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Missense single-nucleotide polymorphisms (mSNPs) in titin are emerging as a

main causative factor of heart failure. However, distinguishing between benign

and disease-causing mSNPs is a substantial challenge. Here, we research the

question of whether a single mSNP in a generic domain of titin can affect

heart function as a whole and, if so, how. For this, we studied the mSNP

T2850I, seemingly linked to arrhythmogenic right ventricular cardiomyopathy

(ARVC). We used structural biology, computational simulations and trans-

genic muscle in vivo methods to track the effect of the mutation from the

molecular to the organismal level. The data show that the T2850I exchange is

compatible with the domain three-dimensional fold, but that it strongly desta-

bilizes it. Further, it induces a change in the conformational dynamics of the

titin chain that alters its reactivity, causing the formation of aberrant inter-

actions in the sarcomere. Echocardiography of knock-in mice indicated a

mild diastolic dysfunction arising from increased myocardial stiffness. In con-

clusion, our data provide evidence that single mSNPs in titin’s I-band can alter

overall muscle behaviour. Our suggested mechanisms of disease are the devel-

opment of non-native sarcomeric interactions and titin instability leading to a

reduced I-band compliance. However, understanding the T2850I-induced

ARVC pathology mechanistically remains a complex problem and will require

a deeper understanding of the sarcomeric context of the titin region affected.

1. Introduction
Cardiovascular disease is the major cause of death worldwide. Evidence accu-

mulated over the past two decades has identified titin as a main coordinator of
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cardiac muscle homeostasis, and its dysfunction through

genetic mutation as an important factor in cardiomyopathy.

Titin mutations have now been linked to familial dilated car-

diomyopathy (DCM), hypertrophic cardiomyopathy (HCM)

and arrhythmogenic right ventricular cardiomyopathy

(ARVC) (recently reviewed in [1]). Pathogenicity often results

from mutations that lead to the truncation of the titin chain,

as identified in 25% of familial cases of idiopathic DCM

and 18% of sporadic cases [2]. Several missense single-

nucleotide polymorphisms (mSNPs) in titin have also been

associated with heart disease. These comprise the ARVC-

linked T2850I in the I-band [3]; the DCM-associated V54M,

A743V in the Z-disc [4] and W930R in the Z-disc/I-band tran-

sition zone [5]; R740L [6] and S3799Y [7] that increase binding

to a-actinin and FHL2, respectively, causing HCM; and

Y7621C [8] located in the A/I-band junction linked to restrictive

cardiomyopathies. Consequently, genetic screening of the titin

gene (TTN) is clinically relevant in most cardiomyopathy cases

[1,9]. However, while the robust discrimination between

benign and disease-causing titin truncations can be achieved

by coupling TTN exon inclusion data and the position of the

mutation within the gene [10], predicting the pathogenicity of

mSNPs in titin is considerably more complex. In contrast to trun-

cations, mSNPs might result in individual molecular

phenotypes and appear to trigger distinct pathomechanisms

[11]. As a result, the differentiation between benign and patho-

genic mSNP variants is currently very demanding, requiring

the integration of functional assays, robust bioinformatics,

large control cohorts and expert clinical evaluation [9].

In this work, we set to answer the question of whether

single mSNPs in titin can generically and without the contri-

bution of additional genetic factors lead to cardiac disease.

For this, we examined the unique mSNP T2850I in the I-band

domain of titin I10, as a paradigm of an alteration in a general

component of the titin chain. Domain I10 does not support

specific interactions or have any known specialized roles, so

it does not constitute an a priori sensitive locus of the chain.

The T2850I exchange has been associated with ARVC based

on linkage studies, being completely segregated with the

ARVC phenotype in nine patients from a large family, includ-

ing two fifth-degree relatives, and was absent in 300

cardiomyopathy and 400 control chromosomes [3]. ARVC is

characterized by life-threatening arrhythmias, being the main

cause of sudden death in the population below 25 years of

age. Mechanistically, ARVC is thought to result from a per-

turbed desmosomal force transmission [12]. Titin, however, is

an intrasarcomeric protein not known to be related to cell

adhesion. Thus, we asked whether mSNPs in titin can induce

an ARVC phenotype. In previous studies, we have shown

that the T2580I mSNP destabilizes the affected immunoglobu-

lin (Ig) domain in titin, I10, and speculated that this instability

increases the vulnerability of titin to proteolysis in situ poten-

tially leading to myocardial damage [3,13]. Here, we study

the dysfunction caused by this mutation by implementing an

integrative approach from the protein domain to the whole

organism. Results indicate that, in addition to fold instability,

the mSNP alters the chemical reactivity of titin leading to the

formation of non-native interactions in the sarcomere. Even

though the molecular and cellular effects of the exchange are

mild, they appear to lead to a detectable alteration of the dias-

tolic behaviour of the heart in knock-in (KI) mice. Thereby, our

results establish that a single SNP in a common Ig component

of titin can disturb the overall performance of the heart in the
absence of other genetic factors. The result points to a high

potential of titin mSNPs for causing cardiac disease.

