
Lattice Boltzmann Methods
for Particulate Flows with

Medical and Technical Applications

Zur Erlangung des akademischen Grades eines

D O K T O R S D E R N AT U RW I S S E N S C H A F T E N
(Dr. rer. nat.)

von der Fakultät für Mathematik des
Karlsruher Instituts für Technologie (KIT)

genemigte

D I S S E RTAT I O N

von

Dipl.-Math. techn. Thomas Henn
aus Bretten.

Tag der mündlichen Prüfung: 19. Oktober 2016
Referent: PD Dr. Gudrun Thäter
Korreferent: Prof. Dr. Willy Dörfler

This work is licensed under the Creative Commons Attribution 4.0 Interna-
tional License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/

or send a letter to Creative Commons, PO Box 1866, Mountain View, CA
94042, USA.

http://creativecommons.org/licenses/by/4.0/

V O RW O RT

Diese Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mit-
arbeiter am Institut für Numerische und Angewandte Mathematik des Karls-
ruher Instituts für Technologie (IANM).

Ich spreche all jenen meinen Dank aus, die mich unterstützt und zur Ent-
stehung dieser Arbeit beigetragen haben. Speziell danke ich Frau PD Dr.
Gudrun Thäter dafür, dass sie die Betreung meiner Arbeit übernommen
und mir zu jeder Zeit den Rücken freigehalten hat. Herrn Prof. Dr. Willy
Dörfler danke ich, dass er mich in seine Arbeitsgruppe aufgenommen und
die Position des Koreferenten übernommen hat. Herrn Dr. Mathias J. Krau-
se, der vermutlich die meiste Arbeit mit mir hatte, danke ich für unzählige
energische Gespräche, die intensive Betreuung, manche Idee und für sei-
ne bemerkenswerte Geduld. Herrn Prof. Dr. Andreas Kirsch danke ich für
meine Zeit in der Arbeitsgruppe Inverse Probleme, und Herrn Prof. Dr.–
Ing. Hermann Nirschl vom Institut für Mechanische Verfahrenstechnik und
Mechanik, Bereich Verfahrenstechnische Maschinen (VM), danke ich für die
erfolgreiche Zusammenarbeit der Arbeitsgruppen.

Ich danke meinen Kollegen vom IANM und VM. Das angenehme Ar-
beitsklima und die hervorragende Zusammenarbeit haben sehr zum Gelin-
gen dieser Dissertation beigetragen. Dank gilt auch den Diplomanten und
Masterstudierenden des IANM, die meine Forschungen mit ihren Arbeiten
vorangebracht haben.

Besonders danke ich meiner Familie, meinen Eltern, Schwestern und mei-
ner Freundin Nathalie für viel Motivation und Unterstützung in den ver-
gangenen fünf Jahren.

iii

Z U S A M M E N FA S S U N G

Partikelströmungen treten in zahlreichen natürlichen sowie künstlichen Vor-
gängen auf, beispielsweise als Feinstaub in den menschlichen Atemwegen,
als Sediment in Flüssen oder als Feststoff–Fluid Gemisch bei Filtrationen.
Simulation von Partikelströmen kommen zum Einsatz, wenn physische Un-
tersuchungen nicht möglich sind. Darüber hinaus können sie Kosten expe-
rimenteller Studien verringern.

Es hat sich gezeigt, dass die transiente Simulation von Strömungen mit ei-
ner großen Zahl an beliebig geformten Partikeln den herkömmlichen nume-
rischen Methoden insbesondere bei der Parallelisierung Probleme bereitet.
In dieser Arbeit wird die Lattice Boltzmann Methode (LBM) als neues Ver-
fahren zur numerischen Simulation von Strömungen auf Partikelströmun-
gen angewendet und ihr Nutzen untersucht.

Am Beispiel von verdünnten Suspensionen, wird ein Euler–Lagrange An-
satz für die LBM vorgestellt. Dabei wird nur die Wirkung der Trägerphase
auf die Partikel modelliert und die Rückkopplung vernachlässigt. Der Fo-
kus liegt dabei auf der Parallelisierung der diskreten Partikelphase. Die neu
vorgestellte Methode wird validiert und zur Simulation von Feinstaub in
einer Verzweigung der Bronchien und der komplexen Geometrie einer pati-
entenspezifischen Nasenhöhle verwendet.
Im Anschluss daran wird ein Euler–Euler Ansatz entwickelt, bei dem beide
Phasen als stetig angenommen werden und erstmals mit einer LBM gelöst
werden. Die Simulationen der vorhergehenden Methode in den Atemwegen
werden wiederholt. Als Resultat zeigt sich eine sehr gute Übereinstimmung.

Das letzte Kapitel der Arbeit behandelt Suspensionen mit hohem Fest-
stoffanteil. In diesem Fall kann die Rückkopplung der Partikel auf das Fluid
und teilweise auch die Interaktion der Partikel untereinander nicht mehr
vernachlässigt werden. Zuerst werden zwei Methoden zur Simulation vieler
kleiner Partikel vorgestellt und untersucht.
Anschließend wir eine Methode zur Simulation bewegter poröser Medien
entwickelt und numerisch aufgelöste Partikel mit einem festen Kern und ei-
nem glatten porösen Übergang zur reinen Fluidphase modelliert. Die neue
Methode wird validiert durch Simulationen und Vergleich der Ergbnisse
mit der Literatur. Für das Problem zweier sedimentierender Partikel wird
die Konvergenzordnung experimentell bestimmt. Zum Schluss wird die Se-
dimentation von 24 unterschiedlich geformten Partikeln simuliert.

Ergebnis der Untersuchungen ist, dass durch eine ganzheitliche Verwen-
dung der LBM, das heißt für beide Phasen, die Simulation von Partikelströ-
mungen effizient gestaltet werden kann. Dies führt einen großen Schritt nä-
her an das Ziel der Simulation einer großen Zahl unterschiedlich geformter
Partikel.

v

C O N T E N T S

1 introduction 1
1.1 Categorisation by Flow Model 2
1.2 Categorisation by phase coupling 3
1.3 Thesis Aims and Structure . 3
1.4 Methods and Application . 5
1.5 OpenLB . 5
1.6 Related Published Articles . 6

2 modelling and simulation of fluid flows 11
2.1 Fluid Systems at Different Scales 11

2.1.1 Macroscopic: Navier-Stokes Equations 12
2.1.2 Microscopic: Newton’s Law 16

2.2 Boltzmann Equation . 17
2.2.1 Collision Invariance and Equilibrium 18
2.2.2 BGK Collision Operator 21
2.2.3 Discretisation of the Boltzmann Equation 21

2.3 Lattice Boltzmann Method . 25
2.3.1 Transition to Macroscopic Equations 28
2.3.2 Turbulence Scheme . 30
2.3.3 Forcing Scheme . 31
2.3.4 Porous Media Scheme 33
2.3.5 Homogenised Lattice Boltzmann Method 34
2.3.6 Boundary Conditions 35

2.4 Implementational Aspects . 40
2.4.1 Voxeliser . 40
2.4.2 Data Structure and Parallelisation 43

2.5 Application: Aorta . 43
2.5.1 Simulation Setup . 46
2.5.2 Results . 47

3 particulate flows : one way coupling 53
3.1 Euler–Lagrange . 54

3.1.1 Fluid-Particle Forces . 55
3.1.2 Integration of Particle Trajectories 59
3.1.3 Interpolation of Fluid Velocity 64

3.2 Implementational Aspects . 66
3.2.1 The Class SuperParticleSystem3D 67
3.2.2 Parallelisation of the Particle Phase 69
3.2.3 Implementation of the Communication Optimal Strategy 71

3.3 Application: Lung Bifurcation (Euler–Lagrange) 74
3.3.1 Methods . 75
3.3.2 Convergence . 76
3.3.3 Determining Number of Particles 78
3.3.4 Validation . 78
3.3.5 Parallel Performance . 79

3.4 Application: Nasal Cavity . 80
3.4.1 Summary . 85

3.5 Euler–Euler . 89
3.5.1 Mathematical Modelling 90
3.5.2 Fluid Component . 91
3.5.3 Particle Component . 91

vii

viii contents

3.5.4 Boundary Conditions 92
3.5.5 Stabilisation . 93
3.5.6 Algorithm . 94

3.6 Application: Lung Bifurcation (Euler–Euler) 94
3.6.1 Summary . 97

4 particulate flows : two way coupling 101
4.1 Particle-Particle Interaction . 103

4.1.1 Collision Detection . 104
4.1.2 Collision Models . 109

4.2 Subgrid Scale Particles . 113
4.2.1 HLBM for Subgrid Particulate Flows 114
4.2.2 Application: Single Particle Sedimentation 115
4.2.3 Direct Forcing Scheme 119
4.2.4 Application: Single particle sedimentation 120
4.2.5 Application: 8125 sedimenting particles 120

4.3 Resolved Particles . 123
4.3.1 HLBM for Resolved Particulate Flows 127

4.4 Implementational Aspects . 130
4.5 Application: Numerical Experiments 134

4.5.1 Flow Around a Cylinder 134
4.5.2 Sedimentation of One Particle 136
4.5.3 Sedimentation of Two Particles 137
4.5.4 Sedimentation of 24 Particles 142
4.5.5 Summary . 145

5 summary and conclusions 147

bibliography 151

L I S T O F F I G U R E S

Figure 1.1 Categorisation by model. 2
Figure 1.2 Categorisation by the phase coupling. 3
Figure 2.1 Macroscopic, mesoscopic, microscopic 11
Figure 2.2 Illustration of a D2Q9 lattice. 22
Figure 2.3 Illustration of a D3Q19 lattice. 23
Figure 2.4 Illustration of the collision and streaming steps 25
Figure 2.5 Bounceback boundary conditions 36
Figure 2.6 Zou–He boundary conditions 37
Figure 2.7 Bouzidi boundary condition 40
Figure 2.8 The voxelisation process 42
Figure 2.9 Cuboid communication 44
Figure 2.10 Domain decomposition. 45
Figure 2.11 Voxelised aortic arc . 47
Figure 2.12 Temporal inflow velocity. 48
Figure 2.13 Absolute aortic pressure results 49
Figure 2.14 Aortic pressure drop results 50
Figure 3.1 Standard drag curve 58
Figure 3.2 The coordinate system used by Stokes. 58
Figure 3.3 Stability regions of the Euler methods 61
Figure 3.4 Trilinear interpolation. 65
Figure 3.5 Parallelisation of dilute particle flows 70
Figure 3.6 Particle overlap. 74
Figure 3.7 Simulation domains. 76
Figure 3.8 Convergence analysis. Results for Re = 50. 77
Figure 3.9 Escape rates vs. number particles. 78
Figure 3.10 Flow through bifurcation 79
Figure 3.11 Escape rates for increasing Re. 80
Figure 3.12 Speedup Euler–Lagrange (EL) 81
Figure 3.13 Flow through nasal cavity 82
Figure 3.14 Deposition vs. St . 83
Figure 3.15 Streamlines left nostril 84
Figure 3.16 Transient flow rates in cavity; single injection. 85
Figure 3.17 Transient flow rates in cavity; continuous injection. . 86
Figure 3.18 Deposition in cavity; single injection. 87
Figure 3.19 Deposition in cavity; continuous injection. 88
Figure 3.20 Discrete bifurcation. 95
Figure 3.21 Flow fields Euler–Euler (EE) 96
Figure 3.22 Particle distribution EE 96
Figure 3.23 E vs St, diffusion coefficients. 97
Figure 3.24 Corrected E vs St, diffusion coefficients. 98
Figure 3.25 E vs St, grid independence. 99
Figure 3.26 E vs St, Reynolds numbers. 99
Figure 3.27 E vs St, comparison Re = 50. 100
Figure 3.28 E vs St, comparison Re = 500. 100
Figure 4.1 k-d tree algorithm . 105
Figure 4.2 Grid based contact detection 106
Figure 4.3 Test cases . 107
Figure 4.4 Case A: CPU times . 109

ix

x List of Figures

Figure 4.5 Case B: CPU times . 110
Figure 4.6 Case C: CPU times . 111
Figure 4.7 Spring-dashpot . 112
Figure 4.8 Subgrid scale particles 113
Figure 4.9 One sedimenting subgrid particle. 117
Figure 4.10 One sedimenting subgrid particle. 118
Figure 4.11 One sedimenting subgrid particle; flow velocity. . . . 118
Figure 4.12 z-Component of fluid velocity in a plane through the

center and normal in y-direction. 121
Figure 4.13 Sedimentation of 8125 particles at different timesteps. 122
Figure 4.14 Smooth sphere . 128
Figure 4.15 Smooth particles . 129
Figure 4.17 Flow around cylinder 134
Figure 4.18 Flow around a cylinder, drag coefficients 135
Figure 4.19 Flow around a cylinder, lift coefficients 136
Figure 4.20 Flow around a cylinder, EOC 137
Figure 4.21 One sedimenting particle, quantitative results 138
Figure 4.22 One sedimenting particle, isobars 139
Figure 4.23 DKT, comparison to literature 141
Figure 4.24 DKT, convergence . 141
Figure 4.25 DKT, error plots . 142
Figure 4.26 DKT, fluid velocity . 143
Figure 4.27 DKT square particles, vertical position 143
Figure 4.28 DKT square particles, horizontal position 144
Figure 4.29 DKT square particles, fluid velocity 144
Figure 4.30 24 sedimenting particles, fluid velocity 145

L I S T O F TA B L E S

Table 1.1 Overview of methods 5
Table 2.1 EOC of the systolic pressure. 49
Table 2.2 Flow results . 51
Table 3.1 The Eulerian and Lagrangian point of view 53
Table 3.2 Costs of the two parallel strategies 71
Table 3.3 Simulation parameters for flow through a tracheo-

bronchial bifurcation 77
Table 3.4 Speedup EL . 80
Table 3.5 Model parameter . 95
Table 4.1 Case A: CPU times . 109
Table 4.2 Case B: CPU times . 110
Table 4.3 Case C: CPU times . 111
Table 4.4 Simulations parameters for simulation of the sedi-

mentation of one subgrid scale particle. 116
Table 4.5 Results single particle sedimentation. 116
Table 4.6 Direct forcing. Results single particle sedimentation. 120
Table 4.7 Simulations parameters for simulation of the sedi-

mentation of 8125 subgrid scale particles. 120
Table 4.8 Flow around a cylinder, drag coefficients 135
Table 4.9 Flow around a cylinder, lift coefficients 136
Table 4.10 Flow around a cylinder, EOC 137
Table 4.11 Sedimentation of one particle, EOC 139

xi

L I S T I N G S

Listing 2.1 Basic Lattice Boltzmann Method (LBM) algorithm . . 26
Listing 2.2 Class Octree . 41
Listing 2.3 Parallel LBM algorithm 46
Listing 3.1 LBM algorithm including Lagrangian particles. 66
Listing 3.2 LBM algorithm including Eulerian particles. 94
Listing 4.1 HLBM for Subgrid Particulate Flows 115
Listing 4.2 LBM for direct forcing subgrid scale particles. 119
Listing 4.3 Basic HLBM algorithm 131

xii

A C R O N Y M S

ADE Advection–Diffusion Equation
ALE Arbitrary Lagrangian–Eulerian
BE Boltzmann Equation
bEM backward Euler Method
BGK Bhatnagar–Gross–Krook
CA Cellular Automata
CFD Computational Fluid Dynamics
CI Confidence Interval
CoA Coarctation of the Aorta
CPU Central Processing Unit
CT Computer Tomography
DEM Discrete Element Method
DKT Drafting, Kissing, Tumbling
DNS Direct Numerical Simulation
EDF Equilibrium Distribution Function
EE Euler–Euler
EL Euler–Lagrange
EOC Experimental Order of Convergence
FDM Fictitious Domain Method
FEM Finite Element Method
fEM forward Euler Method
FVM Finite Volume Method
HLBM Homogenised Lattice Boltzmann Method
IBM Immersed Boundary Method
LB Lattice Boltzmann
LBE Lattice Boltzmann Equation
LBM Lattice Boltzmann Method
LES Large Eddie Simulation
LGCA Lattice Gas Cellular Automata
MD Molecular Dynamics
MEA Momentum Exchange Algorithm
MPI Message Passing Interface
MRI Magnetic Resonance Imaging
NBS No Binary Search
NSE Navier–Stokes Equation
ODE Ordinary Differential Equation
PU Processing Unit
REV Representative Elementary Volume

xiii

1I N T R O D U C T I O N

Airborne particulates pose a serious health risk. On the one hand, they are
known to cause respiratory diseases such as lung cancer or asthma. On the
other hand, purposefully used in nasal or asthma sprays they can help to
treat such diseases. It is therefore of great interest to gain a deeper under-
standing of their dynamics. From a physics point of view, airborne particu-
lates are an example of particulate flows as they appear in numerous tech-
nical and non-technical processes in our everyday life. They can be found
in engineering as well as chemical, biological and medical applications e. g.
as the already mentioned respirable dust in the human tracheobronchial
system, the movement of sediment in rivers or in filtration devices. Their
simulation can reduce the cost of experimental studies and is inevitable
whenever a physical investigation is unfeasible.

Often, suspensions are polydisperse, i.e. the solid objects submerged in
the fluid differ in size, mass or shape. It is observed experimentally that
the non-uniformity crucially influences the dynamics of suspensions, e. g.
in nanomedicine applications, where non-spherical nanoparticles improved
the ability to target tumours over spherical ones [143]. Many effects are still
not fully understood and therefore in the focus of interdisciplinary research.
For a deeper understanding of such effects, sophisticated models as well as
numerical simulations can deliver highly valuable insights and give a better
idea of how to design useful experiments.

A great and so far unsolved challenge is finding an efficient approach that
allows to predict the dynamics of thousands or millions of differently and
arbitrarily shaped objects. Thereby, especially the calculation of the interac-
tion of the objects with each other as well as with the fluid causes enormous
computational costs.

Conventional numerical methods, such as Finite Volume Method (FVM)
and Finite Element Method (FEM) can be of limited efficiency for the simula-
tion of non-steady flows with immersed particles. This is partly due to their
necessity to recompute a geometry dependent mesh for each time step and
partly due to the lack of highly parallelisable algorithms [88]. Since this is
inherent to the chosen mathematical model this will probably not be solved
in the future.

Nevertheless, in the past decades the Lattice Boltzmann Method (LBM)
ascended to be an efficient computational tool for simulation of complex
flows. The LBM is a comparably simple explicit algorithm originating of a
discretisation of the Boltzmann Equation (BE). It is based on an equidistant
grid and the necessity of a geometry–adapted mesh does not arise. The data
employed during one time step are local in their position in the physical do-
main, as well as in their location in the memory. Therefore the LBM demands
a parallelisation by a domain decomposition. In fact, LBMs have already been
shown to exhibit an almost ideal scaling on more than 9000 cores [47]. Nu-
merical simulation of submerged particles with LBM began with the articles
by Ladd in 1994 [113, 114]. However, their usage in this context still poses
challenges. For example the parallelisation used for the carrier phase cannot
be simply transferred to the particle phase.

1

2 introduction

particulate
flow modelling

euler–euler

◦ both phases continuous

◦ large number of identical
particles

◦ high volume concentra-
tion

euler–lagrange

◦ continuous fluid phase

◦ discrete particle phase

◦ average number of di-
verse particles

subgrid particles

◦ mass points

◦ diameter less than spatial
discretisation

resolved particles

◦ extended particles

◦ diameter greater than
spatial discretisation

[16th September 2016 at 17:34 ,]

Figure 1.1: Categorisation of particulate flows by the modelling.

Numerical simulation of particulate suspensions requires two parts. One
to simulate the carrier phase and one to simulate the particle phase. For
both parts one has to decide on how to formulate a model, which in case of
the particle phase can be continuous or discrete and then choose a numer-
ical method. Additionally the phase interaction can be modelled in several
ways, depending on particle size and concentration. These two aspects of
simulation of particulate flows are explained in more detail in the following
two sections and are illustrated in Figures 1.1 and 1.2. There is no panacea
for simulating particulate flows.

1.1 categorisation by flow model

Different mathematical models are required for the different regimes of
particle sizes. In general, two main classes can be distinguished: firstly,
Euler–Euler (EE) methods where the solid phase is described by its particle
concentration and continuously modelled by an Advection–Diffusion Equa-
tion (ADE) and secondly Euler–Lagrange (EL) methods where the trajectory
of each discrete particle is computed according to Newton’s law of motion.
For both methods the carrier phase is usually modelled as an incompress-
ible Newtonian fluid by a Navier–Stokes Equation (NSE). The categorisation
by the flow model is illustrated in Figure 1.1.

The EE approach is usually employed if the number of suspended particles
is too large to be computed individually or the exact trajectory of a particle
is not of interest. This is mostly the case for a high volume concentration of
comparably small particles. The computational costs of an EE scheme scale
solely with the numerical resolution of the computational domain and not
with the amount of particles.

If the exact trajectories of the particles are of interest, commonly an EL

approach is used. In this work two types of the EL approach are used. Firstly
methods for subgrid particles are proposed. In this case the particles are small
in comparison to the discrete spatial step of the system and are therefore

1.2 categorisation by phase coupling 3

phase coupling

one way

◦ only fluid acts on
particles

◦ dilute flows

◦ small particles

two way

◦ interaction of parti-
cles and fluid

◦ comparably large
particles

◦ higher concentra-
tion

four way

◦ interaction of parti-
cles and fluid

◦ particle–particle
interaction

[16th September 2016 at 9:19 ,]

Figure 1.2: Categorisation of particulate flows by the phase coupling.

handled as mass points. Secondly, a method for resolved particles that are of
the same scale as the characteristic length is proposed.

1.2 categorisation by phase coupling

Simulations of particulate flows can also be classified by the kind of coup-
ling between the particle phase and the fluid phase. In dilute particle flows,
when the particles are influenced by the fluid and the feedback is neglected,
one speaks of one way coupling. Two way coupling additionally respects the
back coupling of the particles on the fluid, and if additionally particle–
particle interaction is considered, the term four way coupling is used. The
categorisation by the phase coupling is also illustrated in Figure 1.2.

The preferred model depends on the volume fraction of particles φ =

NVP/V , where the number of particles is denoted by N, their volume by
VP and the combined volume of the fluid and the particles by V . For tur-
bulent flows Elghobashi [49] states that for very low values of φ < 10−6

the particles have negligible effect on turbulence and a one way coupling
can be applied. For 10−6 6 φ < 10−3 a two way coupling and for dense
suspensions with φ > 10−3 a four way coupling should be applied.

1.3 thesis aims and structure

The main aim of this thesis is to contribute models and numerical schemes
towards an accurate as well as efficient simulation of a huge number of ar-
bitrarily shaped particles. We therefore develop holistic mesoscopic models
and simulation approaches using the LBM, that on massively parallel ma-
chines efficiently solve a variety of problems of particulate flows

The thesis is divided in three main chapters that with increasing complex-
ity deal with mathematical models for particulate flows and their numerical
solution. The chapter following this introduction, Chapter 2, has the aim to
introduce the LBM and demonstrate its capabilities as an efficiently parallel-
isable numerical solver of fluid flows. With this objective, we describe the
carrier phase on three different scales, namely the microscopic, mesoscopic
and macroscopic scale. While the continuous macroscopic description in
form of the NSE leads to the conventional numerical methods, we use the
mesoscopic view in form of the BE to derive the LBM. We then introduce
special dynamics to handle body forces, turbulence and for the first time

4 introduction

moving porous media. The latter will be called Homogenised Lattice Boltz-
mann Method (HLBM).
Each logic section is closed by a real world or academic application to validate
the methods and to demonstrate their potential. Chapter 2 includes a sim-
ulation of blood flow through the complex geometry of a patient-specific
aortic arch with an coarctation. The simulation is executed for increasing
resolution and while for the smaller resolutions a stabilisation in form of a
Smagorinsky scheme is necessary, the highest resolution is able to resolve
the Kolmogorov scales leading to a Direct Numerical Simulation (DNS). This
however requires massively parallel processing on 512 CPUs, demonstrating
the excellent scalability of the LBM. From the medical point of view, the fo-
cus is on the blood pressure and the pressure drop around the coarctation.
The blood pressure in the ascending aorta is computed to 115.48/64mm Hg,
and very precisely matches the measured values of 115/64mm Hg.

Chapter 3 has the objective of investigating dilute particulate flows. It
therefore introduces dilute particles as a second phase that is affected by
the carrier phase through a one way coupling. Using an EL approach, we
first propose and theoretically analyse two parallelisation strategies for the
computation of particle trajectories, that are based on the domain decom-
position used for the carrier phase. With regard to simulation of equally
distributed particles the algorithm promising higher efficiency is implemen-
ted and tested, with the result of a super-linear scaling. In order to provide
some kind of verification the Experimental Order of Convergence (EOC) has
been computed.
The theoretically discussed EL approach is applied to a simulation of the
inhalation of respirable dust. Here, the used computational domain is a
patient-specific geometry of a nasal cavity with a peripheral obstructive
ventilation disorder and additionally including paranasal sinuses. For the
first time two transient respiratory cycles with a repeated particle injection
are computed and particle deposition patterns are determined. It is found
that for continuous injection the particle escape rates through the nostrils
increase during expiration. Most particles deposit in the anterior region and
remain in the sinuses after one completed respiratory cycle.
We then turn towards an EE approach and for the first time simulate a con-
tinuous particle phase using LBM. Here, it was necessary to develop a new
boundary condition and a new stabilisation scheme for the LBM in context
of the ADE.

Chapter 4 aims at the back coupling of the particles on the fluid and cov-
ers two and four way coupled flows. We start by introducing a tree-based
and a grid-based contact detection algorithm. Both algorithms use geomet-
ric information to reduce the number of potentially interacting particle pairs.
Their run-time is compared for three different particle distributions. The
result is, that for structured particle distributions the run-times of both al-
gorithms are comparable, while for a random distribution the grid-based
algorithm clearly outruns the tree-based.
Two different methods for two way coupled flows of subgrid particles are
newly proposed. The first one utilises the HLBM and the other one a direct
forcing approach. Both methods are used to simulate one sedimenting par-
ticle and the computed sedimentation velocity is compared to an analytical
result. It is found that the HLBM is only of limited usability in this context,
but the forced scheme shows promising results.
Finally we turn towards the simulation of numerically resolved particles
that are large enough to cover several discrete fluid nodes. Existing meth-

1.4 methods and application 5

ods for this setting are the Immersed Boundary Method (IBM) and Fictitious
Domain Method (FDM), that reintroduce a secondary Lagrangian mesh to
approximate the particle domain and require additional computation time.
We propose a method that uses the already available lattice. Therefore the
particles are modelled as a moving porous medium with a solid center and
a smooth transition over the boundary to a pure fluid. The implementation
applies the proposed HLBM. The method has been used to revisit academic
applications such as Flow around a cylinder and Kissing, Drafting, Tumbling.
The produced results are found to be in excellent agreement with results
in the literature. Also, it is found that the method is of linear EOC. Finally
the method is used to simulate the sedimentation of 24 particles of different
shapes.

The results of our investigations are that the LBM can be efficiently used
for simulations of particulate flows. It thereby solves the mathematical mod-
els of both phases and also handles their interactions and partly handles
interparticle collisions. This is a great leap closer to the aim of simulating
fully coupled flows of large numbers of arbitrarily shaped particles.

1.4 methods and application

Throughout the thesis several specialisations of the LBM as well as numerical
methods are introduced or newly proposed. The following table provides an
overview on which methods were used in the applications.

Method

application

a
o

r
ta

bi
fu

r
c

a
ti

o
n

EL

n
a

sa
l

c
a

v
it

y

bi
fu

r
c

a
ti

o
n

EE

su
bg

r
id

H
LB

M

su
bg

r
id

fo
r

c
ed

r
es

o
lv

ed
H

LB
M

Force model 2.3.3 ×
Turbulence model 2.3.2 × ×
HLBM 2.3.5 × ×
Euler method 3.1.2 × × × ×
Verlet method 3.1.2 × ×
Gravitation 3.1.1 × × ×
Stokes drag 3.1.1 × × × × ×
p–p interaction 4.1 × (×)

Table 1.1: Overview of methods

1.5 openlb

The algorithms and methods proposed in this thesis have been implemented
using and expanding the open source LBM library OpenLB1. Its development
has begun in 2006 as a cooperation of Mathias J. Krause (KIT) and Jonas

1 http://www.openlb.net

6 introduction

Latt (Université de Genève). Meanwhile the developer team has grown to
ten active developers, supplemented by ten more former developers.

The OpenLB repository now contains more than 300.000 lines of code, of
which more than 100.000 are publicly available. During development the
focus is on an easy utilisation and broad applicability. It can be compiled
by a large range of compilers and is executable on all common operating
systems.
OpenLB provides methods for simulation of non-Newtonian flows, turbu-

lent flows, thermal flows, multi-phase flows and since version 1.0 also par-
ticulate flows. It uses the Message Passing Interface (MPI) library for paral-
lelisation and has been shown to efficiently scale up to 256 CPUs [110].

1.6 related published articles

During the past years several journal articles have been published, that form
the basis of parts of this thesis. They are listed below including a description
of where they are reproduced in this work. Throughout the thesis we will
again point out whenever a particular section has been published before.

◦ T. Henn, V. Heuveline, M. J. Krause and S. Ritterbusch. “Statistical
Atlases and Computational Models of the Heart. Imaging and Model-
ling Challenges: Third International Workshop, STACOM 2012, Held
in Conjunction with MICCAI 2012, Nice, France, October 5, 2012, Re-
vised Selected Papers”. In: ed. by O. Camara, T. Mansi, M. Pop, K.
Rhode, M. Sermesant and A. Young. Berlin, Heidelberg: Springer Ber-
lin Heidelberg, 2013. Chap. Aortic Coarctation Simulation Based on
the Lattice Boltzmann Method: Benchmark Results, pp. 34–43. doi:
10.1007/978-3-642-36961-2_5

abstract

We investigate a patient-specific blood flow simulation through a trans-
verse aortic arch with a moderate thoracic Coarctation of the Aorta
(CoA), where particular attention is paid to the blood pressure gradient
through the coarctation. The challenge in this context is the complex
geometry containing a stenosis, which results in complex flow pat-
terns. The fluid is assumed to be incompressible and Newtonian. Its
dynamic is usually described by a NSE with appropriate boundary con-
ditions. Instead, we modelled the problem mesoscopically by a family
of BGK-Boltzmann equations those solutions reaches that of a corres-
ponding Navier–Stokes system in a certain limit. For discretisation we
take advantage of LBM, which are realised within the open-source lib-
rary OpenLB. A realistic transient flow profile of the cardiac output for
a human at rest was used to specify the inflow boundary condition at
the aortic root, whereas the outflow at the descending aorta was mod-
elled by a pressure boundary condition. A short introduction to LBM is
provided and especially the used boundary conditions are introduced
in detail. The exact simulation setup is stated and the obtained results
are discussed.

comment

This paper results from the participation at the “1st Simulation on
Aortic Coarctation Challenge” which was part of the conference “Stat-

http://dx.doi.org/10.1007/978-3-642-36961-2_5

1.6 related published articles 7

istical Atlases and Computational Modelling of the Heart (MICCAI)”
in Nice 2012. It is partly reproduced in subsection 2.5.

◦ T. Henn, G. Thäter, W. Dörfler, H. Nirschl and M. J. Krause. “Paral-
lel dilute particulate flow simulations in the human nasal cavity”. In:
Computers & Fluids 124 (2016), pp. 197–207. doi: 10.1016/j.compfluid.
2015.08.002

abstract

When simulating time dependent particulate flows, one faces the di-
lemma that the domain decomposition used for fluid simulation is
not optimal for parallel computation of particle trajectories. There-
fore, the article proposes and compares two parallelisation strategies
for the particle phase based on the fixed domain decomposition ap-
proach used in the open source lattice Boltzmann framework OpenLB.
The communication optimal strategy is found to be more efficient in
the case of homogeneously distributed particles. Convergence stud-
ies and performance tests are conducted using a simplified geometry
of the human lungs and show excellent parallel speedup. The imple-
mented strategy is used to simulate time dependent particulate flows
of micro-particles in a patient-specific geometry of a human nasal cav-
ity including paranasal sinuses. Dilute, uniformly distributed particles
are released once at the start of inspiration, as well as repeatedly dur-
ing the entire inspiratory cycle, which leads to a more homogeneous
distribution. It is found that the deposition rates vary for the different
injection methods.

comment

This article partially forms Sections 3.3 and 3.4.

◦ R. Trunk, T. Henn, W. Dörfler, H. Nirschl and M. J. Krause. “Inertial
dilute particulate fluid flow simulations with an Euler–Euler lattice
Boltzmann method”. In: Journal of Computational Science (2016). doi:
http://dx.doi.org/10.1016/j.jocs.2016.03.013

abstract

Systems of dilute particulates, affected by inertia, with sizes in the
range of 1µm to 1mm are of great interest in the design of many
mechanical devices. For the simulation of such particle-laden flows
most often EL approaches are applied, that yield massive computa-
tional costs, if a high accuracy e. g. in the deposition pattern is desired.
In contrast to that, EE approaches scale only with the resolution of the
chosen discretisation in computational effort. However, the stabilisa-
tion required for the considered convection dominated regime and in
general the formulation of boundary conditions on this macroscopic
scale are more challenging. In this article a stabilised extension to the
EE approach is proposed, together with appropriate boundary condi-
tions, to also account for drag forces and yield viable results for a wide
range of Péclet and Reynolds numbers. The two-component system is
solved using a LBM and the resulting scheme is applied to a simpli-
fied geometry of a human lungs bifurcation. The numerical results are

http://dx.doi.org/10.1016/j.compfluid.2015.08.002
http://dx.doi.org/10.1016/j.compfluid.2015.08.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.jocs.2016.03.013

8 introduction

validated by comparison to other works, that apply an EL approach,
regarding the deposition and its dependency on the Stokes number.
After consideration of the effect of artificial diffusion, the results are
found to be in excellent agreement.

comment

This article partially forms Section 3.5.

◦ T. Henn, F. Klemens, G. Thäter and M. J. Krause. “Particle Flow Simu-
lations with Homogenised Lattice Boltzmann Methods”. In: Submitted
to Particuology (2016)

abstract

In this article, a new approach for the simulation of arbitrarily shaped
particles submersed in viscous fluid is proposed. It is obtained by ad-
apting the velocity parameter of the equilibrium distribution function
of a standard LBM. It is validated by comparison of exemplary simula-
tions to results in literature, as well as convergence analysis. Pressure
fluctuation occurring in Ladd’s approach [113] are greatly reduced. In
comparison to the IBM the new approach does not require cost intens-
ive interpolations. The parallel efficiency of LBM remains. An intrinsic
momentum transfer is observed during particle–particle collisions. To
show the capabilities of the method, sedimentation of particles of sev-
eral shapes is simulated omitting an explicit particle collision model.

comment

This article partially forms Section 4.3.1.

◦ H. Mirzaee, T. Henn, M. J. Krause, L. Goubergrits, C. Schumann, M.
Neugebauer, T. Kuehne, T. Preusser and A. Hennemuth. “MRI-based
computational hemodynamics in patients with aortic coarctation using
the lattice Boltzmann methods: Clinical validation study”. In: Journal
of Magnetic Resonance Imaging (2016). doi: 10.1002/jmri.25366

abstract

Purpose: To introduce a scheme based on a recent technique in compu-
tational hemodynamics, known as the LBM, to noninvasively measure
pressure gradients in patients with a CoA. To provide evidence on the
accuracy of the proposed scheme, the computed pressure drop val-
ues are compared against those obtained using the reference standard
method of cauterisation.

Materials and Methods: Pre and posttreatment LBM-based pressure gra-
dients for 12 patients with CoA were simulated for the time point of
peak systole using the open source library OpenLB. 4D flow-sensitive
phase-contrast Magnetic Resonance Imaging (MRI) at 1.5T was used to
acquire flow and to setup the simulation. The vascular geometry was
reconstructed using 3D whole-heart MRI. Patients underwent pre and
postinterventional pressure cauterisation as a reference standard.

Results: There is a significant linear correlation between the pretreat-
ment catheter pressure drops and those computed based on the LBM

http://dx.doi.org/10.1002/jmri.25366

1.6 related published articles 9

simulation, r = 0.85, p < 0.001. The bias was −0.58± 4.1mmHg and
was not significant (p = 0.64) with a 95% Confidence Interval (CI) of
−3.22 to 2.06. For the posttreatment results, the bias was larger and at
−2.54± 3.53mmHg with a 95% CI of −0.17 to −4.91mmHg.

Conclusion: The results indicate a reasonable agreement between the
simulation results and the catheter measurements. LBM-based compu-
tational hemodynamics can be considered as an alternative to more tra-
ditional computational fluid dynamics schemes for noninvasive pres-
sure calculations and can assist in diagnosis and therapy planning.

comment

This article is the result of a cooperation with the Fraunhofer MEVIS,
Institute for Medical Image Computing and a followup article to Henn
et al. [80].

2M O D E L L I N G A N D S I M U L AT I O N O F F L U I D F L O W S

This chapter is introducing the Lattice Boltzmann Method (LBM). This method
is central in our simulations since it is used to solve the carrier phase of par-
ticle laden flows and sometimes also to solve the particle phase. In the first
section we start by explaining three differently scaled perspectives of the
to-be simulated fluid. We then concentrate on the mesoscopic scale, by in-
troducing the Boltzmann Equation (BE) and its discretisation, which results
in the LBM in the third section. It is followed by some aspects concerning its
implementation, specifically the structure of the data, parallelisation and the
voxelisation process. Finally, we present a medical application of the LBM of
blood flow through an patient specific aortic arch with a coarctation.

2.1 fluid systems at different scales

macroscopic mesoscopic microscopic

[12th September 2016 at 9:12 ,]

Figure 2.1: Different scaling approaches: Macroscopic, mesoscopic and microscopic.

Mathematical models of fluids can be accomplished in several ways de-
pending on the scale on which the selected fluid is considered. The probably
most intuitive choice is to observe the domain e.g: a glass of water "from the
outside" (macroscopic, see Figure 2.1) and directly model and compute the
observable quantities such as the fluid velocity and pressure. Classical mod-
els for this are, e. g. the Navier–Stokes Equations (NSEs), which can be solved
inter alia by various Finite Element Methods (FEMs) or Finite Volume Meth-
ods (FVMs). In this approach, the fluid is assumed to be continuous, i.e. the
composition of microscopic particles is not important.

In contrast, the microscopic approach attempts to track the trajectory of
each single water molecule and to compute the interaction between them.
This is done by methods such as Molecular Dynamics (MD) [4, 6] or the
Discrete Element Method (DEM) [39, 125]. The challenge here is the sheer
number of molecules. Even the calculation of only one millilitre of water
(approx. 1022 molecules) exceeds the performance of all current computers,
limiting the methods to very small domains.

Therefore in the last decades, a mesoscopic approach has been developed,
combining the advantages of both, the microscopic and the macroscopic
worlds. Members of this class are the LBMs. They are based on the BE, which
models the evolution of a particle density distribution. This function de-
scribes the amount of fluid particles moving in an infinitesimal small period
of time and an infinitesimal small domain, while moving in a certain direc-
tion. Hence it describes a time, space and velocity averaged state of the fluid

11

12 modelling and simulation of fluid flows

molecules. The BE can be solved by the LBM. The computational complexity
of this is significantly lower than the microscopic approach and is approx-
imately equal to that of the FEM or FVM, but has the advantage that it can
exploit current parallel microprocessor architectures significantly better, al-
beit its algorithm is less complex. This will become even more important in
the future, as architectures are still changing.

The three different scales form a hierarchy in the sense, that smaller scales
are more general than coarser scales. The macroscopic properties velocity
and pressure can be computed by the moments of the mesoscopic distribu-
tion function, which itself can be computed as average of the microscopic
molecular trajectories. However, it is neither possible to compute the (exact)
molecular trajectories from the mesoscopic distribution function nor from
the macroscopic fluid’s velocity.

A rigorous derivation of the mesoscopic Boltzmann equations from mi-
croscopic Newtonian particles interacting via a short-range potential can be
found in Gallagher, Saint-Raymond and Texier [64]. A formal mathemat-
ical transition from the mesoscopic BE to the macroscopic equations (Stokes
equations, compressible and incompressible NSEs) can be found in Bardos,
Golse and Levermore [10, 11].

2.1.1 Macroscopic: Navier-Stokes Equations

Claude-Louis
Navier (1785–1836),
French engineer and

physicist

Sir George Gabriel
Stokes $(1819–

1903) mathematician,
physicist, politician

and theologian

At macroscopic scale, a fluid is seen as a continuous medium, i.e. its molecu-
lar structure and interactions are neglected. It is assumed to fill the entire
domain of interest and the focus lies on its properties, such as pressure, velo-
city and temperature. The relations connecting these properties have mostly
been developed by observation. In the following we will only discuss incom-
pressible Newtonian fluids, which are governed by the incompressible NSE. The
incompressible approximation is generally valid for liquids and gases with
velocity less then 30% of the speed of sound in the respective material [118].
The following derivation strongly follows the lecture notes by Rannacher
[151]. We start by stating the following theorem by Reynolds [153].Osborne Reynolds

(1842–1912) British
physicist, the

Reynolds number Re
is named after him

theorem 1 (Reynolds transport theorem). Let φ : Ω× I → R sufficiently
smooth. Then for each material volume V(t) ∈ Rd it holds, that

d

dt

∫
V(t)

φ(x, t) dx =
∫
V(t)

∂tφ(x, t) +∇ ·
(
ΦuF(x, t)

)
dx . (2.1)

Here d/dt = ∂t + u
F∇ is the total derivative with respect to time and

∂t = ∂/∂t as well as ∇ =
(
∂x1 , . . . ,∂xd

)
= (∂/∂x1, · · · ,∂/∂xd) are the par-

tial derivatives with respect to time and position space. We investigate the
dynamics of a fluid in a domain Ω ⊂ Rd, d ∈ {2, 3} over a given time inter-
val I = [0, T) ⊂ R. The quantities under consideration are the fluid velocity
uF : Ω× I→ Rd and pressure p : Ω× I→ R.

But let us begin with the mass density ρF : Ω× I → R, given within a
volume V = V(t) we obtain the contained mass as

m(t) =

∫
V(t)

ρF (x, t) dx .

The first empirical observation is, that the contained mass is preserved over
time

d

dt

∫
V(t)

ρF(x, t) dx = 0 .

2.1 fluid systems at different scales 13

Using Reynolds transport theorem for φ = ρF one gets∫
V(t)

∂tρ
F +∇ ·

(
ρFuF

)
dx = 0 ,

which holds for arbitrary volumes V . Following well-known arguments in-
tegration can be dropped and we obtain the continuity equation for fluid
dynamics

∂tρ
F +∇ ·

(
ρFuF

)
= 0 in Ω× I . (2.2)

Considering only incompressible fluids (ρF = const) this reduces to

∇ · uF = 0 in Ω× I . (2.3)

Sir Isaac New-
ton $(1642–1726)
English physicist and
mathematician,
author of “Philo-
sophiæ Naturalis
Principia
Mathematica”

The second major observation is conservation of momentum. According to
Newton’s second law of motion, the time derivative of linear momentum of
a mass volume equals the forces exerted on the same volume

d

dt

∫
V
ρFuF dx = F .

The force F can be divided into body forces (gravity, electrostatic force) and
surface forces (pressure and stress)

d

dt

∫
V
ρFuF dx =

∫
V
ρFf dx+

∫
∂V
n · σ do ,

where f : Ω× I→ Rd is the density of volume force, n the unit outer normal
on the boundary ∂Ω and σ : Ω× I→ R(d×d) the cauchy stress tensor. Using Carl Friedrich

Gauß $(1777–1855)
German
mathematician,
discoverer of the
normal distribution
and face of the
10DM bill

Gauss theorem we can transform the surface integral into a volume integral

d

dt

∫
V
ρFuF dx =

∫
V
ρFf+∇ · σ dx .

On the other hand using Reynold’s theorem for φ = ρFuF we see

d

dt

∫
V
ρFuF dx =

∫
V
∂t

(
ρFuF

)
+∇ ·

(
ρFuF ⊗ uF

)
dx ,

using the outer product of vectors uF ⊗ uF = (uiuj)
d
i,j=1. Therefore

∂t(ρ
FuF) +∇ ·

(
ρFuF ⊗ uF

)
= ρFf+∇ · σ

and expanding the partial derivatives

∂t

(
ρFuF

)
= ρF∂tu

F + uF∂tρ
F,

∇ ·
(
ρFuF ⊗ uF

)
= uF∇ ·

(
ρFuF

)
+ ρFuF · ∇uF ,

one obtains

ρF∂tu
F + uF

(
∂tρ

F +∇ ·
(
ρFuF

))
+ ρFuF · ∇uF = ρFf+∇ · σ .

Keeping Eq. (2.2) in mind this results in the Cauchy momentum equation in Baron
Augustin-Louis
Cauchy $(1789–
1857) French
mathematician,
pioneer of analysis

its non-conservative form

ρF∂tu
F + ρF

(
uF · ∇

)
uF = ρFf+∇ · σ . (2.4)

14 modelling and simulation of fluid flows

For a volume V = V(t) the angular momentum is defined by

L(V) :=

∫
V
x×

(
ρFuF

)
dx

and the torque by

D(V) :=

∫
V
x×

(
ρFf
)
dx+

∫
∂V
x×

(
n · σ

)
do , (2.5)

where a× b, a,b ∈ R3 is the cross product. The conservation of angular
momentum states that the temporal change in angular momentum equals
the applied torque

∂tL(V) = D(V) ,

and is the rotational equivalent to the conservation of momentum. Using
Reynold’s transport theorem forΦi = ρFεijkxjuk i, j,k ∈ 1, 2, 3 and Einstein
summation convention we findAlbert

Einstein $(1879–
1955) German-born
theoretical physicist,
introduced Einstein

notation, where a
double index variable

implies summation

dt

∫
V
ρFεijkxjukdx =

∫
V
∂t

(
ρFεijkxjuk

)
+∇ ·

(
ρFεijkxjuku

F
)
dx ,

where xj and uk are the components of x and uF and εijk is the Levi–Civita
symbol, which is defined as

εijk :=


1, even

−1, odd permutation of {1, 2, 3}

0 no

.

With the derivatives

∂t

(
ρFεijkxjuk

)
= εijkxjvk∂tρ

F + εijkxj∂tvk

and

∇ ·
(
ρFεijkxjuku

F
)
= ∂l

(
ρFεijkxjukul

)

= εijkxjuk∇ ·
(
ρFuF

)

+ ρFεijkxjul∂luk + ρ
Fεijkujuk .

and since εijkajbk = (a× b)i and therefore εijkujuk = 0 one obtains

d

dt
L(V) =

∫
V(t)

(
x× uF∂tρ

F + ρFx× ∂tv+
(
x× uF

)
∇ ·
(
ρFuF

)

+ ρFx×
(
uF · ∇

)
uF
)
dx .

Using the continuity equation (2.2) one can simplify to

d

dt
L(V) =

∫
V
x×

(
ρF∂tu

F + ρF
(
uF · ∇

)
uF
)
dx .

Using Gauss theorem on the right addend of the right hand side of (2.5)

(D(V))i =

∫
V

(
x×

(
ρFf
))
i
dx+

∫
∂V

(
x×

(
n · σ

))
i
do

=

∫
V

(
x×

(
ρFf
))
i
dx+

∫
∂V
εijkxinlσlkdo

=

∫
V

(
x×

(
ρFf
))
i
dx+

∫
V
εijkσjk + εijk∂l

(
xjσlk

)
dx

=

∫
V

(
x×

(
ρFf+∇ · σ

))
i
+
(
ε : σ

)
i
dx

2.1 fluid systems at different scales 15

which leads to∫
V

(
x×

(
ρF∂tu

F + ρF
(
uF · ∇

)
uF − ρFf−∇ · σ

))
dx =

∫
V
x×

(
ε : σ

)
dx .

Keeping in mind the momentum equation (2.4) this shows

0 =

∫
V
x×

(
ε : σ

)
dx

and eventually the symmetry of the stress tensor (σij = σji). The derived
equations of state arose from general principles of conservation and are
valid for almost all fluids and gases. In the following we will state some
restrictions by relating σ to the flow variables according to properties of
the respective material, resulting in the NSE for incompressible Newtonian
fluids.

For Stokes fluids the stress tensor takes a spherically symmetric form in
rest i.e. only normal stresses appear

σ|uF=0 = −p Id ,

with the scalar hydro-static pressure p : Ω× I → R and the identity matrix
Id ∈ R(d×d). For a moving fluid the (symmetric) deviatoric stress tensor
τ ∈ R(d×d) is added

σ = −p Id+ τ .

