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Abstract. XML Schema Definition (XSD) and the Web Ontology Lan-
guage (OWL) have been widely used to define programming language
independent data types and to conceptualize knowledge. However, writ-
ing software that operates on XML instance documents and on ontolog-
ical knowledge bases still suffers from a lack of compile time support for
XSD and OWL. In this paper, a novel compiler framework is presented
that facilitates the cooperative usage of external type systems with C#.
For the resulting programming language Zhi#, XSD and OWL compiler
plug-ins were implemented in order to provide static type checking for
constrained atomic value types and ontologies. XSD constraining facets
and ontological inference rules could be integrated with host language
features such as method overwriting. Zhi# programs are compiled to
conventional C# and are interoperable with .NET assemblies.

1 Introduction

In recent years, Semantic Web technologies such as RDF(S) [29] [11], DAML+OIL
[21], and their common Description Logics [2] based successor OWL DL [30]
have paved the way for standardized formal conceptualizations of all kinds of
knowledge. However, processing ontological information programmatically is still
laborious and error prone. From the author’s experience, this is mainly caused
by the lack of compile time support both for XML Schema Definition based type
definitions, which may be the range of OWL data type properties, as well as for
terminological knowledge in form of ontologies.

Ontology management systems merely provide APIs, which have to be used
in an explicit manner. The burden to wisely manipulate ontological data is put
on the programmer. This problem is even more evident since software systems
are usually made up of two distinct class hierarchies, which comprise domain
specific classes such as for example Product, Price, and Invoice in a business
application and technical classes such as System.IO.File or System.Console.

In Zhi#, both class hierarchies can be devised using the most appropriate
language. C# classes can be used to lay out the technical foundation while OWL
can be cooperatively used for the domain specific part of an application.

Processing OWL data implicitly requires the use of possibly constrained XML
Schema Definition [15] simple data types, which may be the range of OWL
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datatype properties. For example, an ontological concept Person may have de-
fined a property Age of type xsd#unsignedInt 1. This type could be mapped
to the C# data type System.UInt32. If, however, the XML schema defined a
further constrained simple data type such as #unsignedIntLessThan110 in or-
der to constrain possible Age values of a Person to reasonable values less than
110, there would be no appropriate C# data type with a value space that com-
prises integer values between 0 and 110. Instead, assignments to objects of type
System.UInt32 would have to be explicitly checked to be schema valid. An XML
instance document - or in this case an instance of a constrained simple data type
- is said to be schema valid if there is an XML schema given, and the content
of the XML instance document - or of the data type object - conforms to the
content model as defined in the schema. Up to now, schema validation has been
particularly error prone since there is no isomorphic mapping between atomic
XSD datatypes and programmatic data types.

Both the Web Ontology Language and XML Schema Definition stand for
external type systems that may be used to define datatypes and to represent
knowledge. Such data usually form the foundation of (business-) applications.
Still, for application developers it uses to be particularly tedious and error prone
to process external type definitions and data structures with one single general
purpose programming language.

In this work, a novel compiler framework is presented that facilitates the in-
tegration of external type checking and compiler functionality with conventional
ECMA standard C#. XSD and OWL type system and compiler components
were implemented in order to make constrained atomic XSD data types and
ontological concepts first class citizens of the resulting programming language
Zhi#. This paper focuses on the following three theses.

Thesis 1 Using an appropriate compiler framework, domain specific type check-
ing and program transformation functionalities can be cooperatively added to a
plain object oriented programming language.

Thesis 2 XML Schema Definition constraining facets can be made first class
citizens of an object oriented programming language that supports value types.

Thesis 3 The integration of constrained data types and ontological reasoning
technology with the compiler of a general purpose object oriented programming
language facilitates the processing of ontologies and reduces the number of run-
time validation errors for constrained atomic value types.

Thesis 1 has been validated by a working implementation of a Zhi# com-
piler, which augments the complete safe (i.e. managed) fragment of ECMA 334
standard C# with compile time support both for constrained XML Schema
Definition simple data types and Web Ontology Language OWL DL concepts.

1 In this work, the XML prefixes xs and xsd are bound to the XML Schema Definition
namespace http://www.w3.org/2001/XMLSchema
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Based on the architectural model of the Zhi# compiler as elucidated in Section
3 XSD and OWL compiler components can be activated to operate separately
with standard C# code or to cooperate. External types can be included using
the novel keyword import, which permits the use of external types in a Zhi#
namespace.