2. Material and methods
T2850 is encoded by the ACC triplet on chromosome

2 : 178769890–178769893 referenced to GRCh38/hg38 human

genome assembly. This is mutation T2896I in Taylor et al. [3]

and mutation T16I in Anderson et al. [13].

For in vitro studies, I9–I11 (residues 2749–3009) and I10

(2835–2895) were expressed recombinantly in Escherichia coli
and purified to homogeneity by chromatography. For NMR

studies, I10 was produced in M9 medium with 15NH4Cl as

source of nitrogen and 13C-glucose as carbon source.

I10 crystals were grown in 0.2 M CaCl2, 0.1 M Tris pH 7.5

with either (a) 30% (w/v) PEG 3350, 3% (v/v) isopropanol or

(b) 25% (w/v) PEG 8000 as precipitants. Crystal (a) yielded a

crystallographic model to 2.00 Å resolution with an Rfactor/

Rfree ¼ 17.53/22.99%. Crystal (b) produced a model to 1.8 Å

and Rfactor/Rfree ¼ 17.45/20.49%. I19–I11 crystals were

produced in (c) 0.1 M Tris HCl pH 8.5, 30% (w/v) PEG 4000,

0.2 M MgCl2; (d) 0.1 M Bis-Tris propane pH 8.5, 20% (w/v)

PEG 3350, 0.2 M sodium acetate. A three-dimensional model

from (c) was to 1.9 Å with Rfactor/Rfree ¼ 19.28/22.83%; and

from (d) to 1.53 Å with an Rfactor/Rfree ¼ 16.15/19.65%. Struc-

tures have been deposited with the Protein Data Bank with

access codes: 4QEG, 5JDJ, 5JDE and 5JDD.

For molecular dynamic simulations, the crystal structure of

I10–I11 was used as wild-type and the T2850I modelled in
silico. A ‘protein in a box of water’ simulation of 50 ns followed

standard protocols in GROMACS 5.0. Principal component

analysis was used to analyse the trajectories for differences.

All animal experiments were approved by local ethics com-

mittees. T2850I mutation carrying mice were generated using

gene-targeting. Genotype was confirmed by direct sequencing.

The mice were on a mixed background, 50% 129S6 and 50%

C57BL/6. Echocardiography was performed under isoflurane

anaesthesia using a Vevo 2100 High-Resolution Imaging

System and accompanying software.

GFP-tagged titin fragments were introduced into tibialis
anterior muscle using electroporation under general anaesthesia.

Micewere sacrificed 10 days laterand transfected musclesections

visualized by laser scanning confocal microscopy for localization

of titin fragments or differential centrifugation of muscle extracts

was also performed. Tissue was fractionated into cytosolic,

microsomal and particulate fractions and titin fragments were

detected by western blotting using anti-GFP antibody.

Neonatal mouse cardiomyocytes were isolated from 1- to

3-day-old pups. Cells were transfected with GFP-tagged titin

fragments and fixed 48 h later. Cells were counterstained

with antibodies against a-actinin, filamentous actin and

DNA and imaged by confocal microscopy.

A comprehensive description of material and methods is

provided in the electronic supplementary material.
3. Results
3.1. The T2850I mutation strongly destabilizes domain

I10
To estimate the effect of the T2850I exchange on the fold

stability of I10, the thermal denaturation of wild-type and

http://rsob.royalsocietypublishing.org/
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Figure 1. Crystal structure of I10 in isolation and in the context of the I9 – I11 tandem. (a) Representation of I10WT. The component b-sheets (A’FCC’G and ABED)
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mutated samples (I10WT and I10T2850I, respectively) was

monitored using differential scanning fluorimetry (DSF)

