. The range of applications was extended to 

include other optimization tasks, such as the computation of fuel efficient operation 

strategies for automatic vehicles and eventually the subject of this thesis, which 

focuses on the reduction of clutch judder through a RL based controller. In this section, 

these and a selection of other RL applications in diverse fields of study is presented. 

A more detailed overview is offered by FRIETSCH 127F

128. 

In the field of general industrial applications, CREIGHTON AND NAHAVANDI 128F

129 used a RL 

algorithm to improve the performance in a melt facility. The continuous problem was 

modelled as a Semi Markov Decision Process (SMDP). The agent was able to improve 

the operation strategy in use, which was based on expert knowledge, by 14% and was 

more robust towards random disturbances. 

HONG AND PRABHU 129F

130 present an approach that is suitable for Just-In-Time (JIT) 

production for multi-objective scheduling problems in a dynamically changing shop 

floor environment. The machine control problem is also modeled as SMDP and solved 

using Q-learning. According to the authors, results show that distributed learning and 

control DLC algorithms achieve significant performance improvement over usual 

dispatching rules in complex real-time shop floor control problems for JIT production. 

DALAMAGKIDIS ET AL. 130F

131 use a RL agent to deal with the issue of achieving comfort in 

buildings with minimal energy consumption. The environment state-signal is provided 

in the form of the thermal comfort of the building occupants, the indoor air quality and 

the energy consumption. The controller is then compared with a traditional on/off 

controller, as well as a Fuzzy-PD controller. The results show that after some simulated 

years of training, the reinforcement learning controller has equivalent or better 

performance when compared to the other controllers. 

In automotive science, HOWELL ET AL. 131F

132 propose a RL algorithm for the control of a 

semi-active suspension system on a road going, four wheeled, passenger vehicle. The 
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algorithm is used to minimize the mean square acceleration of the vehicle body and 

thus improve its ride isolation qualities. The learning algorithm operates over a 

bounded continuous action set and the authors consider it robust to high levels of noise 

and ideally suited to operating in a parallel computing environment. 

The application of RL algorithms is also found in the field of medical research. FAKIH 132F

133 

applied a RL agent to the task of determining the most efficient use of diagnostic tests 

on different patients. The algorithm is implemented on a sample problem of diagnosing 

Solitary Pulmonary Nodule. The author considers the RL based methodology holds 

significant promise in improving the performance of diagnostic process. 

MAGALHAES BARROS NETTO, S. ET AL. 133F

134 use an application of RL for diagnosis based 

on medical image purposes. Specifically, application of an off-policy reinforcement 

learning algorithm, Q-Learning, is used to solve the problem of lung nodules 

classification by analyzing the 3D geometric nodules characteristics to guide their 

classification. The authors consider their results encouraging, stating that using 

characteristics of the nodules’ geometry can effectively classify benign from malignant 

lung nodules based on computer tomography CT images. 

GUEZ ET AL. 134F

135 and BUSH AND PINEAU135F

136 offer an approach using RL for the 

neurostimulation treatment of epilepsy. The agent chooses which stimulation action to 

apply, as a function of the observed Electroencephalography signal (EEG), so as to 

minimize the frequency and duration of epileptic seizures using labeled training data 

of animal tissue. The results show the application to be an effective way of reducing 

the incidence of seizures, while also minimizing the amount of stimulation applied. The 

application of the algorithm on a model of human epilepsy is pending. 

Furthermore, RL applications have been used for the optimization of traffic control. 

BALAKRISHNA ET AL. 136F

137 describe a method for estimating average taxi-out times at the 

airport in 15 minute intervals of the day and at least 15 minutes in advance of aircraft 

scheduled gate push-back time. The RL algorithm is trained and tested using historic 

data from the Federal Aviation Administration’s (FAA) Aviation System Performance 

Metrics (ASPM) database. The algorithm was tested on John F. Kennedy International 

airport (JFK), whereas the predicted average taxi-out times matched the actual 

average taxi-out times within ±5 minutes for about 65 % of the time (for the period 
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before 4:00 P.M) and 53 % of the time (for the period after 4:00 P.M) on average across 

15 days. 

DESJARDINS AND CHAIB-DRAA 137F

138 investigate cooperative adaptive cruise control CACC 

by proposing a novel approach for the design of autonomous vehicle controllers based 

on RL. Specifically, the agent is used to develop controllers for the secure longitudinal 

following of a front vehicle. According to the authors, the experimental results show the 

approach to be promising. 

ALBERS ET AL. 138F

139 propose an on-policy TD(0) algorithm, a SARSA algorithm, for the 

purpose of computing fuel efficient vehicle operation strategies. The RL-algorithm is 

used to compute optimal gear and gas pedal trajectories in order to minimize the fuel 

consumption during a driving maneuver consisting of “acceleration” and “cruise” 

phases on a simulated vehicle and environment. The results were compared to those 

achieved with a common reference optimization process and validated with the 

commercial simulation tool AVL-cruise. The RL-algorithm was able to outperform the 

reference optimization both in computation time and resulting fuel consumption during 

the maneuver. 

Finally, a considerable number of RL applications are also found in the field of robotics. 

MORIMOTO AND DOYA139F

140 consider a RL for the standup task of a three-linked planar 

robot. Particularly, the focus of the work is the application of TD-methods to solve the 

task. Later, MORIMOTO ET AL. 140F

141 applied a model based RL algorithm for the task of 

robotic biped walking. The algorithm is used to appropriately modulate an observed 

walking pattern. It modulates via-points from observed walking trajectories using the 

minimum jerk criterion to improve the walking trajectories. The approach is applied to 

a simulated and an actual biped robot. 

KORMUSHEV ET AL. 141F

142 used a RL-based approach for the minimization of the electric 

energy consumption during walking of a passively-compliant bipedal robot. This is 

achieved by learning a varying-height center-of-mass trajectory which uses efficiently 

the robot’s passive compliance. Also, the RL algorithm evolves the policy 

parameterization dynamically during the learning process and thus manages to find 

better policies faster than by using fixed parameterization. The algorithm is applied to 
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the humanoid robot COMAN 142F

143, where the authors confirm a significant reduction in 

energy consumption. 

KOHL AND STONE143F

144 achieved a similar improvement of the walking pattern of a 

quadrupedal robot as MORIMOTO ET AL. did for the bipedal robot. KOHL AND STONE 

present a RL algorithm for optimizing a quadrupedal trot gait for forward speed. The 

algorithm searches for the best possible set of parameters to increase the forward 

velocity of the commercially available robot Aibo 144F

145. After approx. three hours of 

learning on the physical robot, the achieved gait was faster than any previously known 

gait for the Aibo, significantly outperforming a variety of existing hand-coded and 

learned solutions. 

Other applications of RL algorithms can be found in the fields of economics and 

finance145F

146, computer science146F

147 or entertainment 147F

148 amongst other. 

2.2.5.2  State of the Art Research 

Although there is no real consensus about the structure of the research field, this 

section leans on the work by BARTO AND MAHADEVAN148F

149 and FRIETSCH 149F

150. According to 

their work, there are two fundamental aspects that are the focus of recent research: 

the optimization of the learning process and the development of generalizing 

approaches. However, FRIETSCH150 points out that it is often difficult to categorize 

approaches into strictly one of these two aspects. 

 

 

Figure 2.18: Overview of state of the art research field in RL according to FRIETSCH150 
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Optimization of the learning process 

Most implementations of RL algorithms have been proven to converge towards an 

optimal policy mathematically, however, they normally do so in the limit, i.e. after every 

action in every state has been taken an infinite number of times. This is evidently 

unpractical and is not adequate to compare different algorithms. For this reason, 

practical implementations of RL learning consider the learning process finished when 

the changes to the value or action-value function are below a low predefined threshold 

or a time limit is reached. 150F

151 Furthermore, different benchmark environments and tasks 

exist, in order to compare different solutions such as the “mountain car task” 151F

152, the 

“Acrobot”152F

153 or the “pole balancing task” 153F

154. 

The optimization of the learning process targets both the convergence of a policy as 

well as its quality after convergence, i.e. how good is the best policy the algorithm can 

find and how fast is it found. This is of particular importance in high dimensional 

problem due to the previously mentioned curse of dimensionality. 

The most prominent method to optimize the learning process in high dimensional 

problems is the implementation of hierarchical learning. A complex problem is 

analyzed and decomposed into subproblems in line with the maxim of “divide and 

conquer”. 154F

155 Accordingly, a normal MDP is specified to be a “flat” or “monolithical” 

MDP. 155F

156In the context of this work, two examples of hierarchical reinforcement learning 

implementations are presented. For further examples refer e.g. to FRIETSCH 156F

157. First, 

BAKKER ET AL.156 implement a hierarchical RL algorithm for the task of robot path 

planning. In their work, the authors use maps with different grades of resolution and 

assign them a hierarchy. The implementation consists of a DP algorithm that the 

authors claim is more efficient than standard DP for "flat" MDPs, because it reduces 

the state space for all levels in its hierarchy and it allows reuse of previously computed 

partial policies. However, they also point out that computational advantage comes at 

the cost of some extra memory and overhead to represent and coordinate the 

hierarchical system and in some cases somewhat longer paths to target locations. The 

algorithm is tested on artificially generated MDP data, and on real robot data from a 

vision-controlled robot in an office environment. Similarly, MORIMOTO AND DOYA157F

158 

propose a hierarchical reinforcement learning architecture on a three-link, two-joint 
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robot for the task of learning to stand up. The authors introduce a low-dimensional 

representation of the state of the robot for higher-level planning, whereas the upper 

level learns a discrete sequence of sub-goals in a low-dimensional state space for 

achieving the main goal of the task. The upper-level learning was implemented by Q-

learning, whereas the lower-level learning was implemented by a continuous actor–

critic method. The robot successfully learned to stand up within 750 trials in simulation. 

The real hardware was able to complete the task after an additional 170 trials. 

A further principle to optimize the learning process consists of the integration of 

previous knowledge. The use of this knowledge can be used to boost the speed with 

which good policies can be found in large state spaces, where the agent might seldom 

experience a favorable reward. The knowledge might be found in the form of 

predetermined behavior patterns and/or rules, as implicit knowledge defined by the 

programmer or as predetermined structures. 158F

159 Also, a distinction is made about 

whether the knowledge is a result of past learning or introduced by the programmer. 

An example of the principle of integration of previous knowledge is known as reward 

shaping and consists of a reward-signal designed with a higher amount of information 

than is usual, thus allowing the agent to experience more about its environment from 

a single interaction. PERKINS AND HAYES159F

160 and COLOMBETTI ET AL.160F

161 consider reward 

shaping to be an optimal combination of classic engineering with its use of models and 

formulae and autonomous learning with its inherent flexibility and unplanned behavior. 

For a selection of implementations of reward shaping refer to FRIETSCH159. 

The last approach to the optimization of the learning process presented in this work 

consists of the transfer of information resulting from previous (similar) tasks, also 

known as transfer learning (TL). TAYLOR 161F

162 offers an overview on TL and its application. 

The author also differentiates between the following characteristics of learning tasks 

for transfer: 

 Step response to performing an action 

 Design of the reward function 

 Initial state and terminal state or goal 

 Design of the state space (continuous, discrete, amount of state variables, …) 

 Design of the action space (continuous, discrete, range, …) 
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An example of TL consists of the initialization of the value function with values of 

previous learning instead of an initialization with zero or random values. The values 

can be a result of previous, similar tasks or the result of simulation data or a guess by 

the programmer. SOMMER OBANDO ET AL. 162F

163 propose the use of averaged Q-Tables for 

the application on a two-linked robot arm. The initialization with Q-Tables averaged 

from earlier tasks can be used to boost the learning speed for new tasks; in fact, a lot 

of new tasks can be completed without the need for new learning since it also has a 

generalizing effect on the task 163F

164. Later, in ALBERS ET AL. 164F

165 the averaged Q-Tables are 

computed in simulation and applied to a physical robot. The learning speed and the 

number of failed episodes are reduced considerably. 

Generalizing approaches 

Finally, a major scope of research in RL consists of the generalization of different tasks 

that can be clustered to a certain type. LAUER AND RIEDMILLER 165F

166 describe the internal 

generalizing of tasks on the example of a football playing robot. They state that even 

though there are virtually an infinite number of different dribbling moves the robot could 

perform differently, the learning effort can be reduced if a general concept of dribbling 

as a move is used and deployed in different situations. This is akin to the idea of 

PETERS166F

167, who relies on learning to perform elemental tasks as “building blocks” of 

movement generation. Applied to the football example, an example would be the robot 

performing the action sequence “locate and get the ball – dribble – shoot”, instead of 

having to learn all the required movement for all of its limbs individually. PETERS also 

states that the future steps in motor skill learning in robotics are the collection of skills 

into libraries, the learning of appropriate skill selection, as well as the sequencing and 

parallelization of the motor primitives. All of these steps require a high degree of 

generalization of tasks. A selection of examples of generalizing approaches in RL is 

presented subsequently. For a more extensive selection of applications refer to 

FRIETSCH 167F

168, whereas a deeper look into the application of generalizing approaches in 

robotics is provided by the work of Jan Peters 168F

169. 

The concept of applying function approximation methods for the approximation of the 

value function in RL is also widely popular. An application of function approximation is 

                                            

163 Sommer Obando et al. 2010 
164 The generalizing effect is achieved through the implementation of both the averaged Q-tables and a 

relative approach. 
165 Albers et al. 2011c 
166 Lauer / Riedmiller 2007 
167 Peters 2008 
168 Frietsch 2011 
169 Some examples include Peters et al. 2003a, Peters et al. 2003b and Peters / Schaal 2006 

 



Fundamentals and State of the Art 49 

found in this work and the necessary fundamentals according to ZELL169F

170 and BUSONIU 

ET AL. 170F

171 are provided in 6.3.3. 

2.3 X-in-the-Loop Framework (XiL) 

The XiL-Framework is based on long-term research at IPEK – Institute of Product 

Engineering dating back to 1996 and integrates consequently simulation and 

experiment in the product engineering process. It is considered a framework suitable 

for the continuous, holistic, customer oriented synthesis and validation of modern 

vehicles with complex functionality with respect to environmental interactions. 171F

172 

Therefore, the physical test bench employed in this work was conceived in accordance 

with the XiL-framework. In this section, the placement of the framework in the 

engineering process, as well as a description of its elements, is presented. 

2.3.1 The Product Engineering Process 

According to ALBERS172F

173, the product engineering process can be described as a 

continuous interaction of three systems: the operation system, the system of objectives 

and the system of objects, also called the system triple of product engineering. 

Furthermore, ALBERS173F

174 also states that discussing human knowledge and process 

aspects of the system triple approach reveals the necessity of specifying the role of 

the operation system within the co-evolutionary and iterative process of complex 

product engineering. Therefore, the Advanced System Triple Approach 174F

175 (c.f. Fig. 

2.19) is introduced in order to describe the two central activities of product engineering: 

the combination of analyzing objectives and synthesizing objects (creation) and the 

combination of analyzing objects and synthesizing objectives (validation). 

 

Figure 2.19: Advanced System Triple Approach ( from ALBERS ET AL. 175F

176) 
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ALBERS176F

177 proposes the integrated product engineering Model – iPeM as a suitable 

meta-model of the product engineering process mainly because of its high flexibility 

and generality. The meta-model is divided into “Activities of Product Engineering” (also 

called macro-activities), the “Activities of Problem Solving” (also called micro-

activities), the “Phase Model”, the “System of Resources” and the system triple of 

objects, objectives and the operation system. Within the iPeM, the balance between 

the system of objectives and the system of objects is achieved through validation, 

which is considered the central macro-activity in the product engineering process. This 

balance, thus validation, is of great importance for the success of the engineering 

process as only thereby can knowledge be generated, as opposed to the simple 

comparison between objects and objectives. This knowledge is used to solidify and 

expand the system of objectives and allows a successful synthesis in case of a goal-

oriented return of knowledge in other activities. A graphical representation of the iPeM 

is depicted in Fig. 2.20. 

 

 

Figure 2.20: Integrated Product Engineering Model – iPeM ( ALBERS177) 

2.3.2 XiL-Framework in the Context of Product Engineering 

Within the development process, the application of the XiL-Framework mainly 

addresses the interaction of the activities “Modeling of principle solution & 

embodiment” and “Validation”. Furthermore, the activity „Project planning” allows an 

application-related realization of the framework.176 The framework represents a 

continuously useable and process applicable approach as part of the “Operation 
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System” of product engineering, which allows the analyzing of the three interacting 

systems “Driver”, “Vehicle” and “Environment” with a changing focus. 177F

178Therefore, the 

XiL-Framework constitutes a holistic and integrated development and validation 

framework for powertrain systems. The “X” represents the “System Under 

Development (SUD)” and can be located in any of the systems “Driver”, “Vehicle” or 

“Environment”. 178F

179 The SUD can be of a physical, virtual or a combined physical/virtual 

nature and can be conceived from a very abstract or highly concrete manner.179F

180 For 

this reason, different layers in the XiL-Framework are introduced. 

For the system “vehicle” these layers are the element-in-the-loop-layer, the subsystem 

and the vehicle-in-the-loop-layer (c.f. Fig. 2.21). On each layer the behavior of the rest 

vehicle is reproduced, either virtually or physically, and connected to the “driver” and 

the “environment” systems in order to reproduce their effects on the SUD as closely to 

reality as possible. 

The “Driver” and “Environment” systems and the rest vehicle simulation can also be 

implemented on different scaling levels, which have to be determined according to the 

application at hand. 

 

Figure 2.21: IPEK X-in-the-Loop-Framework 180F

181 
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3 Motivation and Research Objectives 

In this chapter, the motivation for a RL based active damping of clutch judder vibrations 

and the definition of the research objectives of this work are presented. First, the 

research gap regarding the suppression of clutch judder is derived from the 

disadvantages and shortcomings of state of the art in the field and the suitability of a 

RL based solution to close this gap is evaluated. 

3.1 Motivation 

The presence of clutch judder vibrations in automotive drive trains has a negative effect 

on the durability of its components, however, it most importantly constitutes a major 

detraction on the perceived comfort of the vehicle by the driver regarding noise, 

vibration and harshness (NVH), which plays a determinant role in regards of his 

purchase decision. For this reason, efficient countermeasures are ever sought after. In 

summary, countermeasures against clutch judder can be categorized as either of 

constructive, tribological or mechatronic nature. Even though most of them can prove 

to effectively reduce clutch judder, they also entail disadvantageous characteristics. 

Constructive countermeasures 181F

182 can address each of the different forms and sources 

of judder vibrations separately or as a whole. They are realized by both stricter 

tolerances on components and their assembly, the inclusion of additional vibration-

damping components, or by increasing the damping in the drive train or its 

components. However, stricter tolerances cause an increase in production and 

assembly costs, whereas additional components inflict space and weight constraints 

and generate additional production, material, and assembly costs. Lastly, an increase 

in the damping of the drive train or its individual components generally causes a 

decrease in energy efficiency because of higher dissipation. 

Tribological countermeasures 182F

183 aim to mitigate clutch judder vibrations by means of 

the friction characteristics of the material parings in the clutch. A negative friction 

coefficient gradient has an exciting effect on self-induced vibrations, thus materials with 

such a gradient are generally avoided. However, high performance materials like 

engineering ceramics, which make for smaller and lighter clutch systems, possess 

such a gradient. Therefore, their use would be very desirable if the previously 

mentioned negative effect could be offset. On the other hand, a positive friction 

coefficient gradient has a dampening effect on drive train vibrations; however, no 
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pairing materials with a positive friction coefficient gradient over the whole relevant 

temperature range have been developed yet. 

Finally, mechatronic solutions 183F

184 aim primarily at the active damping of judder 

vibrations by means of a control of the clamping force between clutch disks. These 

measures present an effective alternative provided an electromechanical actuation of 

the clutch is available and would allow the use of highly efficient materials as friction 

pairings, which represents an immense untapped potential. The main drawback of 

these measures is the relative complexity of the solutions, most of the time involving 

detailed and accurate models of the drive train and its environment and their dynamics 

during life-time, and the high dynamic demands on the electromechanical actuators, 

which at the present time might prove to involve high costs. Furthermore, relatively 

advanced and abstract mathematical operations are often involved for the controller 

design, whereas its tuning requires additional empirical or optimization effort. 

Furthermore, the necessary models might prove too specific, so that the successful 

implementation of a mechatronic countermeasure is only guaranteed to a given 

individual system (test bench, drive train, vehicle, etc.), unless further adaption efforts 

are undertaken. 

At this point, the need for a mechatronic countermeasure that relies as little as possible 

on the accuracy and detail of the models it needs and that is able to adapt to changes 

of these without compromising its effectiveness becomes clear. A possibility to achieve 

such a countermeasure is the application of a RL control algorithm for the active 

damping of clutch judder vibrations. RL methods (specifically TD and MC methods) do 

not require a model of the environment and can learn and optimize a control strategy 

autonomously. 

3.2 Research Objectives 

The main research objective of this work is the development and analysis of a RL 

clamping force control algorithm for the active damping of clutch judder vibrations. In 

the scope of this work, its implementation on a reduced physical drive train test bench 

is considered appropriate, since the behavior of a vehicle can be reproduced 

accurately enough without having to employ prototypes and performing costly 

experiments. The algorithm should effectively reduce clutch judder without 

compromising the function of the system or otherwise negatively affecting the comfort 

perception of passengers. Therefore a successfully implemented RL algorithm should 

fulfill the following requirements: 

 Effective reduction of clutch judder 
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The selected method for quantifying judder vibrations in this work is based on 

the consideration of the amplitude difference between the gearbox entry shaft 

rotational speed and the gearbox output. 184F

185 Since the amplitude of the latter is 

always lower, the amplitude of the gearbox entry shaft rotational speed has to 

be reduced effectively. Furthermore, the function of the clutch should not be 

compromised. Therefore, the flux of torque is to be closed within a reasonable 

time limit. This way, the most important factors regarding clutch comfort during 

engagement according to DOLCINI ET AL. 185F

186, which are the total duration of the 

engagement and the amplitude of drive train oscillations, are addressed. 

However, these factors are physically interdependent, since shorter 

engagements imply a higher torque transmission by the clutch. 

 High learning speed 

Even though in the context of this work it is not clear at what precise point 

learning will take place in the life time of the drive train, it is safe to assume that 

a short learning time (fewer episodes), in which comfort might be harmed due 

to explorative behavior, is to be preferred. The RL algorithm should therefore 

aim to learn an effective strategy in as few episodes as possible. As a reference 

value, LuK GmbH & Co. KG186F

187 consider a minimum of 2000 hours or 60 000 km 

to 120 000 km of operation acceptable for a passenger car. The learning time 

should be substantially shorter. 

