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Abstract

Many questions left unanswered by the Standard Model (SM) of particle physics call for the
investigation of models beyond the SM (BSM). These models often feature an extended Higgs
sector. In this thesis we study higher-order corrections within the enlarged Higgs sectors of
two specific extensions of the SM.
First we deal with the Higgs sector of the Two-Higgs-Doublet Model (2HDM). The focus
is on the development of a renormalization scheme for three 2HDM-specific parameters, the
mixing angles α and β as well as the soft-Z2-breaking parameter m2

12. In our study we aim for
a renormalization scheme that is at the same time gauge independent, process independent
and numerically stable. We discuss the significance of the treatment of the tadpoles for the
issue of gauge dependence and present a dedicated study of numerical stability.
Afterwards, we turn to the complex Next-to-Minimal-Supersymmetric Standard Model
(NMSSM) and calculate the corrections of O(αtαs) to the trilinear Higgs self-couplings within
its framework. The calculation is performed using the Feynman diagrammatic approach in
the gaugeless limit and in the approximation of vanishing external momentum. In the sub-
sequent numerical study, we address the remaining theoretical uncertainty due to missing
higher-order corrections and the convergence of the perturbative series. We also consider
Higgs-to-Higgs decays and discuss the limitations of the used approximations in this context.

Zusammenfassung

Viele Fragen, die das Standardmodell (SM) der Teilchenphysik unbeantwortet lässt, verlan-
gen nach einer Untersuchung von Modellen jenseits des SM. Diese Modelle weisen oft einen
erweiterten Higgs-Sektor auf. In dieser Arbeit untersuchen wir Korrekturen höherer Ordnung
in den vergrößerten Higgs-Sektoren zweier bestimmter Erweiterungen des SM.
Zunächst befassen wir uns mit dem Zwei-Higgs-Dublett Modell (2HDM). Der Schwerpunkt
liegt auf der Entwicklung eines Renormierungs-Schemas für drei 2HDM-spezifische Param-
eter, die beiden Mischungswinkel α und β sowie den soft-Z2-brechenden Parameter m2

12.
Hierbei streben wir nach einem Renormierungs-Schema, welches gleichzeitig eichunabhängig,
prozessunabhängig und numerisch stabil ist. Wir diskutieren die Bedeutung der Behandlung
der Tadpoles für die Thematik der Eichabhängigkeit und führen eine Untersuchung der nu-
merischen Stabilität durch.
Anschließend wenden wir uns dem komplexen Nächst-Minimalen Supersymmetrischen Stan-
dardmodell (NMSSM) zu und berechnen die Korrekturen der Ordnung O(αtαs) zu den tri-
linearen Higgs-Selbstkopplungen. Die Rechnung wird im Rahmen des Feynman-diagram-
matischen Ansatzes im eichfreien Grenzfall und in der Näherung verschwindender äußerer
Impulse durchgeführt. In der sich anschließenden numerischen Untersuchung diskutieren wir
die theoretische Unsicherheit aufgrund fehlender Korrekturen höherer Ordnung und die Kon-
vergenz der Störreihe. Außerdem betrachten wir Higgs-nach-Higgs Zerfälle und thematisieren
die Grenzen der verwendeten Näherungen in diesem Zusammenhang.
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CHAPTER 1

Introduction

“Similarly, when Charles Darwin named his book “On the Ori-
gin of Species”, he was going far beyond taxonomy by giving
the logical explanation for the diversity of animals in nature.
What is needed in physics is a counterpart of this book, to be
called “On the Origin of Symmetry”, which explains the rea-
sons why certain symmetries are found in nature .”

Michio Kaku
(Hyperspace, A Scientific Odyssey through parallel universes,
time warps, and the tenth dimension)

For decades the main objective of numerous experimental collaborations and facilities, among
which the Large Electron Positron collider (LEP), the Tevatron and the Large Hadron Col-
lider (LHC), has been the discovery of all particles predicted by the Standard Model (SM) of
particle physics [1–9] as well as a precise determination of their properties. Countless experi-
mental investigations have contributed to the effort of testing and approving the predictions
of the SM with high accuracy, the positive results of which have established the SM as the
foundation of modern elementary particle physics.
However, despite its tremendous success in multitudinous tests, the SM leaves unanswered
many questions concerning fundamental properties of our universe and can therefore not be
considered as the ultimate description of nature. On the one hand it fails in explaining various
experimental observations like e.g. dark matter, on the other hand it is plagued by theoretical
shortcomings, one of which is constituted by the hierarchy problem.
Hence the discovery of the Higgs boson in July 2012 [10,11] is of two-fold interest. While up
to now all measurements of its properties and couplings are in good agreement with the SM
expectations and thus with it being the long-sought last missing piece of the SM [12–15], the
Higgs boson might as well be the harbinger of new physics.
Many extensions of the SM, striving to procure solutions to its deficiencies, feature an en-
larged Higgs sector. Therefore, the particle discovered at the LHC could serve as the entrance
to these models beyond the SM (BSM).
One of the simplest possibilities of constructing a model exhibiting an augmented Higgs sec-
tor is to add one additional complex scalar doublet to the particle content of the SM. The
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resulting models are known as Two Higgs Doublet Models (2HDMs) [16–18]. Apart from
being capable of solving some of the problems the SM is fraught with, 2HDMs show an inter-
esting and rich phenomenology. Furthermore, many more complicated extensions of the SM
incorporate a 2HDM as Higgs sector, which adds to the attractiveness of 2HDMs.
Perhaps the most prominent representative of models comprising a 2HDM is the Minimal
Supersymmetric Standard Model (MSSM). As the name suggests, the MSSM constitutes
the simplest realization of a supersymmetric (SUSY) [19–29] extension of the SM. Within
the framework of SUSY, a symmetry between fermionic and bosonic degrees of freedom is
established through the graduation of the Poincaré algebra of space-time symmetry by anti-
commuting operators. In its simplest realization, this symmetry requires the extension of the
SM Higgs sector by a second complex scalar doublet as well as the addition of one supersym-
metric partner for each SM degree of freedom to the particle content of the SM. Although the
MSSM is the most economic realization of SUSY, which at the same time provides solutions
to many of the problems of the SM, it is also afflicted with certain shortcomings, like the so-
called µ-problem or the issue of fine-tuning. These can be overcome by the introduction of one
further complex scalar singlet and its SUSY partner to the particle spectrum of the MSSM,
resulting in the Next-to-Minimal Supersymmetric Standard Model, the NMSSM [30–37].

An extension of the SM Higgs sector can become manifest in different ways. On the one
hand, the additional Higgs bosons might themselves be detected. On the other hand, the
existence of extra Higgs bosons may result in an alteration of observables and of the couplings
of SM particles to the Higgs boson already discovered. As the measurements of the Higgs
properties and couplings at the LHC seem to converge to the SM expectations, a detection
of possible deviations requires both accurate measurements and precise predictions. Hence,
the importance of higher-order calculations concerning BSM Higgs sectors is growing. With
this thesis, we intend to contribute to the objective of providing higher-order predictions for
the Higgs sectors of BSM models, concentrating on two specific extensions, the 2HDM and
the NMSSM.

The thesis is subdivided into three parts. Part I has the purpose of introducing the most
important notions and concepts, which will be dealt with in this work. We will begin in Ch. 2
with a brief introduction to the SM and a discussion of its limitations. Subsequently, we will
present the basic ideas of and motivations for SUSY and the 2HDM. Ch. 3 will familiarize the
reader with selected fundamental concepts of perturbative quantum field theory (QFT). We
will concisely elucidate the subject of regularization and renormalization, introduce the notion
of the S-matrix and the LSZ formalism and explain the construction of physical observables.
Moreover, we will touch on the topic of gauge fixing and briefly highlight the principle of the
pinch technique (PT).

Part II of this thesis is devoted to the development of a complete and suitable renormalization
scheme for the 2HDM. A consistent renormalization scheme, i.e. a prescription of treating
divergences appearing in loop calculations, is an important prerequisite for higher-order pre-
dictions. As the efforts to establish a complete renormalization scheme for the 2HDM have
been scarce in the past and to our knowledge all schemes proposed so far do either not strive
for completeness [38,39] or are plagued with gauge dependences [40], a thorough investigation
of this topic is essential1. Our research will be guided by the three criteria of a good renormal-
ization scheme, given by gauge independence, process independence and numerical stability.
We will in particular focus on the formulation of renormalization prescriptions for the three
2HDM specific parameters, the mixing angles α and β and the soft-Z2-breaking parameter
m2

12. Concerning the subject of gauge dependence, the treatment of the tadpoles will turn
out to be crucial. Therefore, we will examine in detail two different tadpole schemes, i.e. two
approaches to dealing with the tadpoles. While the first scheme requires the introduction of

1Only recently, after the publication of our own results, the subject was also addressed in Ref. [41].
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tadpole counterterms to comply with the minimum conditions of the 2HDM Higgs potential
to all orders, no such counterterms are necessary within the second tadpole scheme. Instead,
tadpole diagrams have to be taken into account explicitly in all Green's functions within the
second approach.
We will explore various renormalization schemes for the three 2HDM specific parameters
within both tadpole schemes and investigate their capability of satisfying the three guiding
criteria for a good renormalization scheme. In order to study numerical stability we will
consider three test processes and analyze the behaviour of the radiative corrections within
the different proposed schemes.
As we will show, a definition of the angular counterterms that is at the same time process
independent, numerically stable and leads to gauge-independent expressions for physical ob-
servables is possible only within the framework of the second tadpole scheme.
The results of this part have been published in Refs. [42] and [43].

In Part III we will present the calculation of the corrections of O(αtαs) to the trilinear Higgs
self-couplings in the complex NMSSM. We will adopt the Feynman diagrammatic approach
and work in the approximation of vanishing external momentum and in the gaugeless limit.
Trilinear Higgs self-couplings play an important role both in the SM and in BSM Higgs sec-
tors. They enter interesting observables and processes like Higgs-to-Higgs decays and Higgs
pair production and their determination would be an important step towards a better un-
derstanding of the mechanism of EWSB. Moreover, they are closely connected to the masses
of the Higgs bosons, present in the respective Higgs sectors, since both masses and trilinear
self-couplings derive from the Higgs potential. For that reason, a consistent treatment of the
NMSSM Higgs sector requires the corrections to both, masses and trilinear couplings, to be of
the same order. As the masses are known up to O(αtαs) in the complex NMSSM [44]2, while
the trilinear couplings have been determined only to full one-loop order [46], the corrections
presented in this thesis constitute a missing ingredient for consistent higher-order predictions.
The determination of the O(αtαs) corrections entails the reduction of two-loop integrals to
master integrals as well as the renormalization of the NMSSM Higgs sector at O(αtαs) and
of the top-stop sector at O(αs). All calculational steps will be exhibited in detail.
Furthermore, we will also present the calculation of the corrections of O(αt), subject to the
same approximations as those of O(αtαs), i.e. in the gaugeless limit and at vanishing external
momentum, which will allow us a consistent definition of effective trilinear Higgs self-couplings
at O(αtαs). In addition, a comparison of the O(αt) corrections to the available full one-loop
corrections will give us access to an estimation of the goodness of our approximations.
We will close with the numerical analysis of the calculated corrections, discussing the conver-
gence of the perturbative expansion, the theoretical uncertainty due to missing higher orders
and the impact of the corrections on Higgs-to-Higgs decays.
The results of this part have been published in [47].

2Since recently also corrections beyond O(αtαs) are available, published in Ref. [45].





Part I.

Theoretical Foundations





CHAPTER 2

The Standard Model of Particle Physics and Models beyond

In this chapter, we introduce and illustrate three important models of particle physics, which
this thesis will build upon and be concerned with. Sec. 2.1 is devoted to the Standard Model
(SM) of particle physics, which can be considered as the basis of current elementary particle
physics. After a presentation of its particle content and underlying symmetries, we will discuss
its limitations. Subsequently, we will introduce two possible extensions of the SM, which are
capable of solving some of the problems the SM is plagued with. First, in Sec. 2.2, we will
outline the concept of Supersymmetry (SUSY) and advocate its virtues. In doing so we will
heavily draw on Ref. [48], an excellent introduction into the subject. Afterwards, we will
present and motivate 2-Higgs-Doublet Models (2HDMs), the second type of SM extensions
we will study in detail in this thesis.

2.1. The Standard Model of Particle Physics and its Shortcom-
ings

The Standard Model of particle physics [1–9] constitutes the foundation of modern elementary
particle theory. Its origins date back to the early 1960s, when Glashow succeeded in unifying
the electromagnetic and weak interactions [1], and it was finalized from the theoretical side in
the mid-1970s, when the theory of strong interactions assumed its current formulation [3, 9].
Subsequent experimental discoveries of particles predicted by the SM, like the detection of
the massive weak gauge bosons in 1983 by the UA1 and UA2 collaborations at CERN1 or of
the top quark in 1995 at the Tevatron, have increased its credibility and manifested its role
as the fundament of modern particle physics. Upon the discovery of the Higgs boson at the
LHC in 2012 [10,11], the SM can be considered as complete also from the experimental side.
The SM is a relativistic quantum field theory (QFT) based on the principles of Lorentz in-
variance and local gauge invariance. It comprises three out of the four known fundamental
forces in nature, namely the weak, the strong and the electromagnetic interaction, in terms
of a non-abelian renormalizable gauge theory with an underlying SU(3)C ⊗ SU(2)L ⊗U(1)Y
symmetry group. Gravity in turn, the fourth fundamental force, has up to now resisted any
attempt of a consistent formulation in the form of a QFT. However, due to its weakness at
the subatomic level, our lack of understanding the basic principles of this force does not have

1The European Organization for Nuclear Research.
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type field (SU(3)C ⊗ SU(2)L ⊗ U(1)Y )

quarks

QL = (uL, dL)T (3,2, 1
6)

uR (3,1,−2
3)

dR (3,1, 1
3)

leptons
LL = (νL, eL)T (1,2,−1

2)

eR (1,1, 1)

Higgs Φ = (φ+, φ0)T (1,2, 1
2)

gluon g (8,1, 0)

W boson W = (W1, W2, W3)T (1,3, 0)

B boson B (1,1, 0)

Table 2.1.: Matter particles and force carriers of the SM and their transformation properties under the
underlying gauge groups. The fermions come in three generations. u stands collectively for u, c, t, and d for
d, s, b and e for e, µ, τ . The gauge bosons are given in the symmetric phase, i.e. before EWSB.

practical consequences for the accuracy of our predictions on elementary particles and their
interactions. Each of the other three fundamental forces is represented within the SM via
one of the underlying gauge groups. Quantum Chromodynamics, the theory of the strong
interaction, is based on the group SU(3)C and incorporates eight gluons as elementary force
carriers. The fundamental charge characterizing the strong interaction is called color and
comes in three different variants. All particles carrying color can take part in strong interac-
tions. The electromagnetic and weak interaction, combined into the electroweak interaction,
are described by the product SU(2)L ⊗U(1)Y and the corresponding force carriers are given
by the SU(2)-triplet W = (W1, W2, W3) and the U(1)-singlet field B. This symmetry is
broken down spontaneously to U(1)em, the group of the electromagnetic interactions, via
Electroweak Symmetry Breaking (EWSB), which will be explained below. After EWSB the
electromagnetic force is mediated by the photon, coupling to the electric charge of the parti-
cles, whereas the weak interactions are conveyed by the weak gauge bosons, the W and the
Z boson. The fundamental charge of the weak interaction is the weak isospin Iw. All force
mediators of the SM exhibit a spin quantum number of one and therefore belong to the group
of bosons, i.e. the group of particles with integer spin. Due to their role in gauge theory, they
are called gauge bosons.
Apart from these force carriers, mediating the basic interactions of nature, the SM comprises
the quarks and leptons, the fundamental constituents of matter. Unlike the gauge bosons, all
matter particles hold a spin quantum number 1/2 and thus belong to the group of fermions,
defined as particles with half-integral spin. As such they are represented by spinors, which
consist of a left- and a right-handed component, called Weyl fermions.
The matter particles can be characterized by their transformation properties w.r.t. the un-
derlying symmetry groups of the SM. Conventionally this is achieved by specifying their
representation with respect to the SU(3)C and the SU(2)L gauge group as well as their
hypercharge Y , defined as

Qem = I3
w + Y, (2.1)

where Qem denotes the electric charge of the particle and I3
w the third component of the weak

isospin. The corresponding classification of all SM particles can be found in Tab. 2.1. Both,
the quarks and the leptons can be grouped into three generations such that the members of
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the different generations feature identical quantum numbers but differ in mass.
All quarks are charged under SU(3)C and therefore take part in the strong interaction. In ad-
dition, they carry the electric charge Qem = 2/3 or Qem = −1/3, where the first case applies to
the up-type quarks (up, charm, top ) and the second to the down-type quarks (down, strange,
bottom). Due to their charge, quarks participate in the electromagnetic interaction. Finally,
the weak force only couples to the left-handed components of the quark fields. According
to their transformation properties, these are grouped into SU(2)L doublets consisting of one
up-type and one down-type quark, whereas the right-handed field components constitute sin-
glets under SU(2)L.
In contrast to the quarks, the leptons of the SM do not carry color charge and therefore trans-
form trivially under SU(3)C . Their left-handed components form doublets under SU(2)L,
the right-handed fields do not take part in the weak interaction and hence are represented
by SU(2)L-singlets. The lower components of the SU(2)L doublets are formed by charged
leptons (e, µ, τ) with Qem = −1, whereas the upper components contain neutral leptons, the
neutrinos (νe, νµ, ντ ). According to the original formulation of the SM, the neutrinos are
strictly massless and only occur as left-handed fields. However, the observation of neutrino
oscillations constitutes an unambiguous evidence of the fact, that neutrinos have to possess
a non-vanishing mass. While the true nature of the neutrino is a subject of current research,
we will not explicate this any further and only want to point out that the SM can in principle
be extended to incorporate right-handed and massive neutrinos.
In the SM, the mechanism of EWSB, alluded to above, is realized by the introduction of
a scalar SU(2)L doublet, which acquires a non-vanishing vacuum expectation value (vev).
Apart from breaking the SU(2)L ⊗ U(1)Y gauge group spontaneously down to U(1)em, this
mechanism, called Higgs mechanism [4], generates masses for the fermions and the W and
Z-bosons in a gauge-invariant way. As a direct mass term for the SM fermions and gauge
bosons would violate the principle of gauge invariance, the Higgs mechanism is indispensable
for the validity of the SM. The Higgs boson is the directly observable physical remnant of this
process and therefore its discovery serves as a first step towards the validation of the Higgs
mechanism.
Currently, the properties of the Higgs boson, in particular its couplings to the other SM par-
ticles, are under thorough investigation at the LHC. So far, all measurements are compatible
with the Higgs boson predicted by the SM [12–15]. Nevertheless, experimental data still
leave room for deviations. From a theoretical point of view, there is no reason, why the scalar
sector of the particle spectrum should be realized in the minimal form as proposed by the
SM and not attain a more complicated structure. Indeed, many extensions of the SM predict
an enlarged Higgs sector, comprising several scalar doublets, singlets or even higher represen-
tations of SU(2)L. Some of these extensions will be presented in the following sections and
studied in more detail in the course of this thesis.

In spite of its success in describing and predicting most phenomena of elementary particle
physics to high accuracy and although it has excelled in numerous high precision experiments,
the SM is not capable of explaining all aspects of nature. Furthermore it is plagued by some
theoretical issues.
Apart from the fact, that it lacks a description of gravity, the SM also does not offer an expla-
nation for dark matter and dark energy. Cosmological observations have revealed, that these
forms of energy account for 26.8% or 68.3%, respectively, of the total amount of the energy
content of the universe, whereas the ordinary matter, described by the SM, only represents
about 4.9% [49].
Moreover, the SM fails in providing a source of CP violation that is strong enough to explain
the dominance of matter over antimatter we observe in today's universe. The only manifesta-
tion of CP violation present in the SM, the complex phase of the CKM matrix, is not sufficient
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to fulfill one of the three Sakharov conditions, prerequisites for a successful baryogenesis [50].
Besides these obvious deficiencies, the SM is flawed by some weaknesses which are of a more
theoretical nature. For instance, within the SM, the three fundamental forces, described by
gauge theories, cannot be unified. Although their gauge couplings approach each other when
they are evolved to high energy scales, they do not intersect in a single point, as required for
a description of the three forces by one originating force.
Another frequently discussed issue is the hierarchy problem. This phrase refers to fact that,
unlike the masses of fermions and gauge boson, which are protected by chirality or gauge
symmetry, the mass of an elementary scalar, as the SM Higgs boson, is subject to huge ra-
diative corrections. These result from virtual particles that are constantly created out of
and re-annihilated back into the vacuum. In perturbative QFT these virtual processes are
described by loop-corrections, which are mathematically expressed in terms of integrals over
the phase space of the virtual particles. Often these integrals exhibit divergences in the region
of high loop momenta (called the ultraviolet (UV) region) and one possibility to regularize
these is to introduce a hard cut-off scale ΛUV for the integration (cf. Subs. 3.1.1). Proceeding
in this way for ∆m2

h, the radiative corrections to the mass of the Higgs boson, leads to terms
which are quadratic in ΛUV . The dominant contribution, evoked by loops containing the top
quark, is given by

∆m2
h = − y

2
t

8π

[
Λ2

UV + . . .
]

+ . . . . (2.2)

Here yt denotes the top Yukawa coupling, i.e. the coupling of the top quark to the Higgs
boson, and the dots inside the brackets represent terms proportional to m2

t , the top mass
squared, which grow at most logarithmically in ΛUV. Those outside the brackets stand for
the contributions of other particles. Adopting the view that the SM is valid up to the Planck
scale, i.e. equating ΛUV = MPl ∼ 1018 GeV, these huge corrections require an enormous
amount of fine-tuning, to adjust the counterterm δm2

H
2 such that the Higgs mass attains the

measured value of mh ≈ 125 GeV [51].
Even if one refrains from any physical interpretation of ΛUV, the hierarchy problem remains.
Any heavy particle S of mass mS will lead to a term in ∆m2

h, which is proportional to m2
S ,

even if S couples to the Higgs boson only indirectly [48]. Very generically the corresponding
contributions have the form

∆m2
h = a

[
Λ2

UV − bm2
S ln

(
ΛUV

mS

)
+ . . .

]
+ . . . , (2.3)

where a and b denote combinations of couplings, group theory and loop factors. Hence, the
Higgs mass is sensitive to any new physics at an arbitrarily high scale and receives corrections
from the masses of the heaviest existing particles. Due to experimental evidence of phenom-
ena the SM fails to describe, it appears ill-advised to deny the existence of any high-mass
particles that couple (even if only indirectly) to the Higgs boson. These particles, however,
immediately necessitate fine-tuning of the Higgs mass counterterm δm2

h.

All these deficiencies clearly show that the SM cannot be the ultimate description of na-
ture. Striving for a more profound understanding of the universe, particle physicists are thus
driven to embark on journeys to new shores and study models beyond the SM (BSM).

2.2. Supersymmetry

In the development of the SM, symmetries have turned out to be a valuable guideline. There-
fore, it appears promising to make use of this approved tool also in the development of

2The notion of a counterterms will be explained below in chapter 3.1, dealing with the subject of renormalization.
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extensions to the SM. The principle of symmetry is brought to perfection in Supersymmetry
(SUSY) [19–29], as within the framework of SUSY, the maximal non-trivial combination of
symmetries, consistent with relativistic QFT, into one Lie superalgebra is realized. This is
achieved by extending the Poincaré algebra of space-time symmetry through the introduction
of anti-commuting spinorial generators Q and Q†, the so-called supercharges. By means of
these fermionic operators, the restrictions of the Coleman-Mandula theorem [52] are circum-
vented and, in contradiction to the implication of this theorem, a non-trivial combination of
internal symmetries with the space-time symmetries of the Poincaré algebra is accomplished.
This is the essence of the Haag- Lopuszański-Sohnius theorem [53], which emphasizes that
only the inclusion of SUSY leads to the maximal possible symmetry of a consistent QFT.
Due to their fermionic nature, the operators Q and Q†, carrying spin 1/2, turn bosonic states
into fermionic states and vice versa

Q|Boson〉 = |Fermion〉, Q|Fermion〉 = |Boson〉. (2.4)

The single particle states emerging from one another via this relation are called superpartners.
They are grouped together into a supermultiplet, i.e. an irreducible representation of the
SUSY algebra. Since the operators Q and Q† commute with the generators of other internal
symmetries, like gauge symmetries, all members of a supermultiplet share the same quantum
numbers, apart from their spin. Moreover, the spinorial operators commute with −P 2, the
squared mass operator, leading to mass degeneracy within the supermultiplets. Given the
fact that up to date experimental evidence for any superpartner of an SM particle is still
missing, SUSY cannot be manifest in nature but has to be broken in the accessible energy
range. In order to prevent the loss of its endowments, the breaking of SUSY must be realized
in a soft way, i.e. by the introduction of SUSY-violating terms of positive mass dimension
into the Lagrangian. These only affect the masses of the SUSY particles and leave the SUSY
relations between the couplings intact.

SUSY offers a solution to all pending issues of the SM discussed in the previous section.
Maybe the most frequently discussed example is the natural emergence of a solution to the
hierarchy problem. In SUSY every fermionic degree of freedom is accompanied by a bosonic
one, sharing the same quantum numbers and, if SUSY is exact, the same mass. Due to the
fact, that the contributions of fermionic and bosonic particles to ∆m2

h, as the one in Eq. (2.2),
differ by a sign, the effects of two superpartners identically cancel, provided SUSY is unbroken.
Taking into consideration, that SUSY has to be violated in nature, this cancellation is no
longer exact. However, the quadratic dependence of m2

h on an arbitrarily large scale is still
precluded. Instead of Eq. (2.2) or Eq. (2.3), ∆m2

h now contains terms of the form

∆m2
h =

1

8π2
(λ− λ) Λ2

UV +m2
soft

[
λ

16π2
ln

(
ΛUV

msoft

)
+ . . .

]
(2.5)

= m2
soft

[
λ

16π2
ln

(
ΛUV

msoft

)
+ . . .