(electronic supplementary material, section S1). The melting

temperature (Tm) of I10WT was derived from a single tran-

sition melting profile as 62.3+ 1.38C, in good agreement

with its Tm value previously calculated from circular dichro-

ism data (60.1+0.28C) [14]. This value indicates that I10 is an

intrinsically stable domain. The Tm value of I10T2850I was

51.4+1.88C, approx. 118C below that of I10WT. Comparably

acute DTm decreases in titin Ig domains have only been obser-

ved when drastic truncations or modifications of the fold

occurred. Accordingly, our measurement of a truncated ver-

sion of I10 missing the N-terminal b-strand A showed a

DTm � 2148C (electronic supplementary material, figure S1)

and the deletion of just four residues in other Igs of titin

decreased their Tm values by up to 158C [15,16]. A similar

DTm decrease was observed in domain Z1 when the CD

loop was replaced in its totality for an exogenous sequence

that eliminated b-strand C’ and, thereby, removed the native

capping of the Ig b-sandwich fold [17]. These data indicate

that the impact of the single-point mutation T2850I on I10 is

equivalent to that of a large insult on the fold, such as removal

of b-strand A or the CD loop. This significant destabiliz-

ing effect suggests that T2850 plays an important structural

role in I10.
3.2. The crystal structure of I10 reveals a high-energy
conformation for residue T2850

To gain a molecular insight into the structural role of residue

T2850, we elucidated the atomic structure of domain I10 at

1.74 Å resolution using X-ray crystallography (diffraction

data statistics and model refinement parameters are given in

the electronic supplementary material, table S2). We calcula-

ted a total of 17 molecular copies of I10 originating from two

different space groups and diverse non-crystallographic sym-

metries. The structural features of all 17 molecular copies of

I10 were in strict agreement (global RMSD ¼ 0.62 Å for

82 matched Ca atoms across all models, calculated using

MUSTANG [18]). The structures showed that I10 displays a

classical Ig I-type fold (figure 1a) and that residue T2850 is

located at the C-terminal pole of the fold, in position i þ 2 of

the b-turn connecting b-strands A’ and B (experimental elec-

tron density shown in the electronic supplementary material,

figure S2). This is a b-turn type II, where residue i þ 2 adopts

a left-handed helix conformation (aL Ramachandran region)

that is sterically restricted [19]. T2850 is stabilized in this con-

formation by two hydrogen bonds (figure 1b): (i) a short,

strong bond (2.4 Å) between its side chain hydroxyl and the

carbonyl of the previous residue, E2849, and (ii) a second con-

tact between its main chain amide group and the main chain

http://rsob.royalsocietypublishing.org/
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carbonyl of T2897 in the neighbouring EF loop. The side

chain hydrogen bond turns the otherwise atomic clash

into a productive interaction and permits T2850 to adopt a

high-energy conformation within the generously allowed aL

Ramachandran region (figure 1c).

A side chain with a branched or cyclic Cb atom (such as that

of residues Ile, Val and Pro) in position i þ 2 could result in

clashes with the carbonyl group of the preceding i þ 1 residue

and, thereby, be sterically unsatisfactory. To investigate this

deduction, we carried out a study of 62 641 unique b-turns

type II naturally occurring in proteins using PDBeMotif [20]

(electronic supplementary material, table S3). We observed

that position i þ 1 is permissive to all residue types, but

that position i þ 2 strongly favours glycine (approx. 78% occur-

rence) with other amino acid types present at lower, but

significant frequencies. In agreement with our expectations,

amino acids with a branched Cb-atom are very rare in position

i þ 2: isoleucine is present only in 2 out of 62 641 cases (3� 1025

occurrence), and valine in 22/62 641 (3.5 � 1024). Proline, with

a cyclic Cb-atom, is the most uncommon residue at 1/62 641

cases (1.5 � 1025). The few cases where proline or isoleucine

residues were found in position i þ 2 were examined manually

and found to correspond to exceptionally rare turns in internal

core positions, stabilized by rich hydrophobic contacts. Deduc-

tions from natural residue occurrence were in full agreement

with calculations of the differential free energy (DDG) of residue

tolerance in I10 using FoldX [21], which also proposed Ile,

Pro and Val as poorly tolerated residues at this locus of the

I10-fold (electronic supplementary material, figure S3).