10 import XML xsd = http ://www. w3 . org /2001/XMLSchema ;
20 import XML coke = http ://www. choky−co l a . com/schema ;
30 import OWL ont = http ://www. choky−co l a . com/ onto logy ;

The Zhi# compiler framework supports the usage of arithmetic (+, -, *, /),
relational (>=, >, ==, <, <=, ?=, ?>, ?<, ??, $=, %%, %.), and logical (&&, ||) op-
erators with external types. The operators ?=, ?>, ?<, ??, $=, %%, and %. were
added to the grammar of C# in order to cover XSD constraining facets. Sup-
port for additional operators is conceivable but would require a recompilation
of the Zhi# compiler framework (not necessarily of its plug-ins). The dot op-
erator ’.’ can be used to access members of external types. Types of different
type systems may be used cooperatively in one single statement. For example,
a .NET System.Int32 variable can be assigned the XML value Age, which may
be defined as a property of the OWL individual Person.

10 i n t i = #ont#Person . Age ;

Related approaches in the field of programming language support for exter-
nal languages such as XSD or OWL simply map XSD types or OWL concepts to
plain C# (or Java) types. Automatically generated code attempts to mimic the
intented behavior (e.g., value space constraints) of mapped types at runtime. In
contrast, the Zhi# compiler framework can be extended with relevant type check-
ing and program transformation functionality in order to provide compile time
support for external languages and type systems. In particular, a constrained
types calculus2 as elucidated in Section 4 was devised and implemented in order
to cope well with XSD constraining facets and to prove Thesis 2. Finally, Thesis
3 will be validated by a case study that will demonstrate the practicability and
the ease of use of the novel Zhi# programming language features.

2 Related Work

With major software companies that have come out strongly in favor of stan-
dardizing on XML Schema Definition, several approaches have emerged to define
programming languages specifically for the XML domain. XDuce [22] is a func-
tional programming language that is specifically designed for processing XML
data. One can read an XML document as an XDuce value, extract information

2 In this work, the term “constrained types” refers to atomic data types that rep-
resent a value space, which may be lessened (i.e. constrained) by explicitly defined
constraining facets (e.g., xsd:minExclusive, xsd:maxExclusive). This is different to
constrained based type inference algorithms found in the literature where constraints
are not checked but rather recorded for later consideration.
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from it or convert it to another format, and write out the result value as an
XML document. The subsequent Xtatic project [18] aims to develop theoretical
foundations and implementation techniques for a lightweight extension of C#
tailored for native XML processing. In contrast to Zhi#, both approaches fo-
cus on content models of aggregated XML structures and lack support for XSD
atomic types. In this way, they are similar to Xen and Cω, which are amalga-
mations of Microsoft’s Common Language Runtime (CLR) [1], XML, and SQL
programming languages. The JWIG development system [13] is a Java-based
high-level language for the development of interactive Web services. JWig inte-
grates the central features of the <bigwig> language [9] into Java by providing
explicit support for Web service sessions and safe XHTML dynamic document
construction. In particular, JWIG facilitates the construction of XHTML docu-
ments by introducing XML templates, which can contain inlined pieces of code,
called code gaps. At runtime, code gaps can be substituted by other templates
or literals. In the Xact project [26], JWig’s validation algorithm is extended
to implement further compile time guarantees, such that, dynamically trans-
formed XML documents are valid according to a given XML schema. XL [17]
adopts to XQuery [8] and combines imperative and declarative programming
language features to facilitate the development of Web services. The XML Ob-
jects Programming Language [38] integrates XML and XPath [14] into the Java
programming language with a main emphasis on valid updates for persistent
XML objects.

In [3] a constraint algebra is proposed in which complex constraint expres-
sions can be built up from primitive constraints using logical connectives like
conjunction or disjunction. This algebra, however, has not been embedded with
a type system. A constraint model for XML is presented in [16]. Just like the
XML domain specific languages mentioned above, this model focuses on the con-
tent model of aggregated types and does not include value space constraints of
atomic data types as they may be defined by XML Schema Definition.