 Balance between learning time and effectiveness of judder reduction 

A tradeoff between the previous two requirements exists, since accurate, high 

quality solutions are linked with longer learning time and high computing effort, 

whereas fast learning solutions usually rely on some form of simplification or 

generalization that causes the quality of the solution to decrease. A solution that 

offers a favorable compromise between learning speed and effectiveness is to 

be favored. 

 Model free computation of the control strategy 

The computation of the control strategy should not rely on simulation models 

other than to reproduce the response of the physical environment. The use of 

models of some kind is indispensable in this work, since the physical test bench 

itself is a model of the drive train where some components are conceived 

                                            

185 For the concrete formulation of the quantification method c.f. 5.4 
186 Dolcini et al. 2010 
187 LuK GmbH & Co. KG 1982 
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virtually, whereas others are conceived physically in accordance to the XiL-

Framework. However, models in this work are limited to the description of the 

environment as a “black box” to the agent. 187F

188 Any developed method should be 

applicable to any given physical or virtual “black box” of the agent’s 

environment. 

 

                                            

188 The use and the computation of a model of the environment are not entirely restricted in RL. Amongst 
others, Sutton / Barto 1998 present methods to compute models of the environment with RL 
algorithms and then use them for the purpose of planning. 
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4 Research Design 

In order to achieve the objectives presented in the previous chapter, a combination of 

implementations of a RL framework on two different simulated and one physical 

environment is proposed. 

Initially, the formulation of the active damping control task as a RL problem is 

addressed in a preliminary stage. The elements of the RL framework are adapted to 

the clutch judder reduction task in order to present it as an MDP. This includes 

determining an appropriate action-state space representation, a suitable reward-signal 

and the representation of the agent’s environment, the drive train.  

In this work different RL based approaches are presented, which have some elements 

in common, but possess unique features that determine their suitability for the task of 

suppressing clutch judder. Even though a simulation model of the environment is not 

necessary for the realization of a RL based controller, it serves the purpose of reducing 

the development effort and makes it possible to produce significant results without the 

need of costly prototypes. The structure of this work considers one theoretical stage 

and two experimental stages. The latter are derived from different conceptions of the 

environment of the RL framework, i.e. different models of the automotive drive train. 

These models were conceived in a way that allows the study of the application of the 

RL algorithms from a relatively simple and abstract representation of the drive train to 

a test bench of the reduced drive train, which itself is a physical model of the drivetrain. 

The theoretical stage aims at the representation of the clutch judder task as a RL 

problem. All elements of the RL framework are applied to the clutch reduction task and 

then defined for the latter stages of this work. All propositions and definitions within this 

chapter are of a highly abstract nature and its elements are often later adapted in order 

to suit the requirements of the following experimental stages. However, the abstract 

RL framework conceived in this stage serves as a reference throughout this work. First, 

the definition of the environment and the task are provided. Afterwards, a definition of 

the state-signal on whose basis the agent perceives the environment is proposed. 

Analogously, the action-signal is defined subsequently. Then, the reward-signal that 

will be used by the agent to evaluate the quality of its actions and which it will strive to 

maximize is defined. Finally, the characteristics and elements of the agent itself are 

presented. 

In the second stage, the first of the experimental stages, a basic, highly abstract 

simulation model of the drive train is implemented as the framework environment. This 

stage can be regarded as a preliminary study of the RL based control of the clamping 

force in order to reduce clutch judder. The main focus in this stage lies in assessing 
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the general suitability of the proposed RL framework as a means to successfully 

perform the judder reduction task. Initially, a classic RL agent (SARSA) learns an 

adequate policy in a strictly discrete state space with the smoothest conceivable mesh. 

The high smoothness of the discretization and the strictly discrete nature of the action-

state space of state variables deliver the best results at the highest computing effort 

and set a benchmark value for the rest of the approaches in this stage. These 

approaches aim at reducing the learning speed whilst retaining as much of the 

effectiveness of judder suppression. In order to do so, different action and state space 

representations and approaches to the update of the value function are proposed. 

First, an adjusted action space is proposed in order to reduce the size of the action 

space and therefore computing effort. Afterwards, different approaches for the 

conception of the state space and the update of the value function are proposed. The 

first consists of a novel conception of a dynamic state space, in which an initially 

roughly discretized state space is locally refined in order to accommodate the 

computing effort more efficiently. In the second approach, a custom application of 

radial basis functions (RBFs) for the purpose of the approximation of the value function 

in a semi-continuous state space is introduced. Finally, a novel approach involving a 

Gaussian filter for the approximation of the value function is proposed. 

The second experimental stage aims at the application of a RL algorithm for the 

suppression of clutch judder on the scaled down IPEK Mini Hardware-in-the-Loop test 

bench. After introducing the test bench itself, an appropriate simulation model to 

reproduce its behavior is proposed. This simulation model includes new features that 

offer a detailed description of its physical counterpart, such as a differentiation between 

closed- and slipping-clutch modes, as well as the consideration of dead times in the 

transmission of signals, e.g. in the CAN bus. This simulation model allows the analysis 

and evaluation of different RL approaches, including the most promising approach of 

the previous stage, in an environment that better mirrors the expected behavior of the 

physical test bench. After comparing the results of the different implementations of the 

approaches, the most promising is determined for the application on the physical test 

bench. In the last part of the stage, the selected RL approach is implemented on the 

Mini-HiL physical test bench. The performance of the selected approach is presented 

and evaluated. Finally, a discussion of the results and a conclusion on the application 

of the approach take place. 
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Figure 4.1: Graphical overview of the proposed research design 

 

  

Preliminary Study

• Definition of RL elements
• Identification of relevant parameters
• Definition of relevant signals
• Formulation of the applied RL Framework

• Application of RL Framework to simulated reduced 
drive train

• Implementation of customized approaches in 
simulated environment

• Evaluation of the performance

Theoretical stage

• Application of RL Framework to simulated test 
bench environment

• Implementation of successful approaches of 
previous stage and new approaches

• Evaluation of the performance

Experimental stage 1

Experimental stage 2

• Application of RL Framework to physical test 
benchenvironment

• Implementation and evaluation of successful 
approaches of previous stage and new approaches



 Clutch Judder Reduction as a RL Task  60 

  



Clutch Judder Reduction as a RL task 61 

5 Clutch Judder Reduction as a RL Task 

The first step towards the implementation of a RL based control algorithm for the active 

damping of judder vibrations is the description of the task as a RL problem, i.e. as a 

MDP. Violations of the Markov property will occur due to discretization or 

approximation of the continuous environment, however, their effect can be held to a 

low enough level so that satisfying results can be achieved nonetheless. This is 

achieved by the selection of proper state and action variables and an adequate 

discretization or approximation of the value function in the state-action space. 

Furthermore, the definition of the agent’s environment is provided. 

5.1 Definition of the Environment 

Throughout this work, different models of the dynamically separated, vibration capable 

drive train are regarded as the agent’s environment. The clutch engagement and 

synchronization maneuver is described as an episodic task with a set of terminal states 

derived from the maneuver itself. In this section, the realization of both the environment 

and the maneuver are described. 

5.1.1 Description of the Drive Train 

Over the course of this work, different models of the drive train are used to model the 

agent’s environment. The models vary in their degrees of abstraction and in the 

presence of hardware, i.e. physical elements. However, all different models are based 

on the powertrain model as a three-mass rotational oscillator as suggested by 

MAUCHER188F

189 and depicted again in Fig. 5.1. It is considered that this elemental 

description of the system suffices as a means to reproduce the response of a physical 

drivetrain. 

 

 

Figure 5.1: Three-mass model of the reduced drive train according to MAUCHER189 

The detailed mathematical description of the environment during each of the research 

stages proposed in chapter 4 will be provided in each of the respective chapters. The 

                                            

189 Maucher 1990 
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decisive differences between them lie in the absence or presence of physical elements 

and the abstraction level of the simulated components. The presence of physical 

elements inevitably introduces a stochastic element to the response of the environment 

to a given action that is not known well enough to be accounted for in simulation. 

5.1.2 Description of the Maneuver 

The last part of the description of the environment is the definition of its terminal states. 

Although the environment itself is of a continuous nature and therefore the state-signal 

needs necessarily be discretized or approximated, it is possible to describe the clutch 

engagement and synchronization maneuver as an episodic RL learning task. 

In the context of this work, an episode of the task consists of a start-off maneuver in 

which the clutch is actuated every  0.1 𝑠 190 and the gearbox entry shaft speed is 

synchronized with the combustion engine speed. The initial value of the engine speed 

is  900 1/𝑚𝑖𝑛, whereas the gearbox input and gearbox output speeds are 

both  0 1/𝑚𝑖𝑛. When the condition is met, that both the engine speed and the gearbox 

input shaft speed are synchronized, the current state is considered terminal and the 

episode is concluded. The exact definition of this stop criterion for the three 

implemented frameworks is provided in the corresponding chapter. 

A sample of a simulated synchronization maneuver with strong judder vibrations is 

depicted in Fig. 5.2. 

5.2 Definition of the State-Signal 

In order to reduce the computing effort and avoid the “curse of dimensionality” 

mentioned in 2.2 it is sensible to reduce the state-signal to as few state variables as 

possible. If the signal is discrete, then it should also be as roughly discretized as 

possible. However, leaving important state variables out of the state-signal or roughly 

discretizing them entails a loss of information known as “perceptual aliasing” 190F

191, by 

which the agent perceives at least two different states of the environment as the same. 

This inability to discern between different states of the environment leads to potential 

errors in the mapping of states and actions, since an action taken during one perceived 

state might not necessarily be the best action for all the states the agent perceives as 

                                            

190 The frequency necessary to produce a force impulse that is exactly opposite to the judder vibrations 
is the same than the vibrations themselves, thus the eigenfrequency of the drive train at around 8Hz 
- 12Hz. This translates to an actuation of the clutch every approx. 0.083s – 0.125s, preferably even 
higher (cf. Krüger 2003). However, this lies beyond or close to the maximum response speed of the 
test bench actuator in this work and can present a challenge to real time communication systems. In 
this work, an actuation time of 0.1s is implemented (cf. 7.2.1.3), but the different algorithms would 
retain their functionality if it is changed at a later time. However, the results achieved with different 
actuation times may of course vary. 

191 Crook / Hayes 2003 and Whitehead / Ballard 1990 
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one and the same. Perceptual aliasing constitutes a violation of the Markov property 

of the state-signal. Hence, the design of state-signal should be determined in a way 

that the property is upheld as far as possible while it keeps the computing effort low. 

 

 

Figure 5.2: Clutch synchronization maneuver. Here,  𝑛𝑐𝑒  is the combustion engine speed, 

whereas   𝑛𝑔𝑒  and  𝑛𝑔𝑜  are the speeds at the gearbox input and output respectively. 

Furthermore, the state variables in the state-signal have to be computable or 

measurable at every time step of the task. Keeping in mind the application on a 

physical test bench or actual drive train, this means that the necessary sensors for the 

acquisition of the value of the signal variable should be considered. 

Throughout this work, the conditions of the drive train’s environment 191F

192 are not 

considered for the design of the state-signal. Even though variables such as outside 

temperature, humidity, or air pressure likely have an effect on the behavior of the drive 

train, they are considered to be either stationary or their effect is considered to be 

negligible in comparison to other variables. 

Furthermore, external clutch judder exciting deviations and misalignments of drive train 

components are also considered to either be stationary or simply unavailable for 

measurement during operation. Therefore, they are not considered for the state-signal 

either. 

For this reason, the status of the output side of the clutch, as a vibration capable 

system, is considered for the selection of the state variables.  

 

                                            

192 This is not to be confused with the agent’s environment. The drive train’s environment refers to the 
system “Environment” of the system triple “Vehicle”, “Driver” and “Environment”. It is only a part of 
the agent’s environment, which includes the drive train itself. 
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Figure 5.2: Dynamically separated, vibration capable drivetrain 

Therefore, the following physical parameters remain as viable variables for the state-

signal: 

 the added inertias of the clutch and the gearbox 𝐽𝐶𝐺    

 the inertia of the vehicle  𝐽𝑉 

 the stiffness  𝑐  of the drive train 

 and the damping  𝑑  of the drive train 

 the rotational speed of the gearbox input shaft  𝑛𝑔𝑒 

 the rotational speed of the gearbox output shaft  𝑛𝑔𝑜 

 the clamping force  𝐹𝐴  exerted by the clutch actuator 

 the friction coefficient  𝜇 

 the clutch torque  𝑀(𝐹𝐴, 𝜇) as a result of the clamping force and the friction 

coefficient 

The inertias   𝐽𝐶𝐺   and    𝐽𝑉   as well as the drive train’s stiffness  𝑐  and damping   𝑑  are 

considered to have a constant value throughout the test maneuver and are therefore 

not suitable variables for the state-signal. 

The two first variables in the state-signal are the rotational speeds  𝑛𝑔𝑒  and  𝑛𝑔𝑜. They 

are the most important values for the characterization of the oscillation behavior of the 

system and sensors for their measurement are readily available in modern series 

production drive trains. These variables are also important for two further purposes. 

First, the third state variable is the result of the calculated value of the speeds at 

different time steps, as will be addressed shortly. Secondly, the reward-signal 

perceived by the agent after each interaction with the environment is derived from the 

difference in value between  𝑛𝑔𝑒  and the comparatively strongly dampened  𝑛𝑔𝑜. 

 (  ,  )
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The clamping force is not considered as an appropriate element of the state-signal 

since it is the only possibility of actuation and therefore the only parameter suitable as 

the action-signal for a RL agent. 192F

193 

The value of the friction coefficient consists of a static and a dynamic part. Although 

the static part can be regarded as constant, the dynamic part can be derived from a 

characteristic curve (friction gradient) which requires the use of empiric data and a 

suitable model, e.g. assumption of linearity in order to realize a so called friction 

coefficient observer 193F

194. Furthermore, the parameter that best suits the characterization 

of the state of the vibration capable system is the clutch torque. Knowledge about the 

status of the friction coefficient is superfluous, if the value of the torque is known. 

For this reason, the last state variable proposed in this work is the clutch torque. 

However, the availability of torque measurement units in modern, series production 

vehicles is restricted, because of the added cost it represents. Therefore, a method to 

calculate or approximate the clutch torque is necessary for the completion of the state-

signal. SCHWENGER 194F

195 proposes such a method and determines that the clutch torque 

correlates nearly linearly with the torsion angle in the drive train, which in turn can be 

calculated from the rotational speeds  𝑛𝑔𝑒  and  𝑛𝑔𝑜 at the gearbox input and output 

respectively as follows: 

𝜑(𝑡) = ∫ (𝑛𝑔𝑒(𝜏) − 𝑛𝑔𝑜(𝜏))𝑑𝜏
𝑡

𝑡−1

 
Eq. 5.1 

The linear interrelationship between the clutch torque  𝑀  and the torsion angle  𝜃  can 

be taken from in Fig. 5.2. 

The state-signal including the three proposed state variables provides a Markov 

description of the environment for the agent, if all assumptions are met. 

Thus, the resulting state-signal of the environment at the time  𝑡  consists of the value 

triple: 

𝑠𝑡 = (𝑛𝑔𝑒, 𝑛𝑔𝑜, 𝜑)𝑡 Eq. 5.2 

                                            

193 In the next section, two different possibilities for designing the action space are proposed, one of 
which requires the inclusion of the current value of the clamping force, since the actions selectable 
by the agent are given as an offset to be added to this value. 

194 Dolcini et al. 2010 use such a friction coefficient observer for the design of an adaptive controller. 
195 Schwenger 2005 
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Figure 5.2: Linear interrelationship between torque and torsion angle according to 
SCHWENGER195F

196. The pink rectangle signals the clearance in the drive train. 

The discretization of the state space and /or the approximation of the value function for 

different state-action space configurations are a central issue throughout this work, as 

they strongly affect the tradeoff between computing effort and quality of the solution. 

Different methods that favorably address the tradeoff are proposed in chapter 6. 

5.3 Definition of the Action-Signal 

The requirements on the action-signal in terms of its variables and their discretization 

are not different from those for the state-signal. On the one hand, more variables 

discretized more smoothly cause an increase in computing effort but deliver the best 

results. On the other hand, an action-signal with fewer variables discretized more 

roughly reduces the ability of the agent to affect its environment and might lead him to 

either bad solutions or could even make the task impossible to solve for him. 

Furthermore, the action-signal is of function relevance for the task and maneuver at 

hand. An inappropriate design of the action-signal might not only lead to no reduction 

of judder but might also cause the function of the clutch to be lost. If the necessary 

clamping force for the transmission of torque is not applied between the clutch disks, 

the vehicle is not accelerated since synchronization between the engine and the 

drivetrain is not achieved. Therefore, an action-signal that allows the agent to affect its 

environment enough to reduce clutch judder without compromising the functionality of 

the clutch is sought after. 

The action-signal can be formulated more easily than the state-signal, since the only 

parameter that can actively be set by the agent is the clamping force  𝐹𝐴. However, the 

design of the action space is worth addressing. 

                                            

196 Schwenger 2005 
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Generally, the first distinction that needs to be made is whether the action space is to 

be continuous or discrete. Due to the discrete nature of the digital control of physical 

actuators, a discrete implementation of the action space is proposed. 196F

197 

In chapter 6.2, three different approaches are proposed and analyzed and the most 

promising is identified. This approach is implemented in all further experiments. 

5.4 Definition of the Reward-Signal 

The definition of a reward-signal that is available for the agent after each interaction 

with its environment and accurately evaluates the result of said interaction is a key 

element in the RL framework. The agent uses the short term reward he acquires to 

learn the best behavior in order to maximize the long term reward he expects to 

perceive. 

The requirements on the reward-signal can be reduced to two essential qualities. First, 

it needs to reward the actions by the agent that lead to the desired behavior, i.e. 

reduction of judder vibrations with focus on passenger perception. Secondly, the value 

of the reward-signal needs to be available after each agent-environment interaction, 

since the methods implemented in this work aim to exploit the advantages of 

incremental computation and therefore cannot wait until the end of an episode to 

update the values in the value function. 

The methods for the quantification of clutch judder presented in 2.1.3 comply well with 

the first requirement but are not suitable for an incremental implementation. For 

example, the method proposed by ALBERS AND KRÜGER197F

198 and KARRAR 198F

199 requires the 

value of the upper and lower envelope curves before the area index can be calculated. 

However, the value of the envelope curve at a given time during the maneuver is not 

necessarily available. Furthermore, vibrations with high amplitude but a short duration 

can be expected to cause a jerk strongly perceived by a passenger despite having only 

a moderate effect on the area index. On the other hand, the effect of low amplitude 

vibrations persistent throughout the maneuver is usually negligible regarding 

passenger perception because of the damping in the drive train, chassis, seats, etc. 

The VDV introduced by GRIFFIN199F

200 offers a potential value for the reward-signal since 

it can be computed for very short durations and it accounts for the effect of high 

amplitude vibrations. In this work, different approaches similar to the VDV are analyzed 

by means of the two exemplary vibrations depicted in Fig. 5.4. The first exemplary 

vibration represents the case of persistent low amplitude vibrations unlikely to have an 

                                            

197For an insight into RL in continuous action spaces refer to e.g. van Hasselt / Wiering 2007. 
198 Albers / Krüger 2003b 
199 Karrar 2009 
200 Griffin 2007 
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adverse effect on passenger perception of comfort, whereas in the second case a high 

amplitude vibration of short duration is used to simulate undesired jerk. 

 

 

Figure 5.4: Exemplary cases for rotational speed vibrations 

Throughout this work, the amplitude relevant to the task is the difference speed 

between gearbox input and output  𝑛𝑑𝑖𝑓: 

𝑛𝑑𝑖𝑓 = 𝑛𝑔𝑒 − 𝑛𝑔𝑜 Eq. 5.3 

On order to determine an appropriate definition of the reward-signal, the exemplary 

cases are analyzed using different established methods. The formula that defines the 

value of the vibration according to the specific method and the ratio between their 

values for the presented exemplary cases is contained in Table 5.1.  
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Method Formula Ratio (case 2 to case 1) 

Amplitude max|𝑛𝑑𝑖𝑓| 30 

Area ∫ 𝑛𝑑𝑖𝑓(𝑡)𝑑𝑡
𝑇

0

 1 

Mean Square 
1

𝑇
∫ 𝑛𝑑𝑖𝑓(𝑡)

2𝑑𝑡
𝑇

0

 30 

Mean Cube 
1

𝑇
∫ 𝑛𝑑𝑖𝑓(𝑡)

3𝑑𝑡
𝑇

0

 900 

Mean Quad 
1

𝑇
∫ 𝑛𝑑𝑖𝑓(𝑡)

4𝑑𝑡
𝑇

0

 27000 

Root Mean Square √
1

𝑇
∫ 𝑛𝑑𝑖𝑓(𝑡)

2𝑑𝑡
𝑇

0

 5,5 

Root Mean Cube √
1

𝑇
∫ 𝑛𝑑𝑖𝑓(𝑡)

3𝑑𝑡
𝑇

0

3

 9,7 

Root Mean Quad √
1

𝑇
∫ 𝑛𝑑𝑖𝑓(𝑡)

4𝑑𝑡
𝑇

0

4

 12,8 

Vibration Dose ∫ 𝑛𝑑𝑖𝑓  (𝑡)
4 ̇ 𝑑𝑡

𝑇

0

 27000 

Vibration Dose Value (VDV) √∫ 𝑛𝑑𝑖𝑓 (𝑡)
4 ̇ 𝑑𝑡

𝑇

0

4

 12,8 

Table 5.1: Vibration evaluation methods 

The main drawback of an area based measurement of the judder vibrations can be 

taken from the ratio column. The area for both vibrations is the same and they are 

therefore rated equally. The cubic and quadratic values cause the range of values to 

explode, so very big numbers arise, whereas the “root” methods reduce this range, but 

only through an additional mathematical operation. As a compromise between the size 

of the value range and the simplicity of the method the mean square method is selected 

for the design of the reward-signal in this method. Due to its incremental 

implementation, a sum is formulated instead of an integral and is subsequently 

negated since high amplitude vibrations should be negatively perceived: 

𝑟𝑛 = −
1

𝑛
∑(𝑛𝑑𝑖𝑓)

2

𝑛

𝑖=0

 
Eq. 5.4 

The term n refers to the simulation steps or measurements used to calculate the 

reward. If the reward is calculated after every interaction step only, then  𝑛 = 2  and the 

reward becomes the difference of  𝑛𝑑𝑖𝑓 : 
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𝑟𝑡+1 = 𝑛𝑑𝑖𝑓𝑡+1
2 − 𝑛𝑑𝑖𝑓𝑡

2 = ∆𝑛𝑑𝑖𝑓 Eq. 5.5 

By maximizing the long term reward presented in this chapter, the agent learns to 

actuate the clamping force in order to synchronize the output and input sides of the 

clutch while avoiding high amplitude vibrations and treating low amplitude vibrations 

more leniently. 