Usually τ is described by a constitutive equation τ = F(S), where S =
1
2 (∇uF + (∇uF)>) is the strain rate tensor. It is assumed that tr(τ) := τii = 0,
otherwise tr(τ) can be accumulated to the pressure. This implies that p =

−13σii. Fluids, that obey the constitutive equation F(S) = 2µS+ λ tr(S)Id
are called Newtonian fluids (for a derivation see e.g. [13]). Here λ ∈ R+

0 and
µ ∈ R+

0 are material dependent parameters. λ is the first Lamé constant or Gabriel
Lamé $(1795–1870)
French physicist and
mathematician

volume viscosity and µ is the second Lamé constant or dynamic viscosity. As τ
makes zero contribution to the mean normal stress,

tr(τ) = 2µ∂iui + 3λ∂iui = 0 ,

which implies that

2µ+ 3λ = 0 .

Hence

σ = −p Id+ µ
(
∇uF + (∇uF)T

)
−
2

3
µ
(
∇ · uF)Id

holds. Inserting the last equation into (2.4) and assuming µ to be constant
one obtains the compressible NSE equations:

∂tρ
F +∇ · (ρFuF) = 0 in Ω× I , (2.6a)

ρF∂tu
F + ρF(uF · ∇)uF = ρFf−∇p+ µ∆uF

+
1

3
µ∇(∇ · uF)

in Ω× I . (2.6b)

Gases at velocities less then 30% of their speed of sound and liquids in
general can be assumed to be incompressible [118]. Therefore keeping ρF

constant over time and space reveals the NSE for incompressible fluids:

∇ · uF = 0 in Ω× I , (2.7a)

∂tu
F + (uF · ∇)uF = ν∆uF −

1

ρF∇p+ f in Ω× I . (2.7b)

16 modelling and simulation of fluid flows

Here ν := µ/ρF is the kinematic viscosity. The units of Equation (2.7b) are the
units of acceleration [m/s2]. The left hand side contains the fluid accelera-
tions due to inertia, while the right hand side contains acceleration due to
friction and external forces.

Often the NSE are written in dimensionless notation. This can be done by
introducing the characteristic length L > 0 and characteristic velocity U > 0

and defining the dimensionless quantities

position x∗ :=
x

L
, velocity uF

∗
:=
uF

U
,

time t∗ :=
t

L/U
, pressure p∗ :=

1

U2
p

ρF ,

and dimensionless operators

d∗t :=
d

dt∗
, ∇∗ = d

dx∗
.

Substituting the scales and differential operators one obtains the dimension-
less NSEs

∇∗ · uF∗ = 0 in Ω× I ,

(2.8a)

∂t∗u
F∗ + (uF∗ · ∇∗)uF∗ = 1

Re
∆∗uF

∗
−∇∗p∗ + L

U2ρF f in Ω× I ,

(2.8b)

with the Reynolds number Re = UL
ν . The Reynolds number compares inertial

and viscous forces and is used to characterise the flow behaviour of the sys-
tem. In low Reynolds number flows viscous forces dominate which results
in a more laminar flow, while in high Reynolds number flows the inertial
forces dominate, leading to more turbulent and chaotic behaviour. If f de-
notes gravitational acceleration f = g the force term can be substituted by
the Froude number Fr = U2/Lg, which denotes the ration of inertial andWilliam Froude

(1810–1879) English
engineer

gravitational forces.
For small Reynolds numbers the viscous term becomes more significant

and the inertia terms can be neglected. If no external forces exist, one obtains
the incompressible, time dependent, dimensionless Stokes equations

∇∗ · uF∗ = 0 in Ω× I , (2.9a)
1

Re
∆∗uF

∗
−∇∗p∗ = 0 in Ω× I . (2.9b)

2.1.2 Microscopic: Newton’s Law

Looking closely at an assumed continuous fluid one finds that it is consti-
tuted of microscopic atoms or molecules. Assuming that these atoms are
all spherical in shape, of the same mass M > 0 and radius R > 0 and
obey the classic laws of mechanics, therefore neglecting quantum mechanic
effects, one could try to simulate their time dependent motion and draw
conclusions as to the characteristics of the composed fluid. Bridging the gap
between the atomic structure of matter and its continuum-like behaviour

2.2 boltzmann equation 17

at a macroscopic level is a basic problem of statistical mechanics. For mass
points the equations of motion are

d

dt
U(t) =

F(t)

M
in I , (2.10)

d

dt
X(t) = U(t) in I , (2.11)

where U : I→ Rd is the molecule velocity and x : I→ Rd the molecule posi-
tion. Furthermore, F : I→ Rd is a force acting on a particle which is usually
a sum of several forces i. a. particle interaction. For N ∈ N molecules this
leads to 6N differential equations in 6N unknowns and 6N initial conditions.
This is problematic for at least two reasons: Firstly, water as a common fluid
has a molar mass of 18.01528 g/mol, which leads to approximately 3.35 ·1022
molecules in one cubic centimetre. Therefore even on current computers this
is a limitation to extremely small domains. Secondly, according to Heisen- Werner Karl

Heisenberg
(1901–1976) German
physicist, holds an
honorary doctorate of
KIT

berg’s uncertainty principle complementary variables, such as velocity and
position can not be identified simultaneously. Hence it is impossible to find
precise initial conditions for this model.

2.2 boltzmann equation

Ludwig
Boltzmann $(1844–
1906) Austrian
physicist and
philosopher

Instead of trying to characterise single atoms or molecules, in mesoscopic
modelling one concentrates on the probabilistic average behaviour of a set
of atoms in a small volume in phase space which is assumed to be large
in comparison to the size of single atoms and small in comparison to the
characteristic length of the observed system. The formal connection of the
microscopic and mesoscopic world is known as the Boltzmann–Grad limit
[70]. In it, formally the particle number N tends to infinity, the particle mass Harold Grad

(1923–1986)
American applied
mathematician

m and radius R tend to 0, while Nm and NR2 remain finite and NR3 tends
to 0.

The single particle distribution function f : Ω× Ξ× I→ R+ describes the
particle mass density of a fluid depending on position x ∈ Ω, microscopic
velocity ξ ∈ Ξ and time t ∈ I = [0, T). Usually the combination of the domain
Ω ⊂ Rd and velocity space Ξ ⊂ Rd is called the phase space Ω× Ξ. As a
first interpretation f(x, ξ, t)dxdξ gives the mass of particles contained in an
infinitesimal volume dx centred at x having a velocity in an infinitesimal
small velocity space volume dξ centred around ξ at time t. Therefore, f is
often called a (mass) density distribution function in literature [9, 172].

We define the moments Mχ : Ω× I→ Rn,n ∈N of f as

Mχ(x, t) =
∫
Ξ
χ(ξ)f(x, ξ, t) dξ .

For specific values of χ one obtains the macroscopic quantities of interest:

◦ χ = 1 , mass density ρF

ρF(x, t) =
∫
Ξ
f(x, ξ, t) dξ , (2.12)

◦ χ = ξ , velocity uF

ρF(x, t)uF(x, t) =
∫
Ξ
ξf(x, ξ, t) dξ , (2.13)

18 modelling and simulation of fluid flows

◦ χ =
∥∥ξ− u(x, t)

∥∥2
2

, temperature T

3kB
m
ρF(x, t)T(x, t) =

∫
Ξ

∥∥ξ− u(x, t)
∥∥2
2
f(x, ξ, t) dξ , (2.14)

where in the last equations kB denotes the Boltzmann constant.
The evolution of the particle distribution function is described by the

Boltzmann Equation (BE)

∂tf+ ξ · ∇xf+ a · ∇ξf = J(f) in Ω× Ξ× I , (2.15)

where ∂t, ∇x and ∇ξ are the partial derivatives with respect to time, space
and microscopic velocity. The BE is a balance equation, that relates changes
in f due to transportation to changes due to collisions

Df

Dt

∣∣∣∣
transport

=
Df

Dt

∣∣∣∣
collision

.

The acceleration a : Ω× I → Rd caused by a body force F = Ma acting on
the fluid particles, is assumed to be equal to zero for the time being. The
right hand side J(F) of Equation (2.15) is called collision term and contains
changes in f due to interactions between particles.

For the original Boltzmann collision operator it is assumed, that collisions
involving more than two particles are negligible [14] and that the collisions
between pairs of particles are uncorrelated [14]. The collision term can be
written as [189]

J(f) =

∫
Ξ

∫
S

B(θ, ξ, ξ1)(f
′f ′1 − ff1) dθdξ in Ω× Ξ× I , (2.16)

with f1 = f(x, ξ1, t), f ′ = f(x, ξ ′, t) and f ′1 = f(x, ξ ′1, t). The domain of in-
tegration is the velocity space Ξ and the unit sphere S. The collision kernel
B(θ, ξ, ξ1) cannot be expressed in terms of elementary functions [26]. How-
ever, it essentially holds the probability density that a particle moving with
velocity ξ and interacts with a particle moving with velocity ξ ′, is deflec-
ted in direction θ = (ξ1 − ξ)/‖ξ1 − ξ‖2. It is assumed, that two particles
interact by a perfectly elastic collision, that conserves mass and momentum.
Therefore, the velocities after collision can be computed by

ξ ′ = ξ+ θθ (ξ1 − ξ) ,

ξ ′1 = ξ1 + θθ (ξ1 − ξ) .

The collision operator can also be interpreted as a balance term for particlesPrabhu Lal
Bhatnagar

(1912–1976) Indian
mathematician

Eugene P. Gross
(1926–1991)

American physicist

Max Krook
(1913–1985)

American
mathematician

famous for their
collision operator

incoming into a infinitesimally small volume element dx due to collisions
outside of dx and particles outgoing of dx due to collisions inside dx [74]. It
is valid in this form for a dilute mono-atomic gas. A detailed derivation of
the Boltzmann collision operator can be found in the literature [26, 74, 158].

2.2.1 Collision Invariance and Equilibrium

As the collision term is of a rather complex form, there exist several ap-
proximations that allow an easier numerical computation. Throughout this
thesis the Bhatnagar–Gross–Krook (BGK) [16] Method is used. Besides multi-
relaxation time schemes [46] are common. All of them have to maintain
some important properties, which are shown next. The BGK approximation
then follows naturally.

2.2 boltzmann equation 19

definition 1. A locally integrable function φ : Ξ → R is called collision
invariant of the BE with collision operator J(f), if for all functions f integrable
in Ξ and integrable φ · f, it holds:∫

Ξ
φ(ξ)J(f)(ξ)dξ = 0 .

The elementary collision invariants are

φ0(ξ) = 1 , φi(ξ) = ξi , i = 1, . . . , 3 , φ4(ξ) =
∥∥ξ
∥∥2
2

,

and represent mass, momentum and kinetic energy. General collision invari-
ants are linear combinations of the elementary collision invariants.

theorem 2. Every continuous function φ : Ξ→ R is a collision invariant, iff

φ(ξ) = a+ bξ+ c
∥∥ξ
∥∥2
2

, (2.17)

for a, c ∈ R and c ∈ Ξ .

Proof. See Babovsky [9, Satz 2.20]

definition 2. A continuous and integrable function f : Ω× Ξ× I → R+,
for which ln(f) · J(f) is integrable in Ξ is called equilibrium solution of the BE

if J(f) = 0.

By the definition above ln(f) is collision invariant and

ln(f) = a+ bξ+ c‖ξ‖22

holds. It can be shown, that all possible equilibrium solutions can be written
in the form

M(x, ξ, t) =
ρF(x, t)

(2πkBT(x, t))d/2
exp

(
−

∥∥ξ− uF(x, t)
∥∥2
2

2kBT(x, t)

)
, (2.18)

where M : Ω× Ξ× I → R+ is only implicitly depending on the position x
and the time t, we therefore also write M[ρF,uF, T](ξ) := M(x, ξ, t). Func-
tions of this type are called Maxwell functions or Equilibrium Distribution James Clerk

Maxwell (1831–
1879) $Scottish
physicist, developed
the electromagnetic
equations

Function (EDF). The fluid density ρF, fluid velocity uF and fluid temperature
T are connected to the function M[ρF,uF, T] by

◦ mass density:

ρF(x, t) =
∫
Ξ
M[ρF,uF, T](x, ξ, t) dξ , (2.19)

◦ velocity:

ρF(x, t)uF(x, t) =
∫
Ξ
ξM[ρF,uF, T](x, ξ, t) dξ , (2.20)

◦ temperature:

ρF(x, t)T(x, t) =
1

3kB

∫
Ξ

∥∥ξ− u(x, t)
∥∥2
2
M[ρF,uF, T](x, ξ, t) dξ . (2.21)

20 modelling and simulation of fluid flows

Unfortunately the Maxwell distribution is not a general solution of the
BE as only the right hand side J(M) is equal to 0, but the left hand side
DtM usually is not. However, we will show that for undisturbed fluids the
distribution function f always tends towards an equilibrium solution. We
therefore introduce the quantity H as

H(x, t) =
∫
Ξ
f(x, ξ, t) ln f(x, ξ, t) dξ ,

which is connected to negative entropy and state the

theorem 3 (H-theorem). Providing f satisfies (2.15) for F = 0 and ln(f)J(f) is
integrable in Ξ then the following holds

1. H(x, t) is monotonically decreasing in t.

2. H(x, t) is constant in t iff f is a Maxwell distribution.

Proof. A physical interpretation of this theorem is, that the entropy of a
closed system is continuously increasing with time and only keeps a certain
level at the time it reaches an equilibrium state. We show a simplified proof
of part one and a closed system, in which spatial change is zero and no
external forces are applied. In this situation Boltzmann’s Equation (2.15)
takes the form

∂tf = J(f) . (2.22)

The time derivative of H is

∂tH =

∫
Ξ
∂t(f ln f) dξ =

∫
Ξ
(1+ ln f)∂tf dξ .

Substituting ∂tf by (2.22) leads to

∂tH =

∫
Ξ
(1+ ln f)J(f) dξ .

As the primary and inverse particle collisions, as well as the participating
particles are indistinguishable, the functions f, f1, f ′, and f ′1 are interchange-
able in J(f), without changing |J(f)|. Summation of J(f)+ J(f1)+ J(f ′)+ J(f ′1)
and the fact that 1 is a collision invariant, allows to make a statement con-
cerning the sign of ∂tH,

∂tH =
1

4

∫
Ξ

∫
Ξ

∫
S

B(θ, ξ, ξ1)(f
′f ′1 − ff1) ln

(
f ′f ′1
ff1

)
dθdξ1dξ 6 0 .

The inequality can be easily seen, as (x− y) ln(xy) 6 0. A more detailed and
more general proof can again be found in Cercignani [27].

A consequence of the H-Theorem is, that from reversible microscopic par-
ticle collisions an irreversible process evolves. This was surprising and was
a source of heavy discussions. Another results is, that the particle distri-
bution of an undisturbed fluid statistically tends towards the well defined
equilibrium distribution (2.18), only depending on the local density, velocity
and temperature of the fluid. This leads to the introduction of a simplified
collision term.

2.2 boltzmann equation 21

2.2.2 BGK Collision Operator

With the knowledge of the last section, in particular that the particle dis-
tribution tends towards an equilibrium distribution, Bhatnagar, Gross and
Krook [16] proposed a simplified approximation of the collision term J(f).
The so-called Bhatnagar–Gross–Krook (BGK) collision operator is defined by

Q(f) = −
1

τ∗
(f−M) in Ω× Ξ× I , (2.23)

with a Maxwellian M :=M[ρF,uf, T](ξ) and the mean free time between colli-
sions τ∗ ∈ R. The BGK collision operator Q(f) has the same collision invari-
ants as the traditional collision operator J(F). For φ(ξ) as in (2.17) this can
be shown by∫

Ξ
φ(ξ)Q(f)dξ = −

1

τ∗

∫
Ξ
φ(ξ) (f−M) dξ

= −
1

τ∗

∫
Ξ

(
a+ bξ+ c

∥∥ξ
∥∥2
2

)
(f−M) dξ

= −
1

τ∗

(
a

(∫
Ξ
f dξ−

∫
Ξ
M dξ

)
+ . . .

)

= −
1

τ∗

(
a
(
uF − uF

)
+ . . .

)

= 0 .

using Eqs. (2.12)–(2.14) and Eqs. (2.19)–(2.21). Krause [110] states that the
homogeneus BGK-BE also satisfies the H-Theorem. The BE with BGK collision
term is called BGK–Boltzmann Equation (BE)

∂tf+ ξ · ∇xf =
1

τ∗
(f−M) in Ω× Ξ× I . (2.24)

2.2.3 Discretisation of the Boltzmann Equation

The discretisation of the BGK-BE and derivation of the Lattice Boltzmann
Method (LBM) follows roughly the description in [110, Sec 1.3-2.1]. Other
discretisations that obtain the same result can be found in Abe [1] and He
and Luo [78].

Introducing a discretisation parameter h ∈ R+ we define the speed of sound

cs =
√
3kBT :=

1

h
. (2.25)

In most literature ,e. g. He and Luo [78], the speed of sound is defined as the
ratio of the spatial step and the time step cS = ∆x/∆t. By choosing cS = 1/h

we implicitly assume diffusive scaling, where the time step is proportional
to the square of the spatial step. The mean free time is set to

τ∗ = 3νh2 ,

where ν > 0 is the kinematic viscosity. Inserting Equation (2.25) into Equa-
tion (2.18) the Maxwellian distribution becomes independent of the temper-
ature T

M∗[ρF,uF](ξ) = ρF
(
3

2π

)d/2
hd exp

(
−
3

2
(hξ− hu)2

)
, (2.26)

22 modelling and simulation of fluid flows

ξ0

ξ1

ξ2

ξ3 ξ4

ξ8

ξ5

ξ7

ξ6

h

h

[1st September 2016 at 16:37 ,]

Figure 2.2: Illustration of a D2Q9 lattice.

where d ∈ {2, 3} is the space dimension. The BGK-Boltzmann Equation results
in

h2
d

dt
f = −

1

3ν
(f−M∗) in Ω× Ξ× I . (2.27)

The phase spaceΩ×Ξ is also discretised using the parameter h. The domain
Ω is approximated by a set of equidistant nodes with spacing h. The resulting
discrete set of points is called the lattice Ωh. The velocity space is reduced to
a small number q ∈N of selected velocities ξi, i = 0, . . . ,q− 1. The discrete
velocity space is denoted by Ξh := {ξi ∈ Ξ : i = 0, . . . ,q − 1}. The time
interval I is discretised by Ih := {t ∈ I : t = h2k,k ∈ N}. Individual LBM are
denoted by DdQq, with common models being D2Q9 and D3Q19. For the
D2Q9 the discrete velocities are given by (see also Figure 2.2)

ξ0 = (0, 0) ,

ξ1 = 1
h (−1, 1) , ξ2 = 1

h (−1, 0) ,

ξ3 = 1
h (−1,−1) , ξ4 = 1

h (0,−1) ,

ξ5 = 1
h (1,−1) , ξ6 = 1

h (1, 0) ,

ξ7 = 1
h (1, 1) , ξ8 = 1

h (0, 1) ,

and for the D3Q19 model the velocities are (see also Figure 2.3)

ξ0 = (0, 0, 0)

ξ1 = 1
h (0,−1, 0) , ξ2 = 1

h (−1, 0, 0) , ξ3 = 1
h (0, 0,−1) ,

ξ4 = 1
h (−1,−1, 0) , ξ5 = 1

h (−1, 1, 0) , ξ6 = 1
h (−1, 0,−1) ,

ξ7 = 1
h (−1, 0, 1) , ξ8 = 1

h (0,−1,−1) , ξ9 = 1
h (0,−1, 1) ,

ξ10 = 1
h (1, 0, 0) , ξ11 = 1

h (0, 1, 0) , ξ12 = 1
h (0, 0, 1) ,

ξ13 = 1
h (1, 1, 0) , ξ14 = 1

h (1,−1, 0) , ξ15 = 1
h (1, 0, 1) ,

ξ16 = 1
h (1, 0,−1) , ξ17 = 1

h (0, 1, 1) , ξ18 = 1
h (0, 1,−1) .

The numbering is in accordance to the numbering used in OpenLB. One canBrook
Taylor $(1685–

1731) British
mathematician

see, that the discrete velocities are chosen such that an imaginary fluid parti-
cle can only move from one lattice node to an immediate neighbour within
one timestep or remain on its current node. To obtain velocities independent
of h we define ξ̃i := ξih. Assuming a solution fh of (2.27) with moments

2.2 boltzmann equation 23

ξ5

ξ7

ξ2

ξ6

ξ11
ξ17

ξ18

ξ12

ξ0

ξ4 ξ1

ξ8
ξ14

ξ13

ξ15

ξ10

ξ16

ξ9

ξ3

h

h

h

[1st September 2016 at 16:37 ,]

Figure 2.3: Illustration of a D3Q19 lattice.

ρF
h and uF

h, the temperature independent Maxwellian M∗ := M∗[ρ,uF] can
be further expanded in a Taylor series

M∗ = ρF
(
3

2π

)d
2

hd exp
(
−
3

2
(ξ̃
2

i − hu)
2

)

= ρF
(
3

2π

)d
2

hd exp
(
3

2
ξ̃
2

i

)
exp

(
3hξ̃i · u

F −
3

2

(
huF

)2)

= ρF
(
3

2π

)d
2

hd exp
(
3

2
ξ̃
2

i

)

(
1+ 3hξ̃i · u

F −
3

2

(
huF

)2
+
9

2
h2
(
ξ̃i · u

F
)2)

+ O(h3+d)

=:Mh[ρ
F,uF](ξ̃i) + O(h3+d) .

The integral moments of Mh(ξi) :=Mh[ρF,uF](ξi) can be evaluated exactly
by a Gaussian-type quadrature

ρF
h =

∫
Ξ
Mh(ξ) dξ =

q−1∑
i=0

wi Mh(ξi) , (2.28)

ρF
hu

F
h =

∫
Ξ
hξMh(ξ) dξ =

q−1∑
i=0

wiξi Mh(ξi) . (2.29)

For w = ρF−1(2π3)d/2h−d exp
(
3
2 ξ̃
2

i

)−1
the weights wi of the D2Q9 lattice

have been evaluated by He and Luo [78] as

w0 =
4

9
w ,

w1 = w3 = w5 = w7 =
1

9
w ,

w2 = w4 = w6 = w8 =
1

36
w ,

24 modelling and simulation of fluid flows

whereas the weights for the D3Q19 lattice are

w0 =
1

3
w ,

wi =
1

8
w for i ∈ {1, 2, 3, 10, 11, 12} ,

wi =
1

36
w for i ∈ {4, . . . 9, 13, . . . , 18} .

Assuming fh is a solution of (2.27), it is known, see e. g. [110], that its integral
moments can be approximated by∫

Ξ
fh(x, ξ, t) dξ =

q−1∑
i=0

wifh(x, ξi, t) + O(h2) ,

∫
Ξ
ξfh(x, ξ, t) dξ =

q−1∑
i=0

wiξifh(x, ξi, t) + O(h) .

Introducing the abbreviations

fi(x, t) := wi fh(x, ξi, t) , (2.30)

ρF
h(x, t) :=

q−1∑
i=0

fi(x, t) , (2.31)

uF
h(x, t) :=

1

ρF
h(x, t)

q−1∑
i=0

ξifi(x, t) (2.32)

Mi := wiMh(ξi) (2.33)

and multiplying Eq. (2.27) by wi, we obtain the velocity discrete BGK–Boltz-
mann Equations as a set of q equations for i = 0, . . . ,q− 1:

h2
d

dt
fi = −

1

3ν
(fi −Mi) in Ωh × Ξh × I . (2.34)

We continue to discretise the differential operator by a central difference
approximation

h2(∂t+ξi∇x)fi(x+
h2

2
ξi, t+

h2

2
) =

= fi(x+ h
2, t+ h2) − fi(x, t) + O(h4)

(2.35)

and additionally expand fhi (t+ h
2/2) in a Taylor series

fi(x+
h2

2
ξi, t+

h2

2
) =

=

∞∑
n=0

(
h2

2
∂t +

h2

2
ξi∇x

)n
fi(x, t)

= fi(x, t) +
h2

2

(
∂t + ξi∇x

)
fi(x, t) + O(h4) .

(2.36)

Approximating
(
∂t + ξi∇x

)
fi(x, t) by a forward difference operator leads

to

fi(x+
h2

2
ξi, t+

h2

2
) =

= fi(x, t) +
1

2

(
fi(x+ h

2ξi, t+ h
2) − fi(x, t)

)
+ O(h4) .

2.3 lattice boltzmann method 25

collision streaming

[12th August 2016 at 10:20 ,]

Figure 2.4: Illustration of the collision and streaming steps

Beginning with a shifted velocity discrete BGK-Boltzmann Equation (2.27)

h2
d

dt
fi(x+

h2

2
ξi, t+ h

2/2) =

=
1

3ν

(
fi(x+

h2

2
ξi, t+ h

2/2) −Mh(x+
h2

2
ξi, t+ h

2/2)

)

and substituting the left hand side by (2.35) and fi(x+ h2/2ξi, t+ h
2/2) on

the right hand side by (2.36) one obtains

(3ν+ 1/2)
(
fi(x+ h

2ξi, t+ h
2) − fi(x, t)

)
+ O(h4) =

= −

(
fi(x, t) −Mi(x+

h2

2
ξi, t+ h

2/2)

)
.

Finally approximating Mi(x+ h2/2ξi, t+ h
2/2) =Mi(x, t) + O(h2) reveals

the Lattice Boltzmann Equation (LBE)

fi(x+ h
2ξi, t+ h

2) − fi(x, t) =

= −
1

3ν+ 1/2
(fi(x, t) −Mi(x, t)) + O(h2)

in Ωh × Ih ,

(2.37)

which is consistent of order 2 to the BGK-Boltzmann Equation (2.24) [110].

2.3 lattice boltzmann method

This section introduces the Lattice Boltzmann Method (LBM) and shows its
connection to the macroscopic Navier–Stokes Equation (NSE). This is fol-
lowed by enhancements to the basic LBM to deal with body forces, turbu-
lence and porous media. The section is closed by the introduction of bound-
ary conditions.

In the previous section we derived the Lattice Boltzmann Equation (LBE)
via a discretisation of the Boltzmann Equation (BE). Splitting the Lattice
Boltzmann Equation (LBE) (2.37) in two steps, with an intermediate value
f̃i one obtains the Lattice Boltzmann Method (LBM)

f̃i(x, t) = −
1

τ
(fi(x, t) −Mi(x, t)) , (2.38)

fi(x+ h
2ξi, t+ h

2) = f̃i(x, t) , (2.39)

with the relaxation time τ = 3ν+ 1/2 . Equation (2.38) is called the collision
step and (2.39) is called propagation or streaming step. Both steps are illustrated
in Figure 2.4 for a D2Q9 model. During the collision step the magnitudes
of the fis are changed, which is represented by the length of the arrows.
During the collision step the populations fi move to the next lattice node

26 modelling and simulation of fluid flows

Listing 2.1: Basic LBM algorithm

0 for t ∈ Ih {

for x ∈ Ωh {

for i = 0, . . . ,q− 1 {

f̃i(x, t) = −1τ (fi(x, t) −Mi(x, t))
fi(x+ h

2ξi, t+ h
2) = f̃i(x, t)

5 }

}

}

in direction ξi. Listing 2.1 shows a basic LBM algorithm, which will be occa-
sionally expanded throughout this thesis.George

Boole $(1815–1864)
English

mathematician,
philosopher and

logician

Historically the LBM does not originate from a discrete BE, but from Cellu-
lar Automata (CA). CA use one Boolean variable on a each node of a lattice,
which changes its state during each time step according to the state of the
neighbouring nodes. The best known two-dimensional CA is probably Con-
way’s Game of Life. It follows two simple rules

1. If a node is alive, it stays alive if it has two or three alive neighbours,

2. If a node is dead, it awakes if it has three alive neighbours.

Later Lattice Gas Cellular Automata (LGCA) used a small number of Boolean
variables on each node which have already been connected to their direction
of travel. Representatives of this class of CA are the HPP model [76] and its
successor the FHP model [61]. The HPP model uses an orthogonal mesh and
lacks rotational invariance, which is the reason why it does not lead to the
NSE in the macroscopic limit [171, Chapter 2]. The FHP model however, em-
ploys an hexahedral mesh, which overcomes the shortcoming of the former
model. Finally, the transition from Boolean to real variables eliminates stat-
istical noise and has been done in the article by McNamara and Zanetti
[128], which is usually stated as the first LBM paper. An excellent historical
derivation of the LBM can be found in the book by Wolf–Gladrow [190].

strengths and weaknesses
A general strength of the LBM is its simplicity. As we have seen, the entire
algorithm can be summarised to two lines. This simplicity can be transferred
to the implementation, meaning that it is easy to code.

In comparison to conventional Computational Fluid Dynamics (CFD) meth-
ods, such as FEM or FVM, the LBM has overcome the necessity and the limit-
ations of a geometry dependent mesh, by using a fixed, non-adaptive grid.
Therefore, cost-intensive re-meshing especially during simulations of sub-
merged particles are unnecessary, as we will see later-on.

The LBM is intrinsically parallelisable. The collision step (2.38) can be com-
puted on one lattice node and does not need any other information, while
the streaming step (2.39) only depends on its immediate neighbours. This
properties demand for a parallelisation by domain decomposition. Natur-
ally, it has been shown to scale almost linearly on up to 256 processing
nodes [55, 110] and more.

LBM computations are extremely fast per cell and timestep and in com-
parison to e. g. the computation of an FEM cell. However, especially for fluid
computations at high Reynolds numbers, when small scales are involved a

2.3 lattice boltzmann method 27

huge number of cells is necessary. Additionally, due to its explicit character
also small time steps are necessary. This issue may be solved by local grid
refinement techniques in the near future.

The LBM enters a slight compressibility regime to solve the pressure equa-
tion of the fluid. As all physical materials are slightly compressible, solu-
tions obtained by the LBM may be a more realistic approximation of phys-
ical processes, than solutions of a strictly incompressible solver. However
this issue is open for discussion.

Due to its explicit time-stepping algorithm the LBM is unable to solve
stationary equations. However, if the solution to an in-stationary equation
is naturally stationary the LBM is able to compute it.

lattice dimensions
The LBM is based on the simplicity of the equidistant lattice. Its introduc-
tion allows to quickly retrieve the data on a lattice node. Usually the data
is stored in a multidimensional array that allows direct access. Opposing
to that the cell data of FEM implementations has to be accessed via map-
pings or a walk through linked lists. Due to the arbitrary shape of the FEM

cells each local computation has to be mapped on a reference cell and back,
which is costly. As all LBM lattice cells are identical this extensive task can be
circumvented by introducing so called lattice units (LU) defined such that
the lattice spacing in LU equals unity.

Latt [116] introduced a two step approach, first transforming SI units into
dimensionless units and in a second step transforming dimensionless units
into lattice units. The first transformation is carried out by introducing char-
acteristic quantities as explained at the end of Section 2.1.1. The transition
from dimensionless units to lattice units is done in a similar manner by
introducing the discrete lattice spacing ∆x > 0 and the discrete time step
∆t > 0. In the previous Section 2.2.3 the parameter h was introduced as
the inverse ratio of the speed of sound cs = ∆x/∆t = 1/h to implicitly ob-
tain a diffusive scaling. For now however, we will understand ∆x and ∆t as
independent variables.

Keeping in mind, that in dimensionless quantities both the characteristic
length L∗ and the characteristic velocity U∗ equal unity, we can define the
lattice spacing and the discrete time step as

∆x :=
L∗

N
=
1

N
, ∆t :=

L∗

U∗NT
=
1

T
,

where N ∈ N and NT ∈ N are the number of spatial steps and the num-
ber of time steps, respectively. With it we can convert the dimensionless
variables, marked by an asterisk (·)∗ to the lattice system

tLU =
1

∆t
t∗ xLU =

1

∆x
x∗

uF
LU =

∆t

∆x
uF∗ ρF

LU =
∆3x
∆m

ρF∗

pLU =
∆t∆

2
x

∆m
p∗

and obtain the NSE in lattice units

∇LU · uF
LU = 0 in Ω× I ,

dtLU u
F
LU + (uF

LU · ∇LU)u
F
LU =

1

ρF
LU
∇LU pLU +

1

Re

∆t

∆2x
∆LU u

F
LU in Ω× I .

28 modelling and simulation of fluid flows

We see that one can naturally define the kinematic viscosity νLU in lattice
units as

νLU :=
1

Re

∆t

∆2x
.

Of course the diversion via the dimensionless system is mathematically
not necessary. However, it is useful for the solution of academic applications
or benchmark computations that do not have a physical representation.

2.3.1 Transition to Macroscopic Equations

Variants of the LBM have been shown to solve a number of partial differential
equations. As it has been derived above by a discretisation of the BGK-BE,
it can be used to find solutions of the BGK-BE. Besides that, variation of
the LBE have been used to solve the radiative transport equation [130], the
compressible and incompressible Navier–Stokes Equation (NSE) [29, 149],
Burgers Equation [5], Advection–Diffusion Equation (ADE) [60, 169] and theJan Burgers

(1895–1981) Dutch
physicist

Poisson Equation [28] and maybe more.

Siméon Denis
Poisson $(1781–

1840) French
mathematician and

physicist, leading
opponent of the wave

theory of light

There are several possibilities to perform the transition from the LBE to the
NSE in the literature. We begin with He and Luo [77], who use a Chapman–

Sydney
Chapman $(1888–

1970) British
mathematician

Enskog approach to derive the compressible NSE.

David Enskog
(1884–1947) Swedish

mathematical
physicist

The second order Taylor expansion of the distribution function

fi(x+ h
2ξi, t+ h

2) =

∞∑
n=0

h2n

n!
Dni fi(x, t)

= fi(x, t) + h2Difi(x, t) +
h4

2
D2i fi(x, t) + O(h6) ,

with Di = (∂t + ξi · ∇x) yields

Difi +
h2

2
D2i fi =

1

τh2
(fi −Mi) + O(h4) .

Substituting the following multi-scale expansions of an assumed solution fi
of the LBE

fi =

∞∑
n=0

εnf
(n)
i , for i = 0, . . . ,q− 1 ,

∂t = ε∂t0 + ε
2∂t1

∂xα = ε∂0α, for α = 1, . . . ,d ,

in the previous equation and comparing the coefficients one obtains

f
(0)
i =Mi , (2.40)

D
(0)
i f

(0)
i = −

1

τh2
f
(1)
i , (2.41)

∂t1f
(0)
i +

(
2τ− 1

2τ

)
D

(0)
i f

(1)
i = −

1

τh2
f
(2)
i , (2.42)

where D(0)
i = ∂t0 + ξi · ∇0 and ε is assumed to be of the order of the

Knudson number Kn. In the multi-scale expansions t0 represents the fast

2.3 lattice boltzmann method 29

convective scale and t1 the slower diffusive scale. The assumed solution fi
is constraint by

q−1∑
i=0

f
(0)
i = ρF

h,
q−1∑
i=0

ξif
(0)
i = ρF

hu
F ,

q−1∑
i=0

f
(n)
i = 0,

q−1∑
i=0

ξif
(n)
i = 0, for n > 0 .

Then the first and second moments of (2.41) lead to the compressible Euler Leonhard
Euler $(1707–1783)
Swiss mathematician,
physicist, astronomer,
logician and engineer,
face of the old Swiss
10 franc bill

Equations

∂t0ρ
F
h +∇0 · (ρF

hu
F
h) = 0 , (2.43)

∂t0(ρ
F
hu

F
h) +∇0 · π(0) = 0 . (2.44)

Here π(0)α,β =
∑q−1
i=0 ξi,αξi,βMi = ρuαuβ + pδα,β, α,β = 1, . . . ,d is the

zeroth-order momentum flux tensor with the pressure p = cSρ
F
h. In a similar

manner, taking the first and second order moments of (2.42) leads to

∂t0ρ
F
h = 0 , (2.45)

∂t1(ρ
F
hu) +

(
1−

1

2τ

)
∇0 · π(1) = 0 , (2.46)

where π(1)α,β =
∑q−1
i=0 ξi,αξi,βf

(1)
i . The tensor π(1)α,β can be evaluate by taking

the second order momentum of (2.41), yielding

π
(1)
α,β = −τρF

h(∂0,αuβ + ∂0,βuα) .

Substituting π(1) in (2.46) leads to

ρF
h∂t1u

F
h − ρF

h

(
τ−

1

2

)
∇0
(
∇0uF

h + (∇0uF
h)
>
)
= 0 .

Multiplication of the last equation with ε2 and adding the product of ε and
(2.43) and (2.44) allows the re-substitution of the differential operators and
one obtains the compressible NSE

∂tρ
F
h +∇ · (ρF

hu
F
h) = 0 ,

ρF
h∂tu

F
h + ρF

hu
F
h∇uF

h = −∇p+ ρF
hν∇ ·

(
∇uF

h + (∇uF
h)
>
)

,

with the kinematic viscosity ν = (τ− 1/2). In the small Mach number limit
Ma → 0, which has already been used in the expansion of the discrete EDF

in Section 2.2.3, the compression can be omitted and one further obtains the
incompressible NSE

∇ · uF
h = 0 ,

∂tu
F
h + uF

h · ∇uF
h = −

1

ρF
h

∇p+ ν∇2uF
h ,

with an accuracy of O(Ma2) in the continuity equation and O(Ma3) in
the momentum equation. However, the Chapman–Enskog analysis is often
criticised with regard to its lack of mathematical rigour [86, 190].

Besides the introduced Chapman–Enskog expansion, there are other ways
to discover the NSE in the LBE. Using a diffusive scaling x → x/ε, t → t/ε2

30 modelling and simulation of fluid flows

which describes the small Knudson number and small Mach number limit
of kinetic equations and a rescaling of the fluid velocity uF → εuF, Junk and
Klar [101] link an assumed expanded solution of certain Lattice Boltzmann
(LB) schemes directly to the incompressible NSE and analyse the asymptotic
behaviour.

Finally Holdych et al. [86] found an expression of fi which only depends
on Mi by recursively applying the LBE to itself

fi(x, t) =
1

τ

∞∑
n=1

(
1−

1

τ

)n−1
Mi(x−nh

2ξi, t+nh
2) .

With it they recover the governing partial differential equations and provide
the associated truncation errors. The article by Chen and Doolen [30] pro-
vides a good review on the state of the art of the LBM for fluid flows in the
year 1998.

2.3.2 Turbulence Scheme

Flows can be categorised as laminar and turbulent. One speaks of laminar
flow if the fluid moves in parallel layers, which happens at low Reynolds
numbers. Laminar flows prove stable towards disturbances or at least merge
into a new laminar flow as reaction to a disturbance [48].

The two most important characteristics of turbulence are randomness and
a wide range of space and time scales [124]. Randomness appears e. g. in the
fluid velocity fluctuations around an averaged value. It can also be observed
in the apparently arbitrary occurrence of eddies and vortices. How to cor-
rectly model turbulende is still an open field of research.

In turbulent flows energy is transferred through a cascade of interacting
scales, from large to small. Large scale turbulence involves a high turbulence
reynolds number ReL = UL/ν, with L > 0 the length scale representing
the order of size of the large scales, e. g. the maximal length between two
correlated probes of the flow and U > 0 characterises the overall turbulent
velocity fluctuation. At high Reynolds numbers the viscosity term in the NSE

becomes small compared to the non-linear convective term, implying little
viscous effects. However the viscous diffusive term becomes important at
small, so called Kolmogorov scales where kinetic energy is dissipated intoAndrey

Nikolaevich
Kolmogorov

(1903–1987) Russian
mathematician

heat.
The magnitude of turbulence can be determined by splitting the fluid

velocity into the time mean velocity

uF(x) = lim
T→∞ 1

T

∫T
0
uF(x, t)dt

and the fluctuation ûF around it

uF(x, t) = uF(x) + ûF(x, t) .

The turbulence intensity is then defined by the ratio of the mean square root
of the velocity fluctuations and the mean velocity [48]

I(x, t) =

∥∥∥ûF(x, t)
∥∥∥
2√

2
∥∥uF(x)

∥∥
2

.

If I is only a few percent the flow is of low turbulence. For I greater then
10% one speaks of highly turbulent flows. The turbulence intensity depends

2.3 lattice boltzmann method 31

on position and time, therefore the flow characteristic can change. Parts of
a flow can be laminar, while the flow shows turbulent behaviour in other
areas.

As turbulence occurs on almost all scales, its computation is challenging.
While vortices on large scales can be simulated directly, turbulence on small
scales can cause numerical simulations to diverge. A theoretical solution
to this issue is increasing the resolution until all vortices can be resolved.
This computationally expensive approach is called Direct Numerical Sim-
ulation (DNS) and usually excels available compute power, which makes it
unfeasible for practical problems. A second approach is to only resolve ver-
tices up to a certain level and smoothen so-called subgrid scale vertices by
a turbulence model. This common approach is called Large Eddie Simula-
tion (LES).

A common representative of LES tools is the Smagorinsky scheme [165], Joseph
Smagorinsky
(1924–2005)
American
meteorologist,
devised first
simulations on
climate change due to
carbon dioxide

which has been applied to LBM by Hou et al. [87]. This scheme smoothens
subgrid-scale vortices by adding an eddy viscosity νt, using

νt = (CSh)
2S,

to replace the relaxation time τ in the collision step (2.38) by

τ̃ = 3(νt + ν) +
1

2
.

Here

S =
√
2
∥∥S
∥∥
F
=

√√√√2
d∑
α=1

d∑
β=1

|Sα,β|
2 (2.47)

is the Frobenius norm ‖·‖F of the strain rate tensor Smultiplied by
√
2, given

by

Sα,β =
1

2

(
∂uα
∂xβ

+
∂uβ

∂xα

)
, α,β ∈ {1, ...,d} . (2.48)

Further uα denotes the α-th component of the fluid velocity vector and
xβ the β-th spatial coordinate. The problem specific Smagorinsky constant
CS ∈ R+ is chosen according to the flow configuration. In the LBM frame-
work the strain rate tensor can be computed from the distribution functions
using the non-equilibrium stress tensor Π, given by

Πα,β =

q−1∑
i

ξi,αξi,β(fi − f
eq
i), α,β ∈ {1, ...,d} . (2.49)

Applying the condition

Sαβ = −
h2

2ρτ∗
Πα,β , (2.50)

the new relaxation time can be computed according to Yu et al. [198].

2.3.3 Forcing Scheme

Up to now we assumed that body forces were non-existent. We therefore
have to reintroduce body forces to the LB scheme somewhat artificially,

32 modelling and simulation of fluid flows

which is not a trivial task. Guo and Shu [72] provide a good overview on
schemes available in the literature, including residual terms of the resulting
hydrodynamic equations.

The first proposition to include a force in the LBE goes back to Shan and
Chen [160] in the year 1993. For a force F(x, t) = ρF(x, t)a(x, t), with the
force acceleration a : Ω× I→ R3, they adapted the fluid velocity occurring
in the EDF by

u∗(x, t) = uF
h(x, t) + a(x, t)τ∆t (2.51)

= uF
h(x, t) +

F(x, t)
ρF(x, t)

τ∆t , (2.52)

where ∆t > 0 denotes the time step. Developing the first order moment of
the collision step (2.38) and using Equations (2.29) and (2.32) determines the
momentum change on a lattice node during one collision∑

i

f̃ih =
∑
i

fihξi −
∑
i

1

τ

(
fi −Mi[ρ

F
h,u∗]

)
ξi

ρ̃F
hũ

F
h = ρF

hu
F
h −

1

τ

(
ρF
hu

F
h − ρF

h(u
F
h +

F

ρF τ∆t)

)

ρ̃F
hũ

F
h − ρF

hu
F
h = ∆tF .

Here, ρ̃F
hũ

F
h denotes the fluid density and velocity after the collision. More

modern schemes [62, 79, 112, 121] use an additional forcing term Fi : R3 ×
Ωh × Ih → R in the LBE

fi(x+∆tξi, t+∆t) = fi(x, t)−
1

τ

(
fi(x, t) −Mi[ρF

h,u∗](x, t)
)
+ Fi(F, x, t) .

(2.53)

We present a scheme originally proposed by Guo, Zheng and Shi [71],
which is implemented in OpenLB. In it, the equilibrium velocity u∗ as well
as the fluid velocity uF are defined as

ρF
hu
∗
h := ρF

hu
F
h :=

∑
i

ξifi +
h2

2
F .

Moreover the forcing term is defined as

Fi(F, x, t) :=
(
1−

1

2τ

)
wi

(
h
(
ξi − u

F
h(x, t)

)
+ h2ξi · u

F
h(x, t)ξ̃i

)
· F(x, t) .

(2.54)

Applying a Chapman–Enskog expansion to the forced LBE (2.53), Guo and
Shu [72] obtain the following hydrodynamic equations

∂tρ
F +∇ · (ρFuF) = Rρ ,

∂t(ρ
FuF) +∇ · (ρFuFuF) = −∇ρF +∇ · (2ρFνS) + F+ Ru ,

with S given by (2.48) and Rρ and Ru are residual terms that show the de-
viations of the derived equations from the desired mass and momentum
conservation equations. For the method by Shan and Chen [160], the residu-
ums are

Rρ = −
∆t

2
∇ · F ,

Ru = −
∆t

2
∂tF+∆t

(
τ−

1

2

)
∇ · (u∗F+ Fu∗) ,

2.3 lattice boltzmann method 33

while for the method by Guo, Zheng and Shi [71] the residuums are equal
to zero. For a constant force the residuums of both methods vanish.

2.3.4 Porous Media Scheme

Simulation of flow through porous media is a common tool in the oil and
gas industry as well as chemical engineering. It can be seen as a special
fluid–solid two phase flow where the solid phase is fixed. Its simulation can
be conducted on different scales. Firstly at pore scale, where the geometry of
the porous medium is resolved and the flow can be simulated as a solution
of the NSE in a domain representing the fluid part and according bound-
ary conditions. This provides detailed information of the flow through the
pores.

However in some cases only averaged values, e. g. the pressure drop over
a given distance is of interest. In this case the Representative Elementary
Volume (REV) scale is preferable. On the REV scale apparent fluid quantities
are averaged over a small volume V(x) ⊂ Ω. The volume has to be chosen
large enough to obtain meaningful values, but still considerably smaller
than the entire domain Ω. For example the porosity γ is defined as ratio of
the volume of fluid Vf(x) contained in the entire REV

γ(x) =
Vf(x)

V(x)
,

where the porosity is assumed to be constant over time. Similarly other fluid
quantities φ can be defined at the REV scale by

〈φ(x, t)〉 := 1

V(x)

∫
V(x)

φ(x ′, t)dx ′ .

One popular empiric “law” relating fluid variables with the surrounding
media is Darcy’s law, connecting the pressure gradient and the fluid velocity Henry Darcy

(1803–1858) French
engineer

by

∇p = −
µ

K
uF , (2.55)

with the material specific permeability K > 0. It can be expanded by a vis-
cous term to become the Brinkman [20] form of Darcy’s law

∇p = −
ν

K
uF + νe∆u

F ,

with an effective viscosity νe > 0.
Spaid and Phelan Jr [168] adopted Brinkman’s approach and proposed an

LBM based method to model fluid flow in heterogeneous porous media. In
their work they adapt the fluid velocity in EDF similar to the forcing scheme
by Shan and Chen [160]

u∗ = uF
h − sτβuF

h in Ωh × Ih ,

where τ is the relaxation time and the Boolean s = s(x) is a switch depend-
ing on whether a lattice node is in the porous domain or not. For a porous
node (s(x) = 1) the velocity simplifies to

u∗ = uF
h(1− τβ) .

If β = ν/K the Brinkman equation is represented by this model. The scheme
was used by Pingen, Evgrafov and Maute [147] as well as Krause [110] to
simulate topology optimisation of flows.

34 modelling and simulation of fluid flows

Guo and Zhao [73] proposed another scheme, which asymptotically solves
a generalised NSE for flow through a porous medium

∇ · uF = 0 in Ω× I ,

∂tu
F + (uF · ∇)

(
uF

γ

)
= −

1

ρ

F
∇(γp) + νe∆uF + Fγ in Ω× I ,

and therefore allows simulations of higher Reynolds numbers. Here, Fγ rep-
resents the total body force due to the presence of a porous medium, given
by

Fγ = −
γν

K
uF −

γFγ√
K
‖uF‖2uF .

On the right hand side of the above equation, the first and the second terms
are the linear Darcy and non-linear Forchheimer drags. Here the geometricPhilipp

Forchheimer
(1852–1933)

Austrian engineer

function Fγ and the permeability K are given by the experimentally founded
expressions

Fγ =
1.75√
150γ3

, K =
γ3d2P

150(1− γ)2
,

where dP is the diameter of particles constituting the porous medium. The
continuous model is introduced in the LBM, altering the EDF by including
the porosity in the non-linear terms

Mi = wi

(
1+ 3hξ̃i · u

F −
3

2

h2

γ

(
uF
)2

+
9

2

h2

γ

(
ξ̃i · u

F
)2)

.