]
,

where λ represents a generic dimensionless coupling constant (e.g. yt) and msoft denotes the
soft-SUSY-breaking scale, above which SUSY is exact. Apparently, as long as msoft is not
too large (. 1TeV), unnaturally huge contributions to ∆m2

h are prohibited and the hierarchy
problem does not occur. A crucial prerequisite for this is the equality of the coupling constants
λ of the superpartners to the Higgs boson, which is unaffected by soft SUSY breaking.
Although the procuration of a solution to the hierarchy problem is often stated as its main
motivation, SUSY also offers other benefits. For instance, SUSY can provide a solution to the
dark matter puzzle. Many SUSY models are based on a discrete symmetry called R-parity
or matter parity, originally introduced to prevent proton decay. Each particle of the SUSY
model is assigned a multiplicative R-parity quantum number, according to

RP = (−1)3(B−L)+2s , (2.6)
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where B and L denote the baryon and lepton number and s stands for the spin of the
particle. According to these definitions, all SM particles obtain RP = +1, whereas their
superpartners are assigned RP = −1. As an immediate consequence of R-parity conservation,
SUSY particles (sparticles) can only be produced in pairs and their decay must always involve
an odd number of lighter sparticles. Consequently, the lightest SUSY particle (LSP) must
be stable and hence, if electrically neutral and weakly interacting, constitutes an excellent
candidate for dark matter.
Finally, by the introduction of a large amount of potentially complex new parameters, SUSY
models also offer new sources of CP violation and thus may allow for a successful baryogenesis
in the early universe.

We will come back to SUSY in Part III of this thesis, which deals with the Next-to-Minimal
Supersymmetric Standard Model (NMSSM), one specific realization of a SUSY model. There,
we will also elaborate in more detail on the particle content of SUSY theories. However, we
already want to mention one important characteristic in this introduction, which will serve
us as motivation for the next section. In order to prevent the occurrence of gauge anomalies
and in order to preserve holomorphy of the superpotential, SUSY theories necessitate the
introduction of at least two Higgs doublets. These are conventionally denoted as Hu and
Hd, emphasizing the fact that, as far as the SM fermions are concerned, Hu only couples
to up-type quarks, whereas Hd only interacts with down-type quarks and charged leptons.
Therefore, the Higgs sector of a SUSY model constitutes, in the simplest case, a Two Higgs
Doublet Model (2HDM). This fact has, among others, led to an increased interest in 2HDMs
in the recent years and also motivated our own studies of these models, which represent a
major part of this thesis.

2.3. Two Higgs Doublet Models

Another possibility to construct an extensions of the SM is to first concentrate on the scalar
sector. The scalar sector is the least well studied and constrained part of the SM and hence
offers many possibilities of incorporating new physics. With the current run 2, the LHC
has launched a closer investigation of the Higgs boson, the only elementary scalar particle
known up to now3, however before we can enter the high-precision era in the scalar sector,
a new particle collider, like e.g. the International Linear Collider (ILC) will have to be built.
As mentioned above, from a theoretical point of view, nothing prohibits the scalar sector
from attaining a more complicated structure than the minimal form proposed by the SM.
There are some restrictions, of course any extension has to fulfill. One of the most severe
constraints comes from electroweak precision measurements and is often expressed in terms
of the ρ parameter, given by

ρ =
M2
W

M2
Zc

2
W

. (2.7)

Here MW and MZ denote the masses of the weak gauge bosons and cW = cos(θW ), where
θW is the Weinberg angle. Experimentally the ρ parameter is determined to be very close to
one [54]

ρ = 1.00040± 0.0024. (2.8)

3Note that it is also possible, that the Higgs boson is a composite object. In this thesis, however, we will always
assume the Higgs boson to be an elementary particle.
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The theoretical prediction of the ρ parameter depends on the realization of the scalar sector
and can at tree level, i.e. at the lowest order of perturbation theory, be expressed as [17,55]4

ρ =

∑n
i=1

(
Ii(Ii + 1)− Y 2

i

)
v2
i

2
∑n

i=1 Y
2
i v

2
i

, (2.9)

for a model containing n scalar SU(2)L multiplets of a respective hypercharge Yi, a weak
isospin Ii and a vev vi. In the SM and in any model featuring only singlets and doublets in
the scalar sector, ρ = 1 exactly at tree-level and no artificial arrangement of the individual
quantum numbers and vevs in Eq. (2.9) is necessary to comply with the strict experimental
bounds.
A further constraint results from severe experimental limits on flavor changing neutral cur-
rents (FCNCs). For the minimal Higgs sector of the SM, these are automatically precluded
at tree level, since a diagonalization of the fermion mass matrices simultaneously leads to a
diagonalization of the corresponding matrices of Yukawa, i.e. fermion-Higgs, couplings. How-
ever, in extended scalar sectors, this is no longer necessarily fulfilled and care has to be taken
to enforce the absence of tree-level FCNCs or at least suppress them such that they are in
accordance with experiment. In the case of 2HDMs, i.e. models whose scalar sector comprises
two scalar SU(2)L doublets, the occurrence of tree-level FCNCs can be prevented by imposing
a Z2 symmetry on the 2HDM Lagrangian. We will elaborate on this in Sec. 5.4.
The fact that 2HDMs automatically fulfill the tree-level constraints of the ρ-parameter and
can be constructed in such a way, that tree-level FCNCs are absent, is an important moti-
vation to study these models. Furthermore, they are of particular interest, since, apart from
singlet extensions, they constitute the simplest generalization of the SM scalar sector and still
show a rich phenomenology, featuring e.g. charged and CP-odd scalars.
Due to the enlarged scalar sector, containing several potentially complex parameters, 2HDMs
moreover offer the possibility of explicit or spontaneous CP-violation. This in turn may pro-
vide a basis for successful baryogenesis.
Special realizations of the 2HDM, the Inert 2HDMs (IDMs), besides offer a solution to the
dark matter problem as first discussed in [56, 57]. Within these models, only one of the two
doublets, denoted by Φ1, receives a vev in the course of EWSB, while the other, called the
inert doublet Φ2, remains without. As a consequence, the Z2-symmetry, which is imposed
on the Lagrangian in such a way that only Φ2 transforms non-trivially, remains unbroken.
Hence, the lightest inert particle is rendered stable and, if electrically neutral, represents a
candidate for dark matter.
Finally, many extensions of the SM incorporate a 2HDM as Higgs sector, among which axion
models and SUSY models. Especially the fact that the simplest realization of SUSY, the Min-
imal Supersymmetric Standard Model (MSSM), comprises a 2HDM, has triggered increased
scientific activity in the field.

4Note that our definition of the hypercharge differs from the one used in [17].





CHAPTER 3

Selected Concepts of Perturbative QFT

The purpose of this chapter is to introduce important notions and concepts of QFT, we will
make use of in this thesis. We do not strive for rigorous derivations and do not claim com-
pleteness. Instead, we will refer the reader to the literature at some points, where this appears
appropriate. Furthermore, we assume the reader to be familiar with the basic concepts of
special relativity, gauge invariance and Feynman diagrammatic calculations, which we will
not repeat in this introduction. These topics are comprehensively covered in any textbook
on QFT, e.g. in Refs. [58,59].
Since a major part of this thesis will deal with the subject of renormalization, we will start
in Sec. 3.1 with an illustration of the ideas of regularization and renormalization. Subse-
quently in Sec. 3.2, we will introduce the S-matrix as one of the central objects of QFT and
present some important properties and relations, we will take advantage of in this thesis.
Finally, Sec. 3.3 is devoted to the topic of gauge fixing and gauge dependence and throws
a first glance on the pinch technique, which will be important for our discussion on gauge-
independent renormalization in Part II.

3.1. Regularization and Renormalization

All along in perturbative QFT we have to deal with higher-order loop-corrections, which are
caused by quantum fluctuations, i.e. by virtual particles, which permanently emerge from
and disappear back into the vacuum. As already mentioned in the previous chapter, these
are parametrized by loop-integrals, i.e. integrals over the phase space of the virtual particles.
Frequently, these integrals diverge in the limit of either vanishing or very high loop momenta,
resulting in infrared (IR) or ultraviolet (UV) divergences. While the IR divergences arising
from loop-integrals are, according to the Kinoshita-Lee-Nauenberg theorem, cancelled by a
summation over all degenerate initial and final states [60, 61], the UV divergences require
a particular treatment referred to as renormalization. The machinery of renormalization is
based on a two-step procedure. In the first step, called regularization, the divergences are
extracted and parametrized in a convenient way. Afterwards, the actual renormalization is
performed, in the course of which all UV divergences are disposed of.
In this section we briefly want to outline these two steps.
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3.1.1. Regularization

A typical example for a UV divergent integral, appearing in the calculation of higher-order
corrections, has the form

∫ ∞

0

d4q

(2π)4

1

q2 +m2
. (3.1)

This integral develops a quadratic divergence for high loop momenta, i.e. in the limit |q| → ∞.
In Sec. 2.1 we have already encountered the possibility to isolate this divergence by the
introduction of a hard cut-off

∫ ΛUV

0

d4q

(2π)4

1

q2 +m2
∝
[

Λ2
UV

m2
− ln

(
Λ2

UV

m2

)]
+O

(
(ΛUV)0

)
. (3.2)

The divergences are now separated and parametrized in terms of ΛUV. For actual calculations,
the regularization via a hard cut-off, however, turns out to be impractical, since it destroys
translational invariance.
Another method of regularization, which leaves both translational invariance intact and has
the further desirable property of respecting gauge and Lorentz invariance, comes in the form
of dimensional regularization (DReg) [62, 63]. This method is based on the idea of changing
the measure of integration by allowing the dimension of the integral to take a value D = 4−2ε,
where ε is chosen such that the integration can be performed formally. Schematically, this
change amounts to

∫ ∞

0

d4q

(2π)4
→ µ4−D

r

∫ ∞

0

dDq

(2π)D
. (3.3)

In order to preserve the correct mass dimension of the integral, the unphysical mass scale µr,
called the renormalization scale, has to be introduced. After the integration the divergence
is contained in the universal term

∆MS =
1

ε
− γE + ln(4π), (3.4)

which diverges in the physical limit ε→ 0. Here γE denotes the Euler-Mascheroni constant.
Particular care has to be taken, if the integrand contains γ5 since the continuation of this Dirac
matrix to D dimensions is non-trivial. As we will not encounter this subtlety in this thesis,
we do not elaborate on that topic and instead refer the reader to the literature (see [64, 65]
and references therein).
Due to its attractive features and general ease in application, DReg is one of the most widely
used regularization schemes for non-SUSY higher-order calculations. However, DReg has
been shown to violate SUSY [66]. The violation can be traced back to a mismatch between
bosonic and fermionic degrees of freedom resulting from the continuation of the polarization
vectors of the gauge bosons to D dimensions. Thus, employing DReg in a SUSY calculation,
SUSY has to be re-established by the introduction of SUSY restoring counterterms [67–
70]. Alternatively, one can make use of a different regularization procedure referred to as
dimensional reduction (DRed) [71–73]. Although the theory behind DRed is involved, its
practical application is straightforward in most cases. In short it amounts to continuing
the measure of integration and loop momenta to D dimensions but keeping all polarization
vectors and the Dirac algebra four-dimensional. Again, care has to be taken concerning a
consistent treatment of γ5 and furthermore in view of the fact that Fierz identities no longer
apply. While a general all-order proof is still missing, DRed was shown to respect SUSY at
one-loop order. For higher loop orders only a few dedicated studies have been performed,
which all turned out affirmative [74–76].
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3.1.2. Renormalization

As physical observables are finite, measurable quantities, the divergences extracted by a suit-
able regularization prescription must not appear in the final result for a physical observable.
Hence, a neat cancellation of various divergences has to take place among the different con-
tributions to a physical quantity. The occurrence of this cancellation rests upon a reinterpre-
tation of the parameters of the Lagrangian. Regarding the original parameters as unphysical
and unobservable quantities, all divergences can be absorbed into these so-called bare param-
eters. This procedure, called renormalization, renders all physical observables and relations
among them finite, renormalizability of the theory provided. On the other hand, the bare
parameters and the relation between these and physical observables become UV-divergent
and any physical interpretation of the Lagrangian parameters is lost.
In order to restore a physical meaning of the bare Lagrangian parameters and to simplify the
bookkeeping of UV-divergent contributions, an elegant formalism, the counterterm formal-
ism, has been introduced and is widely used nowadays. This formalism is based on the idea of
redefining the original parameters of the Lagrangian, such that all UV-divergent terms are ab-
sorbed into unphysical shifts, the counterterms. For an arbitrary bare Lagrangian parameter
pb this amounts to

pb = pr + δp = pr + δ(1)p+ δ(2)p+ . . . , (3.5)

where the superscripts schematically indicate the loop-order of the counterterm. Both, the
bare parameter pb and the counterterm δp are UV-divergent and lack any physical meaning.
In contrast, the renormalized parameter pr is finite and allows for a physical interpretation.
Proceeding in this way for all bare parameters results in a splitting of the Lagrangian into a
renormalized and a counterterm part

Lb = Lr + δL, (3.6)

where Lr has the same form as Lb and δL comprises all counterterms. Using this Lagrangian
to derive the Feynman rules results in additional rules for the counterterms, which thus enter
the expressions for physical observables. In a renormalizable QFT, the counterterms can be
adjusted such, that they cancel all divergences in any physical observable order by order in
perturbation theory.
While this parameter renormalization is sufficient to render physical quantities finite, it is of-
ten convenient to redefine also the fields by the introduction of wave function renormalization
constants (WFRCs). These are conventionally established according to

φb =
√
Zφφr =

√
1 + δ(1)Zφ + δ(2)Zφ + . . . φr

=

(
1 +

1

2
δ(1)Zφ −

1

8

(
δ(1)Zφ

)2
+

1

2
δ(2)Zφ + . . .

)
φr (3.7)

for each bare field φb of the theory. In the last step we have performed an expansion in the
loop-order.
If the theory under consideration contains particles with identical quantum numbers, these
will in general mix through higher-order corrections. In order to account for this, it is neces-
sary to introduce matrix valued WFRCs. For n species φi with identical quantum numbers,
Zφ has to be defined as complex n× n matrix resulting in

φb,i = (Zφ)
1/2
ij φr,j . (3.8)

The benefit of introducing WFRCs is two-fold. On the one hand they render all Green's func-
tions finite and can be defined in such a way, that no external leg corrections or LSZ-factors1

1The notion of Green's functions and LSZ-factors will be introduced in section 3.2.
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have to be taken into account. On the other hand, they greatly simplify the definition of
parameter counterterms, especially of mass counterterms in the case of mixing particles [77].
After the counterterms have been introduced, they need to be fixed by a suitable procedure.
The requirement of UV finiteness only poses limits on the divergent parts of the countert-
erms, whereas the finite parts can be chosen freely within the boundaries enjoined on them
by symmetries. Different possible choices of the counterterms are denoted as different renor-
malization schemes.
Subsequent to the development of the counterterm formalism, two schemes emerged, which
nowadays enjoy wide popularity both in SM and in BSM calculations: the on-shell (OS)
scheme [78–80] and the MS/MS or DR/DR scheme [81,82]. Note that the terms MS and DR
refer to the same renormalization scheme and differ only by the underlying prescription of
regularization. While the MS scheme is based on DReg, the DR scheme rests on DRed.
The OS scheme follows the philosophy to define the counterterms for the Lagrangian param-
eters in such a way that the corresponding renormalized parameters can be interpreted as
physical observables. For instance in the case of a mass parameter m this amounts to adjust-
ing the counterterm δm such, that the renormalized mass mr corresponds to the pole of the
propagator of the respective particle. This is tantamount to saying that mr represents the
physical mass of an on-shell particle, explaining the origin of the nomenclature. In particle
physics, a particle with four momentum p and mass m is termed on-shell if it satisfies the
relativistic energy-momentum relation p2 = m2 and off-shell otherwise.
The MS/MS or DR/DR scheme takes a different view. Instead of striving for physically
meaningful renormalized parameters, these schemes focus on simplicity and ease of the cal-
culation. To this end, in the MS or the DR scheme the counterterms are defined as purely
divergent with the only purpose to cancel the divergences arising from radiative corrections.
The MS or DR scheme can therefore be regarded as minimal. A slight modification of these
schemes leads to the modified minimal schemes MS or DR. These schemes rely on the fact
that in DReg or DRed the divergences are always accompanied by the universal finite terms
−γE + ln(4π). Absorbing these finite terms together with the divergence into the countert-
erms, i.e. absorbing the term ∆MS defined in Eq. (3.4), simplifies the expressions for the final
results.
Since both regularization and renormalization constitute auxiliary means of the computation,
a physical observable must not depend on the scheme choice for either of both. Due to the
fact that in a perturbative calculation we can only take into account a finite number of terms,
a residual dependence on the chosen renormalization scheme remains. In the case of MS/MS
or DR/DR the result furthermore depends on the unphysical renormalization scale µr. These
dependences on both the scheme and the scale choice can be used as a measure for missing
higher-order corrections and therefore for the theoretical uncertainty due to the latter.

3.2. LSZ Reduction, the S-matrix and Physical Observables

3.2.1. LSZ Reduction and the S-matrix

Due to its importance and since in the following we will need to refer to it in several places, we
briefly want to introduce the notion of the S-matrix, one of the central objects in perturbative
QFT. However, we will not give rigorous proofs of the relations stated in this section but
instead refer the reader to the literature [58,80], in particular to Ref. [59], which we will make
ample use of.
Let |p1, . . . , ps〉in and out〈−ps+1, . . . ,−pn| denote asymptotic in and out states of definite
momentum, as introduced in detail e.g. in the textbook by Peskin and Schroeder [58]. Then,
the S-matrix is defined via

out〈−ps+1, . . . ,−pn|p1, . . . , ps〉in = in〈−ps+1, . . . ,−pn|S|p1, . . . , ps〉in. (3.9)
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According to this, the S-matrix describes the transition amplitude between in the in and out
states. In practice, we are interested only in the non-trivial part of the S-matrix, which is
the part actually representing interactions. For the purpose of isolating the interesting parts,
one usually introduces the T -matrix, given by

S = 1 + iT . (3.10)

Finally, in order to account for momentum conservation, one extracts from T the four di-
mensional delta-distribution δ(4)(p1 + . . . + pn) and defines the invariant matrix element A
as

in〈−ps+1, . . . ,−pn|iT |p1, . . . , ps〉in = (2π)4δ(4)(p1 + . . .+ pn)iA(p1, . . . , pn). (3.11)

We will often refer to A as the amplitude. Furthermore, we will drop the subscripts “in” in
the following.
The importance of the S-matrix in QFT is two-fold: On the one hand, it has nice theoretical
properties, e.g. it is unitary and can be proven to be gauge invariant and gauge indepen-
dent [83–89] (cf. Sec. 3.3). On the other hand, the relation in Eq. (3.11) allows an extraction
of the amplitude A, which appears in the calculation of physical observables like cross-sections
and decay rates. For our purposes it will be of particular importance, that the gauge inde-
pendence of the S-matrix is directly transferred to A via Eq. (3.11).
When it comes to calculating S-matrix elements, we have to invoke the so-called LSZ-
formalism (thus denoted as contribute to its inventors Lehmann, Symanzik, Zimmermann)
[90], which establishes a direct connection between S-matrix elements and n-particle cor-
relation functions (also called Green's functions). The latter can be expressed in terms of
Feynman diagrams and are thus calculable with the help of the corresponding Feynman rules.
According to the LSZ-formalism, the following relation holds

〈−ps+1, . . . ,−pn|S|p1, . . . , ps〉
= (−i)nZ̃−1/2

ϕ1

(
p2

1 −m2
1

)
. . . Z̃

−1/2
ϕn

(
p2
n −m2

n

)
G̃ϕ1...ϕn(p1, . . . , pn)

∣∣∣
p2
i=m

2
i

, (3.12)

with i = 1, . . . , n. Here we have assumed the incoming and outgoing particles to be scalars. In
the case of fermions or vector bosons, we would have to take into account the more complicated
Lorentz structure and attach suitable polarization vectors or spinors. G̃ϕ1...ϕn(p1, . . . , pn)
denotes the Fourier transform of the n-scalar correlation function Gϕ1...ϕn(x1, . . . , xn)

G̃ϕ1...ϕn(p1, . . . , pn) =

∫
d4x1 . . . d

4xne−i(p1x1+...+pnxn)Gϕ1...ϕn(x1, . . . , xn) (3.13)

= (2π)4δ(4)(p1 + . . .+ pn)Gϕ1...ϕn(p1, . . . , pn).

Furthermore, we have introduced the LSZ factors Z̃
1/2
ϕi , which are defined as the residuum of

the two-point correlation function, i.e. the propagator, of the scalar field ϕi at the pole

Z̃ϕi = −i(p2
i −m2

i )Gϕiϕi(pi,−pi)
∣∣
p2
i=m

2
i
. (3.14)

Again, straightforward modifications are necessary for fermions or vector bosons.
Inserting Eq. (3.14) into Eq. (3.12), we arrive at

〈−ps+1, . . . ,−pn|S|p1, . . . , ps〉
= Z̃

1/2
ϕ1
G−1
ϕ1ϕ1

(p1,−p1) . . . Z̃
1/2
ϕnG

−1
ϕnϕn(pn,−pn)G̃ϕ1...ϕn(p1, . . . , pn)

∣∣∣
p2
i=m

2
i

= Z̃
1/2
ϕ1
. . . Z̃

1/2
ϕn G̃

trunc
ϕ1...ϕn(p1, . . . , pn)

∣∣∣
p2
i=m

2
i

. (3.15)
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〈−p3,−p4|S|p1, p2〉 =

−i(p21 −m2
1)Z̃

−1/2
ϕ

trunc

−i(p24 −m2
4)Z̃

−1/2
ϕ−i(p22 −m2

2)Z̃
−1/2
ϕ

−i(p23 −m2
3)Z̃

−1/2
ϕ

=

Z̃
1/2
ϕ

trunc

Z̃
1/2
ϕZ̃

1/2
ϕ

Z̃
1/2
ϕ

Figure 3.1.: Diagrammatic representation of the LSZ formula. Blue (grey) circles represent the full propaga-
tor, i.e. the propagator with resummed corrections. The circles labeled as trunc contain all possible truncated
Feynman diagrams, contributing to the process under consideration

.

Hence, S-matrix elements can be expressed in terms of truncated Green's functions
G̃trunc
ϕ1...ϕn(p1, . . . , pn) taken on-shell, i.e. n-particle correlation functions, whose external prop-

agators have been “amputated” by operating on them with corresponding inverse two-point
functions. The term on-shell is used to express the fact that all external particles satisfy the
relativistic energy-momentum relation as explained in Subs. 3.1.2.
Pictorially the formula in Eq. (3.15) can be represented as shown in Fig. 3.1. Here and in
the following the blue (grey) circles represent the full propagator, i.e. the propagator with
resummed corrections, whereas the circles labeled as trunc contain all possible truncated
Feynman diagrams, contributing to the process under consideration.
Up to this point, we have worked with unrenormalized Green's functions G̃ϕ1...ϕn . How-
ever, we can also derive a connection between S-matrix elements and renormalized Green's
functions G̃rϕ1...ϕn . The latter are obtained from the corresponding unrenormalized ones by

multiplication with suitable WFRCs Z
1/2
ϕ for each external field appearing in G̃ϕ1...ϕn [59]

G̃rϕ1...ϕn(p1 . . . pn) = Z−1/2
ϕ1

. . . Z−1/2
ϕn G̃ϕ1...ϕn(p1 . . . pn). (3.16)

Renormalizing all Lagrangian parameters g0 appearing in the expressions for G̃ϕ1...ϕn and

G̃rϕ1...ϕn as illustrated in Subs. 3.1.2, both G̃ϕ1...ϕn and G̃rϕ1...ϕn depend on renormalized pa-
rameters g and counterterms δg . In order to derive from Eq. (3.16) a relation for truncated
Green's functions, we have to amputate all external legs with renormalized propagators, lead-
ing us to

G̃r,trunc
ϕ1...ϕn(p1 . . . pn) = Z

1/2
ϕ1
. . . Z

1/2
ϕn G̃

trunc
ϕ1...ϕn(p1 . . . pn). (3.17)

Inserting Eq. (3.17) into Eq. (3.15), we arrive at

〈−ps+1, . . . ,−pn|S|p1, . . . , ps〉 = Z̃
1/2
ϕ1
. . . Z̃

1/2
ϕn G̃

trunc
ϕ1...ϕn(p1, . . . , pn)

∣∣∣
p2
i=m

2
i

(3.18)

= Z̃
1/2
ϕ1
Z
−1/2
ϕ1

. . . Z̃
1/2
ϕnZ

−1/2
ϕn G̃r,trunc

ϕ1...ϕn(p1, . . . , pn)
∣∣∣
p2
i=m

2
i

.

Obviously, choosing Zϕi = Z̃ϕi the LSZ-factors for renormalized Green's functions vanish.
This choice corresponds to OS renormalization of the fields (cf. Sec. 6.4). It should be noted,
however, that although no LSZ-factors are needed in the OS scheme, the WFRCs do appear
as part of the counterterm Feynman rules.
Before closing this discussion, we want to generalize these results to the case of mixing scalars,



3.2. LSZ Reduction, the S-matrix and Physical Observables 31

as we will heavily draw on these relations in the following. Since a rigorous deduction would
be beyond the scope of this thesis, we will only state the results. For details of the derivation
see [80]. If mixing between scalars is considered, Eq. (3.15) takes the form (summation over
recurring indices implied)

〈−ps+1, . . . ,−pn|S|p1, . . . , ps〉
= Z̃

1/2
ϕjϕ1

G−1
ϕ′1ϕj

(p1,−p1) . . . Z̃
1/2
ϕkϕn

G−1
ϕ′nϕk

(pn,−pn)G̃ϕ′1...ϕ′n(p1, . . . , pn)
∣∣∣
p2
i=m

2
i

(3.19)

= Z̃
1/2
ϕjϕ1

. . . Z̃
1/2
ϕkϕn

G̃trunc
ϕj ...ϕk

(p1, . . . , pn)
∣∣∣
p2
i=m

2
i

.

In this equation, both the LSZ-factors and the propagator Gϕiϕj (p,−p) are to be considered

as elements of m×m matrices Z̃ and G, respectively, where m is the number of mixing fields.
Introducing matrix valued WFRCs Zϕiϕj leads to

〈−ps+1, . . . ,−pn|S|p1, . . . , ps〉
= Z̃

1/2
ϕjϕ1

Z
−1/2
ϕsϕj . . . Z̃

1/2
ϕkϕn

Z
−1/2
ϕtϕk

G̃r,trunc
ϕs...ϕt(p1, . . . , pn)

∣∣∣
p2
i=m

2
i

, (3.20)

which becomes in the OS scheme

〈−ps+1, . . . ,−pn|S|p1, . . . , ps〉
OS
= Z̃

1/2
ϕjϕ1

Z
−1/2
ϕsϕj︸ ︷︷ ︸

δ1s

. . . Z̃
1/2
ϕkϕn

Z
−1/2
ϕtϕk︸ ︷︷ ︸

δnt

G̃r,trunc
ϕs...ϕt(p1, . . . , pn)

∣∣∣
p2
i=m

2
i

(3.21)

= G̃r,trunc
ϕ1...ϕn(p1, . . . , pn)

∣∣∣
p2
i=m

2
i

.