Our conclusion is further supported by previous studies that

evaluated amino acid energetics and compositional potential

in type-II b-turns using small sample populations [19,22]. We

further observed that threonine residues at this position invari-

ably establish a tight hydrogen bond with the preceding main

chain carbonyl group. This hydrogen bond is not present in

b-turns II containing the Thr-resembling residues Ser and

Cys, indicating that this is a mechanism to specifically stabilize

the branched Cb-atom of Thr in that position.
3.3. T2850I does not induce structural changes in I10
but increases its internal flexibility

The effect of the T2850I exchange on I10 was studied using

NMR. H1-N15 HSQC spectra of both wild-type and mutated

samples showed sharp, well-dispersed peaks characteristic of

folded proteins, revealing that the overall fold is preserved in

I10T2850I (figure 2a). However, a fraction of amide resonances

was perturbed by the mutation. Chemical shift perturbations

were quantified using a weighted average difference [23] and

regarded as ‘moderate’ (0.03 , DdAV , 0.15 ppm) or ‘large’

(DdAV . 0.15 ppm). They showed that in the 91 residue-long

I10T2850I, 6 residues underwent large and 10 residues moder-

ate chemical shift perturbations. When mapped onto the

crystal structure of I10, the perturbations largely clustered

around the mutation site, in the A’B b-turn and the neigh-

bouring EF loop that are interconnected through hydrogen

bonds mediated by T2850 (figure 2a). This shows that the

mutation only introduces modest local distortions in the I10-

fold. The characteristic backbone conformation of the A’B

turn with a positive main chain dihedral f angle in position

i þ 2 is best quantified by the measurement of the indirect coup-

ling constant 3 J(C’k21Hka). In this experiment, we observed
similar couplings throughout the backbone of wild-type and

mutant samples and especially the large J-values characteristic

for the positive f angles of both Thr and Ile residues (figure 2b).

This indicated that the protein backbone conformations of both

wild-type and mutant are highly similar and that the exchange

does not notably affect the protein structure.

Next, we examined whether the T2850I mutation alters

the internal dynamics of the protein by measurement of
15N relaxation data. The ratio of transverse (R2) and longi-

tudinal (R1) relaxation rates gives a direct indication of the

internal backbone dynamics of an amino acid. The average

value of R2/R1 is determined by the overall rotational tum-

bling of the protein in solution and unaltered for most

regions in the wild-type and mutant proteins (figure 2c).

The outstanding exception are residues in the A’B b-turn

and the preceding b-strand A: here we observed a significant

increase in the R2/R1 ratios, which indicates that in the

mutated protein these residues are involved in a slow (micro-

second to millisecond timescale) structural exchange process

between a wild-type like ground state and one (or several)

altered conformations. Derivation of quantitative dynamical

parameters using the S2-order parameters, which is an indi-

cator of the fast timescale (picosecond to nanosecond),

reveals that backbone dynamics are very similar for wild-

type and mutant Ig10. Thus, it can be concluded that the

T2850I exchange increases internal domain flexibility not

only locally but that it has a knock-on effect on the preceding

secondary structure, loosening the N-terminal fraction of the

I10-fold, shown above to be important for the stability of I10.
3.4. The crystal structure of I9 – I11 shows that T2850
mediates interdomain contacts

Residue T2850 is located at the C-terminal loop region of the Ig

fold. To study whether this region is involved in interactions

with the next Ig domain packed serially along the chain and,

thus, whether the T2850I exchange influences the Ig-tandem

architecture of titin, we determined the crystal structure of

I9–I11 (comprising I10 in its poly-domain context) to 1.53 Å res-

olution. Three molecular copies were obtained in two space

groups that agreed in showing I9–I11 in an extended confor-

mation (figure 1d). Such extended arrangements are common

in titin Ig-tandems [24,25]. In I9–I11, the component domains

follow a regular arrangement, where domains display relative

torsion angles of 458–688 and are connected by short, two-

residue sequences (TL and PI, respectively). In each Ig-pair, the

domain interface is consistently formed by the A’B b-turn of the

N-terminal domain slotting between the BC and FG loops of the

C-terminal domain. Here, domains interact directly through a

limited number of contacts (listed in the electronic supplementary

material, section S2). Both I9–I10 and I10–I11 interfaces consist

of a central hydrophobic residue contributed by the linker

sequence (TL; PI), flanked by two polar interactions between

loop residues from the neighbouring domains (figure 1d, inset).

In addition, electrostatic potential maps of single domains in

the I9–I11 tandem revealed that the N- and C-terminal poles of

all domains are, respectively, positively and negatively charged.

This suggests that an electrostatic component further assists

the organization of these Ig domains within the titin chain.