Additionally, the force Fγ is implemented by the forcing scheme in Guo and
Zhao [73] and introduced in the previous section.

Later, Fattahi et al. [54] compared transport phenomena at the porous in-
terface on multiple scales. Simulating flow through a cubical domain, which
is partly filled by a porous medium, the porous medium is firstly formed by
resolved spherical particles at rest, and secondly by the proposed homogen-
ised porous media scheme. A smooth transition zone based on the poros-
ity between the free flow and the porous model was applied and a simple
porosity-dependent rescaling of the viscosity in the interface layer allowed
to reproduce the results obtained by averaging the pore-scale solution.

2.3.5 Homogenised Lattice Boltzmann Method

The porous media schemes introduced in the previous section only apply
to porous media in rest. They can be used to simulate e. g. flow through
sand and rocks as they appear in petroleum reservoirs. Our interest is to
model moving particles by a porous media approach. The idea is to assume
the particles to be solid at their centre and featuring a boundary layer that
smoothly changes to a pure fluid.

We propose a method, that uses a convex combination of the fluid velocity
uF
h and the velocity of a rigid body uB : Ω× I→ R3, which is explained in

more detail in Section 4.3.1. The velocity in the EDF is set to

u∗(x, t) = d(x, t)uF
h(x, t) + (1− d(x, t))uB(x, t) , (2.56)

where d(x, t) : Ωh × Ih → [0, 1] is a level-set function related to the porosity.
Investigating special cases for d = d(x, t) we find:

2.3 lattice boltzmann method 35

◦ For d = 1, one obtains u∗ = uF, which is the classic BGK–LBM. In this
case the collision step is momentum conserving and it has been shown
that a Chapman–Enskog procedure recovers the incompressible NSE.

◦ For d = 0, one obtains u∗ = uB. In this case the momentum conser-
vation of the collision step is violated and one obtains a relaxation
towards uB. The amount of momentum change happening during the
collision step is later transferred to the porous medium, such that the
total momentum in the system is conserved.

◦ For d ∈ (0, 1) and uB = 0 one obtains u∗ = duF, which has been
covered by Spaid and Phelan [168]. For d = 1− ντ/K this models the
flow of a fluid with kinematic viscosity ν through a porous media
with permeability K. This approach also removes a specific amount of
momentum from the fluid and it was shown to recover the Brinkman
equation.

◦ In the Homogenised Lattice Boltzmann Method (HLBM) one uses a
d ∈ [0, 1] and arbitrary but known uB. This can be interpreted as flow
through a moving porous media.

Taking the first moment of Equation (2.38), the momentum change at one
lattice node during the collision step is∑

i

ξif̃i −
∑
i

ξifi = −
∑
i

1

τ

(
fi −Mi[ρ

F
h,u∗]

)
ξi , (2.57)

ρ̃F
hũ

F
h − ρF

hu
F
h = −

1

τ

(
ρF
hu

F
h − ρF

h(du
F
h + (1− d)uB)

)
, (2.58)

ρ̃F
hũ

F
h − ρF

hu
F
h = −

ρF
h

τ
(1− d)(uF

h + uB) . (2.59)

Here ρ̃F
h and ũF

h denote the mass density and velocity after the collision step.
Using simple algebra we reorder the equilibrium velocity

u∗ = duF
h + (1− d)uB

= uF
h + (d− 1)uF

h + (1− d)uB

= uF
h + (1− d)(uB − uF

h) ,

which according to the model by Shan and Chen and Equation (2.51) leads
to a force

F =
ρF
h

τ∆t
(1− d)(uB − uF

h)

acting on the fluid. Again, one can see, that for a pure fluid, when d = 1 no
momentum change occurs.

2.3.6 Boundary Conditions

We will now introduce boundary conditions for the LBM. They differ signific-
antly from boundary conditions used in continuous simulation techniques
such as FEM in the sense that it is not possible to set macroscopic scales, but
mesoscopic scales have to be used. The next paragraphs introduce bounce-
back boundary conditions which correspond to no-slip boundary conditions
in macroscopic scales and boundary conditions proposed by Zou and He

36 modelling and simulation of fluid flows

xf

xs

fluid solid

ξi
ξi∗

[7th September 2016 at 15:34 ,]

xf

xs

fluid solid

ξi
ξi∗

[7th September 2016 at 15:34 ,]

Figure 2.5: Bounceback boundary conditions. The left side displays the situation for
a full-way bounceback scheme, the right side for a half-way bounceback
scheme.

[204] which allow the definition of the flow velocity and pressure on a lat-
tice node. As a last example, boundary conditions proposed by Bouzidi,
Firdaouss and Lallemand [19] that interpolate the boundary between lattice
nodes are presented.

bounceback
Bounceback boundary conditions are based on the idea that fluid molecules
hitting the boundary are reflected in the direction from which they came,
due to the roughness of the boundary. Therefore a particle distribution fi
which is transported from a fluid node xF to a boundary node xB is returned
to the initial node. If the component of fi tangential to the normal vector of
the boundary remains, this results in free slip, whereas if it is negated this
results in a no-slip boundary. For the first method we recommend Hänel
[74] or Inamuro, Yoshina and Ogino [94].

There are several implementations of the no-slip bounceback scheme. For
the standard or full-way bounceback scheme the post-collision function at
the boundary node xb is computed by

f̃i∗(xb, t) = f̃i(xf, t) ,

where ξi∗ = −ξi, see the left side of Figure 2.5. In the standard bounceback
the collision step is not executed on the boundary node. However if the
collision step is executed, the scheme is called modified bounceback.

The right side of Figure 2.5 outlines the situation for the half-way bounce-
back, where the wall is placed in the middle of the fluid and solid nodes
xw = (xs + xf)/2. The post-collision particles of node xf in direction of ξi
arrive at the wall after half a time step h2/2, are reflected with a reversed
velocity and return to xf after the full time step

fi∗(xf, t+ h
2) = fi(xf, t+ h) .

As half-way bounceback boundary conditions assume the boundary to be
always exactly in the middle between two nodes of the lattice they are prone
to errors. According to Zou and He [204] this method produces results of
second-order accuracy. Gallivan et al. [65] developed the mean square velo-
city error for flow around two different cylinders using half-way bounceback
boundary conditions. Bouzidi, Firdaouss and Lallemand [19] embraced this

2.3 lattice boltzmann method 37

x

y
domain

boundary

ξ0

ξ1

ξ2

ξ3 ξ4

ξ8

ξ5

ξ7

ξ6

[12th September 2016 at 10:02 ,]

Figure 2.6: Lattice node with directions.

challenge and developed a more robust approach by respecting the exact
position of the wall. The full-way bounceback is only of first order accuracy
and is therefore less accurate than the half-way bounceback scheme. Ladd
and Verberg [112] introduce a method called continuous bounceback, where
they specify a continuous parameter on each node, that represents the fluid
volume fraction associated with the respective node. Details on this method
can be found in [180].

zou–he
Zou–He boundary conditions are the equivalent to Dirichlet boundary con- Peter Gustav

Lejeune
Dirichlet $(1805–
1859) German
mathematician

ditions in continuous flow simulations, which specify macroscopic values
like pressure or velocity on the boundary. The Zou–He boundary condi-
tions [204] are based on the half-way bounceback boundary conditions. We
will first derive the conditions for a given velocity uF

h and then have a look
at those for a given pressure.

Lets assume the macroscopic velocity uF
h = (uF

x,uF
y) is specified at the

boundary. Figure 2.6 shows the transfer operations for such a node. After
the streaming step f0, f4, f5, f6, f7, f8 are known, f1, f2, f3 have yet to be de-
termined. Using Equations (2.31) and (2.32) for the density and the velocity
one obtains:

f1 + f2 + f3 = ρF
h −

8∑
n=4

fn , (2.60)

f1 − f3 = ρF
hu

F
y − (f8 − f4 − f7 + f5) , (2.61)

f1 + f2 + f3 = ρF
hu

F
x + (f5 + f6 + f7) . (2.62)

(2.63)

By equating lines (2.61) and (2.63) the density is revealed as

ρF
h =

1

1− uF
x

(
f0 + f8 + f4 + 2(f5 + f6 + f7)

)
.

Lets assume that the bounceback rule is still valid for the non-equilibrium
part of the particle distribution normal to the boundary and

f2 −M2 = f6 −M6 .

38 modelling and simulation of fluid flows

The EDFs can be computed by Equation (2.18) and

f2 = f6 +
2

3
ρF
hu

F
x .

With it the last missing distribution functions can be calculated as follows

f1 = f5 −
1

2
(f8 − f4) +

1

6
ρF
hu

F
x +

1

2
ρF
hu

F
y ,

f3 = f7 −
1

2
(f8 − f4) +

1

6
ρF
hu

F
x −

1

2
ρF
hu

F
y .

Turning to the pressure boundary condition, one takes the mass density
ρF
h as defined in (2.31) as a reference value for the pressure p. The two state

variables are connected by the relation

p = ρc2S ,

where cS denotes the speed of sound in the fluid. The pressure boundary
condition is treated in the same way as velocity boundary condition. With
reference to Figure 2.6, we assume a given pressure ρF

h and a given velo-
city uF

y = 0 for a flow through the boundary in direction of the x-axis.
Then, after the streaming step, the distribution functions f2, f3, f4, f5, f6 are
known, leading to

f1 + f2 + f3 = ρF
h − (f0 + f4 + f5 + f6 + f7 + f8) ,

f1 + f2 + f3 = −ρF
hu

F
x + (f5 + f6 + f7) ,

f1 − f3 = ρF
hu

F
y − f4 + f5 − f7 + f8 ,

for the unknown uF
x, f1, f2, f3. This system of linear equations can be solved

for uF
x:

uF
x =

f0 + f4 + f8 + 2(f5 + f6 + f7)

ρF
h

− 1.

Again one unknown (f2) is gained by applying the bounceback rule to the
particle distribution normal to the inlet.

f2 −M2 = f6 −M6.

Hence f1 and f3 are obtained by

f2 = f6 −
2

3
ρF
hu

F
x ,

f1 = f5 +
1

2
(f4 − f8) −

1

6
ρF
hu

F
x ,

f3 = f7 −
1

2
(f4 − f8) −

1

6
ρF
hu

F
x .

In both cases, the velocity and pressure boundary, the collision step is ap-
plied to the boundary nodes as well as to the fluid nodes.

In their paper Zou and He [204] also derive this boundary condition for
the D2Q9i model, which is using an adapted equilibrium distribution func-
tion, and the D3Q15 model. They also state that this method cannot be used
in complex geometries and extrapolation schemes, such as the following,
should be used instead.

2.3 lattice boltzmann method 39

inamuro
Inamuro, Yoshina and Ogino [94] proposed another boundary scheme for a
no-slip condition at moving walls. It is assumed, that the unknown distri-
bution functions are an equilibrium function of a counter slip velocity, such
that the fluid at the wall is equal to the wall velocity.

Going back to Figure 2.6 the wall moves with known velocity uW =

(uW
x ,uW

y). And the distributions f1, f2, f3 are unknown. It is further as-
sumed, that the fluid velocity normal to the wall is equal to the wall velocity
uF
x = uW

x . The difference between the velocities in y direction is denoted by
u ′ ∈ R, such that

uF
y = uW

y + u ′ .

With that the unknown fi, i ∈ {1, 2, 3} can be calculated using the equilib-
rium distribution Mi =Mi[ρ ′,uF] by

f1 =
1

36
ρ ′
(
1+ 3(uW

y + u ′ − uW
x) −

3

2
((uW

y + u ′)2 + (uW
x)2)

+
9

2
(uW
y + u ′ − uW

x)2
)

,

f2 =
1

9
ρ ′
(
1− 3uW

x + 3(uW
x)2 −

3

2
(uW
y + u ′)2

)
,

f3 =
1

36
ρ ′
(
1− 3(uW

y + u ′ + uwx) −
3

2
((uW

y + u ′)2 + (uW
x)2)

+
9

2
(uW
y + u ′ + uW

x)2
)

,

with unknown ρ ′ ∈ R. Including the equation for the density ρF
h, this system

of equations can be solved for the unknown ρF
h, ρ ′ and u ′ and one obtains

ρF
h = 1+ ux

(
f0 + f4 + f8 + 2(f5 + f6 + f7)

)
,

ρ ′ = 6
(
− ρF

hux +
f5 + f6 + f7
1+ 3uy + 3u2y

)
,

u ′ =
1

1− 3ux
+
(
6
(
ρF
huy +

f4 + f5 − f7 − f8
ρ ′

)
− uy + 3uxuy

)
.

The boundary conditions was used to compute two dimensional Poiseuille
and Couette flows and experimentally found to be second order convergent.

bouzidi
Bouzidi, Firdaouss and Lallemand [19] proposed boundary conditions that
handle curved boundaries by interpolation between lattice nodes. For the
one-dimensional situation shown in Figure 2.7, the position of the boundary
is given by

d =
‖x1 − xw‖2

h
.

Particles, represented by their distribution function fi, leave the last fluid
node at x1 in direction of the first solid node at xs are reflected at xw. How-
ever they can only reach a fluid node for d equal to 0, 1/2 or 1. Therefore the
distribution function at x1 is unknown. Bouzidi, Firdaouss and Lallemand
[19] propose the following scheme to solve this situation:

◦ For d < 1/2 interpolate the distribution function at point xP from the
information given in the fluid. These particles will travel to x1 after
reflection at the wall.

40 modelling and simulation of fluid flows

x3 x2 x1

h

xp xw xs

[12th August 2016 at 10:20 ,]

(a) d < 1/2

x3 x2 x1

h

xp

xw

xs

[12th August 2016 at 10:21 ,]

(b) d > 1/2

Figure 2.7: Illustration of Bouzidi’s boundary conditions. xi(i = 1, 2, 3) are fluid
nodes. xs is a solid node, xw and xp the positions of the wall and a
particle.

◦ For d > 1/2 the information on the particles leaving x1 and arriving
in xP together with the situation after the propagation step at nodes
x2 and x3 is used to compute the unknown quantities at x1.

Let ξi be the direction from x1 to xw and ξi∗ = −ξi. Using linear interpola-
tion, one defines

fi∗(x1, t+ h2) :=

2df̃i(x1, t) + (1− 2d)f̃i(x1 − h
2ξi, t), d < 1

2 ,
1
2d f̃i(x1, t) +

(
1− 1

2d

)
f̃i∗(x1, t), d > 1

2 ,

where f̃i denotes the intermediate states of the distribution function after
the collision step but before the streaming step. In their article Bouzidi,
Firdaouss and Lallemand [19] also adapt this method for moving bound-
aries and carry out numerical tests.

2.4 implementational aspects

The aim of this section is to introduce two practical aspects that occurred
during the implementation of OpenLB. The first is an efficient method to
voxelise highly complex surfaces, obtained e. g. by Magnetic Resonance Ima-
ging (MRI) or Computer Tomography (CT). The second is the used data
structure and parallelisation, as it is the basis of the parallelisation of the
Lagrangian particle phase later in this work.

2.4.1 Voxeliser

One advantage of the LBM is that there is no need for a complex mesh. This
saves a lot of time during the preprocessing of simulations in complex flow
geometries. However the lattice in LBM is created on-the-fly at the beginning
of each simulation. It is therefore essential that the creating algorithm is fast.
We call this process voxelisation.

Let Ω ∈ R3 be the computational domain and Mat : Z3h → N be a three
dimensional map of material numbers with Zh := {i h | i ∈ Z} ⊂ R and

2.4 implementational aspects 41

Listing 2.2: Class Octree

0 Class Octree {

Octree child[8];

double x[3],Ld;
int d;

5 Triangle Td[];

bool insideGeomtry;

}

h ∈ R+ is the intended spatial step. The aim of this section is to develop an
algorithm that efficiently constructs the map Mat(x) holding the geometric
information of the lattice

Mat(x) =

1 for x ∈ Ω∩Z3h

0 else
.

Usually the domain Ω is obtained as an STL-file containing a triangula-
tion T of the boundary ∂Ω. For each triangle T ∈ T only the coordinates
of the corners are stored, meaning that it does not contain any information
of the connectivity of the triangles. Points shared by several triangles are
stored multiple times. However, it is used by a range of applications and
can be handled by a wide range of software. In OpenLB the map Mat is
created from STL data via an octree structure.

The voxelisation works as follows. We start with a cube containing the
entire triangulation Ω and repeatedly divide the cube into eight identical
sub-cubes. The division process ends if the resulting cubes do not contain a
part of the triangulation or the final size is reached.

A graph is a pair G = (V ,E), with a set of vortices V and a set of edges
E ⊂ V2. Each connected graph G without cycles is called a tree. A tree for
which each internal vortex has eight children is called an octree.

Each vortex v ∈ V of the octree is an instantiation of class Octree, con-
taining its position x ∈ Z3h and edge length Ld to represent a cube Cd =

L3d ⊂ R3, see Listing 2.2 for a sketch. Additionally it stores all triangles
Td = {t ∈ T |t∩C 6= ∅} intersecting Cd and its distance to the root, called
depth d ∈ {0, . . . ,d∗}. The maximal depth d∗ ∈ N of the octree is chosen
such that

L0 = 2d
∗
h > diam (Ω)

holds. The position of the root vortex with edge length L0 is chosen such
that the cube C0 contains the entire triangulation of ∂Ω. It is then recursively
divided into eight vortices of edge length Ld+1 = Ld/2 until either Td = ∅,
i.e. the cube Cd does not contain any intersection with a triangle of the
geometry or its depth equals the maximal tree depth (d = d∗). Figure 2.8
illustrates the voxelisation process of an exemplary geometry of an aortic
arch.

A vortex v ∈ V is marked as inside the geometry if its centre x ∈ N

is inside the geometry. Its material number is then set to one, Mat(x) :=

1, or zero otherwise Mat(x) := 0. To determine its state, a ray stabbing
technique is used. Therefore a ray with origin in the centre of v is sent in
an arbitrary direction, counting the number of intersections with T . For an

42 modelling and simulation of fluid flows

(a) d = 1 (b) d = 2

(c) d = 3 (d) d = 8

Figure 2.8: The voxelisation process of an aortic arch at different depths d.

odd number of intersections v is inside the geometry, for an even number
outside. During the segmentation of CT or MRI data, often non-watertight
geometries are created. This method can also deal with such geometries,
by using several rays in different directions and introducing an appropriate
voting procedure.

In additional steps, a boundary layer can be added by defining

Mat∗(x) =


2 for x /∈ Ω∩Z3h and y ∈ Ω∩Z3h

1 for x ∈ Ω∩Z3h

0 else

,

where ‖x − y‖2 = h. If needed, the material numbers can be changed to
mark lattice nodes for special dynamics, such as porous media dynamics or
boundary dynamics. Some boundary conditions such as Bouzidi’s bound-
ary condition (see Section 2.3.6) need an exact distance of the lattice node x
to the domain’s boundary ∂Ω in each lattice direction. Using an octree this
distance can be efficiently computed, as all triangles in the neighbourhood
of x can be determined in log(|T |) steps. This greatly reduces the number
of potential point-triangle distances that have to be computed. The imple-
mentation of the newly proposed voxeliser immensely reduced the prepro-
cessing time, which was essential for the simulations executed in Mirzaee
et al. [131].

2.5 application : aorta 43

2.4.2 Data Structure and Parallelisation

Efficient and simple parallelisation is a key feature of the LBM. The most time
demanding steps in LB simulations are collision and streaming. Since the
collision step is purely local and the streaming step only requires data of the
neighbouring nodes, parallelising by domain decomposition leads to low
communication costs and is therefore efficient. This has been discussed by
many researchers, e.g. in [83, 123, 136, 148, 201], recently implementations
for graphic processing units have become possible [15, 195]. In the following
we introduce the parallelisation concept implemented in OpenLB [58, 80, 84].

In OpenLB, each lattice node is represented by an instantiation of the class
Cell, which allocates memory for the q values of the discrete distribution
function fi. Additionally it holds a pointer to an so-called external field,
which is used by porous media or forcing schemes, as well as a pointer to
a dynamics object, which defines the behaviour of the Cell during simula-
tion. An array of Cells is stored as a member variable in class BlockLatticeXD

and represents a rectangular set of lattice nodes. The array is stored as con-
secutive data in memory, which allows direct access. Additionally the Cent-
ral Processing Unit (CPU) can pre-cache data during the main loop over the
cells. Several instances of type BlockLatticeXD are again combined into one
instance of class SuperLatticeXD.

The parallelisation concept in OpenLB follows the classical approach of
partitioning data according to the geometrical origin. The considered dis-
crete domain Ωh is divided into n ∈ N disjoint, preferably cube-shaped
sub-lattices Ωkh (k = 0, 1, ...,n − 1), of almost equal sizes. This becomes
feasible by extending Ωh to a cuboid-shaped lattice Ω̃h through the intro-
duction of ghost cells. Ghost cells are cells situated outside of Ωh, which
do not contribute to the simulation, but simplify data organisation. Then,
Ω̃h is split into m ∈ N disjoint, always cuboid-shaped sub-lattices Ω̃lh
(l = 0, 1, ...,m− 1) of as similar size as possible (Figure 2.10a). Afterwards,
sub-lattices Ω̃lh ∩Ωh = ∅ consisting exclusively of ghost cells are neglected
(Figure 2.10b). The remaining sub-lattices Ω̃lh are shrunk to fit Ωh as closely
as possible (Figure 2.10c). Finally the Ω̃lh are expanded in all directions by a
layer of lattice nodes, such that neighbouring cuboids overlap. The resulting
enlarged discrete cuboid is denoted by Ω̂lh. After each collision and stream-
ing step overlapping lattice nodes are communicated between CPUs. This
means that the distribution functions fi(x̃) of a node x̃ ∈ Ω̃lh ∩ (Ω̂kh\Ω̃

k
h)

computed by Ω̃lh and in the overlap of Ω̂kh is send to the respective node on
Ω̂kh and vice versa, see Figure 2.9. The updated LBM algorithm can be found
in Listing 2.3.

2.5 application : aorta

To close this chapter a medical application of the introduced LBM follows.
The text has been taken mainly from Henn et al. [80] and been altered to
fit the notation in this thesis. It is a result of the participation at the first
CFD challenge Simulation of Hemodynamics in a Patient-Specific Aortic Coarcta-
tion Model, which took place in the context of the conference for Statistical
Atlases and Computational Modelling of the Heart (STACOM) in 2012. Its aim
was the simulation of the blood flow in a patient specific model of an aortic
coarctation. The main objective was to compute the pressure drop around

44 modelling and simulation of fluid flows

Ω̃l
h Ω̃k

h

x̃

∂Ω̃l

∂Ω̃k ∂Ω̂l∂Ω̂k

[12th August 2016 at 10:21 ,]

(a) Before streaming

Ω̃l
h Ω̃k

h

x̃

[12th August 2016 at 10:21 ,]

(b) After streaming

Ω̃l
h Ω̃k

h

x̃

[12th August 2016 at 10:21 ,]

(c) After communication

Figure 2.9: Illustration of the communication between neighbouring cuboids with
one node overlap.

2.5 application : aorta 45

(a) Extended domain Ω̃h. (b) Extended domain Ω̃h after neglecting
all Ω̃lh not containing fluid cells.

(c) Extended domain Ω̃h after shrinking
remaining Ω̃lh.

(d) A decomposition consisting of 452
subdomains Ω̃lh used for productive
runs.

Figure 2.10: Illustration of the development of Ωh for 48 subdomains Ω̃lh (a-c) and
an exemplary decomposition for a productive simulations (d).

46 modelling and simulation of fluid flows

Listing 2.3: Parallel LBM algorithm

0 for t ∈ Ih {

for x ∈ Ωh {

for i = 0, . . . ,q− 1 {

f̃i(x, t) = −1τ
(
fi(x, t) −Mh,i(x, t)

)

fi(x+ h
2ξi, t+ h

2) = f̃i(x, t)
5 }

}

communicate overlap

}

the contraction, that can be clearly observed in Figure 2.11 centred between
the two planes π1 and π2.

Patient-specific numerical simulation of human organs opens new oppor-
tunities for medical diagnosis and therapy. They are even more advantage-
ous, if they do not require additional radiating screenings, but are based on
computer tomography imaging from standard procedures. In the case of the
human respiratory system, numerical simulations of air flow have already
proven to be accurate in the United Airways project [109]. Therefore, an
adaption of the concept to human blood flow is highly appreciated.

An anomaly in the human cardiovascular system, such as a coarctation
of the aorta, obstructs the body’s supply of nutrients and stresses the heart.
In particular, the contraction can lead to an intense drop in pressure, which
directly affects the health of the patient. This pathological case accounts
approximately one out of ten of all congenital heart defects, and is usually
corrected surgically or by use of a catheter.

A conventional measurement of the pressure drop under resting condi-
tions is an easy task for a clinician, but measuring the pressure gradient
under exercise conditions is more challenging. Usually artificial stress is cre-
ated by administering a drug to increase heart rate and contractibility. As
this may have unwanted side-effects, it opens up a range of applications for
CFD techniques. By simulation of a section of the blood system mimicking
the real situation, the health-endangering measurements can be shifted into
a virtual model. In this paper we investigate to what extent the LBM is of
significance for the present medical case of an eight year old female patient.
It is worth mentioning that the used model is likely to be expanded by an
elastic model of the aorta geometry to achieve more realistic results.

2.5.1 Simulation Setup

A given surface ∂Ω of an aorta with a moderate thoracic aortic coarctation
is voxelised using 5 different resolutions, reaching from 235× 118× 402 to
1168×582×2002 voxels (cf. Figure 2.11). Recorded data of 20 measurements
of the ascending aortic flow is interpolated by cubic splines with periodic
boundary conditions. A smooth start-up phase is added to suppress un-
desired pressure fluctuation. The resulting function is illustrated in Figure
2.12. A velocity boundary condition, as introduced by Skordos in [164] with
a Poiseuille flow profile reflecting the measured flow volumes is set at theJean Léonard

Marie Poiseuille
(1797–1869) French

physiologist and
physicist

ascending aortic opening. The blood flow through the upper branch ves-
sels was experimentally measured as a percentage of the ascending aortic
flow. Therefore the flow through the left carotid artery is set to be 11.3% of

2.5 application : aorta 47

Figure 2.11: Voxelised geometry Ωh of the aortic arc with spacial resolution of 235×
118× 402 voxels and flow visualisations at the point of time of highest
flow rate. Colour indicates the flow velocity ‖u‖2F.

the aortic flow, whereas the flow through the left subclavian artery is set to
be 4.26%. For the right carotid and the right subclavian only a combined
value of 25.6% was available. Hence the flow through these two arteries
was calculated depending on the areas of the openings and set to 10.9%
and 14.7% of the aortic flow, respectively. The boundary condition at the
descending aorta is set as pressure condition, i.e. the pressure is fixed to
0mmHg for all times. A full-way bounce back condition is assigned to the
remaining surface. The fluid is assumed to be Newtonian with a density
of ρF = 0.001gr/mm3 and a dynamic viscosity of µ = 0.004gr/mm/s.
A D3Q19 BGK-LBM, supported by a Smagorinsky turbulence model with
constant CS = 0.12, was used. The simulations were executed using the
open-source library OpenLB1. Computation times varied between approx. 1.5
hours on 64 Intel Xeon X5650@2.67GHz cores for the smallest resolution and
6 days occupying 512 AMD Opteron@2.6GHz cores for the highest resolu-
tion.

2.5.2 Results

Two cardiac cycles have been simulated and the pressure drop at the aortic
coarctation was determined by calculation of the spatial pressure average in
two planes π1 and π2 (see Figure 2.11). The absolute pressure over time at
the ascending aorta and the pressure drop around the coarctation are shown

1 http://www.openlb.org

48 modelling and simulation of fluid flows

−5.0 ∗ 104

0.0 ∗ 100

5.0 ∗ 104

1.0 ∗ 105

1.5 ∗ 105

2.0 ∗ 105

2.5 ∗ 105

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Q
[m

m
3
/

s]

t [s]

[8th September 2016 at 13:58 ,]

Figure 2.12: Cubic spline interpolation of the provided flow information at the as-
cending aorta [ml/s]. The marked points represent the measured data.

in Figures 2.13 and 2.14 for different spatial resolutions. It is found that with
increasing resolution the resulting curves become less smooth. This effect
is more pronounced in the graphs of the pressure drop and may be due
to the fact that with increasing resolution small turbulences become more
significant, which otherwise are smoothed.

Figure 2.11 shows streamlines representing the flow and velocity uF at the
time of highest inflow. As expected the velocity increases in the coarctation.
The flow is predominantly laminar except for turbulence in the areas before
and after the coarctation.

In Table 2.2 the peak and mean pressure difference around the coarctation,
the flow splits through the upper arteries and the descending aorta as a
percentage of the flow through the ascending aorta and systolic and diastolic
pressure in the ascending aorta are listed for all simulations. As the pressure
is only determined up to an additive constant when solving the NSE, the
values of the absolute pressure at the ascending aorta have been shifted to
fit the measured systolic and diastolic pressure of 115mmHg and 65mmHg.
It is found that the pressure is decreasing with increasing spatial and time
discretisation.

Assuming the measured systolic pressure of 115mmHg as solution, we
obtain the Experimental Order of Convergence (EOC) for 0 < h1 < h2, which
is defined by

EOC (h1,h2) :=
ln
(
Errh1/Errh2

)

ln (h1/h2)
,

where Errh = p
sys
h − 115 is the error of the computed systolic pressure with

respect to the measured value for a given spacing h. The results are listed
in Table 2.1.

From this table we see that this LBM yields a systolic pressure psys
h of

linear order. For the highest spatial and time resolution we obtain psys
h =

116.97mmHg.

2.5 application : aorta 49

h2 h1 EOC

1/402 1/802 1.413

1/802 1/1202 1.436

1/1202 1/1602 1.261

1/1602 1/2002 1.008

Table 2.1: Experimental Order of Convergence (EOC) of the systolic pressure.

Figure 2.13: The absolute pressure over time at the ascending aorta is shown for dif-
ferent spacial resolutions. The upper graph shows the resulting curve for
the higher time resolution. The according time-step sizes can be found
in Table 2.2.

50 modelling and simulation of fluid flows

Figure 2.14: The pressure drop between the planes π1 and π2 around the coarctation
are shown for different spatial resolutions. The upper graph shows the
resulting curve for the higher time resolution. The according time-step
sizes can be found in Table 2.2.

2.5 application : aorta 51

Sp
at

ia
lR

es
ol

ut
io

n
2
3
5
×
1
1
8
×
4
0
2

4
6
8
×
2
3
4
×
8
0
2

7
0
2
×
3
5
0
×
1
2
0
2

9
3
5
×

4
6
6
×
1
6
0
2

1
1
6
8
×
5
8
2
×
2
0
0
2

Ti
m

e
R

es
ol

ut
io

n
[s

]
5

.6
4
·1
0
−
6

2
.2
8
·1
0
−
6

2
.2
8
·1
0
−
6

1
.4
1
·1
0
−
6

1
.8
8
·1
0
−
6

9
.4
1
·1
0
−
7

1
.4
1
·1
0
−
6

1
.1
3
·1
0
−
6

5
.6
4
·1
0
−
7

Firstcycle

Pe
ak

pr
es

su
re

di
ff

er
en

ce
[m

m
H

g]
8
0

.2
4
9

8
3

.6
4
2

4
4

.2
5
6

5
1

.6
3
5

3
2

.5
1
9

3
5

.0
1
1

2
3

.3
2
5

2
4

.7
0
7

2
8

.1
5
0

M
ea

n
pr

es
su

re
di

ff
er

-
en

ce
[m

m
H

g]
1
3

.6
7
4

1
3

.7
7
2

5
.8
8
9

5
.7
1
3

3
.8
8
7

3
.8
6
4

2
.5
6
6

2
.5
8
5

2
.6
8
9

Fl
ow

sp
lit

s
(Q

IA
/

Q
LC

C
A

/
Q

LS
A

/
Q

D
A

o
)

[%
of
Q

A
A

]

1
9

.6
/6

.9
/

2
.5

/6
0

.5
2
0

.1
/7

.0
/

2
.5

/6
0

.5
2
8

.0
/1
2

.1
/

5
.7

/6
2

.2
2
8

.0
/1
2

.1
/

5
.7

/6
2

.0
3
1

.4
/1
3

.6
/

6
.6

/6
4

.3
3
0

.4
/1
3

.3
/

6
.5

/6
1

.7
3
0

.4
/1
3

.3
/

6
.5

/6
1

.7
3
2

.9
/1
4

.5
/

7
.1

/6
7

.2
3
3

.0
/1
4

.5
/

7
.1
7

/6
6

.9

Pr
es

su
re

in
A

A
o

(S
ys

/-
D

ia
)

[m
m

H
g]

2
5
0

.5
1

/6
5

2
3
2

.7
6

/6
5

1
6
6

.0
4

/6
5

1
5
4

.2
0

/6
5

1
4
4

.5
7

/6
5

1
2
8

.2
0

/6
5

1
3
4

.2
7

/6
5

1
3
1

.5
4

/6
5

1
1
6

.9
7

/6
5

Secondcycle

Pe
ak

pr
es

su
re

di
ff

er
en

ce
[m

m
H

g]
8
2

.6
5
7

8
3

.6
4
3

4
8

.8
0
4

5
0

.4
2
2

2
9

.4
0
0

3
0

.3
5
3

2
4

.7
3
8

3
2

.1
0
8

2
8

.2
2
4

M
ea

n
pr

es
su

re
di

ff
er

-
en

ce
[m

m
H

g]
1
4

.2
4
2

1
4

.1
1
9

5
.4
0
5

5
.9
4
3

4
.0
0
8

3
.5
6
8

2
.6
0
1

2
.7
8
8

—

Fl
ow

sp
lit

s
(Q

IA
/

Q
LC

C
A

/
Q

LS
A

/
Q

D
A

o
)

[%
of
Q

A
A

o
]

2
0

.0
/6

.9
/

2
.5

/6
0

.5
2
0

.1
/7

.0
/

2
.5

/6
0

.5
2
8

.0
/1
2

.1
/

5
.7

/6
2

.2
2
8

.0
/1
2

.2
/

5
.7

/6
1

.9
3
1

.5
/1
3

.5
/

6
.6

/6
4

.6
3
1

.5
/1
3

.5
/

6
.6

/6
4

.3
3
2

.4
/1
4

.2
/

7
.0

/6
5

.8
3
3

.0
/1
4

.5
/

7
.2

/6
7

.4
—

Pr
es

su
re

in
A

A
o

(S
ys

/-
D

ia
)

[m
m

H
g]

2
4
8

.8
9
/
6
5

2
3
1

.0
7

/6
5

1
6
5

.7
7

/6
5

1
5
0

.6
1

/6
5

1
4
1

.9
5

/6
5

1
2
8

.2
4

/6
5

1
3
5

.0
5

/6
5

1
2
9

.6
8

/6
5

1
1
5

.4
8

/6
5

Pr
oc

es
so

rs
6
4

In
te

lX
eo

n
X

56
50

@
2.

67
G

H
z

1
2
8

In
te

lX
eo

n
X

53
55

@
2.

66
G

H
z

5
1
2

A
M

D
O

pt
er

on
@

2.
6G

H
z

C
om

pu
ta

ti
on

ti
m

e
[h

]
1

.4
2

.8
1
4

.1
9

1
3

.7
2
6

.4
5
2

.7
2
0

.3
4
5

.4
ca

nc
el

le
d

af
te

r
6

da
ys

Ta
bl

e
2.

2:
C

om
pu

te
d

va
lu

es
fo

r
pr

es
su

re
an

d
flo

w
bo

th
cy

cl
es

;Q
IA

:fl
ow

th
ro

ug
h

in
no

m
in

at
e

ar
te

ry
;Q

LC
C

A
:fl

ow
th

ro
ug

h
le

ft
co

m
m

on
ca

ro
ti

d
ar

te
ry

;Q
LS

A
:fl

ow
th

ro
ug

h
le

ft
su

bc
la

vi
an

ar
te

ry
;Q

D
A

o
:fl

ow
th

ro
ug

h
de

sc
en

di
ng

ao
rt

a;
Q

A
A

o
flo

w
th

ro
ug

h
as

ce
nd

in
g

ao
rt

a;
Th

e
va

lu
es

fo
r

th
e

sy
st

ol
ic

an
d

di
as

to
lic

pr
es

su
re

ha
ve

be
en

ad
ju

st
ed

to
fit

th
e

ex
pe

ri
m

en
ta

lly
ta

ke
n

va
lu

es
of
1
1
5
/
6
5

m
m

H
g.

3PA RT I C U L AT E F L O W S : O N E WAY C O U P L I N G

For simulating particle-fluid flows, the Lattice Boltzmann Method (LBM) has
been shown to be an efficient solver of the Navier–Stokes Equation (NSE)
model of the carrier phase, which has been introduced in the previous
chapter. This chapter concentrates on the modelling and simulation of the
particle phase. It is assumed that the particle concentration is small enough,
such that the particles’ influence on the fluid can be neglected. For that a one
way coupling is chosen, meaning that the carrier phase acts on the particle
phase but not vice versa.

The particle phase can be modelled either as discrete particles or as a
continuous medium. For discrete particles usually a Lagrangian point of
view is chosen. With it, the observer moves through space and time along
with each individual particle. Plotting the position of a particle over time one
obtains the pathline or trajectory. This point of reference can be visualised by
a boat swimming in a river. In the Lagrangian system the observer is sitting
in the boat, moving along with the flow of the river. The Lagrangian case
is easy to understand, conservation of mass and momentum are obvious.
However, assuming no particle interaction, the computational costs grow
with the number of simulated particles, as each particle trajectory needs the
solution of an additional equation of motion.

For continuous media usually an Eulerian point of view is chosen, where
one focuses on a fixed point in space. Tracking all particles passing through
said fixed point one obtains streaklines. In the picture of the river, the ob-
server remains in a fixed position e. g. sitting on a bridge or the bank of the
river, watching the water pass. The computational effort is independent of
the number of particles, as all possible particle motions are treated by one
Advection–Diffusion Equation (ADE) (3.21).

This chapter is split in two parts. The first part assumes the particle phase
to consist of discrete spherically shaped mass points (Sections 3.1–3.4). The
particulate flow is therefore modelled by an Euler–Lagrange (EL) ansatz,
meaning that the fluid phase is seen in an Eulerian system of reference
and the particle phase in a Lagrangian system of reference. The second part
assumes the particle phase to be of continuous character, hence the parti-
cle and the carrier phase are both seen in an Eulerian perspective, called
Euler–Euler (EE) ansatz (Sections 3.5 –3.6).

euler lagrange

point of observation space point material point

notation lower case x upper case X

rate of change ∂tφ︸︷︷︸
Eulerian

rate of change

+ u · ∇φ︸ ︷︷ ︸
convective

rate of change

Dtφ︸︷︷︸
Lagrangian

rate of change

computational cost independent of amount
of particles

grows with amount
of particles

Table 3.1: Comparison of the Eulerian and Lagrangian point of view.

53

54 particulate flows : one way coupling

The section about the EL approach starts by introducing the mathematical
model of the fluid forces acting on submerged particles (Section 3.1). We
then propose numerical methods to solve the equations modelling the par-
ticle trajectories and analyse their limitations. In Section 3.2 we concentrate
on the implementation by explaining in detail the generic concept, that is re-
sponsible for the Lagrangian particle phase. We then propose two strategies
for parallel computation of the particle trajectories, which are both based on
the domain decomposition of the LBM as introduced in Section 2.4.2. Using
Message Passing Interface (MPI) routines, the implementation of the poten-
tially faster approach is explained in Section 3.2.3. The prepared methods
are applied to simulations of airborne particulates in the human respiratory
systems in Section 3.6. Firstly, simulations of particulate flows in a model
of the trachea and a bronchial bifurcation are executed in order to validate
the implementation and obtain speedup results. Then the validated method
is used to simulate particle deposition in a patient specific geometry of a
human nasal cavity in Section 3.4.

In the second part the EE approach is introduced. In this case both, the
carrier phase and the dilute particle phase are assumed to be continuous.
The fluid phase is modelled by a NSE, the particle phase by an ADE. Both
equations are solved by an LBM. In contrast to the EL method, this allows
to use the parallelisation intrinsic to LBM for both phases. However, for the
particle phase new boundary conditions and an adaption of the Smagor-
insky model (Section 2.3.2) are needed and introduced in Sections 3.5.4 and
3.5.5. Finally the simulations of Section 3.6 are repeated using the newly
developed methods and their results are compared to the previous ones.

3.1 euler–lagrange

The aim of this section is to propose a method to simulate dilute one-way
coupled particulate flows. The carrier phase of this two component flow is
modelled by the NSE and solved by a LBM as introduced in Section 2. A
particle is assumed to be solid, of spherical shape, with mass M > 0 and
radius R > 0, much smaller than the characteristic length L > 0 of the flow.
At time t ∈ I = [0, T], it resides at position X : I → Ω ⊂ Rd and moves
with velocity U : I → Rd as reaction to a force F : I → Rd acting on it. The
domain Ω and the time interval I are generally the same that are used for
the fluid simulation.

The particulate flow is modelled by the NSE

∂tu
F + (uF · ∇)uF + ν∆uF = −

1

ρF∇p in Ω× I , (3.1a)

∇ · uF = 0 in Ω× I (3.1b)

and the equations of motion for a number N ∈N of particles

dtUk(t) =
1

M
Fk(t) for k ∈ {1, . . . N} , (3.2a)

dtXk(t) = Uk(t) for k ∈ {1, . . . N} (3.2b)

plus suitable initial and boundary conditions. The above systems of equa-
tions are one-way coupled by the hydrodynamic forces acting on the parti-
cles, which generally depends on the fluid velocity Fk(t) = Fk(u

F, t). Parti-

3.1 euler–lagrange 55

cle rotation is neglected. Two important dimensionless quantities are used
to characterise the particle behaviour. The first is the particle Reynolds number

ReP :=
2R
∥∥U− uF

∥∥
2

ν
,

which is defined similar to the fluid Reynolds number Re, but is computed Reynolds number:
Re = LU

νusing the particle diameter as characteristic length and the difference of the
particle and the fluid velocity as characteristic velocity. For a small particle
Reynolds number the surrounding flow can be assumed to be laminar, while
for higher Reynolds numbers the flow becomes turbulent and vortices form
behind the particle.

The second quantity is the Stokes number

St =
τP

τF ,

which is the ratio of the characteristic response time of the particle τP :=

(2ρPR2)/(9ν) and the fluid τF := L/U. Using the definitions of the character-
istic times we can reformulate the Stokes number as

St =
2

9

ρPR2

ν

U

L
, (3.3)

where U > 0 is the characteristic velocity. For St� 1 the particle’s response
time is much shorter than the characteristic time of the flow field and the
particle has sufficient time to adjust to the fluid flow. On the other hand, for
St� 1 the particle has almost no time to adjust and will be hardly affected
by the fluid phase.

3.1.1 Fluid-Particle Forces

Basset [12], Boussinesq [18] and Oseen [141] started to describe the motion Alfred Barnard
Basset (1854–1930)
English
mathematician
Joseph Valentin
Boussinesq
(1842–1929) French
mathematician
Carl Wilhelm
Oseen (1879–1944)
Swedish theoretical
physicist

of a sedimenting sphere under gravity in a fluid that was otherwise in rest.
Tchen [175] picked up on their research and first proposed an equation of
motion for an inertial particle in non-uniform flow by rewriting the Basset–
Boussinesq–Oseen equation in a reference system moving with a small fluid
parcel. His work has again been discussed and revised in several articles [22,
36, 126]. Stated below is today’s best accepted version by Maxey and Riley
[127], including a correction in the virtual mass term by Auton, Hunt and
Prud’Homme [8]. The force on a particle submerged in a Newtonian fluid
can be modelled as

MdtU(t) = (M−MF)g (3.4a)

+MFDtu
F(X(t), t) (3.4b)

−
1

2
MF

(
DtU(t) − (dt +

1

10
R2∆)uF(X(t), t)

)
(3.4c)

−6πRµ

(
U(t) − (1+

1

6
R2∆)uF(X(t), t)

)
(3.4d)

−6πR2µ

∫t
0

dτ
(
U(τ) − (1+ 1

6R
2∆)uF(X(τ), τ)

)
√
πν(t− τ)

dτ , (3.4e)

where MF = 4/3 πR3ρF denotes the fluid mass displaced by the particle,
dtu

F = ∂tu
F + uF∇ · uF denotes the material derivative with respect to a

fluid parcel and Dtu
F = ∂tu

F + U∇ · uF denotes the material derivative

56 particulate flows : one way coupling

with respect to the particle velocity. This model has been considered as the
definitive study of the equation of motion of a solid sphere under creeping
flow conditions [129]. Its derivation is based on the assumptions that a non-
rotating, spherical and rigid sphere moves through an initially undisturbed,
infinite fluid domain at small particle Reynolds numbers i.e. ReP � 1. The
Laplacian terms in (3.4c)–(3.4e) are accounted to Faxén, a student of Oseen’s,
and treat non-uniform effects in the flow field. They scale as R2/L2 � 1 and
can be neglected in many practical applications [129].

The Maxey–Riley Equation (3.4) with U(t) = dtX(t) and for given uF is an
implicit integro-differential equation of second order; the basic properties of
its solution have been explored by Farazmand and Haller [53]. In their work
they prove existence and uniqueness of mild solutions and show that the
results extend to strong solutions for special initial conditions.

We now give an overview of the fluid forces appearing in the above equa-
tion. These are gravitational and buoyancy force Fg (3.4a), force due to pres-
sure gradient Fp (3.4b) , virtual mass effect Fvm (3.4c), Stokes drag force
FSt (3.4d) and Basset Force FB (3.4e). For a more detailed description of the
forces than the following, we refer to Böttner [17], Lantermann [115] and
Crowe, Sommerfeld and Tsuji [38] or the original articles.

gravitational and buoyancy force
The gravitational force accelerates the particle in direction of gravity. The
buoyancy force opposes the gravity and results from the displacement of
fluid mass by the particle (Archimedes’ principle). We merge both forces to

Fg = VP
(
ρP − ρF

)
g , (3.5)

where g ∈ Rd is acceleration due to gravity and VP = 4/3πR3 the volume
of the particle. One can see that for a small density fraction ρF/ρP � 1 the
buoyancy part is small to negligible. The buoyancy force is a special case of
the following pressure-gradient force.

pressure-gradient force
If a particle is moving in a non-isobar current, a non-homogeneous pressure
distribution is imposed on the particle surface. Assuming a constant pres-
sure gradient ∇p a force FP in opposite direction of the pressure gradient
occurs

Fp = −
M

ρP∇p ,

which is proportional to the ratio of the particle mass MP and density ρP.
Solving the NSE for the pressure gradient one obtains

−
1

ρF∇p = dtu
F − µ∆uF .

Assuming constant shear on the particle surface the viscous term vanishes
and one obtains

Fp =Mdtu
F .

virtual mass effect
Alongside the acceleration of a particle the encompassing fluid is acceler-
ated, which results in an additional inertial mass Mv > 0. Crowe, Sommer-

3.1 euler–lagrange 57

feld and Tsuji [38] compute the total kinetic energy of the fluid surrounding
the sphere as

Evm =
1

2
ρF

∫
V
(uF(x, t))2 dx ,

where the integral is taken over “all the fluid”[38]. Assuming the fluid velo-
city can be expressed as the derivative of a potential function φ : Ω× I→ R

uF(x, t) = ∇φ(x, t) ,

the kinetic energy can be reformulated

Evm =
1

2
ρF

∫
V
(∇φ(x, t))2 dx .

Using the continuity Equation (3.1b) and Gauss theorem the integral is trans-
formed into an integral over the particle boundary

Evm =
1

2
ρF

∫
S

φ(∇φ ·n)ds .

Substituting φ by the potential function for a sphere moving through a fluid,
the total kinetic energy can be found to

Evm =
πρFR3(uF)2

3
.

The virtual mass force can than be obtained by differentiation with respect
to time

F̂
vm

=
MF

2
dtu

F ,

where MF = 4/3πR3 is the fluid mass displaced by the particle. This is the
force of the particle on the fluid. However the relative acceleration between
particle and fluid has to be considered, and Auton, Hunt and Prud’Homme
[8] found that the fluid acceleration should be derived with respect to the
fluid

Fvm =
MF

2

(
dtu

F −DtU
)

.

The term virtual mass becomes apparent by looking at the particle’s equation
of motion

MDtU =
MF

2

(
dtu

F −DtU
)

and adding the rightmost term on both sides

(M+
MF

2
)DtU =

MF

2
dtu

F .

Therefore the accelerated body behaves as having an additional virtual mass
of half the displaced fluid mass.

58 particulate flows : one way coupling

Figure 3.1: Drag coefficient cW versus the Reynolds number Re,

[8th September 2016 at 10:41 ,]

standard drag curve,

[8th September 2016 at 10:41 ,]

Stokes drag.