Given the nature of the task and the definition of the reward-signal, the highest possible 

reward equals  0, as a result of a perfect synchronization of the input and output 

speeds. Since this reward is nearly unattainable in practice, all values that are updated 

as a result of an interaction are likely to be < 0.Thus, every unexplored state-action 

pair has a higher value than those already tried out. Therefore, a strong explorative 

behavior is forced at the beginning of a learning process, extending its duration but 

increasing its chances of finding an optimal solution in turn. SUTTON AND BARTO 200F

201 refer 

to this kind of problem as one with “Optimistic Initial Values”. 

5.5 Definition of the Agent 

As stated in 2.2.2, the agent is the entity considered to be learner and decision maker. 

In a simplistic sense, the agent can be regarded as a set of lines of code used for the 

tasks of updating the value (or action-value) function after an interaction with the 

environment and determining the action to be taken next.  

The first part of the task is addressed through the selection of the update rule according 

to the RL method being followed. The second part is achieved through the definition of 

a policy, e.g., 𝜀-greedy. 

Throughout this work, tabular TD methods are favored, since they are suitable for the 

discrete problem at hand. Implementations of both SARSA and Q-Learning are 

proposed. The corresponding update rules were introduced in 2.2.4.3. Therefore, the 

information about the interactions between the agent and the environment is stored in 

a so-called Q-Table. The Q-Table is the tabular value function in which the desirability 

of the actions at every state, thus the value of the actions at those states, is mapped. 

It can also be considered the solution space itself, since it contains all possible 

combinations of actions and states discernable by the agent. 

Having provided the definition of the state and action-signals, the structure of the Q-

Table is that of a 4-dimensional matrix: 

𝑄(𝑠, 𝑎) = 〈𝑛𝑔𝑒, 𝑛𝑔𝑜, 𝜑, 𝐹𝐴〉 Eq. 5.3 

                                            

201 Sutton / Barto 1998 
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The simplest form of a discrete Q-Table consists of the discretization and listing of the 

different state variables into a state list and repeating the same procedure with the 

action space. An example for the structure of a small tabular Q-Table is presented in 

Fig. 5.5. 

 

 

Figure 5.5: Example of the structure of a tabular Q-Table for discrete state and action 
variables 

Even though the Q-Table in the provided example has “only” 375 elements, RL 

applications generally struggle with the “curse of dimensionality” mentioned in earlier 

chapters. As an example, the smallest Q-Table in this work consists of 21600 

elements. 

In the following chapters, different approaches are presented for the structure of the 

Q-Table depending on the definitions and implementations of the state and action 

spaces and the corresponding state and action lists.  

Finally, the action selection by the agent throughout this work is implemented using 

the 𝜀-greedy method introduced in 2.2.1. For certain cases, however, the range of 

selectable actions or the behavior of the agent during explorative actions is altered to 

either improve the explorative behavior, boost the learning speed or exert the 

necessary clamping force by the end of an episode. 

5.6 The RL Framework for the Clutch Judder Reduction Task 

Over the course of this chapter all the elements of the reinforcement learning task have 

been applied to the clutch judder reduction task. The different applications and 

𝑠1 𝑠1 … 𝑠2 

𝑎1

𝑎2

…

𝑎1 

5 x 5 = 25 states

5 x 3 = 15 actions

State variable 1 [-1    -0.1    0    0.1   1 ]

State variable 2 [-2    -0.2    0    2    20]

Action variable 1 [-2      -1     0     1     2 ]

Action variable 2 [-2     0     2]

State list 𝑆:
𝑠1 = −1,−2 , 𝑠2 = −1,−0.2 ,… , 𝑠2 = {1, 20}

Action list 𝐴:
𝑎1 = −2,−2 , 𝑎2 = −1, 0 ,… , 𝑎1 = {2, 2}

Q-Table:

𝑆  𝐴

25 x 15 = 375 elements
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experiments presented in the following chapters share the same general framework, 

albeit the different individual elements are implemented differently. 

Thus, the RL framework for the judder reduction task through the active suppression 

of vibrations can be taken from Fig. 5.6. 

 

 

Figure 5.6: Generalized RL framework for the clutch reduction task 

The framework can be described as follows: a Q- or SARSA algorithm uses an 𝜀-

greedy policy to calculate a strategy for the actuation of the clutch via the clamping 

force  𝐹𝑎   in dependency of the input and output velocities of the clutch and the torque 

angle in order to maximize the reward  𝑟𝑡 , i.e. to minimize the difference in speed 

between the gearbox input and output. The task is episodical and consists of a start-

up maneuver, in which a terminal state is reached when the velocities of the engine 

and the vehicle are synchronized and have reached the target speed, or a given time 

limit for the synchronization is surpassed. 

The realization of the individual elements of the RL framework for the different 

implementations in this work is presented in the following chapters. 

 

Q- or SARSA learner
with ε-greedy policy

Dry friction test bench
or simulation model

(𝑛𝑔𝑒 , 𝑛𝑔𝑜 , 𝜑)𝑡 

(𝑛𝑔𝑒 , 𝑛𝑔𝑜 , 𝜑)𝑡+1 

𝑟𝑡
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𝐹𝑎
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6 Implementation of the RL Framework on an abstract 

Simulation Model of the Drive Train 

In the first stage of the research, the focus lies in the development of adequate state 

and action space designs. The state variables have been introduced in the previous 

chapter, however, the concrete implementation of the state and action spaces that 

determine the structure of the Q-Table remain unspecified.  

First, a highly abstract three-mass model is introduced as the agent’s environment as 

a means to provide a preliminary research platform that allows the study of different 

approaches at low implementation and computing effort. 

Afterwards, three different approaches for the conception of the action space are 

introduced on a RL algorithm with a standardized discretization of the state space 

(introduced shortly after in 6.3.1). 

One key element of this work is the way in which the conception of the state space and 

the updating of the value function are implemented in order to achieve satisfying 

results. In 6.3 the standard approach for the discretization of the state space and the 

estimation of the value function is implemented for the RL task described in the 

previous chapter. Additionally, three novel approaches developed in this work that aim 

at the reduction of computing effort are presented. The first consists of a dynamic state 

list in which an initially roughly discretized state list is refined locally in order to allocate 

computing efforts more efficiently. The second approach consists of the 

implementation of a function approximation method with radial basis functions in order 

to estimate the value function in a semi-continuous state space. Finally, in the third 

approach, a Gauss filter-function is applied to approximate the value function in an 

entirely discrete state space. 

To conclude this chapter, an analysis of the response of a selected RL controller to 

changes in its environment is performed. The focus herein lies in the ability of the agent 

to learn a new behavior that suits a permanently changed environment better, hence 

its adaptivity, and its performance under fluctuating system parameters, hence its 

robustness. 
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6.1 Simulation Model of the Environment 

The three-mass rotational oscillator used to model the environment in this chapter is 

implemented by HORNUNG 201F

202 after NAUS ET AL. 202F

203 and is depicted in Fig. 6.1. 

 

 

Figure 6.1: Three mass oscillation model after NAUS ET AL.203 

The reduction of the physical drive train yields the set of equations Eq.6.1 for the 

vibration system: 

𝐽𝐶𝐸𝜔̇𝑐𝑒 = 𝑀𝐶𝐸 −𝑀𝐶 

𝐽𝐶𝐺𝜔𝑔𝑒 = 𝑀𝐶 + 𝑐𝜃 + 𝑑𝜃̇ 

𝐽𝑉𝜔𝑔𝑜 = −𝑐𝜃 − 𝑑𝜃̇ 

𝜃̇ = 𝜔𝑔𝑜 − 𝜔𝑔𝑒 

Eq. 6.1 

where  𝜃  is the torsion angle in the drive train.  𝐽𝐶𝐸 ,  𝐽𝐶𝐺 ,  𝐽𝑉   and  𝜔𝑐𝑒, 𝜔𝑔𝑒, 𝜔𝑔𝑜  are the 

inertias and angular speeds of the combustion engine, the gearbox input shaft and the 

gearbox output, respectively. Finally,  𝑀𝑐𝑒  and  𝑀𝐶   are the torque of the combustion 

engine and the clutch. Analogously to the definitions in chapter 2.1.1, the clutch torque 

yields: 

𝑀𝐶 = 𝑅𝑀 ∗ 𝑛 ∗ 𝐹𝑎 ∗ 𝜇 Eq. 6.2 

where  𝑛  is the amount and  𝑅𝑀  the mean radius of friction pads. For this simulation, 

the friction coefficient was modelled as follows: 

𝜇 = 𝜇𝑠𝑡 + 𝜇
′ ∗ 𝑅𝑀 ∗ (𝜔𝑐𝑒 − 𝜔𝑔𝑒 ) Eq. 6.3 

The values of the parameters can be taken from Appendix A. 

The task is modelled as a discrete episodic task in steps of  0.1 𝑠 that finishes either 

after synchronization of the engine and gearbox output (vehicle) speed or after a time 

limit of  3 𝑠  is surpassed. Even if the synchronization happens before the given time 

limit, the simulations are run for  3 𝑠  but no further reward is given. 

                                            

202 Hornung 2012 
203 Naus et al. 2008 and Naus et al. 2010 
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A sample synchronization process with the drive train model presented in this chapter 

is depicted in Fig 5.2. 

The reward-signal is defined in accordance to 5.4 and the agent uses an 𝜀-greedy 

policy for the selection of actions and the on-policy TD-method SARSA to update the 

Q-Table. 

The difference between the different approaches presented in this chapter lies in the 

conception of the state and action spaces presented in the following sections. 

6.2 Design of the Action Space 

In this section, the three approaches for the realization of the action space are 

introduced. They are exemplified on a clamping range of  0 𝑘𝑁 ≤ 𝐹𝐴 ≤ 12 𝑘𝑁 of the 

actuation force of the clutch in the unscaled simulation model introduced in this 

chapter. However, the value range can be effortlessly applied to the scaled force range 

of the models in the following chapters. Since the most promising approach is used for 

all simulations in the following sections, it is introduced prior to the design of the state 

space. For comparison purposes, all approaches found in this section were tested with 

the standard, homogenously discretized state space described later in 6.3.1. 

6.2.1 Standard Action Space: Homogenous, unrestricted Force Range 

The approach referred to as “standard” throughout this work consists of a 

homogeneous discretization of the full range of the clamping force range. Thus, the 

agent can select a discrete, absolute force from the full range at every interaction with 

the environment. Thus, after every interaction the agent can select an action from the 

entire action space that is at the same time the actuation force applied to the clutch: 

𝐹𝐴 = 𝑎𝑡(𝑎𝑡 ∈ 𝒜) Eq. 6.4 

In this example, the force range of  12 𝑘𝑁  was discretized in constant steps of  1 𝑘𝑁 . 

Thus the action space yields: 

𝒜 = {1 𝑘𝑁, 2 𝑘𝑁, 3 𝑘𝑁,… ,12 𝑘𝑁} Eq. 6.5 

An example of the progression of action selections during a startup maneuver with the 

standard action space is depicted in Figure 6.2. 
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Figure 6.2: Progression of actions in a standard action space 

The evident advantage of this approach is its simplicity, since the only necessary 

parameter to set is the step size of the discrete forces. However, the availability of all 

discrete forces in the range at every interaction is a major flaw in this approach that 

contributes to its unpracticality in two ways. 

First, it is likely to result in an unachievable setpoint value of the force for the physical 

actuator. If in three successive interactions the actions selected by the agent result in 

large force differences, the physical actuator may not be able to set the demanded 

force. As an example, if the maximal force difference that can be set in a time step 

is  8 𝑘𝑁 , then the result of the environment to the agent selecting the actions  𝐹𝐴 =

12 𝑘𝑁  or   𝐹𝐴 = 9 𝑘𝑁  when the current force is  𝐹𝐴 = 1 𝑘𝑁  is the same. If the history of 

actions is not accounted for additionally, this case would lead to violations of the 

Markov property and therefore equivocal mappings of actions to states. 

Secondly, the availability of low force values near the end of an episode, where high 

forces are required in order to achieve synchronization, is unnecessary since the agent 

would need to experience their effect first, before learning that they are indeed 

unsuitable at that point of the episode, therefore increasing the computing effort for an 

adequate strategy. This makes it necessary to impose the selection of actions that lead 

to the required torque for synchronization late in the episode. 

In the following two sections, these negative effects are addressed by means of 

alternative state space designs. 

6.2.2 Alternative Action Space: Force Modulation 

An approach to neutralize the negative effects of the standard design of the state space 

consists in the realization of a force modulating agent. Instead of having a set of 

different clamping forces to choose from, the actions available to the agent are a set 

of modulating factors that can be applied to a standardized force ramp that ensures 
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the required progression of the clamping force. Therefore, the agent learns to alter the 

given progression of the force slightly to reduce vibrations without compromising or 

delaying the synchronization process significantly.  

In this implementation, a set of five modulation elements were defined. The value of 

the action selected is added to the current value of the standard force ramp. The clutch 

actuation force modulation action space can be visualized as depicted in Fig. 6.3. 

 

 

Fig. 6.3: Action space for the force modulation design. 

The curve in the middle corresponds to the standard progression. The agent can 

choose one of the following values to add to this progression, resulting in the other five 

curves depicted in the figure: 

𝒜 = {−2 𝑘𝑁,−1 𝑘𝑁, 0 𝑘𝑁, 1 𝑘𝑁, 2 𝑘𝑁} Eq. 6.6 

Thus, the actuation force at the clutch at a given time step  𝑡  yields: 

𝐹𝐴(𝑡) = 𝐹𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑(𝑡) + 𝑎𝑡(𝑎𝑡 ∈ 𝒜) Eq. 6.7 

An exemplary progression of the clamping force with a force modulating agent for 

interaction steps of  0.5 𝑠  can be taken from Fig. 6.4. The red curve signals an 

exemplary clamping force setpoint determined by the agent. 
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Figure 6.4: Exemplary progression of the actuation force with a force modulating agent 

The force modulation alternative provides an effective solution to the problems that 

arise from the implementation of a standard action space. However, the positive 

features of this approach come at a high cost. Even though the action space itself can 

be designed with less discrete elements, it has a negative effect on the computing 

effort since it requires the extension of the state space by at least one additional state 

variable. This problem arises from the fact that the value of the standard force ramp is 

a function of time, as can be taken from Eq. 6.7. The selection of the same action at 

different points in time results in different actuation force. Therefore, either the value 

of the standard ramp at the time, or the time itself must be known to the agent as 

additional information from the environment, or else the Markov property is violated. 

This undesired expansion of the state space is considered a criterion for exclusion 

which is why the force modulation approach is not further considered in this work. 

In order to avoid the expansion of the state space and the increase in computing effort 

it entails but retain the positive aspects of this action space design, a third approach to 

the implementation of the action space is introduced and compared to the standard 

action space in the next section. 

6.2.3 Alternative Action Space: Restricted Force Range 

In this work, an implementation of the state space is introduced that restricts the actions 

available to the agent for selection. Therefore, only a part of the action space is 

available at every step. In principle, the action space is also homogenously discretized 

in the same fashion as the standard implementation presented in 6.2.1. However, 

instead of permitting any action in the state space to be selected at any time, the agent 

is given only a segment of the state space to select actions from. Early in the episode 

lower values for the clamping force are available and as the episode proceeds, higher 

values for the force are made available gradually. Formally, the agent chooses an 
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action from the time dependent segment of the action space. Formally this is described 

as follows: 

𝐹𝐴 = 𝑎𝑡(𝑎𝑡 ∈ 𝒜𝑡) Eq. 6.8 

The time dependent action spaces available for selection at an early time  𝑡1   and at a 

late time  𝑡2  in the episode are exemplified in the following equations: 

  𝒜𝑡 = {1 𝑘𝑁, 2 𝑘𝑁, 3𝑘𝑁} Eq. 6.9 

𝒜𝑡2 = {8 𝑘𝑁, 9 𝑘𝑁, 10 𝑘𝑁, 11 𝑘𝑁} Eq. 6.10 

The progressive increase in value of the available actions guarantees synchronization 

by the end of the episode. Furthermore, the predefined availability of selectable actions 

actually reduces computing effort, since it limits the solution space. However, the time 

dependency of the action space entails the risk that the action that could lead to highest 

reward is not available at a given time. A graphic visualization of the design of the 

restricted state space can be taken from Fig. 6.5. 

 

 

Figure 6.5: Example of available actions during an episode with a restricted action space 

Lastly, the performance of the agent in the different action spaces is analyzed. For this 

purpose a comparison of the learning curves, i.e. the graph containing the progression 

of the reward gained throughout several episodes, is performed. Every aspect of the 

algorithm except for the design of the action space is identical. The results can be 

taken from Fig. 6.6. 
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Figure 6.6: Comparison between the standard and the restricted action spaces over 10,000 
episodes 203F

204 

The figures in the upper half of Fig. 6.6 depict the progression of the accumulated 

reward, i.e. the return, over the course of synchronization maneuvers, i.e. episodes. 

The comparison shows how the standard and the restricted action spaces from Fig. 

6.5 achieve similar returns after 10,000 repetitions of the synchronization maneuver. 

However, the converged solution of the standard action space completes the 

synchronization after approximately  2.0 𝑠, whereas with a restricted action space the 

synchronization takes approximately  2.5 𝑠. This is due to the previously mentioned 

problem that the restriction on the action space often makes the best actions 

unavailable to the agent. This is evidenced by the progression of the converged action 

selection in the unrestricted state space. In Fig. 6.7, the comparison of the action 

sequence for both approaches is depicted. 

 

                                            

204 The damping of the drive train in the simulation model is very low, thus exacerbating the vibrations. 
Since the agent’s sole purpose is to reduce the amplitude of vibrations, it does so by extending the 
duration of the maneuver and allowing the engine to be slowed down further than it would be 
acceptable in practice. 
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Fig. 6.7: Comparison of the converged action sequences for the standard and restricted 
action spaces 

However, the performance of the agent in a restricted action space can be improved 

once the best action sequence is known. In order to do so, the restriction of the action 

space is adjusted using the results of the unrestricted space, by making higher forces 

available earlier. The adapted restricted action space is depicted in Fig. 6.8. 

 

 

Figure 6.8: Learnt action sequence in the adapted restricted action space. The dots 
represent the available actions at different times. The dark spots are the selected actions at 

the corresponding time. 

There was no significant difference between the quality of judder suppression in a 

standard and a restricted action space. However, the advantage the restricted action 

space provides is a considerable reduction in the number of episodes required to 

achieve this result. This is mainly due to the previous knowledge provided by the agent 

in the form of a preselection of actions. In comparison, the adapted restricted action 

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

9

10

Standard action space

time [t]

a
c
tu

a
ti
o

n
 f
o

rc
e

 [
k
N

]

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

time [t]

a
c
tu

a
ti
o

n
 f
o

rc
e

 [
k
N

]

Restricted action space

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

time [s]

a
c
tu

a
ti
o
n
 f

o
rc

e
 [

k
N

]



 RL Framework on an abstract Simulation Model of the Drive Train 82 

space leads to convergence 204F

205 after approx. 4500 episodes, which is less than half the 

number required previously. This is evidenced by its learning curve, depicted in Fig. 

6.9. In order to facilitate the recognition of the learning progression, a second degree 

polynomial fitting of the learning curve is depicted in red as well. 

 

Figure 6.9: Learning curve of the adapted restricted action space (in homogenously 
discretized state space) 

For this reason, in all further experiments in this chapter the adapted action space as 

depicted in Fig 6.8 is implemented. In the following section, the design of the state 

space is addressed. 

6.3 Design of the State Space 

The only element of the RL framework provided in 5.6 not addressed thus far is the 

design of the state space. In this section different implementations including simple 

discretization approaches and an approximation of the value function in a partially 

continuous state space are provided. 

All the presented approaches are developed for the state space with three state 

variables presented in 5.2. Furthermore, the adapted restricted action space from 6.2.3 

is implemented in all further simulations in this chapter. 

Discretization has the purpose of transferring continuous models, equations or 

parameters into discrete counterparts usually as a means toward making them suitable 

for numerical evaluation and implementation on digital computers. As was mentioned 

in 5.2, discretization entails a loss of information known as discretization error that in 

the case of RL leads to violations of the Markov property. However, this loss can be 

reduced far enough so that the learning of appropriate solutions can be achieved. 

                                            

205 Convergence of the learning process is defined by 20 successive episodes in which the change in 
the return is smaller than 0.0001. 
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The simplest approach at discretizing the state space spanning three state variables 

is to create a homogenous mesh in which the value range of an individual variable is 

reduced to a finite number of elements with a constant step size. The permutation of 

all the discrete values for every variable constitutes a list of states of the environment:  

𝒮 = {𝑠1,𝑠2, … , 𝑠𝑁} Eq. 6.11 

Following a given rule, every continuous state of the environment can be assigned a 

discrete value of this list: 

𝑠𝑡  𝑠𝑖  ,   𝑠𝑖 ∈ 𝒮 Eq. 6.12 

The most common way to implement this rule consists of searching in the list of 

discrete states of each variable for the state with the lowest Euclidean distance to the 

continuous value. Such a rule assigns discrete states to continuous values as 

exemplified in the following application to the state space in this work: 

𝑠𝑡  𝑠𝑖 , ∀𝑖 =  a  m n
𝑖

[(𝑛𝑔𝑒,𝑡 − 𝑛𝑔𝑒,𝑖)
2
+ (𝑛𝑔𝑜,𝑡 − 𝑛𝑔𝑜,𝑖)

2
+ (𝜃𝑡 − 𝜃𝑖)

2]  Eq. 6.13 

However, the use of this rule requires the computation of the Euclidean distance 

between the continuous value and every discrete state before it can determine the 

lowest. In order to simplify computation, which is particularly important in regards to 

future real time implementation of the algorithm, an alternative formulation is proposed. 