Due to Eq. (3.21) mixing between different scalars on the external legs does not have to be
considered, if the particles are renormalized according to OS conditions. The same is true for
gauge bosons and fermions.

3.2.2. The Invariant Matrix Element A and Physical Observables

In practice, we are often interested in calculating an amplitude A up to some order in the
perturbative expansion. This is achieved by taking into account in Fig. 3.1 only those dia-
grams, leading to contributions of the desired order. The resulting amplitude will then be
composed of tree-level, virtual correction and counterterm contributions, denoted by Atree,
Avirt and Act, respectively. Assuming on-shell renormalization of the fields, this decomposi-
tion is schematically illustrated in Fig. 3.2 for the case of three scalars. For simplicity, we do
not consider mixing in this picture. In the first row, the big crossed circle indicates, that this
diagram comprises the full vertex counterterm, including the coupling counterterm as well
as the WFRCs of the respective fields. The latter have been separated from the remaining
counterterm amplitude in the second row. If we do not introduce WFRCs, which are not
necessary in order to obtain finite S-matrix elements, the diagrams in the last row can be
interpreted as contributions from LSZ-factors (or “external leg corrections”). In general these
diagrams will contain both contributions from LSZ-factors and WFRCs as can be read off
Eq. (3.18). Of course, the contributions of these diagrams stay the same in any scheme, how-
ever, their distribution among LSZ-factors and WFRCs changes depending on the choice of
the wave function renormalization. Furthermore, the diagram with the grey circle is supposed
to incorporate all possible virtual corrections to the process under consideration.
The amplitude A is a complex valued quantity and therefore cannot be a physical observable
by itself. Like in quantum mechanics, it is rather to be interpreted as a transition amplitude
and only the square of its absolute value can be associated with a transition probability at
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iA(p1, p2, p3) = S1

tree
S2

S3

+

virt

+

ct

δ (gS1S2S3)

= + +
δg

+

1
2δZS1S1

+

1
2δZS2S2

+ 1
2δZS3S3

Figure 3.2.: Decomposition of a generic amplitude into tree-level, virtual and counterterm contributions. For
simplicity, we consider the case of three non-mixing scalars. In the second row, the WFRCs have been split
off the vertex counterterm, as explained in the text.

a given point in phase space. Consequently, only |A|2 will enter physical observables, like
cross-sections and decay rates. In this thesis we will mainly be interested in decays of one
heavier scalar into two lighter particles. Therefore, we state here the generic expression for
the corresponding decay width in the rest frame of the decaying scalar

Γφ→f1f2 =
σ

2mφ

∫
dΠ2

∑

λ1λ2

|Aφ→f1f2 |2 . (3.22)

λ1 and λ2 denote additional quantum numbers of the outgoing particles (e.g. their color or
polarization) and σ is a symmetry factor, which takes the value 1/2 for identical particles in
the final state and 1 otherwise. Furthermore, we have introduced the two-body phase space
Π2

∫
dΠ2 =


∏

i=1,2

∫
d3pi
(2π)3

1

2Ei


 (2π)4δ(4)(pφ − p1 − p2) (3.23)

=

∫
dΩ

|~p1|
(4π)2m2

φ

=
1

8πm2
φ

λ(m2
φ,m

2
f1
,m2

f2
),

with the Källén function

λ(a, b, c) = (a2 + b2 + c2 − 2ab− 2bc− 2ca)
1/2. (3.24)

Since we will always assume the external particles to be on-shell in this thesis, the integrands∑
λ1λ2
|Aφ→f1f2 |2 of all scalar decays we consider are independent of the four momenta p1

and p2 and can hence be pulled in front of the integral.
Calculating Γφ→f1f2 up to some desired loop order n, denoted asO(n-loop), we have to expand
|A|2 and consider only terms, which contribute at that order. For instance at O(1-loop) we
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εµ
Vµ S

S Vµ

Figure 3.3.: Illustration of external leg corrections arising from the mixing between charged or pseudoscalar
Higgs bosons with vector bosons. The blob on the right stands for an arbitrary rest amplitude.

have to take into account

|A|2O(1-loop) =

∣∣∣∣∣Atree +
∞∑

i=1

A(i)

∣∣∣∣∣

2

O(1-loop)

(3.25)

= |Atree|2 +A∗treeA(1) +A∗(1)Atree

= |Atree|2 +A∗tree

(
A(1)

virt +A(1)
ct

)
+
(
A(1)

virt +A(1)
ct

)∗
Atree

= |Atree|2 + 2Re
[
A∗tree

(
A(1)

virt +A(1)
ct

)]
,

where the superscript (i) denotes the loop order and the tree-level amplitude is supposed to

be free of loops2. Moreover, we have split the one-loop amplitude into a virtual part A(1)
virt,

containing the virtual one-loop corrections, and a counterterm amplitude A(1)
ct , which consists

of the corresponding counterterm contributions.
One further comment is in order concerning the mixing between vector particles and scalars.
Many extensions of the SM, like 2HDMs and SUSY models, feature an extended scalar sector,
which contains charged and CP-odd Higgs bosons. Since these possess the same quantum
numbers as the W - or Z-boson, they can mix with the gauge bosons. Therefore the question
arises, how these mixing contributions have to be treated correctly, when appearing on exter-
nal legs. Generically, two different situations can appear, which are depicted in Fig. 3.3. The
contribution of the first generic diagram always vanishes. This is due to the transversality of
the external gauge boson and to the fact, that the vector-scalar mixing propagator is propor-
tional to the incoming four-momentum pµ. Contracting pµ with the polarization vector ε(p)µ
of the gauge boson yields ε(p) · p = 0.
For the second case we can exploit a Slavnov-Taylor identity, which allows us to connect
the contribution of the scalar-vector mixing to an equivalent contribution, where the gauge
boson is replaced by the corresponding Goldstone boson [91]. In an OS scheme, the latter
vanishes if the external momenta are taken on-shell and scalar-vector mixing does not need
to be considered. However, for general non-OS schemes these contributions have to be taken
into account when calculating Avirt.
In addition, if the process under considerations exhibits IR divergences, caused by internal
massless propagators of a species f0

i , a meaningful result for the decay width requires the
inclusion of all possible processes with degenerate initial and final states [60,61] of the appro-
priate order. There are two types of IR divergences given by soft and collinear divergences.
Since we do not consider processes exhibiting the latter type of IR divergences in this thesis,
we restrict our discussion here to the first type. Soft IR divergences can be cured by taking
into account processes with additional soft, i.e. low-energy, massless particles f0

i in the final
state, which are called real corrections. These exhibit the same IR divergences with an oppo-
site sign as those appearing in the virtual corrections. A physically meaningful partial decay

2Note that in this representation, the expansion of any loop-induced process, whose leading order amplitude is
of one-loop order, would start with A(1) and the lowest order term in Eq. (3.25) would be |A(1)|2.
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width is consequently obtained as an incoherent sum of the widths Γ
O(n-loop)
φ→f1f2

from above and

Γ
soft,(n)

φ→∑i f1f2f0
i
, containing the real corrections, i.e

Γ
O(n-loop),phys
φ→f1f2

= Γ
O(n-loop)
φ→f1f2

+ Γ
soft,(n)

φ→∑i f1f2f0
i
. (3.26)

The superscript soft refers to the fact, that only the low-energy part of the integrals over

the phase space of the additional massless particle f0
i is to be included in Γ

soft,(n)

φ→∑i f1f2f0
i
.

Furthermore it is understood, that the real corrections have to match the order of the virtual

corrections in Γ
O(n-loop)
φ→f1f2

, which we indicate by the superscript (n). As the IR divergences

exactly cancel between Γ
soft,(n)

φ→∑i f1f2f0
i

and Γ
O(n-loop)
φ→f1f2

, the final result Γ
O(n-loop),phys
φ→f1f2

is IR finite.

3.3. Gauge Dependence and the Pinch Technique

When quantizing a gauge theory, one is faced with the difficulty of coping with unphysical
degrees of freedom. These are inherent in the formulation of a gauge theory in terms of
vector fields containing unphysical modes. The problem, which can be traced back to the
gauge invariance of the Lagrangian, becomes immediately apparent within the path-integral
formalism [58, 59]. Schematically, this formalism introduces the generating functional Z[J],
which for a gauge theory with vector fields A ≡ Aaµ(x), the corresponding sources J ≡ Jaµ(x)
and an action S{A} is given by

Z[J] =

∫
D[A]exp

(
iS{A}+ i

∫
d4xJµ,a(x)Aaµ(x)

)
, (3.27)

Here the measure D[A] = Πx,µ,adA
a
µ(x) incorporates a product over all components of the

four vector and all group elements at each space-time point x. Within the path integral for-
malism, the thus defined generating functional serves as starting point for the derivation of
Green's functions and Feynman rules. However, the functional integral in Eq. (3.27) is badly
divergent since the integration runs over a continuous infinity of physically equivalent config-
urations of A, which are related by gauge transformations. For a meaningful quantization of
a gauge theory, this redundancy has to be disposed of, such that each physical configuration
is taken into account exactly once. This can be achieved by a procedure introduced by L.
D. Faddeev and V. N. Popov [92], which is referred to as gauge fixing. By imposing a par-
ticular gauge condition, exactly one representative of all physically equivalent configurations
is singled out and the integration over the continuous infinity reduces to an overall factor,
that drops out in Green's functions and S-matrix elements. However, the invariance of the
Lagrangian under gauge transformations is explicitly broken by selecting a particular gauge
condition. Furthermore, the procedure introduces arbitrary unphysical parameters, the gauge
fixing parameters, which appear in the intermediate steps of a calculation. Nonetheless, the
final result for S-matrix elements (cf. Sec. 3.2) and hence all physical observables can be
shown to be gauge invariant and gauge independent3 [83–89].
In some cases, though, it is desirable to work with gauge-independent building blocks already
in intermediate steps of the calculation. The elementary building blocks in a perturbative ex-
pansion of the S-matrix are given by off-shell Green's functions and since these are unphysical
objects, they show, in general, an explicit dependence on the gauge fixing parameters. Yet,
there is a method, called the Pinch Technique (PT), that allows to redistribute individual
terms among the conventional Green's functions such that the resulting objects are gauge
independent. In addition they show further characteristics, usually attributed to physical

3Note, however, that an unsuitably chosen, unphysical renormalization scheme can destroy this property. More-
over, note that we carefully distinguish the two terms of gauge invariance, i.e. the invariance under gauge
transformations, and gauge independence, i.e. independence of gauge fixing parameters.
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Figure 3.4.: Diagrams contributing to the S-matrix, grouped into self-energy, triangle and box topologies.
The Mandelstam variables s, t, u are defined as s = (p1 + p2)2, t = (p1 − p3)2, u = (p1 − p4)2.

observables, e.g. they satisfy simple Ward Identities (WIs) instead of merely Slavnov-Taylor
identities (STIs), they involve no unphysical thresholds and show a well-defined high-energy
behaviour [93,94].
The basic idea of the PT in constructing gauge-independent pinched Green's functions, is to
exploit the vast cancellation of gauge dependences, taking place in the assembly of individual
building blocks to an S-matrix element. In doing so, the PT takes advantage of the observa-
tion that longitudinal momenta circulating in triangle or box diagrams (see Fig. 3.4) “pinch”
out internal fermion lines thereby generating self-energy-like terms. If these are attributed
to the conventional self-energies, both these newly constructed pinched self-energies and the
remaining triangle- and box-like structures become individually gauge independent. We will
not go into the details of the PT and restrict ourselves only to a nice illustration of the prin-
ciple. The interested reader may find more information and examples in the extensive review
on the subject in Ref. [94] or in Refs. [93,95–100].
As starting point the PT exploits the fact that the S-matrix is gauge independent. A typical
S-matrix element 〈f |S|i〉 ≡ S(s, t, {mi}) with generic initial and final states |i〉 and 〈f |, de-
pending on the Mandelstam variables s and t and a set of generic masses {mi} of the external
particles, can be decomposed according to

S(s, t, {mi}) = S1(t, ξj) + S2(t, {mi}, ξj) + S3(s, t, {mi}, ξj) (3.28)

into self-energy-like S1(t, ξj), triangle-like S2(t, {mi}, ξj) and box-like S3(s, t, {mi}, ξj) struc-
tures, which individually depend on the gauge fixing parameters ξj . The classification of the
various building blocks into the three topologies is illustrated in Fig. 3.4 and proceeds accord-
ing to their kinematical properties: self-energies depend only on the Mandelstam variable t,
triangles on t and the masses {mi} while the boxes show a dependence on all three arguments,
s, t and {mi}.
Taking the gauge independence of the S-matrix for granted, it is at hand to rearrange the
ξj-dependent pieces of S1, S2 and S3 in such a way that the reorganized sub-amplitudes
Ŝ1(t), Ŝ2(t, {mi}) and Ŝ3(s, t, {mi}) are individually independent of the gauge fixing param-
eters ξj

S(s, t, {mi}) = Ŝ1(t) + Ŝ2(t, {mi}) + Ŝ3(s, t, {mi}). (3.29)

That such a decomposition of S(s, t, {mi}) is possible, can be seen directly by differentiating
Eq. (3.28) w.r.t. ξj and s. Since S(s, t, {mi}) does not depend on ξj , the right-hand side
vanishes and as S1 and S2 do not depend on s we are left with

∂2S3(s, t, {mi}, ξj)
∂ξj∂s

= 0. (3.30)

This, however, tells us that S3 can be written as a sum of two pieces, one independent of ξj
and one independent of s

S3(s, t, {mi}, ξj) = Ŝ3(s, t, {mi}) + h3(t, {mi}, ξj). (3.31)
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The first piece is the ξj-independent sub-amplitude Ŝ3 we are looking for. The second piece
depends on the same parameters as S2 and can therefore be added to the triangle sub-
amplitude, yielding

S̃2(t, {mi}, ξj) = S2(t, {mi}, ξj) + h3(t, {mi}, ξj). (3.32)

Inserting this into S we are lead to

S(s, t, {mi}) = S1(t, ξj) + S̃2(t, {mi}, ξj) + Ŝ3(s, t, {mi}). (3.33)

We can now proceed in the same manner and differentiate Eq. (3.33) w.r.t. {mi} and ξj

∂2S̃2(t, {mi}, ξj)
∂ξj∂mj

= 0, mj ∈ {mi}, (3.34)

which again allows us to decompose S̃2 into two pieces, one independent of ξj and the other
independent of {mi}

S̃2(s, t, {mi}, ξj) = Ŝ2(t, {mi}) + h2(t, ξj). (3.35)

Finally, adding h2(t, ξj) to S1(t, ξj), the resulting function

Ŝ1(t) = S1(t, ξj) + h2(t, ξj) (3.36)

has to be independent of ξj , since S(s, t, {mi}) does not depend on the gauge fixing parame-
ters. Thus we have shown, that S(s, t, {mi}) can indeed be decomposed into three separately
gauge-independent sub-amplitudes with self-energy-, triangle- and box-like kinematic config-
urations.
The PT is a method to construct these subamplitudes Ŝ1(t), Ŝ2(t, {mi}) and Ŝ3(s, t, {mi}) in
a well-defined and unambiguous way using a Feynman diagrammatic approach.
In this thesis, we will make use of the PT in order to formulate gauge-independent self-
energies, which we will call pinched self-energies. We will come back to this in Sec. 8.5.
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CHAPTER 4

Outline of Part II

The existence of a consistent renormalization scheme is a fundamental prerequisite for any
perturbative model of elementary particle physics. Without a logically coherent and suitable
prescription of treating the divergences, higher-order predictions cannot be made or become
meaningless.
For this reason, the development of an appropriate renormalization scheme for the SM has
attracted much attention, especially during the 1980s and many authors have contributed to
the endeavour of constructing the optimal scheme, e.g. [77,78,80,101,102] to mention only a
few. Also in the case of the MSSM, an intense activity [103–105] on the subject was stimu-
lated, in particular in the course of the 1990s. For both models, the SM and the MSSM, a
variety of standard renormalization schemes have emerged, at least at one-loop order, which
are nowadays frequently applied.
In the case of 2HDMs, the efforts to establish a complete renormalization scheme are much
more scarce. We know of three dedicated studies on the subject, which, however, either do
not strive for completeness [38, 39] or are plagued with gauge dependences [40]1. On these
grounds we deem it important to approach this issue once more and to investigate it in depth.
In the development of an appropriate renormalization scheme for the 2HDM we are guided
by three major principles. First, we pursue the goal of renormalizing as many parameters as
possible in such a way, that they can be interpreted as physical quantities. For this to be the
case, the renormalized parameters must not depend on unphysical scales or parameters, e.g.
on the renormalization scale or on gauge-fixing parameters. The latter is equivalent to saying
that we aim for a renormalization scheme leading to genuinely gauge-independent expressions
for S-matrix elements and thus physical observables.
Furthermore, we strive for a process-independent scheme, i.e. a scheme leading to renormal-
ized parameters, that do not depend on a specific process. Such a process dependence is
unfavourable, as it introduces a non-universality into the renormalized parameters.
Finally, a renormalization scheme can only be regarded as reasonable, if it leads to numer-
ically stable results for physical observables and does not yield artificially huge radiative
corrections.
Since adequate renormalization schemes have been elaborated for all parameters already

1Recently, after the publication of our own results, to be presented in this thesis, the subject was addressed in
Ref. [41].
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present in the SM, we will especially focus on those parameters, that are specific to the
2HDM, viz. the angles α and β and the soft-Z2-breaking scale m12 (cf. Sec. 5.3).

For the development and examination of different renormalization schemes, we will proceed
according to following outline:
The first chapter of this part (5) serves the purpose of familiarizing the reader with the sub-
ject of 2HDMs and of setting up our notation. We will briefly touch all sectors of the 2HDM
which will be important in the subsequent chapters. Furthermore, we will specify the set
of parameters that will be considered as independent throughout this part of the thesis and
determine the physical mass eigenstates of the scalar sector.
In Ch. 6, we will enter the subject of renormalization. We will introduce counterterms for
the chosen set of independent parameters, formulate the OS renormalization conditions for
the SM parameters and summarize previous suggestions to fix the three 2HDM-specific pa-
rameters. Moreover, we will discuss subtleties arising in the case of mixing fields, which is
important for a proper renormalization of the 2HDM scalar sector. Particular emphasis will
be laid on the treatment of the tadpoles, since this subject will turn out to be crucial for all
ensuing considerations. We will propose two different tadpole schemes, which will be treated
in juxtaposition with each other during the whole course of part II.
The first of the two tadpole schemes, dubbed scheme I, will be dealt with in Ch. 7. We will
first derive expressions for the counterterms of all SM parameters within the framework of
scheme I. Afterwards we will turn to a renormalization of the angles α and β and present
the process-independent scheme proposed in Ref. [40]. As we will demonstrate, this scheme
is inherently gauge dependent which calls for an alternative renormalization procedure.
Ch. 8 will focus on the second tadpole scheme, referred to as scheme II. To highlight its
significance, we will first discuss the subject of gauge dependences in counterterms, which
are immanent in scheme I but absent in scheme II. Subsequently, we will carefully derive
the proper implementation of tadpole scheme II into the 2HDM, deduce expressions for the
OS counterterms of the SM parameters and illustrate the emergence of additional tadpole
diagrams due to parameter shifts, which have to be taken into account in scheme II. Finally,
we will demonstrate how the pinch technique can be applied in the framework of scheme II
in order to construct process- and gauge-independent angular counterterms.
Despite the preference for a process-independent scheme, pointed out above, we will investi-
gate in Ch. 9 the definition of the angular counterterms in terms of the two decay processes
H → ττ and A0 → ττ . The resulting scheme is manifestly gauge independent in both tad-
pole schemes and therefore deserves a closer examination. We will also briefly touch the MS
definition of the angles α and β.
The last 2HDM-specific parameter m12 will be treated in Ch. 10. We will present two different
renormalization schemes for this parameter: one based on MS conditions, the other depending
on the process H → A0A0. Both schemes yield gauge-independent results in tadpole scheme
I and II.
Ch. 11 provides a summary of all options of renormalizing the 2HDM parameters discussed
so far.
A complete investigation of the different schemes also requires a dedicated study of numerical
stability. For this purpose, we will choose in Ch. 12 three example processes, that will serve
us as test cases in the numerical analysis. We will first specify all utilized tools and the
input parameters entering the numerical evaluation. Afterwards, we will examine the three
example processes individually in the framework of all discussed renormalization schemes and
scrutinize their numerical stability.
Finally, in Ch. 13 we will summarize all gained insights and conclude part II with a recom-
mendation on the optimal choice for renormalizing the 2HDM.



CHAPTER 5

Introduction to the 2HDM

There are several possible realizations of 2HDMs. All of them share the property of aug-
menting the scalar sector of the SM by an additional scalar SU(2) doublet, while leaving the
remaining sectors unchanged. Different realizations can be distinguished by various discrete
symmetries their scalar and Yukawa sectors respect or violate. In this thesis, we will concen-
trate on one specific version of a 2HDM, the CP-conserving, Z2-symmetric 2HDM, which will
be introduced below and which will henceforth be referred to as the 2HDM.
For the purpose of acquainting the reader with the 2HDM and to set up our notation we will
dedicate this chapter to an introduction to the 2HDM and its various sectors. In doing so,
we will concentrate on the electroweak (EW) part and neglect the QCD component, which
remains unchanged with respect to the SM.
First, in Sec. 5.1 we will state the full EW 2HDM Lagrangian, and subsequently consider the
individual sectors separately. We start with the scalar potential in Sec. 5.2 and discuss its
parameters in more detail in Sec. 5.3. Afterwards, we briefly introduce the Yukawa sector in
Sec. 5.4 and finally touch the gauge fixing part in Sec. 5.5.

5.1. The Lagrangian of the 2HDM

The particle content of the 2HDM coincides with the one of the SM, apart from the fact that
its scalar sector comprises two complex scalar SU(2)L doublets Φ1 and Φ2, given by

Φ1 =

(
φ+

1
ρ̃1+iη1√

2

)
, Φ2 =

(
φ+

2
ρ̃2+iη2√

2

)
, (5.1)

instead of only one. Like in the SM, each of the two doublets contains a complex charged
component φ+

i as well as a neutral component, which in turn is composed of a real CP-odd
field ηi and a real CP-even field ρ̃i, i = 1, 2. Since these doublets transform trivially under
SU(3)C , the addition of the second doublet does not have any influence on the QCD-sector,
which is hence identical to the one of the SM. In the following we will therefore concentrate
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on the EW part of the 2HDM Lagrangian, denoted by LEW

LEW =
∑

ψ

iψ /Dψ − 1

4

3∑

a=1

W a
µνW

µν
a −

1

4
BµνB

µν +
∑

i=1,2

(DµΦi)
†(DµΦi) (5.2)

+ Lgf(Φ1,Φ2,W
a
µ , Bµ) + Lghost

+ LYuk(Φ1,Φ2, {ψ})− V (Φ1,Φ2).

The first line comprises the kinetic term for the fermions, where the sum runs over all species
present in the SM, the kinetic terms for the SU(2) and the U(1) gauge bosons W a

µ and
Bµ with field strength tensors W a

µν and Bµν and the kinetic term for the two scalar SU(2)
doublets. These terms are unchanged with respect to the SM, except for the last one, which
can, however, be obtained by a straight-forward extension. Since we restrict ourselves to the
electroweak part of the Lagrangian, the covariant derivative Dµ is given by

Dµ = ∂µ + i
g2

2

3∑

a=1

W a
µτa + i

g1

2
Bµ, (5.3)

where g2 and g1 denote the EW gauge couplings associated with SU(2)L and U(1)Y , respec-
tively, and τa represent the Pauli matrices.
The second line is composed of the gauge fixing Lagrangian Lgf and the corresponding La-
grangian for the unphysical Faddeev-Popov ghosts Lghost. They are a defined in an identical
manner as the analogous terms in the SM and will be detailed below in Sec. 5.5 after the
rotation to the mass basis.
Finally, the third line contains the Yukawa Lagrangian, which describes the interactions be-
tween the fermions and the scalar doublets, and the scalar potential V (Φ1,Φ2). In their most
general form, these two terms can contain all possible operators up to dimension four which
are consistent with Lorentz and gauge invariance. Often, however, additional symmetries
are imposed on the scalar potential as well as on the Yukawa Lagrangian in order to evade
experimental constraints, e.g. on CP-violation and on FCNC. This will be discussed more
thoroughly in the subsequent sections.
Having introduced the 2HDM Lagrangian, we will now discuss the individual terms appearing
in LEW separately and in in more depth.

5.2. The Scalar Potential

We start our discussion of the individual terms in LEW with its most essential part: the
scalar potential V (Φ1,Φ2). With no further symmetries other than gauge invariance as well
as renormalizability imposed, it comprises 14 independent real parameters. Three of those
can be eliminated by a basis transformation so that one is left with a total of 11 degrees of
freedom [18].
In this general form the potential of a 2HDM allows for both direct and spontaneous CP
violation and shows a very rich vacuum structure. Unlike the SM, 2HDMs can feature dif-
ferent coexisting vacua. Besides they can exhibit so-called inert vacua, where only one of
the scalars couples to gauge bosons, as well as vacua breaking the electromagnetic symmetry
U(1)em. The latter ones have to be excluded from the space of allowed vacua, since U(1)em

must remain unbroken.
Still, the variety of possible vacua remains enormous. Moreover, without any further restric-
tions, 2HDMs generically lead to FCNC, which are severely constrained by experimental data.
Due to this and since the main purpose of this part of the thesis is to discuss the issue of gauge
independence and renormalization, we will restrict ourselves to a CP-conserving 2HDM and
in addition impose a Z2-symmetry on the scalar potential. This Z2-symmetry, if extended to
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the Yukawa sector, prevents the occurrence of FCNC. A thorough overview of more general
realizations of a 2HDM allowing for FCNC and CP-violation, which is an interesting topic
by itself, can be found in [18].
With the foregoing additional constraints, the most general scalar potential is given by
[18,40,106]

V (Φ1,Φ2) =m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −m2
12(Φ†1Φ2 + Φ†2Φ1) (5.4)

+
λ1

2
(Φ†1Φ1)2 +

λ2

2
(Φ†2Φ2)2 + λ3Φ†1Φ1Φ†2Φ2 + λ4Φ†1Φ2Φ†2Φ1

+
λ5

2
((Φ†1Φ2)2 + (Φ†2Φ1)2).

It contains eight real parameters, three of which, m11, m22 and m12, have the dimension
of a mass, whereas λ1 − λ5 are dimensionless. Strictly speaking, the parameter m12 softly
breaks the Z2-symmetry. However, it does not lead to FCNCs at tree level and generates
finite Higgs-mediated FCNCs starting only from one-loop order on. Furthermore, it is of
phenomenological relevance, wherefore it is usually kept in the Z2-symmetric potential. We
will henceforth refer to the CP-conserving 2HDM with softly broken Z2-symmetry as the
2HDM.