2R

r

θ

V

[12th August 2016 at 10:21 ,]

Figure 3.2: The coordinate system used by Stokes.

drag force
The steady-state drag is the force acting if there is vanishing relative accel-
eration between the particle and the fluid. It is given by the equation

Fd =
1

2
ρFcwA‖uF −U‖2(uF −U) , (3.6)

with the projected area of the particle A > 0 and the dimensionless drag
coefficient cw > 0. For non-rotating spherical objects in incompressible flow
the drag coefficient is a function in the particle Reynolds number, cw =

cw(Re
P). It is the result of numerous experimental observations, and its

graph is shown in Figure 3.1.
For small particle Reynolds numbers, ReP < 1, we can assume a Stokesian

flow regime, where Stokes Equations (2.9) hold. Stokes [170] first applied
this equations to the flow over a sphere. By introducing a polar coordinate
system he obtained the solution [38]

u(θ, r) = V

(
− sin(θ)

(
1−

3

4

R

r
−
1

4

(
R

r

)3)
, cos(θ)

(
1−

3

2

R

r
−
1

2

(
R

r

)3))
.

The polar coordinate system used by Stokes is illustrated in Figure 3.2,
with the free stream velocity V > 0. It is easy to see that for the particle
surface r = R the velocity is zero, whereas for r→∞ the velocity equals the
uniform flow velocity uF. With it, the hydrodynamic force on the particles
surface can be calculated

FSt = 6πµR(uF −U) . (3.7)

3.1 euler–lagrange 59

This particular force is named Stokes drag after its discoverer and can be
obtained from the general drag equation (3.6) for

cw =
24

ReP
=

24µ

2R
∥∥U− uF

∥∥
2

.

For Reynolds numbers up to 5, Oseen [142] extended Stokes’ results by
including first-order inertial effects [38] and obtained

cw =
24

ReP
(1+

3

16
ReP) .

For particles with diameter of the same scale as the molecular free path
of the surrounding gas, Cunningham [41] used a gas kinetic approach to
calculate the drag carried out onto a particle. His result takes into account
the molecular free path λl ∈ R+ of the gas molecules

FCun = FSt(1+ 1.63
λl
R
) .

From a (semi-)empirical perspective many studies have been conducted to
approximate the standard drag curve, Clift, Grace and Weber [35] alone lists
twelve. Their results can be applied in a wide range of the particle Reynolds
number.

basset force
The Basset force [12] or history force

FB = 6R2
√
πρFµF

∫t
0

1√
t− t ′

d

dt

(
uF −UP

)
dt ′

accounts for viscous effects. It addresses the temporal delay in accelera-
tion of the surrounding fluid and depends on the acceleration history up
to present time.

summary
We introduced the Maxey–Riley Equation (3.4) as best accepted summary of
hydrodynamic forces acting on submerged particles. Of its components we
will apply gravitational force (3.5) and Stokes drag (3.7) in the applications
below. All other components are small in comparison and can be neglected.

3.1.2 Integration of Particle Trajectories

After introducing the mathematical model of the dilute Lagrangian parti-
cle phase of a two component flow, we now propose numerical methods
to solve the Newtonian equations of motion (3.2). First the backward Euler
Method (bEM) is introduced and its limitations are analysed and demon-
strated using an example. The limitations can be overcome by the sub-
sequently introduced forward Euler Method (fEM). Additionally two Verlet
algorithms are mentioned, which provide good numerical stability, reduce
the error in comparison to the Euler methods and are used in Section 4.3.1.
Finally and to close the section trilinear interpolation is explained. As the
fluid velocity is computed on the discrete lattice only, and the particle tra-
jectories can be continuous in the domain interpolation becomes necessary.

60 particulate flows : one way coupling

euler methods
In the previous section a mathematical model of particle trajectories and
fluid-particle forces was introduced. We now propose numerical methods to
solve the particle equations of motion (3.2) beginning with Euler methods.
Let U : I→ Rd be a solution of the initial value problem

dtU = g(t,U) for t ∈ I , (3.8)

U(0) = U0 , (3.9)

with g : I ×Rd → Rd. For the discrete time interval Ih = {ti = i∆t ∈
I | i ∈ N,∆t ∈ R+} with time step ∆t, the above Ordinary Differential
Equation (ODE) (3.8) can be solved by a forward Euler Method (fEM)

Ui+1 = Ui +∆tg(ti,Ui) for ti ∈ Ih , (3.10)

which has the following global error:

theorem 4 (Global error of the forward Euler Method (fEM)). Let I = [0, T)
and g : I×Rd → Rd continuously differentiable and globally Lipschitz continuous
with Lipschitz constant L

∥∥g(t,U) − g(t,Z)
∥∥
2
6 L ‖U−Z‖2 for all t ∈ I and U,Z ∈ Rd .

If U is the unique solution of (3.8) and if Ui, i = 1, . . . ,N are approximations of
the fEM at time ti ∈ I, then

‖U(ti) −Ui‖2 6
(1+ L∆t)

i − 1

2L
‖d2tU‖[0,T]∆t

6
e(LT) − 1

2L
‖d2tU‖[0,T]∆t

holds for i = 0, . . . ,N. Here ‖d2tU‖[0,T] = max06t6T‖d2tU‖2.

Proof. See Hanke-Bourgeois [75, Satz 74.1].

In many situations only Stokes drag force in the form of (3.7) is acting on
a particle, and (3.8) becomes

dtU(t) = g(t,U(t))

=
1

M
FSt(t)

=
6πµR

4/3πR3ρP (u
F(t) −U(t))

=
9

2
µ

1

R2ρP (u
F(t) −U(t)) .

(3.11)

It is obvious, that the upper limit of the approximation error of the fEM

‖U(ti) −Ui‖2 6
e(LT) − 1

2L

9

2
µ

1

R2ρP ‖dt(u
F −U)‖[0,T]∆t

not only depends on the time step ∆t, but also on the particle radius and
density, as well as the fluid viscosity.

Besides error estimation, stability is a key issue of numerical methods.
Without loss of generality let uF = 0. Then (3.11) can be written in the form

dtU(t) = λU(t) , (3.12)

3.1 euler–lagrange 61

Re (∆tλ)

−3 −2 −1 1

Im (∆tλ)

−2

−1

1

2

[12th August 2016 at 10:21 ,]

(a)

Re (∆tλ)

−1 1 2 3

Im (∆tλ)

−2

−1

1

2

[12th August 2016 at 10:21 ,]

(b)

Figure 3.3: Stability region of the backward (3.3a) and forward (3.3b) Euler method,
for the solution of Equation (3.12) and complex λ.

where λ = −9µ/(2R2ρP). With the initial condition U(0) = U0 the exact
solution is

U(t) = eλtU0 ,

which is bounded for all t > 0, if λ 6 0 and U(t) → 0 for t → ∞, if λ < 0.
The fEM applied to (3.12) returns

Ui+1 = Ui +∆tλUi = (1+∆tλ)
n+1U0 .

The series (Ui)i is bounded for t > 0, if |1+∆tλ| 6 1 and Ui → 0 as n→∞
if |1+∆tλ| < 1 holds.

definition 3 (Stability region [85, Definition 10.3]). The stability region of
a numerical method is denoted by

S = {z ∈ C | z = ∆t λ; the method returns bounded solutions (Un)n>0,

if applied to dtU = λU, U(0) = U0 with step size ∆t} .

The stability region SbE = {|1+ ∆tλ| 6 1} of the fEM is illustrated in Fig-
ure 3.3a for λ ∈ C.

In Section 3.6 particle deposition in a bronchial bifurcation is discussed.
In this setup fine particles are transported by airflow. The dynamic viscosity
of air is µ = 1.84 · 10−05 kg/(m s) and the particle density ρP = 998.2 kg/m3.
To obtain a stable LBM spatial discretisation and time discretisation are set to
h = 2.60 · 10−2m and ∆t = c ·h2 = 3.48 · 10−4 s. This simulation is included
as an example in OpenLB since v1.0. Using these quantities, we now compute
the smallest possible particle radius to still remain in the stability region of
the fEM.

⇐⇒ 1 > |1+∆tλ|

⇐⇒ 1 > −1−∆tλ for ∆tλ 6 −1

⇐⇒ 2R2 >
9

2
µ
1

ρP∆t

⇐⇒ 2R2 > 2.87 · 10−11

⇐⇒ R > 3.79 · 10−6 [m] .

Typical inhalable particles have diameter between 2.5µm and 10µm and
can therefore not be simulated by these parameters. One possible solution

62 particulate flows : one way coupling

would be to use a smaller timestep, which comes with the costs of a higher
resolution of the lattice, as time and space resolutions are coupled by ∆t ∝
h2. Another solution is to use a different integration method.

Besides the fEM, the backward Euler Method (bEM) can be used to solve
Equations (3.8). While the fEM uses the current timestep ti in the rightmost
addend in its definition (3.10), the bEM uses implicitly determined values of
f(ti+1) at the upcoming timestep

Ui+1 = Ui +∆tg(ti+1,Ui+1) for ti ∈ Ih . (3.13)

This implicit definition generally leads to a non-linear system of equations
for each timestep i = 0, 1, 2, . . . ,N.

theorem 5 (Global error of the backward Euler Method (bEM)). Let I =

[0, T] and f : I×Rd → Rd continuously differentiable and satisfying the one-sided
Lipschitz condition

(
g(t,U) − g(t,Z)

)
(U−Z) 6 ‖U−Z‖22

for all (t,U), (t,Z) ∈ I×Ω and one l ∈ R. Additionally, let the timestep ∆t > 0
satisfies the condition ∆tl < 1. Then for the bEM the error estimate

‖U(ti) −Ui‖2 6
1

2l

((
1

1− l∆h

)i
− 1

)
‖d2tU‖[0,T]∆t

holds for all ti = i∆t ∈ I.

Proof. See Hanke-Bourgeois [75, Satz 75.2].

Applying (3.13) to (3.12) ends in

Ui+1 = U+∆tλUi+1 ,

which has the numerical solution

Ui =

(
1

1−∆tλ

)i
U0 ,

which is bounded for all i > 0, if

1

|1−∆tλ|
> 1 (3.14)

holds. The stability region of the bEM therefore is SfE = {1/|1−∆tλ| 6 1} and
is illustrated in Figure 3.3b. Substituting λ = −9µ/(2R2ρP) < 0 in (3.14) and
using the same quantities as before

⇐⇒ 1 >
1

|1−∆tλ|

⇐⇒ 0 6 −∆tλ for 1 > ∆tλ

⇐⇒ 0 6 ∆t
9

2
µ

1

R2ρP

⇐⇒ 0 6 ∆t
1

R2
3.79 · 10−6m ,

3.1 euler–lagrange 63

we find that the bEM is stable for all possible radii R. Given the case that only
Stokes drag is employed and the fluid velocity is known for all X(t) ∈ Ω,
the bEM turns out to be analytically solvable for Ui+1

Ui+1 = Ui +
1

M
∆tF

St(ti+1)

= Ui +
6πRµ

M
∆t

(
uF(ti+1) −Ui+1

)

= Ui +∆tλ
(
uF(ti+1) −Ui+1

)

⇐⇒ Ui+1 (1+∆tλ) = Ui +∆tλu
F(ti+1)

⇐⇒ Ui+1 =
Ui +∆tλu

F(ti+1)

1+∆tλ
.

For both Euler methods the particle position equation (3.2b) is updated by
a bEM.

The local approximation error of the particle position can be estimated by
expanding X(ti +∆t) in its Taylor series

X(ti +∆t) = X(ti) +∆tdtX(ti) + O(∆2t) (3.15)

= X(ti) +∆tU(ti) + O(∆2t) , (3.16)

and is found to be of order O(∆2t).

verlet methods
Besides the fEM, Verlet integration [181, 182] is another common method Loup Verlet (1931)

French physicist,
pioneer in MD

used in the Discrete Element Method (DEM). It can be obtained by expanding
the particle position at timesteps t+∆t and t−∆t in its Taylor series

X(t+∆t) = X(t) +∆tdtX(t) +
1

2
∆2td

2
tX(t) +

1

6
∆3td

3
tX(t) + O(∆4t) (3.17)

X(t−∆t) = X(t) −∆tdtX(t) +
1

2
∆2td

2
tX(t) −

1

6
∆3td

3
tX(t) + O(∆4t) (3.18)

and adding both equations

X(t+∆t) = 2X(t) −X(t−∆t) +∆
2
td
2
tX(t) + O(∆4t) .

It can be seen, that the jerk (third derivative of the position with respect to
time) terms cancel each other and the truncation error is of order O(∆4t).
The particle velocity does not have to be explicitly computed in this method.
However, it is often necessary to evaluate the particle forces or to compute
the energy of the system. The velocities can be computed from the positions
by

U(t) =
X(t+∆t) −X(t−∆t)

2∆t
.

This has several drawbacks. Firstly, the error associated to this expression
is of order O(∆2t) rather than O(∆4t). Secondly, it is not self-starting, as for
computing X(∆t), besides X(0) also X(−∆t) has to be known, which is gen-
erally not the case. Finally, the velocity at timestep t can only be computed
at the subsequent timestep t+∆t.

An improved implementation of the same algorithm computes the velo-
city first. It is therefore known as velocity Verlet. Substituting t by t+∆t in
(3.18) and adding the obtained equation to (3.17) yields

dtX(t) = dtX(t+∆t) −
1

2
∆2t

(
d2tX(t) + d

2
tX(t+∆t)

)

64 particulate flows : one way coupling

or

U(t) = U(t+∆t) −
1

2M
∆2t (F(t) + F(t+∆t)) .

The particle positions are obtained by

X(t+∆t) = X(t) +∆tU(t) +
1

2M
∆2tF(t).

Carl
Runge $(1856–

1927) German
mathematician

Wilhelm Kutta
(1867–1944) German

mathematician
John Couch

Adams $(1819–
1892) English
mathematician

Francis Bashforth
(1819–1912) British

mathematician

The velocity Verlet algorithm removes all the disadvantages of the previ-
ous position Verlet algorithm. The advantage of the smaller local error in
comparison to the Euler methods has to be paid for by storing the force on
each particle of the last timestep, i.e. the memory requirement increases.

Alternative algorithms, such as Predictor-Corrector, Runge-Kutta [111, 156]
or Adams-Bashforth methods exist which allow to solve the particle traject-
ories using larger timesteps at the cost of higher memory usage. See e. g.
Matuttis and Chen [125] for a review. However, due to the explicit charac-
ter of the LBM and the integration of the particle tracking algorithm in an
already existing Lattice Boltzmann (LB) code, small timesteps are available;
using larger timesteps than the LBM would dismiss available fluid informa-
tion.

3.1.3 Interpolation of Fluid Velocity

As the particle position X : I → Ω moves in the continuous domain Ω and
information on the fluid velocity can only be computed on lattice nodes
xi ∈ Ωh interpolation of the fluid velocity is necessary every time fluid–
particle forces are computed. Let uF

i = uF(xi) be the computed solution of
the NSE at lattice nodes xi. Let p ∈ Pn be the interpolating polynomial of
order n with p(xi) = uF

i and (x0, . . . xn) the smallest interval containing all
points in the brackets. Furthermore, let Cn [a,b] be the vector space of con-
tinuous functions that have continuous first n derivatives in [a,b]. Then the
interpolation error of the polynomial interpolation is stated by the following
theorem.

theorem 6 (Interpolation error). Let u ∈ Cn+1 [a,b], a,b ∈ Ω. Then for
every x ∈ [a,b] there exists one x̂ ∈ (x0, . . . xn, x), such that

uF(x) − pn(x) =
dn+1x uF(x̂)

(n+ 1)!

n∏
j=0

(x− xj) (3.19)

holds.

Proof. See Rannacher [150, Satz 2.3] or Deuflhard, Bornemann and Hohmann
[45, Satz 7.16].

Using linear (n = 1) interpolation for the fluid velocity between two neigh-
bouring lattice nodes a = x0 ∈ Ωh,b = x1 ∈ Ωh, ‖x1 − x0‖2 = h clearly the
following holds

f(x) − p1(x) =
1

2
d2xu

F(x̂)(x− x0)(x− x1)

6
1

2
d2xu

F(x̂)h2

3.1 euler–lagrange 65

x(0,0,0)

x(0,1,0)

x(0,0,1)

x(0,1,1)

x(1,0,0)

x(1,1,0)

x(1,0,1)

x(1,1,1)

h

h

h

x̂

[12th August 2016 at 10:21 ,]

Figure 3.4: Trilinear interpolation.

and the approximation error of the linear interpolation is of order O(h2). In
the following we give reason why this order of interpolation is sufficient.

Let’s assume there exists an ideal error law of the form

‖uF − uF
∗‖L2(Ωh) = ch

α ,

for the discrete solution uF
h obtained by an LBM with lattice spacing h and

the analytic solution uF
∗
. Then α ∈ R+ is the to be determined order of

convergence. We further define the relative error

Errh =
‖uF
h − uF

∗‖L2(Ωh)
‖uF∗‖L2(Ωh)

.

The ratio of the error laws of two distinct lattice spacings hi and hj, forms
the Experimental Order of Convergence (EOC) as

EOCi,j =
ln(Errhi/Errhj)

ln(hi/hj)
. (3.20)

With this Krause [110, Chapter 2.3] determines an EOC of approximately
α ≈ 2 for the discrete solution towards the analytic solution of a stationary
flow in the unit cube governed by the incompressible NSE. Therefore the
order of converge of the fluid velocity obtained by an LBM can be assumed
to be O(h2). This conclusion is backed up by the theoretical results obtained
by [24]. This leads to the assumption that an interpolation scheme of higher
order than 2 would not be exhausted as the error of the incoming data is
too large.

The interpolation is implemented as a trilinear interpolation using the
eight nodes surrounding the particle. Let the point of interpolation x̂ ∈
[x(0,0,0), x(1,1,1)] be in the cube spanned by the lattice nodes x(0,0,0) and
x(1,1,1), see Figure 3.4 for an illustration. We will denote by

d = (d0,d1,d2)T = x̂− x(0,0,0)

the distance of the particle to the next smaller lattice node. The fluid velo-
cities at the eight corners are named accordingly u(i,j,k), i, j,k ∈ {0, 1}. The

66 particulate flows : one way coupling

Listing 3.1: LBM algorithm including Lagrangian particles.

0 for t ∈ Ih {

for x ∈ Ωh {

for i = 0, . . . ,q− 1 {

f̃i(x, t) = fi(x, t) − 1
τ (fi(x, t) −M(x, t))

fi(x+ h
2ξi, t+ h

2) = f̃i(x, t)
5 }

}

communicate overlap

foreach particle {

10 compute F(t) =
∑
i Fi(t)

U(t+ h2) = U(t) + h2F(t)/M

X(t+ h2) = X(t) + h2U(t+ h2)

compute boundaries

}

15 communicate particles

}

trilinear interpolation is executed by three consecutive linear interpolations
in the three different space directions. First we interpolate along the x-axis

u(d,0,0) = u(0,0,0)(h− d0) + u(1,0,0)d0

u(d,1,0) = u(0,1,0)(h− d0) + u(1,1,0)d0

u(d,0,1) = u(0,0,1)(h− d0) + u(1,0,1)d0

u(d,1,1) = u(0,1,1)(h− d0) + u(1,1,1)d0

followed by interpolation along the y-axis

u(d,d,0) = u(d,0,0)(h− d1) + u(d,1,0)d1

u(d,d,1) = u(d,0,1)(h− d1) + u(d,1,1)d1

and finally in direction of the z-axis

u(x̂) = u(d,d,d) = u(d,d,0)(h− d2) + u(d,d,1)d2.

3.2 implementational aspects

The particle solver proposed in the previous section has been integrated in
the LBM algorithm and implemented in the present version 1.0 of OpenLB.
Listing 3.1 shows the advancements compared to Listing 2.1, where lines 9–
16 have been added, which are necessary to integrate the Lagrangian particle
phase. The dilute particles are assumed to be independent and can therefore
be computed independently in one for loop. First, all forces acting on a
particle have to be computed and summed up. With the force known, it is
possible to advance the particle velocity and position by one timestep. After
all particles have been updated, their affiliation to the current cuboid has to
be checked, and the particles are redistributed if necessary.

Similar to the previous chapter on LBM, we will pick out aspects concern-
ing the implementation of the dilute particle phase. We first present a gen-
eric implementation concept, which handles all particle dynamics. Then we
introduce two new parallelisation schemes for the communication of parti-
cles between cuboids and analyse and compare their computational costs.

3.2 implementational aspects 67

3.2.1 The Class SuperParticleSystem3D

The implementation of the particle phase follows an hierarchical ansatz, sim-
ilar to the Cell → BlockLattice3D → SuperLattice3D ansatz used for the im-
plementation of the LBM. The equivalent class in the context of Lagrangian
particles are Particle3D → ParticleSystem3D → SuperParticleSystem3D. The
class Particle3D allocates memory for the variables of one single particle, Cell

container for data of
one lattice node
BlockLattice3D
stores the Cells in
one Ω̃lh
SuperLattice3D
organises several Ω̃lh
across PU borders

such as its position, velocity, mass, radius and the force acting on it. It also
provides the function bool getActive(), which returns the activity state of
the particle. Active particles’ positions are updated during the simulation,
in contrast to non-active particles, which are only used for particle-particle
interaction. The class Particle3D is intended to be inherited from, in order
to provide additional properties, such as electric or magnetic charge. The
particles in the domain of a specific BlockLattice3D are combined in the
class ParticleSystem3D. Finally the class SuperParticleSystem3D combines all
ParticleSystem3Ds and handles the transfer of particles between them.

The concept of the class SuperParticleSystem3D is to provide an easily ad-
aptable framework for simulation of a large number of particles arranged
in and interacting with a fluid. In this context easily adaptable means that
simulated forces and boundary conditions are implemented in a modular
manner, such that they are easily exchangeable. Development of new forces
and boundary conditions can be readily done by inheritance of provided
base classes. Particle–particle interaction can be activated if necessary and
deactivated to decrease simulation time. The contact detection algorithm is
interchangeable. This section introduces the SuperParticleSystem3D and the
mentioned properties in more detail.

The class SuperParticleSystem3D is initialised by a call to the constructor

SuperParticleSystem3D(CuboidGeometry3D<T>& cuboidGeometry,

LoadBalancer<T>& loadBalancer, SuperGeometry3D<T>& sGeometry,

LBconverter<T>& conv);

simultaneously on all PUs. During the construction each PU instanti-
ates one ParticleSystem3D for each local cuboid. Subsequently for each
ParticleSystem3D a list of the ranks of PUs holding neighbouring cuboids
is created.

Particles can be added to the SuperParticleSystem3D by a call to one of the
addParticle() functions.

/// Add a Particle to SuperParticleSystem

void addParticle(PARTICLETYPE<T> &p);

/// Add a number of identical Particles equally distributed in a given

IndicatorF3D

void addParticle(IndicatorF3D<T>& ind, T mas, T rad, int no=1, std::

vector<T> vel={0.,0.,0.});

/// Add a number of identical Particles equally distributed in a given

Material Number

void addParticle(std::set<int> material, T mas, T rad, int no=1, std::

vector<T> vel={0.,0.,0.});

/// Add Particles form a File. Save using saveToFile(std::string name)

void addParticlesFromFile(std::string name, T mass, T radius);

Currently there are four implementations of this class. The first adds single
predefined particles, the second and third add a given number of equally
distributed particles of the same mass and radius in an area that can be
defined by either a set of material numbers or an indicator function. The
initial particle velocity can be set optionally. Additionally particles can be

68 particulate flows : one way coupling

added from an external file containing their positions. In all cases the assign-
ment to the correct ParticleSystem3D is carried out internally. Particle forces
and boundaries are implemented by the base classes Force3D and Boundary3D.

template<typename T, template<typename U> class PARTICLETYPE>

class Force3D {

public:

Force3D();

virtual void applyForce(typename std::deque<PARTICLETYPE<T> >::

iterator p, int pInt, ParticleSystem3D<T, PARTICLETYPE>& psSys)

=0;

}

template<typename T, template<typename U> class PARTICLETYPE>

class Boundary3D {

public:

Boundary3D();

virtual void applyBoundary(typename std::deque<PARTICLETYPE<T> >::

iterator p, int pInt, ParticleSystem3D<T, PARTICLETYPE>& psSys)

=0;

}

Both classes are intended to be derived from in order to implement force and
boundary specialisations, e. g. the introduced forces in Subsection 3.1.1. The
key function in both classes are applyForce() and applyBoundary(), which
are called in each timestep of the main LBM loop. Force3D and Boundary3D

specialisations are added to the SuperParticleSystem3D, by passing a pointer
to a class instantiation via a call to the respective function.

/// Add a force to system

void addForce(std::shared_ptr<Force3D<T, PARTICLETYPE> > f);

/// Add a boundary to system

void addBoundary(std::shared_ptr<Boundary3D<T, PARTICLETYPE> > b);

Both functions add the passed pointer to a list of forces and boundaries,
which will be looped over during the simulation step. A contact detection
algorithm can be added.

/// Set contact detection algorithm for particle-particle contact.

void setContactDetection(ContactDetection<T, PARTICLETYPE>&

contactDetection);

See Section 4.1.1 for more details.
Finally one timestep is computed by a call to the function simulate().

template<typename T, template<typename U> class PARTICLETYPE>

void SuperParticleSystem3D<T, PARTICLETYPE>::simulate(T dT)

{

for (auto pS : _pSystems) {

pS->_contactDetection->sort();

pS->simulate(dT);

pS->computeBoundary();

}

updateParticleDistribution();

}

This function contains a loop over the local ParticleSystem3Ds calling the
local sorting algorithm and the functions ParticleSystem3D::simulate() and
ParticleSystem3D::computeBoundary(). The sorting algorithm determines po-
tential contact between particles according to the set ContactDetection.

3.2 implementational aspects 69

The inline function ParticleSystem3D::simulate() first calls the local func-
tion ParticleSystem3D::computeForce().

inline void simulate(T dT) {
_pSys->computeForce();
_pSys->explicitEuler(dT);

}

The function ParticleSystem3D::computeForce() consists of a loop over all
particles stored by the calling ParticleSystem3D.

template<typename T, template<typename U> class PARTICLETYPE>

void ParticleSystem3D<T, PARTICLETYPE>::computeForce()

{

typename std::deque<PARTICLETYPE<T> >::iterator p;

int pInt = 0;

for (p = _particles.begin(); p != _particles.end(); ++p, ++pInt) {

if (p->getActive()) {

p->resetForce();

for (auto f : _forces) {

f->applyForce(p, pInt, *this);

}

}

}

}

If the particle state is active, its force variable is reset to zero. Then the value
computed by each previously added particle force is added to the particle’s
force variable. Finally, the particle velocity and position is updated by one
step of an integration method – here the backward Euler Method (bEM).

Returning to SuperParticleSystem3D::simulate(T dT), a call to the function
ParticleSystem3D::computeBoundary() is the next command in the loop, which
has the same structure as the ParticleSystem3D::computeForce(). After ex-
ecuting the loop, the function updateParticleDistribution() is called, which
redistributes the particles over the ParticleSystem3Ds according to their up-
dated position. A detailed description of this function is provided at the end
of the next section.

3.2.2 Parallelisation of the Particle Phase

This section is devoted to the parallelisation of the Lagrangian particle phase
based on the domain decomposition of the LBM. If after an update of the
particle position the Processing Unit (PU) computing the particle trajectory
and the PU computing the surrounding fluid do not match, information has
to be transferred between the PUs. The following two paragraphs introduce
two parallelisation strategies, which have originally been published in Henn
et al. [82].

Parallelisation of the particle phase is trivial as long as particle-particle
interaction is omitted and particle forces are independent of the fluid. How-
ever, introducing fluid-particle interaction leads to a dilemma, because the
fluid velocity at the position of a particle has to be communicated by the PU

at each time step. Distributing particles equally on all ranks leads to short
computation times but increased communication, while distribution accord-
ing to their position in the fluid leads to low communication and increased
computing times if particles are distributed non-homogeneously, i.e. if they
are concentrated in a subdomain assigned to one PU. Two different strategies
for parallel computation of particle trajectories are presented in the follow-

70 particulate flows : one way coupling

3

X1,X2,X3

uF(X1),
uF(X2),
uF(X3)

[19th September 2016 at 14:08 ,]

(a) Load optimal strategy. Particles are evenly
distributed over all PUs, leading to parti-
cles computed by a PU (red) not holding
the respective subdomain Ω̃lh (blue). Pos-
ition Xi and velocity uF(Xi) have to be
communicated in a three step procedure.

2

X1,X2,X3,
uF(X1),
uF(X2),
uF(X3)

[19th September 2016 at 14:08 ,]

(b) Communication optimal strategy. Particles
are stored and computed on the PU hold-
ing the corresponding subdomain Ω̃lh.
Particles leaving a subdomain are commu-
nicated in two steps.

Figure 3.5: Parallelisation strategies for dilute particle flow simulations.

ing. Both of them are based on domain decomposition of the position space
Ωh, which has been introduced in Section 2.4.2. The load optimal strategy is
driven by the idea to reduce computing time, while the communication ideal
strategy intends to reduce the communication effort. We will now discuss
both strategies in detail for respective worst case scenarios.

The load optimal strategy (Figure 3.5a) aims at achieving a balance of com-
putational load. Therefore N ∈ N particles are spread over P ∈ N PUs,
where they remain for the entire simulation. Hence every unit is respons-
ible for the storage and calculation of N/P particles, which leads to a com-
putational effort of O(N/P) for every iteration of the lattice Boltzmann loop.
During the update of the particle velocity, information about the fluid velo-
city uF(X(t), t) becomes necessary and has to be communicated. We assume
that processor A (red), which is in need of the velocity data, knows which
processor holds uF(X(t), t). The latter one is called processor B (blue). The
data exchange is conducted in three steps. During the first step A sends the
number of particles in its responsibility, which stay in the fluid domain of
processor B, to processor B. In the second step, A sends the positions X of
the respective particles, whereupon B returns the fluid velocities uF(X(t), t)
in step three. In a worst case scenario none of the particles are assigned to
the processor holding the respective fluid domain. Looking at the effort in
communication, we see that in every step P PUs send a message to all other
P− 1 PUs, which sums up to 3 P(P− 1) communications per iteration. In the
first step one datum is transmitted by every node (O(P)). Hence N/P posi-
tions have to be submitted by the P PUs, resulting in (N/P)P communicated
informations in the second step. In the last step the (N/P)P velocities are
returned. Altogether the cost of communication aggregates to

O(P(P− 1)) + O(P(P− 1)N) + O(P(P− 1)N) = O(P2N).

The communication optimal strategy (cf. Figure 3.5b) targets the reduction of
communication costs. Therefore particles are always stored and computed
on the PU associated with the connected fluid subdomain Ω̃lh. In a worst

3.2 implementational aspects 71

costs load ideal communication ideal

communication 1st step O(P2) O(P)

2nd step O(P2N) O(P+N)

3rd step O(P2N)

computation O(N/P) O(N)

Table 3.2: Summary of the computation and communication costs of the two parallel
strategies

case scenario, all particles are on one PU, leading to computational costs
of O(N) for this particular node, while the remaining PUs run idle. If a
particle leaves its node it is transferred to the processor holding the next
sub-domain. Hence communication is only necessary between neighbour-
ing domains, which reduces the number of sends to a constant (number of
neighbours NB = 8 in 2 dimensions, NB = 26 in 3 dimensions). The particle
transfer itself is done by a two step approach. In the first step the sending
PU tells its neighbours how many particles will arrive in their sub-domain.
This step is necessary for the receiving PU to allocate memory and adds up
to P ·NB sends. During the second step particles are sent to the receiving
processors. In the worst case scenario all N particles on one node are trans-
ferred at the same time. In an optimal state in which all particles are evenly
distributed, but are all changing domains, transfer of (N/P) · P particles is
required. Hence communication costs sum up to

NB ·O(P) + O(N) = O(P+N).

Table 3.2 summarises the costs for computation and communication. Both
strategies depend heavily on the underlying domain decomposition and the
distribution of the particles in the position space Ω. In a worst case scenario
the load ideal strategy is superior to the communication ideal strategy with re-
spect to the computational costs, whereas the communication ideal strategy
outruns the load ideal strategy with respect to communication costs. Assum-
ing that particles are evenly distributed over the PUs the computational cost
of strategy two becomes O(N/P) and is hence equal to those of strategy one
resulting in the communication ideal strategy to be more efficient.

3.2.3 Implementation of the Communication Optimal Strategy

The communication optimal strategy is implemented in the function
SuperParticleSystem3D::updateParticleDistribution() already mentioned
above. The function has to be called after each update of the particle
positions, in order to check if all particles remained in their current cuboid,
as otherwise segmentation faults may occur during the computation of
particle forces. The transfer is implemented using non-blocking operations
of the MPI library.

template<typename T, template<typename U> class PARTICLETYPE>

void SuperParticleSystem3D<T, PARTICLETYPE>::updateParticleDistribution

()

{

/* Find particles on wrong cuboid, store in relocate and delete */

//maps particles to their new rank

72 particulate flows : one way coupling

_relocate.clear();

for (unsigned int pS = 0; pS < _pSystems.size(); ++pS) {

auto par = _pSystems[pS]->_particles.begin();

while (par != _pSystems[pS]->_particles.end()) {

//Check if particle is still in his cuboid

if (checkCuboid(*par, 0)) {

par++

}

//If not --> find new cuboid

else {

findCuboid(*par, 0);
_relocate.insert(

std::make_pair(this->_loadBalancer.rank(par->getCuboid()), (*
par)));

par = _pSystems[pS]->_particles.erase(par);

}

}

}

The function begins with two nested loops. The outer loop is over all
local ParticleSystem3Ds, the inner loop over the Particle3Ds of the current
ParticleSystem3D. Each particle is checked if it remained in its cuboid dur-
ing the last update by the function checkCuboid(*par, 0). The first parameter
of checkCuboid(*par, 0) is the particle to be tested and the second parameter
is an optional spatial extension of the cuboid. If the function returns true

the counter is incremented and the next particle is tested. If the function
returns false both the particle and the rank of its new cuboid are copied
to the std::multimap<int, PARTICLETYPE<T> > _relocate for future treatment
and removed from the std::deque<PARTICLETYPE<T> > _particles of particles.

/* Communicate number of Particles per cuboid*/

singleton::MpiNonBlockingHelper mpiNbHelper;

/* Serialise particles */
_send_buffer.clear();

T buffer[PARTICLETYPE<T>::serialPartSize];

for (auto rN : _relocate) {

rN.second.serialize(buffer);
_send_buffer[rN.first].insert(_send_buffer[rN.first].end(), buffer,

buffer+PARTICLETYPE<T>::serialPartSize);

}

The function continues by instantiating the class singleton::

MpiNonBlockingHelper, which handles memory for MPI_Request and
MPI_Status messages. Then the particles buffered in _relocate are seri-
alised, meaning their data is written consecutively in memory and stored
in a buffer std::map<int, std::vector<double> > _send_buffer in preparation
for the transfer.

3.2 implementational aspects 73

/*Send Particles */

int noSends = 0;

for (auto rN : _rankNeighbours) {

if (_send_buffer[rN].size() > 0) {

++noSends;

}

}

mpiNbHelper.allocate(noSends);

for (auto rN : _rankNeighbours) {

if (_send_buffer[rN].size() > 0) {

singleton::mpi().iSend<double>(&_send_buffer[rN][0], _relocate.

count(rN)*PARTICLETYPE<T>::serialPartSize, rN, &mpiNbHelper.

get_mpiRequest()[k++], 1);

}

}

singleton::mpi().barrier();

To find the number of send operations a loop over the ranks of neighbour-
ing cuboids is carried out, increasing the variable count each time data for
a specific rank is available. Then the appropriate number of MPI_Requests is
allocated. Finally the data is sent to the respective PUs via a non-blocking
MPI_Isend() and all PUs wait until the send process is finished on each PU.

/*Receive and add particles*/

int flag = 0;

MPI_Iprobe(MPI_ANY_SOURCE, 1, MPI_COMM_WORLD, &flag,

MPI_STATUS_IGNORE);

if (flag) {

for (auto rN : _rankNeighbours) {

MPI_Status status;

int flag = 0;

MPI_Iprobe(rN, 1, MPI_COMM_WORLD, &flag, &status);

if (flag) {

int amount = 0;

MPI_Get_count(&status, MPI_DOUBLE, &number_amount);

T recv_buffer[amount];

singleton::mpi().receive(recv_buffer, amount, rN, 1);

for (int iPar=0; iPar<amount; iPar+=PARTICLETYPE<T>::

serialPartSize) {

PARTICLETYPE<T> p;

p.unserialize(&recv_buffer[iPar]);

if (singleton::mpi().getRank() == this->_loadBalancer.rank(p.

getCuboid())) {
_pSystems[this->_loadBalancer.loc(p.getCuboid())]->

addParticle(p);

}

}

}

}

}

if (noSends > 0) {

singleton::mpi().waitAll(mpiNbHelper);

}

}

On the receiving side the non-blocking routine MPI_Iprobe() checks whether
an incoming transmissions is available. The constant MPI_ANY_SOURCE indic-
ates that messages from all ranks are accepted. If a message is awaiting
reception the flag flag is set to a non-zero value and the following switch

74 particulate flows : one way coupling

Xm
Rm Xn

Rn

Ω̃j Ω̃k

Rm + RnRm + Rn

[12th August 2016 at 10:22 ,]

Figure 3.6: Overlap of the particle domains. Particles within a distance to of the sum
of the two largest radii to a neighbour cuboid have to be transferred to
this specific neighbour cuboid.

will be true. This query is not necessary, but the following loop can be en-
tirely skipped if no particles are transferred, which is expected to be the case
most of the time.

The subsequent loop tests for each single neighbouring rank if a message
awaits reception. If true, the number of send MPI_Doubles is read from the
status variable via an MPI_Get_count(). The appropriate memory is alloc-
ated and the message is received by wrapped call to MPI_Recv(), and written
consecutively. Then new Particle3Ds are instantiated, initialised with the re-
ceived data and assigned to the respective ParticleSystem3D on the updated
PU. Finally, a call to MPI_Waitall() makes sure that all MPI_Isend()s have been
processed by the recipients.

If particle collisions are considered, it may happen that particles Pm with
centre Xm ∈ Ω̃j collide with particle Pn with centre Xn ∈ Ω̃k in a differ-
ent cuboid, as illustrated in Figure 3.6. Therefore Pn has to be known on
Xm ∈ Ω̃j and so-called shadow particles are introduced. Shadow particles
are static particles, whose positions and velocities are not explicitly com-
puted during the update step. Particle collision across cuboid boundaries
can only occur if the distance d = ‖Xn − Xm‖2 between the participating
particles is less then the sum of the two largest radii of all particles in the
system. Hence the width of the particle overlap has to be at least the sum
of the two largest particle radii and all particles within this overlap have
to be transferred to the neighbour cuboid after each update of the particle
position by an additional communication step similar to the one introduced
above.

3.3 application : lung bifurcation (euler–lagrange)

We now apply the introduced particle model to the simulation of airborne
particles in the human respiratory system. This section has been published
previously in [82] and has been altered to fit the notation in this thesis.

Airborne particulates pose a serious health risk. They may cause respir-
atory diseases such as lung cancer or asthma. On the other hand, purpose-
fully used e.g. in nasal or asthma sprays they can help to treat such diseases.
Investigating the deposition of particulates in the human respiratory sys-
tem is therefore of great interest, however, in vivo examinations are risky,
expensive and sometimes not feasible. Instead, simulations are feasible and

3.3 application : lung bifurcation (euler–lagrange) 75

provide detailed information on deposition. Yet, simulations of dilute partic-
ulate flows remain a challenging task in the research field of Computational
Fluid Dynamics (CFD). Especially transient flows through complex geomet-
ries such as the nasal cavity demand for computational power that can only
be satisfied by massive parallel systems. The EL ansatz allows tracking of in-
dividual particles and is widely used to simulate such particulate flows. The
LBM is an explicit algorithm to compute fluid flows, that allows to embed
a numerical integration scheme for particle tracking. One of LBM’s greatest
advantages compared to classical CFD methods is an efficient parallelisation
by domain decomposition [84, 83, 58]. We have theoretically expanded the
domain decomposition of the carrier phase to the particle in Section 3.2.2 by
introducing two parallelisation strategies of the particle tracking algorithm.
The strategy promising higher performance has been implemented and ex-
plained in detail in Section 3.2.3. In the following we will investigate its
parallel performance by simulating time-dependent particulate flows in the
human respiratory system.

Flow characteristics in the human airways have been studied before, both
experimentally and numerically. In a general manner, Kleinstreuer and
Zhang [105] provide a detailed overview on publications considering state-
of-the-art models, experimental observations and computer simulations for
all parts of the respiratory system. Vasconcelos et al. [179] simulated impact
distributions of particles in a model of the tracheobronchial tree and stated
a simple connection between the Stokes number and the escape rate.

Studies concerning particle deposition in the human nasal cavity have
been performed in the past, experimentally on nasal airway replicas [34,
103] as well as in vivo measurement on humans [33]. Finck, Hänel and Wlo-
kas [59] simulated particulate flows through the model of a nasal cavity
using LBM and Lagrangian particle tracking. Usually in numerical studies
particles are injected only once at a certain time, e. g. to model particle drug
delivery with a nasal spray [31, 95, 96]. In most of the studies, a constant
inhalation flow rate with constant inlet velocity at the nostrils is used, while
simulations of unsteady inhalation are rare in literature. To our knowledge
only Se, Inthavong and Tu [159] simulated particle deposition using an un-
steady flow. When simulating flow in nasal cavities most authors omit the
paranasal sinuses. As far as known to the authors, only Tu, Inthavong and
Ahmadi [178] investigated deposition of nanoparticles for laminar flow in a
geometry considering sinuses with focus on the diffusion process.

The objective of this section is to use the provided parallel algorithm to
simulate unsteady particulate flows in the human respiratory system. It is
organised as follows: In Section 3.3.1 the mathematical model and numer-
ical method for particulate flows are introduced. Sections 3.3.2–3.3.5 present
numeric results of simulations in an idealised bifurcation of the tracheo-
bronchial system. The simulation is validated and speedup tests are per-
formed. The implementation is then used to simulate unsteady particle
laden flows in the complex geometry of a patient specific nasal cavity in-
cluding paranasal sinuses.

3.3.1 Methods

In this section of the thesis we employ the EL approach. Hence we choose an
Eulerian representation for the fluid phase and each trajectory of the discrete
particle phase is tracked individually in a Lagrangian way. The simulations

76 particulate flows : one way coupling

(a) (b)

Figure 3.7: Left: Schematic geometry of one bifurcation of the human tracheobron-
chial system. Right: Geometry of nasal cavity used in Section 3.4.

will be repeated using an EE approach in Section 3.5 and compared to the
results obtained here.

In finding particle deposition patterns in the human respiratory system
the continuous phase is air. We choose to approximate it as an incompress-
ible Newtonian fluid, which is the general approach for flows with Mach
number less than 0.3. Therefore the incompressible NSE as introduced in
Equation (3.1) is applied and solved by an by a D3Q19 Bhatnagar–Gross–
Krook (BGK)-LBM as introduced in Section 2.3..

Each particle of the disperse phase is tracked according to Newton’s
second law of motion as introduced in Equations (3.2a) and (3.2b). We as-
sume that the particles are only affected by Stokes drag (3.7). Other forces,
such as Basset force or virtual mass, are extremely small in the considered
setup and can be neglected [129]. The particle equations of motion are
solved by an bEM as introduced in Section 3.1.2.

For the fluid phase, pressure and velocity boundary conditions are real-
ised as proposed in Skordos [164]. A no-slip bounceback condition is set
for boundaries representing walls. For the particle phase boundaries are ap-
proximated by a triangular mesh. If a particle crosses the boundary, i.e. its
position is outside of the domainΩ, its velocity is set to zero and the particle
is neglected in further computations.

3.3.2 Convergence

Figure 3.7a illustrates the simplified model of the first bifurcation of the
tracheobronchial tree used in the simulations. At the upper opening a pres-
sure boundary is imposed, while at the lower openings a velocity boundary
condition with a Poiseuille profile is used. The Reynolds number is defined
as Re = UD/ν, where U > 0 is the mean entrance velocity andD > 0 the dia-
meter of the trachea. A number of 104 equally distributed particles of each
considered radius is injected. More information on the inflow Q, Reynolds

3.3 application : lung bifurcation (euler–lagrange) 77

symbol value

diameter of trachea D 0.02m

mean entrance flow Q 12, 25, 62, 114, 296ml s−1

Reynolds number Re 50, 100, 250, 500, 1300

kinematic viscosity ν 1.5111 · 10−5m2 s−1

fluid density ρF 1.205kg m−3

particle density ρP 998.2 kg m−3

particle radius R 3 · 10−6 . . . 10−3m

Table 3.3: Simulation parameters for flow through a tracheobronchial bifurcation

0

0.2

0.4

0.6

0.8

1

10−4 10−3 10−2 10−1 100 101 102

Es
ca

pe
ra

te

Stokes number

43966 Nodes
303256 Nodes
970896 Nodes

2240764 Nodes

[8th September 2016 at 13:03 ,]

Figure 3.8: Convergence analysis. Results for Re = 50.

number Re and the particle radii is listed in Table 3.3. Simulations are ter-
minated after all particles either escaped the geometry or deposited at the
wall. The escape rate

E =
Nesc

Ninj

is defined as the ratio of the number Nesc of escaped and number Ninj of
injected particles.

Figure 3.8 shows escape rates for increasing lattice resolutions and Re =

50. The lattices consist of 0.04 · 106, 0.3 · 106, 1 · 106 and 2.2 · 106 fluid cells, re-
spectively, which corresponds to a spacing of h1 = 1.04 · 10−3m,
h2 = 5.2 · 10−4m, h3 = 3.5 · 10−4m and h4 = 2.6 · 10−4m. Simulations have
been carried out for 30 · 105 particles of radius 3 · 10−6, . . . , 10−4m. The rel-
ative error Erri, i = 1, . . . , 4, is defined as

Erri :=

√∑J
j=0

(
Ej,i − Ej,4

)2
√∑J

j=0 E
2
j,4

,

78 particulate flows : one way coupling

0.5

0.51

0.52

0.53

0.54

0.55

0.56

103 104 105

Es
ca

pe
ra

te

Number of particles

St = 0.95

[8th September 2016 at 13:03 ,]

Figure 3.9: Escape rate plotted against the number of particles with St = 0.95 and
Re = 50

where Ej,i is the escape rate for particles with radius Rj on a lattice with spa-
cing hi. Further, the EOC is defined as in Equation (3.20). For the computed
escape rates we obtain EOC1,2 = 1.54 and EOC2,3 = 3.76.

3.3.3 Determining Number of Particles

We now investigate the sensitivity of the escape rate on the number of in-
jected particles. Particles with radius R = 21µm are injected, leading to
St = 0.95, which is in the area of the most sensitive escape rates. Ten sim-
ulations have been executed for each 5 · 102, 103, 5 · 104, 105, 5 · 105 and
106 particles. The mean and standard deviation of the resulting escape rates
are plotted in Figure 3.9. One can see that for 104 particles the standard
deviation of the escape rate is less than 0.5%, hence simulations of only a
few ten thousand particles will lead to adequate results. This again is an
argument for the communication ideal strategy as this number of particles can
still be computed by a single core.

3.3.4 Validation

The parallel implementation of the particle phase is validated by comparing
our results to those obtained by Vasconcelos et al. [179] for the same geo-
metry. With the simulation set-up described above, escape rates for particles
with radius ranging from 3 · 10−6m to 10−4m and Reynolds numbers of
Re = 50, 100, 250, 500, 1300 are computed. For Re > 500 extensions are added
to reduce potential disturbances by the chosen boundary conditions. Figure
3.10 shows the fully developed flow and velocity contours for Re = 1300.

In Figure 3.11 the escape rate is plotted against the Stokes number St

St =
τP

τF =
2ρPR2

9ν

U

D
,

3.3 application : lung bifurcation (euler–lagrange) 79

Figure 3.10: Cutting plane through the centre of the geometry, showing the fully
developed flow and velocity contours for Re = 1300.

which compares particle momentum response time τP and characteristic fluid
time τF. It indicates that for St � 1 the particle velocity adapts quickly to
the fluid velocity, while for St � 1 the values of U are hardly affected by
uF. One can see that the curves for low Re almost collapse, but there is
a tendency towards lower escape rates with increasing Reynolds number.
This tendency is also obtained by Vasconcelos et al. [179], as they write that
“a slight departure from the universal collapse can be observed for Reynolds
number larger than a few hundreds” [179], although their deviations start
at larger Stokes numbers (St > 0.8). This difference might be caused by
different boundary conditions, as Vasconcelos et al. [179] used a velocity
boundary at the proximal end and pressure boundaries at the lateral end.