It consists of defining areas of validity for the discrete values of parameters. This 

means that a certain combination of ranges of the three state variables constitutes a 

discrete state: 

𝑠𝑖 = (Ω𝑔𝑒,𝑖 , Ω𝑔𝑜,𝑖 , Θ𝑖)  Eq. 6.14 

Therefore, instead of calculating the distance to every discrete state in the state list the 

assignment is determined by the belonging of the continuous value to the different 

validity ranges: 

𝑠𝑡  𝑠𝑖 , ∀𝑖 =  𝑛𝑔𝑒,𝑡 ∈ Ω𝑔𝑒,𝑖 , 𝑛𝑔𝑜,𝑡 ∈ Ω𝑔𝑜,𝑖 , 𝑛𝑔𝑒,𝑡 , 𝜑𝑡 ∈ Θ𝑖 Eq. 6.15 

The only remaining features to define are the size of the value ranges that make up 

the mesh of the discrete state space and the way the values in the Q-Table, consisting 

of the state and action space, are updated as a result. The way these features are 

implemented is what distinguishes the four approaches presented in the following 

sections. 
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6.3.1 Homogenously discretized State Space 

The first and simplest method for the discretization of the state space consists of 

defining a constant size for the value ranges of each state variable. Therefore, the 

values of  Ω𝑔𝑒,𝑖 , Ω𝑔𝑜,𝑖  and  Θ𝑖  are constant but not necessarily the same. An example 

for the homogenous discretization of a two-dimensional state space can be taken from 

Fig. 6.11. 

 

Figure 6.11: Exemplary homogenous discretization of a two-dimensional state space. The 
green dots represent a continuous state, whereas the grid represents the discrete state it is 

assigned. 

The values of these parameters should be defined keeping in mind their influence on 

the learning process. Therefore, the size of the discrete ranges that determines the 

smoothness of the mesh should offer a favorable compromise for the tradeoff between 

computation effort and quality of the solution. However, in this work, this approach to 

the discretization of the state space is also meant to offer a reference for the quality 

that can be expected of the implementation of the RL algorithm. For this reason, the 

highest available smoothness of the homogenous mesh is targeted. Unless other 

elements of the framework are changed, the quality of the solution that results of the 

learning process in the homogenous discrete state with the smoothest mesh has the 

highest quality. However, it also causes the highest computing effort, since it results in 

the most extensive state space and, therefore, the most extensive solution space. 

In order to determine a sensible size for the discrete mesh, several iterations of the 

learning process are simulated with decreasing values for  Ω𝑔𝑜 , Ω𝑔𝑒  and  Θ. The 

results of this simulation are contained in Fig. 6.12. 
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Figure 6.12: Value of the converged return dependent on the size of range increments for the 
three state variables. Top: gearbox output speed. Middle: gearbox input speed. Bottom: 

torsion angle. 

For  Ω𝑔𝑒 , a considerable drop in the return is observed for an increment in size of the 

range    Ω𝑔𝑒  > 40. For  Ω𝑔𝑜  and  Θ , the return drops seemingly proportionally with the 

increase in size of the incremental ranges, though not as strongly. On the other hand, 

the best results were achieved for  Ω𝑔𝑜, Ω𝑔𝑒  15 − 30 1/𝑚𝑖𝑛 and  Θ  0.1 − 0.15 𝑟𝑎𝑑 . 

Taking into consideration that in a future implementation on a physical environment 

the resolution of sensors represents a constraint on the maximum smoothness of the 

discrete mesh (i.e. the smallest possible size of the value ranges of each variable), the 

values contained in Table 6.1 were selected for the implementation of the 

homogenously discretized state space. 
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Range Value 

Ω𝑔𝑜 15 1/𝑚𝑖𝑛 

Ω𝑔𝑒 15 1/𝑚𝑖𝑛 

Θ 0.1 𝑟𝑎𝑑 

Table 6.1: Values for the ranges  Ω𝑔𝑜 , Ω𝑔𝑒   and  Θ 

The resulting learning curve is depicted on Fig. 6.9. A greedy episode after 

convergence can be seen in Fig. 6.13. The convergence is reached after approx. 4500 

episodes and judder vibrations are reduced by 85%. The percentage is based on the 

value of the return of a converged episode in comparison to the return acquired during 

the standard maneuver introduced in 5.1.2. 

 

 

Figure 6.13: Greedy episode with a homogenously discretized state space 

As stated previously, this is the best result possible but it requires the maximal learning 

effort. The next three approaches presented in this chapter aim at the highest possible 

reduction of effort at the expense of as low a decrease in the solution quality as 

possible. In the language of RL, the approaches aim at highest possible reduction of 

the episodes needed for convergence at the expense of as little return as possible. 

6.3.2 Dynamically discretized State Space 

The first approach for the optimization of the learning task pursues the smart allocation 

of computing effort in order to downsize the state space, and thus, the solution space. 

For this purpose, an initially homogenous, roughly discretized state space is 

implemented, in which the values for  Ω𝑔𝑜 , Ω𝑔𝑒  and  Θ  are substantially higher than 
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they were in the previously presented approach. In order to refine the mesh locally, a 

discrete state is partitioned into smoother elements according to the number of times 

the agent visits this state. The idea behind this procedure is that providing the agent 

with a more differentiated perception of the state space around the states it visits more 

often will lead to an improved behavior in these states, whereas for states seldom 

visited, the behavior is generalized. 

The implementation of this approach requires the definition of three parameters: the 

number of visits to state required before partitioning it, the initial value for the range of 

the discrete states of all state variables, and the smoothest value after which no further 

partition takes place. The values of these parameters were defined so that up to three 

partitions of a state can take place before reaching the highest smoothness determined 

in the previous section. The values can be taken from Table 6.2. 

 

State 

variable 

Visits before  

partition 
Max. Range Min. Range 

Ω𝑔𝑜 5 120 1/𝑚𝑖𝑛 15 1/𝑚𝑖𝑛 

Ω𝑔𝑒 5 120 1/𝑚𝑖𝑛 15 1/𝑚𝑖𝑛 

Θ 5 0.8 1/𝑚𝑖𝑛 0.1 𝑟𝑎𝑑 

Table 6.2: Parameters for the dynamically discretized state space 

After each partition, the range is halved in value for each variable. A partitioned state 

is called parent state and the resulting states are its children. A single discrete parent 

state is thus divided into 4 children states after the first, into 16 after the second and 

into 64 after the third and last possible partition. Therefore, it takes three partitions, or 

15 visits to a state for the dynamically discretized state space to locally reach the 

smoothness of the homogenous state space. 

An example for a two-dimensional dynamically discretized state space where the 

number of visits before partition is set to two is depicted in Fig. 6.14. 
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Figure 6.14: Exemplary dynamically discretized two-dimensional state space. The green dots 
represent a continuous state, whereas the grid represents the discrete state it is assigned. 

Rougher cells in the mesh are partitioned after the second visit. 

The result of the implementation of the dynamically discretized state space can be 

taken from Fig. 6.15 und Fig. 6.16.  

 

Figure 6.15: Greedy episode in the dynamically discretized state space implementation after 
convergence 

The new setup converges to the exact same solution, where judder vibrations could 

also be reduced by 85% of the standard synchronization maneuver. Some minor 

differences could be observed after synchronization was achieved. However, due to 

the simplifications applied to the simulation model they are not relevant. 
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Figure 6.16: Learning curve for the dynamically discretized state space implementation 

The main advantage of the dynamic discretization model is observable in the learning 

curve. Convergence of the learning process is faster, achieved 500 episodes earlier 

than under the homogenous discretization and evidenced by the steeper progression 

of the polynomial fitting of the curve.  

An optimization of the parameters for the dynamic discretization of the state space 

bears the potential to deliver better results. 

6.3.3 Approximation with Radial Basis Functions (RBF) 

As was mentioned in earlier chapters, the clutch synchronization and judder reduction 

tasks are of a continuous nature. Therefore, the discretization of both the state-signal 

of the environment and the actions the agent can select necessarily leads to a loss in 

the Markov property when the tasks are formulated as MDPs. However, the Markov 

property cannot be fully maintained even without discretization, since the sensors and 

actuators also sample and actuate the environment in discrete intervals. 

An approach to limit this loss of information relies on the approximation of the value 

function in a continuous state space or state-action space. There are numerous 

approaches to achieve this that range from relatively simple to sophisticated and 

complex approximation methods. A detailed overview along with simulated examples 

of such methods can be taken from BUSONIU ET AL. 205F

206. 

In the context of this work, a solution is proposed in which the torsion angle remains a 

discrete variable and for each discrete angle the value function in the continuous two 

dimensional space spanned by the two speed variables is approximated. Thus, the 

                                            

206 Busoniu et al. 2010 
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state space is a semi-continuous space. The selected method is the approximation of 

the three dimensional function (input speed, output speed and corresponding Q-value) 

with radial basis functions (RBF). Hence, a brief theoretical introduction of the method 

after ZELL206F

207 is introduced. 

A RBF is a radially symmetrical function whose value is dependent on the distance 

from its center  𝑐 , where  ℎ(𝑥, 𝑐) = ℎ(‖𝑥 − 𝑐‖). Its norm  ‖ ∙ ‖  is commonly defined as 

the Euclidean distance, although other distances are possible. A special form of RBF 

is the Gaussian RBF selected for this work: 

ℎ(𝑥) = 𝑒−(𝑎‖𝑥−𝑐‖)
2
 Eq. 6.16 

where  𝑎 is a free parameter to be calibrated. A function  𝑓: ℝ𝑛 → ℝ as a mapping 

from  ℝ𝑛 to ℝ is given by  𝑁 nodes. Each node  𝑖 consists of an n-dimensional 

point  𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛) and a corresponding real value   𝑖 ∈ ℝ. The interpolation 

rule for all nodes  𝑖 = 1,2, …𝑁 yields: 

𝑓(𝑋𝑖) =  𝑖 Eq. 6.17 

Furthermore, the function  𝑓 can be approximated using  𝐾 RBFs as follows: 

𝑓(𝑋)  ∑ 𝑤𝑗 ∗ ℎ(‖𝑋 − 𝐶𝑗‖)
𝐾

𝑗=1
 

Eq. 6.18 

where  𝐶𝑗  is the center of the j-th RBF. The weights  𝑤𝑗  can be calculated by solving a 

linear system of equations after introducing the weights and value 

vectors 𝑊 and  𝑌 and the Matrix  𝐻, where: 

𝐶 = [

𝑐1
…
𝑐𝑗
] , 𝑌 = [

 1
…
 𝑁
] , 𝐻 = [

ℎ(‖𝑋1 −𝑊1‖) … ℎ(‖𝑋1 −𝑊𝑗‖)

⋮ ⋱ ⋮
ℎ(‖𝑋𝑁 −𝑊1‖) ⋯ ℎ(‖𝑋𝑁 −𝑊𝑗‖)

] Eq. 6.19 

Hence, the interpolation problem can be formulated as follows: 

𝐻 ∙ 𝐶 = 𝑌 Eq. 6.20 

The system of  𝑁  equations and  𝐾  unknowns can be solved for  𝑁 = 𝐾  with the help 

of the inverse of the Matrix  𝐻 : 

𝐶 = 𝑌 ∙ 𝐻−1 Eq. 6.21 

                                            

207 Zell 1997 
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However, the common case is that of  𝑁  𝐾. This over-determined system of 

equations cannot be solved exactly. Nevertheless, the best fit around the nodes can 

be computed with the pseudoinverse of  𝐻 and the least square method: 

𝐶 = 𝑌 ∙ (𝐻𝑇𝐻)−1𝐻𝑇 Eq. 6.22 

Having introduced the approximation method, the location of the nodes for the task at 

hand is yet to be determined. One possibility is to consider the state resulting for an 

interaction as the position of a node. Each new state visited results in a new node. 

However, if two nodes are too close to each other, a considerable interpolation error 

due to singularities is to be expected. This case is exemplified in Fig. 6.17. 

 

 

Figure 6.17: One dimensional singularity in the RBF interpolation mesh due to close nodes 

The RBFs assigned to each Node 1 and Node 2 cannot be interpolated appropriately 

due the closeness of the nodes. For the task at hand involving strictly negative values 

of the value function, false positives result from the interpolation attempt. The nature 

of the mechanical problem rules out the appearance of positive values, hence positive 

rewards, since the lowest possible magnitude of the reward is zero. An example of the 

appearance of false positives as a result of interpolation errors after one and after 10 

episodes is depicted in Fig. 6.18. 
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Figure 6.18: False positive Q-Values as a result of interpolation error after one (left) and ten 
episodes (right) 

Initially, the interpolation error is relatively small. However, given the false positive 

values are higher than any value the agent can achieve, their effect is self-reinforcing 

and their value rises quickly since the agent perceives actions that lead to higher false 

positive values as the best. Thus, the agent learns to maximize the interpolation error 

instead of minimizing clutch judder. 

A simple way to avoid interpolation error pursued in this work consists of defining fixed 

homogeneous meshes of both nodes and RBFs. The number of RBFs is smaller than 

the number of nodes in order to reduce the computing effort. A newly visited state is 

assigned a node and the values of the RBFs using their pseudoinverse are computed 

accordingly. A smoother mesh of nodes reduces the errors due to assignment, but 

increases the risk of interpolation errors, and thus, of false positive Q-Values. The 

following grid values were determined empirically for the node and RBF mesh, 

respectively. 

 

 Nodes RBFs 

n𝑔𝑒 15 1/𝑚𝑖𝑛 45 1/𝑚𝑖𝑛 

𝑛𝑔𝑜 15 1/𝑚𝑖𝑛 45 1/𝑚𝑖𝑛 

Table 6.3: Grid values for the node and RBF meshes 

After implementing the suggested measure, the appearance of false positive values in 

the approximated value function can be almost entirely suppressed, as can be taken 

from Fig. 6.19. 
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Figure 6.19: Suppressed false positives in the approximated value function through the 
implementation of fixed meshes of nodes and RBFs 

Finally, a last step in order to reduce the effect of the approximation error is introduced. 

It consists of the introduction of a reference value  𝑄𝑟𝑒𝑓(𝑠𝑖
∗) for every node  𝑠𝑖

∗ in the 

mesh in order to stabilize its approximated value  𝑄̂𝑟𝑒𝑓(𝑠𝑖
∗). The reference value is 

defined as the peak value of an RBF and it is intended as a means to limit the 

propagation of approximation errors along the mesh of RBFs. Theoretically, all RBFs 

are updated as a result of an agent-environment interaction. However, the further away 

the RBF is from the node to which the continuous state was assigned, the greater the 

approximation error becomes. For this reason, only the reference value of the closest 

RBF to the node currently active is considered for the approximation. 

 

 

Figure 6.20: Pseudocode for the RBF based approximation of the value function in a semi-
continuous state space 

Initialize   e 𝑠
∗, 𝑎 , 𝐶 arbitrarily 

Repeat (for each episode)

Initialize 𝑠 , discretize to 𝑠∗

Approximate 𝑄̂ for 𝑠

Choose 𝑎 from 𝑠 using policy derived from 𝑄̂ (e.g.  -greedy)

Repeat (for each step in episode)

Take action 𝑎, observe 𝑟, 𝑠′

Choose 𝑎′ from 𝑠′ using policy derived from 𝑄̂ (e.g.  -greedy)

𝑄𝑟𝑒𝑓 𝑠
∗, 𝑎  𝑄𝑟𝑒𝑓 𝑠

∗, 𝑎 + 𝛼 𝑟 + 𝛾𝑄̂ 𝑠′, 𝑎′ − 𝑄𝑟𝑒𝑓 𝑠
∗, 𝑎

Update 𝐶 from 𝑄𝑟𝑒𝑓

𝑠∗  𝑠′∗ 𝑎  𝑎′ 

Until 𝑠 is terminal
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Figure 6.20 depicts the pseudocode for the implementation of the RBF approximation 

of the semi-continuous state space. A greedy episode of the result of the learning 

process with the presented approximation of the value function in the semi-continuous 

state space can be taken from Fig 6.21. 

 

 

Figure 6.21: Greedy episode of the RBF based approximation of the value function in a semi-
continuous state space 

It is evident that the judder vibrations are not reduced at the same rate as the previously 

presented approaches, mainly due to the approximation error. In comparison, the 

agent in the dynamically discretized state space was able to lead to a reduction of 

judder of approx. 85%, whereas the reduction with the approach presented in this 

section only amounts to approx. 42%. 

However, the effect of the approximation of the semi-continuous state space on the 

learning speed of the agent becomes evident upon observation of the learning curve 

depicted in Fig. 6.22.  
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Figure 6.22: Learning curve of the RBF based approximation of the value function in a semi-
continuous state space 

The approximation of the continuous two-dimensional spaces for each of the discrete 

torque angles has a generalizing effect, in which an action is assumed to have a similar 

value for states close to that which has been recently visited. Thus, the speed of the 

learning process is boosted considerably. Convergence of the return is achieved after 

only approx. 250 episodes, which is only approx. 5.6% of the episodes required for 

convergence with the fastest approach presented thus far. Also, the fluctuation of the 

return is greatly reduced as is evident from the smoother course of the learning curve. 

This is due to the approximation of the value for actions that the agent had not taken 

before. In previous approaches, the agent would encounter new states even at late 

stages of the learning process, which caused him to take “wild guesses” regarding the 

best course of action, therefore causing considerable fluctuations of the return. The 

approximation of the value of such actions provides the agent with a choice that is less 

likely to be counterproductive, even if it is not necessarily optimal, thus improving its 

behavior considerably. 

6.3.4 Gaussian-Update Method for the Value Function 

The last approach presented in this chapter represents an attempt to realize a 

compromise between the effectiveness of the judder suppression of the discrete 

solutions and the generalizing effect of the approximation of the value function in the 

semi-continuous state space. 

In order to achieve this compromise, a new method for the approximation of the value 

function in entirely discrete state and action spaces is proposed along with a new 

method to handle the approximation error. 

Instead of defining meshes of nodes and RBFs, the new proposed approach shares 

the discrete homogenous mesh of 6.3.1. 
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Initially, the interaction between the agent and its environment and the updating of the 

value function are analogous to the classic RL approach, in which only the value of the 

state-action pair currently visited is updated. However, in this approach the 

implementation of a Gaussian filter as a means to approximate the value of nearby 

states is introduced.  

Two parameters are deemed necessary for the successful implementation of the 

Gaussian filter for the approximation of the value function. The first parameter 

assesses the probability of a state to have the same value as the state currently visited, 

and is named 𝑏𝑒𝑙𝑖𝑒𝑓. The probability of neighboring states to have the same value as 

the state currently visited is considered higher than that of farther states. In this work 

the measure for the distance between two states consists of the number of states in 

the discrete mesh lying between the state  𝑠  currently visited and the state  𝑠𝑖   whose 

value is currently being approximated. Thus the distance yields  ‖𝑠𝑖 − 𝑠‖. An example 

for the calculation of the distance in a simplified two-dimensional example can be taken 

from Fig. 6.23. 

 

Figure 6.23: In this two-dimensional grid each cell represents a state. The distance between 

states for the exemplified states yields:  ‖𝑠𝑖 − 𝑠𝑗‖ = √2  and   ‖𝑠𝑖 − 𝑠𝑘‖ = 3. 

The value of  𝑏𝑒𝑙𝑖𝑒𝑓  for a state  𝑠𝑖  decreases following a Gauss-function with 

increasing distance to state  𝑠 : 

𝑏𝑒𝑙𝑖𝑒𝑓 = 𝑒−‖𝑠𝑖−𝑠‖
2/2𝜎2 Eq. 6.23 

The second factor is introduced as a means to establish the necessity of an 

approximation. It is deemed more reasonable to trust the values resulting from direct 

interactions involving a particular state than those of approximated values. The idea 

behind this parameter is to determine how well “known” the value of a state is, before 

determining if its value should be updated using information resulting from an 

approximation. In simpler words, the value of a state that has been visited often should 
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not be altered as a result of visits to nearby states. Thus, the  𝑛𝑒𝑒𝑑  factor is introduced 

and defined as follows: 

𝑛𝑒𝑒𝑑 = {
1 − 𝑠𝑖𝑔[𝑣(𝑠𝑖) − 𝑘], 𝑓 𝑟 𝑠𝑖  𝑠
               1,                          𝑓 𝑟 𝑠𝑖 = 𝑠

 
Eq. 6.24 

where  𝑣(𝑠𝑖)  is the number of visits to  𝑠𝑖   and  𝑘  is an empirical parameter that 

determines after how many visits the value of a state can be considered to be free of 

error. A graphical exemplification of the  𝑛𝑒𝑒𝑑  factor is contained in Fig. 6.24. 

 

Figure 6.24: Example for the parameter  𝑛𝑒𝑒𝑑. In this example  𝑘 = 10 , thus the value of the 
state after 5 visits is considered to be faulty enough to be influenced by the approximation as 

a result of visits to nearby states, whereas the values remain almost unaffected by 
approximation after they have been visited around 15 times. 

Thus far, only the approximation of nearby states has been addressed. However, this 

approach can be easily extended to approximate the space spanned by states and 

actions. Instead, the approximation takes place for nearby state-action pairs.  

The SARSA-algorithm for a RL problem with three state variables  𝑥 ,    and  𝑧  and one 

action variable  𝑎, can be reformulated in order to perform the proposed Gaussian filter 

approximation. The introduced factors for all  𝑠𝑖 = (𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖) ∈ 𝒮  and all  𝑎𝑖 ∈ 𝒜  after a 

visit to the state-action pair  (𝑠, 𝑎)  yield: 

𝑏𝑒𝑙𝑖𝑒𝑓(𝑠𝑖 , 𝑎𝑖) = 𝑒
−‖𝑋𝑖−𝑋‖

2/2𝜎𝑥
2
∙ 𝑒−‖𝑌𝑖−𝑌‖

2/2𝜎𝑦
2
∙ 𝑒−‖𝑍𝑖−𝑍‖

2/2𝜎𝑧
2
∙ 𝑒−‖𝑎𝑖−𝑎‖

2/2𝜎𝑎
2
 Eq. 6.25 

𝑛𝑒𝑒𝑑 = {
1 − 𝑠𝑖𝑔[𝑣(𝑠𝑖 , 𝑎𝑖) − 𝑘], 𝑓 𝑟 (𝑠𝑖 , 𝑎𝑖)  (𝑠, 𝑎)
                     1,                          𝑓 𝑟 (𝑠𝑖 , 𝑎𝑖) = (𝑠, 𝑎)

 
Eq. 6.26 

The value  𝑄̂(𝑠, 𝑎)  for the transition from the state-action pair  (𝑠, 𝑎)  to the 

pair  (𝑠′, 𝑎′) is calculated following the SARSA-update rule: 

𝑄̂(𝑠, 𝑎)  𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] Eq. 6.27 

This value is then used for the approximation of the values  𝑄(𝑠𝑖 , 𝑎𝑖)  of all  𝑠𝑖 ∈

𝒮  and  𝑎𝑖 ∈ 𝒜  with the following Gaussian-update rule: 
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𝑄(𝑠𝑖 , 𝑎𝑖)  [1 − 𝑛𝑒𝑒𝑑(𝑠𝑖 , 𝑎𝑖) ∙ 𝑏𝑒𝑙𝑖𝑒𝑓(𝑠𝑖 , 𝑎𝑖)] ∙ 𝑄(𝑠𝑖 , 𝑎𝑖) + 𝑛𝑒𝑒𝑑(𝑠𝑖 , 𝑎𝑖)

∙ 𝑏𝑒𝑙𝑖𝑒𝑓(𝑠𝑖 , 𝑎𝑖) ∙ 𝑄̂ 

Eq. 6.28 

Therefore, an update of all state-action pairs takes place after each interaction 

according to the presented rules, even though some states are barely affected 

according to the distance to the state currently visited. 