To the best of the author’s knowledge, all of these approaches lack support
for constrained XSD atomic data types. Rather, the Zhi# approach presented in
this paper is complementary to some technologies that do only support content
models of XSD complex types.

While there have been no approaches to devise programming language in-
herent support for the Web Ontology Language, the problem to provide compile
time support for OWL DL stems from practice. In the CHIL research project
[24], which aims to introduce computers into a loop of humans interacting with
humans, rather than condemning a human to operate in a loop of computers, a
semantic middleware has been developed that fusions information provided by
so called perceptual components in meaningful ways. Each perceptual compo-
nent (e.g., image and speech recognizers, body trackers, etc.) contributes to the
common domain of discourse. The Web Ontology Language OWL was decidedly
used to replace previous domain models that had been based on particular pro-
gramming languages. A major disadvantage of using an OWL API compared to
previously used Java based domain models had been the lack of compile time
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support (i.e. static type checking). This lack of compile time support has lead
to the development of code generation tools such as the Ontology Bean Genera-
tor [37] for the Java Agent Development Framework [40], which generates proxy
classes in order to represent elements of an ontology. Similarly, in [25] Kalyanpur
et al. devised an automatic mapping of particular elements of an OWL ontology
to Java code. Although carefully engineered the main shortcomings of this imple-
mentation are the blown up Java class hierarchy and the lack of a concurrently
accessible ontological knowledge base at runtime (i.e. the “knowledge base” is
only available in one particular Java virtual machine in the form of instances of
automatically generated Java classes). This separation of the ontology definition
from the reasoning engine results in a lack of available ABox reasoning (e.g.,
type inference based on nominals). The two latter problems were circumvented
by the RDFReactor approach in [41] where a Java API for processing RDF data
is automatically generated from an RDF schema. While this may still result in
a significant number of automatically generated Java classes, the generated API
operates on one single external RDF model, which may be handled by existing
ontology management systems. Still, since RDFReactor operates on RDF triples,
obsolete generated code may result in meaningless or even invalid modifications
of the triple store.

The Zhi# compiler framework as introduced in Section 3 is complemen-
tary to a long line of approaches to add syntactic extensibility to programming
languages [10,27,42,12,4,6]. Most of these approaches support syntactic safety.
Embedded code is checked at compile time to be syntactically correct. In [10]
embedded code is used to compose XML documents. Proper program transfor-
mations and a properly defined underlying XML API guarantee that composi-
tions (i.e. generated XML instance documents) are syntactically correct as well.
However, nothing can be said about the validity of generated XML documents
with respect to a given schema. This lack of type safety is inherent to most of the
referenced approaches. In [4], argument and result types of embedded code are
checked but there is no error trailing (i.e. type checking errors in the expanded
code are not traced back to the unexpanded syntax).

In Zhi#, a host language (i.e. C#) can be augmented with external type sys-
tems (e.g., OWL, XSD). In contrast to a syntactic language extension, these type
systems are fully integrated with the static type checking of the host language.
Objects of such external type systems can be addressed following an object ori-
ented notation. In particular, external objects are assumed to be organizable into
taxonomies. Such a hierarchical organization provides for the reuse of methods
and data that are located higher in the hierarchy. Objects are either atomic
value types, whose value spaces may be constrained by means of constraining
facets, or complex types, which can be seen as collections of named attributes.
The author trusts that these two notations plus operator overloading plus some
minor syntactical additions for importing external namespaces and referencing
external types are sufficient for a variety of applications. In fact, Bravenboer and
Visser state in [10] that in object oriented languages “language constructs are
often sufficient for domain abstractions at the semantic level”.
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3 The Zhi# Compiler Framework

Fig. 1 depicts the architectural model of the Zhi# compiler framework on a class
level. The ZhiSharpCompiler class aggregates all components of the framework.
Zhi# source code and references to included .NET assemblies are passed into
the ZhiSharpCompiler as ZhiSharpSourceObject and LibraryFile objects.

Fig. 1. Zhi# compiler framework

Zhi# source code is tokenized an transformed into an AST by the ZhiSharp-
Lexer and ZhiSharpParser, which were automatically generated based on an
ANTLR [36] grammar of the augmented C# language specification [19].