The exact form of the potential is crucial for the 2HDM vacuum structure since the following
minimum conditions have to be fulfilled

∂V (Φ1,Φ2)

∂Φ1

∣∣∣∣
Φ1=〈Φ1〉,Φ2=〈Φ2〉

= 0 =
∂V (Φ1,Φ2)

∂Φ2

∣∣∣∣
Φ1=〈Φ1〉,Φ2=〈Φ2〉

, (5.5)

for a certain field configuration to be the correct vacuum state. Here we have introduced the
vevs 〈Φi〉 of the two doublets. With our choice of the scalar potential to respect CP-invariance
and requiring charge conservation, the vevs can be parametrized as

〈Φ1〉 =

(
0
v1√

2

)
, 〈Φ2〉 =

(
0
v2√

2

)
. (5.6)

This allows us to expand the doublets, spelled out in Eq. (5.1), around their vevs, which
yields

Φ1 =

(
φ+

1
ρ1+iη1+v1√

2

)
, Φ2 =

(
φ+

2
ρ2+iη2+v2√

2

)
. (5.7)

Plugging in this representation into the minimization equations Eq. (5.5) leads to the tadpole
conditions, which have to be fulfilled by the vevs and the parameters of the potential

T 0
1 ≡ −m2

12v2 +m2
11v1 +

1

2
λ1v

3
1 +

1

2
λ345v1v

2
2 = 0, (5.8)

T 0
2 ≡ −m2

12v1 +m2
22v2 +

1

2
λ2v

3
2 +

1

2
λ345v

2
1v2 = 0. (5.9)

Here we have introduced the abbreviation λ345 = λ3 + λ4 + λ5. Furthermore we have defined
the tadpole parameters T 0

1 and T 0
2 , which are bound to vanish at tree level. Since they will

play an important role in the renormalization process, we still have to keep them explicit in
all relations and set them to zero only after the introduction of counterterms. Defining the
matrix

T 0
ϕ ≡

(
T 0

1
v1

0

0
T 0

2
v2

)
(5.10)
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we can cast the potential into the following form [38]

V =
(
φ−1 φ−2

)
Mφ+

(
φ+

1

φ+
2

)
+

1

2

(
η1 η2

)
Mη

(
η1

η2

)
+

1

2

(
ρ1 ρ2

)
Mρ

(
ρ1

ρ2

)
(5.11)

+
(
φ−1 φ−2

)
T 0
ϕ

(
φ+

1

φ+
2

)
+

1

2

(
η1 η2

)
T 0
ϕ

(
η1

η2

)
+

1

2

(
ρ1 ρ2

)
T 0
ϕ

(
ρ1

ρ2

)

+ T 0
1 ρ1 + T 0

2 ρ2 + trilinear and quadrilinear terms.

In this representation we have grouped the particles of identical quantum numbers into vectors
and identified the terms bilinear in the fields with the tree-level mass matricesMφ± ,Mη and
Mρ for the charged, CP-odd and CP-even scalars in the gauge basis. Note that in defining
the mass matrices we have separated tadpole terms, summarized in the matrix T 0

ϕ. Hence, the
mass matrices are defined without tadpole contributions. As a consequence, three equivalent
bilinear tadpole terms appear, one for each of the pairs of particles of identical quantum
numbers. Explicitly, the mass matrices derived from Eq. (5.4) are given by

Mφ± =
(
m2

12 −
1

2
(λ4 + λ5)v1v2

)( v2
v1
−1

−1 v1
v2

)
, (5.12)

Mη = (m2
12 − λ5v1v2)

( v2
v1
−1

−1 v1
v2

)
, (5.13)

Mρ =

(
m2

12
v2
v1

+ λ1v
2
1 −m2

12 + λ345v1v2

−m2
12 + λ345v1v2 m2

12
v1
v2

+ λ2v
2
2

)
. (5.14)

The transformation from the gauge eigenstates φ±i , ηi and ρi to the physical mass eigenstates
is performed with the help of orthogonal matrices

R(θ) =

(
cθ −sθ
sθ cθ

)
, (5.15)

which diagonalize the mass matrices. Here the short-hand notation cθ = cos(θ) and sθ = sin(θ)
has been applied and θ stands for a generic mixing angle. It is obvious from the expressions
in Eqs. 5.12 and 5.13 that the charged and the CP-odd mass matrices are diagonalized by
the same mixing angle, which is conventionally called β. The mixing angle of the CP-even
scalars is usually denoted as α. By virtue of this definition, we have

R(β)TMφ±R(β) =

(
0 0
0 m2

H±

)
≡ Dφ± , (5.16)

R(β)TMηR(β) =

(
0 0
0 m2

A0

)
≡ Dη, (5.17)

R(α)TMρR(α) =

(
m2
H 0

0 m2
h

)
≡ Dρ. (5.18)

The eigenvalues appearing here are to be identified with the masses of the corresponding mass
eigenstates

Sφ± ≡
(
G±

H±

)
= RT(β)

(
φ±1
φ±2

)
, (5.19)

Sη ≡
(
G0

A0

)
= RT(β)

(
η1

η2

)
, (5.20)

Sρ ≡
(
H
h

)
= RT(α)

(
ρ1

ρ2

)
. (5.21)
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As required by the Higgs mechanism, the mass eigenstates comprise the three would-be
Goldstone bosons G0, G+ and G−, which provide the three longitudinal degrees of freedom
for the Z, W+ and W− bosons. The five remaining fields combine to form five physical Higgs
bosons: two CP-even scalars, h and H, where h is defined as being the lighter of both, one
CP-odd field A0 and two charged ones, H+ and H−.
Later it will prove beneficial to also transfer the tadpole parameters T 0

1 and T 0
2 to the mass

basis
(
T 0
H

T 0
h

)
= R(α)T

(
T 0

1

T 0
2

)
. (5.22)

Furthermore, after the rotation to the mass basis, the bilinear tadpole terms of Eq. (5.11)
read

V ⊃
(
G− H−

)(T 0
G+G+ T 0

G+H+

T 0
H+G+ T 0

H+H+

)(
G+

H+

)
+

1

2

(
G0 A0

)(T 0
G0G0

T 0
G0A0

T 0
A0G0

T 0
A0A0

)(
G0

A0

)
(5.23)

+
1

2

(
H h

)(T 0
HH T 0

Hh

T 0
hH T 0

hh

)(
H
h

)
,

with
(
T 0
G+G+ T 0

G+H+

T 0
H+G+ T 0

H+H+

)
=

(
T 0
G0G0

T 0
G0A0

T 0
A0G0

T 0
A0A0

)
= RT(β)T 0

ϕR(β), (5.24)

(5.25)
(
T 0
HH T 0

Hh

T 0
hH T 0

hh

)
= RT(α)T 0

ϕR(α).

5.3. Independent Parameters of the Scalar Potential

In its original form, given in Eq. (5.4), the scalar potential of the 2HDM incorporates the
eight real parameters m2

11, m2
22, m2

12 and λ1 − λ5 and the two vevs v1 and v2. Using the
tadpole equations Eqs. 5.8 and 5.9 two of these, m2

11 and m2
22, can be traded for the tadpole

parameters T 0
1 and T 0

2 .
Yet, often it is more convenient to use another set of parameters, the elements of which can
more directly be related to physical observables. Furthermore it turns out that in defining
this new set of independent parameters, it is sensible to treat the gauge sector and the scalar
sector simultaneously. This is due to the fact that the masses of the gauge bosons

M2
W =

g2
2(v2

1 + v2
2)

4
=
g2

2v
2

4
, (5.26)

M2
Z =

(g2
1 + g2

2)(v2
1 + v2

2)

4
=
M2
W

c2
W

, (5.27)

the electric charge

e = g2sW (5.28)

and the vev

v =
√
v2

1 + v2
2 (5.29)
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cannot at the same time be treated as independent parameters. Here sW and cW denote the
sine and cosine of the Weinberg angle θW , defined as

cW ≡ cos(θW ) =
MW

MZ
. (5.30)

Including the two gauge couplings g2 and g1, the set of independent parameters in the original
basis, denoted as set 1, is given by

set 1 =
{
T 0

1 , T
0
2 , m

2
12, λ1, λ2, λ3, λ4, λ5, v1, v2, g1, g2

}
. (5.31)

An obvious choice for the parameters of the new set are the masses of the physical Higgs bosons
and of the gauge bosons as well as the electric charge. All of these are physical observables.
For reasons which will become clear in Sec. 6, where renormalization is discussed, it is also
advantageous to choose the tadpole parameters T 0

H and T 0
h in the mass basis as elements

of the new set. Furthermore we can pick the two rotation angles α and β as independent
parameters. As last parameter we choose m2

12. With this choice the new set of parameters,
set 2, is given by

set 2 =
{
T 0
H , T

0
h , m

2
12, M

2
H , M

2
h , M

2
A0
, M2

H± , M
2
W , M

2
Z , e, α, β

}
. (5.32)

The relations between the parameters of the two sets can directly be deduced from the
potential and the definitions in Eqs. 5.16 - 5.18. For λ1 − λ5 we find the relations [106]

λ1 =
1

v2c2
β

(
s2
αm

2
h + c2

αm
2
H − tβm2

12

)
, (5.33)

λ2 =
1

v2s2
β

(
c2
αm

2
h + s2

αm
2
H −

m2
12

tβ

)
, (5.34)

λ3 =2
m2
H±

v2
+

1

v2

s2α

s2β
(m2

H −m2
h)− 2m2

12

v2s2β
, (5.35)

λ4 =
m2
A0
− 2m2

H±

v2
+

2m2
12

v2s2β
, (5.36)

λ5 =−
m2
A0

v2
+

2m2
12

v2s2β
, (5.37)

where we introduce the notation tβ = tanβ. Likewise, the angles α and β can be expressed
in terms of set 1 parameters as

tan(β) =
v2

v1
, (5.38)

tan(2α) =
s2β

(
λ345v

2s2β − 2m2
12

)

c2
β

(
λ1v2s2β − 2m2

12

)
− s2

β

(
λ2v2s2β − 2m2

12

) . (5.39)

5.4. The Yukawa Sector

The most general Yukawa Lagrangian LYuk for a 2HDM is given by [107,108]

LYuk =−
(
QL(YD1 Φ1 + YD2 Φ2)DR +QL(YU1 Φ1 + YU2 Φ2)UR

+LL(YE1 Φ1 + YE2 Φ2)ER
)

+ h.c. (5.40)

In the compact notation chosen here, the Yukawa couplings YJi , J ∈ {D,U,E}, are complex
3 × 3 matrices in flavor space. Furthermore, the left-handed fermions have been grouped
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into SU(2)L doublets, which are at the same time triplets in flavor space. For the example
of the left-handed quark fields, summarized in QL, this amounts to (QL)i = (uL,i, dL,i)

T,
where i ∈ {1, 2, 3} denotes the generation, with the identification {u1, u2, u3} = {u, d, t} and
{d1, d2, d3} = {d, s, b}. Analogous definitions are made for the leptons. The right-handed
components are singlets under SU(2) and triplets in flavor space. We have also introduced
the conjugate scalar doublets, defined as

(
Φ1/2

)
i

= εji
(
Φ1/2

)∗
j
, where εij represents the totally

anti-symmetric tensor in two dimensions.
Expanding the two scalar doublets around their vevs (cf. Eq. (5.7)) gives rise to an interaction
term between two fermions and one scalar and a mass term for the fermions. Generically, the
thus generated mass matrix for the fermions of type J ∈ {D,U,E} has the following form

MJ =
(
YJ1
) v1√

2
+
(
YJ2
) v2√

2
. (5.41)

From this expression one can directly see that a diagonalization of the mass matrix does
not in general also lead to a diagonalization of the interaction terms, since the two Yukawa
matrices Y1 and Y2 need not be simultaneously diagonalizable. This leads to the occurrence
of FCNC. Due to the fact that there are severe constraints on FCNC from experiment, their
appearance has to be prohibited by the introduction of suitable discrete symmetries or at
least be strongly suppressed.
An obvious possibility to avoid FCNC is to allow all fermions with identical quantum numbers
to couple only to one of the two doublets. For the quark sector, there are essentially two
options to accomplish this: In the 2HDM of type I, all quarks couple to the same doublet,
chosen to be Φ2 by convention. This is guaranteed by imposing a Z2 symmetry on the
Lagrangian, demanding invariance under Φ1 → −Φ1. By contrast, in the 2HDM of type II,
the up-type quarks couple to Φ2, whereas the down-type quarks couple to Φ1. This, in turn,
is a consequence of an invariance under Φ1 → −Φ1, dR,i → −dR,i.1
For both types of models, the leptons are assumed to couple to the same doublet as the down-
type quarks. However, there is no theoretical argument against a different assignment of the
lepton couplings. Starting from the type I 2HDM but coupling the leptons to Φ2 instead of Φ1

leads to the lepton-specific (LS) model. The fourth possibility, taking the quark couplings of
the type II but coupling the leptons to Φ1, yields the flipped (F) model. Like for the quarks,
the couplings of the leptons can be enforced by imposing the corresponding Z2 symmetry on
the Lagrangian [18].

5.5. The Gauge Fixing and the Ghost Sector

As explained in Sec. 3.3, the unphysical degrees of freedom inherent in the gauge field four-
vectors force us to impose a gauge condition if we want to quantize a gauge theory. This can
be achieved in a consistent manner by a procedure called gauge fixing, which is due to L.D.
Faddeev and V.N. Popov [92] .
During the course of this procedure, additional terms are introduced into the Lagrangian,
the gauge-fixing and the ghost Lagrangian, Lgf and Lghost. Their exact form depends on the
gauge condition imposed on the theory. In this thesis, we will adhere to a class of gauges
called the linear Rξ gauges, which has proven to be convenient for higher-order calculations
and is frequently used. For the sake of completeness, we briefly state the resulting terms,
without giving a detailed derivation. Details can be found in any textbook on QFT and gauge

1Note that the Higgs sector of the MSSM constitutes a type II 2HDM.
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theories, e.g. in Refs. [58,59,109]. Following the notation used in [77], we define

Fγ =
1√
ξA

(∂µA
µ) , (5.42)

FZ =
1√
ξZ

(∂µZ
µ − ξZMZG0) , (5.43)

F± =
1√
ξW

(
∂µW

±µ ∓ iξWMWG
±) , (5.44)

which allows us to write down a compact expression for Lgf [38,77]

Lgf = −1

2

[
(Fγ)2 + (FZ)2 + 2F+F−

]
. (5.45)

The parameters ξA, ξZ and ξW appearing here are the so-called gauge fixing parameters.
They are unphysical, wherefore a physical quantity must not depend on them.
Apart from these gauge-fixing terms, the Faddeev-Popov procedure gives rise to terms con-
taining ghost fields. As anti-commuting scalar fields, these ghosts violate the spin-statistics
theorem and hence have to be considered as unphysical degrees of freedom, which can only
appear inside loops but never as external particles. According to the prescription by Faddeev
and Popov, the corresponding term in the Lagrangian, Lghost, can be derived as [77]

Lghost = uj(x)
δF j
δϑβ(x)

uβ(x), j = {γ, Z,±}. (5.46)

Here uj , uj represent the Faddeev-Popov ghosts and δFj
δϑβ(x)

stands for the variation of F j
under an infinitesimal gauge transformation with parameter ϑ(x).
It should be noted, that there are other possibilities to perform the gauge-fixing, leading to
different forms of the gauge-fixing and ghost terms [110,111]. However, for our purposes the
linear gauge-fixing proposed here is sufficient and convenient.

With this, we conclude our discussion of the individual terms in Lew. In the subsequent
chapter, we enter the central subject of this part of the thesis: the development of a gauge-
independent renormalization scheme for the 2HDM.



CHAPTER 6

General Remarks on the Renormalization of the 2HDM

In the current chapter, we will set the scene for the endeavour of developing a consistent,
suitable renormalization scheme for the 2HDM. We will introduce all necessary counterterms
and discuss renormalization conditions to fix them on a general footing. Furthermore, we will
detail certain subtleties and important issues, which arise in the renormalization procedure.
First, in Sec. 6.1, we will discuss different approaches to the renormalization of mixing fields
and specify the choice we will adhere to throughout part II. Afterwards, in 6.2, we will intro-
duce all counterterms required for our purposes in a very generic manner. In doing so, we will
dedicate a distinct section (Sec. 6.3) to the subject of tadpole (non-)renormalization. Two
tadpole schemes will be presented: The first approach, dubbed scheme I, introduces tadpole
counterterms to cancel all higher-order tadpole contributions, order by order in perturbation
theory. In contrast, the second approach, scheme II, will get along without tadpole countert-
erms and instead rely on shifts in the vevs. Since the effect of the tadpole treatment on the
renormalization program and on issues of gauge dependence will turn out crucial, the two
schemes will be treated separately throughout the rest of Part II.
The subsequent sections will consider OS renormalization conditions for the scalar sector of
the 2HDM (Sec. 6.4) as well as for the gauge and fermion sector ( Sec. 6.5).
We will then canvass the subject of mixing angle renormalization in Sec. 6.6, where we sum-
marize different possibilities and give an overview over previous research on the topic. Finally,
in Sec. 6.7 we will briefly discuss viable renormalization conditions for the last parameter to
be renormalized, m2

12.

6.1. Renormalization of Mixing Fields

Whenever a model contains fields with identical quantum numbers, the renormalization pro-
cedure is complicated by the fact that the mixing between these has to be taken into account.
The scalar sector of the 2HDM contains three pairs of particles with identical quantum num-
bers. As shown in the previous chapter, a diagonalization of the corresponding mass matrices
leads to the correct tree-level mass eigenstates, which do not mix and therefore exhibit a
diagonal propagator in the lowest order of perturbation theory. However, in higher orders
quantum corrections reintroduce a mixing between the members of each of the pairs. Con-
sequently, the renormalization procedure has to account for this mixing, which calls for the
introduction of matrix valued mass counterterms and WFRCs. All counterterms and WFRCs
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appearing in this section are understood to be of one-loop order. For convenience, however,
we consistently omit the superscript (1).
There are several different possibilities to introduce these counterterms, which can be dis-
criminated by the number of independent parameters they impose and by the definition of
the rotation matrices R(θ) (θ = α, β).
Especially the latter point is a potential source of confusion since different authors use differ-
ent definitions of the rotation matrix R(θ). The first option is to define R(θ) as the matrix
which diagonalizes the bare tree-level mass matrix Mb

RT(θb)MbR(θb) = Db
⇒ RT(θb)(Mr + δM)R(θb) = Dr + δD. (6.1)

Here and in the following M, D and R(θ) generically stand for one of the three mass and
rotation matrices introduced in Eqs. 5.16 - 5.18. In order not to overload the notation, we
will consistently omit the indices specifying the respective pair of scalars and leave the angle
θ implicit.
Alternatively, R(θ) can be defined to diagonalize the renormalized tree-level mass matrixMr

RT(θr)MrR(θr) = Dr
⇒RT(θr)MbR(θr) = RT(θr)(Mr + δM)R(θr) (6.2)

= Dr +RT(θr)δMR(θr).

These two approaches differ in two important consequences: First, the approach in Eq. (6.1)
does not lead to off-diagonal mass counterterms as the matrix δD is diagonal by definition.
In contrast to that, the term RT(θr)δMR(θr) in Eq. (6.2) is not diagonal in general. The
second difference concerns the rotation angles: The angle θb in Eq. (6.1) is to be regarded as
the bare rotation angle, which as a consequence has to receive a counterterm. As opposed
to that, θr in Eq. (6.2) is defined entirely in terms of renormalized parameters and therefore
is to be considered as renormalized quantity, which does not receive a counterterm. Both
schemes have been applied to the 2HDM in the literature. Examples for the first approach
can be found in [38,40,112], whereas the second scheme was used in [39].
In the second approach one has to carefully distinguish between the rotation angles αrot and
βrot, entering the Lagrangian and the Feynman rules via the rotation matrices that diago-
nalize the CP-even or the CP-odd and the charged scalar mass matrices, and the parametric
angles αp and βp, entering via the relations Eqs. 5.38 and 5.39. Since the latter are part
of the set of independent parameters we chose, they always have to receive a counterterm.
However, the first ones are not renormalized, if we proceed according to Eq. (6.2). Due to
this complication, we will work with the first definition of R(θ) in the following, i.e. we will
introduce counterterms for the rotation matrices and treat the parametric and the rotation
angles on an equal footing. We will hence not distinguish between αrot, βrot and αp, βp,
except in a few exceptional cases.

Next we turn to the subject of field renormalization. Various options are available for the
introduction of WFRCs, differing in the numbers of independent parameters. The minimal
choice is to introduce two independent parameters, one for each doublet

Φi → Z
1/2
Φi

Φi, i = 1, 2, (6.3)

leading to the following matrices of WFRCs
(
ϕ1

ϕ2

)

b

= Z
1/2
ϕ

(
ϕ1

ϕ2

)

r

≡
(
Z

1/2
Φ1

0

0 Z
1/2
Φ2

)(
ϕ1

ϕ2

)

r

(6.4)

=

(
1 + 1

2δZΦ1 0
0 1 + 1

2δZΦ2

)(
ϕ1

ϕ2

)

r

,
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where ϕi = φ±i , ρi, ηi. Here Z
1/2
ϕ is defined as the matrix of WFRCs for the pair of scalars

under consideration in the gauge basis. Due to gauge invariance, this choice is sufficient in
order to render all Green's functions of the theory finite [113]. However, it is not possible to
define a complete OS scheme, where all scalars obey the conditions to be defined below in
section 6.1. As a consequence, this minimal scheme requires the introduction of finite wave
function correction factors when processes with external scalars are considered [46,91,114].
To circumvent the necessity of such factors, one can directly start from a non-minimal set of
WFRCs. The most general possibility is to introduce four independent constants for each of
the three pairs of particles

(
ϕ1

ϕ2

)

b

= Z
1/2
ϕ

(
ϕ1

ϕ2

)

r

=

(
Z

1/2
ϕ1ϕ1 Z

1/2
ϕ1ϕ2

Z
1/2
ϕ2ϕ1 Z

1/2
ϕ2ϕ2

)(
ϕ1

ϕ2

)

r

(6.5)

=

(
1 + 1

2δZϕ1ϕ1
1
2δZϕ1ϕ2

1
2δZϕ2ϕ1 1 + 1

2δZϕ2ϕ2

)(
ϕ1

ϕ2

)

r

.

While the introduction of the WFRCs is often presented in the gauge basis, actual calculations

are most conveniently performed in the mass basis. The transformation of the matrices Z
1/2
ϕ

to the mass basis, necessary for this purpose, is accomplished with the rotation matrix R(θ).
Again, attention has to be paid to the proper definition of R(θ). R(θb) from Eq. (6.1)
diagonalizes the bare mass matrix and thus connects the bare gauge eigenstates with the bare
mass eigenstates. On the contrary, R(θr) from Eq. (6.2) transforms the renormalized gauge
eigenstates to the renormalized mass eigenstates. If R(θ) is defined in the second way, i.e. as
the matrix that diagonalizes the renormalized tree-level mass matrix, the relation between

Z
1/2
ϕ in the gauge basis and its counterpart Z

1/2
S in the mass basis is simply

Z
1/2
S = RT(θr)Z

1/2
ϕ R(θr). (6.6)

This can directly be derived from the corresponding mass term in the Lagrangian

L ⊃
(
ϕ1

ϕ2

)†

b

Mb

(
ϕ1

ϕ2

)

b

(6.7)

=

(
ϕ1

ϕ2

)†

r

Z
1/2†
ϕ (Mr + δM)Z

1/2
ϕ

(
ϕ1

ϕ2

)

r

=

(
ϕ1

ϕ2

)†

r

R(θr)R
T(θr)Z

1/2†
ϕ R(θr)R

T(θr)(Mr + δM)R(θr)R
T(θr)Z

1/2
ϕ R(θr)R

T(θr)

(
ϕ1

ϕ2

)

r

=

(
S1

S2

)†

r

RT(θr)Z
1/2†
ϕ R(θr)︸ ︷︷ ︸

Z
1/2†
S

(Dr +RT(θr)δMR(θr))R
T(θr)Z

1/2
ϕ R(θr)︸ ︷︷ ︸

Z
1/2
S

(
S1

S2

)

r

,

where we have used the relation (S1, S2)Tr = RT(θr)(ϕ1, ϕ2)Tr , with

(S1, S2) ∈ {(H,h), (G0, A0), (G±, H±)}.

Z
1/2
S is to be understood as the matrix corresponding to the pair of particles under consider-

ation.
If, on the other hand, R(θ) is defined according to Eq. (6.1), more care has to be taken to

arrive at the correct definition of Z
1/2
S . Starting again from the mass term in the Lagrangian,
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we find

L ⊃
(
ϕ1

ϕ2

)†

b

Mb

(
ϕ1

ϕ2

)

b

(6.8)

=

(
ϕ1

ϕ2

)†

b

R(θb)R
T(θb)MbR(θb)R

T(θb)

(
ϕ1

ϕ2

)

b

=

(
S1

S2

)†

b

(Db)
(
S1

S2

)

b

=

(
S1

S2

)†

r

Z
1/2†
S (Dr + δD)Z

1/2
S

(
S1

S2

)

r

.

The matrix Z
1/2
S can now be connected to Z

1/2
ϕ in the gauge basis as follows

Z
1/2
S

(
S1

S2

)

r

=

(
S1

S2

)

b

= RT(θb)

(
ϕ1

ϕ2

)

b

= RT(θb)Z
1/2
ϕ

(
ϕ1

ϕ2

)

r

(6.9)

= RT(θb)Z
1/2
ϕ R(θr)R

T(θr)

(
ϕ1

ϕ2

)

r

= RT(θb)Z
1/2
ϕ R(θr)

(
S1

S2

)

r

.

From this, the relation between Z
1/2
S and Z

1/2
ϕ can directly be read off

Z
1/2
S = RT(θb)Z

1/2
ϕ R(θr) = RT(θr + δθ)Z

1/2
ϕ R(θr) = RT(δθ)RT(θr)Z

1/2
ϕ R(θr), (6.10)

where the last equality follows directly from the angle sum identities for sine and cosine. Note
in particular, that with this definition of RT(θ), the angular counterterms find their way into
the WFRCs. This fact has to be considered explicitly, if the WFRCs are not introduced in
their most general form. If, however, the WFRCs in the gauge basis comprise four independent
elements, this relation is no longer crucial, since in this case the four independent constants
can be adjusted to fulfill any renormalization condition, independent of angular counterterms.