An example of the value function update procedure for the classic SARSA-update and 

the Gaussian-update approach are depicted in Fig. 6.25 and 6.26 accordingly. 

 

 

Figure 6.25: Classic SARSA-update of the value function in an exemplary two-dimensional 
state space 

 

 

Figure 6.26: Gaussian-update of the value function in an exemplary two-dimensional state 
space 
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The Gaussian-update method for the approximation of the value function was 

implemented for the clutch judder reduction task using the discrete homogeneous 

mesh of 6.3.1 and with the empirically determined parameters contained in Table 6.4. 

 

Parameter Value Used for 

𝜎𝑛𝑔𝑒 2 𝑏𝑒𝑙𝑖𝑒𝑓 

𝜎𝑛𝑔𝑜 2 𝑏𝑒𝑙𝑖𝑒𝑓 

𝜎𝜃 0.4 𝑏𝑒𝑙𝑖𝑒𝑓 

𝜎𝑎 0.4 𝑏𝑒𝑙𝑖𝑒𝑓 

𝑘 10 𝑛𝑒𝑒𝑑 

Table 6.4: Parameters of the Gaussian-update method for the clutch judder reduction task 

A greedy episode of the learning process and the resulting learning curve are depicted 

in Fig.6.27 and Fig 6.28, respectively. 

 

 

Figure 6.27: Greedy episode of the SARSA-algorithm with implemented Gaussian-update 
method 
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Figure 6.28: Learning curve of the SARSA-algorithm with implemented Gaussian-update 
method 

The result of the implementation of the Gaussian-update method is the realization of a 

compromise between the enhancement in learning speed through the implementation 

of approximation methods and the effectiveness of the solutions involving a 

homogenously discretized state space. Through the implementation of 

the  𝑏𝑒𝑙𝑖𝑒𝑓  and  𝑛𝑒𝑒𝑑  factors, the approximation of values that are not currently being 

visited becomes more selective.  

The SARSA-algorithm with the Gaussian-update method converges approx. five times 

faster (<900 episodes) than the classic approach in the same homogenously 

discretized state space suppressing 80% of judder vibrations; a mere 5% less than the 

classic approach. Although the approach presented in this section needs four times 

the number of episodes to converge than the method involving the approximation of 

the value function in a semi-continuous state space, it is 38% more effective. However, 

a negative aspect of the implementation is the extended time required for 

synchronization. At approx. 3 s it is comparatively slow and takes around 20% longer 

to achieve synchronization. A comparison of the relationship between the learning 

speed and the effectiveness of judder suppression of the four approaches presented 

in this chapter is contained in Table 6.5. 

  

0 100 200 300 400 500 600 700 800 900
-100

-80

-60

-40

-20

0

episodes

re
tu

rn

 

 

learning curve

fitted curve



RL Framework on an abstract Simulation Model of the Drive Train 101 

Approach 
Time to 

convergence207F

208 

Effectiveness of  

suppression 208F

209 

Standard approach 100% 85% 

Dynamic discretization approach 88.9% 85% 

Function approx. in semi-

continuous state space 
0.56% 42% 

Gaussian-update approach 18% 80% 

Table 6.5: Learning speed and effectiveness of judder suppression of the presented 
approaches 

Furthermore, it is worth mentioning that the results presented in this work were 

achieved using parameter values that resulted from short empirical study. A 

comprehensive parameter study and optimization bears the potential to yield even 

better results. 

6.4 Adaptivity and Robustness 

As a final element of this chapter, an analysis of the performance of the RL algorithm 

to fluctuations and permanent changes in its environment is observed. 

Perceived fluctuations in system parameters in physical environments are always 

present to a certain extent. This is due to actual changes in environmental parameters 

such as temperature, humidity or to fluctuations in the measured values of parameters 

within the tolerances of sensor devices. On the other hand, physical environments tend 

to experience permanent changes as a result of deterioration and wear in their 

components. In this section, a RL agent is presented with different scenarios intended 

to reproduce each of the mentioned changes to its environment in order to analyze its 

behavior. 

The agent implemented for this purpose uses the SARSA-algorithm with the Gaussian-

update method introduced in 6.3.4 to estimate the value function. 

In the first scenario, the agent has already completed the learning task with the 

standard parameters of the drive train model. Afterwards, a fluctuation of the mass of 

the vehicle, e.g. as a result of more passengers or a load being transported, and thus 

of its inertia  𝐽𝑉 , within ±10%  of its original value is simulated. As long as the fluctuation 

of one parameter is simulated, all other parameters are held at a constant value. The 

agent then performs ten greedy runs, i.e. without taking random actions, with a 

                                            

208 The duration of the standard SARSA-agent in the homogenously discretized state space is used as 
benchmark. 

209 As stated previously, judder is quantified in terms of the return computed after a synchronization 
maneuver. The return for a standard engagement without RL-control is regarded to generate 100% 
judder and serves as base of comparison. 
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fluctuating mass and otherwise constant system parameters. The results of the 

performance of the agent under the described circumstances can be taken from Fig. 

6.29. 

 

 

Figure 6.29: Performance of the RL-agent under fluctuating vehicle mass 𝐽𝑉   in comparison to 

actuation with a standard force ramp without RL-control. The original value of  𝐽𝑉  is marked in 
red. 

It can be observed that the agent is able to reduce judder vibrations in comparison to 

a standard engagement ramp only when the fluctuations are relatively small and the 

inertia of the vehicle does not change substantially. The greater the offset to the original 

value, the less effective the agent is at suppressing the vibrations. In fact, for larger 

deviations from the standard value the RL-control is actually counter-productive. 

A similar experiment is performed for a decreasing static friction coefficient  𝜇𝑠𝑡 , e.g. 

as a result of oil or dirt in the friction pairing. Again, an agent who has already 

completed a learning task with the standard parameters performs four greedy runs in 

an environment where the static friction has decreased. The result of the experiment 

can be observed in Fig. 6.30. 
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Figure 6.30: Performance of the RL-agent for a decreasing static friction coefficient  𝜇𝑠𝑡. The 

original value of  𝜇𝑠𝑡   is marked in red. 

The loss in effectiveness of judder suppression by the agent is observable. As was the 

case in the previous experiment, the greater the deviation of the original value of the 

fluctuating parameter, the less effective the agent becomes. In fact, the RL-control is 

likely to actually cause judder instead of reducing it, when the value it had learned is 

altered. It should be mentioned that the presence of e.g. oil in the friction pairing usually 

leads to a much more dramatic decrease of the friction coefficient, as considered for 

this experiment. 

The second scenario regards the case in which the changes to the environment are 

permanent. Again, changes in the mass of the vehicle are considered first. A 

considerable permanent change in the mass of the vehicle is rather unlikely, however, 

the weight of the vehicle could be notably higher as a result of more passengers over 

an extended period of time, which could cause a more difficult or extended start up. 

Another option would consider the use of an existing implementation of the RL-

controller for another type of vehicle with a different mass inertia. Therefore, for the 

purpose of this investigation the ability of the RL-agent to learn a successful strategy 

for the altered weight is analyzed. The result of the adaptivity experiment is contained 

in Fig. 6.31. 

The agent retains its ability to learn to suppress judder vibrations under altered vehicle 

inertia. It is worth noting that both the number of episodes to reach new convergence 

and the achieved return after it is reached remains almost unaffected with a decrease 

in the inertia, whereas even a relatively small increase affects both negatively. 
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Figure 6.31: Adaptation of the RL-agent to a permanent change in the inertia  𝐽𝑚  of the 
vehicle. Top: episodes to reach convergence in second learning process. Bottom: Achieved 
return after convergence of second learning process. The return of original learning process 

is marked in red. 

 

Figure 6.32: Adaption of the RL-agent to a permanent change in the static friction 
coefficient  𝜇𝑠𝑡   of the vehicle. Top: episodes to reach convergence in second learning 

process. Bottom: Achieved return after convergence of second learning process. The return 
of original learning process is marked in red. 
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Lastly, the RL-agent is confronted with a permanently altered static friction coefficient, 

e.g. as a result of wear. The results of the experiment are contained in Fig. 6.32. The 

agent is able to learn a new strategy to suppress judder vibrations. However, the 

effectiveness of the algorithm is reduced by lower friction coefficients. 

In summary, the ability of the agent to suppress judder vibrations under fluctuations 

and permanent changes in the environment is retained. However, its effectiveness is 

reduced for both.  

In the first scenario, fluctuations of system parameters lead to a temporary loss of the 

correct mapping of actions to states. Unless these fluctuations are accounted for, e.g. 

through an adequate model, it represents a partial loss of the Markov property. The 

smaller the fluctuations, the “more Markov” the environment becomes and the better 

the performance of the agent remains. 

In the second scenario, permanent changes to the environment do not prevent the 

agent from learning a new strategy to reduce judder vibrations. However, the 

effectiveness of the new strategy and the additional effort to learn it can suffer 

considerably. A possible explanation lies in the change in the vibration behavior of the 

system and the need for an adaptation of the RL framework to these changes. For 

example, a change in the mass of the vehicle leads to a change in its eigenfrequency, 

which might make it necessary to adjust the rate at which the agent sets actions in 

order to counteract judder vibrations. 

Therefore, it is of great importance that fluctuations and changes in the environment 

are avoided as far as possible for the agent to learn an effective strategy in as few 

episodes as possible. The importance of this requirement becomes more evident in 

the following chapter, when the RL framework is applied to a physical environment in 

which the Markov property can never be fully ensured. 
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7 Implementation of the RL Framework on the IPEK Mini 

Hardware-in-the-Loop scaled down Test Bench 

The IPEK Mini-Hardware-in-the-Loop test bench (Mini-HiL) is designed to provide a 

scaled down experimental environment for drive trains and drive train components. 

Due to its flexible architecture, different levels of the XiL-framework introduced in 2.3 

can be realized in order to provide an adequate physical model of the drive train with 

the desired levels of partitioning, maturity and abstraction. 209F

210 

In this chapter, the conception of the physical test bench and a simulation model of it 

as new environments for the RL framework are presented. Afterwards, the Gaussian-

update algorithm is implemented in this new environment and the results are 

discussed. Furthermore, new RL-algorithms are introduced for this new environment, 

in order to assess if they are better suited for the implementation on the physical test 

bench. After a discussion of the results of all implemented approaches, the one 

considered the most promising is implemented on the physical test bench and the 

results are discussed. 

7.1 Description of the Environment 

In this section the configuration and architecture of the Mini-HiL test bench for the 

purpose of clutch judder studies is presented according to GWOSCH210F

211. 

In general, the Mini-HiL consists of a machine bed on which different physical models 

can be assembled and two highly dynamic direct current motors (DC motors) with 

which the different input and output speeds of components or subsystems can be 

reproduced. The test bench consists of a real time system for the control of the DC 

motors and the processing of different input and output signals through a modular 

interface system (MIS). The architecture is completed by a target and a host pc on 

which the different test and control programs can be generated and executed. 

In the next section, the realization of the physical model of the drive train for the 

reproduction of judder vibrations is introduced. 

7.1.1 Physical Drive Train Model 

The physical drive train model used throughout this investigation corresponds to a 

scaled down reduced drive train of an Opel Corsa®. The scale down factor is defined 

so that an energy-equivalent model, where the vibrations lie in the desired judder 

                                            

210 cf. 2.3.2 
211 Gwosch 2011 and Gwosch et al. 2013 
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frequency region, is achieved. Due to restrictions in the geometry and the mechanical 

properties of the materials, this can only be accomplished through modification of some 

parameters like the stiffness and strength of the side shaft and the values of the inertia 

of certain elements. 

CAD-schematics of the mechanical configuration of the test bench can be observed in 

Figure 7.1. 

 

 

Figure 7.1: Scaled down physical model of the reduced drive train 

The components of the model are numbered from left to right. The first component is 

the linear actuator (1) responsible for the application of the clamping force in the clutch 

(5). The force is applied through the bar kinematics around the input dc motor (3). The 

value of the force is measured by the force sensor (2) located before the input DC 

motor (3) responsible for the reproduction of the combustion engine speed and torque. 

The latter is measured by a sensor that relies on the magnetorestriction effect of 

ferromagnetic materials of a permanently magnetized shaft (4). Afterwards, the clutch 

discs (5) are tested. The friction pads are mounted on the output disc of the clutch. 

Together with the side shaft (6) and the vehicle mass (7) (modeled as a disc with the 

equivalent inertia), they form the physical two-mass oscillation model of the drive train. 

Finally, the output DC motor (8) is found at the right end of Fig. 7.1. 

The friction contact in the clutch consists of three pellets of the ceramic material Al2O3, 

whereas the counter surface on the input side is made of the unalloyed steel C45. 

The speed of the input and output DC motors of the manufacturer SEW 211F

212 is measured 

with their integrated resolvers. However, direct measurement of the absolute rotation 

                                            

212 SEW-EURODRIVE 2015 



RL Framework applied to the IPEK Mini Hardware-in-the-Loop Test Bench 109 

angle is not possible with the same device. The third speed of relevance for the 

purpose of this investigation is that of the clutch output disc, which is measured with 

an external laser surface vibrometer (LSV). 

The clutch linear actuator is conceived as a stepping motor with a spindle that 

translates the rotational into a linear motion. The integrated rotary encoder enables a 

resolution of the axial travel path of  1𝜇𝑚. However, the actuator is only able to work in 

steps of  10𝜇𝑚. Target positions are defined in increments, where  1 𝑖𝑛𝑐𝑟. = 1𝜇𝑚. 

The control algorithms are programmed in a Matlab/Simulink 212F

213 environment and the 

real time system ADwin Pro II 213F

214. The output parameters of the DC motors and the 

clutch actuator are set via a CAN-bus connection. The input values, thus the speed of 

the DC motors, are processed through their resolvers but their value is converted into 

an incremental signal in their inverters, in order to reproduce the sensor signal usually 

available in commercial drive trains. The incremental signal is converted back to a 

speed value in the real time program. All relevant sensor input signals are read as 

analog signals. 

The test bench represents the drive train following the XiL-framework introduced in 2.3. 

The “Vehicle” system is implemented in its Level 1 subsystem layer: the “powertrain-

in-the-Loop” layer. The only virtual element of the system “vehicle” consists of the 

combustion engine, whose output and input signals are computed in real-time. All other 

elements are modeled as a physical two-mass oscillator, as described in earlier 

chapters. Thus, the entire output side of the power train is reduced to physical models 

of the clutch, the side shaft and the vehicle mass. 

The system “Environment” is conceived in a manner that would allow an abstract virtual 

environment consisting of a set of resistances (e.g. air resistance) and a torque load 

resulting from the vehicle mass and the inclination of the road to be defined. For 

simplicity reasons no additional loads are defined and thus a virtual environment is not 

present. The environment of the physical elements of the test bench is ever present 

but generally neglected. 

The system “Driver” consists of a real-time virtual driver that sets a constant speed 

controller for the engine and a force ramp for the clutch actuator whenever the RL-

agent is not active. Furthermore, even though the reward is a key element of the RL 

framework, it is the driver’s expected behavior to judder vibrations, which was used to 

define this signal. Thus, the driver is responsible for the feedback that the agent 

receives regarding judder vibrations. 

                                            

213 MathWorks 2015 
214 Jäger Messtechnik GmbH 2015 
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Finally, the system under development (SuD) consists of the RL framework introduced 

in earlier chapters. It controls the clutch actuator in real-time in order to optimize the 

perception of clutch judder through the driver. 

The graphical overview of the application of the XiL-framework to the Mini-HiL test 

bench setup for the investigations in the context of this work can be taken from Figure 

7.2. 

 

 

Figure 7.2: Application of XiL-approach to the development of the RL framework for judder 
suppression on the Mini-HiL test bench setup 214F

215  

7.1.2 Simulation Model of the physical Drive Train 

The ultimate goal of this chapter is the implementation of a RL agent on the physical 

drive train that reduces judder vibrations during the synchronization of the input and 

output side of the power train. However, there are several reasons for the use of a 

simulation model before the agent is implemented on the physical test bench. 

The first advantage of a simulated environment lies within the time it takes to simulate 

the test maneuver in comparison to the time it takes to physically reproduce it on the 

test bench. As a simple example, the duration of an episode consisting of the 

synchronization maneuver and the following deceleration of the drive train to a full stop 

takes approx. 10 seconds. A learning task of around 10 000 episodes can therefore be 

                                            

215 The clutch, vehicle mass and side shaft are implemented as physical elements. However, it should 
be noted that they are models of the actual elements, thus they are physical models. 
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projected to take somewhere between two and a half and three hours. The same 

learning task can be simulated in approx. 10 minutes. 

Another aspect to be considered is the increase in flexibility regarding different 

experimental configurations gained through the use of a simulated environment. 

Experimental parameters can easily be adjusted in a simulation model, whereas 

retooling and even the production of new components is necessary in order to adjust 

the physical environment to a change in the experimental setup. Furthermore, such 

changes bear the potential of causing unexpected behavior to arise. Through a 

preliminary simulation a diagnosis of potential undesired or even dangerous behavior 

of the physical setup beforehand is possible. 

Last but not least, the use of an adequate simulation environment leads to a reduction 

of the operating time of the test bench, which is a crucial aspect regarding the 

inherently lengthy RL learning processes. This reduction in operating time is of great 

importance since it leads to reduced costs of operation, such as wear and energy 

costs, and more flexibility regarding the available machine time of highly demanded 

test benches. 

In order to model an automotive drive train as a two-mass-oscillator the following 

assumptions need be made: 

 the two branches of the drive train after the differential are perfectly symmetric 

 the wheels adhere perfectly to the road (no slipping) 

 high stiffnesses can be neglected 

Through the assumption of the wheels’ perfect adhesion the velocity of the vehicle can 

be represented as rotational speed and the mass of the vehicle can be represented as 

a rotational inertia. Neglecting high stiffnesses, e.g. between crank shaft and clutch 

disc, allows the use of added inertias to form an equivalent reduced model. The 

procedure of reducing the automotive drive train to a two-mass oscillator is described 

in several sources 215F

216. 

For the purpose of this investigation, the model proposed by GWOSCH ET AL. 216F

217 is 

enhanced in accordance to SEITENBRECHER 217F

218 in order to describe the drive train in two 

different modes: slipping-clutch mode and closed-clutch mode. 

7.1.2.1  Simulation Model in slipping Clutch Mode 

In this section a new simplified model of the reduced drive train is introduced. This 

model is used as an environment for the RL agent as long as there is a relative speed 

                                            

216 Maucher 1990, Naus et al. 2008 and Dolcini et al. 2010 
217 Gwosch et al. 2013 
218 Seitenbrecher 1997 
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between the clutch and the engine. The simplified model in slipping-clutch mode is 

depicted in Fig. 7.3. 

 

 

Figure 7.3: Simplified model of the reduced drive train in slipping-clutch mode 

The model is fairly similar to the model presented in previous chapters, however, it has 

certain distinctive features. The powertrain is divided into an input and an output side 

separated by the clutch. All inertias before the clutch, such as flywheel and crank shaft, 

are added to the combustion engine inertia  𝐽𝐶𝐸   rotating with the engine speed  𝜔𝑐𝑒. 

The input side of the powertrain has the damping  𝑑𝑐𝑒 and is driven by the engine 

torque  𝑀𝐶𝐸. Energy exchange between sides takes the form of the clutch torque  𝑀𝐶. 

The output side consists of the added inertias of the clutch and the gearbox  𝐽𝐶𝐺   and 

the inertia  𝐽𝑉   as a result of the mass of the wheels and the vehicle. They rotate with 

the entry speed  𝜔𝑔𝑒  and output speed  𝜔𝑔𝑜   respectively. The two inertias are linked 

with the stiffness  𝑐𝑠  and damping  𝑑𝑠  of the side shaft, as the component with the 

lowest stiffness in the drive train. Finally, the powertrain can be burdened by the load 

torque  𝑀𝐿. The values of the parameters can be taken from Appendix B. 

The dynamic system is now presented in its state-space representation. 218F

219 The state 

vector  𝑥𝑠𝑙𝑖𝑝  gives the full dynamic description of the system with a slipping clutch. The 

kinetic energy of the system is accounted for with the speeds of the engine, clutch and 

vehicle. The potential energy is determined by the angles of the clutch and the vehicle 

masses and their values at start. However, only the difference between them, the 

torsion angle of the drive train  𝜃, is of importance. The state vector can be noted as 

follows: 

𝑥𝑠𝑙𝑖𝑝 = (𝜔𝑐𝑒, 𝜔𝑔𝑒, 𝜔𝑔𝑜, 𝜃)
𝑇
 Eq. 7.1 

The input vector is given by the torques of the combustion engine, the clutch and the 

load: 

                                            

219 Gwosch et al. 2013, Seitenbrecher 1997 and Hangos et al. 2001 
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 𝑠𝑙𝑖𝑝 = (𝑀𝐶𝐸 , 𝑀𝐶 , 𝑀𝐿)
𝑇 Eq. 7.2 

The balance of torques for the three mass inertias yields the system of differential 

equations that dynamically describes the system: 

0 = 𝐽𝐶𝐸𝜔̇𝑐𝑒 + 𝑑𝑐𝑒𝜔𝑐𝑒 +𝑀𝐶 −𝑀𝐶𝐸 

0 = 𝐽𝐶𝐺𝜔̇𝑔𝑒 + 𝑑𝑠𝜃̇ + 𝑐𝑠𝜃 −𝑀𝐶         

0 = 𝐽𝑉𝜔̇𝑔𝑜 − 𝑑𝑠𝜃̇ − 𝑐𝑠 +𝑀𝐿             

Eq. 7.3 

The system of three differential equations has four unknowns. The state-space 

representation219F

220 can be formulated with the following relationship: 

𝜃̇ = 𝜔𝑔𝑒 − 𝜔𝑔𝑜 Eq. 7.4 

With Eq. 7.4 the state space representation is given by the state vector  𝑥𝑠𝑙𝑖𝑝  and the 

output vector   𝑠𝑙𝑖𝑝: 

𝑥̇𝑠𝑙𝑖𝑝 = 𝐴𝑠𝑙𝑖𝑝𝑥𝑠𝑙𝑖𝑝 + 𝐵𝑠𝑙𝑖𝑝 𝑠𝑙𝑖𝑝 

 𝑠𝑙𝑖𝑝 = 𝐶𝑠𝑙𝑖𝑝𝑥𝑠𝑙𝑖𝑝 + 𝐷𝑠𝑙𝑖𝑝 𝑠𝑙𝑖𝑝 

Eq. 7.5 

The state matrix  𝐴  and the input matrix  𝐵  are defined as follows: 

𝐴𝑠𝑙𝑖𝑝 =

(

 

−𝑑𝑐𝑒𝐽𝐶𝐸
−1 0 0 0

0 −𝑑𝑠𝐽𝐶𝐺
−1 𝑑𝑠𝐽𝐶𝐺

−1 −𝑐𝑠𝐽𝐶𝐺
−1

0 −𝑑𝑠𝐽𝑉
−1 −𝑑𝑠𝐽𝑉

−1 𝑐𝑠𝐽𝑉
−1

0 1 −1 0 )

  Eq. 7.6 

  𝐵𝑠𝑙𝑖𝑝 =

(

 

𝐽𝐶𝐸
−1 −𝐽𝐶𝐸

−1 0

0 𝐽𝐶𝐺
−1 0

0 0 −𝐽𝑉
−1

0 0 0 )

                          Eq. 7.7 

Finally, the output vector has to equate to the state vector  𝑥𝑠𝑙𝑖𝑝 =  𝑠𝑙𝑖𝑝  so that the 

output matrix is the identity matrix  𝐶𝑠𝑙𝑖𝑝 = 𝐼4 and the feedthrough220F

221  𝐷𝑠𝑙𝑖𝑝 is zero. 