A TypeTable, which comprises type definitions of passed in Zhi# source code
as well as referenced .NET assemblies, is build during the first two type check-
ing passes by the TCVisitorPass0Types and TCVisitorPass0Members visitors.
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Type names in method and property bodies are resolved by the TCVisitor-
Pass0Bodies visitor. Next, the TCVisitorPass1 visitor performs the actual
type checking of the Zhi# code, which includes the application of type infer-
ence mechanisms of activated IExternalTypeSystems. Note that the presence
of implementations of such external type systems (e.g., ExternalTypeSystem-
XSD) is transparent to the TCVisitorPass1 visitor since only the generic (i.e.
type system independent) interfaces of the TypeSystem and TypeTable classes
are used. Also, external type systems may cooperate in order to resolve for exam-
ple member access expressions where the member of an external type is defined
in another external type system.

Finally, successfully type checked Zhi# code is transformed into conventional
C# code by the CompilerVisitor. Again, a type system independent Compiler
is used to make activated implementations of the IExternalCompiler interface
such as ExternalCompilerXSD transparent to the Zhi# compiler framework.

Cooperation between external type systems is achieved through delegating
type checking and compilation tasks to the external compiler component re-
sponsible for the external type of the left operand of a binary expression or to
the external compiler component responsible for the external type of the right
operand of a binary expression if the left operand is a .NET type.

10 #shippingAndHandling SaH = 7 . 5 ;
20 System . Decimal d = #ont#TVSet . hasPr i ce + SaH ;

In the above listing, the evaluation of the dot operator in the expression
#ont#TVSet.hasPrice is dispatched to the OWL DL compiler component. This
component can process OWL DL types and is also aware of the the XSD com-
piler component. First, the RDF type of the individual #ont#TVSet is checked
to allow for a datatype property #ont#hasPrice. Accordingly, the expression
type of #ont#TVSet.hasPrice shall be evaluated to #xsd#decimal{> 0}{%.
2}3 (a positive real number that has at most two fraction digits). The type of
variable SaH shall be evaluated to #xsd#decimal{>= 0}{%. 1} (a non-negative
real number that has at most one fraction digit). Next, the type of the bi-
nary expression #ont#TVSet.hasPrice + SaH is evaluated by the XSD com-
piler component to #xsd#decimal{> 0}{%. 2}. The variable declaration state-
ment System.Decimal d = #ont#TVSet.hasPrice + SaH is type checked by
the XSD component, too.

Analogously, each binary expression in the above code snippet is compiled by
the Zhi# compiler component that is responsible for the respective type system.
The preceding listing would be compiled to the following conventional C# code
(for the sake of brevity, only the alias “ont” is used in the compiled code instead
of the fully qualifying namespace).

10 RTSimpleType SaH =
ZhiSharpRuntime . GetInit ia l izedRTSimpleType (

”#shippingAndHandling ” ,

3 In Zhi#, type names can be followed by a number of constraint notations of the
form {constraint operator literal}.
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ZhiSharpRuntime . ToString(”#shippingAndHandling ” , 7 . 5 )
) ;

20 System . Decimal d = Convert . ToDecimal (
ZhiSharpRuntime . Addit ion(”#xsd#decimal{> 0}{%. 2}” ,

ZhiSharpRuntime . GetDatatypePropertyValue (
ZhiSharpRuntime . Get Ind iv idua l (”#ont#TVSet ”) ,
”#ont#hasPr ice ”

) ,
SaH

)
) ;

Note that the above code uses static functions defined in a partial static class
ZhiSharpRuntime. This class, which is needed at runtime, is the only part of
the Zhi# compiler framework that may have to be recompiled when compiler
components are added or removed. Also, all external type system functionality
is used in a “pay as you go” manner. In Zhi#, there is no overhead for con-
ventional C# code. The class RTSimpleType is explained in the next Section,
which elucidates the constrained types calculus implemented by the Zhi# XSD
compiler component.

4 XSD Compile Time Support

4.1 The λC Constrained Types Calculus

This subsection elucidates (in an incomplete manner) an extension of the typed
lambda calculus with subtyping (λ<:) for constrained atomic (or simple) data
types. For the sake of brevity, the elucidation of XSD fundamental facets (see
[7]) is not given in this paper. Also, only some λC-specific extensions of the
conventional λ<:-calculus are presented.