Residue T2850 is buried within the I10–I11 interface (burial

fraction of side chain is 0.79 as calculated with FoldX [21]). Here,

T2850 preserves its intradomain hydrogen bonds (to T2897 and

http://rsob.royalsocietypublishing.org/
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E2849) observed in the isolated I10 structure and, in addition,

hydrogen bonds with S2952 from the BC loop of I11. This

suggests that the exchange of the T2850 residue will cause a

local alteration of the conformational dynamics of the titin chain.
3.5. The T2850I exchange alters the relative orientation
of domains in the chain

As residue T2850 is involved in both the intra- and interdomain

organization of titin, we studied next the effect of the T2850I
exchange on the conformational dynamics of the I10–I11

tandem using molecular dynamics simulations (MDS) (elec-

tronic supplementary material, section S4). In total, 50 ns

simulations were performed on the wild-type and on two

T2850I models that corresponded to two different rotamers

of the isoleucine residue. In addition, one wild-type and one

T2850I variant were repeated with a different water model.

The simulations were continued until no new conformational

space was sampled as reflected by principal component analy-

sis (electronic supplementary material, figure S4b–d). As a

control that the time of the simulation was not limiting possible

http://rsob.royalsocietypublishing.org/
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interdomain motions of larger amplitude, we performed a

simulation on the Ig pair I65–I66 (extracted from PDB entry

3B4B [26]). In I65–I66, Ig domains are linked by a hydrophilic

linker, three residues long, that allows unrestricted motions.

This simulation confirmed that 50 ns simulation allows the

sampling of multiple extreme conformations (electronic

supplementary material, figure S4a).

Calculated trajectories for all I10–I11 models were con-

verted to backbone models and concatenated, then subjected

to covariance analysis. This showed that interdomain motions

could be largely described by the first three principal com-

ponent eigenvectors (PC1, PC2 and PC3), with PC1 and PC2

describing the largest movements. PC1 describes the rotational

movement of I10 with respect to I11 (which totals a range of

68o), while PC2 describes the bending opening between I10

and I11 (spanning a range of 65o). When PC1 and PC2 values

are plotted for all the trajectories, a difference in the confor-

mational space sampled by wild-type and T2850I mutant is

revealed—in particular, for the dominant component PC1

(figure 3a,b). Wild-type trajectories have more positive eigen-

values; in other words, inter-domain positions are aligned

straight along an imaginary axis connecting the two domains’

centres of mass, with both domains facing a similar starting

direction. Conversely, the trajectories for T2850I mutants

show negative eigenvalues that describe a greater degree of

twisting, where the I10 and I11 modules face different direc-

tions. In combination with other components of movement,

such as PC2’s bending, this results in the T2850I mutants

favouring a more bent and twisted conformation, that contrasts

with the more extended arrangement preferred by the wild-

type (figure 3b). This result suggests that wild-type and

mutant favour somewhat different areas of conformational

space, which might lead to titin acquiring different chemical

surface properties at the I10–I11 locus upon mutation.

3.6. The T2850I exchange affects the myocellular
reactivity of the titin Ig-tandem in vivo

To test whether the altered conformation of the T2850I-contain-

ing titin chain leads to an altered function in vivo, we assayed a

GFP-tagged I7–I13 titin fragment in its wild-type and mutated

versions in skeletal muscle of living mice. The fragment was

introduced into the tibialis anterior muscle by electropora-

tion and its expression monitored by western blot of muscle

extracts using an anti-GFP antibody (electronic supplementary

material, section S5). Single sharp protein bands correspond-

ing to the expected molecular weight of I7–I13 were revealed

this way. Signs of differential degradation of wild-type

and mutated forms were not evident. This did not agree with

a previous in vitro study, where recombinant I7–I13 and

I7–I13T2850I samples incubated with heart extracts indicated a

notably reduced half-life of the mutated variant, probably as

a result of proteolysis [13]. The findings in the current study

suggest that the proteases that acted on the recombinant

samples when extracts were used might not natively access

cytoplasmic samples in the myofibril (e.g. due to compartmen-

talization) or, alternatively, that the proteolytic components of

skeletal muscle are not representative of those from cardiac

tissue. Either way, the results did not bring further support

to in situ titin proteolysis as a mechanism of disease.