3.3.5 Parallel Performance

We will now investigate the parallel performance for the communication op-
timal parallel strategy. The parallel speedup is defined by

SP =
T1
TP

,

where TP is the execution time on a system with P PUs. For the speedup
computation, 71 of initially 128 subdomains Ω̃lh are neglected. In order to
obtain a result independent of the fluid computations the time necessary
for computing 150 · 103 particle trajectories and approximately 2.24 · 106
fluid cells is measured separately. The performance runs are executed exclus-
ively on a cluster system consisting of 480 nodes, each equipped with two
Intel R© Xeon R© CPUs E5-2670 v2 @ 2.60GHz, deactivated Hyper-Threading
and 64GB memory. The nodes are connected by an InfiniBand QDR net-
work. The code is compiled using openmpi v1.8.4 and gcc v4.9.2. This com-
bination results in super-linear speedup for the particle phase for P < 16,
which is probably owed to cache effects. Table 3.4 summarises the result,
showing the wall time per time step averaged over 56 223 time steps and the
obtained speedup. As already mentioned the parallel algorithm is highly
dependent on the domain decomposition as well as the particle distribution.

80 particulate flows : one way coupling

0

0.2

0.4

0.6

0.8

1

10−4 10−3 10−2 10−1 100 101 102 103

Es
ca

pe
ra

te

Stokes number

Re = 50
Re=100
Re=250
Re=500

Re=1300

[8th September 2016 at 13:04 ,]

Figure 3.11: Escape rates for increasing Re.

Therefore the presented speedup results can only be seen as an indicator for
the capabilities of the method. Ideal scaling can be achieved by an uniform
distribution of particles in the computational domain.

3.4 application : nasal cavity

This section has been published previously in [82] and has been altered to
fit the notation in this thesis.

The underlying geometry of the inner nose of a Central European male
with a peripheral obstructive ventilation disorder was obtained from Com-
puter Tomography (CT) scans. The male patient is 46 years old, 1.98m tall
and weighs 105kg. The CT data is segmented to a surface grid and voxel-
ised to a uniform lattice. Details for this procedure can be found in [110].

P
particles fluid combined

T [s] S T [s] S T [s] S

1 1.288 1.00 0.559 1.00 1.847 1.00

2 0.488 2.64 0.279 2.00 0.767 2.41

4 0.219 5.88 0.147 3.80 0.366 5.05

8 0.132 9.78 0.083 6.75 0.214 8.61

16 0.082 15.64 0.057 9.87 0.139 13.29

32 0.040 31.88 0.030 18.93 0.070 26.42

Table 3.4: Averaged wall time per time step in seconds and speedup results for sim-
ulations of particle flow in one bifurcation, separated for fluid and particle
computations. The speedup result for the particle phase shows a super-
linear behaviour.

3.4 application : nasal cavity 81

1

10

100

1 2 4 8 16 32

Sp
ee

du
p

Processing units

Ideal speedup
Particle speedup

Fluid speedup
Combined speedup

[8th September 2016 at 13:12 ,]

Figure 3.12: The speedup results for the particle phase shows super-linear behaviour,
which may be caused by cache effects.

The lattice spacing is set to h = 0.33mm, leading to 1.1 million fluid and 0.3
million boundary voxels.

A no-slip condition, realised by a bounceback condition, is applied at the
walls. A pressure boundary condition is applied at the nostrils. An inflow
velocity is imposed to the nasopharynx according to Poiseuille’s law for el-
liptic pipes. The respiratory cycle is approximated by a sinusoidal function
with a period of 5 s. The maximum inflow is set to 104ml/s, leading to
Re = 1925. Particles of 10 different sizes between 1µm and 35µm are injec-
ted once at the beginning of the inhalation as well as continuously during
an entire inspiratory cycle, which has — to the knowledge of the authors —
not been simulated before. For single injection 120.800 particles have been
used, while for continuous injection the total amount of injected particles
summed up to 604.000. For non-steady inhalation continuous injection re-
flects everyday breathing more realistically. It also leads to a more uniform
spatial distribution of the particles which results in a better load balancing
for the chosen parallelisation technique. The underlying fluid flow simula-
tion has been validated in Krause et al. [109] by comparison of the simulated
pressure drop to the results of a rhinomanometric examination of the patient
and literature data. Figure 3.13 shows the simulated flow field from differ-
ent points of view. The fluid velocity is visualised as coloured spheres. The
upper right picture shows a closeup view of the left inferior meatus with an
apparent increase in velocity caused by a narrow.

The simulation results reveal that attributed to a backflow a significant
amount of particles escape through the left nostril (up to 14% for 16µm
particles and single injection, illustrated in Figure 3.15). Therefore depostion
rates are computed in two ways, once by neglecting the number of particles
that escaped through the nostrils Nnostril according to

D∗ =
Ndep

Ndep +Ntrachea ,

82 particulate flows : one way coupling

Figure 3.13: The simulated flow field for an expiration flow rate of Q = 100 ml/s
from different point of views, whereby the right upper picture displays
a closer look to a significant narrow at the left inferior meatus. The
magnitude of the velocity is visualised as coloured spheres. Images from
[110].

3.4 application : nasal cavity 83

0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1

Stokes number

Shanley
DSingle
D∗

Single
DRepeated
D∗

Repeated

[8th September 2016 at 13:29 ,]

Figure 3.14: Deposition rates D plotted against the Stokes number for single and
repeated injection of particles in comparison to the data obtained by
Shanley et al. [161]. The adjusted curvesD∗ neglect particle loss through
the nostrils.

and once by including it

D =
Ndep

Ndep +Ntrachea +Nnostril .

The results are plotted against the Stokes number in Figure 3.14. To allow
a better comparison to steady inhalation, St is computed from the spatially
and temporally averaged inflow velocity. The deposition values are taken
after one complete respiratory cycle (inspiration and expiration). A good
agreement for D∗ is found by comparison to the function

Ed(St) = 1− exp(−250 (St)2)

fitted to the simulation data obtained by Shanley et al. [161] for steady inhal-
ation. Differences may be attributed to variability of nasal cavity models, the
narrow in the left nostril and the time-dependent inflow. It can be seen that
the deposition rate is again highly dependent on the Stokes number. Par-
ticles with Stokes numbers less than 0.01 can escape the nose unhindered,
while more than 90% of the particles with St = 1 deposit. For the adjusted
data, deposition for repeated injection is greater than for single injection for
the entire range of the Stokes number. For the original data, deposition D
is comparable for single and repeated injection and St < 0.2. For greater
St depostion for single injection increases faster. After a second respiratory
cycle without re-injection of particles, the rates vary by less than 2%.

The change of the escape rates over time for particles of radius 10µm is
illustrated in Figure 3.16 for single injection and Figure 3.17 for continuous
injection. The blue curve indicates the fluid velocity applied at the boundary,
where negative values mean inhalation. At time t = 0 s particles are injected,
0.5 s later particle escape through the trachea starts. The escape rate remains
constant after 2.4 s at 72%. Particle loss through the left nostril starts at 0.6 s.

84 particulate flows : one way coupling

Figure 3.15: Closeup of the left nostril. Streamlines indicate a backflow, forcing par-
ticles to turn and escape through the left nostril.

For single injection after 1s no more particles escape through the nostrils.
With beginning exhalation, there is no increase in the escape rates of the
nostrils. For repeated injection, particles released shortly before the exhala-
tion change direction with beginning exhalation at 2.5 s and exit the cavity
through both nostrils. For single injection, 72% escape through the trachea
which is considerably more than for continuous injection (36%).

In Figure 3.18 and Figure 3.19 deposition patterns for 10µm particles for
single and continuous injection are illustrated. Red colour indicates depos-
ited particles, while blue coloured particles are still active. The upper two
images show the distribution after inhalation and the lower images after
an entire respiratory cycle. In both cases most particles deposit in the an-
terior part of the nasal cavity, minor deposition occurs at the transition to
the nasopharynx. This is reflected in the deposition patterns, as significantly
more particles deposit on the right side. Active particles are located in both
the frontal and the maxillary sinuses and remain there even after the com-
pleted cycle.

3.4 application : nasal cavity 85

−1

−0.5

0

0.5

1

−1 0 1 2 3 4 5

−104

−52

0

52

104

Es
ca

pe
ra

te

Q
[e
x
tm

l/
e
x
ts
]

Time (s)

Q
Injected Particles (%)

Depositon
Trachea escape rate

Right nostril escape rate
Left nostril escape rate

[8th September 2016 at 13:29 ,]

Figure 3.16: Simulation of particulate flow through a nasal cavity. Particles of radius
10µm are injected once at 0 s. The red line indicates the time-dependent
flow of maximal 104ml/s at the nasopharynx. Positive values denote an
outflow through the nasopharynx.

3.4.1 Summary

When simulating time-dependent particulate flows, one faces the problem,
that the domain decomposition used for fluid simulation is not optimal for
parallel computation of particle trajectories. Therefore, we compared the
complexity of a load optimal and a communication optimal strategy for par-
allelisation of particle trajectory computation. Both strategies are based on
the given fixed domain decomposition from the underlying fluid computa-
tion with LBM. Under the assumption of homogeneous distribution of parti-
cles the communication optimal strategy is found to be more efficient and is
therefore implemented and validated. The EOC of the implemented method
is computed for varying lattice resolutions and particle numbers. Speedup
tests are conducted and lead to super-linear scaling, that may be caused by
caching effects. The method is used to investigate particle deposition in the
human nasal cavity for non-steady airflow for one respiratory cycle. Parti-
cles of radii between R = 1µm and R = 35µm are injected both, once at
the beginning of inspiration as well as continuously during inspiration. For
St < 0.01most particles follow the air stream and exit the cavity through the
trachea, while for St > 1 most particles deposit. If the particle loss through
the nostrils is neglected, repeated injection shows higher deposition for all
simulated Stokes numbers. Particles of radius R = 10µm are investigated in
more detail. A significant amount of particles gets lost through the nostrils
in consequence of a backflow. It is found that for continuous injection the
particle escape rates through the nostrils increase during expiration. In both
cases most particles deposit in the anterior region and remain in the sinuses
after one completed respiratory cycle. Therefore, transient simulations are
necessary, when simulating particle flow in nasal cavities.

86 particulate flows : one way coupling

−1

−0.5

0

0.5

1

−1 0 1 2 3 4 5

−104

−52

0

52

104

Es
ca

pe
ra

te

Q
[m

l/
s]

Time (s)

Q
Injected Particles (%)

Capture Rate
Trachea escape rate

Right nostril escape rate
Left nostril escape rate

[8th September 2016 at 13:29 ,]

Figure 3.17: Simulation of particulate flow through a nasal cavity. Particles of
radius 10µm are injected continuously during the inspiratory cycle.
The red line indicates the time-dependent flow of maximal 104ml/s
at the nasopharynx. Positive values denote an outflow through the
nasopharynx.

3.4 application : nasal cavity 87

Figure 3.18: Particle distribution for non-recurring injection of 10µm particles in a
human nasal cavity (nostrils on the left side). The upper pictures show
the particle deposition after the inhalation, the lower ones after the com-
pleted breathing cycle. Red particles are deposited, while blue particles
are still active.

88 particulate flows : one way coupling

Figure 3.19: Particle distribution for continuously injected 10 µm particles in a hu-
man nasal cavity (nostrils on the left side). The upper pictures show the
particle deposition after the inhalation, the lower ones after the com-
pleted breathing cycle. Red particles are deposited, while blue particles
are still active.

3.5 euler–euler 89

3.5 euler–euler

After focusing on the EL approach in the first half of this chapter we will
now concentrate on the EE method. In the EE approach both components,
the particles and the fluid, are assumed to be continuous and are modelled
in the Eulerian form. The remainder of this chapter has been published
originally in [176] and was slightly revised.

For the design of new filtering systems or to enable predictions on the
impact of the exposure of the human respiratory system to air pollution, as
well as in many different engineering disciplines like chemical or process
engineering the simulation of particles in a fluid flow is of great import-
ance [120, 152]. Here, spherical particles in a fluid with radii between 1µm
and 800µm are considered. This is of interest in many applications, e. g. in
filtration, drug delivery by spray medication with a nebuliser or the simu-
lation of particle-laden flows in a bifurcation of the upper human bronchial
tree, i.e. the trachea. The deposition is studied regarding the Stokes number,
defined as the ratio of particle relaxation time to a characteristic time of the
flow. Examined are particles with values between St = 0.01 and St = 15

for the considered setup. This has also been investigated by Henn et al. [82]
and Vasconcelos et al. [179]. In the described regime the particle compon-
ent is characterised as dilute and inertial. The low concentration results in
a negligible diffusion coefficient, that is also inversely proportional to the
product of particle radius and solvent viscosity. In this range of paramet-
ers however, the drag force has to be taken into account, since also Stokes
numbers greater than 0.1 are considered. This implies that inertia has to be
included in the model.

For the simulation of systems with this parameter setup usually an Euler–
Lagrange (EL) approach is chosen [82, 179]. In this approach the particles
are seen in a Lagrangian frame of reference, with the observer moving along.
However, for a higher concentration of considered objects, which is required
if a precise deposition pattern is desired, a continuous model is more effi-
cient, since the parallelisation of a Lagrangian particle component requires
more effort, as shown in Section 3.2.2. The computational costs of an EE

scheme scale solely with the resolution of the computational domain and
not with the amount of particles. For this approach the point of view is fixed
in space and the particle concentration is observed as a continuous quantity.
This frame of reference has been used by Lee and Liu [120] and Rao and
Faghri [152] for the simulation of particle-laden flows in filter geometries. It
is usually applied to flows of nano-particles that require the consideration
of diffusion, which is included in this model. The Stokes number on the
other hand is small and inertial effects can be neglected. To investigate the
deposition for a broad range of particle radii in the upper bronchial tree and
the pharynx, Zhang et al. [203] and Kleinstreuer and Zhang [106, 105] used
the Eulerian approach in addition to the Lagrangian one to also consider
nano-particles. However, in this framework the formulation of boundary
conditions is less flexible to model particle deposition. The reason is that in
an Eulerian approach with continuous concentration the formulation of an
outflow condition that prevents a flow back into the computational domain
is not as straight forward as for Lagrange particles.

The main aim of this section is to extend the EE approach to be applicable
to micro-particles and to take advantage of the reduced computational cost.
The equations for the fluid as well as the particle component are solved
using the LBM [2, 30] and the proposed scheme is implemented in OpenLB.

90 particulate flows : one way coupling

Within this framework domain decomposition methods can be applied to
both components, which leads to massive improvements in computational
performance [58, 84]. Since LBM also allows a formulation of boundary con-
ditions on a mesoscopic scale, the deposition of particle densities is mod-
elled by a newly proposed capture boundary. It is designed to only allow
an unidirectional flow of particles. On the macroscopic scale, this requires
a complicated implementation. This gives the possibility to model sticky
walls that capture particles during the simulation and also keep track of the
amount of already deposited particles.

Extensions to the Eulerian approach that account for inertia and hence
are applicable to the regime of micro-particles have also been proposed by
Sokolichin et al. [167] and Kaufmann et al. [102]. As found by the latter,
numerical instabilities can occur in the considered simulation setup, since
the problem is convection-dominated. The application of a larger diffusion
coefficient or numerical stabilisation schemes that add artificial diffusion, as
discussed by John and Schmeyer [98] and Augustin et al. [7], lead to de-
viations in the solution compared to the one obtained with a Lagrangian
approach. In this article a Smagorinsky turbulence model is used for the
fluid flow and a similar model is proposed and newly applied to the par-
ticle component. Compared to the physical model, additional diffusion is
applied by this scheme. To reduce the influence of this effect to a negligible
scale on the relevant quantity, i.e. the escape rate, a correction method is
introduced. Therefore the proposed scheme also yields viable results in the
convection-dominated regime. To the knowledge of the authors this is the
first EE approach to the simulation of deposition of inert particles using LBMs.
The proposed extension consists of a one way coupling of a NSE on an ADE

by calculating the particle velocity from the flow field. This is done using
Newton’s second law of motion and Stokes drag force.

This chapter is organised as follow: The mathematical model is described
in Section 3.5.1. Then the novel numerical framework for the computation
as well as appropriate and also novel boundary conditions are presented in
Section 3.5.3 combined with the applied stabilisation techniques and an al-
gorithm for the whole scheme. Finally, in Section 3.6 the introduced Smagor-
insky model for the ADE is evaluated and the proposed method is applied to
a schematic bifurcation of the trachea into the main bronchi. The results are
compared to the ones obtained in Section 3.3.4 and the work of Vasconcelos
et al. [179] for validation. The results are found to be in excellent agreement,
validating this extension of the EE scheme to inertial particles.

3.5.1 Mathematical Modelling

The model consists of three parts, namely the fluid and particle compon-
ent as well as their coupling. To describe the fluid flow the incompressible
NSE (3.1) is used. As initial condition

uF(x, 0) = 0 for x ∈ Ω

is chosen. The boundary conditions are discussed in Section 3.5.4.
The distribution of the particle concentration c : Ω× I→ R+ is computed

by solving an ADE

∂tc+ u
P · ∇c−D∆c = S in Ω× I , (3.21)

where the particle velocity is denoted by uP : Ω× I→ Rd and S represents
source and sink terms within the considered domain. D ∈ R+ is a constant

3.5 euler–euler 91

diffusion coefficient. Cussler [42] lists experimentally obtained values for
D. They reach from ≈ 10−5m2/s for diffusion within gases at one athmo-
sphere to ≈ 10−50m2/s for diffusion within solids. Initially, the particles
are assumed to be uniformly distributed,

c(x, 0) = 1 for x ∈ Ω .

Boundary conditions for this equation are also discussed in Section 3.5.4.
Since the developed scheme is used to describe particles with a diameter

in the micrometer scale, drag force has to be taken into account. This is done
by applying Newton’s second law of motion

Mdtu
P = FSt in Ω× I , (3.22)

with particle radius R > 0 and mass M > 0 in order to compute the particle
velocity uP from the fluid field uF. The force used here is the Stokes drag
force, given by

FSt = 6πρFνR(uF − uP) . (3.23)

At this point other forces of the Maxey–Riley Equation (3.4) may be con-
sidered, however they are of minor importance in the chosen range of para-
meters and will be neglected. Since all quantities are viewed in the Eulerian
frame of reference, the material derivative of the velocity has to be con-
sidered. The resulting velocity field uP is applied in the ADE, which repres-
ents the coupling of the fluid to the particles. Since the particle fraction is
assumed to be dilute, a back-coupling can be neglected.

3.5.2 Fluid Component

The carrier phase modelled by the NSE (3.1) is solved on the discrete lattice
Ωh and discrete time interval Ih by a D3Q19 BGK-LBM as introduced in
Section 2.3.

3.5.3 Particle Component

For the simulation of the particle component two steps are required. The
velocity has to be modified to account for inertia of the considered objects
and is applied in an ADE that is solved afterwards.

particle distribution
In the LBM framework it is also possible to solve the ADE (3.21) by consider-
ing the system

gi(xh + ξih
2, t+ h2) = g̃i(xh, t) , (3.24)

g̃i(xh, t) = gi(xh, t) +
1

τP

(
gi(xh, t) − geq

i (xh, t)
)

. (3.25)

In contrast to the LBM solving the NSE, the density distribution functions
gi : Ωh × Ih → R+ relax towards the equilibrium distribution

g
eq
i (xh, t) = ωiρP

h

(
1+ 3ξiu

P
h(xh, t)

)
,

that is obtaind by truncating the Taylor expansion of the continuous Equilib-
rium Distribution Function (EDF) (2.26) after the second addend. The concen-
tration of the particles is then denoted by ρP

h : Ωh× Ih → R+, cf. Mohamad

92 particulate flows : one way coupling

[132] and the discrete particle velocity by uP
h : Ωh × Ih → Rd. Both can

be computed as the zeroth and first discrete moments of gi. The numerical
particle concentration ρP

h ∝ c is proportional to the physical particle con-
centration c and should not be mistaken for the particle mass density ρP.
The relaxation parameter τP is linked to the diffusivity D by τP = 3D+ 1/2,
instead of the viscosity. To recover the ADE from the lattice Boltzmann for-
mulation, a smaller set of discrete velocities is sufficient, compared to the
setup for the NSE. This has been shown e. g. by Huang, Lu and Sukop [92].
However, for this smaller set, e. g. a D2Q5 lattice with weights ω0 = 1/3

and ω1 = ω2 = ω3 = ω4 = 1/6, the momentum conservation is no longer
guaranteed, whereas the conservation of mass still holds [92, 166].

particle velocity
By inserting the formulation of Stokes drag (3.23) and taking the material
derivative, (3.22) yields

M
(
∂tu

P
h(xh, t)+uP

h(xh, t) · ∇uP
h(xh, t)

)
=

= 6πRρFν
(
uF
h(xh, t) − uP

h(xh, t)
)

.
(3.26)

The mass of one particle M can be computed from ρP and R, since all par-
ticles are assumed to be spherical. Considering the Stokes number St, as
defined in Equation 3.3, the right hand side of (3.26) can be rearranged. Ap-
plying a fEM for temporal discretisation, the particle velocity of a new time
step reads

uP(xh, t+h2) =
(
uP + h2

(
1

St

U

L
(uF − uP) − uP · ∇uP

))
(xh, t) . (3.27)

The fluid velocity uF is obtained from the fluid component and ∇uP is com-
puted by a first order upwind scheme.

3.5.4 Boundary Conditions

While for the fluid component standard boundary conditions can be applied,
the formulation of a new capture boundary is required for the particle com-
ponent. For the fluid phase, a velocity boundary as proposed by Skordos
[164] is used as inflow condition, while the bounceback rule [171] can be
applied at the no-slip walls. For a grid node xh on the outflow boundary,
the condition

fi(xh, t) =
1

2

(
fi(xh + h2n, t) + fi(xh + 2h2n, t)

)
, i ∈ {0, ...,q− 1}

is applied, with n being the unit normal vector on the boundary pointing to
the interior of the considered domain. By this interpolation, the conditions

∂n(ρ
F
hu

F
h) = 0 and ∂nρ

F
h = 0

hold approximately, where ∂n = ∂/∂n denotes the derivative in direction of
the normal vector. At this point the Neumann boundary condition ∂nuF

h = 0

can be inferred by

0 = ∂n(ρ
F
hu

F
h) = u

F
h∂nρ

F
h + ρF

h∂nu
F
h = ρF

h∂nu
F
h .

This outflow condition is found to have only a limited influence on the
interior of the computational domain for laminar flow patterns. A more

3.5 euler–euler 93

detailed discussion on LBM outflow boundary conditions can be found in
Junk and Yang [100].

The particles at the inflow can be inserted using a Dirichlet boundary con-
dition, whereas for the outflow the same condition as for the fluid is applied
to the gi of the boundary. To allow for deposition, a capture boundary con-
dition is formulated. For reasons of simplicity, the particles are not assumed
to be able to get back into the fluid once they are deposited. In the frame-
work of LBM it is easy to construct such a boundary at a grid node xh. It
simply requires setting

gi(xh, t) = 0, i ∈ {j : xh + ξj ∈ Ωh} (3.28)

for every i whose respective ξi is pointing at an interior node of the compu-
tational domain. As deposited particles are transported by a layer of mucus
in the tracheobronchial system, possible particle cumulation on the bound-
ary is small and can be neglected. The captured amount of particles is com-
puted from density distributions pointing at such a boundary node.

3.5.5 Stabilisation

To be able to apply the model to flows with various Reynolds numbers,
stabilisation schemes [7, 98] need to be applied. This aims at eliminating
numerical errors that occur when leaving the laminar regime, with as little
impact on the desired solution as possible. Again standard schemes can
be applied for the fluid component, while an appropriate procedure has
to be found for the ADE in the convection-dominated case. For the fluid a
Smagorinsky type turbulence model is chosen as explained in Section 2.3.2.

The computation of the particle velocity is stabilised by applying a clas-
sical first order upwind scheme, described by Courant, Isaacson and Rees
[37] for the computation of the velocity gradient in Equation (3.27). When
high velocities are considered, the Péclet number Pe = LU/D becomes large.
This indicates a convection-dominated problem, which results in large de-
viations of the distribution functions fi from the equilibrium state in the
framework of LBM. Instabilities in the results of the particle component,
arising from this condition, can be smoothened by applying a Smagorinsky
model similar to the one for the fluid introduced in Section 2.3.2. Equa-
tions (2.49) and (2.50) remain unchanged. However, Πα,β and Sα,β can be
seen as indicators of critical areas, however they have no physical equival-
ent in this context. While in Section 2.3.2 the Smagorinsky model adapts
τ, which is connected to the fluid viscosity ν, in this case τP is changed,
which is connected to the diffusivity D. In this sense, on the macroscopic
level, artificial diffusion is introduced in regions of large deviation from the
equilibrium state. This leads to more interaction between the particles and
the walls. Regarding the chosen boundary conditions this leads to a higher
deposition rate due to numerical diffusion.

The focus in the following simulations will be on the escape rate as a
function of the Stokes number given as

E(St) =
Nesc(St)

Ninj ,

given as the ratio of escaped to injected particles. By comparison, the results
of the proposed Eulerian scheme show deviations to the Lagrangian ap-
proach by Kaufmann et al. [102]. This is caused by the increased diffusion
of the Smagorinsky model resulting in particles being trapped at the walls.

94 particulate flows : one way coupling

Listing 3.2: LBM algorithm including Eulerian particles.

0 for t ∈ Ih {

for xh ∈ Ωh {

for i = 0, ...,q− 1 {

f̃i(xh, t) = fi(xh, t) + 1
τ

(
fi(xh, t) −Mh,i(xh, t)

)

fi(xh + ξih
2, t+ h2) = f̃i(xh, t)

5 }

}

compute fluid boundary conditions

compute uP(xh, t+ h2) from uP(xh, t),uF(xh, t),St,U,L
for i = 0, ...,q− 1 {

10 g̃i(xh, t) = gi(xh, t) + 1
τ

(
gi(xh, t) − geqi (xh, t)

)

gi(xh + ξih
2, t+ h2) = g̃i(xh, t)

}

compute particle boundary conditions

}

To obtain viable results, a corrected value of the escape rate is introduced
by

Ecorr(St) =
E(St)

E0
. (3.29)

The reference value E0 is computed by directly applying the fluid velocity to
the particles, therefore omitting the drag force, so that no deposition should
occur since the physical diffusion is assumed to be negligible. However, due
to the additional numerical diffusion, it is found that not all particles, but
only a number E0 < 1 exit the geometry through the bronchial openings.
The percentage of particles leaving through the bronchial openings is taken
as reference value E0. This value has to be determined specifically for each
parameter setup.

3.5.6 Algorithm

An overview of the required steps of the developed EE model for particle-
laden fluid flows with LBM is given in Listing 3.2. For the computation of
the particle velocity uP(x, t) Equation (3.27) is applied.

3.6 application : lung bifurcation (euler–euler)

For the simulations an idealised bifurcation, representing the trachea split-
ting into the main bronchi, is chosen as computational domain (Figure 3.20).
It is designed after Weibel’s model "A" [188] with main tube diameter dM =

2 cm and daughter tube diameter dD = 2−1/3dM. The angle between the
branches is α = 60◦. The inflow fluid velocity is defined by a Poiseuille
flow profile and the particles are assumed to be uniformly distributed while
entering the geometry through the main tube. For the walls the capture
boundary described in Section 3.5.4 is applied. The amount of particles leav-
ing the geometry through the daughter tubes is measured and used for the
computation of the escape rate. Additional simulation parameters are given
in Table 3.5. As characteristic values the diameter of the main tube L and

3.6 application : lung bifurcation (euler–euler) 95

Figure 3.20: Considered bifurcation: original geometry (left), discretisation into a
grid with 43,966 nodes (mid) and 2,240,764 nodes (right).

quantity symbol value

characteristic length L 0.02m

characteristic velocity U 0.0075, 0.0375, 0.075, 0.375m2/s

kinematic viscosity ν 0.15 · 10−4m2/s

Reynolds number Re 10, 50, 100, 500

fluid density ρF 1.205kg/m3

particle density ρP 998.2 kg/m3

particle radius R 18.9, ..., 735.5µm

Stokes number St 0.01, ..., 15

Diffusivity D 10−6m2/s

Table 3.5: Model parameter for the simulation of dilute particle-laden flows in a bi-
furcation.

the magnitude of the mean entrance velocity U have been chosen, while all
other values represent the simulation setup of water droplets in air.

The computations are performed for various Reynolds numbers, which is
achieved by applying different entrance velocities. Despite that the flow pat-
tern remains mainly laminar. The described stabilisations have to be applied
for U = 0.075m/s and U = 0.375m/s, since the Péclet number becomes
large, although the chosen diffusivity already exceeds the realistic value by
several orders of magnitude. For both components the Smagorinsky model
is applied with the constant CS = 0.01 for the computations.

discussion
The results of the particle flow field are shown in Figure 3.21 for the ab-
sence of inertia and particles with Stokes numbers 0.63 and 10. The indic-
ated streamlines imply a deposition rate increasing with St. The inflow of
particles is constant over time, hence the computation yields a steady state
solution, shown in Figure 3.22. The escape rate is given by

E(St) =
Nesc(St)

Ninj , (3.30)

96 particulate flows : one way coupling

Figure 3.21: Slice through the bifurcation showing the flow field for air (left) and
particles with St = 0.63 (mid) and St = 10 (right) with streamlines.

Figure 3.22: Slice through the bifurcation showing the distribution of particles not
affected by inertia (left), with St = 0.63 (mid) and with St = 10 (right).

with Nesc(St) and Ninj being computed by integration of the populations en-
tering or leaving the computational domain through the respective bound-
aries.

The results in Figure 3.23 show the escape rate before correction and there-
fore the impact of a non-physical diffusion coefficient. Even for small St a
considerable amount of particles deposits, although they are expected to
directly follow the streamlines of the fluid and therefore have no wall in-
teraction. This demonstrates the necessity of post-processing the computed
data. The corrected escape rate is shown in Figure 3.24. Although the loss of
particles due to diffusion has been reduced, deviations for different D can
still be observed for Stokes numbers between 0.1 and 1, where less diffusiv-
ity yields higher escape rates.

To show grid independence of the solution, the computations have been
performed on different resolutions (see Figure 3.25) with Re = 50 and
D = 10−6m2/s for the lattice spacings h1 = 1.04 · 10−3m, h2 = 0.52 · 10−3m,

3.6 application : lung bifurcation (euler–euler) 97

0

0.2

0.4

0.6

0.8

1

10−3 10−2 10−1 100 101 102

Es
ca

pe
ra

te
E

Stokes number St

D = 0.8 · 10−6

D = 1.2 · 10−6

D = 1.6 · 10−6

D = 2.0 · 10−6

[8th September 2016 at 13:34 ,]

Figure 3.23: Escape rate plotted against the Stokes number for various diffusion coef-
ficients, with Re = 50 on a grid with 970896 nodes.

h3 = 0.35 · 10−3m and h4 = 0.26 · 10−3m in a diffusive scaling (∆t ∼ h2).
Labelling the corresponding sets of escape rates with Ei, i = 1, . . . , 4, the
EOC becomes

EOCj,k =
ln ‖Ej − E4‖2 − ln ‖Ek − E4‖2

lnhj − lnhk
. (3.31)

For the presented results this yields EOC1,2 ≈ 1.38 and EOC2,3 ≈ 2.94. By
varying resolutions the main deviation is found for Stokes numbers between
0.1 and 1 also. With respect to the diffusion coefficient a diffusive EOC EOCD

can be computed analogously by the results shown in Figure 3.24. For its
computation the hi in Equation (3.31) are replaced by D1 = 2 · 10−6m2/s,
D2 = 1.6 · 10−6m2/s, D3 = 1.2 · 10−6m2/s and D4 = 0.8 · 10−6m2/s. For
Re = 50 and h = 0.26 · 10−3m this yields EOCD1,2 ≈ 1.3 and EOCD2,3 ≈ 1.94.

For further validation the results are compared to those obtained by Vas-
concelos et al. [179] and Henn et al. [82]. In both articles an EL approach
has been applied to an identical geometry for different velocities. While in
the first one the computations have been performed within a finite volume
framework, LBM has been used in the latter. The results in Figure 3.26 show
that the escape rates coincide for small Reynolds numbers, whereas for
Re > 100 a deviation towards higher deposition can be seen for St ∈ [0.1, 1].
This has also been observed by Henn et al. , while Vasconcelos et al. found
a similar trend, but for St > 0.9. A comparison to their results is shown
in Figures 3.27 and 3.28. The deviations to other results might arise from
the difference between the EL and EE approach, used for the mathematical
modelling. The latter has been shown to be sensitive in this range of Stokes
numbers regarding the diffusion coefficient.

3.6.1 Summary

When applying common EL approaches, the simulation of particle depos-
ition can lead to large computational effort. This is the case especially in a

98 particulate flows : one way coupling

0

0.2

0.4

0.6

0.8

1

10−3 10−2 10−1 100 101 102

Es
ca

pe
ra

te
E

Stokes number St

D = 0.8 · 10−6

D = 1.2 · 10−6

D = 1.6 · 10−6

D = 2.0 · 10−6

[8th September 2016 at 13:34 ,]

Figure 3.24: Corrected escape rate plotted against the Stokes number for various dif-
fusion coefficients, with Re = 50 on a grid with 970896 nodes.

complex geometry if an adequate amount of particles has to be considered
to reach a desired level of accuracy. An EE approach has been extended to
the domain of dilute and inertial particles, to take advantage of its easy par-
allelisability in the framework of LBM. As this method allows to formulate
boundary conditions on a mesoscopic scale, a new capture boundary has
been introduced. It achieves more flexibility in the modelling and can be
further extended. Also the problem of distorted results caused by the sta-
bilisation approach has been solved by normalising the escape rate with a
reference value.

The developed scheme has been validated in the test case of the applica-
tion to a bifurcation and it has been shown that viable results are obtained.
Respecting the artificial diffusion by a proposed reasonable correction of the
obtained data with computed reference values, the solution is found to fit
the physical model.

For Stokes numbers less than 0.1 the particles traverse the geometry un-
hindered, while more than 95% are deposited for St > 10. The transition re-
gion shows a high sensitivity with respect to parameter variation, especially
for St ∈ [0.1, 1], whereas the limits of this range are just weakly affected.

3.6 application : lung bifurcation (euler–euler) 99

0

0.2

0.4

0.6

0.8

1

10−3 10−2 10−1 100 101 102

Es
ca

pe
ra

te
E

Stokes number St

43966 Nodes
303256 Nodes
970896 Nodes

2240764 Nodes

[8th September 2016 at 13:34 ,]

Figure 3.25: Escape rate plotted against the Stokes number for different resolutions,
with Re = 50 and D = 10−6m2/s, showing grid independence of the
results.

0

0.2

0.4

0.6

0.8

1

10−3 10−2 10−1 100 101 102

Es
ca

pe
ra

te
E

Stokes number St

Re = 10
Re = 50
Re = 100
Re = 500

[8th September 2016 at 13:34 ,]

Figure 3.26: Escape rate plotted against the Stokes number for various Reynolds
numbers, with Re = 50, D = 10−6m2/s on a grid with 970 896 nodes.

100 particulate flows : one way coupling

0

0.2

0.4

0.6

0.8

1

10−3 10−2 10−1 100 101 102

Es
ca

pe
ra

te
E

Stokes number St

Henn et al
Vasconcelos et al

Ecorr

[13th September 2016 at 16:01 ,]

Figure 3.27: Escape rate plotted against the Stokes number for Re = 50 and D =

10−6m2/s in comparison to the results obtained by Henn et al. [82] and
Vasconcelos et al. [179]. Denoted by Ecorr = E/E0 is the corrected escape
rate.

0

0.2

0.4

0.6

0.8

1

10−3 10−2 10−1 100 101 102

Es
ca

pe
ra

te
E

Stokes number St

Henn et al
Vasconcelos et al

Ecorr

[13th September 2016 at 16:01 ,]

Figure 3.28: Escape rate plotted against the Stokes number for Re = 500 and D =

10−6m2/s in comparison to the results obtained by Henn et al. [82] and
Vasconcelos et al. [179]. Denoted by Ecorr = E/E0 is the corrected escape
rate.

4PA RT I C U L AT E F L O W S : T W O WAY C O U P L I N G

When particles move through a fluid, a certain amount of fluid, which was
initially at rest is displaced and starts moving. This is a minor factor for few
particles of small size, but if the particle concentration and/or particle sizes
increase, the growing impact of physical processes that have been neglected
in the previous chapter require to model the back coupling of the particles
on the fluid. Such models are said to be two way coupled. Processes that
require two way coupling can be e. g. the clogging of a filtration device
[117] or the movement of sediment in a river. It is obvious, that also particle-
particle interaction has to be respected during filtration simulations, as a
filter does not clog if all filtered particles deposit at the exact same position.
Besides that, it would be non-physical. Simulations respecting also inter-
particle collisions are said to be four way coupled.

To include back coupling in our simulations, we first have to reformulate
the mathematical model introduced in Section 3. We therefore divide the
domain Ω ⊂ Rd into a fluid part ΩF(t) ⊂ Ω and N ∈ N pairwise disjoint
rigid particles ΩP

k(t) ⊂ Ω, k = 1, . . . ,N, such that at all times t ∈ I = [0, T],

ΩF(t)∪
N⋃

k=1

ΩP
k(t) = Ω for t ∈ I . (4.1)

Using the particle density ρP
k : ΩP

k × I → R and the total mass of a rigid
body Mk =

∫
ΩP
k(t)

ρP
k(x, t) dx, the center of mass of each subdomain ΩP

k(t)

is defined as

Xk(t) :=
1

Mk

∫
ΩP
k(t)

ρP
k(x, t) x dx .

Although we defined the particle density to be depending on space and
time, throughout this thesis we assume it to be constant.

Again we use capital letters for Lagrangian notation and properties of
Lagrangian particles and lower case letters for quantities seen from an Eu-
lerian point of view. The fluid domain is governed by the Navier–Stokes
Equation (NSE) in the following form

∂tu
F + (uF · ∇)uF =

1

ρF∇ · σ(u
F,p) + f in ΩF × I , (4.2a)

∇ · uF = 0 in ΩF × I , (4.2b)

uF = uF
0 on Γ(t)× I , (4.2c)

plus adequate initial conditions. Here Γ(t) = ∂ΩF\
⋃
k ∂Ω

P
k(t) represents the

part of the fluid boundary that does not belong to a particle. A boundary
condition at the particle boundaries will be stated later. In this work, we only
treat Newtonian fluids, where the stress tensor σ(uF,p) = 2νS(uF) − pId,
and the strain rate S(uF) = 1/2(∇uF + (∇uF)>).

101

102 particulate flows : two way coupling

The rigid particles are seen in a Lagrangian frame and move according to

MkdtUk(t) = Fk(t) for t ∈ I , (4.3a)

dtXk(t) = Uk(t) for t ∈ I , (4.3b)

dt

(
I
k
(t)ωk(t)

)
= Tk(t) for t ∈ I , (4.3c)

dtθk(t) = ωk(t) for t ∈ I , (4.3d)

for k = 1, . . . ,N. Here Uk : I→ Rd is the translational velocity of the centre
of mass Xk of the rigid domain ΩP

k. The angle of rotation is denoted by
θk : I → Rd, its derivative, the rotational velocity by ωk : I → Rd and the
torque acting on particle k by Tk : I → Rd. The elements of the moment
of inertia tensor I

k
: I → Rd×d of particle k for rotation around an axis

through the center of mass are defined by

Ik,αβ :=

∫
ΩP
k

ρ(r)r2δαβ − rαrβ dx for α,β = 1, . . . ,d,

where r = x−Xk = (r1, · · · , rd)>. The local velocity uP
k : ΩP

k × I→ Rd at a
point in the particle domain can then be computed by

uP
k(x, t) = UP

k(t) +ωk(t)× (x−Xk(t)) in ΩP
k × I .

For calculations in two dimensions, the three dimensional angular velocity
is defined as ωk(t) := (0, 0,ωk)(t) and the cross product as ωk × x :=

(−ωkx1,ωkx0, 0) for a two dimensional vector x = (x0, x1).
Equations (4.2) and (4.3) are further coupled by the hydrodynamic forces

Fk =

∫
∂ΩP

k

σ(uF,p)n dS+
∑
j

F
(j)
k for k = 1, . . . ,N (4.4)

and torques

Tk =

∫
∂ΩP

k

(x−Xk)× σ(uF,p)n dS +
∑
j

T
(j)
k for k = 1, . . . ,N , (4.5)

where n is the unit outwards pointing normal on the particle boundary ∂ΩP
k

and F(j)k and T (j)k are additional forces and torques that may apply.
Finally we enforce a no-slip condition determining that the fluid velocity at

the particle boundaries equals the particle velocity

uF(x, t) = uP
k(x, t) on ∂ΩP

k × I . (4.6)

Two way coupled Euler–Lagrange (EL) simulation methods can be categor-
ised in Fixed Mesh methods and Body Conformal Mesh methods, such as the
Arbitrary Lagrangian–Eulerian (ALE) method [89]. Due to the algorithmic
complexity as well as the high computational cost for the re-meshing, the
latter methods are limited to the simulation of only a few particles. Such EL

methods, where the objects are not resolved in the fluid, need a drag force
model such as the one introduced in Equation (3.7) enabling a two-way
coupling of the fluid with the moving object. In the following, this type of
particles are called subgrid scale particles. With it, the simulation of millions
of particles becomes feasible [177]. However, the objects’ shapes are not ar-
bitrary but limited to rather simple primitives [184]. The most prominent
Fixed Mesh methods for fully resolved objects are the Immersed Boundary

4.1 particle-particle interaction 103

Method (IBM) [144] and Fictitious Domain Method (FDM) [66, 68]. Both em-
ploy multiple grids, one Eulerian for the fluid phase and one Lagrangian
for each particle. The Lagrangian grids move with the particle velocity that
results from the applied forces. The back coupling onto the fluid can be real-
ised by forcing schemes as introduced in Section 2.3.3. Contrary to Euler–
Euler (EE), EL methods in principle allow the simulation of arbitrary shapes
[135]. However, there seem to exist only simulations for single non-spherical
particles [3, 32, 50, 91, 104, 122, 155, 173, 174, 194] which may be due to the
lack of knowledge of collision models for arbitrarily shaped particles [3, 50],
high computational demand or complex implementation [174].

The Lattice Boltzmann Method (LBM) has been shown to be able to simu-
late particulate flows since Ladd [113, 114] used an EL method in 1994 and
most recently by an EE method [176]. Similar to Ladd, Götz et al. [69] in-
corporated spherical particles by a boundary condition method and demon-
strated its capacity by simulating up to 150.000 particles. An IBM was intro-
duced to LBM context by Feng and Michaelides [56, 57] and further improved
by Niu et al. [139], Wu and Shu [191] and Hu et al. [90]. Shi and Phan-Thien
[162] proposed an FDM for particulate flows in the LBM framework, which
was extended by Nie and Lin [137, 138]. All of them applied their methods
to the simulation of spherical particles. Another promising EL Fixed Mesh ap-
proach has been proposed by Nakayama and Yamamoto [135]. The Smoothed
Profile Method models the boundaries of the objects by a continuous trans-
ition between the fluid and the particle velocity. Later, it was applied to LBM

by Jafari, Yamamoto and Rahnama [97]. In principle, the method allows the
simulation of particles of arbitrary shapes. However, until now it has not
been applied to other than spherically shaped particles.

The remainder of this chapter is structured as follows: In Section 4.1.1,
we introduce techniques to efficiently determine inter-particle collisions by
reducing the amount of potentially interacting pairs. We introduce two rep-
resentatives of different classes of contact detection algorithms and com-
pare them in terms of Central Processing Unit (CPU) time. Subsequently
we introduce a collision model commonly used for the Discrete Element
Method (DEM).

Subsequently, we will approximately solve the above stated system of
equations by combining an LBM and a DEM. Depending on the particle
size we distinguish between particles smaller than the lattice spacing and
particles larger than the lattice spacing. In Section 4.2 we cover subgrid
scale particles and turn towards arbitrarily shaped resolved particles in Sec-
tion 4.3. New approaches based on the Homogenised Lattice Boltzmann
Method (HLBM) are proposed for particles of both scales in Section 4.2.1
and Section 4.3.1. Section 4.3 and 4.5 are based on article [81], submitted to
Particuology.

4.1 particle-particle interaction

This section treats the modelling of the interaction of particles with each
other. We begin by introducing techniques to efficiently determine inter-
particle collisions by reducing the amount of potential pairs for interac-
tion. Two representatives of different classes of contact detection algorithms
are introduced and compared to each other in terms of CPU time. Sub-
sequently we introduce the spring-dashpot collision model, that models
pairwise particle–particle interaction as inelastic collisions.

104 particulate flows : two way coupling

4.1.1 Collision Detection

Computation of particle–particle interaction is a key feature in DEMs and
also necessary for some types of fluid–particle flows. This is very resource
demanding, as in every time step all possible particle pairs have to be
checked for interaction, which is an O(N2) operation for the most primit-
ive algorithm. However, the complexity can be reduced by considering geo-
metric information and the properties of the interacting forces. One has to
distinguish between long ranged forces (such as gravitational force, mag-
netic force, force between static electrically charged particles) and short
ranged forces (particle collision). Generally speaking the longer the range
the higher are the computational costs, as more interacting particle pairs
exist. Early algorithms used to truncate the interaction potential, neglecting
the far field interaction, which leads to poor approximations [51]. Today,
high-speed computers allow more modern approaches, such as the particle
mesh Ewald method, which is based on Ewald sums [52], which are able toPaul Peter Ewald

(1888–1985) German
physicist

significantly reduce computational costs. The idea behind the method is to
split the interaction potential in a short ranged and a long ranged sum and
use a Fourier transform on the latter, leading to faster convergence. The par-Joseph

Fourier $(1768–
1830) French

mathematician and
physicist

ticle mesh Ewald method has been shown to be of O(N logN) complexity
for computation of a periodic system of N particles [43].

In the following we will limit ourselves to particle collisions, which are
modelled as a force with range in order of the particle radius R > 0. Indeed,
the introduced methods can be applied to forces with longer range, however,
this is not recommended as more efficient methods exist for such cases.

definition 4. Two particles with positions Xi and Xj and radii Ri and Rj
collide, if their distance di,j =

∥∥Xi −Xj
∥∥
2

is less than the sum of their radii

di,j < Ri + Rj . (4.7)

The easiest, but most expensive option to detect all particle collisions is
therefore to check Inequality (4.7) for each possible combination of two par-
ticles. For N particles N(N− 1)/2 possible combinations exist, what leads to
a computational complexity of O(N2). In our experience this is a limitation
to simulations of a few thousand particles. It is therefore of great interest
to reduce the number of potential collisions pairs. Several algorithms exist,
which use geometric information and sort the particles according to their po-
sition. There are two main classes of algorithms for this purpose. The first
class is tree based and of complexity O(N logN), while the second class
is grid based and of complexity O(N). In the following we introduce an
example of each class and compare them in terms of actual CPU time.

k-d tree
A k-dimensional tree, or k-d tree is a binary tree, used to sort points in a
k-dimensional space. Starting with a cuboid containing all particles, it is
recursively subdivided by an axis aligned splitting hyperplane. In order to
obtain a balanced tree, the splitting plane is positioned in the median of
the particle positions in direction of the normal of the splitting plane. For
example, if the x-axis is chosen, all particles with x-coordinate less than
the median are left of the hyperplane, right otherwise. For each step down
the tree the axis of the splitting plane is periodically changed. For example
starting with a plane normal to the x-axis, the two newly created cuboids
are split by an hyperplane normal to the y-axis, followed by a cut normal to
z-axis. The recursion can be stopped if a given number of particles remains

4.1 particle-particle interaction 105

y

x0 1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

[12th August 2016 at 10:39 ,]

Figure 4.1: The first three steps of a k-d tree algorithm. In each step the particle set is
split by the hyperplane through the median, with periodically changing
normal.

[2nd September 2016 at 10:44 ,]

step 1,

[2nd September 2016 at 10:44 ,]

step 2,

[2nd September 2016 at 10:44 ,]

step 3

in a cuboid or performed until each cuboid contains only one single particle.
The main effort during the construction is finding the median of the particles
positions in each layer of the tree. Therefore the complexity for creating a k-
d tree depends heavily on the chosen sorting algorithm. Using an algorithm
that finds the median in O(N) steps one can construct a balanced k-d tree
in O(N logN) steps. However such algorithms are usually very demanding
to implement. With algorithms that are less complicated, but still find the
median in O(N logN) steps, such as merge sort and heap sort the tree can
be build in O(N log2N) steps [21].

The constructed tree can then be efficiently searched by nearest neighbour
and range searches. Lee and Wong [119] determined that the worst case
run-time for a region search in a k-d tree with N elements is of order O(k ·
N1−1/k).