Atomic data types can only have atomic values, which are not allowed to
be further fractionalized even though this may be technically possible (e.g., the
XSD datatype xsd#string may be considered to be an atomic data type despite
the fact that it comprises several distinguishable character information items).
Special emphasis was placed on the ability to make it possible to cover con-
strained based type derivations as they are allowed for XML Schema Definition
atomic data types.

Analogously to [7], atomic datatypes are derived from a number of uncon-
strained primitive data types P1, ..., Pn ∈ P . In particular, built-in XML Schema
Definition data types such as xsd#duration, xsd#dateTime, and xsd#decimal
are valid elements of P and will be denoted Pxsd#duration, Pxsd#dateT ime, and
Pxsd#decimal, respectively.

A primitive data type P is a three-tuple consisting of a set of distinct values,
called its value space υ(P ) (e.g., the value space υ(Pxsd#boolean) is the set {true,
false} to denote a logical true and a logical false), a set of lexical representa-
tions called its lexical space, and a set of fundamental facets that characterize
properties of the value.
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The value spaces of primitive XML Schema Definition data types Pxsd such
as Pxsd#duration, Pxsd#dateT ime, and Pxsd#decimal are given by the respective
type definitions of XML Schema Definition built-in data types in [7].

The value space of a base type T may be pruned by the application of one or
more constraints ci = φ(TV )bi i∈1..n. Each constraint c has a type variable TV ,
which is to be bound to a base type T , and a body b that possibly lessens the value
space υ(TV ) of TV . The letter φ is used as a binder for the base type parameter
TV . A constraint c = φ(TV )b has a value space υ(c) comprising all elements of
the value space υ(TV ), which satisfy the comparison operations defined in the
constraint body b. A constraint body b = {x|x ∈ υ(TV )}

⋂
k∈1..m

{x|x ≺ literalk}

defines the intersection of the value space of TV and those values which adhere
to the comparison operations x ≺ literalk. Depending on the constraining facet
’≺’, literalk is interpreted as a lexical representation of an element of υ(TV ) or
of another value space that is implicitly effective for the constraining facet (e.g.,
if TV is bound to the XSD data type Pxsd#gY ear literalk is interpreted as a
lexical representation of a gregorian calendar year while it is taken as an integer
number for the constraining facets cxsd:length and cxsd:totalDigits).

In order to capture the constraining facets as defined in the W3C Recom-
mendation for XML Schema Definition [7] the operators given in Table 1 may
be substituted for the operator placeholder ’≺’.

Table 1. Constraining facets

Zhi# comparison operator XSD constraining facet
? = cxsd:length, c?=
? > cxsd:minLength, c?>

? < cxsd:maxLength, c?<

?? cxsd:pattern, c??
$ = cxsd:enumeration, c$=
<= cxsd:maxInclusive, c<=

< cxsd:maxExclusive, c<
> cxsd:minExclusive, c>
>= cxsd:minInclusive, c>=

%% cxsd:totalDigits, c%%

%. cxsd:fractionDigits, c%.

In the λC-calculus, atomic types are inductively defined by their value spaces.
Atomic types are derived through the application of value space constraints
according to rule TD-CSTRAPP.

T ′ = T.c

υ(T ′) = υ(c{{TV ← T}})
(TD-CSTRAPP)

A main characteristic of object oriented languages is that an object can
emulate another object that has fewer methods, since the former supports the
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entire protocol of the latter. Analogously, for constrained data types as defined
in this work, the basic rules of subtyping are affective: reflexivity, transitivity,
and subsumption. Additionally, width and depth subtyping rules apply to atomic
data types that are constrained by one or more constraining facets.

A type A is considered to be a subtype of B if the value space of A is a
subset of the value space of B (rule S-VSPACE). In particular, A and B must
be derived from the same base type since otherwise their value spaces would
be disjoint. The rule S-VSPACE subsumes the width and depth subtyping rules
S-WIDTH and S-DEPTH.