Imaging of the transfected muscles using in vivo confocal

light microscopy revealed a different myocellular localization

of wild-type and mutant I7–I13 (figure 3c). Wild-type
fragments remained mostly soluble in the cytoplasm, associat-

ing only weakly with the sarcomere as suggested by the weak

striated pattern. Fixed sections of the GFP-I7–I13 transgenic

muscle that had been further stained with a fluorescent phall-

oidin conjugate (which binds F-actin forming the thin

filaments), revealed that wild-type I7–I13 associated with the

sarcomere in areas lacking F-actin, i.e. the H-zone of the A-

band. As the native location of I7–I13 within the titin chain is

the I-band, we concluded that the weak A-band patterning

resulted from unspecific interactions due to the elevated

expression levels. This result is not unexpected as previous

studies with recombinant titin fragments did not detect binding

of titin Ig-tandems to actin or other sarcomeric components

[28,29]. By contrast, I7–I13T2850I formed a well-defined striated

pattern. Phalloidin staining showed that I7–I13T2850I bands

colocalized with F-actin, at the I-band. However, subcellular

fractionation and actin co-sedimentation experiments showed

that the binding was not to actin itself or other primary sarco-

meric components (electronic supplementary material,

section S5). Unfortunately, efforts to identify the interactor

using pull-downs in muscle extracts and yeast two-hybrid

screens were not successful. Contrary to the transgenic mouse

muscle experiments, the transfection of mouse neonatal

cardiomyocytes with I7–I13 and I7–I13T2850I did not reveal

localization differences (figure 4). Both fragments remained

diffused in the cytoplasm under basal conditions and even

after isoproterenol stimulation (electronic supplementary

material, section S6). Neonatal cardiomyocytes have fully

developed sarcomeres but lack T-tubules, which make us

speculate that a T-tubule component might be the putative

target of the pathological interaction. Nonetheless, as the

I7–I13T2850I sarcomeric pattern agrees with the expected

native position of I7–I13, this pathologically increased affinity

for an I-band component is likely to be physiologically relevant

for this mSNP in its natural context within full-length titin.

3.7. Transgenic mice carrying the T2850I exchange
present enhanced diastolic stiffness

To determine whether the mutation has functional effects at

the organ level, we generated T2850I KI mice and performed

echocardiography. No differences were found in left ventricu-

lar chamber dimensions during diastole and systole, ejection

fraction or stroke volume (table 1). Pulse-wave Doppler echo-

cardiography was used to measure the velocity of diastolic

filling at the level of the mitral valve. Filling is known to

occur in two waves: early diastolic filling (E-wave) and late

diastolic filling due to atrial contraction (A-wave). The E/A

ratio is the ratio of the early (E) to late (A) ventricular filling vel-

ocities and reflects diastolic function. The E/A ratio is used as

an index for diastolic heart failure. Depending on the genetic

background of the mouse strain, the E/A ratio in mice is

1.25–1.6. For example, in FVB mice after a two-week long trans-

verse aortic constriction, which is a severe insult on the heart,

the E/A ratio increases from 1.26 to 2.5 [30]. In T2850I KI

mice, the E/A ratio was increased (from 1.67 in wild-type to

2.19 in the mutant) suggesting diastolic dysfunction. Further-

more, the E-wave deceleration time (DT) varies inversely

with left ventricular diastolic stiffness and is another measure

for the myocardial stiffening [31]. A significant E-wave DT

reduction was found in T2850I KI mice, further supporting

an increase in diastolic chamber stiffness. In conclusion,

T2850I KI mice have a diastolic dysfunction.
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4. Discussion
The genetic screening of the TTN gene, now pursued in large

patient populations, has the potential to assist the diagnosis
of cardiomyopathies, assess prognosis and guide therapy.

However, identifying disease-causing missense alleles in titin

is challenging, with the unexpectedly large number of rare gen-

etic variants making their scoring a staggering task [32,33].
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Figure 4. Expression of I7 – I13 samples in neonatal cardiomyocytes. Z-discs were stained with a-actinin (right panel, red in the overlay), filamentous actin with
fluorescent phalloidin (blue in the overlay), transfected titin fragments with EGFP (middle panel, green in the overlay) and nuclei with DAPI (white in the overlay).
Both, wild-type (WT CTL) and mutant fragments of titin (TI) remain mainly diffuse in the cytoplasm of neonatal cardiomyocytes. No striated pattern compatible with
sarcomeric targeting was observed, even in cells transfected with the wild-type construct that were challenged with 1 mM isoproterenol (ISO) for 6 h. Shown are
two representative cells for each condition. Scale bar, 40 mm.