In the subsequent chapters, we will omit the indices r and b and state them explicitly only,
where necessary. Whether a quantity is bare or renormalized should be clear from the context.
Furthermore, we will throughout use a rotation matrix RT(θ) defined according to Eq. (6.1)
and hence WFRCs in the sense of Eq. (6.10). In most cases, the entrance of the angular
counterterms into the WFRCs will not be relevant, since we assume them to comprise four
independent elements in the gauge basis. However, in Sec. 7.4 we drop this assumption and
make use of the relation in Eq. (6.10), in order to derive expressions for δα and δβ.

6.2. Introduction of Counterterms

Following the procedure sketched in Sec. 3.1.2 in order to renormalize the 2HDM, we have
to introduce counterterms for all parameters of the set chosen in Eq. (5.32) as well as wave
function renormalization constants for the fields of the model. Again, all counterterms and
WFRCs introduced in this section are to be understood as being of one-loop order.
For the gauge sector, this prescription leads to the following set of counterterms

M2
W →M2

W + δM2
W , (6.11)

M2
Z →M2

Z + δM2
Z , (6.12)

e→ (1 + δZe)e (6.13)
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and wave function renormalization constants

W± →
(

1 +
1

2
δZW

)
W± (6.14)

(
Z
γ

)
→
(

1 + 1
2δZZZ

1
2δZZγ

1
2δZγZ 1 + 1

2δZγγ

)(
Z
γ

)
. (6.15)

For convenience we also introduce the abbreviation

δg2 = δ

(
e

sW

)
=

(
δZe +

1

2

1

M2
Z −M2

W

(δM2
W − c2

W δM
2
Z)

)
, (6.16)

for the counterterm of the gauge coupling g2, which is a dependent parameter in our scheme.
In the Higgs sector our choice of the set of independent parameters gives rise to the subsequent
renormalization constants

m2
h → m2

h + δm2
h, (6.17)

m2
H → m2

H + δm2
H , (6.18)

m2
A0
→ m2

A0
+ δm2

A0
, (6.19)

m2
H± → m2

H± + δm2
H± , (6.20)

α→ α+ δα, (6.21)

β → β + δβ, (6.22)

m2
12 → m2

12 + δm2
12. (6.23)

As outlined in the previous section, we have to introduce matrix valued WFRCs for the scalar
fields, which acquire the following form in the mass basis

(
H
h

)
→
(

1 + 1
2δZHH

1
2δZHh

1
2δZhH 1 + 1

2δZhh

)(
H
h

)
, (6.24)

(
G0

A0

)
→
(

1 + 1
2δZG0G0

1
2δZG0A0

1
2δZA0G0 1 + 1

2δZA0A0

)(
G0

A0

)
, (6.25)

(
G±

H±

)
→
(

1 + 1
2δZG±G±

1
2δZG±H±

1
2δZH±G± 1 + 1

2δZH±H±

)(
G±

H±

)
. (6.26)

A complete renormalization of the 2HDM would, of course, also require the introduction of
counterterms for the strong and the Yukawa sector. However, since these counterterms will
not enter our calculation in the following, we refrain from introducing them here. They are
identical to the ones of the SM and therefore can directly be taken over from e.g. Ref. [77].
The only renormalization constants of the fermion sector, that will be needed below, are the
mass counterterms and WFRCs for the τ lepton, which we introduce as

mτ → mτ + δmτ , (6.27)

ΨL
τ →

(
1 +

δZLτ
2

)
ΨL
τ , ΨR

τ →
(

1 +
δZRτ

2

)
ΨR
τ , (6.28)

L and R denoting the left- and the right-handed components of the spinor Ψτ .
Finally, also the tadpole parameters T 0

1 and T 0
2 introduced in Sec. 5.1 can be assigned coun-

terterms, which are supposed to cancel the higher-order tadpole contributions. Yet, the
introduction of such counterterms is not obligatory and in fact we will find that it can some-
times be advisable not to renormalize the tadpole parameters. Due to the importance of this
point, different possibilities of treating tadpoles will be covered separately in the next section.
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6.3. Treatment of the Tadpoles

Radiative corrections give rise to additional contributions linear in the Higgs fields, which are
diagrammatically represented by tadpole diagrams. Since these tadpole contributions violate
the minimum conditions Eqs. 5.8 and 5.9 in higher orders, they have to be cancelled by the
introduction of appropriate counterterms or shifts.
There are essentially two possibilities to treat the tadpole contributions [115, 116]. We will
study both possibilities and their implications for the renormalization program in detail in
Secs. 7 and 8.
The first possibility, which we call tadpole scheme I, is to introduce counterterms for the
tadpole parameters

T 0
1 → T 0

1 + δT1 = 0 + δT1, (6.29)

T 0
2 → T 0

2 + δT2 = 0 + δT2 (6.30)

and to require these to cancel the tadpole diagrams, order by order in the perturbative
expansion. To one-loop order the corresponding renormalization conditions can pictorially be

iT (1)
i

+

−iδ(1)Ti

= 0

Figure 6.1.: Pictorial representation of the tadpole conditions in scheme I. The empty circle stands for generic
one-loop contributions to the tadpole, while the crossed circle denotes the tadpole counterterm with i = 1, 2.

represented as shown in Fig. 6.1, leading to the following definition of the tadpole counter-
terms

δ(1)Ti = T
(1)
i , i=1,2. (6.31)

The clear advantage of this procedure, which is advocated e.g. in Refs. [58, 59, 77, 80], is the
fact that all tadpole diagrams are cancelled by their respective counterterm and therefore
need not be taken into account. Yet there is a price to be paid for this simplification of
the calculation: By the introduction of the tadpole counterterms, part of the gauge depen-
dence, formerly absorbed by the tadpole diagrams, is shifted into counterterms for physical
parameters, like masses and mixing angles. As a result, these previously gauge-independent
counterterms obtain an explicit dependence on the gauge fixing parameters. It is, however,
important to note that this does not automatically imply a gauge dependence of the physical
parameters themselves. For instance the pole mass, i.e. the location of the (complex) pole
of the propagator of a physical particle, remains a gauge-independent quantity, even though
the corresponding mass counterterm might explicitly depend on the gauge fixing parameters.
This is shown and discussed by Gambino et al. in Ref. [88] and we will come back to this
point in Sec. 8.1.
The second possibility, applied to the SM e.g. in Refs. [97, 101, 102, 117, 118], is not to in-
troduce counterterms for the tadpole parameters but rather cancel the tadpole diagrams by
shifts in the vevs vi. We will refer to this scheme as tadpole scheme II. Instead of the con-
ditions shown in Fig. 6.1, one now has to demand a cancellation of the shifted “tree-level”

tadpoles T 0
i (v

(0)
j + ∆vj), i, j ∈ 1, 2, (i.e. the coefficient of the Lagrangian terms linear in the

scalar fields, evaluated at the shifted vevs v
(0)
j +∆vj , v

(0)
j denoting the tree-level vev) and the
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iT (1)
i

+

−iT 0
i (v

(0)
j + ∆(1)vj)

= 0

Figure 6.2.: Pictorial representation of the tadpole conditions in scheme II. The empty circle stands for generic
one-loop contributions to the tadpole, while the cross denotes the shifted “tree-level” tadpole T 0

i , i=1,2.

tadpole diagrams up to the desired loop-order. At one-loop level for example, the equation
illustrated in Fig. 6.2 has to be fulfilled. As a consequence of this condition, the vevs receive

a shift ∆v
(n+1)
i when going from the nth to the n+ 1st loop level

v
(n+1)
i = v

(n)
i + ∆v

(n+1)
i . (6.32)

Expressed in terms of the tree-level vev v
(0)
i , we find for v

(n+1)
i

v
(n+1)
i = v

(0)
i +

n+1∑

j=1

∆v
(j)
i ≡ v

(0)
i + ∆(n+1)vi. (6.33)

This shift per definition guarantees a cancellation of the (shifted) tree-level and the higher-
order tadpoles. Hence, at first sight one might erroneously conclude that, due to this cancel-
lation, also in scheme II no tadpole diagrams have to be taken into account. However, when
equation Eq. (6.32) is inserted into the Feynman rules for vertices with scalars and into the

relations between the particle masses and the vevs, the shifts ∆v
(n)
i “restore” these tadpole

diagrams. That is they lead to additional higher-order terms both in the Feynman rules and
in the expressions for the masses, which exactly correspond to the cancelled tadpole diagrams.
As a consequence, tadpoles have to be attached to every vertex, where this is possible (i.e.
allowed by the Feynman rules). Note that this “reappearance” of the tadpoles is a result of

the fact, that we keep expanding around the tree-level vevs v
(0)
i in tadpole scheme II. For

the SM this scheme has been worked out in detail in Ref. [102]. In Ch. 8 we will derive the
same for the more general case of the 2HDM and study its implications. Since we will only
consider corrections of one-loop order, we will omit all indices in the following. vi is always
to be understood as the tree-level vev, while ∆vi will henceforth denote the shift of one-loop
order.1

Yet, we will start our investigation of the different renormalization schemes for the 2HDM
within the framework of tadpole scheme I, i.e. work with tadpole counterterms introduced
according to Eqs. 6.29 and 6.30. As we have seen in Sec. 5.2, tadpole terms also appear in
the bilinear parts of the scalar potential. In scheme I, these will also receive counterterms

(
T 0

1
v1

0

0
T 0

2
v2

)
→
(
δT1
v1

0

0 δT2
v2

)
≡ δTϕ. (6.34)

1Note that the shifts ∆vi are UV-divergent. In order to distinguish them from ordinary counterterms we will,
however, denote them with capital ∆ instead of small δ. Furthermore, note that tadpole scheme II is in practice
equivalent to not introducing any tadpole counterterms or vev shifts at all and simply taking into account all
tadpole diagrams. This will become apparent in sections 8.2-8.4. Nevertheless, the detour over the vev shifts
is necessary in order to explicitly demonstrate that the necessary condition 〈Φi〉 = 0 is fulfilled to all orders.
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After a rotation to the mass basis we get

δTS ≡ RT(θ)δTϕR(θ) =

(
δTS1S1 δTS1S2

δTS2S1 δTS2S2

)
, (6.35)

with

δTS1S1 = c2
θ

δT1

v1
+ s2

θ

δT2

v2
, (6.36)

δTS2S2 = s2
θ

δT1

v1
+ c2

θ

δT2

v2
, (6.37)

δTS1S2 = cθsθ

(
δT2

v2
− δT1

v1

)
= δTS2S1 , (6.38)

and

θ =

{
α for (S1, S2) = (H,h)

β for (S1, S2) ∈ {(G0, A0), (G±, H±)}
. (6.39)

Let us conclude with the remark that the two approaches proposed in this section constitute
two contrary roads that can be taken. They will lead to very different consequences for the
renormalization procedure, especially concerning the subject of gauge dependence. Therefore,
we will take both roads in turn and investigate their implications.

6.4. On-Shell Renormalization of the Scalar Masses and Fields

We have now introduced all counterterms required for a renormalization of the 2HDM. The
next step is to formulate renormalization conditions to fix these parameters, or in other words,
to choose a renormalization scheme. Our goal is to define as many parameters as possible
via physical conditions such that a direct relation between the parameters and a physical
observable can be established. For the mass parameters, such physical conditions come in
terms of the OS conditions (cf. Subs. 3.1.2).
Furthermore it is desirable, to fix the WFRCs in such a way that all fields fulfill proper on-
shell conditions, and therefore no additional finite wave function correction factors are needed
(cf. Sec. 3.2.1).
Both, the on-shell conditions for the fields and for the mass parameters are closely related to
the propagators of the particles under consideration. They are therefore most appropriately
formulated simultaneously, which is true to an even greater extent for mixing particles, pos-
sessing matrix valued propagators. The on-shell conditions for WFRCs and mass parameters
can be condensed into the following three points:

• The renormalized mass parameter m corresponds to the physical mass of the particle
under consideration, i.e. to the pole of its propagator.

• The residue of the pole of the propagator equals i for particles which are on their mass
shell, i.e. whose momenta fulfill p2 = m2.

• Mixing between particles of identical quantum numbers vanishes for particles on their
mass shell.

These conditions fix all mass counterterms and WFRCs uniquely. For the SM the result-
ing renormalization constants have been deduced and discussed in detail e.g. in [59, 77, 80].
Therefore, in deriving the counterterms we will restrict ourselves to the scalar sector of the
2HDM, which goes beyond the SM. Furthermore, we will treat all scalars as stable, i.e. we
will neglect their finite widths, which, in the case of CP conserving couplings, leads to real
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mass counterterms and WFRCs [80]. Strictly speaking, of course, the scalars are unstable
and therefore a more rigorous derivation would have to take into account their finite widths
and thus the fact, that the poles of their propagators are complex quantities. As a conse-
quence, both the mass counterterms and the WFRCs would develop an imaginary part, even
in the case of CP-conservation [119–122]. However, in the final results for the decay widths,
which we will calculate in this part of the thesis, all imaginary parts, whether they originate
from vertex corrections or from the counterterms, drop out. This is due to the fact that all
higher-order terms enter only linearly into the amplitude and therefore vanish upon taking
the square of the absolute value (cf. Subs. 3.2.2).
The renormalization conditions are most conveniently expressed in terms of the renormal-
ized scalar two-point functions Γ̂S , where S ∈ {Sφ± , Sη, Sρ} stands for the pair of mixing
scalars under consideration. Using the general notation of Eq. (5.16)- Eq. (5.21) for the mass
matrices, Γ̂S is given in the mass basis by

Γ̂S(p2) =(p212×2 −DS + Σ̂S(p2)) (6.40)

=

(
p2 −m2

S1
− δm2

S1
0

0 p2 −m2
S2
− δm2

S2

)
+

(
Σ̂S1S1(p2) Σ̂S1S2(p2)

Σ̂S2S1(p2) Σ̂S2S2(p2)

)
.

Σ̂SiSj (p
2) denotes the renormalized self-energy, i.e. the sum of all one particle irreducible

(1PI) diagrams, including counterterms, contributing to the transition Si → Sj , i, j ∈ {1, 2}
for the respective pair of particles. Its explicit form depends on the treatment of the tadpoles
and will therefore be stated later, when we present the two tadpoles schemes separately.
Γ̂S is related to the corresponding propagator matrix ĜS(p2) by:

ĜS(p2) = iΓ̂−1
S (p2) =

i

Γ̂S1S1(p2)Γ̂S2S2(p2)− Γ̂S1S2(p2)Γ̂S2S1(p2)︸ ︷︷ ︸
=det Γ̂S(p2)

(
Γ̂S2S2(p2) −Γ̂S2S1(p2)

−Γ̂S1S2(p2) Γ̂S1S1(p2)

)
.

As can be inferred from this, the requirement for the propagator to have a pole at the physical
mass translates into the following condition

det Γ̂S(p2)
∣∣∣
p2=m2

S1

= 0 = det Γ̂S(p2)
∣∣∣
p2=m2

S2

. (6.41)

Demanding at the same time the mixing between S1 and S2 to vanish on-shell, i.e.

Γ̂S1S2(p2)
∣∣∣
p2=m2

S1

= 0, (6.42)

Γ̂S1S2(p2)
∣∣∣
p2=m2

S2

= 0, (6.43)

this reduces to the conditions

Γ̂S1S1(p2)
∣∣∣
p2=m2

S1

= 0, (6.44)

Γ̂S2S2(p2)
∣∣∣
p2=m2

S2

= 0. (6.45)

Note that we need to impose Eqs. 6.42 and 6.43 only on one of the off-diagonal elements,
since CP-invariance guarantees that Γ̂S1S2(p2) = Γ̂S2S1(p2). Finally, the requirement for the
propagators of on-shell particles to be properly normalized yields

∂Γ̂S1S1(p2)

∂p2

∣∣∣∣∣
p2=m2

S1

= 1, (6.46)

∂Γ̂S2S2(p2)

∂p2

∣∣∣∣∣
p2=m2

S2

= 1. (6.47)
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From the six equations Eqs. 6.42 - 6.47 we can deduce the six renormalization constants δm2
S1

,

δm2
S2

, δZS1S1 , δZS2S2 , δZS1S2 and δZS2S1 , which appear in Σ̂S (cf. sections 7.1 and 8.3) for
each of the three pairs (S1, S2). Note that all equations can only be fulfilled simultaneously, if
a sufficient amount of independent WFRCs are introduced. In the minimal scheme outlined
in Sec. 6.1, where we have only two independent WFRCs for all three pairs of particles, a
complete OS renormalization is not possible.

6.5. On-Shell Renormalization of the Gauge and Fermion Sec-
tor

Also the renormalization constants of the gauge and the fermion sector, δM2
W , δM

2
Z , δe, δmτ

and the WFRCs of the gauge bosons and fermions, can be defined by on-shell conditions.
Since this proceeds exactly as in the SM, we will resign from a detailed derivation and refer
the reader to the literature [59,77,80].
The results will again depend on the treatment of the tadpoles and will therefore be stated
in the corresponding sections 7.2 and 7.3 (scheme I) or 8.3 (scheme II).
One remark is in order, concerning the renormalization of the gauge fixing Lagrangian Lgf.
As has been shown in [78, 123] and emphasized in [38] in linear Rξ gauge it is not necessary
to renormalize Lgf. Rather, Lgf can be regarded as fixing the gauge of the renormalized
Lagrangian, not the bare one, and therefore to be defined in terms of already renormalized
fields and parameters. Consequently, we need not introduce renormalization constants for
the gauge fixing parameters and no WFRCs appear in Lgf.

6.6. Renormalization of α and β

It has been known for a while that the renormalization of mixing angles has to be treated with
care. If performed naively, the renormalization procedure is prone to lead to gauge-dependent
expressions for amplitudes and thus physical observables. This is, however, not acceptable
as one of the most important criteria for a good renormalization scheme is its capability
of producing gauge-independent results for physical quantities. Apart from gauge indepen-
dence, also numerical stability of physical results is a requested feature a good renormalization
scheme for the mixing angles should exhibit. Furthermore, it is preferable to renormalize the
angles in such a way, that they themselves can be regarded as physical parameters. For this
to be the case, the renormalized angles should, aside from being independent of gauge-fixing
parameters, be fixed by universal, i.e. process-independent renormalization conditions.
The issue of gauge dependence entering through the renormalization of mixing particles has
been studied in detail for the case of the CKM matrix [124–129] and for the mixing of scalars
in the MSSM [127,130–132].
After it was pointed out in Ref. [124] that the on-shell renormalization of the CKM matrix
proposed in Ref. [77, 133] leads to gauge-dependent amplitudes, numerous alternative defi-
nitions for the counterterms of the quark mixing matrix were suggested. Among these are
schemes based MS conditions [128], process-dependent schemes [126] as well as more elaborate
schemes. The latter make use of Ward Takahashi Identities [124] and BRST2 invariance [129]
to guarantee gauge invariance or apply a two-step procedure [136, 137] to accomplish all de-
sired properties of the renormalized CKM matrix.
In addition to these, Yamada has proposed in Ref. [127] a scheme based on the pinch technique

2The concept of BRST invariance, named so after Becchi, Rouet, Stora, Tyutin, constitutes an extension of the
conventional gauge invariance to gauge fields. After gauge fixing, the Lagrangian is no longer invariant under
gauge transformations, however, by the inclusion of gauge fields in the transformation, a new symmetry, the
BRST symmetry, can be established. [134,135]
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(PT) to construct counterterms for the quark mixing angles leading to gauge-independent am-
plitudes. He has shown that, if instead of the conventional self-energies, used in Ref. [77,133],
the pinched self-energies are utilized to define the angular counterterms, gauge independence
of physical quantities is guaranteed. Furthermore, he has extended this renormalization pre-
scriptions to the case of general fermion or scalar sectors and illustrated the procedure using
the example of the MSSM squark sector.
In a subsequent publication together with Espinosa [131] he addressed the mixing of scalars
in the MSSM and in particular examined the case of the CP-even Higgs bosons. Again, the
pinch technique was invoked to construct a gauge-independent renormalization scheme for
the mixing angles, i.e. a scheme leading to gauge-independent physical quantities.
Similar results have been obtained by the authors of Ref. [132], although their approach,
based on an investigation of the singularity structure of one-loop scattering amplitudes, dif-
fers from the one chosen by Yamada and Espinosa.
In addition to these examinations, different schemes for the angular parameter tan(β) of the
MSSM and the resulting gauge dependence have been investigated in Refs. [115, 116, 138].
Freitas et al. have found in Ref. [138], that there exists no scheme for tan(β) in the MSSM,
such that all requirements mentioned above, i.e. gauge independence, process independence
and numerical stability are simultaneously fulfilled.

Such dedicated studies on the renormalization of the scalar mixing angles are missing for the
case of the 2HDM3. For this reason, we will present different renormalization schemes for
α and β in the following sections and examine their capability to accomplish the demanded
prerequisites.
First, we will investigate a process-independent definition in the framework of tadpole scheme
I (Sec. 7.4) and afterwards in scheme II (Sec. 8.5). Then we will turn to a process-dependent
renormalization of the angular counterterms (Ch. 9), treating both tadpole schemes simulta-
neously and finally have a glance at an MS definition (Sec. 9.5).

6.7. Renormalization of m2
12

The last 2HDM parameter that needs to be renormalized is m2
12. Since this parameter only

appears in trilinear and quadrilinear Higgs couplings, δm2
12 has to be defined in terms of a

multi-Higgs vertex.
One possibility is to determine m2

12 as an MS parameter, i.e. require δm2
12 to cancel the re-

maining terms proportional to the MS-divergence ∆MS in an amplitude containing a trilinear
(or quadrilinear) Higgs vertex.
Another possibility is to include also finite terms into δm2

12. These can be determined, for
example, by demanding an appropriate loop-corrected decay width to equal the tree-level one.
Ideally, δm2

12 should be fixed such that the loop-corrected observable equals an experimental
measurement. However, lacking any measurement for a suitable observable, requiring the
equality with the tree-level result is the best that can be done at the moment. Still, kinemat-
ics restricts the applicability of this method to a limited part of the 2HDM parameter space,
as will be detailed below (cf. Sec. 10.2).
Upon writing this, the renormalization of m2

12 has hardly attracted interest in the literature.
To our knowledge, only Ref. [40], where m2

12 is defined by an MS condition, has dealt with
this subject.
In this thesis, we will examine two renormalization schemes for the parameter m12. First,
in Sec. 10.1, we will investigate an MS-like renormalization for m2

12 within both tadpole
frameworks. Afterwards, in Sec. 10.2, we will consider a process-dependent definition.

3While writing this thesis a publication by Denner et al. [41] appeared proposing an MS scheme for α and β.





CHAPTER 7

Renormalization in Tadpole Scheme I

Due to its convenience, the treatment of the tadpoles along the lines of tadpole scheme I
nowadays has become the standard treatment. It is conventionally applied in the SM [58,59,
77, 80], in supersymmetric extensions [103, 104] as well as in the 2HDM [38–40]. Therefore,
we will use scheme I as starting point for our investigation of the two tadpole schemes and
their consequences on the renormalization of the other parameters and fields.
We will first state explicit expressions for the OS mass and charge counterterms as well as for
the WFRCs of the scalar ( Sec. 7.1), the gauge ( Sec. 7.2) and the fermion sector ( Sec. 7.3),
determined in the framework of scheme I.
Subsequently, we will present a process-independent renormalization scheme for the angular
counterterms ( Sec. 7.4). This scheme will turn out to yield gauge-dependent expressions for
amplitudes and thus physical observables, which will prompt us to switch to tadpole scheme
II.

7.1. On-Shell Renormalization of the Scalar Sector in Tadpole
Scheme I

We start with a derivation of the counterterms for the scalar sector of the 2HDM. The
corresponding OS renormalization conditions for the masses and fields have already been
introduced in Sec. 6.4. After having specified the treatment of the tadpoles, we are now in a
position to derive concrete expression for the respective counterterms. For this purpose, we
need the renormalized two-point function in the tadpole scheme I, which is given in the mass
basis by

Γ̂S((p2) =Z
1/2†
S (p212×2 − (D + δD)S − δTS + ΣS(p2))Z

1/2
S (7.1)

=

(
1 + 1

2δZS1S1
1
2δZS1S2

1
2δZS2S1 1 + 1

2δZS2S2

)† [(
p2 −m2

S1
− δm2

S1
0

0 p2 −m2
S2
− δm2

S2

)

−
(
δTS1S1 δTS1S2

δTS2S1 δTS2S2

)
+

(
ΣS1S1(p2) ΣS1S2(p2)
ΣS2S1(p2) ΣS2S2(p2)

)](
1 + 1

2δZS1S1
1
2δZS1S2

1
2δZS2S1 1 + 1

2δZS2S2

)†
.