υ(A) ⊆ υ(B)
A <: B

(S-VSPACE)

υ(A) =
TV⋂

i∈1..n+k

ci υ(B) =
TV⋂

i∈1..n

ci

A <: B
(S-WIDTH)

for each i ci <:: di υ(A) =
TV⋂

i∈1..n

ci υ(B) =
TV⋂

i∈1..n

di

A <: B
(S-DEPTH)

A type A is considered to be a subtype of B if both types are derived from
the same base type and fewer constraints are defined for type B than for A. The
intuition that it is safe to add constraints to an atomic type is captured by the
width subtyping rule S-WIDTH for constrained atomic types.

Also, constraints that are defined for atomic types may vary as long as the
value spaces of each corresponding constraint are in the subset relation (i.e.
the constraints are in the sub-constraint relation). The depth subtyping rule S-
DEPTH for constrained atomic types expresses this notion.

Finally, rule S-APP captures the notion that a constraint application always
makes a type more specific (i.e. constraint applications can only reduce the value
space of a type).

A <: B
A.c <: B

(S-APP)

This form of type construction mimics the semantics of XML Schema Def-
inition. In the λC-calculus it is also possible to infer transient constraints that
may hold for the instances of constrained types within only a limited scope of a
program.

A scope within a program shall be denoted by �. Considering the then branch
of an if -statement if (a ≺ literal) then � it is possible to add the constraint
c≺literal to the type of variable a. The constraint c≺literal holds for the instance
a within scope � until a is assigned a value (i.e. in a programming language with
side effects a must also not be referenced by method invocations). These two
intuitions of adding constraints to the type of a variable for a limited scope and
eventually removing them upon an assignment to the variable are captured by
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the rules TI-IFADD and TI-ASSIGNREM, where Γ and Γ� shall be a typing
context and a transient typing context for a limited scope �, respectively (i.e.,
Γ�� shall be a sub-scope of Γ�).

Γ ` a : A if (
∧

i∈1..n

(a ≺i literali)) then �

Γ� ` a : A′ Γ� ` A′ =
A⋂

i∈1..n

(ci = φ(TV ){x|x ∈ υ(TV )} ∩ {x|x ≺i literali})

(TI-IFADD)

Γ ` t : T Γ ` a : A Γ� ` a : A′ Γ� ` A′ =
A⋂

i∈1..n

ci a := t

Γ�� ` a : A
(TI-ASSIGNREM)

The following example may illustrate the effect of the TE-IFADD rule on
the type checking of λC-programs. Under the assumption ` a : Axsd#int the λC-
application (λx : Age.x)(a) would fail to typecheck according to rule S-VSPACE
since υ(Axsd#int) * υ(Age). The application would, however, typecheck if it
occurred within the then-branch of an if -statement such as if ((a >= 0) ∧
(a < 110)) then (λx : Age.x)(a) since the transient type A′xsd#int of a could be

inferred to be
Axsd#int⋂

c>=0 ∩ c<110. Using the rule S-VSPACE one can conclude
that A′xsd#int is a valid subtype of Age.

4.2 XSD Aware Compilation

The λC-type system was fully implemented in C# as an XSD plug-in for the
Zhi# compiler framework; a Java based implementation has also been embedded
with the CHIL Knowledge Base Server [34], which is an adapter for OWL DL
ontology management systems.

The XSD plug-in can be used in the Zhi# compiler framework to enable XSD
aware compilation. XSD atomic data types defined in XML schemas are made
public as native data types in Zhi# programs using the novel keyword import,
which works analogously for XML data types like the C# using keyword for
.NET programming language type definitions. It permits the use of XSD atomic
data types in a Zhi# namespace, such that one does not have to qualify the use
of a type in that namespace.

10 <xsd : schema xmlns : xsd = ” . . . ”
targetNamespace=”http ://www. choky−co l a . com”>

15 <xsd : simpleType name=”productID”>
20 <xsd : r e s t r i c t i o n base=”xsd : i n t”>
25 <xsd : min Inc lu s ive va lue =”4000”/>
30 <xsd : maxExclusive va lue =”8000”/>
35 </xsd : r e s t r i c t i o n >
40 </xsd : simpleType>
45 </xsd : schema>
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10 import XML coke = http ://www. choky−co l a . com ;
20 namespace MyBusinessAppl icat ion {
30 c l a s s MyClass {
40 #coke#productID pID ;
50 }
60 }

Thus, it is possible to use a productID data type, which shall be defined in a
namespace http://www.choky-cola.com, as shown in the code snippet above.
In the given example, the value space of the XSD type productID is limited
to integer values greater or equal to 4000 and less than 8000. Accordingly, the
following assignment in line 30 would result in error messages at compile time.
The same kinds of errors would occur if XSD values are assigned to incompatible
.NET variables. In contrast to other approaches, the type incompatibility is
traced to the actual value space constraints.