 𝑥𝑠𝑙𝑖𝑝 =  𝑠𝑙𝑖𝑝 Eq. 7.8 

 𝐷𝑠𝑙𝑖𝑝 = 0 Eq. 7.9 

                                            

220 This is not to be confused with the Markov state-space representation of the environment in a RL 
framework. This is the state-space representation in the classic control sense. 

221 The feedthrough is often called feed forward matrix, e.g. in Hangos et al. 2001 
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7.1.2.2  Simulation Model in closed Clutch Mode 

The simulation model in closed clutch mode is intended to reproduce as accurately as 

possible the behavior of the physical test bench, once the rotational speeds of the 

clutch and the engine are synchronized. Usually, the speed of the engine is decreased 

during the synchronization process and it has to be raised to the target speed in order 

for the maneuver to be regarded as concluded. A graphic representation of the closed 

clutch test bench model is depicted in Fig. 7.4. 

 

 

Figure 7.4: Simplified model of the reduced drive train in closed-clutch mode 

In closed-clutch mode the inertia of the engine is added to the inertias of the clutch and 

the gearbox. They rotate at the same speed  𝜔 = 𝜔𝑐𝑒 = 𝜔𝑔𝑒. Micro-slip between the 

discs in closed-clutch mode is neglected. Following the same procedure as for the 

model in slipping-clutch mode, the dynamic system can be described in its state-space 

representation. 

The new state vector contains only three variables, as opposed to four in slipping-

clutch mode, since the engine and entry speeds are the same in closed-clutch mode: 

𝑥𝑐𝑙𝑜𝑠𝑒𝑑 = (𝜔,𝜔𝑔𝑜, 𝜃)
𝑇
 Eq. 7.10 

Consequently, the clutch torque is eliminated from the input vector: 

 𝑐𝑙𝑜𝑠𝑒𝑑 = (𝑀𝐶𝐸 , 𝑀𝐿)
𝑇 Eq. 7.11 

In analogy to the slipping-clutch mode, the balance of torques for the inertias in the 

system considering Eq. 7.4 delivers the system of differential equations of motion: 

 0 = (𝐽𝐶𝐸 + 𝐽𝐶𝐺)𝜔̇ + 𝑑𝑠𝜔 + 𝑐𝑠𝜃 −𝑀𝐶 

0 = 𝐽𝑉𝜔̇𝑔𝑜 − 𝑑𝑠𝜃̇ − 𝑐𝑠 +𝑀𝐿 

𝜃̇ =  𝜔 − 𝜔𝑔𝑜 

Eq. 7.12 

Analogous to Eq. 7.5, the system is brought to its state-space representation: 

   

 =    =    

   

  

  

  

   

   +    
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𝑥̇𝑐𝑙𝑜𝑠𝑒𝑑 = 𝐴𝑐𝑙𝑜𝑠𝑒𝑑𝑥𝑐𝑙𝑜𝑠𝑒𝑑 + 𝐵𝑐𝑙𝑜𝑠𝑒𝑑 𝑐𝑙𝑜𝑠𝑒𝑑 

 𝑐𝑙𝑜𝑠𝑒𝑑 = 𝐶𝑐𝑙𝑜𝑠𝑒𝑑𝑥𝑐𝑙𝑜𝑠𝑒𝑑 + 𝐷𝑐𝑙𝑜𝑠𝑒𝑑 𝑐𝑙𝑜𝑠𝑒𝑑 

Eq. 7.13 

With the corresponding input and output matrices  𝐴𝑐𝑙𝑜𝑠𝑒𝑑  and  𝐵𝑐𝑙𝑜𝑠𝑒𝑑 , respectively: 

𝐴𝑐𝑙𝑜𝑠𝑒𝑑 = (
−(𝑑𝑐𝑒 + 𝑑𝑠)(𝐽𝐶𝐸 + 𝐽𝐶𝐺)

−1 𝑑𝑠(𝐽𝐶𝐸 + 𝐽𝐶𝐺)
−1 −𝑐𝑠(𝐽𝐶𝐸 + 𝐽𝐶𝐺)

−1

−𝑑𝑠𝐽𝑉
−1 −𝑑𝑠𝐽𝑉

−1 𝑐𝑠𝐽𝑉
−1

1 −1 0

) Eq. 7.14 

  𝐵𝑐𝑙𝑜𝑠𝑒𝑑 = (
(𝐽𝐶𝐸 + 𝐽𝐶𝐺)

−1 0

0 −𝐽𝑉
−1

0 0

) Eq. 7.15 

Once again, the output vector has to equate to the state vector and the feedthrough 

has to be zero: 

 𝑥𝑐𝑙𝑜𝑠𝑒𝑑 =  𝑐𝑙𝑜𝑠𝑒𝑑 Eq. 7.16 

 𝐷𝑐𝑙𝑜𝑠𝑒𝑑 = 0 Eq. 7.17 

Finally, a criterion needs to be formulated in order to determine whether the clutch in 

the system is “slipping” or “closed”. In order for the clutch to be regarded as closed, 

two conditions need to be met. The first is the intuitive condition that the rotational 

speeds of the engine and the clutch are the same. Furthermore, a consideration 

regarding the clutch torque is made. In accordance to SEITENBRECHER 221F

222, the clutch 

torque  𝑀𝐶  has to be greater than the inner torque in the clutch  𝑀𝐼  which will be 

introduced shortly. This condition is necessary to ensure that a closed clutch can break 

loose and slip, e.g. as a result of a decrease in the clamping force. The two conditions 

can be formulated as follows: 

 𝜔𝑐𝑒  𝜔𝑔𝑒  𝑟 |𝑀𝐼| > |𝑀𝐶|  →  𝑠𝑙𝑖𝑝𝑝𝑖𝑛𝑔 Eq. 7.18 

 𝜔𝑐𝑒 = 𝜔𝑔𝑒  𝑟 |𝑀𝐼| ≤ |𝑀𝐶| → 𝑐𝑙 𝑠𝑒𝑑       Eq. 7.19 

The inner torque can be calculated with relative ease from the balance of torques in 

either one of the first two equations in Eq. 7.3 by substituting  𝑀𝐶   with  𝑀𝐼. However, a 

low computing effort alternative that does not require time derivatives is provided by 

SEITENBRECHER222 considering that  𝑀𝐼   is only relevant in closed-clutch mode: 

 𝑀𝐼 =
1

𝐽𝐶𝐸+𝐽𝐶𝐺
(𝐽𝐶𝐸(𝑑𝑠(𝜔𝑔𝑒 − 𝜔𝑣) + 𝑐𝑠𝜃) + 𝐽𝐶𝐺(𝑀𝐶𝐸 + 𝑑𝑠𝜔𝑐𝑒))  Eq. 7.20 

                                            

222 Seitenbrecher 1997 
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7.1.2.3  Consideration of the physical Test Bench 

Thus far, there is no big difference between the simulation model presented in the 

previous chapter and those presented in this one other than the distinction between 

slipping- and closed clutch modes. However, in this section the availability of signals 

and values in the physical test bench is taken into account. In addition, numerous 

additions and modifications to the model are undertaken, in order to better reproduce 

the behavior of the physical drive train. These modifications result mainly from 

hardware and technical limitations and constraints. Furthermore, the values of the 

parameters in the model as well as the dead times during the operation of the test 

bench are a result of an extensive system identification performed by GWOSCH ET 

AL. 222F

223. Any values not specified in this chapter can be found in Appendix B. 

Input Variables 

The simulation model requires three torque values as input to compute the dynamic 

behavior of the clutch. However, only the load torque  𝑀𝐿  can be directly specified, 

whereas the other two need to be calculated using the input possibilities of the physical 

test bench. These are the specifications of the rotational speed of the input DC motor 

and the axial travel path of the linear actuator responsible for closing the clutch. These 

two input values are used to compute the other two values of the input vector of the 

model in state-space form: the torques of the combustion engine and the 

clutch, 𝑀𝐶𝐸   and  𝑀𝐶, respectively. 

The input value of the rotational speed of the engine is set to be constant (900 1/m n). 

The set current for the DC motor is computed using a PI-controller and the feedback 

value of the engine speed from the model. The corresponding torque 𝑀𝐶𝐸   results from 

a characteristic curve determined in the mentioned system identification. One 

specification made at this point is the limitation of the engine torque to a 

maximum  1.7 Nm  in order to prevent an overstressing of the side shaft of the physical 

test bench. 

The clutch torque 𝑀𝐶   is computed as specified in chapter 2.1.1, concretely, Eq. 2.5. 

The friction coefficient is modeled according to Eq.6.3. The values of the static friction 

and the friction gradient,  𝜇𝑠𝑡  and  𝜇′ respectively, as well as the mean friction 

radius  𝑅𝑀  have a constant value measured on the physical test bench. The clamping 

force in the clutch is the result of a correlation of the axial travel of the linear actuator 

in the drive train and the axial force in the clutch and a model of the actuator’s dynamic 

behavior. The translation of axial travel to force is approximated with a third degree 

polynomial, whereas the actuator dynamics are assumed to possess a PT2 behavior. 

Again, the parameterization resulted from measurements on the test bench. 

                                            

223 Gwosch et al. 2013 
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Finally, the value of load torque can be directly specified as an input for the model. For 

example, a load as a result of the combined effects of an uphill track and wind 

resistance can be applied to the drive train. However, in the context of this work 

additional loads are neglected. 

Sampling Rate and Dead Times 

A general sampling rate of  10 kHz  was defined for the simulation model. This is more 

than accurate enough in order to reproduce the judder vibrations that lie in the focus 

of this work. This sample rate has no effect on the RL framework whatsoever; it is 

merely the sample rate with which the physical test bench is simulated. The criteria 

formulated in Eq.7.18 and Eq.7.19 are evaluated at this rate. The criteria need to be 

reformulated, since the comparison of rotational speeds involved cannot be properly 

processed in practice. In simulation, the floating-point number values of the two speeds 

are unlikely to ever be exactly the same, whereas in a physical implementation, the 

measured values will also unlikely be the same due to noise and/or their digital 

postprocessing. The empirically determined tolerance factor  𝜗 = 0.5 1/𝑚𝑖𝑛  is 

introduced and the criteria for slipping- and closed-clutch mode reformulated as 

follows: 

 |𝜔𝑐𝑒 − 𝜔𝑔𝑒|  ≥ 𝜗    𝑟   |𝑀𝐼| > |𝑀𝐶|  →  𝑠𝑙𝑖𝑝𝑝𝑖𝑛𝑔 Eq. 7.21 

   |𝜔𝑐𝑒 −𝜔𝑔𝑒|  < 𝜗    𝑟   |𝑀𝐼| ≤ |𝑀𝐶|  →  𝑐𝑙 𝑠𝑒𝑑       Eq. 7.22 

The RL framework itself samples the environment, thus the simulation model of the 

test bench, at a lower rate. The state of the environment is updated with a sample rate 

of  1 kHz, which both suffices for the agent to sense the environment accurately and 

without causing unnecessary computing effort. This is also the sample rate at which 

the physical test bench will be sampled later on. The actual agent environment 

interaction takes place at a rate of ten interactions per second, thus  10 Hz, due to the 

dynamics of the clutch actuator (see 7.2.1.3). The environment is updated at a higher 

rate, since some of the state variables require multiple samples in order to be 

computed. Such is the case of variables that result from derivatives or integrations. 

The significantly higher rate, at which these variables are sampled, ensures that an 

accurate value is available when the agent probes the state of the environment. An 

example for such a state variable is the torsion angle  𝜃. For its computation, an 

integration of the entry and output speeds of the drive train is required. Also, the 

reward-signal can be calculated more accurately. 223F

224Also, the higher sampling rate 

                                            

224 cf. chapter 5.4 
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of  10 kHz   allows more accurate control of the workflow in the synchronization 

maneuver, as will be described afterwards in this section. 

Finally, there is a set of different dead times in the components of the physical drive 

train, that are accounted for in the form of delay blocks. A delay of one sample is 

caused by the real time environment in use during the transmission of measurement 

values of parameters from the test bench, i.e. output values of parameters, and again 

during the transmission of input values to the test bench. These dead times amount to 

delays of each  0.001  . The biggest dead time is found in transmission of the input 

axial travel value of the clutch actuator. It amounts to a value that fluctuates 

between  0.005    and  0.01  . 

Maneuver 

The maneuver that comprises the learning episodes in this work consists of 

synchronization of the input and output sides of the powertrain until the desired speed 

and torque are achieved. 224F

225 At the beginning of the maneuver, at the input side, the 

engine and the input clutch disc are rotating at the velocities’ setpoint value. 

Subsequently, the first of four phases sets in. These phases are the standard force 

ramp synchronization phase, the RL-controlled synchronization phase, the 

acceleration to setpoint value phase and the output slowing down phase. After the last 

phase the starting conditions are met again and the procedure can start anew. In this 

section, the phases as well as the conditions that need to be met in order to transition 

into the next phases are introduced. 

At the beginning of each episode, thus of every repetition of the maneuver, the input 

side of the drive train is rotating at setpoint value speed, whereas the output side is 

standing still. The clutch is actuated following a standard force ramp in order to 

establish contact between the initially separated input and output discs of the clutch. 

Simulations in which the RL-agent was responsible for the clutch actuation from the 

onset of an episode showed that due to its inherent explorative behavior it is 

counterproductive in early phases of an episode. This is mainly due to the fact that the 

agent needs to learn that most actions taken at the beginning of an episode, when 

judder vibrations are not present yet, either cause rather than reduce vibrations or 

delay the process of establishing contact between the clutch discs. For this reason, the 

RL-agent and the corresponding RL framework remain inactive until shortly before the 

output speed reaches the drive train’s eigenfrequency, where judder vibrations reach 

their highest amplitude. The gradient of the standard force ramp was determined 

                                            

225 cf. chapter 5.1.2 
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empirically, favoring a solution that achieves a relatively fast closing of the clutch. 225F

226 

The criterion 226F

227 that determines the point in time at which the RL-agent assumes the 

control of the clamping force control is formulated as follows: 

 |𝜔𝑔𝑒 − 𝜔𝑔𝑜| = 𝜔𝑟𝑒𝑙 ≤ 𝑆 ∙ 𝜔𝑒𝑖𝑔𝑒𝑛 = 𝑆 ∙ 2𝜋 ∙ 𝑓𝑒𝑖𝑔𝑒𝑛 Eq. 7.23 

The safety factor  𝑆  was determined empirically and set to  𝑆 = 1.2. It ensures that the 

agent is only active when suppression of judder vibrations is necessary without having 

a negative effect during the beginning of the maneuver. Another function of the 

standard force ramp at the beginning of an episode is that of establishing contact 

between the initially separated input and output discs of the clutch. 

Once the criterion in Eq. 7.23 is met, the RL-agent and the rest of the RL framework 

are activated. The agent then sets the clamping force of the clutch until either the entry 

and output speeds are synchronized or three seconds have passed. If synchronization 

is not achieved in these three seconds, the episode is regarded as failed and the 

slowing down phase is initiated. 227F

228 The input and output sides are considered 

synchronized when their difference in speed is deemed neglectible: 

 
|𝜔𝑔𝑒 − 𝜔𝑔𝑜| < 2

𝑟𝑎𝑑

𝑠
 𝑓 𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 0.1 𝑠𝑒𝑐 𝑛𝑑𝑠  Eq. 7.24 

If the synchronization is successful, the clutch is not slipping anymore so no 

consideration of judder or its suppression is necessary. For this reason, the RL agent 

is disengaged and the clutch actuator is set to apply the highest axial force possible, 

without exceeding the torque maximum specified previously. The phase is terminated 

when the speed of the synchronized drive train reaches the setpoint value of the input 

speed again. The condition is formulated as follows: 

 
|𝜔𝑔𝑜 −

𝜋

30
∙ 900

1

𝑚𝑖𝑛
| < 2.5

𝑟𝑎𝑑

𝑠
  𝑓 𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 0.3 𝑠𝑒𝑐 𝑛𝑑𝑠 Eq. 7.25 

The slowdown phase is initiated as soon as the condition above is met. It consists of 

the opening of the clutch and the subsequent application of a braking torque on the 

output DC motor until the output speed reaches  30 1/m n. Afterwards, the drivetrain 

is allowed to roll out to a full stop.228  

                                            

226 cf. 7.2.1.3 
227 In simulation, the criterion expressed in 7.23 coincides with the actuator reaching 400 incr. following 

the standard ramp. 
228 Slowing down the drive train is only really necessary on the physical test bench. In simulation the 

episode is simply interrupted and the initial conditions are reset. 
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7.2 RL Framework in the simulated Test Bench Environment 

Thus far in this chapter, the new RL environments, the physical and the simulated test 

bench, have been introduced. In this subchapter, the changes to the remaining 

elements of the RL framework as a consequence of its implementation on the 

simulated test bench environment and the corresponding results are presented. These 

results are evaluated in order to identify the one that yields the highest potential to be 

successfully implemented in the physical test bench environment. 

7.2.1 Influence on the Elements of the RL Framework 

Having introduced the new simulated environment, the focus now lies in the remaining 

elements of the RL framework introduced in 2.2.2. These are the agent, the reward-

signal, and the state and action-signals and the corresponding state and action spaces. 

7.2.1.1  State Space and Reward-signal 

No significant adjustments regarding the definition of the state-signal and the design 

of the state space are undertaken in this new environment of the RL framework. The 

state-signal proposed in 5.2 can be implemented without constraints and is formally 

described by Eq. 5.2. However, the resolution of the discrete meshes for the rotational 

speeds in the state-signal is adjusted to reduce computing effort and operating time of 

the physical test bench. The resolutions and boundaries of the three state variables 

can be taken from Table 7.1. 

 

State variable Unit Lower boundary Upper boundary Resolution 

𝜔𝑔𝑒 [𝑟𝑎𝑑/𝑠] −60 130 5 

𝜔𝑔𝑜 [𝑟𝑎𝑑/𝑠] 0 120 10 

𝜃 [𝑟𝑎𝑑] −1 2 0.1 

Table 7.1: Resolution of the new state space 

The adjustments are mainly necessary due to the limited amount of data that can be 

transferred in the real-time environment on the physical test bench. In comparison to 

the previous simulations of chapter 5, the discretization of the entry speed is twice as 

rough and that of the output speed even four times as rough. However, according to 

the preliminary studies presented in 6.3.1 and depicted in Fig. 6.12, the loss in 

effectiveness of the RL-control should not suffer substantially. 

No changes are necessary in regards to the reward-signal for the new environment. 

Its formal definition is given by Eq. 5.5. 
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7.2.1.2  Agent 

The role of the agent and its interaction with the remaining elements remains 

unchanged in comparison to previous implementations of this work and the definition 

provided in 5.5. However, two major adjustments are necessary to accomplish the new 

task at hand. 

The first adjustment concerns the rule with which the Q-Table is updated after every 

interaction with the environment. Thus far, the on-policy TD-method SARSA had been 

preferred, due to its faster convergence and often better results. However, in 

environments where the Markov property is more compromised and there are no 

transition probabilities available for all states or state-action pairs, it is not necessarily 

the case. This is evident in the fact that the value of a state-action pair is determined 

in part by the state-action pair that follows after an interaction. If the following state-

action pair is of low value, the entire current policy is updated, hence on-policy. A 

similar negative effect is experienced when explorative actions result in a transition to 

a low value state-action pair. Foreseeing that the physical test bench is most likely to 

violate the Markov property considerably, the Q-Table is now to be evaluated following 

the off-policy TD method Q-Learning228F

229. 

The second modification is undertaken in order to adjust the explorative behavior of 

the agent to the task at hand. Explorative and exploitative behaviors are still balanced 

with the help of the   -greedy policy, however, its parameters are adjusted in order to 

consider the number of completed episodes  𝑁𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠: 

 𝜀 = 0.2 ∙ 𝑒−0.003∙𝑁𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 + 0.005 Eq. 7.26 

The values were determined to ensure that approx. 20% of the actions at the beginning 

of the learning task are random. This value decreases exponentially with the number 

of completed episodes until it is neglectible. The value summed at the end ensures a 

persistent small amount of exploration throughout the task. 

7.2.1.3  Action Space and Action-Signal 

The most significant adjustment that arises from the application of the RL framework 

to the new environment is found in the implementations of the action-signal and the 

corresponding action space. As stated in the previous chapter, one of the necessary 

input signals for the simulation model to reproduce the dynamic behavior of the 

physical test bench is the clutch torque, which is dependent on the clamping force 

applied by the clutch actuator. In the previous chapters, this clutch actuation force was 

defined as the action-signal in the RL framework and the action space was designed 

accordingly. The response of the actuator to a force input value by the agent was 

                                            

229 cf. Fig. 2.15 in 2.2.4.3 
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modeled to have a PT2-behavior and to fully apply the demanded force within  0.1  . 

However, experiments on the physical test bench determined that this value is overly 

optimistic. On its force (closed-loop) control mode, the actuator is unable to cover the 

relevant force range229F

230 within the defined time frame. Furthermore, the response of the 

actuator lacks the required reproducibility for the application of a RL algorithm. The 

results of an experiment with a square-wave force setpoint signal can be taken from 

Fig. 7.5. 