A k-d tree is implemented in OpenLB by means of the nanoflann1 library,
which itself is a fork of the FLANN2 library.

munjiza nbs
Grid based collision detection methods subdivide the domain Ω into iden-
tical square (2D) or cubical (3D) cells with edge length h > 0, which is not
necessarily the same h as in the LBM. If one chooses h > 2R, where R is
the maximal radius of all particles, and sorts the particles in the grid, po-
tential collision partners are located in immediate neighbouring nodes only.
This can be done by using a two or three dimensional array and a single
loop over the N particles, hence the algorithm needs O(N) steps. However,
the memory demand for this simple case is immense especially for dilute
suspension, when the number of cells is large compared to the number of

1 http://github.com/jlblancoc/nanoflann
2 Fast Library for Approximate Nearest Neighbours, http://www.cs.ubc.ca/research/flann/

106 particulate flows : two way coupling

y

x0 1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

1

2
3

4

5
6

7

8

9

[5th September 2016 at 10:14 ,]

(a) Initial situation with equidistant grid over-
lay.

1

23

4

56

7

8

9

y

0

1

2

3

4

5
6

7
8

[5th September 2016 at 10:17 ,]

(b) Particles are sorted in singly linked lists ac-
cording to their y-position in the grid.

2 3 5

6

8

x0 1 2 3 4 5 6 7 8

[5th September 2016 at 10:19 ,]

(c) Particles of one row (here y=3) are sorted
in singly linked lists according to their x-
position in the grid.

y

x0 1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

1

2
3

4

5
6

7

8

9

[5th September 2016 at 10:16 ,]

(d) Stencil indicating the grid cell that are
searched for particle contact tests.

Figure 4.2: Grid based contact detection algorithm by Munjiza and Andrews [133].

particles. To tackle this challenge Munjiza and Andrews [133] developed the
No Binary Search (NBS), which computes potential collision partners using
singly linked lists. In the following we will reflect the basic algorithm in two
dimensions. For usage in OpenLB the described algorithm has been expan-
ded to three dimensions. A detailed description on how to efficiently store
the linked lists can be found in Munjiza [134].

We introduce the algorithm using the 2D example illustrated in Figure 4.2.
Start by dividing the domain Ω = [0, xmax)× [0,ymax) ∈ R2 in cells

c(i,j) = [i h, (i+ 1)h)× [j h, (j+ 1)h)

for i = 0, . . . , I, I < xmax/h < I+ 1, I ∈ N and j = 0, . . . , J, J < ymax/h <

J+ 1, J ∈ N. Create a singly linked list for each row rj =
⋃I
i=0 c(i,j) and

sort the particles for an arbitrary but fixed numbering pk, k ∈ {1, . . . ,N}.
An exemplary situation is given in Figure 4.2a. Figure 4.2b displays the list
for rows rj. Particle p1 in c(1,1) is the only element in row r1. Then p2 is
sorted as first element in the list connected to r3. p3 pushes back p2 in r3,
p4 is sorted in r5, p5 pushes back p3 in r3 and so on. At this time all lists rj
are marked as new.

4.1 particle-particle interaction 107

Now loop over all particles. If the row rj contains particle pk and is
marked as new sort the particles in row rj in singly linked list mapped to
the cells c(i,j), i = 0, . . . , I, of row rj in the same manner as before and mark
list rj as old and all list connected to c(i,j), i = 0, . . . , I, as new. Also sort the
particles of rj−1 into list connected to the cells c(i,j−1), i = 0, . . . , I, of row
rj−1. Figure 4.2c shows the linked lists for the cells of row r3.

Now traverse the particles in the list mapped to rj. If a particles belongs
to a list of c(i,j), i = 0, . . . , I, marked as new, then mark c(i,j) as old and check
for contact between particles in c(i,j) and particles in c(i−1,j−1), c(i,j−1), c(i,j+1)
and c(i−1,j), according to the stencil shown in Figure 4.2d.

Using this technique only the lists of two rows have to be kept in the
memory at the same time. Also no loops over the cells occur, which leads to
a detection time in O(N), according to Munjiza and Andrews [133].

comparison

Case A: Cubical distribution Case B: Hexahedral distribution

Case C: Random distribution

Figure 4.3: Particle distribution for contact detection test cases.

We will now compare the k-d tree based algorithm and the NBS by Munj-
iza and Andrews [133], as introduced in the previous two sections, in terms
of CPU time. Therefore three test cases are constructed. For a parameter
h ∈ R particles with centre of mass Xn are distributed in the domain
Ω = [0, 2]3 ⊂ R3 as follows

108 particulate flows : two way coupling

◦ Case A (Cubic layout):

Xn =



1/2+ i

1/2+ j

1/2+ k


h ,

with i = 0, . . . , I, j = 0, . . . , J,k = 0, . . . ,K and I < 2/h < I + 1, J <
2/h < J+ 1, K < 2/h < K+ 1, I, J,K ∈ N. This alignment leads to 6
contacts per particle for non-boundary particles.

◦ Case B (Hexahedral layout):

Xn =




1/2+ i
√
3/2)

(1/2+ (j+ (imod2)
√
3)/4

(1/2+ (k+ (jmod2+ imod2)/2


 ,

with i = 0, . . . , I, j = 0, . . . , J,k = 0, . . . ,K and I < 4/(
√
3h) < I + 1,

J < 4/(
√
3h) < J+ 1, K < 2/h < K+ 1, I, J,K ∈ N. Here the modulo

operation mod returns the remainder after Euclidean division. This
alignment leads to 12 contacts per particle for non-boundary particles.

◦ Case C: (Random layout) Uniform spatial random distribution in Ω.

See Figure 4.3 for illustrations. In cases A and B the particle radius is set to
R = 2.1h, in case C, R = 0.21h. The particle contact detection algorithms
are executed 20 times for each setup and number of particles. CPU times are
taken for setting up the tree/grid, computing potential pairs and checking
for particle contact and averaged. The test cases have been executed on one
core of an Intel R© CoreTM i7-4930K CPU running at 3.40GHz.

Results are shown in Figs. 4.4, 4.5, 4.6 and corresponding Tables 4.1, 4.2
and 4.3. The figures show the absolute time needed for collision detection
over the number of particles N. The tables state the amount of particles,
the average number of collisions per particle and the measured times for
collision detection in seconds. The graphs suggest an expected N logN be-
haviour for the k-d tree, however, the time for collision detection using the
k-d tree scales almost linearly with the total number of particles in cases
A and B. The linear scaling also applies to the NBS, as expected. In cases A
and B the CPU times of both collision detection algorithms are comparable,
neither the NBS nor the k-d tree based algorithm is clearly faster. Scaled to
the number of particles, the absolute time needed in case B is about 10–30
per cent longer as in case A, which might be justified by twice the amount
of collisions occurring. However in the case of random distribution, the NBS

clearly outruns the k-d tree. Also in absolute numbers both algorithms per-
form lower than in cases A and B. The NBS is up to a factor 2, the tree based
algorithm up to a factor 7 slower. In cases of NBS this might be explained
by the fact, that due to the random distribution more than one particle can
be placed in a cell of the grid, which leads to a higher number of potential
collision pairs. In case of the tree based algorithm, we assume that for cases
A and B particles are already pre-sorted due to their structured initialisa-
tion. Therefore the sorting algorithm finding the median needs less steps,
and thus the tree can be constructed in less time. As case C approximates
best the situation during the simulation of a realistic particulate flow the
NBS should be preferred over the k-d tree.

4.1 particle-particle interaction 109

0

0.5

1

1.5

2

2.5

3

3.5

0.00 · 100 2.50 · 105 5.00 · 105 7.50 · 105 1.00 · 106 1.25 · 106

ti
m

e
[s

]

N

k-d tree
NBS

[9th September 2016 at 10:10 ,]

Figure 4.4: CPU times for contact detection. Case A: cubical distribution.

collisions nbs [s] k-d tree [s]

4096 5.62 0.006 0.005

8000 5.70 0.012 0.012

15625 5.76 0.030 0.029

32768 5.81 0.070 0.057

64000 5.85 0.140 0.131

125000 5.88 0.300 0.297

262144 5.91 0.730 0.634

512000 5.93 1.540 1.430

1030301 5.94 2.990 3.342

Table 4.1: Case A: cubical distribution. The table lists the number of particles, the
averaged collisions per particle, as well as the run-time for the NBS and the
k-d tree algorithm.

summary
We introduced two algorithms that reduce the O(N2) complexity of contact
detection ofN particles. In theory the k-d tree algorithm achieves O(N logN),
while the NBS algorithm achieves O(N) complexity. After implementation
the algorithm run-times have been compared for three different scenarios.
Particle contact was computed for two structured particle distributions and
one random particle distribution. We found that the run-time of both al-
gorithms are comparable for structured particle distribution and up to at
least one million particles. In case of random particle distribution the NBS

clearly outruns the k-d tree algorithm and should therefore be preferred.

4.1.2 Collision Models

The previous section introduced method to detect pairs of colliding parti-
cles. Knowing a potential collision a mathematical model of the interaction

110 particulate flows : two way coupling

0

1

2

3

4

5

0.00 · 100 2.50 · 105 5.00 · 105 7.50 · 105 1.00 · 106 1.25 · 106 1.50 · 106

ti
m

e
[s

]

N

k-d tree
NBS

[9th September 2016 at 10:11 ,]

Figure 4.5: CPU times for contact detection. Case B: hexahedral distribution.

collisions nbs [s] k-d tree [s]

4590 10.88 0.008 0.008

9614 11.12 0.019 0.019

19488 11.30 0.044 0.042

39060 11.44 0.098 0.093

80730 11.56 0.211 0.221

161994 11.65 0.457 0.446

331128 11.73 1.000 0.994

675924 11.78 2.178 2.097

1357200 11.83 4.974 4.777

Table 4.2: Case B: hexahedral distribution. The table lists the number of particles, the
averaged collisions per particle, as well as the run-time for the NBS and the
k-d tree algorithm.

potential has to be applied. Depending on the size and properties of the sim-
ulated particles, different forces have to be respected. For atomistic particles
(diameter of about 1Å) the Lennard-Jones [99] potential which models theJohn

Lennard-Jones
(1894–1954) British
theoretical physicist

interaction between a neutral pair of atoms or the DLVO theory [23, 183],
which combines van der Waals attraction, electrostatic repulsion and born
repulsion may apply. For macroscopic particles (diameter greater then 1µm)
molecular potentials become less important and can be neglected. Therefore
macroscopic properties such as recoil forces due to deformation and friction
forces become crucial. This is covered by the widely used spring-dashpot
model by [40], which is introduced in the following. Additionally agglom-
eration processes for solid particles have been investigated in the thesis by
Kolbe [108].

spring-dashpot
The spring-dashpot model was initially proposed by Cundall and Strack [40]
to describe the mechanical behaviour of assemblies of discs and spheres.

4.1 particle-particle interaction 111

0

5

10

15

20

0.00 · 100 2.50 · 105 5.00 · 105 7.50 · 105 1.00 · 106

ti
m

e
[s

]

N

k-d tree
NBS

[9th September 2016 at 10:13 ,]

Figure 4.6: CPU times for contact detection. Case C: random distribution.

collisions nbs [s] k-d tree [s]

3375 0.0107 0.007 0.010

6859 0.0095 0.015 0.024

13824 0.0067 0.034 0.052

29791 0.0070 0.085 0.135

59319 0.0066 0.200 0.434

117649 0.0060 0.459 1.297

250047 0.0061 1.205 3.393

493039 0.0057 2.754 8.080

1000000 0.0057 5.897 18.638

Table 4.3: Case C: random distribution. The table lists the number of particles, the
averaged collisions per particle, as well as the run-time for the NBS and the
k-d tree algorithm.

The idea of the spring-dashpot model is to allow a small overlap of rigid
bodies. Depending on the size of the overlap a resetting force is applied. We
introduce a version proposed by Yokoi [197].

For two spherical particles j,k, moving with velocity Uj and Uk, rotat-
ing with angular velocity ωj and ωk and having radii Rj,Rk > 0, mass
Mj,Mk > 0 and centres of mass Xj,Xk ∈ Ω the overlap ∆d is computed by

∆d = Rj + Rk − ‖rj,k‖2 ,

where rj,k = Xj −Xk is the vector connecting the centres of mass. The force
acting between the particles due to contact can be separated, a part normal
to the particle surface, indexed by n, and a part tangential to the particle
surface, in the plane with normal rj,k, indexed by t,

F = Fn + Ft .

112 particulate flows : two way coupling

Knηn

[12th August 2016 at 10:33 ,]

(a)

Kt

ηt

µt

[12th August 2016 at 10:33 ,]

(b)

Figure 4.7: Illustration of the spring-dashpot model. K, η, and µ represent the spring
constant, the damping constant and the slider constant. The index n in-
dicates normal variables and t tangential variables.

The normal force consists of a spring force and a damping force, computed
by

Fn = 2M(Kn∆d − ηnUnj,k) ,

where M = MjMk/(Mj +Mk) denotes the reduced mass and Kn > 0

and ηn > 0 the normal spring constant and the normal damping constant
respectively. The normal component of the relative velocity of the particles
is denoted by Uj,kn = (Uj −Uk)r

j,k/‖rj,k‖2. An illustration can be found in
Figure 4.7a. The tangential fraction of the force is either modelled as stiction,
similar to the normal component or as Coulomb frictionCharles-Augustin

de Coulomb $

(1736–1806) French
physicist Ft = min(‖htj,k‖2,µt‖Fn‖2)

htj,k

‖htj,k‖2
,

where µt‖Fn‖2 is the Coulomb friction with friction parameter µt > 0 and

htj,k = −2M(KtUtj,k∆t − η
tUtj,k)

is the stiction part with the tangential spring constant Kt > 0 and the tan-
gential damping constant ηt > 0. Utj,k = (Uj −Uk)t+ (Rjωj + Rkωk) is the
projection of the relative velocity on the tangential plane plus the velocity
originating in the particle rotation. The time since first particle contact is de-
noted by ∆t and hence Utj,k∆t is the distance travelled since particle contact.
An illustration can be found in Figure 4.7b.

The torque on particle j is then computed as

T = Rj
htj,k × Ft

‖htj,k‖2
.

All 5 parameters of the model are material specific and have to be determ-
ined experimentally.

For non-spherical particles the model can be adapted considering the over-
lapping areas instead of ∆d [63]. The introduced model was implemented
in OpenLB and used during the simulations of an air/water two-phase flow
through the engine compartment of a car in the diploma thesis by Wünsche
[193].

4.2 subgrid scale particles 113

h

h

h

h

[9th September 2016 at 10:32 ,]

Figure 4.8: Schematic illustration of subgrid scale particle (red circles) and the lattice
nodes (blue circles). The square indicates the control volume.

4.2 subgrid scale particles

This section is devoted to the simulation of two and four way coupled par-
ticulate flows of particles with diameter less than the lattice spacing of the
underlying LBM. One lattice node can contain several Lagrangian particles,
as illustrated in Figure 4.8. In this setup, while for particle–particle interac-
tion their radius is respected, in their action on the fluid the particles are
interpreted as mass points. Literature on this approach is scarce, known to
the author are the articles by Wang et al. [187], Zhang et al. [202], and Xiong,
Madadi-Kandjani and Lorenzini [196] only. The authors of the three articles
use different approaches to couple particles and fluid. We shortly introduce
their methods, and subsequently propose a new method using the HLBM

as well as a method using a direct forcing scheme. The ability of the newly
proposed method to simulate subgrid scale particles is then determined and
analysed using simulations of one sedimenting particle.

Wang et al. [187] use a source term in the discrete Boltzmann Equa-
tion (BE), based on the IBM by Noble and Torczynski [140] respecting the
saturation of the cell. The modified Lattice Boltzmann Equation (LBE) reads

fi(x+ h
2ξi, t+ h2) = fi(x, t) −

1

τ
(1− γ) (fi(x, t) −Mi(x, t)) + γΩSi ,

whereΩSi is the additional source term, which depends besides the distribu-
tion functions fi also on the averaged velocity of the particles contained in
the respective fluid cell. Furthermore the weighting function γ depends on
the solid volume fraction of the cell and the relaxation time τ. For the mo-
mentum transfer on the particles a “structure-dependent drag based on the
energy minimisation multi-scale model is used” [187], which alters Stokes
drag (3.7) by multiplying a drag correction factor that depends on the satura-
tion. In the article, the proposed method is used to simulate two dimensional
gas-solid fluidised beds.

114 particulate flows : two way coupling

In the article by Xiong, Madadi-Kandjani and Lorenzini [196] the LBE is
formulated as

fi(x+ h
2ξi, t+ h2) = fi(x, t) −

1

τ
(fi(x, t) −Mi(x, t)) + Fi(F, x, t) ,

where Fi(F, x, t) is the forcing term described in Equation (2.54). The applied
force is the sum of the forces exerted by all solid particles in the vicinity of
the node as well as gravitation

F(x, t) =MS(x, t) +αf(x, t)g ,

with MS(x, t) = 1/h3
∑
Fk(t) and αf(x, t) is the “volume fraction”[196].

The gas–solid drag force Fk(t) is again a variation of Stokes drag depending
on the volume fraction, but differs from the one used by Wang et al. [187].
The proposed solver is used to simulate a three dimensional gas-solid flu-
idised bed. In both articles the particle–particle interaction is modelled by
variations of the spring-dashpot algorithm (Section 4.1.2).

Finally Zhang et al. [202] compute the hydrodynamic force acting on a
discrete particle using the Momentum Exchange Algorithm (MEA) (see Sec-
tion 4.15) on a fictitious lattice node at the particle position. Therefore the
distribution function fi is interpolated at the particle positions fi(Xk, t) =

L(Xk, x)fi(x, t) using a second order Lagrangian interpolation denoted by
L(Xk, x). The force density gf on particle k is then calculated by

gf(Xk, t) =
∑
i

ξi∗
(
fi(Xk, t− h2) − fi(Xk, t)

− 2ρF(Xk, t− h2)
ξiUk(t− h

2)

c2s

)
,

where ξi∗ is the discrete velocity opposing ξi. With it the force on the parti-
cle by

F(t) = −gf(Xk, t)πR2k .

On the other hand the force acting on the fluid is implemented by the same
forcing term as in the method introduced by Xiong, Madadi-Kandjani and
Lorenzini [196]. The force is interpolated by an approximate δ-function func-
tion over the lattice nodes within a distance of 2h to the particle. The method
is illustrated by simulations of one sedimenting particle and simulations of
thousands of sedimenting particles in two and three dimensions.

4.2.1 HLBM for Subgrid Particulate Flows

In the following we propose a method to simulate subgrid scale particles
using the HLBM as proposed in Section 2.3.5. In HLBM the velocity parameter
u∗ of the Equilibrium Distribution Function (EDF) Mi[ρF,u∗](x, t) is com-
puted by a convex combination of the fluid velocity uF(x, t) and a rigid
body velocity uB(x, t)

u∗(x, t) = d(x, t)uF(x, t) + (1− d(x, t))uB(x, t) in Ωh × Ih.

The porosity parameter d(x, t) is computed as the fraction of all volumes
Vs = 4/3 πR3s of particles s ∈ S(x, t) := {k |Xk(t) ∈ V(x)} contained in the
vicinity V(x) := [x− h/2, x+ h/2]d, x ∈ Ωh, of a lattice node x ∈ Ωh and
the volume h3 of the lattice node

d(x, t) = 1−
1

h3

∑
s∈S(x,t)

Vs .

4.2 subgrid scale particles 115

Listing 4.1: HLBM for Subgrid Particulate Flows

0 for t ∈ Ih {

foreach particle k {

compute forces Fk(t) = F
F
k(t) + F

pp
k (t) + Fgk(t)

Uk(t+ h
2) = Uk(t) + h

2Fk(t)/M

Xk(t+ h
2) = Xk(t) + h

2Uk(t+ h
2)

5 find closest lattice node x∗ ∈ Ωh
V(x∗) += VP

k

uB(x∗) += VP
kUk(t+ h

2)

}

for x ∈ Ωh {

10 uB(x) /= V(x)

d(x, t) = V(x)/h3

compute u∗(x, t) = d(x, t)uF(x, t) + (1− d(x, t))uB(x, t)
for i = 0, . . . ,q− 1 {

compute Mi[ρ
F,u∗](x, t)

15 f̃i(x, t) = −1τ
(
fi(x, t) −Mi[ρF,u∗](x, t)

)

fi(x+ h
2ξi, t+ h

2) = f̃i(x, t)
}

reset V(x) = 0; uB(x) = 0

}

20 communicate overlap

}

The rigid body velocity is set to be the average over the velocities of the
particles in the vicinity V(x) of lattice node x ∈ Ωh, weighted by the particle
volume

uB(x, t) =
1∑

s∈S(x,t) Vs

∑
s∈S(x,t)

VsUs(t) .

The complete algorithm is outlined in Listing 4.1.

4.2.2 Application: Single Particle Sedimentation

We now determine the ability of the proposed method to simulate subgrid
scale particles by simulation of one sedimenting particle. For easy compar-
ison, the simulation setup is identical to the one found in [202]. The particle
sediments in a cuboidal domain of length and width 10−3m and height
5 · 10−3m, which is discretised with h = 10−5m. The domain is framed by
bounceback nodes.

The particle is initially positioned at X(0) = (5 · 10−4m, 5 · 10−4m, 4.9 ·
10−3m) and resting. The simulation is repeated for particles of radius R =

{h/2, 3h/8,h/4,h/8}. The particle timestep has been set to δP
t = h2/10, to

overcome stability issues of the forward Euler Method (fEM) as explained
above. The simulations ended after 90 seconds. Additional simulation para-
meters are listed in Table 4.4.

With beginning simulation the particle starts falling. Gravitation, buoy-
ancy (3.5) and Stokes drag (3.7) are acting on the particle

MdtU(t) = (ρP − ρF)VPg+ 6πµR(uF(X(t), t) −U(t)) . (4.8)

116 particulate flows : two way coupling

symbol value

particle density ρF 1010 kg m−3

fluid density ρP 1000 kg m−3

kin. viscosity ν 10−7m2 s−1

gravitational acc. g 9.8m s−2

Table 4.4: Simulations parameters for simulation of the sedimentation of one subgrid
scale particle.

τ ∆t [s] U/Û

0.71 0.0007 4.67

0.8 0.0001 1.58

0.95 0.0015 1.24

1.1 0.002 1.14

1.25 0.0025 1.11

2R/h Û [ms−1] U/Û

1 5.44 · 10−5 4.67

3/4 3.06 · 10−5 1.29

1/2 1.36 · 10−5 1.06

1/4 3.4 · 10−6 1.007

Table 4.5: Errors for one sedimenting particle. The left table lists results for several
values of the relaxation time τ and fixed particle radius R = h/2. The right
table lists results for varying particle radii and fixed τ = 0.71.

Assuming that uF(X(t), t) = 0 for all times andU(0) = 0, the particle velocity
U(t) can be determined analytically to

U(t) =
2

9

R2

µ
(ρP − ρF)g

(
1− e

− 9
2
µ

R2
t
)

. (4.9)

In the limit of t → ∞, when the gravitational force equals Stokes drag, the
sedimentation velocity Û is obtained to

Û =
2

9

R2

µ
(ρP − ρF)g .

Figure 4.9 illustrates the computed results. Shown is the particle velocity
normalised by the analytical sedimentation velocity U(t)/Û against the time
for several particle radii and fixed relaxation time τ = 0.71. One can see that
the deviation of the simulated sedimentation velocity from the analytically
determined velocity decreases with decreasing particle size. For 2R = h the
greatest deviations of 3 to 3.5 times the analytic velocity are found. However,
for R = h/4 the deviation reduces to about 6%, for R = h/8 even to less then
1%. The maximal error over the entire simulation time can also be found in
Table 4.5.

One can also see, that for the largest simulated particle (2R = h), strong os-
cillations occur. These oscillations can be connected to the particles position
relative to the lattice nodes. As the backcoupling is added to the closest lat-
tice point its influence abruptly changes every time the particle moves into
the vicinity of another lattice node, leading to discontinuities in the force de-
velopment. Additionally, the backcoupling is temporarily applied to nodes
in course of the particle, which may lead to an unwanted particle accelera-
tion, as Stokes drag is computed using the velocity of the surrounding lattice
nodes. This may be overcome by a velocity interpolation respecting higher
moments of the backcoupling force, e. g. the one explained in Sierou [163].
In fact, a first simulation using the δ-function interpolation introduced in

4.2 subgrid scale particles 117

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50 60 70 80 90

no
rm

ed
ve

lo
ci

ty
U

P
/
Û

P

time [s]

2R = h
2R = 3h/4
2R = h/2
2R = h/4

[8th September 2016 at 10:50 ,]

Figure 4.9: Results for one sedimenting subgrid scale particle. Shown is the particle
velocity normalised by the analytical sedimentation velocity against the
time for several particle radii and fixed τ = 0.71.

Section 4.3 shows a reduction of the error in the case 2R = h and τ = 0.71
from maxtU(t)/Û = 4.67 to 1.31.

Figure 4.10 shows the obtained results for a particle of fixed radius R =

h/2. Shown is again the normalised particle velocity Û against the time
for several values of the relaxation time τ. The graphs for all values of τ
coincide in their general course. After a short acceleration, the normalised
sedimentation velocity fluctuates around a certain value until the particle
reaches the cavity floor, decelerates and finally comes to rest.

It can be seen that with increasing τ also the accuracy of the simulated
sedimentation velocity increases. As before, for τ = 0.71 the same deviation
of 3 to 3.5 times the analytic velocity is found, but for τ = 1.25 the de-
viation reduces to 8–10%. However, with increasing τ the flow simulation
becomes non-physical, as can be seen in Figure 4.11. Especially comparing
Figure 4.11a where τ = 0.71 and Figure 4.11b where τ = 1.25. Both figures
show the z-component of the fluid velocity in a plane with normal in y-
direction through the center of the domain. In Figure 4.11a one can see that
the z-component of the flow smoothly tends towards zero with increasing
distance to the particle, while Figure 4.11b shows strong spatial fluctuations.
A similar effect can be seen in Figure 4.11c and 4.11d, displaying the fluid
velocity magnitude. Besides that the maximal fluid velocity in Figure 4.11c is
2.05 · 10−4m s−1 and thus greater than the expected particle velocity there-
fore indicating an overestimation of the backcoupling force.

Therefore, a compromise between the accuracy of the simulated parti-
cle velocity and the accuracy of the simulated fluid characteristics must be
found. We conclude, that within strong limitations, the HLBM may be used
to simulate two way coupled flow of subgrid scale particles, but further
investigation is necessary.

118 particulate flows : two way coupling

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50 60 70 80 90

no
rm

ed
ve

lo
ci

ty
U

P
/
Û

P

time [s]

τ = 0.71
τ = 0.80
τ = 0.95
τ = 1.10
τ = 1.25

[8th September 2016 at 10:50 ,]

Figure 4.10: Results for one sedimenting subgrid scale particle of radius 2R = h.
Shown is the particle velocity normalised by the analytical sedimenta-
tion velocity against the time for several values of the relaxation time τ.

(a) τ = 0.71 (b) τ = 1.25

(c) τ = 0.71 (d) τ = 1.25

Figure 4.11: The upper images show the z-component of the velocity, the lower im-
ages the velocity magnitude. The left images are results for τ = 0.71, the
right images for τ = 1.25. The particle radius is 2R = h.

4.2 subgrid scale particles 119

Listing 4.2: LBM for direct forcing subgrid scale particles.

0 for t ∈ Ih {

for x ∈ Ωh {

ρFhu
∗
h =

∑
i ξifi +

h2

2 F
St(x, t)

for i = 0, . . . ,q− 1 {

Fi = (1− 1
2τ)wi(h(ξi − u

∗
h) + h

2(ξi · u∗hξi)) · Fi
5 f̃i(x, t) = fi(x, t) − 1

τ

(
fi(x, t) −M[ρFh,u∗h](x, t)

)
+ Fi

fi(x+ h
2ξi, t+ h2) = f̃i(x, t)

}

}

communicate overlap

10

foreach particle k {

interpolate uF(X(t), t) = δh(X(t))
compute FSt(X(t), t+ h2) = 6πµRk(uF(X(t), t) −U(t))
interpolate −FSt(X(t), t+ h2) on surrounding lattice nodes

15 F(t+ h2) = FSt(X(t), t+ h2) +M(ρP − ρF)g

Uk(t+ h
2) = Uk(t) + h

2F(t+ h2)/M

Xk(t+ h
2) = Xk(t) + h

2U(t+ h2)

compute particle boundaries

}

20 communicate particles

}

4.2.3 Direct Forcing Scheme

In the following we propose a second approach for subgrid particulate flow.
Fluid flow is simulated using a D3Q19 BGK–LBM. Lagrangian particle tra-
jectories are computed by a backward Euler scheme. Rotation is once again
neglected. The idea of the new scheme is to apply Newton’s third law and
directly introduce negative Stokes drag (Eq. 3.7) on the fluid. Body force is
induced using the forcing scheme by Guo, Zheng and Shi [71] introduced
in Section 2.3.3. The force originating from one Lagrangian particle is inter-
polated onto the Eulerian lattice using the approximate δ-functions stated
in [146]

δh(xi) =

1
4 (1+ cos(π|xi−Xi|h) , |xi −Xi| 6 2 ,

0 , |xi −Xi| > 2 ,

and further explained in Section 4.3. The fluid velocity contributing to Stokes
drag is interpolated in the same manner. The algorithm is summarised in
Listing 4.2.

◦ Compute Stokes drag (3.7) and gravitational force (3.5).

◦ Compute particle-particle interaction, using a k-d tree (Section 4.1.1)
and the spring-dashpot interaction model (Section 4.1.2).

◦ For each particle apply negative Stokes drag to the fluid.

◦ Execute particle step.

◦ Execute collide and stream steps.

120 particulate flows : two way coupling

τ ∆t [s] U/Û

0.52 7 · 10−5 1.17

0.65 5 · 10−4 1.17

0.71 7 · 10−4 1.18

0.8 1 · 10−3 1.18

0.95 1.5 · 10−3 1.20

1.1 2 · 10−3 1.21

1.25 2.5 · 10−3 1.24

2R/h Û [ms−1] U/Û

1 5.44 · 10−5 1.18

3/4 3.06 · 10−5 1.13

1/2 1.36 · 10−5 1.09

1/4 3.4 · 10−6 1.17

Table 4.6: Errors for one sedimenting particle and direct forcing approach. The left
table lists results for several values of the relaxation time τ and fixed par-
ticle radius R = h/2. The right table lists results for varying particle radii
and fixed τ.

symbol value

particle density ρF 1010 kg m−3

fluid density ρP 1000 kg m−3

kin. viscosity ν 10−7m2 s−1

gravitational acc. g 9.8m s−2

norm. spring const. Kn 5 106 kg s−2

norm. damping const. ηn 50 kg s−1

tang. spring const. Kt 80 kg s−2

tang. damping const. ηt 50 kg s−1

friction const. µt 0.5

Table 4.7: Simulations parameters for simulation of the sedimentation of 8125 sub-
grid scale particles.

4.2.4 Application: Single particle sedimentation

We simulate one sedimenting particle. The simulation setup is identical to
the one described in 4.2.2. The obtained value are listed in Table 4.6. Again
the relaxation time τ has been varied for values from 0.52 to 1.25. This
time only a weak dependence of the normalised sedimentation velocity was
found. Opposing the HLBM for subgrid scale particles algorithm the accuracy
increases with decreasing τ. For variation of the particle radius no expli-
cit conclusion can be drawn. While the values for 2R = h, 2R = 3h/4 and
2R = h/2 indicate that the accuracy increases with decreasing radius, this
assumption is disproven by the result for 2R = h/4.

4.2.5 Application: 8125 sedimenting particles

We now simulate the sedimentation process of 8125 particles. We therefore
consider a cubical cavity with side length 0.0015m. The cavity is discretised
by a lattice with spacing h = 0.0001m. The relaxation time is set to τ = 0.71
leading to a time step of 0.0007 s. A bounceback boundary condition is ap-
plied to all cavity boundaries. Exactly 8125 particles of radius R = h/4 =

2.5 · 10−4m are positioned in 13 layers of 25× 25 particles. The centre par-
ticle of the top layer is positioned at (4.3 · 10−5m, 7.5 · 10−4m, 7.5 · 10−4m).

4.2 subgrid scale particles 121

2,5 s 5 s

7,5 s 10 s

Figure 4.12: z-Component of fluid velocity in a plane through the center and normal
in y-direction.

122 particulate flows : two way coupling

0 s 2.5 s

5 s 7.5 s

10 s 12.5 s

Figure 4.13: Sedimentation of 8125 particles at different timesteps.

4.3 resolved particles 123

The remaining particles are aligned around it with a distance of 0.95 ·10−5m
in x-direction and 0.95833 · 10−5m in y- and z-direction.

Gravitation, bounce and Stokes drag are applied to the particles. Addi-
tionally the spring-dashpot collision model from Section 4.1.2 is used. The
used parameters are listed in Table 4.7. Particle contact is computed using
the k-d tree algorithm (Section 4.1.1).

The particle distribution is shown at several time steps in Figure 4.13.
The initial distribution can be seen in 4.13a. During the first seconds of
the simulation the particle conglomeration begins sedimentation as a whole,
which can be seen at the increasing distance of the top particle layer to the
upper cavity boundary.

However the particles at the center of the cavity accelerate faster than
the particles close to the boundaries and at 2.5 s a bulge can be seen. The
reason is that the particle front accelerates the fluid, so that the subsequent
particles experience a smaller resistance and therefore accelerate faster. In
addition, the fluid is slowed down at the cavity boundaries due to the no-slip
boundary condition of the fluid. This, in turn prevents rapid sedimentation
of the boundary particles.

After approximately 7.5 s first contact between the particles and the cavity
floor occurs. Due to the fluid reflux in the area closer to the boundary some
particles are dragged along and move upwards. The fluid velocity is illus-
trated in Figure 4.12, showing the z-component of the velocity in a plane
through the cavity center with normal in y-direction. The fluid flow is addi-
tionally indicated by arrows. One can clearly see the vortexes formed by the
sedimenting particles. The fluid flow downwards in the cavity’s centre and
upwards close to the boundaries. We found a good qualitative match of our
results in comparison to the results obtained by Zhang et al. [202].

summary
We introduced two new methods for simulating flow of subgrid scaled par-
ticles. The first approach employs the HLBM introduced in Section 2.3.5. In-
vestigation of one sedimenting particle shows a strong τ-dependency. It is
found that by reducing the particle radius the deviation of the sedimenta-
tion velocity compared to an analytic solution can be reduced to less then
1%. The second approach employs the forcing scheme introduced in Section
2.3.3. Again sedimentation of one particle is simulated. The τ-dependency
of the previous scheme is not regained. Sedimentation of 8125 interacting
particles is executed. The simulation shows expected results, and matches
the results obtained by [202].

4.3 resolved particles

We now turn towards the simulation of submerged particles with diameter
of similar scale as the geometry, in the sense that one particle covers several
lattice nodes. The pioneer work in simulating this type of particles using
LBM has been done by Ladd [113, 114]. He used a simple bounceback rule
to model the particle boundary. Thereby the boundary nodes have been
centred on the links between the interior and exterior regions leading to a
staircase approximation. The interior fluid was kept for computational con-
venience, and nodes inside and outside are treated in an identical manner.
This means, while the particle is moving over the grid, lattice nodes spontan-
eous flip and turn from a fluid node into a solid boundary and vice versa.

124 particulate flows : two way coupling

This “causes fluctuation on the computation of forces on the particle and
further leads to fluctuations on the velocities of the particle”[138].

Two more advanced methods for numerical simulation of submerged par-
ticles are the IBM and the FDM, which are introduced in the following.

immersed boundary method
The IBM has been proposed by Peskin [144, 145] in the 1970s with the aim
to simulate blood flow in the human heart. Blood flow is regulated by
the heart valve, more precisely by a valvular leaflet which is modelled as
an immersed boundary. In a later work Peskin [146] concentrates on the
mathematical structure as well as spatial and temporal discretisation of the
method. For simplicity we assume that there is only one particle. The main
idea of the IBM is to model the rigid structure’s boundary as deformable,
but with high stiffness. Therefore a Lagrangian curvilinear coordinate sys-
tem is introduced and attached to the domain ΩP of a particle, such that
X(q, t) : ΩP × I → Ω is the position of the Lagrangian point q at time t in
the Eulerian coordinate system of the fluid. The governing equations listed
by Peskin are the incompressible viscous NSE including the forcing term f

in the entire domain Ω, instead of Equations (4.2), which are stated for the
fluid domain ΩF only. They are combined with

f(x, t) = ρF
∫
s∈∂ΩP

F(q, t)δ(x−X(q, t)) ds on ∂ΩP , (4.10)

∂tX(q, t) =
∫
Ω
uF(x, t)δ(x−X(q, t)) dx on ∂ΩP . (4.11)

The force F : ∂ΩP × I →∈ R3 in the first equation describes the elastic
properties of the boundary. The second equation denotes a no-slip condition.
The transition between the Eulerian and the Lagrangian coordinate system
is performed by means of a three dimensional delta distribution δ(x).

The IBM has been introduced to LBM by Feng and Michaelides [57]. Feng
and Michaelides discretise the fluid domain into a lattice and the particle
boundary into a set of Lagrangian boundary points q

j
, j = 1, . . . , J that move

under the action of the moving fluid. The force F(q, t) is identified as a
restoration force modelled by a linear spring term with spring constant k >
0,

F(q
j
) = −k∆q

j
,

where ∆q
j

denotes a perturbation of the Lagrangian node q
i

due to the
deformation of the boundary by the fluid. This approach is called penalty
method.

The discrete version of Equation (4.10) is then denoted by

f(x, t) =
∑
j

F(q
j
)δh(x−X(qj, t)) in Ωh × Ih ,

where the delta distribution is approximated by a continuous kernel distri-
bution function δh(x) = δh(x1)δh(x2)δh(x3) and

δh(xi) =

1
4 (1+ cos(π|xi−Xi|h) , |xi −Xi| 6 2 ,

0 , |xi −Xi| > 2 ,
(4.12)

for a kernel of four lattice nodes. This approximate delta function is subject
to certain conditions stipulated by Peskin [146]. However it is possible to

4.3 resolved particles 125

reduce the support to three nodes [154], resulting in a reduction from 64 to
27 participating nodes in three dimensions. The forcing term f is then added
to the LBE.

The motion of the rigid body inside the boundary is not significant and
therefore not explicitly enforced [57].

fictitious domain method
As a second common approach to simulate numerically resolved particles
we introduce the FDM. Sometimes Glowinski, Pan and Periaux [67] are said
to have proposed the FDM [107], however they write it was presented before
by Hyman [93].

The basic idea of FDM is to extend a geometric complex domain to a lar-
ger, but geometric simpler, possibly time independent domain. However
the original boundary conditions must remain, such that the new solution
matches the solution of the original problem. For the initially stated problem
the fluid domain without the particle domains ΩF = Ω\

⋃
kΩ

P
k represents

the complex domain and the entire domain Ω can be interpreted as the ex-
tended, simple domain. By this approach, the interior of the particle domain
is filled with the fluid. However a body force is employed, forcing the fluid
to behave as a rigid body. This “allows to update particle velocities expli-
citly without the need of computing hydrodynamic force and torque on the
particles”[138].

A direct forcing FDM has been combined with a two dimensional LBM by
Nie and Lin [138] and extended to three dimensions in Nie and Lin [137].
Following the first article for a short introduction, we apply the Momentum
Equation (4.2a) to the entire domain Ω and set the fluid velocity inside of a
particle to the local particle velocity

ρF(x, t)dtuF(x, t) = ∇ · σ(uF(x, t),p(x, t)) + λ(x, t) in Ω× I ,
(4.13)

uF(x, t) = U(t) +ω(t)× (x−X(t)) in ΩP(t)× I .
(4.14)

In this notation λ denotes the pseudo body force originating from the par-
ticle. We continue to assume that only one particle exits. Neglecting addi-
tional forces and utilising Gauss’ theorem we insert Equation (4.13) into
Equation (4.4) and obtain

Fk =

∫
ΩP
ρFdtu

F − λ dx (4.15)

= −

∫
ΩP
λ dx+

∫
ΩP
ρ(U+ω× (x−X)) dx (4.16)

= −

∫
ΩP
λ dx+MFdtU . (4.17)

Here MF =
∫
ΩP ρF dx denotes the fluid mass within the particle domain.

Proceeding in a similar way with Equation (4.5) for the torque one obtains

T = −

∫
ΩP

(x−X)× λ dx+ dt(IFωk) , (4.18)

with IF =
∫
ΩP ρF(x−X)× (x−X) dx . Both quantities MF and IF have to be

computed explicitly during the simulation as ρF is not constant during LBM

simulations.

126 particulate flows : two way coupling

Substituting Equation (4.15) into Equation (4.3a) and Equation (4.18) into
Equation (4.3c) one obtains

(M−MF)dtU =

∫
ΩP
λ dx (4.19)

dt((I− I
F)ω) = −

∫
ΩP

(x−X)× λ dx . (4.20)

Applying a fractional step time scheme to Equation (4.13) we begin to de-
couple the system of Equations (4.13), (4.14), (4.19), and (4.20). We denote
quantities at the current time step by the index n and at the following by
n+ 1

λn+1 = ρf
uFn+1 − uFn

∆t
+ ρFuFn · ∇uFn −∇ · σn . (4.21)

Introducing a temporary fluid velocity u∗, that satisfies the homogeneous
momentum equation

ρFu
∗ − uFn

∆t
+ ρFuFn · ∇uFn −∇ · σn = 0 , (4.22)

we find that

λn+1 = ρf
uFn+1 − u∗

∆t
+ ρf

u∗ − uFn

∆t
+ ρFuFn · ∇uFn −∇ · σn (4.23)

= ρf
uFn+1 − u∗

∆t
. (4.24)

Plugging Equation (4.14) into the previous one we get

λn+1 = ρf
Un+1 +ω× (x−X)

∆t
− ρf

u∗

∆t
. (4.25)

Introducing Equation (4.24) into Equations (4.19) and (4.20) leads to

M
Un+1

∆t
= (M−MF)

Un

∆t
+

∫
ΩP
ρFu

∗

∆t
dx , (4.26)

Iωn+1

∆t
=

(I− IF)ωn

∆t
+

∫
ΩP

(x−X)× ρF u∗

wi∆t
dx (4.27)

For the computation the whole particle domain is discretised by a Lag-
rangian grid and the interpolation between the two grid is again obtained
by δ-functions. The algorithm can be summarised as follows

◦ Compute an intermediate distribution function f∗i by the LBM collision
step disregarding the body force λ in the entire domain Ω.

◦ Compute the temporal velocity ρu∗ =
∑
i ξif

∗
i .

◦ Update the particle velocity Un+1 and angular velocity ωn+1 from
Equations (4.26) and (4.27).

◦ Update the body force λn+1 in the particle domainΩP using Equation
(4.25)

◦ Compute f̃i = f∗i +
∆t
c2s
λξi in ΩP and execute the LBM streaming step

in Ω.

◦ Recompute the fluid density and velocity.

4.3 resolved particles 127

summary
We introduced the IBM and the FDM both applied to LBM as two examples
of algorithms to simulate numerically resolved particles in fluid. While the
IBM only acts on the particle boundary, the FDM appears as body force on the
fluid in the entire domain of a particle. Both methods occupy a Lagrangian
mesh that moves with the particle next to the Eulerian lattice of the LBM

to approximate the particle boundaries and to handle the fluctuations in
Ladd’s method [113, 114]. Initial mesh generation as well as recalculation
during each time step can be cost intensive. In the following section we will
overcome this issue by using the Eulerian lattice to compute the particle
properties.

4.3.1 HLBM for Resolved Particulate Flows

This section is based on article [81], submitted to Particuology.
We employ the HLBM that has been proposed in Section 2.3.5 and newly

introduce a method to simulate submersed particles. The method can be
categorised as direct forcing method and may be seen as a variant of the
FDM. As in the direct forcing FDM we flood the entire domain Ω including
the particle domain with fluid and force the fluid in the particle domain
to behave like a rigid body. However we do not use a Lagrangian mesh to
discretise the particle domain ΩP, but use the Eulerian mesh instead.

Using HLBM the entire domain is modelled as moving porous medium.
The interior of a particle is assumed to have vanishing porosity, meaning
that the solid medium is completely displacing the fluid. The porosity is
increased over a thin boundary layer becoming a pure fluid. For a lattice
node this leads to a smooth transition from a fluid to a solid node, as the
particle skims over it and prevents the shock waves occurring in Ladd’s ap-
proach [113, 114]. Additionally the smooth transition resolves the question
of how to initialise a new fluid node released as the particle moves on. The
thickness of the boundary layer is chosen to scale with the spatial stepping,
such that in the limit of vanishing step size, one obtains a sharp boundary.

On each lattice node x ∈ Ωh the design parameter d(x, t) is computed by

d(x, t) := 1−
N∏
k=0

(1− dk(x, t)) ,

where the porosity parameter dk is modelled depending on the particle
type. Nodes with d = 1 can be seen as pure fluid, while pure solid nodes
are assigned d = 0.

For spherical particles (Figure 4.14) with centre of mass Xk(t) = (Xk1 ,Xk2)(t)
and radius Rk > 0, R+k := Rk + εh/2, R−k := Rk − εh/2 the porosity para-
meter dSk is computed by

dSk(x, t) =


0, ‖x−Xk(t)‖2 6 R−k

sin2(π2εh (‖x−Xk(t)‖2 − R
−
k)), R−k < ‖x−Xk(t)‖2 6 R+k

1, ‖x−Xk(t)‖2 > R+k

.

(4.28)

For cuboidal particles (see Figure 4.15a) with half edge length Lk, L+k = Lk+

εh/2, L−k = Lk − εh/2 and αj =
∣∣xj −Xj

∣∣ , j ∈ 1, 2, the porosity parameter
dCk is computed by

128 particulate flows : two way coupling

Rk

R+
k

R−
k

εh

Xk

0

1
fluid

solid

dk

porous

Xk

Rk

εh

solid

porous

fluid

[12th August 2016 at 10:57 ,]

Figure 4.14: Setup for the smooth transition of the porosity dk for a sphere of radius
Rk and centre x0 in a fluid of the new fluid structure model. Inside the
particle geometry dk = 0, outside dk = 1 and in an εh wide area around
the surface 0 < dk < 1, which enables smooth and robust movements.

dCk =



0, α1 < L
−
k and α2 < L−k

sin2
(
π
2εh

(
α2 − L

−
k

))
, α1 < L

−
k and L−k 6 α2 6 L+k

sin2
(
π
2εh

(
α1 − L

−
k

))
, L−k 6 α1 6 L+k and α2 < L−k

sin2
(
π

2εh

(
α1 − L

+
k

))
·

· sin2
(
π

2εh

(
α2 − L

+
k

))
,
L−k 6 α1 6 L+k and L−k 6 α2 6 L+k

1, else

,

(4.29)

Finally, the porosity parameter dTk of a smooth equilateral triangle can be
computed by

dTk =

3∏
l=1

(1− γl(x)) , (4.30)

where

γl(x) =


1, al < −εh/2,

sin2
(
π
2εh

(al +
εh
2)
)

, −εh/2 6 al 6 εh/2

0, εh/2 < al

,

4.3 resolved particles 129

Xk

εh

L−k

Lk

L+k

[12th August 2016 at 10:25 ,]

(a) Smooth square

Xk

εh

[12th August 2016 at 10:28 ,]

(b) Smooth triangle

Figure 4.15: Smooth particles

and al is the oriented distance of x to the respective sides of the triangle.
Here, the smoothing parameter εh > 0 is of the same scale as h, i.e.

εh = εh, with ε > 0 and describes the width of the transition zone of
the parameter d. Hence one obtains a sharp boundary as h tends to 0. The
particles’ influence on the fluid node at (x, t) ∈ Ωh × Ih is expressed by the
velocity parameter u∗ of the EDF Mi[ρ

F,u∗], which is computed according
to Equation (2.56)

u∗(x, t) = d(x, t) uF(x, t) + (1− d(x, t)) uB(x, t) .

The velocity uB(x, t) is defined as the weighted average of the particle velo-
cities

uB(x, t) :=
∑
k dk(x, t) uP

k(x, t)∑
k dk(x, t)

(4.31)

where uP
k(x, t) = Uk(t) +ωk(t)× (x−Xk(t)) is the sum of the translational

velocity of particle’s centre of mass Uk : Ih → R2 and the angular velocity
ωk : Ih → R of the particle.