10 i n t i = . . . ;
20 #coke#productID pID ;
30 pID = i ;

This error trailing makes it particularly easy for developers to handle as-
signments to or from constraint datatypes. In the following listing, the value
space of the source operand is inferred based on control and data flow analysis.
Using the λC-calculus rules TI-IFADD and TI-ASSIGNREM the value space of
variable i is inferred to be a subset of the value space of pID within the scope
of the if-statement. Several novel comparisons operators as listed in Table 1
were introduced in the Zhi# programming language in order to make it partic-
ularly easy to test for XSD specific constraining facets. Additionally, the value
of the Length property defined for the .NET value type System.String can
be used to check for compliance with the XSD constraining facets xsd:length,
xsd:minLength, and xsd:maxLength.

30 i f ( ( i >= 4000) && ( i < 8000)) {
40 pID = i ;
50 }

Zhi#’s XSD component implements the relational operators >=, >, ==, <,
<=, ?=, ?>, ?<, ??, $=, %%, and %., and the arithmetic operators +, -, *, and /.
Relational operators can be used to constrain the possible value space of atomic
objects for limited scopes in a program as shown in the listing above. Operator
overloading can be used to enable combinations and comparisons of external
XSD objcets with .NET reference types.

Types of binary expressions where objects are combined using arithmetic
operators are inferred at compile time. For objects a, b, and c of type xsd#non-
NegativeInteger, the assignment a = b + c would successfully typecheck while
a = b - c results in compile time errors since the type of the binary expression
b - c would be inferred to be xsd#decimal{%. 0} (i.e. positive and negative
real numbers with no fraction digits).
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5 OWL Compile Time Support

5.1 A Formally Specified OWL API

In recent years, the Web Ontology Language OWL has been widely adopted as
the lingua franca of the Semantic Web. However, there are no widely accepted
standards yet that define APIs to manage ontological data. Processing ontolog-
ical information still suffers from the heterogeneity imposed by the plethora of
available ontology management systems and OWL APIs [23,32,28,39,33,31,5].
The author devised a Floyd-Hoare logic based formal specification of an OWL
API in order to make it possible to consistently adapt off-the-shelf ontology
management systems. The methods of this CHIL [24] OWL API are specified as
Hoare triples [20] of the following form.

{P}: {η(O) ∧ (
∧
O ` ((SHOIN (D) semantics) ∨̇ Exception))}

Q: O, m(p1, ..., pn)
{R}: {(

∧
O ` (SHOIN (D) semantics)) ∧ (return value semantics)}

Fig. 2. OWL API Hoare triple schema

Preconditions guarantee the ontology to be consistent and particular axioms
and facts to hold; the program terminates with the given exceptions otherwise.
The comma operator applies a method on the ontology. If the program termi-
nates, particular axioms and facts and return value semantics can be asserted.
The CHIL OWL API comprises 33 methods for telling the TBox, 8 methods for
telling the ABox, 19 methods for asking the TBox, and 9 methods for asking
the ABox of OWL DL knowledge bases. It was fully implemented in an adapter
software referred to as the CHIL Knowledge Base Server, which can expose the
functionality of off-the-shelf ontology management systems via an XML-over-
TCP remoting protocol. Client libraries are available for several programming
languages, among those .NET.

5.2 OWL Aware Compilation

Based on the formally specified OWL API an OWL plug-in for the Zhi# com-
piler framework was developed that enables the usage of OWL concepts, roles,
and individuals in Zhi# programs. In particular, the OWL plug-in can be used
cooperatively with the XSD plug-in in order to facilitate the handling of OWL
datatype properties. The following ontology snippet is an excerpt from the larger
CHIL ontology that covers the domain of multi-model applications in human in-
teraction scenarios.