 

Figure 7.5: Force control of the physical clutch actuator (closed-loop) 

The different responses of the actuator to the setpoint signal are evident. Also, the 

demanded  75 N  cannot be set in the required time frame. Whereas the value of the 

set force is not as important for the RL-algorithm as the reproducibility with which it is 

set, an insufficient force due to the actual force not following the setpoint value could 

lead to the required torque not being produced in the clutch. 

The use of the force control actuator is not viable mainly due to the lack of 

reproducibility. In the context of this work, a position (open-loop) control of the actuator 

is proposed. The main advantages are the gained reproducibility of the actuator’s 

response and the increased force range accessible within the required time frame. 

However, the initial gain in reproducibility is only guaranteed as long as the position-

force correlation introduced in the previous section is valid. This might not always be 

                                            

230 The relevant force range is limited by the force that leads to the maximum torque allowed defined 
previously. The lowest force considered for the range results from the transition in the maneuver from 
following the standard force ramp and the activation of the RL-agent. 
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the case on a physical test bench due to temperature and operation related effects. 

The response of the actuator in position control mode can be taken from Fig. 7.6. 

 

Figure 7.6: Position control of the physical clutch actuator (open-loop) 

The force range accessible within the proposed time frame of 0.1 seconds in open-

loop control mode is vastly greater and the response of the actuator is highly 

reproducible. For this reason, this form of actuation is preferred in this work, bearing in 

mind the potential difficulties faced during its subsequent implementation on a physical 

test bench. 

As a consequence, the action-signal becomes a position signal instead of a force 

signal. Instead of selecting a force to be applied, the agent selects an incremental 

position the clutch actuator has to reach. In order to maintain the solution space as 

reduced as possible, a sensible range for incremental position of the actuator is defined 

as the action space for the RL task. This range is then homogenously230F

231 discretized to 

no more than five actions, thus no more than five incremental positions. In order to 

determine the best distribution for the actions around this orientation value, a standard 

engagement ramp was defined as a means to provide a benchmark for different action 

space proposals. After ramps with different gradients were tested and evaluated, a 

gradient of  670  nc /   was found to provide a quick closing of the clutch at a moderate 

rate of clutch judder. 231F

232 Measured in terms of the reward-signal introduced in 5.4, the 

return for the synchronization maneuver following this standard ramp is  −15. 

Furthermore, as an orientation about the position of the increments, the value at which 

                                            

231 The values are rounded to the nearest ten when necessary. 
232 Exemplary results of a simulated synchronization maneuver following the introduced standard ramp 

are presented in 7.2.2. 
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the criterion expressed in 7.23 is fulfilled while following the aforementioned standard 

ramp is used. In simulation, the transition from the standard force ramp to the RL-

controlled synchronization coincides with the actuator reaching  400  nc . Having 

defined every element of the RL framework except the distribution of actions in the 

action space, five different proposals were made and the results of a standard Q-

learning process until convergence were compared. The results can be taken from 

Table 7.2. 

 

Action space  𝓐  [incr] Reward after convergence Reduction of judder [%] 

Standard ramp −15 0 

{100,200,300,400,500} −6.25 58.3 

{300,350,400,450,500} −1.68 88.8 

{400,420,450,470,500} −0.99 93.4 

{400,450,500} −7.77 87.0 

{400,500} −1.96 48.2 

Table 7.2: Comparison of different state space configurations 

From these results it becomes evident that having more actions to choose from allows 

the agent to find better solutions, therefore the solutions involving less than five 

elements in the action space are discarded. 232F

233 From the remaining proposals, the 

action space that provides the agent with actions in the highlighted interval between 

400 and 500 increments yields the best result and is therefore selected for all further 

simulations and experiments. Therefore, the action space is defined as follows: 

 𝒜 = {400 𝑖𝑛𝑐𝑟, 420 𝑖𝑛𝑐𝑟, 450𝑖𝑛𝑐𝑟, 470 𝑖𝑛𝑐𝑟, 500 𝑖𝑛𝑐𝑟} Eq. 7.27 

Taking the previously introduced state space into consideration, the solution space of 

the task consists of 15 500 state-action pairs (elements in the Q-Table). 

7.2.2 RL Algorithms in the simulated Environment 

Having defined all the elements of the RL framework for the new environment, a 

comparative study of the different approaches can be performed. Concretely, the 

performance of a traditional Q-learning algorithm is compared to that of the novel 

approach involving the Gaussian update of the value function introduced in 6.3.4. 

Furthermore, three further approaches for updating the value function are suggested 

in order to determine which one is the most likely to produce the best results on the 

                                            

233 The learning tasks involving action spaces with less than five elements did converge faster, however 
the effectiveness of the judder reduction decreased proportionally. 
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physical test bench. The first of these additional approaches involves a dynamic 

adjustment of the learning rate in a Q-Learning algorithm. Analogously, the second of 

the approaches adjusts the exploration rate in accordance to the progress of a learning 

task and the current episode. Finally, a numeric comparison of the presented 

approaches is performed. One characteristic of the learning task in the context of this 

chapter is that it is limited in its length to a fixed number of episodes. This is due to 

operating time constraints related to an implementation on a physical test bench. 233F

234 

However, in order to establish a basis for the comparison of each approach’s 

performance, a benchmark maneuver is established first. This maneuver is the 

synchronization maneuver following the standard force ramp introduced previously. 

The maneuver is evaluated as if it had been performed by a RL agent, thus acquiring 

a reward after each discrete time step and a return after the maneuver is completed. 

Even though the reproducibility of the results in simulations is very high, the benchmark 

value for the comparison was averaged over 250 repetitions of the maneuver. The 

average return after an engagement following the standard ramp is −15, as contained 

in the first row of Table 7.2. The graphs of the relevant rotational speeds for an 

exemplary maneuver can be taken from Fig. 7.7. 

 

Figure 7.7: Clutch synchronization maneuver following a standard clamping force ramp 
(670 𝑖𝑛𝑐𝑟/𝑠) 

7.2.2.1  Classical Q-Learning Algorithm 

The first approach implemented on the new environment is a classical Q-Learning 

algorithm. The parameters of the algorithm and the learning task, which has not yet 

been specified, can be taken from Table 7.3. 

                                            

234 cf. 7.1.2 
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Parameter Value Description 

𝛼 0.2 Learning rate 

𝛾 0.1 Discount rate 

𝑛𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 1000 Length of learning task 

Table 7.3: Parameterization of the classic Q-Learning approach 

The results of the implementation are presented graphically in the form of its learning 

curve, i.e. the progression of the return over the course of learning episodes, and a 

greedy episode after convergence. The corresponding figures are depicted in Fig 7.8 

and 7.9. As evidenced by these figures, judder vibrations are considerably reduced. 

The best episodes effectively reduced judder by 93.4% in comparison to the standard 

clamping force ramp. However, outlier episodes, in which judder is occasionally even 

worse than the standard, are present throughout the learning task. 

 

Figure 7.8: Learning curve for the implementation of the classic Q-Learning algorithm on the 
simulated test bench environment. 
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Figure 7.9: Greedy episode of the classic Q-Learning agent on the simulated test bench 
environment. 

7.2.2.2 RL algorithm with the Gaussian-update Method 

The second approach implemented in the simulated test bench environment consists 

of a Q-Learning agent with the Gaussian-update method for the approximation of the 

value function. It was selected as it was the most promising of the approaches studied 

in the preliminary studies presented in chapter 6. This new implementation is 

conceived with a slightly different parameterization as a consequence of the 

adjustments to the state space discretization introduced in 7.2.1.1. The standard 

deviations of the rotational speeds are adjusted according to their resolutions. The new 

set of parameters for the new implementation of the Gaussian-update of the value 

function is contained in Table 7.4. 

 

Parameter Value Description 

𝜎𝑛𝑔𝑒 1 Standard deviation of  𝑛𝑔𝑒  for factor  𝑏𝑒𝑙𝑖𝑒𝑓 

𝜎𝑛𝑔𝑜 2 Standard deviation of  𝑛𝑔𝑜  for factor  𝑏𝑒𝑙𝑖𝑒𝑓 

𝜎𝜃 0.4 Standard deviation of  𝜃  for factor  𝑏𝑒𝑙𝑖𝑒𝑓 

𝜎𝑎 0.4 Standard deviation of  𝑎  for factor  𝑏𝑒𝑙𝑖𝑒𝑓 

𝑘 10 𝑘  value for factor  𝑛𝑒𝑒𝑑 

𝛾 0.1 Discount rate 

𝑛𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 1000 Length of learning task 

Table 7.4: Parameterization of the Gaussian-update method 

0 0.5 1 1.5 2 2.5
-200

0

200

400

600

800

1000

time [s]

ro
ta

ti
o

n
a

l 
s
p

e
e
d

 [
1

/m
in

]

 

 

n
ce

n
ge

n
go



RL Framework applied to the IPEK Mini Hardware-in-the-Loop Test Bench 128 

The results of this implementation are presented graphically in the form of its learning 

curve and a greedy episode after convergence depicted in Fig 7.10 and 7.11, 

respectively. 

In contrast to the results on the abstract drive train simulation model, the Gaussian 

update does not seem to bring forth an improved learning behavior, at least not within 

the pre-established number of episodes. Nevertheless, the results are fairly satisfying, 

as 90.5% of judder vibrations could be suppressed and synchronization was achieved 

slightly faster. Also, the rotational speed of the engine is not reduced as dramatically 

as it was in previous approaches. However, the prevalence of outlier episodes with 

exacerbated vibrations seems higher. 

 

Figure 7.10: Learning curve for the implementation of RL-algorithm with the Gaussian-update 
method on the simulated test bench environment. 

 

Figure 7.11: Greedy episode of RL-agent with the Gaussian-update method on the simulated 
test bench environment. 
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7.2.2.3  Dynamic Learning Rate to the RL-Agent 

Given the fact, that the application of the Gaussian-update method did not yield the 

expected positive results, three new approaches are introduced for the new 

environment. 

The first of these new approaches consists of a Q-Learning algorithm with a dynamic 

learning rate. All algorithms applied so far relied on a constant learning rate throughout 

the learning task. According to SUTTON AND BARTO 234F

235, this causes recent estimations 

of the value function to have a higher weight than old estimation, under the assumption 

that the newest information is the most reliable. This is also a desirable behavior when 

tracking non-stationary problems. However, in a stationary environment subject to 

noisy signals, it might cause a bad sample to have an overly strong effect on the 

estimation of the value function. Under the assumption that the simulated and physical 

test bench environments are stationary but subject to a stochastic noise in their state-

signals, a new learning rate that evaluates an average of all previous estimations 

should yield better results. Such a dynamic learning rate is introduced by EVEN-DAR 

AND MANSOUR 235F

236 and defined as follows: 

 
𝛼(𝑠, 𝑎) =

1

𝑁(𝑠, 𝑎)𝑝
 Eq. 7.28 

where  𝑁(𝑠, 𝑎) is the number of visits to the state-action pair  (𝑠, 𝑎). The learning rate is 

denominated linear for  𝑝 = 1  and polynomial for  𝑝 < 1. EVEN-DAR AND MANSOUR236 

achieved the best results for  𝑝  0,85. In this work, dynamic learning rates with  𝑝 =

1  and  𝑝 = 0,8  are tested. 

The learning curve for the implementation of the RL-algorithm with a linear learning 

rate is depicted in Fig. 7.12. 

                                            

235 Sutton / Barto 1998 
236 Even-Dar / Mansour 2004 
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Figure 7.12: Learning curve for the RL-agent with a linear learning rate on the simulated test 
bench environment 

The converged action sequence results in a greedy episode that is exactly the same 

as that of the classic Q-Learning implementation depicted in Fig 7.9. Thus, the 

effectiveness of the new approach is the same as that of the classic Q-Learning 

algorithm. However, the convergence is faster and the prevalence of outliers with high-

amplitude vibrations throughout the task is lower. 

Likewise, the learning curve for the implementation of the RL-algorithm with a 

polynomial learning rate can be taken from Fig. 7.13. 

 

 

Figure 7.13: Learning curve for the RL-agent with a polynomial learning rate on the simulated 
test bench environment 

Similarly to the agent with a linear learning rate, the one with a polynomial rate reaches 

convergence sooner than both the classic Q-Learning and the Gaussian-update 

method implementations. Nonetheless, a few strong outliers are visible near the end 

of the learning task. Again, the converged action sequence is the same learnt with Q-

0 100 200 300 400 500 600 700 800 900 1000
-80

-60

-40

-20

0

episodes

re
tu

rn

 

 

learning curve

fitted curve

0 100 200 300 400 500 600 700 800 900 1000
-80

-60

-40

-20

0

episodes

re
tu

rn

 

 

learning curve

fitted curve



RL Framework applied to the IPEK Mini Hardware-in-the-Loop Test Bench 131 

Learning and with the linear learning rate. It delivers the same greedy episode depicted 

in Fig. 7.9 and thus is as effective as these two approaches. 

7.2.2.4  Application of a Dynamic Exploration Rate to the RL-Agent 

The second approach introduced in this chapter involves the adjustment of the 

exploration rate during a learning task dependent on the number of visits to a state. In 

general, the probability that the best in a given state has already been learnt by the 

agent in a stationary environment is higher if the state has been visited more often. 

Furthermore, most actions in early episodes of problems with optimistic initial values 236F

237 

already are mainly explorative. For this reason, an approach that adjusts the value of 

the exploration rate according to the number of visits to the current state  𝑁(𝑠, 𝑎) as 

proposed by VAN HASSELT 237F

238 is applied to the RL-agent. The adjusted exploration rate, 

called dynamic exploration rate, yields: 

 
𝜀(𝑠) =

1

𝑁(𝑠)𝑝
 Eq. 7.29 

Selecting the parameter  𝑝 < 1  hinders the exploration rate to decrease too quickly. 

VAN HASSELT238 proposes a value for the exponent of  𝑝 = 0.5 . In this work, dynamic 

exploration rates with  𝑝 = 0.5  and  𝑝 = 0.8  are proposed and the results compared. 

The corresponding learning curves are contained in Fig. 7.14 and 7.15, respectively. 

 

 

Figure 7.14: Learning curve for the RL-agent with a dynamic exploration rate (p=0.5) on the 
simulated test bench environment 

                                            

237 cf. 5.4 
238 van Hasselt 2010. A different approach at a dynamic exploration rate is proposed e.g. by Tokic 2010.  
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Figure 7.15: Learning curve for the RL-agent with a dynamic exploration rate (p=0.8) on the 
simulated test bench environment 

In comparison to the previous results, the effectiveness of the dynamic exploration rate 

is nearly the same, suppressing vibrations by 93.4% for  𝑝 = 0.5  and 93.3% for  𝑝 =

0.8. However, it converges slower than the previous approaches. Nevertheless, the 

reduced number of explorative actions in late episodes, where most of the relevant 

states have been visited often enough, leads to an evident reduction of bad episodes 

with exacerbated vibrations. The agent with  𝑝 = 0.5  converges to the exact same 

action sequence that resulted from the Q-Learning and polynomial learning rate. This 

action sequence leads the greedy episode depicted in Fig. 7.9. The best action 

sequence found by the agent with  𝑝 = 0.8  is slightly different and leads to the greedy 

episode depicted in Fig. 7.16. However, no noteworthy differences can be regarded at 

plain sight. 

 

Figure 7.16: Greedy episode with RL-agent with a dynamic exploration rate (p=0.8) 
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7.2.3 Evaluation of the implemented Approaches 

In this section, an overview of the results of the algorithms presented thus far is 

provided. As mentioned earlier, the selection of an algorithm for the implementation on 

the physical test bench environment seeks to find a favorable solution to the trade-off 

between the quality of a solution and the effort necessary for learning it, i.e. the 

effectiveness of judder suppression of an algorithm and the number of episodes it 

requires to learn the corresponding policy. The measure for the effectiveness of clutch 

judder suppression in the context of this work is the value of the reward-signal defined 

in 5.4, whereas the obvious measure for the learning speed of an algorithm is the 

number of episodes it requires to converge towards the best solution 238F

239.  

The comparison of the results presented thus far in this chapter is made on the basis 

of the numeric values contained in Table 7.5. 

 

Q-Learning algorithm 
Return First episode with 

best greedy return 

Episodes within tolerance239F

240 

after convergence [%] Maximum Greedy 

Classic −0.99 −0.99 208 82.7 

With Gaussian-update −1.01 −1.42 137 74 

With dyn. α  (p = 1) −0.86 −0.99 51 81,2 

With dyn. 𝛼  (𝑝 = 0.8) −0.86 −0.99 105 85,8 

With dyn. 𝜀  (𝑝 = 0.5) −0.99 −0.99 260 83,5 

With dyn. 𝜀  (𝑝 = 0.8) −0.99 −1.00 240 96,8 

Table 7.5: Results of the implementation of the RL-algorithms on the simulated test bench 
environment 

There are two return columns in Table 7.5. The first indicates the highest return 

achieved during the learning task, whereas the second value indicates the value of the 

converged return. Discrepancies between the maximum return and the converged 

value may occur due to the violation of the Markov property as a result of e.g. state 

discretization and the simulated dead times. The next column contains the number of 

the first greedy episode that yielded the highest return. In the last column of Table 7.5, 

the percentage of episodes after the first greedy episode whose value stayed within a 

predefined tolerance range240 around the greedy return is specified. This last value 

                                            

239 Algorithms that do not satisfy the Markov property entirely may converge towards a suboptimal policy 
(cf. 2.2.3). 

240 An episode is considered to be within the tolerance range if the value of its return is within  ±5  of the 
greedy return after convergence. 
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serves as a means to assess the stability of the solutions, i.e. to avoid the occurrence 

of outlier episodes with high amplitude vibrations. 

The fastest learning approach is the one involving a linear dynamic learning rate. At 

the same time, it is the approach that yields the best return after convergence. In 

comparison to the classic Q-Learning algorithm, it achieves the best greedy run in only 

14.9% of episodes. However, it is not as stable as the agent with a dynamic exploration 

rate where  𝑝 = 0.8. The latter is able to avoid bad episodes with exacerbated 

vibrations due to its more targeted selection of explorative actions. Nevertheless, due 

to the considerably faster learning speed, convergence is reached in less than a fourth 

the number of episodes, and the effectiveness of judder suppression, the algorithm 

with an agent with a linear learning rate is selected for the implementation on the 

physical test bench. 

7.3 RL Framework on the physical Test Bench 

Having selected the elements of the framework to be implemented on the physical test 

bench, establishing a benchmark synchronization maneuver for comparison 

represents the first task in the new environment.240F

241 This represents a slightly more 

difficult task than it did for the simulated environment, in which only very small 

fluctuations due to the dead time in the actuation of the clutch were present. Due to its 

stochastic nature, in the physical environment, the same input action sequence 

performed twice generally leads to two synchronization maneuvers that, while similar, 

usually end up being significantly different. In order to serve as a base for comparison, 

a standard actuation force ramp is used to actuate the clutch and the resulting 

synchronization maneuver is evaluated in terms of the return a RL agent would have 

acquired. 241F

242 However, the gradient determined in simulation might prove to be too 

steep on the physical test bench, leading to a hasty closing of the clutch and a short 

synchronization time, at the time causing high stress to the side shaft and high 

amplitude vibrations. Therefore, two more gradual progressions of the standard force 

ramp are proposed and the results of each 15 synchronization maneuvers are 

compared. These results are graphically represented in the form of their boxplots in 

Fig. 7.17. 

                                            

241 cf. 7.2.2 
242 cf. 7.2.1.3 



RL Framework applied to the IPEK Mini Hardware-in-the-Loop Test Bench 135 

 

Figure 7.17: Distribution of the return acquired throughout 20 synchronization maneuvers for 
three different gradients of the standard force ramp 

There are basically two major pieces of information that can be observed in these 

boxplots. The first is the degree to which the resulting returns for each of the proposed 

gradients are scattered, and the second piece is the value around which the scattering 

takes place. The most gradual of the ramps shows both the widest range across which 

the results of each maneuver are scattered and the lowest median value of the return 

at around -62, thus the strongest judder. The latter can easily be explained by the 

longer duration of synchronization because of the gradual progression of the force 

ramp. The boxplot in the middle corresponds to the actuation ramp with a gradient 

of  550 𝑖𝑛𝑐𝑟/𝑠  and shows a similar degree of dispersion of the return values, but the 

highest median value, at around -53 of the proposed progressions of the force ramp. 

Finally, the steepest of the force ramps with a gradient of  670 𝑖𝑛𝑐𝑟/𝑠  achieves a 

median return of approx. -62 with a significantly limited dispersion of its values. 

However there are two outlier values marked by crosses at the bottom left of the figure. 

Once an overstressing of the side shaft 242F

243 could be ruled out and due to the 

significantly lower dispersion at almost the same median return, the standard ramp 

with a gradient of  670 𝑖𝑛𝑐𝑟/𝑠  is selected for the implementation on the physical test 

bench. A sample episode of the synchronization maneuver following the selected force 

ramp is depicted in Fig. 7.18. 

                                            

243 c.f. 7.1.2.3 and 7.3.1.2 
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Figure 7.18: Standard synchronization maneuver following a standard force ramp on the 
physical Mini-HiL test bench 

The synchronization maneuver on the physical test bench is noticeably shorter. Its 

duration is of approx. 1.2 𝑠  as opposed to the approx. 1.5 𝑠  in simulation. After the 

synchronization maneuver is completed, the clutch is opened and the speeds of the 

output side decelerate back to zero, whereas the engine accelerates back to its 

setpoint value of  900 1/𝑚𝑖𝑛. 

7.3.1 Consideration of the physical Test Bench Environment 

The physical test bench is subject to stochastic fluctuations in the values of the relevant 

parameters for the RL agent that cannot be taken into account, without at least 

considerable effort to measure and/or model them. An example of such factors is 

changes in the geometry of the test bench components due to different temperatures 

or heat produced in operation. Furthermore, making all information available for the 

agent at the required time poses another difficulty regarding a physical implementation. 