Here we use the generic notation introduced in Eqs. 5.16 - 5.21 for mass matrices and S ∈
{Sφ± , Sη, Sρ}. Due to the prescription for the tadpoles we use in this section, tadpole diagrams
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are not considered to be part of ΣSiSj (p
2), the unrenormalized scalar self-energy. Furthermore

note the appearance of the matrix δTS defined in Eq. (6.35), which results from our definition
ofMϕ, ϕ ∈ {φ±, η, ρ}, in Sec. 5.2 and the treatment of the tadpoles. Expanding Eq. (7.1) to
one-loop order, the elements of Γ̂S take the following form

Γ̂SiSi(p
2) = (p2 −m2

Si)− δm2
Si + δZSiSi(p

2 −m2
Si) + ΣSiSj (p

2)− δTSiSi , (7.2)

Γ̂SiSj (p
2) =

1

2
δZSjSi(p

2 −m2
Sj ) + (p2 −m2

Si)
1

2
δZSiSj + ΣSiSj (p

2)− δTSiSj , i 6= j. (7.3)

Plugging Eqs. 7.2 and 7.3 into Eqs. 6.42 - 6.47 and solving for the renormalization constants,
we find for the mass counterterms

δm2
h = Re(Σhh(m2

h)− δThh), (7.4)

δm2
H = Re(ΣHH(m2

H)− δTHH), (7.5)

δm2
A0

= Re(ΣA0A0(m2
A0

)− δTA0A0), (7.6)

δm2
H± = R̃e(ΣH±H±(m2

H±)− δTH±H±), (7.7)

for the diagonal WFRCS

δZhh = −Re

(
∂Σhh(p2)

∂p2

)∣∣∣∣
p2=m2

h

,

δZA0A0 = −Re

(
∂ΣA0A0(p2)

∂p2

)∣∣∣∣
p2=m2

A0

,

δZH±H± = −R̃e

(
∂ΣH±H±(p2)

∂p2

)∣∣∣∣
p2=m2

H±

,

δZHH = −Re

(
∂ΣHH(p2)

∂p2

)∣∣∣∣
p2=m2

H

,

δZG0G0 = −Re

(
∂ΣG0G0(p2)

∂p2

)∣∣∣∣
p2=0

, (7.8)

δZG±G± = −R̃e

(
∂ΣG±G±(p2)

∂p2

)∣∣∣∣
p2=0

and for the off-diagonal WFRCS

δZhH = −2Re(ΣHh(m2
H)− δTHh)

m2
H −m2

h

,

δZG0A0 = −
2Re(ΣG0A0(m2

A0
)− δTG0A0)

m2
A0

,

δZG±H± = −2R̃e(ΣG±H±(mH±)− δTG±H±)

m2
H±

,

δZHh =
2Re(ΣHh(m2

h)− δTHh)

m2
H −m2

h

,

δZA0G0 =
2Re(ΣG0A0(0)− δTG0A0)

m2
A0

, (7.9)

δZH±G± =
2R̃e(ΣG±H±(0)− δTG±H±)

m2
H±

,

where we have used ΣSiSj = ΣSjSi and δTSiSj = δTSjSi for i, j = 1, 2. One comment is in
order concerning the prescription to take the real parts Re() in defining the counterterms in
Eqs. 7.4 - 7.9. This prescription is necessary since we treat all scalars as stable particles, i.e.
neglect the absorptive parts of their self-energies, as mentioned at the beginning of Sec. 6.4.
Aoki et al. have shown in Ref. [80] that for CP-conserving couplings this approximation
leads to strictly real counterterms. Of course, with strictly real renormalization constants we
can fulfill the OS conditions in Eqs. 6.42 - 6.47 only for the real parts of Γ̂S . However, the
additional imaginary parts of the renormalization constants, which a more rigorous treatment
of the absorptive parts would yield, do not contribute to our final result. This is because all
imaginary parts drop out when building the squared amplitude at strict one-loop order (cf.
Subs. 3.2.2), as required for the calculation of decay widths or cross-sections. Therefore, for
our purposes it is sufficient to fulfill the OS conditions only for the real parts of Eq. (6.42) to

Eq. (6.47). Furthermore, we have introduced the symbol R̃e(), which takes the real parts of
loop functions but keeps imaginary parts entering through complex couplings, caused e.g. by
a complex CKM matrix. Its purpose is to discard only the unwanted absorptive parts and
keep effects of CP-violation. Strictly speaking, we do not necessitate this prescription since
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the CKM-matrix elements, the only potentially complex parameters in our model, enter in
Eqs. 7.4 - 7.9 only as squares of the absolute values. Moreover, in the numerical evaluation
we will consider the CKM matrix to be real, anyways. We still keep the notation R̃e(), in
order to stay in line with the usual conventions [59,77].

7.2. On-Shell Renormalization of the Gauge Sector in Tadpole
Scheme I

Next, we want to specify the counterterms of the gauge sector. The masses M2
W , M

2
Z and

the WFRCs of the gauge bosons are renormalized in the same way as in the SM. Since the
corresponding OS conditions are well-known and can be found e.g. in [59, 77, 80], we only
state the results for the counterterms

δM2
W = R̃e

(
ΣT
WW (M2

W )
)
, (7.10)

δM2
Z = Re

(
ΣT
ZZ(M2

Z)
)
, (7.11)

δZWW = − R̃e

(
∂ΣT

WW (p2)

∂p2

)∣∣∣∣
p2=M2

W

(7.12)

δZZZ = − Re

(
∂ΣT

ZZ(p2)

∂p2

)∣∣∣∣
p2=M2

Z

, (7.13)

δZAA = − Re

(
∂ΣT

AA(p2)

∂p2

)∣∣∣∣
p2=0

, (7.14)

δZZA = 2Re

(
ΣT
ZA(0)

M2
Z

)
, (7.15)

δZAZ = −2Re

(
ΣT
AZ(M2

Z)

M2
Z

)
. (7.16)

In these expression ΣT
ViVj

(p2), with Vi, Vj ∈ {W±, Z, γ}, denotes the transverse part of the

Vi-Vj self-energy. For later convenience, we also state the full expression for Γ̂ViVj (p
2), the

renormalized two-point function of the gauge bosons Vi and Vj in general Rξ gauge, from
which the above renormalization constants can be derived

Γ̂ViVj (p
2) =−

(
gµν − pµpν

p2

)
(p2 −M2

Vi)δij −
pµpν

p2

1

ξVi
(p2 − ξViM2

Vi)δij , (7.17)

−
(
gµν − pµpν

p2

)
Σ̂T
ViVj (p

2)− pµpν

p2
Σ̂L
ViVj (p

2).

The renormalized transverse and longitudinal self-energies appearing here are given by

Σ̂T
ViVj (p

2) =
δZVjVi

2
(p2 −M2

Vj ) + (p2 −M2
Vi)
δZViVj

2
− δM2

Viδij + ΣT
ViVj (p

2), (7.18)

Σ̂L
ViVj (p

2) =− δZVjVi
2

M2
Vj −M2

Vi

δZViVj
2
− δM2

Viδij + ΣL
ViVj (p

2). (7.19)

Also the renormalization of the electric charge e, defined in the Thomson limit, can be per-
formed like in the SM [59,77,80]

δZα(0)
e =

1

2

δΣT
AA(p2)

∂p2

∣∣∣∣
p2=0

+
sW
cW

ΣT
AZ(0)

M2
Z

, (7.20)

where sW and cW denote the sine and cosine of the Weinberg angle θW (cf. Eq. (5.30))1.
However, since the counterterm defined according to Eq. (7.20) shows a strong dependence
on the masses of light fermions, it is advantageous to modify the renormalization conditions
and fix the electric charge at the electroweak scale

δZ
α(M2

Z)
e = δZα(0)

e − 1

2


 ∂ΣT,light

AA (p2)

∂p2

∣∣∣∣∣
p2=0

− ΣT,light
AA (M2

Z)

M2
Z


 . (7.21)

1Note, that the sign of the second term in Eq. (7.20) is opposite to the one in [77], which is due to a different
definition of the covariant derivative (cf. Eq. (5.3)).
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The superscript light indicates that only the contributions of light fermions, i.e. of all leptons
and quarks apart from the top, are taken into account in the respective self-energies. After
this subtraction the problematic logarithms depending on the light fermion masses, which

appear in δZ
α(0)
e , no longer contribute [77, 91]. They have been resummed into αem = e2/4π

according to

αem = αem(0)→ αem(M2
Z) =

αem

1−∆α
, (7.22)

with ∆α = ∆αlept + ∆α
(5)
had. ∆αlept contains the contributions of the leptons and has been

calculated up to three-loop order in [139], whereas ∆α
(5)
had comprises contributions from the

light quarks and has been determined in Refs. [140, 141]. Renormalizing the electric charge
at the electroweak scale, we have to adopt α(M2

Z) as input parameter.

7.3. On-Shell Renormalization of the Fermion Sector in Tad-
pole Scheme I

Also the renormalization of the fermion sector proceeds exactly like in the SM. For this reason
we refer the reader again to Refs. [59,77,80] and only state the renormalization constants for
the τ leptons, which we introduced in Eqs. 6.27 and 6.28, for later use.
In the OS scheme, these constants are fixed in terms of the renormalized fermionic two-point
function. For generic fermions fi and fj , the latter one is given by

Γ̂fifj (p) =(/p−mfi)δij + /pω−Σ̂L
fifj

(p2) + /pω+Σ̂R
fifj

(p2) (7.23)

+mfiω−Σ̂S,l
fifj

(p2) +mfjω+Σ̂S,r
fifj

(p2),

where the renormalized self-energy has been split into its left-handed, right-handed and scalar
constituents and ω−/ω+ stand for the projectors onto left/right-handed spinor components,
respectively. Below, we will only need the diagonal elements of the self-energies, which are
given by

Σ̂L
fifi

(p2) =δZLfifi + ΣL
fifi

(p2), (7.24)

Σ̂R
fifi

(p2) =δZRfifi + ΣR
fifi

(p2), (7.25)

Σ̂S,l
fifi

(p2) =− δmfi

mfi

− 1

2
δ(ZLfifi + ZRfifi) + ΣS,l

fifi
(p2), (7.26)

Σ̂S,r
fifi

(p2) =− δmfi

mfi

− 1

2
δ(ZLfifi + ZRfifi) + ΣS,r

fifi
(p2). (7.27)

With these, the renormalization constants for the τ lepton can be expressed as

δmτ =
mτ

2
R̃e
(

ΣL
ττ (m2

τ ) + ΣR
ττ (m2

τ ) + ΣS,l
ττ (m2

τ ) + ΣS,r
ττ (m2

τ )
)
, (7.28)

δZLτ =− R̃e(ΣL
ττ (m2

τ ))− m2
τ R̃e

(
∂ΣT

ττ (p2)

∂p2
+
∂ΣR

ττ (p2)

∂p2
+
∂ΣS,l

ττ

∂p2
+
∂ΣS,r

ττ

∂p2

)∣∣∣∣∣
p2=m2

τ

, (7.29)

δZRτ =− R̃e(ΣR
ττ (m2

τ ))− m2
τ R̃e

(
∂ΣT

ττ (p2)

∂p2
+
∂ΣR

ττ (p2)

∂p2
+
∂ΣS,l

ττ

∂p2
+
∂ΣS,r

ττ

∂p2

)∣∣∣∣∣
p2=m2

τ

. (7.30)

7.4. A Process-Independent Definition of α and β and its Gauge
Dependence

After having defined the OS counterterms for all masses and e as well as the WFRCs, we next
turn to the renormalization of α and β. Since one of the criteria for a good renormalization
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scheme for the angles is universality, we start our investigation with a process-independent
scheme, proposed by Kanemura, Okada, Senaha, and Yuan in Ref. [40] and studied further
in Ref. [112]. We will refer to their scheme as KOSY scheme. The scheme will turn out to
lead to gauge-dependent amplitudes, and thus physical observables, and therefore not to be
appropriate. Yet it will give us valuable insight into the origin of this gauge dependence and
allow us to pave the way for a gauge-independent scheme.

7.4.1. α and β in the KOSY Scheme

Kanemura et al. use the relation between the WFRC matrices in the gauge and in the
mass basis, stated in Eq. (6.10), as starting point to define counterterms for α and β. They

introduce three symmetric 2×2 matrices Z
1/2
ϕ in the gauge basis, one for each of the three pairs

of scalars with identical quantum numbers. Then, employing the fact that RT(θr)Z
1/2
ϕ R(θr) is

symmetric if this is the case for Z
1/2
ϕ , they establish the following relation between the angular

counterterms and the WFRCs in the mass basis

Z
1/2
S = R(δθ)T

(
1 + 1

2δZS1S1 δCS1S2

δCS1S2 1 + 1
2δZS2S2

)
(7.31)

=

(
1 + 1

2δZS1S1 δCS1S2 + δθ
δCS1S2 − δθ 1 + 1

2δZS2S2

)
+O(δ2).

Here O(δ2) denotes terms of quadratic or higher order in the counterterms and the δCS1S2

are real constants, parametrizing the off-diagonal matrix elements. We can directly read off

1

2
δZS1S2 = δCS1S2 + δθ, (7.32)

1

2
δZS2S1 = δCS1S2 − δθ, (7.33)

⇒ δθ =
δZS1S2 − δZS2S1

4
. (7.34)

Inserting the expressions for the OS WFRCs in the mass basis (cf. Eq. (7.9)), we arrive at

δαK =
δZHh − δZhH

4
=

Re
[
ΣHh(m2

h) + ΣHh(m2
H)− 2δTHh

]

2(m2
H −m2

h)
, (7.35)

δβKo =
δZG0A0 − δZA0G0

4
= −

Re
[
ΣG0A0(m2

A0
) + ΣG0A0(0)− 2δTG0A0

]

2m2
A0

, (7.36)

δβKc =
δZG±H± − δZH±G±

4
= −Re

[
ΣG±H±(m2

H±) + ΣG±H±(0)− 2δTG±H±
]

2m2
H±

. (7.37)

Note that this method leads to two different counterterms for the mixing angles of the CP-odd
and the charged scalars. This is not surprising since in higher orders, the mass matrices of
the two pairs of particles receive disparate radiative corrections. Keeping the rotation angles
fixed at the tree-level values the counterterms for the charged and the CP-odd versions of β
differ if one demands all particles to be renormalized on-shell.
However, this holds only for the finite parts of δβKo and δβKc . The divergences contained in
these two counterterms are still identical. Hence, if one is interested only in cancelling the
divergences of higher-order Greens functions, it is possible to pick one of the two versions of
δβK , as the authors of [40] suggest. Then, of course, only either the CP-odd or the charged
scalars can be renormalized properly on-shell, depending on the choice of δβK . For the other
scalar pair, finite wave function correction factors are required if one of its members appears
as external particle in a process.
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All processes that we will consider in this part of the thesis feature only either of the scalars
in question as external particle, such that we can always choose δβK accordingly and never
need to deal with finite wave function correction factors. Without mentioning, we will assume
δβK always to be chosen appropriately.

7.4.2. The Origin of the Gauge Dependence

Although the derivation of the angular counterterms in the last section seems well motivated
and is process-independent, the KOSY scheme is unfavorable since it leads to gauge-dependent
amplitudes. To investigate the origin of this gauge dependence, we start from the explicit
expressions for the angular counterterms. A straightforward calculation and a subsequent
extraction of terms containing gauge fixing parameters yields the following ξ-dependent parts
of δαK and δβK 2

δαK
∣∣
ξ

=
m2

12cβ−αsβ−α
8π2v2s2β(m2

H −m2
h)

(
2A0(ξWM

2
W ) + A0(ξZM

2
Z)
)

(7.38)

+
g2

2cβ−αsβ−α
256π2M2

W

[
2M2

A0

(
B0(m2

h,m
2
A0
, ξZM

2
Z)− B0(m2

H ,m
2
A0
, ξZM

2
Z)
)

+ 4M2
H±
(
B0(m2

h,m
2
H± , ξWM

2
W )− B0(m2

H ,m
2
H± , ξWM

2
W )
)

+M2
H

(
2B0(m2

H ,m
2
A0
, ξZM

2
Z) + 4B0(m2

H ,m
2
H± , ξWM

2
W )

−2B0(m2
H , ξWM

2
W , ξWM

2
W )− B0(m2

H , ξZM
2
Z , ξZM

2
Z)
)

−M2
h

(
2B0(m2

h,m
2
A0
, ξZM

2
Z) + 4B0(m2

h,m
2
H± , ξWM

2
W )

−2B0(m2
h, ξWM

2
W , ξWM

2
W )− B0(m2

h, ξZM
2
Z , ξZM

2
Z)
)]
,

δβKc
∣∣
ξ

=
g2

2cβ−αsβ−α
128π2M2

W

[
M2
h

(
B0(0,m2

h, ξWM
2
W )− B0(m2

H± ,m
2
h, ξWM

2
W )
)

(7.39)

+M2
H±
(
B0(mH± ,m

2
h, ξWM

2
W )− B0(m2

H± ,m
2
H , ξWM

2
W )
)

+M2
H

(
B0(mH± ,m

2
h, ξWM

2
W )− B0(0,m2

H , ξWM
2
W )
)]
.

Similar expressions hold for δβo. Here A0 and B0 denote the scalar one- and two-point
functions [142] in the convention stated in App. D.1. In order for the final amplitude to be
gauge independent, the gauge-dependent terms entering via δαK and δβK have to cancel with
gauge-dependent terms in the remaining amplitude. However, a closer investigation shows
that this cancellation occurs only for the first line in Eq. (7.38), i.e. for the gauge-dependent
A0 functions in δαK . The gauge-dependent B0 functions, both in δαK and δβK , are left
uncancelled and lead to a gauge dependence of the full amplitude.
Let us exemplify this point by means of the amplitude for the decay H+ → W+h. Defining
the remaining amplitude Arem

H+→W+h as

Arem
H+→W+h ≡ A

O(1-loop)
H+→W+h

∣∣∣
δβ=α=0

, (7.40)

i.e. as the amplitude calculated up to one-loop order with the contribution of the angular
counterterms set to zero, we find the following terms depending on ξ

Arem
H+→W+h|ξ =

gm2
12cβ−αs

2
β−αp1 · ε∗3

8π2v2s2β(m2
H −m2

h)

(
2A0(ξWM

2
W ) + A0(ξZM

2
Z)
)
. (7.41)

2 Note that it is not possible to define the gauge-dependent parts of δαK and δβK uniquely in a straightforward
way, as explained below and in App. C.2. For the argumentation in this section, however, we do not need
a unique definition of the truly gauge-dependent parts and the arbitrary choice of representing the terms
containing gauge fixing parameters made here is sufficient.
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Here ε∗3 denotes the polarization vector of the outgoing W+ boson and p1 the momentum of
the incoming H+. On the other hand, the contribution of δαK and δβK to the amplitude,
designated as Aδα,δβ

H+→W+h
, exhibits the following ξ-dependent part

AδαK ,δβK
H+→W+h

∣∣∣
ξ

= −gp1 · ε∗3
(
sβ−α(δαK − δβKc )

)∣∣
ξ

(7.42)

= −
gm2

12cβ−αs
2
β−αp1 · ε∗3

8π2v2s2β(m2
H −m2

h)

(
2A0(ξWM

2
W ) + A0(ξZM

2
Z)
)

+ B0 terms.

Obviously, adding the two expressions, the A0 terms cancel, but we are left with a gauge-
dependent result due to the appearance of gauge-dependent B0 functions in δαK and δβKc .
Similar observations can be made for the amplitudes of other processes.
In the following, we will denote a scheme as gauge-dependent scheme if it leads to gauge-
dependent amplitudes and as gauge-independent scheme otherwise.
Eventually, this gauge dependence means that the angles α and β, which are extracted from
an observable in the framework of the KOSY scheme, depend on the chosen gauge. They
can hence not directly be interpreted as physical quantities. In order to arrive at physically
meaningful values for the angles, the relation between the angles in the KOSY scheme and the
angles in some other, gauge-independent scheme need to be known. Furthermore, the chosen
gauge always has to be specified when extracting α and β from experimental data [138,143].
Likewise, the expressions for decay widths or cross sections, calculated in the context of the
KOSY scheme for an arbitrary set of input parameters, depend on the gauge fixing parameters.
Two conclusions can be drawn from the observations of this section:

1. The KOSY scheme leads to gauge-dependent expressions for amplitudes and therefore
also gauge-dependent cross sections and decay widths.

2. Striving for gauge-independent and UV-finite amplitudes, it is impossible to define
a gauge-independent counterterm for α. The gauge-dependent and UV-divergent A0

functions in δαK are required to cancel those appearing in the remaining amplitude.

While the first point makes a statement about the KOSY scheme only, the second item is
more general and holds for any scheme relying on the renormalization conditions introduced
in sections 7.1 to 7.3.
The fact that δαK cannot be defined in a gauge-independent way is to be traced back to our
treatment of the tadpoles in this section. We will see in the following chapter, that this gauge
dependence vanishes in a natural manner when switching to tadpole scheme II.
Before closing this section, let us briefly comment on the proposal brought forward by Kane-
mura et al. in a subsequent publication [112] to cure the gauge dependence, introduced by
their definition of δβKo/c. Instead of starting from symmetric WFRC matrices in the gauge

basis (cf. Eq. (7.31)) as in their original publication, they now suggest to introduce two inde-
pendent off-diagonal renormalization constants δCS1S2 and δCS2S1 . This additional degree of
freedom allows them to define δβKo/c as the gauge-independent part of Eq. (7.36) or Eq. (7.37),
respectively. However, the authors do not specify how to extract the gauge-independent parts
of these expressions. Indeed, it is far from obvious how this extraction can be accomplished in
a unique way. The representation of δβ in Eq. (7.39) in terms of Passarino-Veltman functions
is an arbitrary choice and any other equivalent representation of the loop-integrals can lead
to other gauge-dependent parts (see App. C.2). Hence, the terms given in Eq. (7.39) cannot
be regarded as the unique, truly gauge-dependent part of δβ. In order to unambiguously
extract the gauge dependence contained in an expression, a special technique like the pinch
technique introduced in Sec. 3.3 is needed, which in turn requires the application of tadpole
scheme II. Furthermore, Kanemura et al. do not comment on the case of δαK , where the
situation is complicated by the fact that part of the gauge-dependent terms have to be kept
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in δαK to obtain a gauge-independent amplitude. Therefore, it remains unclear how a gauge-
independent result can be achieved in the KOSY scheme in an unambiguous way.
In the following, we will show that the issue of this ambiguity can be resolved by treating the
tadpoles according to scheme II.



CHAPTER 8

Renormalization in Tadpole Scheme II

The current chapter is dedicated to the introduction, illustration and investigation of tadpole
scheme II. Although it is not as popular as scheme I, there are various publications based on
tadpole scheme II, especially in the context of the SM [97,101,102,117,143,144] but also for
BSM studies [118,145].
In order to motivate the usage of this scheme, we will start in Sec. 8.1 with a general discus-
sion on the subject of gauge dependence of counterterms. This will provide us with a deeper
understanding of the entanglement of tadpole (non-)renormalization and gauge dependence
and strongly encourage the application of scheme II. For this purpose, we will illustrate in
Sec. 8.2 in great detail how to properly implement this scheme in the framework of the 2HDM.
We will investigate its consequences for mass and charge counterterms and WFRCs as well
as for the couplings in Secs. 8.3 and 8.4, respectively. Afterwards, in Sec. 8.5, we will turn
to the renormalization of the mixing angles α and β and demonstrate how the problematic
gauge-dependent terms encountered in the KOSY scheme can be avoided if tadpole scheme
II is employed.

8.1. Tadpole Renormalization as the Origin of Gauge Depen-
dence

Before we dedicate ourselves to tadpole scheme II and derive all required counterterms in this
framework, we first want to discuss the matter of gauge dependence of counterterms. We
will keep the discussion generic and focus in particular on the differences arising in the two
tadpole schemes. This will allow us to draw important conclusions on viable renormalization
conditions within the two schemes.
When analyzing the gauge dependence of counterterms, one has to distinguish two different
types of counterterms [88, 129]. The first group, which we will refer to as the group of un-
physical counterterms, comprises WFRCS, tadpole counterterms and counterterms for gauge
fixing parameters1. These counterterms cannot be defined in terms of physical observables
like cross sections or decay rates. As a consequence, they will in general exhibit a dependence
on the gauge fixing parameters.

1Note that we did not introduce counterterms for the gauge fixing parameters.
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The second group is composed of counterterms for physical parameters, i.e. for the parameters
of the classical gauge-invariant Lagrangian, like masses, gauge couplings and mixing angles.
For brevity, we will denote these as physical counterterms in the following, although, strictly
speaking, a counterterm cannot be physical. Unlike the counterterms of the first group,
the physical counterterms can be fixed by renormalization conditions formulated in terms of
physical quantities. Such renormalization conditions guarantee the gauge independence of
the renormalized parameters [88]. However, in contrast to the parameters themselves their
counterterms can still depend on the gauge fixing parameters. Although this point might
seem contradictory at first glance, it can be explained by the interplay between the renor-
malization of physical parameters and tadpole renormalization.
The most prominent example where this interplay becomes obvious is the renormalization
of mass parameters. Certainly, the determination of a mass parameter mi as the (complex)
pole of the propagator of a particle is a physical definition and it has been shown by many
authors that the thus defined pole mass is indeed gauge independent2 [88, 146, 147].Yet, the
corresponding counterterm, defined according to the OS conditions as

δmi = Σii(m
2
i ), (8.1)

is independent of the gauge fixing parameters only if tadpole diagrams are taken into account
in the self-energy Σii (see Eq. (8.2)) [88,97,102,117,118,143]. In order to distinguish between
the self-energy without and with tadpole diagrams, we will denote the latter one as Σ̃ii and
call Σii the conventional and Σ̃ii the tadpole self-energy. Schematically we have

δm2,I
i = Σii(m

2
i )→ gauge-dependent,

δm2,II
i = Σ̃ii(m

2
i )→ gauge-independent,

with iΣ̃ii = +i i i i , (8.2)

where the empty circles represent generic corrections to the propagator or the tadpole. Thus,
gauge-independent mass counterterms can only be obtained if the tadpole diagrams are not
cancelled by tadpole counterterms but explicitly taken into account. In other words, gauge-
independent OS mass counterterms are possible only if tadpole scheme II is applied. The
same holds for all other physical parameters and in particular also for mixing angles [88].
The reason for this different behaviour of the counterterms in tadpole scheme I and II lies
in the different definition of the vevs. In scheme I the bare vevs are defined as the minima
of the loop-corrected effective potential and are therefore gauge dependent [116]. This gauge
dependence is propagated into all other bare parameters which depend on the vevs. In order
for the renormalized physical parameters to be independent of the gauge fixing, the gauge-
dependent terms in the bare parameters have to be absorbed into the counterterms. Note
that these gauge-dependent terms are always entirely composed of A0 functions3.
On the contrary, in scheme II the bare vevs are defined as minima of the tree-level potential.
Hence, they can be expressed uniquely in terms of parameters of the tree-level potential and
are manifestly gauge independent. The same is true for the bare parameters defined in terms
of the vevs and thus also for their counterterms.

2For unstable particles the imaginary part of the pole has to be taken into account beyond one-loop order
[88,119–122] to obtain a gauge-independent pole mass.

3This can easily be seen from the fact that the only difference between the schemes I and II arises from the
treatment of tadpole terms, i.e. A0 functions. The gauge dependence of terms in scheme I, which are gauge
independent in scheme II, can hence only be given by A0 functions.
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These observations immediately raise the question which implications this different behaviour
of physical counterterms has for a suitable renormalization scheme.
First, it is important to note that also in scheme II the physical counterterms are not guar-
anteed to come out gauge independent if they are determined in an arbitrary renormalization
scheme. In case that unphysical renormalization conditions are applied, nothing prevents the
counterterms from becoming gauge dependent. However, striving for gauge-independent ex-
pressions for physical observables, this gauge dependence must be avoided. In tadpole scheme
II, all physical counterterms have to be defined in a manner that ensures them to be gauge
independent. Otherwise, their gauge dependence will be propagated into the S-matrix and
spoil its gauge independence. One possibility to guarantee gauge independence of the phys-
ical counterterms and thus of the S-matrix is to fix these counterterms by renormalization
conditions relying on physical observables. In scheme II, such a definition automatically leads
to gauge-independent counterterms.
This is to be compared to the situation in scheme I. There, the physical counterterms are
required to include gauge-dependent terms to cancel remaining gauge dependences in the rest
amplitude (cf. Subs. 7.4.2). As we have seen in the previous section, unphysical conditions
can lead to a counterterm which contains, in addition to the required gauge-dependent terms
given by A0 functions, further gauge-dependent parts, which remain uncancelled. Again, the
fail-safe way to ensure gauge independence of the final results for physical observables is to
resort to physical conditions to fix the physical counterterms. Such prescriptions guarantee
the counterterms to contain exactly those gauge-dependent A0 functions needed to preserve
the gauge independence of the S-matrix.
Hence, in both tadpole schemes gauge-independent amplitudes can be obtained by fixing all
physical parameters in terms of physical renormalization conditions. In tadpole scheme II
the resulting counterterms are gauge-independent, whereas in scheme I they contain exactly
those gauge dependent terms necessary to cancel gauge dependences present in the remaining
amplitude.