The hydrodynamic force FF
k acting on particle k is based on the MEA, first

proposed by Ladd [113, 114] to compute the momentum acting on solid
bounceback boundaries. In Caiazzo and Junk [25] the MEA is introduced as

g
i
(xj, t) = ξif̃i(xj, t) − ξi∗fi∗(xj, t+ h

2)

= ξi

(
fi(xj + ξih

2, t+ h2) + fi∗(xj, t+ h
2)
)

,
(4.32)

where ξi∗ = −ξi and fi∗ is the momentum distribution in opposing direc-
tion of fi and f̃i the distribution after collision (see Equation (2.38)). There-
fore g

i
(xj, t) denotes the momentum change in direction i. Using the for-

mulation in the second line of the previous equation in the implementation,
one does not need to store the value of f̃i(xj, t), but can take it from the

130 particulate flows : two way coupling

neighbouring node in direction of ξi. Summation over all directions results
in the total momentum change during one timestep

G(xj, t) =
∑
i

ξi

(
fi(xj + ξih

2, t) + fi∗(xj, t)
)

=
∑
i

ξifi(xj + ξih
2, t) −

∑
i

ξi∗fi∗(xj, t)

=
∑
i

ξi

(
fi(xj, t− h

2) +Q(fi(xj, t))
)
−
∑
i

ξifi(xj, t)

= ρFuF
h(xj, t− h

2) − ρFuF
h(xj, t) +

∑
i

ξiQ(fi(xj, t)) .

In the conventional LBM the first moment of the BGK collision operator Q(F)

is momentum conserving. However in the HLBM, momentum is transferred
between the solid and the fluid phase during the collision step according to
Equation (2.59) leading to

G(xj, t) = ρ
FuF
h(xj, t− h

2) − ρFuF
h(xj, t)︸ ︷︷ ︸

fluid momentum transport

−
ρF
h

τ
(1− d)(uF

h + uB)︸ ︷︷ ︸
momentum exchange between phases

.

The particles are assumed to be porous, hence momentum transfer between
the fluid and the particle occurs throughout the entire particle volume in-
stead of the boundary only. Therefore FF

k(t) is computed by

FF
k(t) =

∑
j

θ(dk(xj, t))
∑
i

g
i
(xj, t) , (4.33)

where

θ : R→ {0, 1}

d 7→

1 : d > 0
0 : d 6 0

,

is the Heaviside function. Similarly the torque TFk(t) is computed byOliver
Heaviside $(1850–

1925) British
mathematician and

physicist

TFk(t) =
∑
j

θ(dk(xj, t)) (xj −Xk(t))×
∑
i

g
i
(xj, t) .

4.4 implementational aspects

This section focuses on the implementation of the introduced HLBM ansatz
for flows of resolved particles in OpenLB. We begin by a short outline of
the main LBM loop and explain the additional steps in comparison to the
basic LBM. We then explain in more detail parallel aspects on the basis of the
calculation of the hydrodynamic force acting on one particle.

An outline of the main LBM loop is written in Listing 4.3. Each time step
starts with the calculation of the solid phase, by a loop over all particles.
First the forces and torques acting on the particle are computed. We later
explain the computation of the hydrodynamic force FF

k and it’s parallelisa-
tion in more detail. With the forces and torques known, the particle velocity,
position, angular velocity and angle are updated using a velocity Verlet al-
gorithm as introduced in Section 3.1.2. Lines 4–6 compute and store the

4.4 implementational aspects 131

Listing 4.3: Basic HLBM algorithm

0 for t ∈ Ih {

foreach particle k {

compute forces FFk(t), F
pp
k (t), Fpwk (t), Fgk(t) and torque TFk

update Uk(t+ h
2), Xk(t+ h

2), Tk(t+ h
2), ωk(t+ h

2)

for x ∈ Ωh ∩ΩP
k

5 Set d ∗= 1− dk; N+= dku
P
k(x, t); D+= dk;

}

}

for x ∈ Ωh {

compute u∗(x, t) = d(x, t)uF(x, t) + (1− d(x, t))uB(x, t)
10 for i = 0, . . . ,q− 1 {

compute Mi[ρ
F,u∗](x, t)

f̃i(x, t) = −1τ (fi(x, t) −Mi(x, t))
fi(x+ h

2ξi, t+ h
2) = f̃i(x, t)

}

15 reset d = 1; N = 0; D = 0;

}

communicate overlap

}

porosity parameter d(x, T) and the enumerator N and denominator D of the
fraction in Equation 4.31 for each lattice node covered by the current parti-
cle. As OpenLB uses a cell based strategy to store lattice data, the class Cell

is extended by an external field to hold the additional data.
Subsequent to the iteration over the particles a loop over the lattice nodes

follows, which is basically the LBM as introduced in Listing 2.1 expanded
by lines 9, 11 and 15. In line 11 the velocity parameter u∗ is computed and
used in line 11 to compute the EDF. Finally in line 15 the variables d, N and
D are resetted.

The rigid particles are specified in classes of type SmoothIndicatorF2D.

template <typename T, typename S>

class SmoothIndicatorF2D : public AnalyticalF2D<T,S> {

protected:

SmoothIndicatorF2D();

virtual bool operator() (T output[], const S input[])=0;

Vector<S,2> _myMin;

Vector<S,2> _myMax;

public:

virtual Vector<S,2>& getMin();

virtual Vector<S,2>& getMax();

};

All children of class SmoothIndicatorF2D must have an implementation of
the function bool operator()(T output[], const S input[]), which calculates
the value of dk as defined in Equations (4.28) to (4.30). Additionally the
functions Vector<S,2>& getMin() and Vector<S,2>& getMax() return references
to the position of the lower and upper corners of an axis aligned bounding
box, illustrated in Figure 4.16.

Respecting the particle extensions and backcoupling poses new challenges
concerning the parallelisation of the code. Extended particles can spread
over several subdomains on different Processing Unit (PU). Therefore their

132 particulate flows : two way coupling

myMin()

myMax()

[15th August 2016 at 11:17 ,]

Figure 4.16: A smooth triangle with bounding box spread over two BlockLattice2D

indicated by the colour of the nodes. The porosity parameter dk is in-
dicated by the opacity of the nodes.

basic properties such as geometric position, radius, etc. have to be known
to all PUs covering a part of the rigid body. For simplicity’s sake this basic
information is made available to all PUs. The situation is illustrated in Figure
4.16 for a triangular particle. The two different BlockLattice2D are indicated
by the different colours and the porosity parameter d by the opacity of the
nodes.

We explain the parallelisation by means of the computation of the hy-
drodynamic force FF(t), Equation 4.33. The MEA is implemented as written
in the second line of Equation 4.32. In this form only the data of directly
neighbouring nodes is needed. Using the overlap of the BlockLattice2Ds no
additional communication is necessary to compute the force gi(xj, t) on
each single lattice node. Therefore FF =

∑m−1
l=0 FF

l can be split in m parts
FF
l , one for each BlockLattice2D. This idea is implemented in the function

SuperSumIndicator2D::operator(), which is simultaneously executed on all
PUs.

template <typename T, template <typename U> class DESCRIPTOR>

bool SuperSumIndicator2D<T,DESCRIPTOR>::operator() (T output[], const

int input[])

{
_f.getSuperStructure().communicate();

LoadBalancer<T>& load = _f.getSuperStructure().getLoadBalancer();

for (int i = 0; i < this->getTargetDim(); ++i) {

output[i] = 0.;

}

T physR[2], d_k[1], outputTmp[_f.getTargetDim();

int start[DESCRIPTOR::d] = {0}, span[DESCRIPTOR::d] = {0};

Cuboid2D<T>* cub = nullptr;

for (int iC = 0; iC < load.size(); ++iC) {

int globiC = load.glob(iC);

cub = &_superGeometry.getCuboidGeometry().get(globiC);

if (! (cub->get_globPosX() > _indicator.getMax()[0] ||

cub->get_globPosY() > _indicator.getMax()[1] ||

4.4 implementational aspects 133

_indicator.getMin()[0] > cub->get_globPosX() + cub->

getExtend()[0] * cub->getDeltaR() ||
_indicator.getMin()[1] > cub->get_globPosY() + cub->

getExtend()[1] * cub->getDeltaR())) {

for (int k=0; k<DESCRIPTOR<T>::d; k++) {

start[k] = (_indicator.getMin()[k] - cub->getOrigin()[k]) / cub

->getDeltaR() + 1;

if (start[k] < 0) start[k] = 0;

cub->getPhysR(physR,start);

span[k] = (_indicator.getMax()[k] - physR[k]) / cub->getDeltaR

() + 1;

if (span[k] + start[k] > cub->getExtend()[k]) span[k] = cub->

getExtend()[k] - start[k];

}

First the needed variables are initialised. Noteworthy are T d_k[1]; which
represents the porosity parameter dk and T output[] which holds the part
FF
l of the current PU. After that the function starts with a loop over all local

Cuboid2Ds and tests whether an intersection of the particles bounding box
and the Cuboid2D’s extensions exists. If an intersection exists, the coordinates
of the first lattice node in the bounding box are determined and stored in
the variable start. Then the number of lattice nodes in each direction of the
intersection is computed and stored in the variable span.

for (int iX = start[0]; iX < start[0]+span[0]; iX++) {

for (int iY = start[1]; iY < start[1]+span[1]; iY++) {

if (_superGeometry.get(globiC, iX, iY) == 1) {

cub->getPhysR(physR,iX,iY);
_indicator(d_k, physR);

if (d_k[0]) {
_f(outputTmp,globiC,iX,iY);

for (int i = 0; i < this->getTargetDim()-1; ++i) {

output[i] += outputTmp[i];

}

}

}

}

}

}

}

This is followed by a loop over the lattice nodes x in the intersection, which
results in a major speedup compared to iterating over all lattice nodes. If the
node is a fluid node i.e. its material number is one, the porosity parameter
dk(x, t) is computed by _indicator(d_k, physR); which is an instantiation
of SmoothIndicatorF2D::operator(). If dk 6= 0 the contribution to FF

l of this
lattice node is computed by _f(outputTmp,globiC,iX,iY); and added to the
previous results.

#ifdef PARALLEL_MODE_MPI

for (int i = 0; i < this->getTargetDim()-1; ++i) {

singleton::mpi().reduceAndBcast(output[0], MPI_SUM);

}

#endif

return true;

}

After completing the main loop the single parts FF
l are known on the re-

spective PUs. They are submitted to and totalled on the master node via an

134 particulate flows : two way coupling

2.2m

0.15m
0.15m

0.16m

0.1m

[12th August 2016 at 10:26 ,]

Figure 4.17: Geometry for flow around cylinder.

MPI_reduce() command and distributed to all PUs by an MPI_broadcast() com-
mand, which are wrapped by the function singleton::mpi().reduceAndBcast

(output[i], MPI_SUM).

4.5 application : numerical experiments

In this section, the Homogeneous Lattice Boltzmann code is validated by
comparison to results existing in literature and convergence analysis. The
flow around a cylinder test case is used as a first test and can be interpreted
as flow around a resting particle. Then, by simulating the sedimentation of
a single spherical particle, the behaviour of the method for moving media is
investigated. Sedimentation of two spherical particles additionally includes
particle-particle interaction. Finally, sedimentation of two square particles
and 24 differently shaped particles is simulated to show the feasibility for
more complex shapes.

This section is based on article [81], submitted to Particuology.

4.5.1 Flow Around a Cylinder

The familiar problem of viscous flow around a cylinder is revisited. For
the probably most comprehensive discussion of this setup we point to the
books by Zdravkovich [199, 200]. Based on the simulation setup in Schäfer
et al. [157], drag and lift coefficients are computed and compared with the
presented results. An incompressible Newtonian fluid with kinematic vis-
cosity ν = 10−3m2/s and density ρF = 1000 kg/m3 is considered. A porous
cylinder with diameter D = 0.1m is placed at (0.16, 0.2)m, in a rectangular
domain of dimension 2.2× 0.41m2 (see Figure 4.17). Velocity boundary con-
ditions are used at the inlet, pressure boundary conditions at the outlet and
bounceback boundaries at the upper and lower edge. The inflow velocity
has a Poiseuille profile with

uF((0,y), t) =
1.2
0.41

y−
1.2
0.412

y2 ,

which yields a Reynolds number of Re = 20. The quantities of interest are
the drag coefficient cD and the lift coefficient cL, which are defined by

cD =
2FD

ρFu2DH
, cL =

2FL

ρFu2DH
,

where the drag force FD and lift force FL are

FD =

∫
S

(
ρFν

∂ut

∂n
ny − pnx

)
dS ,

FL = −

∫
S

(
ρFν

∂ut

∂n
nx + pny

)
dS ,

4.5 application : numerical experiments 135

with the cylinder boundary S, the normal n on S, and the tangential ve-
locity ut on S. Results for the computation of the drag coefficients are
listed in Table 4.8 and corresponding Figure 4.18 for different resolutions
N = 1, 2, . . . , 8 with 220N × 41N lattice nodes and chosen values of the
smoothing parameter εh = εh with ε ∈ {1, 0.5, 0.25, 0}.

5.6

5.7

5.8

5.9

6

1 2 3 4 5 6 7 8

dr
ag

co
ef

fic
ie

nt

N

ε = 1
ε = 0.5
ε = 0.25
ε = 0

Bouzidi

[8th September 2016 at 13:05 ,]

Figure 4.18: Drag coefficients for ’Flow around a cylinder’ for different resolutions
N and smoothing parameter ε.

cND N = 1 N = 2 N = 3 N = 4 N = 6 N = 8

ε = 1 6.01 5.77 5.70 5.67 5.64 5.63

ε = 0.5 5.99 5.73 5.67 5.65 5.63 5.61

ε = 0.25 6.02 5.74 5.66 5.63 5.62 5.61

ε = 0 6.04 5.76 5.65 5.63 5.62 5.61

Bouzidi 5.82 5.63 5.60 5.59 5.58 5.58

Table 4.8: Drag coefficient cD for different resolutions and ε for Poiseuille flow
around a cylinder, where the cylinder is a two dimensional representation
of a spherical particle.

For comparison, also results obtained using Bouzidi’s boundary condi-
tion [19] for the cylinder are listed. For the highest resolution (N = 8) we
obtained values between 5.61 for ε = 0 and 5.63 for ε = 1. Schäfer et al. [157]
found a lower bound for the drag coefficient of 5.58 and an upper bound of
5.59, which agrees well with our results.

Results for the lift coefficients are shown in Table 4.9 and Figure 4.19. Our
results vary between 0.0108 and 0.0113, which is again in good agreement
to those given by Schäfer et al. [157], who state 0.0080 as lower and 0.0100 as
upper bound, as well as to the computation of the cylinder with Bouzidi’s
boundary.

The Experimental Order of Convergence (EOC) of the discretisation para-
meter N is defined as in Equation (3.20). The EOC of the drag coefficient
is computed using Err(N) =

∣∣cND − c∗D
∣∣, where cND is the drag coefficient

136 particulate flows : two way coupling

0.01

0.011

0.012

0.013

0.014

0.015

0.016

1 2 3 4 5 6 7 8

lif
t

co
ef

fic
ie

nt

N

ε = 1
ε = 0.5
ε = 0.25
ε = 0

Bouzidi

[8th September 2016 at 13:05 ,]

Figure 4.19: Lift coefficients for ’Flow around a cylinder’ for different resolutions
and smoothing parameter ε.

×10−2 N = 1 N = 2 N = 3 N = 4 N = 6 N = 8

ε = 1 1.55 1.35 1.27 1.22 1.16 1.13

ε = 0.5 1.14 1.05 1.04 1.08 1.11 1.10

ε = 0.25 1.18 1.06 1.03 1.02 1.07 1.10

ε = 0 1.45 1.14 1.07 1.06 1.04 1.10

Bouzidi 1.55 1.22 1.13 1.11 1.09 1.08

Table 4.9: Lift coefficients for different resolutions and ε for Poiseuille flow around
a cylinder, where the cylinder is a two dimensional representation of a
spherical particle.

obtained for resolution N and c∗D is the reference coefficient obtained for
the highest resolution. The resulting values are listed in Table 4.10 and illus-
trated in Figure 4.20. The proposed method shows approximately linear EOC

for all tested values of ε, whereas the simulations using Bouzidi boundary
condition are second order accurate, as expected.

4.5.2 Sedimentation of One Particle

In order to further validate the HLBM, applications for particulate flows
are simulated. In this setup, one circular particle sediments in a domain
Ω = [0, 2] × [0, 8] cm2. The particle of radius R = 0.125 cm and density
ρP = 1.25 g/cm3 is located at xP = (1, 4) cm. Bounceback conditions are
used at the boundaries of the domain. The fluid’s density and kinematic
viscosity are set to ρF = 1 g/cm3 and ν = 0.1 g/cm3. Initially the parti-
cle and the fluid are at rest. The domain is discretised with a step size of
h = 0.01/N cm, leading to a lattice of (200N× 600N) nodes. The simulations
are repeated for the smoothing parameter εh = εh, ε ∈ {0, 0.5, 1}. Quantit-
ative results are plotted in Figure 4.21. Figures 4.21a and 4.21b show the

4.5 application : numerical experiments 137

ε = 1 ε = 0.5 ε = 0.25 ε = 0 Bouzidi

EOC(1,2) 1.20 1.47 1.46 1.39 2.23

EOC(2,3) 1.01 1.28 1.68 2.36 2.28

EOC(3,4) 1.04 0.96 1.65 1.00 2.14

EOC(4,6) 1.03 0.83 0.43 0.84 2.05

EOC(6,8) 0.91 1.17 1.16 1.22 2.41

Average ≈ 1.04 ≈ 1.14 ≈ 1.28 ≈ 1.36 ≈ 2.22

Table 4.10: EOC of drag coefficient cD for flow around cylinder.

0.001

0.01

0.1

1

1 10

Er
r

N

ε = 1
ε = .5
ε = .25
ε = 0

Bouzidi
EOC=1
EOC=2

[12th August 2016 at 10:26 ,]

Figure 4.20: EOC of the drag coefficients for flow around a cylinder for different grid
resolutions.

evolution of the particle’s vertical position and velocity. Figure 4.21c con-
tains the particle’s Reynolds number, defined as ReP = 2ρPR‖uP‖2/ν and
Figure 4.21d the particle’s kinetic energy E = 0.5M‖uP‖22. One can see that
the curves for the varying values of ε collapse, therefore the smooth bound-
ary has only a minimal influence on the particle’s behaviour. Additionally,
the figures show an excellent agreement with the results obtained by Wan
and Turek [185] and Wu and Shu [192].

Figure 4.22 illustrates the pressure distribution for the three different val-
ues of ε. Looking at the isobars one can clearly see that fluctuations are
smoothed out for increasing ε. The EOCs for εh = 0.5h are computed us-

ing Err(N) = 1
81

(∑80
k=0

∣∣XN1 (0.125k) −X321 (0.125k)
∣∣2
)1/2

and the results of
a simulation with N = 32 as reference. They show approximately linear
behaviour and can be found in Table 4.11.

4.5.3 Sedimentation of Two Particles

The sedimentation of two particles, usually referred to as Drafting, Kissing,
Tumbling (DKT) phenomenon, is widely used as a reference setup for the

138 particulate flows : two way coupling

0

0.5 1

1.5 2

2.5 3

3.5 4

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

Y [cm]

Tim
e

[s]

ε
=
0

ε
=
0.5

ε
=
1

W
an

&
Turek

W
u

&
Shu

[16th
Septem

ber
2016

at
18:32

,]

(a)
Verticalparticle

position
X
2 .

−
6

−
5

−
4

−
3

−
2

−
1 0 1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

V [cm/s]

Tim
e

[s]

ε
=
0

ε
=
0.5

ε
=
1

W
an

&
Turek

W
u

&
Shu[16th

Septem
ber

2016
at

18:32
,]

(b)
Verticalparticle

velocity
U
2 .

0 5

1
0

1
5

2
0

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

Re

Tim
e

[s]

ε
=
0

ε
=
0.5

ε
=
1

W
an

&
Turek

W
u

&
Shu[16th

Septem
ber

2016
at

18:32
,]

(c)
Particle

R
eynolds

num
ber
R
e

.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1
E [g cm2/exts2]

Tim
e

[s]

ε
=
0

ε
=
0.5

ε
=
1

W
an

&
Turek

W
u

&
Shu[16th

Septem
ber

2016
at

18:32
,]

(d)
K

inetic
particle

energy
E

.

Figure
4.21:Q

uantitative
results

for
the

sim
ulation

of
a

single
sedim

enting
particle

over
tim

e.
For

com
parison,

the
figures

contain
the

results
obtained

by
W

an
and

Turek
[185]

and
W

u
and

Shu
[192]

4.5 application : numerical experiments 139

(N’, N) (1, 2) (2, 4) (4, 8) (8, 16)

EOC(N’, N) 1.72 0.81 1.09 1.53

Table 4.11: EOC of sedimentation of one particle and εh = 0.5h.

(a) ε = 0 (b) ε = 0.5 (c) ε = 1

Figure 4.22: Pressure contours for a single particle sedimenting in a rectangular do-
main for three different values for the smoothing parameter ε. The fig-
ure clearly indicates a strong reduction of fluctuation with increasing
ε.

140 particulate flows : two way coupling

simulation of particle dynamics submerged in a fluid. In general, the course
of the simulations can be divided in three stages, namely the drafting, the
kissing and the tumbling stage. Initially, the two particles are positioned
on top of each other and accelerate in the direction of gravity, whereby the
leading particle creates a wake, in which the trailing particle is caught and
therefore experiences less flow resistance, resulting in faster sedimentation.
This is called the drafting stage. Next, the two particles collide and form a
long body (kissing stage). This long body is unstable and eventually begins
to rotate, such that the particles drift away from each other (tumbling stage),
with the trailing particle overtaking the leading particle. This process was
examined in depth in numerical simulations as well as physical experiments
[44, 57, 68, 138]. The test is repeated two times, once using spherical particles
and once using square particles. Compared to the simulations in the last
section, the following also covers the behaviour of the HLBM for particle-
particle collisions.

An incompressible Newtonian fluid with density ρF = 1000 kg/m2 and
kinematic viscosity of ν = 10−6m2/s is considered in a rectangular domain
of height H = 0.02 m in x-direction and length L = 0.08 m in y-direction.
The particles’ radius RP = 0.001 m and density ρP = 1010 kg/m2. The
ε−boundary is chosen with a width of h. The particles initial positions are
X1(0) = (0.00999, 0.072)m and X2(0) = (0.01, 0.068)m. They move under the
influence of gravity and buoyancy in negative y-direction with an accelera-
tion of g = 9.81(1− 1000/1010) m/s2. The simulations cover a time interval
of 5 s.

spherical particles
A widely used model in particle-particle, as well as particle-wall collisions
is the repulsive force proposed by Wan and Turek [185]. The force acting on
particle k due to collision with particle l reads

F
pp
k,l =


0, Dkl > Rk+l + ξ

1
γ (Xk −Xl) (Rk+l −Dkl) , Dkl 6 Rk+l
1
γ (Xk −Xl) (Rk+l + ξ−Dkl)

2 , Rk+l 6 Dkl 6 Rk+l + ξ

, (4.34)

with Rk+l = Rk + Rl and the distance Dkl = ‖Xk −Xl‖2. A particle-wall
collision is computed by

F
pw
k =


0, Dkk ′ > 2Rk + ξ

1
γw

(
Xk −X

′
k

)
(2Rk −Dkk ′) , Dkk ′ 6 2Rk

1
γw

(
Xk −X

′
k

)2 , 2Rk 6 Dkk ′ 6 Rk + ξ

, (4.35)

with Dkk ′ =
∥∥Xk −X ′k

∥∥
2

the distance Xk to the closest point on the wall X ′k.
The parameters are chosen to be γ = 10−7 and γw = 0.5 · 10−7.

Figure 4.26 shows the simulation at several times. The three stages of the
simulation are clearly visible. The drafting stage in Figs. 4.26a and 4.26b, the
kissing stage in Figs. 4.26c and 4.26d and the tumbling stage in Figs. 4.26e
and 4.26f. The evolution of the horizontal position of the particles is illus-
trated in Figure 4.23 in comparison to and in good agreement with the
results by Feng and Michaelides [57], Niu et al. [139] and Wang, Guo and
Mi [186]. The simulation was executed for resolutions of (200N× 800N), lat-
tice nodes N = 1, . . . , 16. Figure 4.24 shows the evolution of the horizontal
positions for these simulations. One can clearly see that the curves merge

4.5 application : numerical experiments 141

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

ho
ri

zo
nt

al
po

si
ti

on
[c

m
]

time [s]

leading particle
trailing particle

Feng, Michaelides
Feng, Michaelides

Niu et al.
Niu et al.

Wang et al.
Wang et al.

[8th September 2016 at 11:33 ,]

Figure 4.23: Evolution of horizontal position of spherical particles in comparison to
results by Feng and Michaelides [57], Niu et al. [139].

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

ho
ri

zo
nt

al
po

si
ti

on
[c

m
]

time [s]

200× 800
400× 1600
600× 2400

1000× 4000
1600× 6400
2000× 8000
2400× 9600
3200× 12800

[12th August 2016 at 10:27 ,]

Figure 4.24: Evolution of horizontal position of spherical particles. For increasing
resolution the curves adapt to a certain solution.

142 particulate flows : two way coupling

0.01

0.1

1

10

1 10

Er
r

N

Err (leading)
Err (trailing)

EOC=1
EOC=3

[8th September 2016 at 12:50 ,]

Figure 4.25: Error plot of the horizontal position of leading and trailing particle.

towards the one obtained for the highest resolution. It also indicates, that
the resolution commonly used in literature (200× 800) might be insufficient.
The errors

Err(N) =
1

501

(
500∑
k=0

∣∣∣XN2 (0.01k) −X162 (0.01k)
∣∣∣
2
)1/2

have been computed, using N = 16 as reference solution. They are illus-
trated in Figure 4.25 and indicate an EOC between one and three.

square particles
To investigate the potential of the proposed method the simulation is re-
peated using particles of cubical shape, without an additional collision model.
Different to the simulations above are the mass and moment of inertia of the
particles, as well as the porosity parameter dk given in Equation (4.29). The
particles have edge length L = 0.001m and mass M = 4.04 · 10−3 kg and a
moment of inertia J = 2

3ML
2, with its rotation axis at the centre of mass.

Most interesting is that although no explicit collision model is used, during
the kissing stage a certain momentum transfer occurs and the general be-
haviour of the DKT stages can be recovered. Figs. 4.27 and 4.28 display the
horizontal and vertical particle positions over time. No significant changes
of the particles trajectories are seen for resolutions N = 1, 2, 3. Figure 4.29
shows the magnitude of the fluid velocity at several points in time.

4.5.4 Sedimentation of 24 Particles

In order to investigate the intrinsic collision model of HLBM, sedimentation
of triangles, squares and circles is simulated. Eight particles of each type
are used in the simulation. The domain Ω, fluid viscosity ν and fluid and
particle densities are chosen as in Subsection 4.5.3. The radius of the cir-
cumscribed circle of all particles is RP = 0.001. The two topmost particles in
the centre are positioned as before. The remaining particles are positioned

4.5 application : numerical experiments 143

t = 0s t = 0.8s t = 1.5s t = 2.5s t = 3.5s t = 5s

Figure 4.26: Fluid velocity uF in m/s for DKT of spherical particles at different times
t.

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

ve
rt

ic
al

po
si

ti
on

[c
m

]

time [s]

200x800 (N=1) leading
200x800 (N=1) trailing

400x1600 (N=2) leading
400x1600 (N=2) trailing
600x2400 (N=3) leading
600x2400 (N=3) trailing

Figure 4.27: Evolution of vertical position of DKT for square particles without colli-
sion model.

144 particulate flows : two way coupling

−1

−0.5

0

0.5

1

0 1 2 3 4 5

ho
ri

zo
nt

al
po

si
ti

on
[c

m
]

time [s]

200x800 (N=1) leading
200x800 (N=1) trailing

400x1600 (N=2) leading
400x1600 (N=2) trailing
600x2400 (N=3) leading
600x2400 (N=3) trailing

Figure 4.28: Evolution of horizontal position of DKT for square particles without col-
lision model.

t = 0s t = 0.8s t = 1.5s t = 2.5s t = 3.5s t = 5s

Figure 4.29: Fluid velocity uF in m/s for DKT of cubical particles at different times t.

4.5 application : numerical experiments 145

t = 0s t = 3s t = 6s t = 9s t = 12s t = 15s

Figure 4.30: Fluid velocity uF
h in m/s for sedimentation of 24 particles at different

times t.

with a distance of 0.004m in each direction. The shape of the particles is
displayed in Figure 4.30. One can find a small overlapping area of touching
particles, especially for triangles. This is expected for the method. The size
of the overlapping area is influenced by the systems relaxation parameter τ.

4.5.5 Summary

The HLBM for simulation of moving porous media is proposed. It is applied
to simulation of particulate flows, where particles are assumed to have a
solid centre with a thin boundary layer of increasing porosity. The method
is used to simulate flow around a cylinder as a first scenario to determine
its behaviour for a single fixed particle. It is found to be in good agreement
with literature and of linear EOC. Sedimentation of a single particle is used to
test the method on a moving obstacle. Again good agreement with literature
is observed. Additionally the results suggest that pressure fluctuations that
remained challenging in Ladd’s approach [113] are greatly reduced. Finally,
sedimentation of two particles is simulated to include particle-particle inter-
action. The results for spherical particles also agree with literature. To show
the capabilities of the method, sedimentation of two square particles is real-
ised. Most interesting is that although no explicit collision model is used, at
the particle collision a certain momentum transfer occurs and the general be-
haviour of the drafting, kissing, tumbling process can be recovered. Finally
sedimentation of 24 particles of different shapes is simulated to strengthen
the position, that the method is capable of simulating arbitrarily shaped
particles.

In summary the newly proposed method for simulation of particulate
flows shows at least a linear EOC. It does not need an additional Lagrangian
mesh as used e. g. by the IBM and can therefore omit cost-intensive inter-
polations. The implementation of particles of arbitrary shape is easy and
straightforward and finally the intrinsic parallel efficiency of LBM is con-
served.

5S U M M A RY A N D C O N C L U S I O N S

Particulate flows are permanently present in our everyday lifes. Their simu-
lation can help to advance and understand numerous natural and technical
as well as biological processes. Conventional numerical methods that are
based on the Navier–Stokes Equation (NSE) have been found to be of limited
efficiency for the simulation of particulate flows. Therefore, the aim of this
thesis was the study of Lattice Boltzmann Methods (LBMs) with respect to
particulate flows. We have investigated a broad range of mathematical mod-
els and numerical methods. The following contains a dense summary of the
work, its results and achievements, as well as some perspective challenges.

The work was split in three parts of increasingly complex models. The
first part covered one phase flows with LBMs, the second part covered dilute,
one way coupled particle flows, while the third part covered dense two and
four way coupled particle flows.

In the first part the basic LBM was introduced as well as several schemes
to simulate turbulence, forces, and porous media, including the newly pro-
posed Homogenised Lattice Boltzmann Method (HLBM) as a new scheme to
simulate moving porous media. We gave insight into a newly implemented
voxeliser that obtains a structured grid from a complex triangulated sur-
face and explained the parallelisation concept of domain decomposition for
the LBM. The first part finished by a conference article on simulation of non-
steady blood flow of a patient specific aortic arch with a thoracic coarctation,
executed in parallel using 512 cores. This demonstrates the outstanding abil-
ity of the LBM to efficiently use massively parallel systems as well as its
capabilites of handling flow simulations in highly complex domains.

The second part covered dilute particles, which where connected to the
carrier fluid by a one-way coupling. We first introduced an Euler–Lagrange
(EL) approach and faced the problem, that the domain decomposition used
for fluid simulation is not optimal for the parallel computation of parti-
cle trajectories. Therefore, we proposed a load optimal and a communication
optimal strategy. Both strategies are based on the given fixed domain decom-
position from the underlying fluid computation. Under the assumption of
homogeneous distribution of particles the communication optimal strategy
was found to be more efficient and therefore implemented and validated.
Convergence of the implemented method was shown for varying lattice res-
olutions and particle numbers. Speedup tests were conducted and led to
super-linear results. We therefore found a parallelisation strategy that scales
excellently for dilute flows of evenly distributed Lagrangian particles.
The method was then used to investigate particle deposition in the human
nasal cavity for unsteady airflow for one respiratory cycle. Particles of sev-
eral radii were injected once, as well as continuously during inspiration. It
was found that particles of smaller Stokes number tended to exit through
the trachea, while particles of greater Stokes number mostly deposited. Re-
peated injection showed higher deposition for all simulated Stokes numbers.
10µm particles were investigated in more detail. A significant amount of
particles got lost through the nostrils in consequence of a backflow. In both
cases most particles deposited in the anterior region and remained in the si-
nuses after one completed breathing cycle. Therefore, transient simulations

147

148 summary and conclusions

are necessary, when simulating particle flow in nasal cavities.
A disadvantage of EL approaches is that computational effort grows with
the number of simulated particles. As an adequate amount of particles has
to be considered to reach a desired level of accuracy, the computational re-
quirements of EL can be enormous. However, the computational complexity
of Euler–Euler (EE) methods increases only with the numerical resolution,
with the drawback that information on single particle trajectories gets lost.
An EE approach was extended to the domain of dilute and inertial particles,
to take advantage of its easy parallelisability in the framework of LBM. Since
this method allowed to formulate boundary conditions on a mesoscopic
scale, a new capture boundary was introduced. The problem of distorted
results caused by the stabilisation approach has been solved by normalising
the escape rate with a reference value.
Using the newly developed EE scheme the previous simulations of the tracheo-
bronchial bifurcation have been repeated. The results of the two different
simulation approaches were found to be congruent. By considering the ar-
tificial diffusion by a proposed reasonable correction of the obtained data
with computed reference values, the solution was found to fit the physical
model. We therefore newly developed an EE approach and for the first time
simulated dilute particulate flows using LBM for both phases.

The third part covered two- and four-way coupled flows. We started by
introducing two algorithms with the aim to reduce the complexity of con-
tact detection. The first one was based on a k-d tree, the second one on a
grid. After implementation the algorithm runtimes were compared for three
different scenarios. Particle contact was computed for two structured parti-
cle distribution and one random particle distribution. We found that the
runtime of both algorithms was comparable for the tested structured par-
ticle distributions and up to one million particles. In case of the random
particle distribution the grid based algorithm clearly outruned the k-d tree
algorithm and should therefore be prefered.
We introduced two new methods for simulation of flow of subgrid scaled
particles. The first approach employed the HLBM introduced in Section 2.3.5.
Investigation of one sedimenting particle showed a strong τ-dependency. It
was found that by reducing the particle radius the deviation of the sedi-
mentation velocity compared to an analytic solution could be reduced to
less then 1%. The second approach employed the forcing scheme introduced
in Section 2.3.3. Again sedimentation of one particle was simulated. The τ-
dependency of the previous scheme was not regained. Sedimentation of
8125 interacting particles was realised. The simulation showed expected res-
ults and qualitatively matches the results found in the literature. However,
for grid refinement the quality of the results decreases and further research
is necessary. Also concerning the HLBM for subgrid sclae particles further
research is necessary.
For simulation of particles with a size comparable to the characteristic length
of the system the HLBM for simulation of moving porous media was pro-
posed and applied to simulation of particulate flows, where particles are
assumed to have a solid centre with a thin boundary layer of increasing
porosity. As a first scenario the method was used to simulate flow around
a cylinder in order to determine its behaviour for a single fixed particle. It
was found to be in good agreement with the literature and of linear Ex-
perimental Order of Convergence (EOC). Sedimentation of a single particle
was used to test the method on a moving obstacle. Again good agreement
with the literature was observed. Additionally the results suggested that

summary and conclusions 149

pressure fluctuations which remained challenging in Ladd’s approach were
greatly reduced. Sedimentation of two particles was simulated to include
particle–particle interaction. The results for spherical particles also agreed
with the literature. To show the capabilities of the method, sedimentation of
two square particles was realised. Most interesting is that although no expli-
cit collision model was used, during particle contact a certain momentum
transfer occured and the general behaviour of the drafting, kissing, tum-
bling process was recovered. Finally, sedimentation of 24 particles of dif-
ferent shape was simulated to strengthen the position, that the method is
capable of simulating arbitrarily shaped particles.
In summary the newly proposed method for simulation of particulate flows
showed at least a linear EOC. It does not need an additional Lagrangian
mesh as used e. g. by the Immersed Boundary Method (IBM) and can there-
fore omit cost-intensive interpolations. The implementation of particles of
arbitrary shape is easy and straightforward and finally the intrinsic parallel
efficiency of LBM is conserved.

This brings us a step closer to the initially mentioned great challenge of
finding an efficient numerical algorithm to predict the dynamics of millions
of arbitrarily shaped submerged particles.

B I B L I O G R A P H Y

[1] T. Abe. “Derivation of the lattice Boltzmann method by means of
the discrete ordinate method for the Boltzmann equation”. In:
Journal of Computational Physics 131.1 (1997), pp. 241–246.

[2] C. Aidun and J. Clausen. “Lattice-Boltzmann method for complex
flows”. In: Annual Review of Fluid Mechanics 42 (2010), pp. 439–472.
doi: 10.1146/annurev-fluid-121108-145519.

[3] C. Aidun, Y. Lu and E.-J. Ding. “Direct analysis of particulate
suspensions with inertia using the discrete Boltzmann equation”. In:
Journal of Fluid Mechanics 373 (Oct. 1998), pp. 287–311. doi:
10.1017/S0022112098002493.

[4] B. J. Alder and T. E. Wainwright. “Studies in Molecular Dynamics. I.
General Method”. In: The Journal of Chemical Physics 31.2 (1959),
pp. 459–466. doi: http://dx.doi.org/10.1063/1.1730376.

[5] F. J. Alexander, H. Chen, S. Chen and G. D. Doolen. “Lattice
Boltzmann model for compressible fluids”. In: Phys. Rev. A 46 (4
Aug. 1992), pp. 1967–1970. doi: 10.1103/PhysRevA.46.1967.

[6] M. P. Allen and D. J. Tildesley. Computer simulation of liquids. Oxford
university press, 1989.

[7] M. Augustin, A. Caiazzo, A. Fiebach, J. Fuhrmann, V. John, A. Linke
and R. Umla. “An assessment of discretizations for
convection-dominated convection–diffusion equations”. In:
Computer Methods in Applied Mechanics and Engineering 200.47–48
(2011), pp. 3395–3409. doi: 10.1016/j.cma.2011.08.012.

[8] T. Auton, J. Hunt and M. Prud’Homme. “The force exerted on a
body in inviscid unsteady non-uniform rotational flow”. In: Journal
of Fluid Mechanics 197 (1988), pp. 241–257.

[9] H. Babovsky. Die Boltzmann-Gleichung. Teubner Verlag, 2002.

[10] C. Bardos, F. Golse and D. Levermore. “Fluid dynamic limits of
kinetic equations. I. Formal derivations”. In: Journal of Statistical
Physics 63 (Apr. 1991), pp. 323–344. doi: 10.1007/BF01026608.

[11] C. Bardos, F. Golse and C. D. Levermore. “Fluid dynamic limits of
kinetic equations II convergence proofs for the boltzmann equation”.
In: Communications on Pure and Applied Mathematics 46.5 (1993),
pp. 667–753. doi: 10.1002/cpa.3160460503.

[12] A. B. Basset. A treatise on hydrodynamics: with numerous examples.
Vol. 2. Deighton, Bell and Company, 1888.

[13] G. K. Batchelor. An introduction to fluid dynamics. Cambridge
university press, 2000.

[14] N. Bellomo and R. Gatignol. Lecture notes on the discretization of the
Boltzmann equation. Vol. 63. World Scientific, 2003.

[15] M. Bernaschi, M. Fatica, S. Melchionna, S. Succi and E. Kaxiras. “A
flexible high-performance Lattice Boltzmann GPU code for the
simulations of fluid flows in complex geometries”. In: Concurrency
and Computation: Practice and Experience 22.1 (2010), pp. 1–14. doi:
10.1002/cpe.1466.

151

http://dx.doi.org/10.1146/annurev-fluid-121108-145519
http://dx.doi.org/10.1017/S0022112098002493
http://dx.doi.org/http://dx.doi.org/10.1063/1.1730376
http://dx.doi.org/10.1103/PhysRevA.46.1967
http://dx.doi.org/10.1016/j.cma.2011.08.012
http://dx.doi.org/10.1007/BF01026608
http://dx.doi.org/10.1002/cpa.3160460503
http://dx.doi.org/10.1002/cpe.1466

152 Bibliography

[16] P. L. Bhatnagar, E. P. Gross and M. Krook. “A Model for Collision
Processes in Gases. 1. Small Amplitude Processes in Charged and
Neutral One-Component Systems”. In: Phys. Rev. 94 (1954),
pp. 511–525. doi: 10.1103/PhysRev.94.511.

[17] C.-U. Böttner. “Über den Einfluss der elektrostatischen Feldkraft auf
turbulente Zweiphasenströmungen”. PhD thesis. Martin-Luther -
Universität Halle-Wittenberg, 2002.

[18] J. Boussinesq. Théorie analytique de la chaleur: mise en harmonie avec la
thermodynamique et avec la théorie mécanique de la lumière. Vol. 2.
Gauthier-Villars, 1903.

[19] M. Bouzidi, M. Firdaouss and P. Lallemand. “Momentum transfer of
a Boltzmann-lattice fluid with boundaries”. In: Physics of Fluids 13.11
(2001), pp. 3452–3459. doi: 10.1063/1.1399290.

[20] H. Brinkman. “A calculation of the viscous force exerted by a
flowing fluid on a dense swarm of particles”. In: Applied Scientific
Research 1.1 (1949), pp. 27–34.

[21] R. A. Brown. “Building a Balanced k-d Tree in O(kn logn) Time”.
In: Journal of Computer Graphics Techniques (JCGT) 4.1 (Mar. 2015),
pp. 50–68.

[22] Y. A. Buevich. “Motion resistance of a particle suspended in a
turbulent medium”. In: Fluid Dynamics 1.6 (1966), pp. 119–119. doi:
10.1007/BF01022298.

[23] F. Bülow. Numerical simulation of destabilizing heterogeneous
suspensions at vanishing Reynolds numbers. Karlsruhe, 2015.

[24] A. Caiazzo and M. Junk. “Asymptotic analysis of lattice Boltzmann
methods for flow-rigid body interaction”. In: Progress in
Computational Physics 3 (2013), p. 91.

[25] A. Caiazzo and M. Junk. “Boundary forces in lattice Boltzmann:
Analysis of momentum exchange algorithm”. In: Computers &
Mathematics with Applications 55.7 (2008), pp. 1415–1423. doi:
10.1016/j.camwa.2007.08.004.

[26] C. Cercignani. Mathematical methods in kinetic theory. Springer, 1969.

[27] C. Cercignani. The Boltzmann Equation and its Applications.
Springer-Verlag, New York, 1988.

[28] Z. Chai and B. Shi. “A novel lattice Boltzmann model for the
Poisson equation”. In: Applied Mathematical Modelling 32.10 (2008),
pp. 2050–2058. doi:
http://dx.doi.org/10.1016/j.apm.2007.06.033.

[29] H. Chen, S. Chen and W. H. Matthaeus. “Recovery of the
Navier-Stokes equations using a lattice-gas Boltzmann method”. In:
Physical Review A 45.8 (1992), R5339.

[30] S. Chen and G. Doolen. “Lattice Boltzmann Method for Fluid
Flows”. In: Annual Review of Fluid Mechanics 30 (1998), pp. 329–364.

[31] X. B. Chen, H. P. Lee, V. F. H. Chong and D. Y. Wang. “A
Computational Fluid Dynamics Model for Drug Delivery in a Nasal
Cavity with Inferior Turbinate Hypertrophy”. In: Journal of Aerosol
Medicine and Pulmonary Drug Delivery 23.5 (2010), pp. 329–338. doi:
10.1089/jamp.2009.0776.

http://dx.doi.org/10.1103/PhysRev.94.511
http://dx.doi.org/10.1063/1.1399290
http://dx.doi.org/10.1007/BF01022298
http://dx.doi.org/10.1016/j.camwa.2007.08.004
http://dx.doi.org/http://dx.doi.org/10.1016/j.apm.2007.06.033
http://dx.doi.org/10.1089/jamp.2009.0776

Bibliography 153

[32] Y. Chen, Q. Cai, Z. Xia, M. Wang and S. Chen.
“Momentum-exchange method in lattice Boltzmann simulations of
particle-fluid interactions”. In: Phys. Rev. E 88 (1 July 2013),
p. 013303. doi: 10.1103/PhysRevE.88.013303.

[33] K.-H. Cheng, Y.-S. Cheng, H.-C. Yeh, R. A. Guilmette, S. Q. Simpson,
Y.-H. Yang and D. L. Swift. “In vivo measurements of nasal airway
dimensions and ultrafine aerosol deposition in the human nasal and
oral airways”. In: Journal of Aerosol Science 27.5 (1996), pp. 785–801.
doi: 10.1016/0021-8502(96)00029-8.

[34] Y. Cheng, T. Holmes, J. Gao, R. Guilmette, S. Li, Y. Surakitbanharn
and C. Rowlings. “Characterization of Nasal Spray Pumps and
Deposition Pattern in a Replica of the Human Nasal Airway”. In:
Journal of Aerosol Medicine 14.2 (2001), pp. 267–280. doi:
10.1089/08942680152484199.

[35] R. Clift, J. Grace and M. Weber. Bubbles, Drops, and Particles.
Academic Press, 1978.

[36] S. Corrsin and J. Lumley. “On the equation of motion for a particle
in turbulent fluid”. In: Applied Scientific Research, Section A 6.2 (1956),
pp. 114–116. doi: 10.1007/BF03185030.

[37] R. Courant, E. Isaacson and M. Rees. “On the solution of nonlinear
hyperbolic differential equations by finite differences”. In:
Communications on Pure and Applied Mathematics 5.3 (1952),
pp. 243–255. doi: 10.1002/cpa.3160050303.

[38] C. Crowe, M. Sommerfeld and Y. Tsuji. Multiphase Flows with
Droplets and Particles. CRC Press LLC, 1998.

[39] P. A. Cundall. “A computer model for simulating progressive large
scale movements in blocky rock systems”. In: Proceedings of the
international symposium on rock fracture (ISRM), Nancy. Vol. 1. II–8.
1971, pp. 129–136.

[40] P. A. Cundall and O. D. Strack. “A discrete numerical model for
granular assemblies”. In: Geotechnique 29.1 (1979), pp. 47–65.

[41] E. Cunningham. “On the Velocity of Steady Fall of Spherical
Particles through Fluid Medium”. In: Proceedings of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences 83.563
(1910), pp. 357–365. doi: 10.1098/rspa.1910.0024.

[42] E. L. Cussler. Diffusion: mass transfer in fluid systems. Cambridge
university press, 2009.

[43] T. Darden, D. York and L. Pedersen. “Particle mesh Ewald: An N
log(N) method for Ewald sums in large systems”. In: The Journal of
Chemical Physics 98.12 (1993), pp. 10089–10092. doi:
http://dx.doi.org/10.1063/1.464397.

[44] S. M. Dash, T.-S. Lee and H. Huang. “A novel flexible forcing hybrid
IB-LBM scheme to simulate flow past circular cylinder”. In:
International Journal of Modern Physics C 25.01 (2014), p. 1340014. doi:
10.1142/S0129183113400147.

[45] P. Deuflhard, F. Bornemann and A. Hohmann. Numerische
Mathematik. De Gruyter Lehrbuch Bd. 1. De Gruyter, 2002.

http://dx.doi.org/10.1103/PhysRevE.88.013303
http://dx.doi.org/10.1016/0021-8502(96)00029-8
http://dx.doi.org/10.1089/08942680152484199
http://dx.doi.org/10.1007/BF03185030
http://dx.doi.org/10.1002/cpa.3160050303
http://dx.doi.org/10.1098/rspa.1910.0024
http://dx.doi.org/http://dx.doi.org/10.1063/1.464397
http://dx.doi.org/10.1142/S0129183113400147

154 Bibliography

[46] D. d’Humieres, I. Ginzburg, M. Krafczyk, P. Lallemand and
L.-S. Luo. “Multiple-Relaxation-Time Lattice Boltzmann Models in
Three Dimensions”. In: Philosophical Transactions: Mathematical,
Physical and Engineering Sciences 360.1792 (2002), pp. 437–451.

[47] S. Donath, J. Götz, C. Feichtinger, K. Iglberger and U. Rüde.
“waLBerla: Optimization for Itanium-based Systems with
Thousands of Processors”. In: High Performance Computing in Science
and Engineering, Garching/Munich 2009: Transactions of the Fourth Joint
HLRB and KONWIHR Review and Results Workshop, Dec. 8-9, 2009,
Leibniz Supercomputing Centre, Garching/Munich, Germany. Ed. by
S. Wagner, M. Steinmetz, A. Bode and M. M. Müller. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 27–38. doi:
10.1007/978-3-642-13872-0_3.