In this section, a way to account for three of the most important impediments is 

presented. The first regards the availability of the torsion angle signal for the agent at 

the required time, since it cannot be measured directly on the test bench. The second 

is a consideration of the relatively weakly dimensioned side shaft. Finally, the effect of 

general fluctuations on the position of the linear clutch actuator in relation to the 

remaining test bench elements is considered. This has a direct effect on the 

implementation of the action space and, therefore, on the possibilities of the agent to 

influence its environment. 
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7.3.1.1  Availability of the Torsion Angle Signal 

The torsion angle  𝜃  is one of the three state variables that form the state-signal. 243F

244 

However, it is not possible to measure it directly, i.e. with a specific sensor, on the 

physical test bench. Instead, a discrete integration of the difference in rotational speeds 

between the gearbox entry shaft  𝑛𝑔𝑒  and the output speed  𝑛𝑔𝑜  is computed. This 

poses no particular challenge in simulation where high quality signals can be sampled 

at very high rates and then need not be processed in real time. However, on the 

physical drive train the signal is noisy, cannot be sampled at an arbitrarily high rate and 

any calculation made with the signal values needs to be made in real time. This 

presents a problem in the implementation of the numeric integration method for the 

approximation of  𝜃. SCHWENGER244F

245 states that a very high quality signal and a very 

high sampling rate are necessary for the approximation method to deliver satisfactory 

results. In this work, two further possibilities to determine the torsion angle are 

available. The first is the direct measurement of the clutch torque  𝑀𝐶  245F
246 with the 

integrated torque sensor in the test bench setup. Since  𝑀𝐶   correlates linearly with the 

clutch torque, it could substitute the torsion angle as a state variable. However, since 

such a measurement unit is seldom available in commercial drive trains, a third 

possibility is proposed. Using the clutch torque as an input variable for a simulation 

model of the test bench, the torsion angle  𝜃  is computed. The results of the torsion 

angle approximation, the direct measurement of the clutch torque and the simulated 

torsion angle are depicted in Fig. 7.19 

 

 

Fig. 7.19: Comparison of the measured clutch torque, the approximated and the simulated 
torsion angles 

                                            

244 cf. 5.2 
245 Schwenger 2005 
246 The measurement unit actually measures the torque before the clutch, however, due to the relatively 

small inertia of the clutch discs in comparison to the inertia of the load (approx. 1:100) 
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The most stable value is that of the measured torque, which undergoes barely 

noticeable fluctuations. The value of the approximated torsion angle using the 

rotational speed measurement units of the test bench only barely resembles the course 

of the torque curve. When the torque decreases abruptly, the approximated angle 

skyrockets to implausible values. However, this is due to the fast decrease of the clutch 

torque after the latter is opened. At this time the RL-agent is no longer active and thus 

the value of the torsion angle is irrelevant for the task. Finally, the simulated value of 

the torsion angle correlates relatively well with the torque, even though it seems to 

oscillate moderately despite a nearly constant torque. The torque signal represents the 

more reliable and reproducible signal and could be used to replace the torsion angle 

in the state-signal. However, in order to retain the structure of the state space proposed 

throughout this work and due to the previously mentioned scarcity of adequate 

measurement units in conventional drive trains, the state-signal of the physical 

environment made available to the agent is implemented with the value of the 

simulated torsion angle. The other two state variables remain the rotational 

speeds  𝑛𝑔𝑒  and  𝑛𝑔𝑜. 

7.3.1.2  Torque Restriction due to the Strength of the Side Shaft 

In the Mini-HiL test bench, the stiffness and damping of the drive train are physically 

modeled by means of a torsion shaft with a diameter of  3 𝑚𝑚. This small diameter is 

necessary to ensure that the eigenfrequency of the physical oscillations on the test 

bench coincides with those for an unscaled drive train. However, it causes the shaft to 

be compromised due to high stress at higher clutch torques. 

Also, constructive constraints led to the shaft being fixed to the remaining components 

by means of four grub screws on each end. In order to provide a flat surface for the 

screws to press on, the ends of the shaft were additionally flattened (cold pressed), 

strain hardening in the area. The localized high stress areas in the shaft due to the 

hardening and the point load from the screws led the material to fail in one experiment 

after approx. 450 episodes. A view at the development of the eigenfrequency of the 

system throughout this experiment reveals that even before the shaft finally broke, 

changes in the oscillation system could already be observed as the eigenfrequency 

appears to slowly decrease before suddenly collapsing shortly before failure. The 

course of the eigenfrequency of the test bench until its failure can be taken from Fig. 

7.20. A first degree polynomial fit of the first 300 episodes, thus ignoring the strong 

outliers at approx. 350 episodes and just before the collapse, confirms this suspicion 

as it presents a negative gradient. 
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Figure 7.20: Development of the eigenfrequency of judder vibrations until failure of the 
torsion shaft 

While the conception of the test bench proved to be adequate for most other 

applications, the high number of test cycles required for the RL implementation made 

it necessary to adopt measures to avoid a repeated failure. However, due to time, cost 

and available space constraints, no major constructive changes were undertaken. The 

first measure consisted of milling material from the ends of the torsion shaft so the grub 

screws could press against a flat surface. This prevents the shaft from failing due to 

the strain hardening as a result of cold pressing. Additionally, a high-strength adhesive 

was applied to the grub screws to secure them. 

Since determining the fatigue strength of the shaft exactly proves a difficult task, the 

maximum torque was reduced in order to operate in a more secure range. 246F

247 Although 

a conservative estimation of the strength suggests that the shaft is only compromised 

when a torque of at least  2.5 𝑁𝑚  is applied, the current of the input DC motor is limited 

so the maximum input torque yields  1.7 𝑁𝑚. Furthermore, the clamping force applied 

by the clutch actuator is limited so it provides a maximum of  2 𝑁𝑚  clutch torque. 

Whereas the torque in the shaft can exceed this value to the vibrations in the system, 

simulation results showed that exceeding torque does not compromise the function of 

the shaft. 

7.3.1.3  Position of the Action Space 

The last consideration made for the implementation of the RL framework in the physical 

test bench environment regards the application of the agent’s actions to the 

environment. In simulation, the actuator position at the time the clutch disks establish 

                                            

247 c.f. 7.1.2.3 and Gwosch 2011 
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contact, often called the kiss-point, is always known and perfectly reproducible. On the 

drive bench, fluctuations to the position of the kiss-point are observed. However, the 

position of the kiss-point determines the start of a maneuver as introduced in 7.1.2.3. 

Nevertheless, on the physical test bench the kiss-point constitutes more of a range 

than a point due to diverse factors: e.g. tilt of the clutch discs or fluctuation in distances 

due to thermal expansion. This would not represent a problem, if the agent would 

specify forces as actions, since the axial travel necessary to produce the force would 

be irrelevant. However, a force control of the actuator has been ruled out, as specified 

in 7.2.1.3. Although the actual clamping force value as a result of an action determined 

by the agent is not really important (provided the action space covers the relevant 

range), the reproducibility is. This means that the effect of an action the agent selects 

is relatively trivial as long as it is always the same. Therefore, the actions by the agent 

in the form of incremental positions should induce the same, or at least a similar, 

clamping force. 

In order to establish a reproducible point in the maneuver and given the fact that 

establishing the position of the kiss-point is relatively difficult, a different solution is 

proposed. Instead of using the kiss-point as a reference, the incremental position at 

the time the agent is activated in the maneuver, when the criterion expressed in Eq. 

7.23 is fulfilled, is used to determine the lowest selectable action, which is the action 

space’s lower boundary. The boxplot of the distribution of the position of the lower 

boundary of the action space over the course of a hundred maneuvers is depicted in 

Fig. 7.21. 

 

Figure 7.21: Distribution of the position of the lower boundary of the action space on the 
physical test bench 

The median position of the lower boundary yields approx. 860 increments. However, 

the fluctuation of the determined boundary is scattered in a range of almost 100 

increments (0.1 𝑚𝑚), with the upper and lower quartiles covering a range of 40 

increments (0.04 𝑚𝑚). Bearing these results in mind, the position of the lower 

boundary of the action space was defined to be at 850 increments. Retaining the 

dimension of 100 increments of the action space in the simulated environment, the 
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upper boundary was defined to be at 950 increments. The five actions are 

equidistantly 247F

248 distributed in the action space. Thus the new action space yields: 

 𝒜 = {850 𝑖𝑛𝑐𝑟, 870 𝑖𝑛𝑐𝑟, 900𝑖𝑛𝑐𝑟, 920 𝑖𝑛𝑐𝑟, 950 𝑖𝑛𝑐𝑟} Eq. 7.30 

7.3.2 Results and Evaluation of the RL Framework 

Having described all necessary adjustments of the elements of the RL framework to 

the physical environment, the results of its implementation are presented and 

subsequently discussed. 

7.3.2.1  Results of the Implementation 

The selected RL-approach of 7.2 with the modifications to the RL framework described 

in the recent sections was implemented on the physical Mini-HiL test bench. The Q-

Learning agent with a linear learning rate and the 𝜀-greedy action selection method as 

described in Eq. 7.26 performs 1000 learning episodes on the test bench. The gradient 

of the force ramp in the phase before the agent is activated is  670 𝑖𝑛𝑐𝑟/𝑠  until the 

lower boundary of the action space (850 increments) is reached. The value of the 

simulated torsion angle is used in the state-signal as described in 7.3.1.1. Also, the 

torque input and clutch torque restrictions described in the previous section are 

applied. The results of the implementation of the presented RL framework in the 

physical test bench environment are illustrated in Fig. 7.22 and Fig. 7.23 in the form of 

its learning curve and a sample episode. 

 

Figure 7.22: Learning curve of the implementation of RL framework in the physical test bench 

                                            

248 The actions are rounded to the nearest ten. 
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Figure 7.23: Sample episode of the RL framework implementation on the physical test bench 
with approx. median return of last 100 episodes (return = 19.34) 

The completion of the 1000 episodes took 3 hours and 10 minutes. In contrast to the 

results in the simulated test bench, the learning behavior only appears significant 

throughout the first hundred episodes. Afterwards no real improvement of the return 

over the course of the episodes is noticeable at first sight. However, the average return 

seems to already be better than that of the standard force ramp from the beginning. In 

the following section the results are evaluated in detail and an analysis of probable 

impediments of the learning ability are presented. 

7.3.2.2  Evaluation and Discussion of the Results of the Implementation 

As stated previously, the results throughout the 1000 episodes on the physical drive 

train are not as good as the results on the simulated test bench. However, even though 

the results are relatively unsatisfying, a more differentiated look is necessary to put the 

performance of the agent in the RL framework into perspective. Particularly, it becomes 

necessary to compare in a statistical sense the policy the agent derived from its 1000 

episodes of experience with the results of the standard engagements presented earlier 

in this subchapter and depicted in Fig. 7.17. Apparently, the agent does improve its 

behavior in the first few hundred episodes (see Fig.7.24) and this could prove to have 

a lasting effect in the overall performance afterwards. 
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Figure 7.24: Cut-out of the first 300 episodes of the learning curve and first order polynomial 
fit 

For this reason, the distribution of the results of the last 100 episodes of the task is 

compared to the results of the standard ramp synchronization maneuver depicted in 

Fig 7.17 in order to determine if an improvement could be achieved. The corresponding 

boxplots can be taken from Fig. 7.25. 

 

Figure 7.25: Comparison of the distribution of the return after synchronization maneuvers 
with standard force ramps and the RL framework 

The reproducibility of the results of the RL controlled clutch synchronization maneuver 

is vastly superior to the results achieved with standard force ramps. Furthermore, the 

median value of the return is substantially higher. Measured in terms of the acquired 
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reward and compared to the highest median value of the standard ramps (550 𝑖𝑛𝑐𝑟/𝑠), 

the RL-agent was able to reduce vibrations by approx. 61.3%. Nevertheless, the 

effectiveness of judder suppression is lower than the effectiveness achieved in 

simulation as can be seen in Fig. 7.23, where judder vibrations are still clearly present. 

A tabular overview of the information expressed by the boxplots in Fig. 7.25 is 

contained in Table 7.6. 

 

Clutch actuation 
Median 

 return 

Mean 

return 

Best 

episode 

Worst 

episode 

Standard 

deviation 

Standard (350 incr/s) -62.4 -66.3 -29.1 -112.1 27.7 

Standard (550 incr/s) -53.2 -58.2 -10.7 -94.2 24.5 

Standard (670 incr/s) -62.0 -66.5 -27.2 -114.2 25.3 

RL-agent -20.6 -21.4 -7.0 -42.3 6.9 

Table 7.6: Statistical comparison of experimental results 

The RL-agent controlled clutch synchronization outperforms the standard force ramps 

clearly in every category. This is evident in either the mean or median return, given the 

data is fairly symmetric 248F

249, and the much lower standard deviation of the RL results. In 

this context, the implementation of the proposed RL framework successfully learnt to 

suppress clutch judder significantly. 

Regarding the learning time, the slightly more than three hours it takes to complete the 

1000 learning episodes pale in comparison to the minimum operation time mentioned 

in chapter 3. Furthermore, the learning procedure could also be shortened to 500 or 

fewer episodes, as the progression of the learning curve indicates. 

 

                                            

249 The statement that the data is symmetric is justified by the similitude in the mean and median values 
of the data sets. 
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8 Summary and Outlook 

In this concluding chapter, a synthesis of the results of this work, as well as an outlook 

on them are presented. The latter comprises a discussion of the limitations of the 

results of this work and suggestions on future research in order to address them. 

8.1 Summary 

After introducing the fundamentals on both clutch judder and reinforcement learning, 

the state of the art research was presented. From the latter, a need for a cost effective 

countermeasure for clutch judder was noticed. Among the mechatronic 

countermeasures that satisfy this requirement, a reliance of most of them on accurate 

and often complex vehicle or drive train models was determined. Additionally, even if 

such dependable models exist for certain components or subsystems of the vehicle in 

early phases of the development process, the behavior of the whole system often 

deviates from that predicted by said models. The same uncertainty applies to the 

transfer of models that accurately describe the behavior of an individual system, even 

a whole system like a prototype, to further exemplars. Therefore, the great potential of 

a mechatronic countermeasure for judder capable of self-adapting to any given system 

was determined. 

In this work, such a countermeasure is proposed in the form of a reinforcement learning 

(RL) framework for the task of judder suppression. In order to realize this proposition, 

the clutch judder task and the clutch synchronization maneuver were formulated as a 

RL task. Afterwards, the components of the elementary RL framework were applied to 

this newly formulated task, after the corresponding counterparts had been properly 

identified. In this fashion, a flexible and highly abstract RL framework for the judder 

suppression task was provided. 

Subsequently, the abstract RL framework was adapted in order to be applied to three 

different representations of the environment throughout two experimental phases. In 

the first stage, the first representation consisted of an abstract simulation model of the 

drive train in the form of a three-mass rotational oscillator. In this stage, the general 

suitability of the RL framework to suppress judder vibrations was assessed and 

different proposals to enhance the learning process are proposed. 

In the second experimental stage, the RL framework was applied to the Mini-HiL test 

bench at IPEK. In this stage, the application of the framework to representations of the 

environment closer to a physical vehicle is pursued. First, the framework is applied to 

a simulation model of the test bench. At this point, different realizations of the elements 

of the framework are undertaken and their performance is assessed on the basis of 



Summary and Outlook 146 

their suitability for an implementation on the physical test bench. Finally, the necessary 

adjustments are made in order to apply the most promising conception of the 

framework elements to the physical test bench itself.  

The different implementations of the RL framework on the different environments were 

learnt to suppress judder in an acceptable time frame, albeit not always at the same 

rate. 

8.2 Outlook 

This last section is intended for the analysis of the most likely challenges that need to 

be faced, in order to improve the results of the developed RL framework and for 

presenting suggestions on how they could be confronted in future research. 

8.2.1 Challenges for the RL Framework 

Despite the increased reproducibility and the reduction in judder achieved through the 

implementation of a RL framework, a negative discrepancy between the simulation 

results and the experimental results on the physical test bench are evident. In this 

work, the causes for the decreased performance are categorized to either be found in 

hardware or software. However, they often are interrelated. 

The changes in performance during the application of the RL framework to the physical 

test bench can be mainly attributed to the loss of the Markov property of the 

environment. However, this can happen due to different reasons. On the one hand, the 

state-signal could be distorted, e.g. through noise or an inadequate discretization or 

definition of the state space, which leads to a faulty perception of its environment by 

the agent. On the other hand, the same could be the case for the actions the agent 

selects. 

Experiments on the simulated test bench environment with additive noise on the state-

signal and afterwards on the action-signal determined the latter to have a much 

stronger influence on the learning behavior. Unfortunately, due to the unavailability of 

a force controller of the clamping force and the implemented position control, 

substantial fluctuations in the values of the clamping force for the same actuator 

position occur as a result. This behavior can be observed in the distribution of the return 

values presented in chapter 7.3 (e.g. Fig. 1.17) or even more clearly in Fig. 8.1, where 

two progressions of the relevant speeds during the synchronization maneuver for the 

exact same course of the clamping force are depicted. 
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Figure 8.1: Two sample episodes for the exact same progression of the position of the clutch 
actuator until synchronization (550 𝑖𝑛𝑐𝑟/𝑠) 

The limited reproducibility of the effect of the actions selected by the agent on its 

environment is considered personally the main challenge on the effectiveness of the 

RL framework on a physical test bench environment, and therefore, addressing this 

issue bears the most significant improvement potential. 

There are other effects in the physical test bench environment that hinder the RL-

agents’ performance. However, since simulations show these to have comparatively 

little effect, only the three most important are listed below: 

 Fluctuations of component measurements due to thermal expansion 

 Noise and fluctuation of sensor signals within their tolerance 

 Fluctuations in the friction coefficient/gradient due to run-in behavior of ceramic 

friction pairing 

The most important software related impediments during the physical implementation 

are the limitations due to the real time environment in use on the test bench. The need 

to process information and allocate memory in real time does not always support the 

calculation methods that were successfully implemented in simulation. This is 

particularly the case during the implementation of approximation and other methods 

that rely on updating several values at the same time. Examples of such methods in 

this work are the Gaussian-Update method, the dynamically discretized state space 

and the approximation of the value function with RBFs of chapter 6. In order to 

implement such methods effectively, parallel computing is advised. 249F

250,
250F

251 

                                            

250 Sutton / Barto 1998 
251 c.f. 2.2.4.4 
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8.2.2 Future Research 

In regards to the way the limitations presented previously could be addressed in future 

work, a distinction between hardware- and software-related measures is again 

preferred. 

However, the first and most important suggested measure to undertake is the 

implementation of a high speed force controlled actuation of the clutch, which is a 

measure that could be regarded to involve both hardware and software. This would 

greatly improve the reproducibility of the clutch actuation and therefore the Markov 

property of the test bench as an environment. At the same time, it would help reduce 

the effect of thermal expansion, since the force controller would lead to a respective 

adjustment of the travel path of the actuator. 

In this work, the use of ceramic friction pairings was preferred due to their strong 

tendency to cause judder vibrations. However, their run-in behavior is known to be of 

stochastic nature and it is not clear if it had already been concluded at the time of the 

experiments on the physical test bench. The use of pairings with a more reproducible 

tribological behavior might lead to an improved learning by the agent. Possible friction 

pairings with such behavior could be of metallic or organic sinter materials. 

Regarding further research on the software or the algorithm, the implementation of the 

RL framework with an agent with a dynamic exploration rate might prove more effective 

than the implemented linear learning rate. In simulation, this configuration proved to 

be the most stable, thus the more reproducible, even if at the same time it converged 

to a slightly lower return value than the implemented linear learning rate. This is 

probably due to the more conservative approach towards selecting random actions, 

which quickly lead to bad episodes of strong judder. 

Furthermore, the transition from a deterministic to a stochastic environment modelling 

could prove to deliver better results. For this purpose, the performance of Monte Carlo 

methods could be studied. However, the amount of necessary learning time is 

expected to be much higher as stated in chapter 2.2.4.2. Instead, the implementation 

of eligibility traces might prove a more efficient solution, even if their implementation 

requires additional measures. A variation of these measures could be applied to the 

Gaussian-update, dynamic state list and RBN value function approximation methods, 

which share the same complications during their implementation. 

One of the most enticing perspectives is the possibility of combining the use of a robust 

controller and an appropriate RL framework. As presented earlier in this work, the main 

drawback of current robust controllers is that they only operate effectively in the 

individual system (component, prototype or model of them) they were designed for. A 

RL framework could be used to reconfigure the parameterization of the controller in-

use or at a very advanced development stage. This way, the effect of inaccurate 
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predictions of the behavior of the system during these advanced stages, where the 

discriminatory power of simulations is usually lower than required 251F

252, can be reduced. 

Finally, the application of the developed RL framework on a non-scaled test bench and 

subsequently a whole vehicle should be pursued. 

  

                                            

252 c.f. Fig. 1.4 
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10 Appendix 

Appendix A 

Values for simulation of the reduced drive train from HORNUNG 2012 

 

Parameter Symbol Value Unit 

Idle speed (input) 𝑛0 900 1/min 

Combustion engine inertia 𝐽𝐶𝐸 6 ∙ 10−3 𝑘𝑔𝑚2 

Added inertia of clutch and 

gearbox 

𝐽𝐶𝐺 8 ∙ 10−  𝑘𝑔𝑚2 

Vehicle inertia 𝐽𝑉 9.91 ∙ 10−3 𝑘𝑔𝑚2 

Side shaft stiffness 𝑐𝑠 0.7219 𝑁𝑚/𝑟𝑎𝑑 

Side shaft damping 𝑑𝑠 0 𝑁𝑚𝑠/𝑟𝑎𝑑 

Combustion engine damping 𝑑𝑐𝑒 3.565 ∙ 10−3 𝑁𝑚𝑠/𝑟𝑎𝑑 

Mean friction radius 𝑅𝑀 0.1 𝑚 

Static friction coefficient 

(coefficient of adhesion) 

𝜇𝑠𝑡  0.43 - 

Friction gradient 𝜇′ −0.013 𝑠/𝑚 
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Appendix B 

Values for the simulation model of the Mini-HiL test bench from GWOSCH ET AL. 2013. 

 

Parameter Symbol Value Unit 

Sample rate (real time 

environment) 

𝑇𝑎 0.001 s 

Idle speed (input) 𝑛0 900 1/min 

Combustion engine inertia 𝐽𝐶𝐸 6 ∙ 10−3 𝑘𝑔𝑚2 

Added inertia of clutch and 

gearbox 

𝐽𝐶𝐺 3.85 ∙ 10−4 𝑘𝑔𝑚2 

Vehicle inertia 𝐽𝑉 2.4 ∙ 10−2 𝑘𝑔𝑚2 

Side shaft stiffness 𝑐𝑠 2.1376 𝑁𝑚/𝑟𝑎𝑑 

Side shaft damping 𝑑𝑠 7.64 ∙ 10−  𝑁𝑚𝑠/𝑟𝑎𝑑 

Combustion engine damping 𝑑𝑐𝑒 3.565 ∙ 10−3 𝑁𝑚𝑠/𝑟𝑎𝑑 

Mean friction radius 𝑅𝑀 0.05 𝑚 

Static friction coefficient 

(coefficient of adhesion) 

𝜇𝑠𝑡 0.71 - 

Friction gradient 𝜇′ −3.7 ∙ 10−2 𝑠/𝑚 
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