Yet, in some cases, like in the case of mixing angles, we might wish to start from a renor-
malization condition not relying on a particular physical observable in order to maintain a
universal definition of the respective parameters. At this point, tadpole scheme II demon-
strates its advantages: In scheme II we “only” have to ensure the gauge independence of all
physical counterterms. Therefore, we are free to start from any renormalization conditions as
long as we are given a technique to extract the truly gauge-independent parts of the resulting
expressions for the counterterms. The pinch technique, introduced in Sec. 3.3, constitutes
precisely such a technique.
A similar procedure is not possible in tadpole scheme I, which is due to the fact that the
application of the PT requires a treatment of the tadpoles according to scheme II. Further-
more, even if there was a method in scheme I to extract the truly gauge-independent part
of a counterterm, like e.g. the angular counterterms, this would still not solve the problem.
This is because gauge-dependent physical counterterms are mandatory in scheme I to obtain
a gauge-independent amplitude. We know of no procedure to dismiss all unwanted gauge-
dependent terms, like those containing the B0 functions in Eq. (7.38) and Eq. (7.39), but
retain the necessary terms, like the those comprising the A0 functions in the same equations.
Trying to accomplish this by hand, we would be faced with the ambiguity of how to define
the proper gauge-independent parts of the B0 functions, alluded to in the footnote on page
66 and illustrated in App. C.2.
Hence, in order to attain gauge-independent amplitudes in scheme I in a well-defined manner,
all physical counterterms have to be defined by physical renormalization conditions. This,
though feasible, constitutes a loss of generality in the case of parameters that are not con-
nected to a single observable only, e.g. in the case of α and β. Defining these parameters in
terms of a physical quantity leads to an undesirable process dependence of the parameters
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and complicated expressions for the counterterms.

For the sake of completeness, let us note that there is a third customarily-chosen option for
the renormalization of physical parameters, which is given by the MS scheme. This scheme,
however, also exhibits certain drawbacks. First, parameters defined by MS conditions cannot
directly be interpreted as physical quantities, as can be seen e.g. from the fact that they
depend on the renormalization scale µr. Moreover, in the context of tadpole scheme I, the
MS scheme can lead to gauge-dependent S-matrix elements, for example if applied in order
to fix the counterterms for the angle α.4 We will come back to this issue in Sec. 9.5. Finally,
in the particular case of the mixing angles in the 2HDM, MS schemes are found to yield
numerically large radiative corrections, if at the same time OS conditions for masses and
fields are kept [148]. This will be commented on in Sec. 9.5. In summary, we can draw the
following conclusions concerning the applicability of various renormalization schemes within
the the two tadpole frameworks:

• In both tadpole schemes, gauge-independent results can be obtained by defining all
physical counterterms in terms of observables. This, however, leads to an undesirable
process dependence for parameters like e.g. the mixing angles.

• In tadpole scheme II, MS conditions can be applied to attain process-independent pa-
rameters and gauge-independent physical observables. However, in tadpole scheme I,
MS renormalized parameters can result in an artificial gauge dependence of S-matrix
elements. Furthermore, in the case of the 2HDM mixing angles, MS-like schemes can
suffer from numerical instabilities [148].

• In tadpole scheme II, a third possibility opens up: The fact that physical counterterms
are necessarily gauge independent together with the virtues of the PT allows for a
process-independent, non-MS definition of these counterterms. For scheme I, a similar
procedure is not available.

Another conclusion, which can directly be drawn, is that in tadpole scheme II, all gauge-
dependent terms entering the S-matrix through loop-corrections have to be cancelled by the
counterterms of unphysical parameters, i.e. by WFRCs in our case. This is to be inferred
from the gauge independence of S-matrix elements on the one hand and of the physical
counterterms on the other (cf. [88,124]). Hence, in scheme II, the matter of gauge dependence
is completely decoupled from the renormalization of physical parameters and we need not
worry about intricate cancellations of gauge fixing parameter dependent terms among various
counterterms and virtual corrections.
These observations clearly advocate the usage of tadpole scheme II. For this reason, we will
dedicate the subsequent section to a detailed derivation of its implementation in the framework
of the 2HDM.
As a final remark, note that a mixture of the different renormalization conditions proposed
above is possible. We will, for instance, always apply OS conditions, i.e physical conditions,
for all mass parameters and gauge couplings while varying the schemes for α, β and m2

12.

8.2. Implementation of Tadpole Scheme II in the Framework
of the 2HDM

After having motivated the utilization of tadpole scheme II, we will now study in detail its
application to the 2HDM and derive the corresponding implications. The altered treatment

4This is well-known also from electroweak SM calculations, where MS conditions, if applied e.g. to quark mass
parameters, are found to result in gauge-dependent MS masses within tadpole scheme I [117,143,144]. While
not posing a problem in itself, since MS masses are not to be regarded as physical, this renders the relation
between the physical quantities and the renormalized parameters gauge-dependent and leads to an artificial
gauge parameter dependence in S-matrix elements [143].



8.2. Implementation of Tadpole Scheme II in the Framework of the 2HDM 73

of the tadpoles in scheme II affects the relation between vevs and vev-dependent parameters
and couplings as well as the expressions for counterterms and WFRCs. Both consequences
will be derived and examined in the following. For the SM these investigation has been
performed by Fleischer et al. and we are going follow their derivation presented in Ref. [102]
in our generalization of their study to the 2HDM.
Analogously to the case of the SM, we use as our starting point the conditions shown in
Fig. 8.1 (cf. Sec. 6.3). These conditions can be expressed either in the gauge basis or in the

iT (1)
i

+

−iT 0
i (v

(0)
j + ∆(1)vj)

= 0

Figure 8.1.: Pictorial representation of the tadpole conditions in scheme II. The empty circle stands for generic
one-loop contributions to the tadpole, while the cross denotes the shifted “tree-level” tadpole T 0

i , i = 1, 2.

mass basis. However, in the gauge basis, they lead to more concise expressions. Therefore we
will use the tadpole conditions in the gauge basis in the following paragraph. Furthermore,
we start from the original parameter set Eq. (5.31), i.e. we use the parameters λ1 . . . λ5 and
m2

11,m
2
22,m

2
12, since these, unlike the the masses and angles in set 2 Eq. (5.32), do not depend

on v1 and v2 and hence are not affected by a shift in the vevs.
At tree level, the tadpole conditions lead to the tadpole equations Eqs. 5.8 and 5.9. The
solution of these equations provides us with the tree level values of the vevs v1 and v2.
Including higher orders of the perturbative expansion, the vevs v1 and v2 acquire a shift

v1 → v1 + ∆v1, (8.3)

v2 → v2 + ∆v2, (8.4)

such that the condition in Fig. 8.1 is fulfilled. At one loop level this condition yields

T
(1)
1 − T 0

1 (v1 + ∆(1)v1, v2 + ∆(1)v2) ≡ T (1)
1 − T 0

1 −∆(1)T1 = 0, (8.5)

T
(1)
2 − T 0

2 (v1 + ∆(1)v1, v2 + ∆(1)v2) ≡ T (1)
2 − T 0

2 −∆(1)T2 = 0, (8.6)

with

∆(1)T1 =
(
m2

12

v1

v2
+ λ1v

2
1

)
∆(1)v1 +

(
−m2

12 + λ345v1v2

)
∆(1)v2, (8.7)

∆(1)T2 =
(
−m2

12 + λ345v1v2

)
∆(1)v1 +

(
m2

12

v2

v1
+ λ2v

2
2

)
∆(1)v2. (8.8)

In the following we will omit the superscripts (1) for the vev shifts, which are always regarded
to be of one-loop order. Inserting these expressions for ∆T1 and ∆T2 and applying the tree-
level tadpole conditions, Eqs. 8.5 and 8.6 can be solved for ∆v1 and ∆v2, which yields

∆v1 =
v1(m2

12(v1T
(1)
1 + v2T

(1)
2 )− λ345T

(1)
2 v1v

2
2 + λ2T

(1)
1 v3

2)

λ1m2
12v

4
1 + λ2m2

12v
4
2 + 2λ345m2

12v
2
1v

2
2 + (λ1λ2 − λ2

345)v3
1v

3
2

, (8.9)

∆v2 =
v1(m2

12(v1T
(1)
1 + v2T

(1)
2 )− λ345T

(1)
1 v2

1v2 + λ1T
(1)
2 v3

1)

λ1m2
12v

4
1 + λ2m2

12v
4
2 + 2λ345m2

12v
2
1v

2
2 + (λ1λ2 − λ2

345)v3
1v

3
2

. (8.10)

Having derived these expressions, we can now use the relations Eqs. 5.33 - 5.37 between
parameter sets 1 and 2 as well as the connection of Eq. (5.22) between the tadpoles in the
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gauge and in the mass basis to formulate ∆v1 and ∆v2 in terms of physical parameters

∆v1 =
T

(1)
H cα

m2
H

− T
(1)
h sα

m2
h

, (8.11)

∆v2 =
T

(1)
H sα

m2
H

+
T

(1)
h cα

m2
h

, (8.12)

where T
(1)
h and T

(1)
H are to be understood as the one-loop tadpole diagrams in the mass basis.

The shifts ∆v1 and ∆v2 are propagated into all parameters of the 2HDM which depend on
the vevs, i.e. into all mass parameters, the tadpole parameters TH and Th as well as αp and
βp. In the case of the last two parameters one has to carefully distinguish between the mixing
angles αrot, βrot and the angles αp, βp in their role as parameters of the scalar potential,
defined according to Eq. (5.39) and Eq. (5.38). Only the parametric angles depend on the
vevs and receive a shift. The mixing angles αrot, βrot, on the contrary, are still defined to
diagonalize the same tree-level mass matrices Mρ or Mη and Mφ± as in tadpole scheme I
and therefore remain unaffected.

Closely following the procedure outlined in Ref. [102], we next have to determine the ex-
act form of the shifts induced by Eqs. 8.3 and 8.4 in the individual vev-dependent parameters
of the 2HDM. The shift in TH and Th is trivial. Rotating Eqs. 8.5 and 8.6 to the mass basis
directly leads to

(
∆TH
∆Th

)
≡ RT(α)

(
∆T1

∆T2

)
=

(
T

(1)
H

T
(1)
h

)
. (8.13)

For the scalar mass parameters, we have to go back to the expressions for the bilinear terms
of the Higgs potential, stated in Sec. 5.2. Note that in order to consistently apply the scheme
developed in Ref. [102], we also have to take the bilinear tadpole terms (cf. Eq. (5.11)) into
account. Thus, e.g. in the case of the CP-even scalars, we have to consider the following mass
matrix

M̃ρ =

(
m2

12
v2
v1

+ λ1v
2
1 −m2

12 + λ345v1v2

−m2
12 + λ345v1v2 m2

12
v1
v2

+ 3λ2v
2
2

)
+

(
T 0

1
v1

0

0
T 0

2
v2

)
. (8.14)

Performing the shifts of Eqs. 8.3 and 8.4, while also taking into account those induced in T 0
1

and T 0
2 , we find for the shift in M̃ρ

∆Mρ =

(
3λ1v1∆v1 + λ345∆v2 λ345v2∆v1 + λ345v1∆v2

λ345v2∆v1 + λ345v1∆v2 λ345v1∆v1 + λ2v2∆v2

)
. (8.15)

After having determined these shifts, we can set T 0
1 and T 0

2 to zero and omit the tilde ˜ ,
which has already been done in Eq. (8.15). The corresponding shifts in Dρ, the CP-even mass
matrix in the mass basis, can be obtained from this by a rotation with R(α). Replacing ∆v1

and ∆v2 in the resulting matrix with the explicit expressions in Eq. (8.11) and Eq. (8.12) and
finally formulating the result in terms of the physical parameter set, we arrive at

∆Dρ =

(
∆m2

H ∆m2
Hh

∆m2
hH ∆m2

h

)
, (8.16)



8.2. Implementation of Tadpole Scheme II in the Framework of the 2HDM 75

with

∆m2
H =− sβ−α

(
(m2

h + 2m2
H)s2αs2β − 2m2

12(3s2α + s2β)
)

m2
hvs

2
2β

T
(1)
h (8.17)

− 3

(
4m2

12sα+βs
2
β−α +m2

H(cβ−αs2α − 2sα+β)s2β

)

m2
Hvs

2
2β

T
(1)
H ,

∆m2
h =− 3

(
4m2

12cα+βc
2
β−α −m2

h(2cα+β + s2αsβ−α)s2β

)

m2
hvs

2
2β

T
(1)
h (8.18)

+
cβ−α

(
(2m2

h +m2
H)s2αs2β − 2m2

12(3s2α − s2β)
)

m2
Hvs

2
2β

T
(1)
H ,

∆m2
Hh =

cβ−α
(
(2m2

h +m2
H)s2αs2β − 2m2

12(3s2α − s2β)
)

M2
hvs

2
2β

T
(1)
h (8.19)

− sβ−α
(
(m2

h + 2m2
H)s2αs2β − 2m2

12(3s2α + s2β)
)

M2
Hvs

2
2β

T
(1)
H = ∆m2

hH .

We can proceed in the same way for the CP-odd and the charged scalars.
Analogous shifts also appear in the mass terms for gauge bosons and fermions, as we illustrate
for the case of the W -boson and the τ -lepton. In terms of the vevs v1 and v2 their masses
are given by

M2
W =

g2
2(v2

1 + v2
2)

4
, (8.20)

mτ =
yτ (v1(Y2cα − Y1sα) + v2(Y1cα + Y2sα))√

2
, (8.21)

where yτ denotes the SM τ -Yukawa coupling and Y1 and Y2 are combinations of trigonometric
functions of α and β that depend on the 2HDM type under consideration (cf. App. A.2).
Inserting the shifts of Eqs. 8.11 and 8.12 and then translating the result to parameter set 2
leads to

∆M2
W =

MW esβ−α
m2
hsW

T
(1)
h +

MW ecβ−α
m2
HsW

T
(1)
H , (8.22)

∆mτ =
yτY1√
2m2

h

T
(1)
h +

yτY2√
2m2

H

T
(1)
H . (8.23)

For a subsequent interpretation of these mass shifts, it is important to note that they corre-
spond exactly to the contribution of tadpole diagrams to the self-energies of the respective
particles. We define

Tφiφj ≡− i
h

φi φj
− i H

φi φj
(8.24)

=− i
[

(ighφiφj )

(
i

−m2
h

)(
T

(1)
h

−i

)
+ (igHφiφj )

(
i

−m2
H

)(
T

(1)
H

−i

)]
,
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with φi, φj ∈ {h, H},

TWW ≡− i h
W W

− i H
W W

(8.25)

=− i
[

(igWWh)

(
i

−m2
h

)(
T

(1)
h

−i

)
+ (igWWH)

(
i

−m2
H

)(
T

(1)
H

−i

)]

and

Tττ ≡− i h
τ τ

− i H
τ τ

(8.26)

=− i
[

(igττh)

(
i

−m2
h

)(
T

(1)
h

−i

)
+ (igττH)

(
i

−m2
H

)(
T

(1)
H

−i

)]
,

where the empty circles denote generic one-loop tadpole contributions and the following
2HDM Higgs couplings have been used

gHHH =
3

vs2
2β

(
4m2

12sα+βs
2
β−α +m2

H(cβ−αs2α − 2sα+β)s2β

)
, (8.27)

gHHh =
sβ−α
vs2

2β

(
(m2

h + 2m2
H)s2αs2β − 2m2

12(3s2α + s2β)
)
, (8.28)

gHhh = −cβ−α
vs2

2β

(
(2m2

h +m2
H)s2αs2β − 2m2

12(3s2α − s2β)
)
, (8.29)

ghhh =
3

vs2
2β

(
4m2

12cα+βc
2
β−α −m2

h(2cα+β + s2αsβ−α)s2β

)
(8.30)

and

ghWW =
MW esβ−α

sW
, gHWW =

MW ecβ−α
sW

, (8.31)

ghττ = −yτY1√
2
, gHττ = −yτY2√

2
. (8.32)

For simplicity we have furthermore split off the Lorentz structure. With these definitions we
can establish the following relations

−∆m2
H = THH , (8.33)

−∆m2
h = Thh, (8.34)

−∆m2
Hh = THh, (8.35)

−∆M2
W = −TWW , (8.36)

−∆mτ = Tττ . (8.37)

Again, equivalent results can be obtained for the other scalars, gauge bosons and fermions.
The shifts in the remaining vev-dependent parameters, αp and βp, can directly be derived
from their definitions in terms of v1 and v2, as we illustrate in App. A.1. These shifts in the
parameters have three important consequences:

1. The shifts in the diagonal elements of the mass matrices appear in the diagonal elements
of the corresponding inverse propagators, thus giving an additional contribution to the
mass counterterms defined according to the prescriptions of the on-shell scheme. These
additional contributions render the mass counterterms gauge-independent [88,102].
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2. The shifts in the off-diagonal elements of the mass matrices appear in the off-diagonal
elements of the inverse scalar propagators, thus leading to an additional term in the
corresponding off-diagonal WFRCs defined in the on-shell scheme.

3. The shifts induced in the vev-dependent parameters appear in the Feynman rules for
scalar vertices and reproduce the tadpole diagrams contributing to the vertex correc-
tions.

We will investigate the third point below. First, however, we will concentrate on the influence
of the shifts on the mass and charge counterterms and WFRCs.

8.3. Transformation of the On-Shell Counterterms in Tadpole
Scheme II

In tadpole scheme II, the elements of the inverse propagator of a generic pair of scalar fields
have the form

Γ̂SiSi(p
2) =(p2 −m2

Si)(1 + δZSiSi)−∆m2
Si − δm2

Si + ΣSiSi(p
2), (8.38)

Γ̂SiSj (p
2) =

δZSjSi
2

(p2 −m2
Sj ) + (p2 −m2

Si)
δZSiSj

2
−∆m2

SiSj + ΣSiSj (p
2), i 6= j. (8.39)

Note that, unlike in Eqs. 7.2 and 7.3, no tadpole counterterms appear here. Instead, the mass
shifts ∆m2

Si
and ∆m2

SiSj
show up.

According to the OS renormalization conditions, we have to determine the counterterm δm2
Si

in such way that the parameter mSi
, appearing in the inverse propagator, corresponds to the

pole mass of the particle under consideration. Solving the equation

Γ̂SiSi(p
2)
∣∣∣
p2=m2

Si

= 0, (8.40)

resulting from this condition, for δm2
Si

leads to

δm2
Si = −∆m2

Si + ΣSiSi(m
2
Si).

Afterwards making use of Eqs. 8.33 and 8.34 we get

δm2
Si = TSiSi + ΣSiSi(m

2
Si) ≡ Σ̃SiSi(m

2
Si) = −i Si Si −i Si Si ,

(8.41)

where the first diagram symbolically stands for all contributions to the conventional self-
energy while the second diagram denotes the contributions of tadpole diagrams. The scalar
mass counterterms resulting from this definition are gauge independent, as one can verify by
explicitly calculating these diagrams in general Rξ-gauge [88,102].

Next, we can define the self-energy Σ̃SiSj
in the same manner and use the OS conditions

Eqs. 6.42 and 6.43 to solve for δZSiSj and δZSjSi

δZSiSj =− 2
Σ̃SiSj

(m2
Sj

)

m2
Sj
−m2

Si

, δZSjSi = 2
Σ̃SiSj

(m2
Si

)

m2
Sj
−m2

Si

. (8.42)

Note that the diagonal WFRCs, unlike the off-diagonal ones, do not receive a contribution
by tadpole diagrams. Since the tadpoles do not depend on the external momentum, their
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contributions drop out when taking the derivative prescribed by Eq. (6.46) and Eq. (6.47).
For the gauge bosons we can proceed analogously. The transverse part of the renormalized
two-point functions for generic gauge bosons Vi and Vj in tadpole scheme II is given by (cf.
Eqs. 7.17 and 7.18)

Γ̂TViVi(p
2) =−

(
(p2 −M2

Vi)(1 + δZViVi)− δM2
Vi −∆M2

Vi + ΣT
ViVi(p

2)
)
, (8.43)

Γ̂TViVj (p
2) =−

(
δZVjVi

2
(p2 −M2

Vj ) + (p2 −M2
Vi)
δZViVj

2
+ ΣT

ViVj (p
2)

)
, (8.44)

so that the on-shell conditions lead to

δM2
Vi = −∆M2

Vi + ΣT
ViVi(M

2
Vi) ≡ Σ̃T

ViVi(M
2
Vi) = i

Vi Vi
+ i

Vi Vi
,

(8.45)

As in Eq. (8.41) the diagrams symbolize all possible contributions to the conventional self-
energy and the tadpole diagrams. Again, it can be shown that the mass counterterms defined
in this way are gauge independent [88,101]. Like in the scalar case, the diagonal WFRCs are
not affected by the shifts. Furthermore, there is no tadpole contribution to the A-Z-mixing
self-energy, wherefore also δZAZ and δZZA remain unchanged as compared to tadpole scheme
I.
Finally, as can easily be verified, only the scalar parts of the fermion self-energies are influenced
by the change of the tadpole schemes. In scheme II they attain the following form

Σ̂S,l
fifi

(p2) =− δmfi + ∆mfi

mfi

− 1

2
δ(ZLfifi + ZRfifi) + ΣS,l

fifi
(p2), (8.46)

Σ̂S,r
fifi

(p2) =− δmfi + ∆mfi

mfi

− 1

2
δ(ZLfifi + ZRfifi) + ΣS,r

fifi
(p2), (8.47)

which results in altered, gauge-independent fermion mass counterterms

δmfi =
mfi

2
R̃e

(
ΣL
fifi

(m2
fi

) + ΣR
fifi

(m2
fi

) + ΣS,l
fifi

(m2
fi

)− ∆mfi

mfi

+ ΣS,r
fifi

(m2
fi

)− ∆mfi

mfi

)

≡mfi

2
R̃e
(

ΣL
fifi

(m2
fi

) + ΣR
fifi

(m2
fi

) + Σ̃S,l
fifi

(m2
fi

) + Σ̃S,r
fifi

(m2
fi

)
)
. (8.48)

The last parameter defined via on-shell conditions, the electric charge e, remains unchanged
when switching from tadpole scheme I to scheme II. This can directly be read off the explicit
form in Eq. (7.21) noting that neither ΣAZ nor ΣAA receive contributions by tadpole dia-
grams. Also the dependent counterterm δg2 does not get modified.
To conclude this section, we summarize all counterterms that are altered under a change of
schemes

δm2
h = Re(Σ̃hh(m2

h)), (8.49)

δm2
H = Re(Σ̃HH(m2

H)), (8.50)

δm2
A0

= Re(Σ̃A0A0(m2
A0

)), (8.51)

δm2
H± = R̃e(Σ̃H±H±(m2

H±)), (8.52)

δM2
W = R̃e

(
Σ̃T
WW (M2

W )
)
, (8.53)

δM2
Z = Re

(
Σ̃T
ZZ(M2

Z)
)
, (8.54)

δmτ =
mτ

2
R̃e
(

ΣL
ττ (m2

τ ) + ΣR
ττ (m2

τ ) + Σ̃S,l
ττ (m2

τ ) + Σ̃S,r
ττ (m2

τ )
)
, (8.55)
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δZhH = −2Re(Σ̃Hh(m2
H))

m2
H −m2

h

, (8.56)

δZG0A0 = −
2Re(Σ̃G0A0(m2

A0
))

m2
A0

, (8.57)

δZG±H± = −2R̃e(Σ̃G±H±(mH±))

m2
H±

, (8.58)

δZHh =
2Re(Σ̃Hh(m2

h)

m2
H −m2

h

, (8.59)

δZA0G0 =
2Re(Σ̃G0A0(0)

m2
A0

, (8.60)

δZH±G± =
2R̃e(Σ̃G±H±(0))

m2
H±

. (8.61)

All remaining counterterms introduced in sections 7.1 to 7.3 remain unmodified as compared
to scheme I.