[48] F. Durst. Fluid Mechanics: An Introduction to the Theory of Fluid Flows.
SpringerLink: Springer e-Books. Springer Berlin Heidelberg, 2008.

[49] S. Elghobashi. “Particle-laden turbulent flows: direct simulation and
closure models”. In: Applied Scientific Research 48.3 (1991),
pp. 301–314. doi: 10.1007/BF02008202.

[50] A. Eshghinejadfard, A. Abdelsamie, G. Janiga and D. Thévenin.
“Direct-forcing immersed boundary lattice Boltzmann simulation of
particle/fluid interactions for spherical and non-spherical particles
”. In: Particuology (2015). doi: 10.1016/j.partic.2015.05.004.

[51] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee and
L. G. Pedersen. “A smooth particle mesh Ewald method”. In: The
Journal of Chemical Physics 103.19 (1995), pp. 8577–8593. doi:
http://dx.doi.org/10.1063/1.470117.

[52] P. P. Ewald. “Die Berechnung optischer und elektrostatischer
Gitterpotentiale”. In: Annalen der Physik 369.3 (1921), pp. 253–287.
doi: 10.1002/andp.19213690304.

[53] M. Farazmand and G. Haller. “The Maxey–Riley equation:
Existence, uniqueness and regularity of solutions”. In: Nonlinear
Analysis: Real World Applications 22 (2015), pp. 98–106.

[54] E. Fattahi, C. Waluga, B. Wohlmuth and U. Rüde. “Large Scale
Lattice Boltzmann Simulation for the Coupling of Free and Porous
Media Flow”. In: High Performance Computing in Science and
Engineering: Second International Conference, HPCSE 2015, Soláň, Czech
Republic, May 25-28, 2015, Revised Selected Papers. Ed. by T. Kozubek,
R. Blaheta, J. Šístek, M. Rozložník and M. Čermák. Cham: Springer
International Publishing, 2016, pp. 1–18. doi:
10.1007/978-3-319-40361-8_1.

[55] C. Feichtinger, J. Götz, S. Donath, K. Iglberger and U. Rüde.
“WaLBerla: Exploiting Massively Parallel Systems for Lattice
Boltzmann Simulations”. In: Parallel Computing: Numerics,
Applications, and Trends. Ed. by R. Trobec, M. Vajteršic and
P. Zinterhof. London: Springer London, 2009, pp. 241–260. doi:
10.1007/978-1-84882-409-6_8.

[56] Z.-G. Feng and E. E. Michaelides. “Proteus: a direct forcing method
in the simulations of particulate flows”. In: Journal of Computational
Physics 202.1 (2005), pp. 20–51. doi: 10.1016/j.jcp.2004.06.020.

http://dx.doi.org/10.1007/978-3-642-13872-0_3
http://dx.doi.org/10.1007/BF02008202
http://dx.doi.org/10.1016/j.partic.2015.05.004
http://dx.doi.org/http://dx.doi.org/10.1063/1.470117
http://dx.doi.org/10.1002/andp.19213690304
http://dx.doi.org/10.1007/978-3-319-40361-8_1
http://dx.doi.org/10.1007/978-1-84882-409-6_8
http://dx.doi.org/10.1016/j.jcp.2004.06.020

Bibliography 155

[57] Z.-G. Feng and E. E. Michaelides. “The immersed boundary-lattice
Boltzmann method for solving fluid–particles interaction problems”.
In: Journal of Computational Physics 195.2 (2004), pp. 602–628. doi:
10.1016/j.jcp.2003.10.013.

[58] J. Fietz, M. J. Krause, C. Schulz, P. Sanders and V. Heuveline.
“Optimized hybrid parallel lattice Boltzmann fluid flow simulations
on complex geometries”. In: Euro-Par 2012 Parallel Processing.
Springer, 2012, pp. 818–829.

[59] M. Finck, D. Hänel and I. Wlokas. “Simulation of nasal flow by
lattice Boltzmann methods”. In: Comput. Biol. Med. 37.6 (2007),
pp. 739–749. doi:
http://dx.doi.org/10.1016/j.compbiomed.2006.06.013.

[60] E. G. Flekkøy. “Lattice Bhatnagar-Gross-Krook models for miscible
fluids”. In: Phys. Rev. E 47 (6 June 1993), pp. 4247–4257. doi:
10.1103/PhysRevE.47.4247.

[61] U. Frisch, B. Hasslacher and Y. Pomeau. “Lattice-Gas Automata for
the Navier-Stokes Equation”. In: Phys. Rev. Lett. 56.14 (Apr. 1986),
pp. 1505–1508. doi: 10.1103/PhysRevLett.56.1505.

[62] U. Frisch, D. d’Humieres, B. Hasslacher, P. Lallemand, Y. Pomeau,
J.-P. Rivet et al. “Lattice gas hydrodynamics in two and three
dimensions”. In: Complex systems 1.4 (1987), pp. 649–707.

[63] X. Fu, Z. Yao and X. Zhang. “Numerical investigation of polygonal
particle separation in microfluidic channels”. In: Microfluidics and
Nanofluidics 20.7 (2016), pp. 1–14. doi: 10.1007/s10404-016-1772-8.

[64] I. Gallagher, L. Saint-Raymond and B. Texier. From Newton to
Boltzmann: hard spheres and short-range potentials. European
mathematical society, 2013.

[65] M. A. Gallivan, D. R. Noble, J. G. Georgiadis and R. O. Buckius.
“An Evaluation of the Bounce-Back Boundary Condition for Lattice
Boltzmann Simulations”. In: International Journal for Numerical
Methods in Fluids 25.3 (1997), pp. 249–263. doi: 10.1002/(SICI)1097-
0363(19970815)25:3<249::AID-FLD546>3.0.CO;2-7.

[66] R. Glowinski, T. Pan, T. Hesla, D. Joseph and J. Periaux. “A fictitious
domain approach to the direct numerical simulation of
incompressible viscous flow past moving rigid bodies: application
to particulate flow”. In: Journal of Computational Physics 169.2 (2001),
pp. 363–426. doi: 10.1006/jcph.2000.6542.

[67] R. Glowinski, T.-W. Pan and J. Periaux. “A fictitious domain method
for Dirichlet problem and applications”. In: Computer Methods in
Applied Mechanics and Engineering 111.3 (1994), pp. 283–303. doi:
http://dx.doi.org/10.1016/0045-7825(94)90135-X.

[68] R. Glowinski, T.-W. Pan, T. I. Hesla and D. D. Joseph. “A distributed
Lagrange multiplier/fictitious domain method for particulate
flows”. In: International Journal of Multiphase Flow 25.5 (1999),
pp. 755–794. doi: 10.1016/S0301-9322(98)00048-2.

[69] J. Götz, C. Feichtinger, K. Iglberger, S. Donath and U. Rüde. “Large
scale simulation of fluid structure interaction using Lattice
Boltzmann methods and thephysics engine”. In: ANZIAM Journal 50
(2008), pp. 166–188.

http://dx.doi.org/10.1016/j.jcp.2003.10.013
http://dx.doi.org/http://dx.doi.org/10.1016/j.compbiomed.2006.06.013
http://dx.doi.org/10.1103/PhysRevE.47.4247
http://dx.doi.org/10.1103/PhysRevLett.56.1505
http://dx.doi.org/10.1007/s10404-016-1772-8
http://dx.doi.org/10.1002/(SICI)1097-0363(19970815)25:3<249::AID-FLD546>3.0.CO;2-7
http://dx.doi.org/10.1002/(SICI)1097-0363(19970815)25:3<249::AID-FLD546>3.0.CO;2-7
http://dx.doi.org/10.1006/jcph.2000.6542
http://dx.doi.org/http://dx.doi.org/10.1016/0045-7825(94)90135-X
http://dx.doi.org/10.1016/S0301-9322(98)00048-2

156 Bibliography

[70] H. Grad. “On the kinetic theory of rarefied gases”. In:
Communications on Pure and Applied Mathematics 2.4 (1949),
pp. 331–407. doi: 10.1002/cpa.3160020403.

[71] Z. Guo, C. Zheng and B. Shi. “Discrete lattice effects on the forcing
term in the lattice Boltzmann method”. In: Phys. Rev. E 65 (2002),
p. 046308. doi: 10.1103/PhysRevE.65.046308.

[72] Z. Guo and C. Shu. Lattice Boltzmann Method and Its Applications in
Engineering (Advances in Computational Fluid Dynamics). 1st ed.
World Scientific Publishing Company, Mar. 2013.

[73] Z. Guo and T. Zhao. “Lattice Boltzmann model for incompressible
flows through porous media”. In: Physical Review E 66.3 (2002),
p. 036304. doi: 10.1103/PhysRevE.66.036304.

[74] D. Hänel. Molekulare Gasdynamik. Springer, 2004.

[75] M. Hanke-Bourgeois. Grundlagen der Numerischen Mathematik und des
Wissenschaftlichen Rechnens. Mathematische Leitfäden. Teubner, 2006.

[76] J. Hardy, Y. Pomeau and O. de Pazzis. “Time Evolution of a
Two-Dimensional Classical Lattice System”. In: Phys. Rev. Lett. 31 (5
July 1973), pp. 276–279. doi: 10.1103/PhysRevLett.31.276.

[77] X. He and L.-S. Luo. “Lattice Boltzmann Model for the
Incompressible Navier Stokes Equation”. In: Journal of Statistical
Physics 88 (1997), pp. 927–944.

[78] X. He and L.-S. Luo. “Theory of the lattice Boltzmann method:
From the Boltzmann equation to the lattice Boltzmann equation”. In:
Phys. Rev. E 56.6 (Dec. 1997), pp. 6811–6817. doi:
10.1103/PhysRevE.56.6811.

[79] X. He, X. Shan and G. D. Doolen. “Discrete Boltzmann equation
model for nonideal gases”. In: Phys. Rev. E 57.1 (Jan. 1998), R13–R16.
doi: 10.1103/PhysRevE.57.R13.

[80] T. Henn, V. Heuveline, M. J. Krause and S. Ritterbusch. “Statistical
Atlases and Computational Models of the Heart. Imaging and
Modelling Challenges: Third International Workshop, STACOM
2012, Held in Conjunction with MICCAI 2012, Nice, France, October
5, 2012, Revised Selected Papers”. In: ed. by O. Camara, T. Mansi,
M. Pop, K. Rhode, M. Sermesant and A. Young. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013. Chap. Aortic Coarctation
Simulation Based on the Lattice Boltzmann Method: Benchmark
Results, pp. 34–43. doi: 10.1007/978-3-642-36961-2_5.

[81] T. Henn, F. Klemens, G. Thäter and M. J. Krause. “Particle Flow
Simulations with Homogenised Lattice Boltzmann Methods”. In:
Submitted to Particuology (2016).

[82] T. Henn, G. Thäter, W. Dörfler, H. Nirschl and M. J. Krause.
“Parallel dilute particulate flow simulations in the human nasal
cavity”. In: Computers & Fluids 124 (2016), pp. 197–207. doi:
10.1016/j.compfluid.2015.08.002.

[83] V. Heuveline and M. Krause. “OpenLB: towards an efficient parallel
open source library for lattice Boltzmann fluid flow simulations”. In:
vol. 9. PARA, International Workshop on State-of-the-Art in
Scientific and Parallel Computing. accepted for. 2010.

http://dx.doi.org/10.1002/cpa.3160020403
http://dx.doi.org/10.1103/PhysRevE.65.046308
http://dx.doi.org/10.1103/PhysRevE.66.036304
http://dx.doi.org/10.1103/PhysRevLett.31.276
http://dx.doi.org/10.1103/PhysRevE.56.6811
http://dx.doi.org/10.1103/PhysRevE.57.R13
http://dx.doi.org/10.1007/978-3-642-36961-2_5
http://dx.doi.org/10.1016/j.compfluid.2015.08.002

Bibliography 157

[84] V. Heuveline, M. Krause and J. Latt. “Towards a hybrid
parallelization of lattice Boltzmann methods”. In: Computers &
Mathematics with Applications (2009). doi:
10.1016/j.camwa.2009.04.001.

[85] M. Hochbruck. Numerische Mathematik I und II, Numerische Methoden
für Differentialgleichungen, Finite Elemente Methoden. Skriptum. June
2016.

[86] D. J. Holdych, D. R. Noble, J. G. Georgiadis and R. O. Buckius.
“Truncation error analysis of lattice Boltzmann methods”. In: Journal
of Computational Physics 193.2 (2004), pp. 595–619. doi:
http://dx.doi.org/10.1016/j.jcp.2003.08.012.

[87] S. Hou, J. Sterling, S. Chen and G. Doolen. “A lattice Boltzmann
subgrid model for high Reynolds number flows”. In: arXiv preprint
comp-gas/9401004 (1994).

[88] H. Hu. “Direct simulation of flows of solid-liquid mixtures”. In:
International Journal of Multiphase Flow 22.2 (1996), pp. 335–352. doi:
http://dx.doi.org/10.1016/0301-9322(95)00068-2.

[89] H. Hu, D. Joseph and M. Crochet. “Direct simulation of fluid
particle motions”. In: Theoretical and Computational Fluid Dynamics
3.5 (1992), pp. 285–306. doi: 10.1007/BF00717645.

[90] Y. Hu, H. Yuan, S. Shu, X. Niu and M. Li. “An improved
momentum exchanged-based immersed boundary lattice
Boltzmann method by using an iterative technique”. In: Computers &
Mathematics with Applications 68.3 (2014), pp. 140–155. doi:
10.1016/j.camwa.2014.05.013.

[91] H. Huang, X. Yang, M. Krafczyk and X.-Y. Lu. “Rotation of
spheroidal particles in Couette flows”. In: Journal of Fluid Mechanics
692 (2012), pp. 369–394. doi: 10.1017/jfm.2011.519.

[92] H.-B. Huang, X.-Y. Lu and M. Sukop. “Numerical study of Lattice
Boltzmann methods for a convection–diffusion equation coupled
with Navier–Stokes equations”. In: Journal of Physics A: Mathematical
and Theoretical 44.5 (2011), p. 055001. doi:
10.1088/1751-8113/44/5/055001.

[93] M. A. Hyman. “Non-iterative numerical solution of boundary-value
problems”. In: Applied Scientific Research, Section B 2.1 (1952),
pp. 325–351.

[94] T. Inamuro, M. Yoshina and F. Ogino. “A non-slip boundary
condition for lattice Boltzmann simulations”. In: Phys. Fluids 7
(1995), pp. 2928–2930. doi: 10.1063/1.868766.

[95] K. Inthavong, Z. Tian, H. Li, J. Tu, W. Yang, C. Xue and C. Li. “A
Numerical Study of Spray Particle Deposition in a Human Nasal
Cavity”. In: Aerosol Science and Technology 40.11 (2006),
pp. 1034–1045. doi: 10.1080/02786820600924978.

[96] K. Inthavong, Z. Tian, J. Tu, W. Yang and C. Xue. “Optimising nasal
spray parameters for efficient drug delivery using computational
fluid dynamics”. In: Computers in Biology and Medicine 38.6 (2008),
pp. 713–726. doi: 10.1016/j.compbiomed.2008.03.008.

http://dx.doi.org/10.1016/j.camwa.2009.04.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.jcp.2003.08.012
http://dx.doi.org/http://dx.doi.org/10.1016/0301-9322(95)00068-2
http://dx.doi.org/10.1007/BF00717645
http://dx.doi.org/10.1016/j.camwa.2014.05.013
http://dx.doi.org/10.1017/jfm.2011.519
http://dx.doi.org/10.1088/1751-8113/44/5/055001
http://dx.doi.org/10.1063/1.868766
http://dx.doi.org/10.1080/02786820600924978
http://dx.doi.org/10.1016/j.compbiomed.2008.03.008

158 Bibliography

[97] S. Jafari, R. Yamamoto and M. Rahnama. “Lattice-Boltzmann
method combined with smoothed-profile method for particulate
suspensions”. In: Physical Review E 83.2 (2011), p. 026702. doi:
10.1103/PhysRevE.83.026702.

[98] V. John and E. Schmeyer. “Finite element methods for
time-dependent convection–diffusion–reaction equations with small
diffusion”. In: Computer Methods in Applied Mechanics and Engineering
198.3–4 (2008), pp. 475–494. doi: 10.1016/j.cma.2008.08.016.

[99] J. E. Jones. “On the Determination of Molecular Fields. II. From the
Equation of State of a Gas”. In: Proceedings of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences 106.738
(1924), pp. 463–477. doi: 10.1098/rspa.1924.0082. eprint:
http://rspa.royalsocietypublishing.org/content/106/738/463.

full.pdf.

[100] M. Junk and Z. Yang. “Outflow boundary conditions for the lattice
Boltzmann method”. In: Progress in Computational Fluid Dynamics,
8.1–4 (2008), pp. 38–38. doi: 10.1504/PCFD.2008.018077.

[101] M. Junk and A. Klar. “Discretizations for the Incompressible
Navier-Stokes Equations Based on the Lattice Boltzmann Method”.
In: SIAM J. Sci. Comput. 22.1 (2000), pp. 1–19. doi:
http://dx.doi.org/10.1137/S1064827599357188.

[102] A. Kaufmann, M. Moreau, O. Simonin and J. Helie. “Comparison
between Lagrangian and mesoscopic Eulerian modelling
approaches for inertial particles suspended in decaying isotropic
turbulence”. In: Journal of Computational Physics 227.13 (2008),
pp. 6448–6472. doi: 10.1016/j.jcp.2008.03.004.

[103] J. T. Kelly, B. Asgharian, J. Kimbell and B. Wong. “Particle
Deposition in Human Nasal Airway Replicas Manufactured by
Different Methods. Part I: Inertial Regime Particles”. In: Aerosol
Science and Technology 38.11 (Nov. 2004), pp. 1063–1071. doi:
10.1080/027868290883360.

[104] D. Kim and H. Choi. “Immersed boundary method for flow around
an arbitrarily moving body”. In: Journal of Computational Physics
212.2 (2006), pp. 662–680. doi: 10.1016/j.jcp.2005.07.010.

[105] C. Kleinstreuer and Z. Zhang. “Airflow and Particle Transport in the
Human Respiratory System”. In: Annual Review of Fluid Mechanics
42.1 (2010), p. 301. doi: 10.1146/annurev-fluid-121108-145453.

[106] C. Kleinstreuer and Z. Zhang. “An Adjustable Triple-Bifurcation
Unit Model for Air-Particle Flow Simulations in Human
Tracheobronchial Airways”. In: Journal of Biomechanical Engineering
131.3 (2008), p. 021007. doi: 10.1115/1.3005339.

[107] F. Klemens. “Simulation of Fluid-Particle Dynamics with a Porous
Media Lattice Boltzmann Method”. MA thesis. Karlsruher Institut
für Technologie, 2016.

[108] J. Kolbe. “Simulation of the Agglomeration Process for Solid
Particles in Fluids Based on Lattice Boltzmann Methods”.
MA thesis. Karlsruhe Institute of Technology, 2015.

[109] M. J. Krause, T. Gengenbach, S. Zimny, R. Mayer and V. Heuveline.
“How to Breathe Life into CT-Data”. In: Computer Aided Medical
Engineering 4 (2011), pp. 29–33.

http://dx.doi.org/10.1103/PhysRevE.83.026702
http://dx.doi.org/10.1016/j.cma.2008.08.016
http://dx.doi.org/10.1098/rspa.1924.0082
http://rspa.royalsocietypublishing.org/content/106/738/463.full.pdf
http://rspa.royalsocietypublishing.org/content/106/738/463.full.pdf
http://dx.doi.org/10.1504/PCFD.2008.018077
http://dx.doi.org/http://dx.doi.org/10.1137/S1064827599357188
http://dx.doi.org/10.1016/j.jcp.2008.03.004
http://dx.doi.org/10.1080/027868290883360
http://dx.doi.org/10.1016/j.jcp.2005.07.010
http://dx.doi.org/10.1146/annurev-fluid-121108-145453
http://dx.doi.org/10.1115/1.3005339

Bibliography 159

[110] M. J. Krause. “Fluid Flow Simulation and Optimisation with Lattice
Boltzmann Methods on High Performance Computers: Application
to the Human Respiratory System”. eng. PhD thesis. 2010.

[111] W. Kutta. “Beitrag zur näherungsweisen Integration totaler
Differentialgleichungen”. In: Z. Math. Phys. 46 (1901), pp. 435–453.

[112] A. Ladd and R. Verberg. “Lattice-Boltzmann simulations of
particle-fluid suspensions”. In: Journal of Statistical Physics 104.5-6
(2001), pp. 1191–1251.

[113] A. J. Ladd. “Numerical simulations of particulate suspensions via a
discretized Boltzmann equation. Part 1. Theoretical foundation”. In:
Journal of Fluid Mechanics 271 (1994), pp. 285–309. doi:
10.1017/S0022112094001771.

[114] A. J. Ladd. “Numerical simulations of particulate suspensions via a
discretized Boltzmann equation. Part 2. Numerical results”. In:
Journal of Fluid Mechanics 271 (1994), pp. 311–339. doi:
10.1017/S0022112094001783.

[115] U. Lantermann. “Simulation der Transport- und
Depositionsvorgänge von Nanopartikeln in der Gasphase mittels
Partikel-Monte-Carlo- und Lattice-Botzmann-Methoden”.
PhD thesis. Universität Duisburg-Essen, July 2006.

[116] J. Latt. Choice of units in lattice Boltzmann simulations. Apr. 2008.

[117] A. Latz and A. Wiegmann. “Simulation of fluid particle separation
in realistic three dimensional fiber structures”. In: Filtech Europa,
Düsseldorf (2003).

[118] E. Laurien and H. O. jr. Numerische Strömungsmechanik:
Grundgleichungen und Modelle - Lösungsmethoden - Qualität und
Genauigkeit (German Edition). 5th ed. Springer Vieweg, Aug. 2013.

[119] D.-T. Lee and C. Wong. “Worst-case analysis for region and partial
region searches in multidimensional binary search trees and
balanced quad trees”. In: Acta Informatica 9.1 (1977), pp. 23–29.

[120] K. Lee and B. Liu. “Theoretical Study of Aerosol Filtration by
Fibrous Filters”. In: Aerosol Science and Technology 1.2 (1982),
pp. 147–161. doi: 10.1080/02786828208958584.

[121] L.-S. Luo. “Analytic solutions of linearized Lattice Boltzmann
equation for simple flows”. In: Journal of Statistical Physics 88.3-4
(Aug. 1997), pp. 913–926.

[122] H. Lv, S. Tang and W. Zhou. “Numerical simulation of
sedimentation of rectangular particle in Newtonian fluid ”. In:
Particuology 10.1 (2012), pp. 79–88. doi:
10.1016/j.partic.2011.04.008.

[123] F. Massaioli and G. Amati. “Achieving high performance in a LBM
code using OpenMP”. In: EWOMP 2002, 2002.

[124] J. Mathieu and J. Scott. An Introduction to Turbulent Flow. Cambridge
University Press, 2000.

[125] H.-G. Matuttis and J. Chen. Understanding the Discrete Element
Method: Simulation of Non-spherical Particles for Granular and
Multi-body Systems. John Wiley & Sons, 2014.

http://dx.doi.org/10.1017/S0022112094001771
http://dx.doi.org/10.1017/S0022112094001783
http://dx.doi.org/10.1080/02786828208958584
http://dx.doi.org/10.1016/j.partic.2011.04.008

160 Bibliography

[126] M. R. Maxey. “The equation of motion for a small rigid sphere in a
nonuniform or unsteady flow”. In: ASME-PUBLICATIONS-FED 166
(1993), pp. 57–57.

[127] M. R. Maxey and J. J. Riley. “Equation of motion for a small rigid
sphere in a nonuniform flow”. In: Physics of Fluids 26.4 (1983),
pp. 883–889. doi: http://dx.doi.org/10.1063/1.864230.

[128] G. R. McNamara and G. Zanetti. “Use of the Boltzmann Equation to
Simulate Lattice-Gas Automata”. In: Phys. Rev. Lett. 61.20 (Nov.
1988), pp. 2332–2335. doi: 10.1103/PhysRevLett.61.2332.

[129] E. E. Michaelides. Particles, Bubbles & Drops. World scientific
Publishing Co. Pte. Ltd., 2006.

[130] A. Mink, G. Thäter, H. Nirschl and M. J. Krause. “A 3D Lattice
Boltzmann method for light simulation in participating media”. In:
Journal of Computational Science (2016).

[131] H. Mirzaee, T. Henn, M. J. Krause, L. Goubergrits, C. Schumann,
M. Neugebauer, T. Kuehne, T. Preusser and A. Hennemuth.
“MRI-based computational hemodynamics in patients with aortic
coarctation using the lattice Boltzmann methods: Clinical validation
study”. In: Journal of Magnetic Resonance Imaging (2016). doi:
10.1002/jmri.25366.

[132] A. A. Mohamad. Lattice Boltzmann Method: Fundamentals and
Engineering Applications with Computer Codes. London / New York:
Springer-Verlag, 2011.

[133] A. Munjiza and K. R. F. Andrews. “NBS contact detection algorithm
for bodies of similar size”. In: International Journal for Numerical
Methods in Engineering 43.1 (1998), pp. 131–149. doi:
10.1002/(SICI)1097-0207(19980915)43:1<131::AID-

NME447>3.0.CO;2-S.

[134] A. A. Munjiza. The Combined Finite-Discrete Element Method. 1st ed.
Wiley, Apr. 2004.

[135] Y. Nakayama and R. Yamamoto. “Simulation method to resolve
hydrodynamic interactions in colloidal dispersions”. In: Phys. Rev. E
71 (3 Mar. 2005), p. 036707. doi: 10.1103/PhysRevE.71.036707.

[136] J. Ni, C.-L. Lin, Y. Zhang, T. He, S. Wang and B. Knosp. “Parallelism
of Lattice Boltzmann Method (LBM) for Lid-driven Cavity Flows”.
In: High Performance Computing and Applications (HPCA2004),
Shanghai, China, August 8-10, 2004, accepted and being published in
Lecture Note in Computer Science (LNCS). Springer-Verlag Heidelberg,
Germany, 2004.

[137] D. Nie and J. Lin. “A lattice Boltzmann-direct forcing/fictitious
domain model for brownian particles in fluctuating fluids”. In:
Communications in Computational Physics 9.04 (2011), pp. 959–973.
doi: 10.4208/cicp.181109.300610a.

[138] D. Nie and J. Lin. “A LB-DF/FD method for particle suspensions”.
In: Communications in Computational Physics 7.3 (2010), p. 544. doi:
10.4208/cicp.2009.08.155.

[139] X. Niu, C. Shu, Y. Chew and Y. Peng. “A momentum
exchange-based immersed boundary-lattice Boltzmann method for
simulating incompressible viscous flows”. In: Physics Letters A 354.3
(2006), pp. 173–182. doi: 10.1016/j.physleta.2006.01.060.

http://dx.doi.org/http://dx.doi.org/10.1063/1.864230
http://dx.doi.org/10.1103/PhysRevLett.61.2332
http://dx.doi.org/10.1002/jmri.25366
http://dx.doi.org/10.1002/(SICI)1097-0207(19980915)43:1<131::AID-NME447>3.0.CO;2-S
http://dx.doi.org/10.1002/(SICI)1097-0207(19980915)43:1<131::AID-NME447>3.0.CO;2-S
http://dx.doi.org/10.1103/PhysRevE.71.036707
http://dx.doi.org/10.4208/cicp.181109.300610a
http://dx.doi.org/10.4208/cicp.2009.08.155
http://dx.doi.org/10.1016/j.physleta.2006.01.060

Bibliography 161

[140] D. R. Noble and J. R. Torczynski. “A Lattice-Boltzmann Method for
Partially Saturated Computational Cells”. In: International Journal of
Modern Physics C 09.08 (1998), pp. 1189–1201. doi:
10.1142/S0129183198001084.

[141] C. W. Oseen. Hydrodynamik. Vol. 1. Akad. Verl.-Ges., 1927.

[142] C. W. Oseen. Über die Stoke’sche Formel und über eine verwandte
Aufgabe in der Hydrodynamik. Almqvist & Wiksell, 1911.

[143] J.-H. Park, G. von Maltzahn, L. Zhang, M. P. Schwartz, E. Ruoslahti,
S. N. Bhatia and M. J. Sailor. “Magnetic iron oxide nanoworms for
tumor targeting and imaging”. In: Advanced Materials 20.9 (2008),
pp. 1630–1635. doi: 10.1002/adma.200800004.

[144] C. S. Peskin. “Flow patterns around heart valves: a numerical
method”. In: Journal of computational physics 10.2 (1972), pp. 252–271.
doi: 10.1016/0021-9991(72)90065-4.

[145] C. S. Peskin. “Numerical analysis of blood flow in the heart”. In:
Journal of computational physics 25.3 (1977), pp. 220–252. doi:
10.1016/0021-9991(77)90100-0.

[146] C. S. Peskin. “The immersed boundary method”. In: Acta Numerica
11 (Jan. 2002), pp. 479–517. doi: 10.1017/S0962492902000077.

[147] G. Pingen, A. Evgrafov and K. Maute. “Topology optimization of
flow domains using the lattice Boltzmann method”. In: Structural
and Multidisciplinary Optimization 34.6 (2007), pp. 507–524. doi:
10.1007/s00158-007-0105-7.

[148] T. Pohl, F. Deserno, N. Thurey, U. Rude, P. Lammers, G. Wellein and
T. Zeiser. “Performance Evaluation of Parallel Large-Scale Lattice
Boltzmann Applications on Three Supercomputing Architectures”.
In: Supercomputing 2004, Proceedings of the ACM/IEEE SC2004
Conference. 2004, p. 21.

[149] Y. Qian, D. d’Humières and P. Lallemand. “Lattice BGK models for
Navier-Stokes equation”. In: EPL (Europhysics Letters) 17.6 (1992),
p. 479.

[150] R. Rannacher. Einführung in die Numerische Mathematik (Numerik 0).
Vorlessungsskriptum SS 2005. Universität Heidelberg, 2006.

[151] R. Rannacher. Numerische Mathematik 3 (Numerik von Problemen der
Kontinuumsmechanik). Tech. rep. Universität Heidelberg, 2008.

[152] N. Rao and M. Faghri. “Computer Modeling of Aerosol Filtration by
Fibrous Filters”. In: Aerosol Science and Technology 8.2 (2007),
pp. 133–156. doi: 10.1080/02786828808959178.

[153] O. Reynolds. Papers on mechanical and physical subjects. Cambridge
University Press, 1903.

[154] A. M. Roma, C. S. Peskin and M. J. Berger. “An adaptive version of
the immersed boundary method”. In: Journal of computational physics
153.2 (1999), pp. 509–534.

[155] T. Rosén, F. Lundell and C. Aidun. “Effect of fluid inertia on the
dynamics and scaling of neutrally buoyant particles in shear flow”.
In: Journal of Fluid Mechanics 738 (Jan. 2014), pp. 563–590. doi:
10.1017/jfm.2013.599.

http://dx.doi.org/10.1142/S0129183198001084
http://dx.doi.org/10.1002/adma.200800004
http://dx.doi.org/10.1016/0021-9991(72)90065-4
http://dx.doi.org/10.1016/0021-9991(77)90100-0
http://dx.doi.org/10.1017/S0962492902000077
http://dx.doi.org/10.1007/s00158-007-0105-7
http://dx.doi.org/10.1080/02786828808959178
http://dx.doi.org/10.1017/jfm.2013.599

162 Bibliography

[156] C. Runge. “Über die numerische Auflösung von
Differentialgleichungen”. In: Mathematische Annalen 46.2 (1895),
pp. 167–178.

[157] M. Schäfer, S. Turek, F. Durst, E. Krause and R. Rannacher.
“Benchmark Computations of Laminar Flow Around a Cylinder”.
English. In: Flow Simulation with High-Performance Computers II.
Ed. by E. Hirschel. Vol. 48. Notes on Numerical Fluid Mechanics
(NNFM). Vieweg+Teubner Verlag, 1996, pp. 547–566. doi:
10.1007/978-3-322-89849-4_39.

[158] F. Schwabl. Statistische Mechanik: mit 26 Tabellen und 186 Aufgaben.
Springer-Lehrbuch. Springer, 2000.

[159] M. Se, K. Inthavong and J. Tu. “Unsteady particle deposition in a
human nasal cavity”. In: Proceedings of the Seventh International
Conference on CFD in the Minerals and Process Industries. Ed. by P. Witt
and M. Schwarz. Melbourne, Australia: CSIRO, Dec. 2009, pp. 1–6.

[160] X. Shan and H. Chen. “Lattice Boltzmann model for simulating
flows with multiple phases and components”. In: Physical Review E
47.3 (1993), p. 1815. doi: 10.1103/PhysRevE.47.1815.

[161] K. T. Shanley, P. Zamankhan, G. Ahmadi, P. K. Hopke and
Y.-S. Cheng. “Numerical simulations investigating the regional and
overall deposition efficiency of the human nasal cavity”. In:
Inhalation toxicology 20.12 (2008), pp. 1093–1100.

[162] X. Shi and N. Phan-Thien. “Distributed Lagrange
multiplier/fictitious domain method in the framework of lattice
Boltzmann method for fluid structure interactions”. In: Journal of
Computational Physics 206.1 (2005), pp. 81–94. doi:
10.1016/j.jcp.2004.12.017.

[163] A. Sierou. “Accelerated Stokesian Dynamics: Development and
application to sheared non-Brownian suspensions”. PhD thesis.
California Institute of Technology, 2002.

[164] P. Skordos. “Initial and boundary conditions for the Lattice
Boltzmann Method”. In: Phys. Rev. E 48(6).6 (1993), pp. 4823–4842.

[165] J. Smagorinsky. “General Circulation Experiments with the
Primitive Equations”. In: Mon. Wea. Rev. 91.3 (1963), pp. 99–164. doi:
10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

[166] R. van der Sman. “Galilean invariant lattice Boltzmann scheme for
natural convection on square and rectangular lattices”. In: Physical
Review E 74.2 (2006), p. 026705. doi: 10.1103/PhysRevE.74.026705.

[167] A. Sokolichin, G. Eigenberger, A. Lapin and A. Lübbert. “Dynamic
numerical simulation of gas-liquid two-phase flows Euler/Euler
versus Euler/Lagrange”. In: Chemical Engineering Science 52.4 (1996),
pp. 611–626. doi: 10.1016/S0009-2509(96)00425-3.

[168] M. A. Spaid and F. R. Phelan Jr. “Lattice Boltzmann methods for
modeling microscale flow in fibrous porous media”. In: Physics of
Fluids (1994-present) 9.9 (1997), pp. 2468–2474. doi:
10.1063/1.869392.

http://dx.doi.org/10.1007/978-3-322-89849-4_39
http://dx.doi.org/10.1103/PhysRevE.47.1815
http://dx.doi.org/10.1016/j.jcp.2004.12.017
http://dx.doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
http://dx.doi.org/10.1103/PhysRevE.74.026705
http://dx.doi.org/10.1016/S0009-2509(96)00425-3
http://dx.doi.org/10.1063/1.869392

Bibliography 163

[169] M. Stiebler, J. Tölke and M. Krafczyk. “Advection–diffusion lattice
Boltzmann scheme for hierarchical grids”. In: Computers &
Mathematics with Applications 55.7 (2008). Mesoscopic Methods in
Engineering and Science, pp. 1576–1584. doi:
http://dx.doi.org/10.1016/j.camwa.2007.08.024.

[170] G. G. Stokes. On the effect of the internal friction of fluids on the motion
of pendulums. Vol. 9. Pitt Press, 1851.

[171] S. Succi. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond.
Oxford: Clarendon Press, 2001.

[172] M. C. Sukop and D. T. Thorne. Lattice Boltzmann modeling. Springer,
2006.

[173] K. Suzuki and T. Inamuro. “Effect of internal mass in the simulation
of a moving body by the immersed boundary method ”. In:
Computers & Fluids 49.1 (2011), pp. 173–187. doi:
10.1016/j.compfluid.2011.05.011.

[174] T. Swaminathan, K. Mukundakrishnan and H. Hu. “Sedimentation
of an ellipsoid inside an infinitely long tube at low and intermediate
Reynolds numbers”. In: Journal of Fluid Mechanics 551 (Mar. 2006),
pp. 357–385. doi: 10.1017/S0022112005008402.

[175] C.-M. Tchen. “Mean Value and Correlation Problems connected
with the Motion of Small Particles suspended in a turbulent fluid”.
PhD thesis. TU Delft, 1947. doi: 10.1007/978-94-017-6101-7.

[176] R. Trunk, T. Henn, W. Dörfler, H. Nirschl and M. J. Krause. “Inertial
dilute particulate fluid flow simulations with an Euler–Euler lattice
Boltzmann method”. In: Journal of Computational Science (2016). doi:
http://dx.doi.org/10.1016/j.jocs.2016.03.013.

[177] T. Tsuji, K. Yabumoto and T. Tanaka. “Spontaneous structures in
three-dimensional bubbling gas-fluidized bed by parallel
DEM–CFD coupling simulation”. In: Powder Technology 184.2 (2008),
pp. 132–140. doi: 10.1016/j.powtec.2007.11.042.

[178] J. Tu, K. Inthavong and G. Ahmadi. Computational fluid and particle
dynamics in the human respiratory system. Springer, 2012.

[179] T. F. de Vasconcelos, B. Sapoval, J. S. Andrade, J. B. Grotberg, Y. Hu
and M. Filoche. “Particle capture into the lung made simple?” In:
Journal of Applied Physiology 110.6 (2011), pp. 1664–1673. doi:
10.1152/japplphysiol.00866.2010. eprint:
http://jap.physiology.org/content/110/6/1664.full.pdf.

[180] R. Verberg and A. J. C. Ladd. “Lattice-Boltzmann Model with
Sub-Grid-Scale Boundary Conditions”. In: Phys. Rev. Lett. 84 (10
Mar. 2000), pp. 2148–2151. doi: 10.1103/PhysRevLett.84.2148.

[181] L. Verlet. “Computer "Experiments" on Classical Fluids. I.
Thermodynamical Properties of Lennard-Jones Molecules”. In: Phys.
Rev. 159 (1 July 1967), pp. 98–103. doi: 10.1103/PhysRev.159.98.

[182] L. Verlet. “Computer "Experiments" on Classical Fluids. II.
Equilibrium Correlation Functions”. In: Phys. Rev. 165 (1 Jan. 1968),
pp. 201–214. doi: 10.1103/PhysRev.165.201.

[183] E. J. W. Verwey. “Theory of the Stability of Lyophobic Colloids.” In:
The Journal of Physical and Colloid Chemistry 51.3 (1947), pp. 631–636.
doi: 10.1021/j150453a001. eprint:
http://dx.doi.org/10.1021/j150453a001.

http://dx.doi.org/http://dx.doi.org/10.1016/j.camwa.2007.08.024
http://dx.doi.org/10.1016/j.compfluid.2011.05.011
http://dx.doi.org/10.1017/S0022112005008402
http://dx.doi.org/10.1007/978-94-017-6101-7
http://dx.doi.org/http://dx.doi.org/10.1016/j.jocs.2016.03.013
http://dx.doi.org/10.1016/j.powtec.2007.11.042
http://dx.doi.org/10.1152/japplphysiol.00866.2010
http://jap.physiology.org/content/110/6/1664.full.pdf
http://dx.doi.org/10.1103/PhysRevLett.84.2148
http://dx.doi.org/10.1103/PhysRev.159.98
http://dx.doi.org/10.1103/PhysRev.165.201
http://dx.doi.org/10.1021/j150453a001
http://dx.doi.org/10.1021/j150453a001

164 Bibliography

[184] K. Vollmari, R. Jasevičius and H. Kruggel-Emden. “Experimental
and numerical study of fluidization and pressure drop of spherical
and non-spherical particles in a model scale fluidized bed”. In:
Powder Technology 291 (2016), pp. 506–521. doi:
10.1016/j.powtec.2015.11.045.

[185] D. Wan and S. Turek. “Direct numerical simulation of particulate
flow via multigrid FEM techniques and the fictitious boundary
method”. In: International Journal for Numerical Methods in Fluids 51.5
(2006), pp. 531–566. doi: 10.1002/fld.1129.

[186] L. Wang, Z. Guo and J. Mi. “Drafting, kissing and tumbling process
of two particles with different sizes”. In: Computers & Fluids 96
(2014), pp. 20–34. doi: 10.1016/j.compfluid.2014.03.005.

[187] L. Wang, B. Zhang, X. Wang, W. Ge and J. Li. “Lattice Boltzmann
based discrete simulation for gas–solid fluidization”. In: Chemical
Engineering Science 101 (2013), pp. 228–239. doi:
http://dx.doi.org/10.1016/j.ces.2013.06.019.

[188] E. R. Weibel. Morphometry of the human lung. eng. Bibliography: p.
143-148. Berlin: Springer, 1963, XI, 151 S.

[189] J.-P. Weiß. Numerical analysis of Lattice Boltzmann Methods for the heat
equation on a bounded interval. Universitätsverlag Karlsruhe,
Karlsruhe, 2006.

[190] D. A. Wolf–Gladrow. Lattice-Gas, Cellular Automata and Lattice
Boltzmann Models, An Introduction. Lecture Notes in Mathematics.
Heidelberg, Berlin: Springer, 2000.

[191] J. Wu and C. Shu. “Implicit velocity correction-based immersed
boundary-lattice Boltzmann method and its applications”. In:
Journal of Computational Physics 228.6 (2009), pp. 1963–1979. doi:
10.1016/j.jcp.2008.11.019.

[192] J. Wu and C. Shu. “Particulate flow simulation via a boundary
condition-enforced immersed boundary-lattice Boltzmann scheme”.
In: Communications in Computational Physics 7.4 (2010), p. 793. doi:
10.4208/cicp.2009.09.054.

[193] M. Wünsche. “Mehrphasige Strömungssimulation mit OpenLB am
Teilfahrzeugmodell”. MA thesis. TU Dresden, 2015.

[194] Z. Xia, K. Connington, S. Rapaka, P. Yue, J. Feng and S. Chen. “Flow
patterns in the sedimentation of an elliptical particle”. In: Journal of
Fluid Mechanics 625 (Apr. 2009), pp. 249–272. doi:
10.1017/S0022112008005521.

[195] Q. Xiong, B. Li, J. Xu, X. Fang, X. Wang, L. Wang, X. He and W. Ge.
“Efficient parallel implementation of the lattice Boltzmann method
on large clusters of graphic processing units”. In: Chinese Science
Bulletin 57.7 (2012), pp. 707–715. doi: 10.1007/s11434-011-4908-y.

[196] Q. Xiong, E. Madadi-Kandjani and G. Lorenzini. “A LBM–DEM
solver for fast discrete particle simulation of particle–fluid flows”. In:
Continuum Mechanics and Thermodynamics 26.6 (2014), pp. 907–917.

[197] K. Yokoi. “Numerical Method for Interaction Among Multi-particle,
Fluid and Arbitrary Shape Structure”. In: Journal of Scientific
Computing 46.2 (2011), pp. 166–181. doi:
10.1007/s10915-010-9385-y.

http://dx.doi.org/10.1016/j.powtec.2015.11.045
http://dx.doi.org/10.1002/fld.1129
http://dx.doi.org/10.1016/j.compfluid.2014.03.005
http://dx.doi.org/http://dx.doi.org/10.1016/j.ces.2013.06.019
http://dx.doi.org/10.1016/j.jcp.2008.11.019
http://dx.doi.org/10.4208/cicp.2009.09.054
http://dx.doi.org/10.1017/S0022112008005521
http://dx.doi.org/10.1007/s11434-011-4908-y
http://dx.doi.org/10.1007/s10915-010-9385-y

Bibliography 165

[198] H. Yu, S. Girimaji and L.-S. Luo. “DNS and LES of decaying
isotropic turbulence with and without frame rotation using lattice
Boltzmann method”. In: Journal of Computational Physics 209.2 (2005),
pp. 599–616. doi: 10.1016/j.jcp.2005.03.022.

[199] M. M. Zdravkovich. Flow around Circular Cylinders: Volume 1:
Fundamentals. Oxford University Press, 1997.

[200] M. M. Zdravkovich. Flow around Circular Cylinders: Volume 2:
Applications. Oxford University Press, 2003.

[201] T. Zeiser, J. Götz and M. Stürmer. “On performance and accuracy of
lattice Boltzmann approaches for single phase flow in porous media:
A toy became an accepted tool - how to maintain its features despite
more and mor complex (physical) models and changing trends in
high performance computing!?” In: Proceedings of 3rd
Russian-German Workshop on High Performance Computing, Novosibirsk,
July 2007, Springer. Ed. by N. S. e. a. M. Resch Y. Shokin. 2008.

[202] H. Zhang, F. X. Trias, A. Oliva, D. Yang, Y. Tan, S. Shu and Y. Sheng.
“PIBM: Particulate immersed boundary method for fluid–particle
interaction problems”. In: Powder Technology 272 (2015), pp. 1–13.
doi: 10.1016/j.powtec.2014.11.025.

[203] Z. Zhang, C. Kleinstreuer, J. Donohue and C. Kim. “Comparison of
micro- and nano-size particle depositions in a human upper airway
model”. In: Journal of Aerosol Science 36.2 (2005), pp. 211–233. doi:
10.1016/j.jaerosci.2004.08.006.

[204] Q. Zou and X. He. “On pressure and velocity boundary conditions
for the lattice Boltzmann BGK model”. In: Phys. Fluids 9 (1997),
pp. 1591–1598. doi: 10.1063/1.869307.

http://dx.doi.org/10.1016/j.jcp.2005.03.022
http://dx.doi.org/10.1016/j.powtec.2014.11.025
http://dx.doi.org/10.1016/j.jaerosci.2004.08.006
http://dx.doi.org/10.1063/1.869307

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Nomenclature
	1 Introduction
	1.1 Categorisation by Flow Model
	1.2 Categorisation by phase coupling
	1.3 Thesis Aims and Structure
	1.4 Methods and Application
	1.5 OpenLB
	1.6 Related Published Articles

	2 Modelling and Simulation of Fluid Flows
	2.1 Fluid Systems at Different Scales
	2.1.1 Macroscopic: Navier-Stokes Equations
	2.1.2 Microscopic: Newton's Law

	2.2 Boltzmann Equation
	2.2.1 Collision Invariance and Equilibrium
	2.2.2 BGK Collision Operator
	2.2.3 Discretisation of the Boltzmann Equation

	2.3 Lattice Boltzmann Method
	2.3.1 Transition to Macroscopic Equations
	2.3.2 Turbulence Scheme
	2.3.3 Forcing Scheme
	2.3.4 Porous Media Scheme
	2.3.5 Homogenised Lattice Boltzmann Method
	2.3.6 Boundary Conditions

	2.4 Implementational Aspects
	2.4.1 Voxeliser
	2.4.2 Data Structure and Parallelisation

	2.5 Application: Aorta
	2.5.1 Simulation Setup
	2.5.2 Results

	3 Particulate Flows: One Way Coupling
	3.1 Euler–Lagrange
	3.1.1 Fluid-Particle Forces
	3.1.2 Integration of Particle Trajectories
	3.1.3 Interpolation of Fluid Velocity

	3.2 Implementational Aspects
	3.2.1 The Class SuperParticleSystem3D
	3.2.2 Parallelisation of the Particle Phase
	3.2.3 Implementation of the Communication Optimal Strategy

	3.3 Application: Lung Bifurcation (Euler–Lagrange)
	3.3.1 Methods
	3.3.2 Convergence
	3.3.3 Determining Number of Particles
	3.3.4 Validation
	3.3.5 Parallel Performance

	3.4 Application: Nasal Cavity
	3.4.1 Summary

	3.5 Euler–Euler
	3.5.1 Mathematical Modelling
	3.5.2 Fluid Component
	3.5.3 Particle Component
	3.5.4 Boundary Conditions
	3.5.5 Stabilisation
	3.5.6 Algorithm

	3.6 Application: Lung Bifurcation (Euler–Euler)
	3.6.1 Summary

	4 Particulate Flows: Two Way Coupling
	4.1 Particle-Particle Interaction
	4.1.1 Collision Detection
	4.1.2 Collision Models

	4.2 Subgrid Scale Particles
	4.2.1 HLBM for Subgrid Particulate Flows
	4.2.2 Application: Single Particle Sedimentation
	4.2.3 Direct Forcing Scheme
	4.2.4 Application: Single particle sedimentation
	4.2.5 Application: 8125 sedimenting particles

	4.3 Resolved Particles
	4.3.1 HLBM for Resolved Particulate Flows

	4.4 Implementational Aspects
	4.5 Application: Numerical Experiments
	4.5.1 Flow Around a Cylinder
	4.5.2 Sedimentation of One Particle
	4.5.3 Sedimentation of Two Particles
	4.5.4 Sedimentation of 24 Particles
	4.5.5 Summary

	5 Summary and Conclusions
	Bibliography