Room v >, ActivityLevel v >,Meeting v Occurrence v >,
≥ 1hasActivityLevel vMeeting,> v ∀hasActivityLevel.ActivityLevel,
≥ 1scheduledAt v Occurrence,> v ∀scheduledAt.Room, hosts v scheduledAt−,
ActivityLevel(low), ActivityLevel(high),

ActiveMeeting vMeeting u ∃hasActivityLevel.high
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In Zhi#, it is possible to schedule a review meeting in room 248 as shown in
lines 20 - 30 in the code snippet below.

10 import OWL ont = http :// c h i l . s e r v e r . de/ onto logy ;
15 c l a s s C { s t a t i c void Main ( ) {
20 #ont#Room r = new #ont#Room(”#ont#room248 ” ) ;
25 #ont#Meeting m = new #ont#Meeting(”#ont#reviewMeeting ” ) ;
30 m.#ont#scheduledAt = r ;
35 fo r each (#ont#Occurrence o in r .#ont#host s ) {
40 System . Console . WriteLine ( r + ” hos t s ” + o + ” ! ” ) ;
45 }
50 m.#ont#hasAct iv i tyLeve l = #ont#high ;
55 i f (m i s #ont#ActiveMeeting ) {
60 System . Console . WriteLine (m + ” i s an a c t i v e meeting ! ” ) ;
65 }
70 }}

The query in line 35 benefits from ontological reasoning in two ways. First,
the review meeting is classified not only as a meeting but also as an occurrence.
Second, room 248 hosts the review meeting since the role hosts was declared as
the inverse of scheduledAt.

In line 55 the review meeting is at runtime inferred to be an active meeting
based on the complex concept definition of an active meeting in the ontology
and based on the value of its property hasActivityLevel.

The given examples may illustrate the usefulness to have in a program the
same convenient and compact notations used to describe data in an ontology.

5.3 OWL and XSD

Recently, several approaches have emerged to refine on the integration of external
type systems such as XSD and the Web Ontology Language OWL. In [35], Pan
and Horrocks present an extension of OWL DL, called OWL-Eu, which allows
for class descriptions based on (customized) datatypes. Especially, customized
datatypes can be used in datatype exists restrictions (∃T.u) and datatype value
restrictions (∀T.u). It can be imagined to use the Zhi# framework with an OWL-
Eu API since Zhi#’s XSD component already provides type checking and type
inference capabilities that are needed to cope well with OWL-Eu’s datatype
expressions. Zhi#’s OWL component would have to be extended in order to
track local range restrictions that can be inferred for properties of individuals
that are of a particular type. Given complex concept descriptions the OWL type
checking component could augment the type information of ontological roles
accordingly.

6 Conclusion and Outlook

Based on ECMA standard C# a compiler framework was devised that facili-
tates the cooperative usage of external type systems in the host language. XML
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Schema Definition and Web Ontology Language OWL DL plug-ins were de-
veloped in order to provide a significant degree of compile time support for
constrained atomic datatypes and ontologies. A complete tool suite was imple-
mented including a Zhi# Code DOM and an Eclipse project type with program
visualizers and an editor with syntax highlighting and auto-completion.

It could be shown that it is possible to integrate external type systems with
an object oriented host language. The notion of atomic value types was extended
with constraint based type derivation, which was fully integrated with host lan-
guage features such as method overwriting. Type inference is used to infer the
most specific constraints that hold for an atomic value type within a limited
scope of a program. Ontological inference rules are used for static type checking.
It is conceivable to add further type systems (e.g., SQL) with the Zhi# compiler
framework.

Currently, a controlled experiment is planned to find out empirically whether
the Zhi# programming language facilitates the processing of XML and OWL
data. In course of this study, several CHIL demo applications [34] will be rewrit-
ten in Zhi# in order to evaluate the gained improvements of the proposed ap-
proach in terms of standard software metrics (i.e. productivity, error density).

The current state of ontological reasoning technology may not yet be suf-
ficient to manage very large ontological knowledge bases. However, significant
performance gains have been achieved in recent years. These developments are
likely to continue since the advantages of the convenient and compact OWL
notation have been widely acknowledged. As a consequence, it appears to be
reasonable to make this important form of ontologies available in a widely used
programming language.

In the long run, the author plans to investigate the interplay of closed world
semantics of an ontology with the type checking provided in the Zhi# program-
ming language in order to enable an even higher degree of static type checking
for ontologies.
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