Table 1. Cardiac parameters in T2850I transgenic mice. LVIDd: left
ventricular internal diastolic diameter; WTd: diastolic wall thickness (average
of posterior and anterior walls); LVIDs; left ventricular internal systolic
diameter; WTs: systolic wall thickness (average of posterior and anterior
walls); LV Vol; d: left ventricular diastolic volume; LV Vol; s: left ventricular
systolic volume; LVW: left ventricular weight (mg); EF: ejection fraction; SV:
stroke volume; MV E, mitral valve early diastolic peak filling velocity; MV A,
mitral valve late diastolic peak filling velocity; MV Decel: deceleration time
of E-wave (ms); MV E/A: ratio of MV E : MV A; LA: left atrium. p-value:
significance value calculated with t-test; *p , 0.05 (indicated in bold).

WT (n 5 7) T2850I (n 5 7) p-value

LVIDd (mm) 4.72+ 0.14 4.78+ 0.14 0.79

WTd (mm) 0.82+ 0.01 0.84+ 0.02 0.42

LVIDs (mm) 3.41+ 0.14 3.54+ 0.16 0.55

WTs (mm) 1.20+ 0.04 1.21+ 0.02 0.84

LV Vol;d (ml) 103.1+ 6.6 106.8+ 7.2 0.72

LV Vol;s (ml) 48.4+ 4.5 54.1+ 5.7 0.44

LVW 158+ 6 172+ 9 0.21

EF (%) 53.3+ 2.9 49.9+ 2.0 0.35

SV (ml) 54.8+ 4.2 52.6+ 2.6 0.67

MV E

(mm s21)

581+ 32 647+ 53 0.31

MV A

(mm s21)

351+ 22 300+ 26 0.15

MV Decel 30.3+ 0.8 26.5 +++++ 1.1* 0.017

MV E/A 1.67+ 0.08 2.19 +++++ 0.15* 0.011

E/E0 35.7+ 2.9 35.6+ 3.1 0.99

LA (mm) 3.07+ 0.18 3.26+ 0.24 0.54
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Rare sarcomeric gene variations associated with cardiomyopa-

thy in small patient families were found in 17% of the NHLBI

GO Exome Sequencing Project population [34], indicating

that association studies alone are insufficient to evaluate the
pathological potential of rare variants. In addition, rare genetic

variants of sarcomeric genes often have complicated pene-

trance patterns. It was shown that the risk of adverse

cardiovascular events grows with increasing numbers of rare

sarcomeric variants [35]. Thus, methods are now urgently

needed that can improve mSNP classification and unleash

the wealth of information in TTN databases.

To gain an insight into the damage potential of mSNPs

in titin—in particular, in the heart that appears to be more sus-

ceptible to mutations than skeletal muscle—we have studied

the exchange T2850I in domain I10 of titin’s I-band, which

has been proposed to be linked to ARVC [3]. In this work,

we went beyond our initial clinical and biophysical character-

ization of the mutation [3,13] and explored manifestations of

this mSNP at different levels of biological complexity, ranging

from molecular to organismal levels. In this work, atomic res-

olution three-dimensional structures of the affected titin

region were generated as well as, to our knowledge, the first

mouse model of a cardiomyopathy-associated titin mSNP.

Our results show that the T2850I exchange only has a subtle

impact on the titin molecule as well as at the tissue and

animal levels. This was not anticipated, as it is intuitively

expected that the severity of the disease promoted by an

mSNP will correlate with the extent of the molecular damage

that it causes. Structural data (HSQC and 3J(C’k21Hka))

demonstrate that the T2850I exchange is tolerated by the I10-

fold, not causing any detectable structural aberration. How-

ever, DSF data show that the mutated domain is notably less

stable than the wild-type. The large difference in measured

thermal stability was difficult to understand, as the exchange

involves the removal of a single hydrogen bond (established

by the Thr side chain with the main chain of the preceding

residue; T2850-OH:CO-E2849) in the otherwise-intact fold.

However, NMR relaxation data showed that the exchange

not only increased the flexibility of the affected loop but also

of the preceding b-strand A. This N-terminal segment of the

fold is known to be of key importance for the chemical [26],

thermal [15,16] and mechanical stability of the fold [36]. Conse-

quently, our own measurement of an I10 variant lacking the

N-terminal b-strand A showed a thermal destabilization

http://rsob.royalsocietypublishing.org/
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comparable to that of the T2850I point mutant (electronic sup-

plementary material, section S1). That the mutated Ig is also

mechanically weaker has been established previously by

atomic force microscopy [13], so that its unfolding is likely to

occur at physiological muscle tension. The impact of an

unfolded Ig on the overall elasticity of the titin chain seems neg-

ligible. However, it was originally proposed [13] that Ig

unfolding (resulting from either stretch or spontaneous unfold-

ing due to the intrinsic weakness of the mutated domain)

might lead to in situ proteolysis of the titin chain, even

though depletion of mutated titin from sarcomeres was not

tested. In the current study, degradation of I7–I13 tandems

expressed in muscle was not apparent, suggesting that I10

unfolding might have other functional consequences. A recent

study has shown that induced unfolding of titin Ig segments

in cardiomyocytes results in elevated stiffness caused by the

aggregation of titin chains [37]. Yet, in diseased human muscle

and heart, HSP27 or ab-crystallin associates with the unfolded

modules, preventing aggregation and suppressing the stiffening

[37]. Hence, the extent to which I10 unfolding, specifically,

contributes to the T2850I pathology is unclear.

The second consequence of the mutation is at the chain

level, effected by its location in a domain junction. Our previous

characterization of titin segments showed that the properties of

domain interfaces are finely tuned along the chain, exhibiting

conserved features in different parts of the sarcomere [24,25].

Not surprisingly, MDS suggests that the T2850I exchange influ-

ences the conformational dynamics of the titin chain at that

locus, possibly altering its surface chemistry. An important

deduction from this work is that mutations located at domain

interfaces in titin can have an unexpected pathological poten-

tial, even when not causing major structural damage to the

component domains. This finding is in agreement with our

transgenic muscle data that point to the development of patho-

logical binding capacity in the mutated titin’s I-band in situ.

Interestingly, the differential sarcomeric localization of wild-

type and mutated samples could not be reproduced in neonatal

cardiomyocytes and further efforts to identify the possible inter-

actor of mutated titin failed. Upon differential centrifugation of

transgenic muscles extracts, titin fragments were solely found in

cytoplasmic and not in particulate myofibrillar or microsomal

fractions, implying a fragile nature of the pathological inter-

action. Speculatively, we consider the possibility that the

interaction might involve components of T-tubules as these

are absent in neonatal cardiomyocytes.

Interspecies conservation of the affected residue allowed us

to generate a knock-in mouse model carrying the titin T2850I

mSNP. Echocardiographic assessment revealed diastolic dys-

function in this mouse model, confirming that a single-point

mutation in titin can have a measurable effect in whole-heart

mechanics in the absence of any other genomic differences.
However, no degenerative alterations in the left or right ventri-

cles were observed—thereby not reproducing the human

disease phenotype overall. Yet, it is possible that the fibrofatty

formations typically manifested at a clinical level in the second

or the third decade of life in ARVC patients are not appropri-

ately mimicked in mice. In fact, this appears to be also the

case in murine models of other non-titin-based ARVC types

(reviewed in [38]). Thus, there is a need for better biological sys-

tems to study ARVC. In this respect, new technologies such as

iPSC (induced pluripotent stem cell)-derived cardiomyocytes

need to be considered. This system has been applied to

the study of cardiomyopathies caused by titin truncating

mutations [39] and perhaps might be applicable to the study

of titin mSNPs. In ARVC, diastolic abnormalities are an early

marker of the disease [40], thus the mice model might mimic

initial stages of the human pathology. Speculatively, ‘sticki-

ness’ of Ig-tandems in titin’s I-band [28,29] (which natively

makes little or no connections to the thin filament during the

cardiac cycle) would interfere with its compliance, necessary

for efficient diastolic filling [41,42]. This could explain the

observed phenotype. Finally, there is the possibility that

the effect of the T2850I mutation in patients is potentiated by

another co-segregating genetic factor, jointly leading to the dis-

ease phenotype (e.g. an additive effect of other unknown rare

sarcomeric variants). In this regard, more complete genomic

analyses will be required in the future.

In conclusion, our results reveal that the contribution of a

single mSNP in a generic domain of titin can lead to a mea-

surable alteration of heart function, even though the mSNP

might only cause subtle changes at the protein level. Given

the staggering number of mSNPs in titin, this finding estab-

lishes the high potential of this protein to contribute to

disease mechanisms in the heart.
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