8.4. Transformation of the Couplings in Tadpole Scheme II

As a next step, in order to adapt the scheme proposed by Fleischer et al. to the 2HDM, it
is important to verify that the shifts in the vevs, when taken into account in the Feynman
rules for vertices with one or more scalars, do indeed reproduce the diagrams with tadpoles
attached to the vertices, as claimed at the end of Sec. 8.2. In order to show this, we have to
perform the shifts

∂gabc
∂vi

∆vi (8.62)

of the coupling gabc between the mass eigenstates a, b, c, at least one of which is a scalar. gabc
is supposed to be given in terms of the parameters of set 1 Eq. (5.31), i.e. it depends on the
vevs v1 and v2 only explicitly and there is no implicit dependence. Subsequently, we have to
compare the new diagrams, induced by these shifts in the coupling, to the diagrams in which
a tadpole is attached to the original vertex between a, b, c. Explicitly we have to ascertain
the following relation

∂gabc
∂vi

∆vi =
gabch
m2
h

T
(1)
h +

gabcH
m2
H

T
(1)
H , (8.63)

or diagrammatically

−i




a

c

b

i∂gabc∂vi

∆vi




= −i




a

c

b

h

igabch
+ a

c

b

H

igabcH



, (8.64)

where summation over identical indices is implied. We would like to reformulate the partial
derivatives of the couplings in Eq. (8.64) such that the differentiation is performed with respect
to the vevs vh and vH of the mass eigenstates instead of v1 and v2. Thereby, the linkage to
the couplings on the right hand side becomes more obvious. Exploiting the relation

vH =cαv1 + sαv2, (8.65)

vh =− sαv1 + cαv2, (8.66)
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we find

∂gabc
∂vi

∆vi =
∂gabc
∂vh

∑

i=1,2

∂vh
∂vi

∆vi +
∂gabc
∂vH

∑

i=1,2

∂vH
∂vi

∆vi (8.67)

=
∂gabc
∂vh

(−sα(
cα
m2
H

T
(1)
H − sα

m2
h

T
(1)
h ) + cα(

sα
m2
H

T
(1)
H +

cα
m2
h

T
(1)
h ))

+
∂gabc
∂vH

(cα(
cα
m2
H

T
(1)
H − sα

m2
h

T
(1)
h ) + sα(

sα
m2
H

T
(1)
H +

cα
m2
h

T
(1)
h ))

=
∂gabc
∂vh

T
(1)
h

m2
h

+
∂gabc
∂vH

T
(1)
H

m2
H

,

where we have used the expressions for the the shifts ∆vi from Eqs. 8.11 and 8.12. This
is almost the relation we seek to establish. The only missing ingredient is the following
connection between the couplings gabc and gabcd

∂gabc
∂vd

= gabcd. (8.68)

In the case of a, b, c denoting three scalar mass eigenstates, the desired relation can directly
be read off the Higgs potential. The quartic terms can be parametrized as

V quart
H =

∑

i,j,k,l

cijkl(hi + vi)(hj + vj)(hk + vk)(hl + vl), (8.69)

hi/j/k/l ∈ {h, H, A0, G0, H
±, G±},

where some of the vi might be zero (in the case of hi neither denoting h nor H). From this
we get

igabc = −i ∂V quart
H

∂ha∂hb∂hc

∣∣∣∣∣
hi=0

= −i
∑

l

σabclcabclvl, (8.70)

igabcd = −i ∂V quart
H

∂ha∂hb∂hc∂hd

∣∣∣∣∣
hi=0

= −iσabcdcabcd. (8.71)

Here we have introduced combinatorial factors σ, which depend on the number of identical
particles in the vertex. Eqs. 8.70 and 8.71 reveal the validity of Eq. (8.68).
Apart from in these purely scalar vertices, tadpole diagrams are also induced in vertices with
gauge bosons and scalars. It can be shown in an identical manner that Eq. (8.62) holds also
in this case.
This demonstrates that the shifts in the vevs induce shifts in the couplings which exactly
reproduce the tadpole diagrams. As a consequence, tadpole diagrams have to be taken into
account in every vertex where they can be attached according to the Feynman rules.
Although the investigation of the shifts in the couplings is most conveniently performed with
couplings expressed in terms of the parameters of set 1, sometimes one might wish to start
from the expressions in terms of set 2 parameters. In this case one has to apply the chain rule
since the parameters of set 2 depend on the vevs v1 and v2. Let {λk} and {pm} generically
denote the parameters of set 1 and set 2, respectively, then the application of the chain rule
yields

∑

i=1,2

∂gabc({vj , λk})
∂vi

∆vi =
∑

l,i

∂g′abc({pm})
∂pl

∂pl
∂vi

∆vi =
∑

l

∂g′abc({pm})
∂pl

∆pl, (8.72)

where g′abc({pm}) = gabc({vj({pm})}, {λk({pm})}) and the shifts ∆pl are exactly those shifts
in the 2HDM parameters we present in Sec. 8.2 ( Eqs. 8.17 - 8.19, 8.22 and 8.23) and
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App. A.1 (Eqs. A.1, A.2). Together with the relation in Eq. (8.63) this proofs the third
statement made at the end of Sec. 8.2, i.e. that the shifts in the parameters, induced by the
vev shifts, reproduce the tadpole diagrams attached to scalar vertices.
One word of caution is in order, however, since also in the translation rules from set 1 to set
2 (cf. Eqs. 5.33 - 5.37) additional tadpole terms have to be taken into account in order to
determine the shifts correctly. In Eqs. 5.33 - 5.37 these tadpole terms have already been set
to zero. The full expressions, including all tadpole terms, are given in App. A.1.

8.5. Process-Independent Definition of α and β in Tadpole Scheme
II

As detailed in Sec. 8.1, the altered treatment of the tadpoles allows and even requires us to fix
all counterterms of physical parameters in such a way that they become gauge independent.
Consequently, we next have to find a definition for the angular counterterms fulfilling this
requirement. One possibility is to start from the same definition of δα and δβ as in the KOSY
scheme, now using the modified WFRCs of Eqs. 8.56 - 8.61, and to keep only the truly gauge
independent (g.i.) parts of the resulting counterterms. Formally, this amounts to

δα =
δZHh − δZhH

4

∣∣∣∣
g.i.

=
Re
[
Σ̃Hh(m2

h) + Σ̃Hh(m2
H)
]

2(m2
H −m2

h)

∣∣∣∣∣∣
g.i.

, (8.73)

δβo =
δZG0A0 − δZA0G0

4

∣∣∣∣
g.i.

= −
Re
[
Σ̃G0A0(m2

A0
) + Σ̃G0A0(0)

]

2m2
A0

∣∣∣∣∣∣
g.i.

, (8.74)

δβc =
δZG±H± − δZH±G±

4

∣∣∣∣
g.i.

= −
Re
[
Σ̃G±H±(m2

H±) + Σ̃G±H±(0)
]

2m2
H±

∣∣∣∣∣∣
g.i.

. (8.75)

Note that the definition of δα and δβ in terms of the WFRCs does not automatically yield
gauge-independent results for the angular counterterms. Although the gauge-dependent A0-
functions appearing in Eqs. 7.38 - 7.39 vanish when switching to tadpole scheme II, the gauge-
dependent B0-functions remain. This can be ascribed to the fact that the renormalization
conditions of the KOSY scheme are not physical. However, due to the altered treatment of the
tadpoles, we can now extract the gauge-independent parts of counterterms in a well-defined
and unique way by applying the pinch technique. With the help of the PT, we can formulate
gauge-independent self-energies and then use these in the expressions Eqs. 8.73 - 8.75 to
arrive at gauge-independent angular counterterms.
Espinosa and Yamada have calculated the pinched self-energies for the case of two CP-even
Higgs bosons and stated explicit expressions for their results in [131]. Albeit their calculation
refers to the case of the MSSM, their findings are valid also in the context of the 2HDM.
Espinosa and Yamada express their result for the self-energies in terms of tadpole self-energies
calculated in Feynman gauge plus additional gauge-independent terms

Σpinch
Hh (p2) = Σ̃Hh(p2)

∣∣∣
ξ=1

+ Σadd
Hh (p2) (8.76)

where ξ represents all gauge-fixing parameters introduced in Sec. 5.5 and

Σadd
Hh (p2) =

g2
2sβ−αcβ−α
32π2c2

W

(
p2 − m2

H +m2
h

2

) [(
B0(p2,M2

Z ,m
2
A0

)− B0(p2,M2
Z ,M

2
Z)
)

(8.77)

+2c2
W

(
B0(p2,M2

W ,m
2
H±)− B0(p2,M2

W ,M
2
W )
)]
.
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Inserting this into the definition of δα, we arrive at a gauge-independent OS definition for
the mixing angle. By OS we mean in this case, that the momenta entering the self-energies
correspond to the masses of the mixing particles, i.e. to m2

h and m2
H , as required by the

KOSY procedure. Alternatively, one can define δα in terms of self-energies evaluated at

the momentum p2
∗ =

m2
h+m2

H
2 . As can directly be read off Eq. (8.77), for this choice of the

external momentum the additional terms vanish and the pinched self-energies correspond to
the tadpole self-energies evaluated in Feynman gauge.
In order to define δβo or δβc in a similar way, we need the pinched A0-G0- or H±-G±-self-
energy, respectively. To our knowledge, they are not yet available in the literature, wherefore
we derived the relevant terms in two independent calculations from scratch. Our final result
is given by

Σpinch
G0A0

(p2) = Σ̃G0A0(p2)
∣∣∣
ξ=1

+ Σadd
G0A0

(p2), (8.78)

Σpinch
G±H±(p2) = Σ̃G±H±(p2)

∣∣∣
ξ=1

+ Σadd
G±H±(p2), (8.79)

with

Σadd
G0A0

(p2) =
g2

2sβ−αcβ−α
32π2c2

W

(
p2 −

m2
A0

2

) [
(B0(p2,M2

Z ,m
2
H)− B0(p2,M2

Z ,m
2
h))
]
, (8.80)

Σadd
G±H±(p2) =

g2
2sβ−αcβ−α

16π2

(
p2 − m2

H±

2

) [
(B0(p2,M2

W ,m
2
H)− B0(p2,M2

W ,m
2
h))
]
. (8.81)

As in the case of the CP-even scalars, the pinched self-energy can be expressed in terms of the
tadpole self-energy in the Feynman gauge plus additional terms that vanish if the external

momentum is chosen to be p2
∗ =

m2
A0
2 or p2

∗ =
m2
H±
2 , respectively.

In the following we will refer to the scheme using the first choice of the momenta as pinched
on-shell (p-OS) scheme and to the one selecting the second possibility as pinched p∗ (p-p∗ )
scheme.
To summarize, we state the expressions for δα and δβ in the different renormalization schemes

δαp-OS =
1

2(m2
H −m2

h)
Re
[
Σpinch
Hh (m2

h) + Σpinch
Hh (m2

H)
]
, (8.82)

δβp-OS
o = − 1

2m2
A0

Re
[
Σpinch
G0A0

(m2
A0

) + Σpinch
G0A0

(0)
]
, (8.83)

δβp-OS
c = − 1

2m2
H±

Re
[
Σpinch
G±H±(m2

H±) + Σpinch
G±H±(0)

]
, (8.84)

δαp-p∗ =
1

(m2
H −m2

h)
Re

[
Σ̃Hh

(
m2
H +m2

h

2

)]

ξ=1

, (8.85)

δβp-p∗
o = − 1

m2
A0

Re

[
Σ̃G0A0

(
m2
A0

2

)]

ξ=1

, (8.86)

δβp-p∗
c = − 1

m2
H±

Re

[
Σ̃G±H±

(
m2
H±

2

)]

ξ=1

. (8.87)

Both the p-OS and p-p∗ scheme lead to process- and gauge-independent definitions of the
angular counterterms and therefore fulfill at least two of the desired criteria for a good renor-
malization scheme stated in Sec. 6.6. The issue of numerical stability, which constitutes the
third criterion, will be discussed in Sec. 12.
One further comment is in order concerning the relation to the KOSY scheme . If we wanted
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to establish a relation between the WFRCs in the mass basis and the angular counterterms
as in Eq. (7.31), we would have to start from a non-symmetric matrix of WFRCs Zϕ in the
gauge basis in order to be able to define δα and δβ according to Eqs. 8.82 - 8.84 or Eqs. 8.82
- 8.84, respectively. Without the additional degree of freedom resulting from allowing Zϕ
to be non-symmetric, we would inevitably be led to a definition as in Eq. (7.34) and we
would not be able to define the angular counterterms as the gauge-independent part of this
equation. However, it is important to emphasize once again that a similar procedure, i.e. the
introduction of a non-symmetric WFRC-matrix in the gauge basis, does not cure the gauge
dependence of the KOSY scheme. In tadpole scheme I, we do not have the PT at our disposal
and therefore cannot extract the gauge-independent parts in a unique, well-defined way. This
was already discussed at the end of Subs. 7.4.2.
Moreover, the additional degree of freedom we have implicitly assumed in deriving Eqs. 8.82
- 8.87 leads to an independence of the off-diagonal WFRCs from the angular counterterms.
This in turn implies that the CP-odd δβo can be used in processes with charged external Higgs
bosons and vice versa without the need for finite wave function correction factors. A glance
at Eq. (7.32) and Eq. (7.33) confirms this statement: Using an independent constant δCS2S1

in Eq. (7.33), δCS1S2 and δCS2S1 can be adjusted in such a way that the on-shell conditions
for the scalars in Eqs. 6.42 and 6.43 are fulfilled, independent of the definition of the angular
counterterm.





CHAPTER 9

A Process-Dependent Scheme for α and β

In the previous two sections we have explored renormalization schemes for α and β not relying
on any specific physical process. We saw that these schemes are susceptible to resulting in
gauge-dependent physical matrix elements. Furthermore, we observed that, if the tadpole
scheme II is applied, the PT can be invoked to erase this gauge dependence. However, to our
knowledge in tadpole scheme I no comparable technique is available to accomplish this task.
Therefore, it might be worthwhile to abandon the criterion of process independence and ex-
amine the definition of δα and δβ by means of a physical observable. This procedure is
guaranteed to lead to gauge-independent final results for physical quantities. Yet, the price
to be paid for gauge independence in this case is a loss of a universal definition of the mixing
angles α and β. Furthermore, a process-dependent definition leads to an inflation of the
expressions for the angular counterterms.
Process-dependent definitions of the angular counterterms are possible in both tadpole schemes.
In scheme I the resulting δα contains exactly those gauge-dependent A0 functions which are
required to achieve gauge independence of amplitudes, whereas δβ is gauge independent. If
the tadpoles are treated according to scheme II, both δα and δβ are gauge independent.
In this chapter we will first present the general renormalization conditions for a process de-
pendent scheme and determine suitable processes to fix the angular counterterms ( Sec. 9.1).
Afterwards, we will derive explicit expression for δβ (Sec. 9.2) and δα (Sec. 9.3) and discuss
their gauge dependence in both tadpole schemes (Sec. 9.4).
In the last section (Sec. 9.5), we will briefly discuss MS definitions of the angular counterterms,
which can directly be obtained from the process-dependent expressions.

9.1. Process Selection

A process-dependent definition of a counterterm relies on the fact that the 2HDM is renor-
malizable. Hence, the UV divergences contained in a counterterm must be universal, i.e.
the counterterm must be capable of cancelling the remaining UV divergences in every vertex
where it contributes. This allows us to pick any suitable process to fix a counterterm and use
the thus determined renormalization constant in arbitrary other processes. Ideally, a process-
dependent renormalization condition should rely on the measurement of a physical quantity
B, e.g. a decay width, and require the observable BO(n-loop), calculated to nth loop-order, to
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equal the measured value

BO(n-loop) = Bmeasured. (9.1)

However, lacking any measurement of a suitable observable within the 2HDM so far, we
can only demand equality to the tree-level result. Therefore, in this section we will use the
renormalization condition

ΓO(1-loop) = Γtree, (9.2)

where Γ denotes the width of some appropriately chosen decay process. There are some pre-
requisites suitable processes should fulfill.
First, in order to fix both δα and δβ, we need two processes that depend on α and β in such
a way that we can solve for both angular counterterms.
Second, the processes should not contain inseparable IR divergences, i.e. IR divergences that
cannot be treated independently of the renormalization process. The occurrence of IR di-
vergences, caused by internal photon propagators, necessitates the inclusion of real photon
emission contributions. If these so-called real corrections and the virtual QED corrections,
taken together, do not constitute a UV-finite subset, the bremsstrahlung corrections will enter
the definition of the angular counterterms. As a consequence, these will receive a dependence
on experimental phase space cuts, which is considered to be unacceptable [138].
Third, the processes should be kinematically not too restricted since this would limit the
applicability of the renormalization scheme to a small area of the 2HDM parameter space.
Finally, it is desirable that the processes are phenomenologically relevant such that there is
a chance for them to be measured in the future, provided the 2HDM is realized in nature.

Several processes have been applied in the literature to renormalize the scalar mixing angles
in the 2HDM or in the MSSM. In Ref. [149], the process H± → HW± is used to renormalize
the combination δ(β − α). Yet, the authors restrict themselves to the dominant top quark
corrections. Taking into account the full electroweak corrections, we encounter the problem
of inseparable IR divergences, explained above. The same is true for the process H± → τ±ν,
considered in [150] to renormalize tan(β) in the MSSM. For this reason the authors of [138]
propose as an alternative the decay A0 → τ+τ−. In the latter process the pure QED correc-
tions constitute a UV-finite subset and can therefore be separated from the renormalization
procedure.
Since the process A0 → τ+τ− is kinematically non-restrictive and may be phenomenologically
viable, we will use it in this chapter to renormalize β. In order to fix δα in a similar manner,
we need a second process, for which we choose H → τ+τ−. This process likewise allows for
a separation of the pure QED corrections and shares the other advantages of A0 → τ+τ−.
Other possible choices are discussed in detail in Ref. [148].

9.2. Determination of δβ from A0 → ττ

Using the process A0 → ττ to define δβ, we require the following renormalization condition
to be fulfilled

Γ
O(1-loop),weak
A0→ττ = Γtree

A0→ττ . (9.3)

The superscript weak indicates that Γ
O(1-loop),weak
A0→ττ is supposed to contain only purely weak

corrections while all QED corrections are excluded. In Subs. 3.2.2 we have stated a generic
formula for the partial decay width of a scalar φ. Plugging in the elements specific to the
process under consideration, we arrive at

Γ
O(1-loop),weak
A0→ττ =

1

16πm3
A0

λ(m2
A0
, m2

τ , m
2
τ )
∑

s1,s2

∣∣∣Aweak
A0→ττ

∣∣∣
2

O(1-loop)
, (9.4)
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where the sum runs over all possible spin states of the outgoing fermions. Furthermore we
have, following the notation introduced in Subs. 3.2.2

∣∣∣Aweak
A0→ττ

∣∣∣
2

O(1-loop)
=
∣∣Atree

A0→ττ
∣∣2 + 2Re

[
Atree∗
A0→ττ

(
Avirt(1)
A0→ττ +Act(1)

A0→ττ

)weak
]
. (9.5)

Avirt(1),weak
A0→ττ comprises all purely weak one-loop corrections contributing to the process under

consideration, whereas Act(1),weak
A0→ττ denotes the corresponding counterterm amplitude. Due to

the fact that we have renormalized all external particles on-shell, we do not have to consider

diagrams with external leg corrections in Avirt(1),weak
A0→ττ (cf. Subs. 3.2.1 and 3.2.2). In the

following we will omit the superscript (1) with the implicit understanding that we always

work to strict one-loop order. Both Avirt,weak
A0→ττ and Act,weak

A0→ττ can be written in a factorized form
by extracting the tree-level amplitude, i.e

(
Avirt
A0→ττ +Act

A0→ττ
)weak

= Atree
A0→ττ

(
Fvirt
A0→ττ + Fct

A0→ττ
)weak

, (9.6)

where we introduced the scalar form factors Fvirt,weak
A0→ττ and Fct,weak

A0→ττ . As a consequence of this
factorization, we can pull the form factors out of the spin sum, which allows us to write:

Γ
O(1-loop),weak
A0→ττ = Γtree

A0→ττ
(

1 + 2Re
(
Fvirt
A0→ττ + 2Fct

A0→ττ
)weak

)
. (9.7)

Obviously, Eq. (9.3) is fulfilled if

Fct,weak
A0→ττ = −Fvirt,weak

A0→ττ (9.8)

holds. Plugging in the explicit expression for Fct,weak
A0→ττ ,

Fct,weak
A0→ττ =

δg2

g2
+
δmweak

τ

mτ
− δM2

W

2M2
W

+
1 + Y 2

3

Y3
δβ

+
δZA0A0

2
− 1

Y3

δZG0A0

2
+
δZL,weak

τ

2
+
δZR,weak

τ

2
, (9.9)

which can be read off the Lagrangian, we can solve for δβ

δβ =
−Y3

1 + Y 2
3

(
Fvirt,weak
A0→ττ +

δg2

g2
+
δmweak

τ

mτ
− δM2

W

2M2
W

+
δZA0A0

2
− 1

Y3

δZG0A0

2
+
δZL,weak

τ

2
+
δZR,weak

τ

2

)
. (9.10)

Like Y1,2, introduced above, Y3 is a modifier of the Yukawa couplings, depending on the type
of 2HDM under consideration (cf. Tab. A.1). Moreover, note that apart from the virtual
corrections, only δmτ and δZL,Rτ are affected by the prescription to omit the pure QED
corrections, specifically the photon loop contributing to the τ -τ -self-energy. The omitted
QED corrections

δmQED
τ

mτ
+
δZL,QED

τ

2
+
δZR,QED

τ

2
+ Fvirt,QED

A0→ττ

form a UV-finite subset and incorporate all IR divergences contained in the amplitude.
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9.3. Determination of δα from H → ττ

We can proceed in the same way in order to extract δα from the prescription

Γ
O(1-loop),weak
H→ττ = Γtree

H→ττ . (9.11)

Since the factorization

(
Avirt
H→ττ +Act

H→ττ
)weak

= Atree
H→ττ

(
Fvirt
H→ττ + Fct

H→ττ
)weak

(9.12)

also holds for the process H → ττ , the condition in Eq. (9.11) is reduced to

Fct,weak
H→ττ = −Fvirt,weak

H→ττ . (9.13)

Like above, Avirt,weak
H→ττ is defined to incorporate all contributing weak one-loop corrections and

Act,weak
H→ττ denotes the corresponding counterterm amplitude. Again, external leg corrections

do not have to be considered in the virtual amplitude due to the determination of all WFRCs
according to OS conditions. Inserting the exact expression for Fct,weak

H→ττ

Fct,weak
H→ττ =

δg2

g2
+
δmweak

τ

mτ
− δM2

W

2M2
W

+
Y1

Y2
δα+ Y3δβ

+
δZHH

2
+
Y1

Y2

δZhH
2

+
δZL,weak

τ

2
+
δZR,weak

τ

2
, (9.14)

we can solve for δα

δα = −Y2

Y1

(
Fvirt,weak
H→ττ +

δg2

g2
+
δmweak

τ

mτ
− δM2

W

2M2
W

+ Y3δβ (9.15)

+
δZHH

2
+
Y1

Y2

δZhH
2

+
δZL,weak

τ

2
+
δZR,weak

τ

2

)
.

Again,

δmQED
τ

mτ
+
δZL,QED

τ

2
+
δZR,QED

τ

2
+ Fvirt,QED

H→ττ

constitutes a UV-finite subset and comprises the complete IR-divergence of the amplitude.

9.4. Discussion of the Gauge Dependence of δα and δβ

The expressions derived for the angular counterterms in the previous sections are general, i.e.
they hold for both tadpole schemes. However, the individual building blocks depend on the
specific scheme choice. As discussed in Sec. 8.3, when switching form tadpole scheme I to
scheme II, modifications are induced in δmτ , δM2

W and all the off-diagonal scalar WFRCs. For
the processes under consideration, the form factors for the virtual corrections do not receive a
modification under the change of tadpole schemes. This is due to the fact that a vertex of two
fermions and two scalars is forbidden by dimensional arguments in any renormalizable theory.
Hence, we cannot attach tadpole diagrams to the tree-level vertex of the two investigated
processes. In general, however, new topologies comprising tadpole diagrams arise in the
virtual corrections when changing the tadpole scheme.

We are now interested in the gauge dependence inherent in the angular counterterms in
Eqs. 9.10 and 9.15. As we have seen in Sec. 8.1, in tadpole scheme II any gauge dependence
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of an amplitude originating from the virtual corrections is cancelled by the WFRCs (or exter-
nal leg corrections, if the fields are not renormalized on-shell). This requires all counterterms
for physical parameters, including the mixing angles, to be gauge independent. By contrast,
in tadpole scheme I the sum of virtual corrections and WFRC contributions exhibits a gauge
dependence, which has to be cancelled by gauge-dependent parameter counterterms. Fur-
thermore, the investigations in Subs. 7.4.2 have shown that part of this gauge dependence,
which comes in terms of A0-functions, has to be cancelled by the angular counterterms.
Since a process-dependent definition of δα and δβ is guaranteed to lead to gauge-independent
amplitudes, we expect to find in the angular counterterms for both schemes exactly those
gauge dependent terms which are required for this purpose. That is, we anticipate gauge-
independent angular counterterms for tadpole scheme II, whereas in scheme I we expect δβ
to be gauge independent but δα to contain the gauge-dependent A0-functions we encountered
in Subs. 7.4.2. Indeed, a calculation in general Rξ gauge and a subsequent extraction of all
terms containing a gauge fixing parameter ξ ∈ {ξW , ξZ , ξA} yields

δβproc
I

∣∣
ξ

= δβproc
II

∣∣
ξ

= 0, (9.16)

δαproc
II

∣∣
ξ

= 0, (9.17)

δαproc
I

∣∣
ξ

=
m2

12cβ−αsβ−α
8π2v2s2β(m2

H −m2
h)

(
2A0(ξWM

2
W ) + A0(ξZM

2
Z)
)
, (9.18)

which exactly complies with our expectations.

9.5. MS Definition of δα and δβ

Before closing the chapter, we want to throw a brief glance at an MS definition of the angular
counterterms since such a definition emerges naturally as a byproduct of a process-dependent
scheme.
Having determined the expressions for process-dependent angular counterterms, MS defi-
nitions for δα and δβ can readily be obtained by extracting only those terms in δαproc

and δβproc which are proportional to the MS -divergence ∆MS, defined in Eq. (3.4). This
is easily accomplished since the process-dependent counterterms can be expressed in terms of
Passarino-Veltman functions, whose dependence on ∆MS in well-known and can be found e.g.
in [151]. Since the UV-divergences contained in the process-dependent angular counterterms
are universal, i.e. do not depend on the particular processes used to fix δα and δβ, the thus
defined MS counterterms are process-independent.
Formally, the MS counterterms are given by

δαMS
I/II = δαproc

I/II

∣∣∣
∆MS

, (9.19)

δβMS
I/II = δβproc

I/II

∣∣∣
∆MS

. (9.20)

If tadpole scheme II is applied, the resulting MS counterterms as well as amplitudes incor-
porating them are gauge independent. In tadpole scheme I, however, the MS prescription
leads to gauge-dependent amplitudes, as can directly be inferred from Eq. (9.18). Extracting
only terms proportional to ∆MS, finite, gauge-dependent terms in δα, which are necessary to
render the amplitude gauge independent, are omitted.
A further disadvantage of MS renormalized mixing angles is their renormalization scale de-
pendence, inevitably introduced by the MS prescription, which prohibits their interpretation
as physical quantities.
Finally, as a third drawback, the application of an MS scheme for the angular counterterms
can lead to large corrections [148]. Their occurrence can be traced back to the contributions
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of tadpole counterterms (scheme I) or diagrams (scheme II) in the OS WFRCs, which are
no longer counterbalanced by equivalent terms in δα and δβ, if the latter are fixed by MS
conditions1.We explicitly verified the appearance of these numerical instabilities, mentioned
already in [148].
These reasons disadvise an MS definition of the angular counterterms and we will hence not
include schemes with MS renormalized mixing angles in our numerical analysis in Ch. 12.

1Note that an MS definition of the angular counterterms was found to be well behaved in [41] for the processes
considered by the authors. This is probably due to a suppression of the huge tadpole contributions in their first
process, while their second process does not receive contributions from scalar WFRCs. A closer investigation
of this issue will be subject of future research.



CHAPTER 10

Different Renormalization Schemes for m2
12

In order to complete the renormalization program of the 2HDM, we still need to find a
definition for δm2

12. Like in the case of the angular counterterms, we will explore and discuss
various possibilities, always paying attention to differences arising when switching the tadpole
scheme. Since m2

12 only appears in cubic and quartic scalar couplings, δm2
12 has to be fixed

by a renormalization condition involving a multi-Higgs vertex.
One possibility is to determine δm2

12 in a process-dependent way. As discussed in the previous
chapter, this amounts to choosing δm2

12 in such a manner, that the loop-corrected decay width
of a suitably chosen process equals the tree-level one. The clear advantages of applying a
process-dependent definition are its physical motivation and the guarantee to achieve gauge-
independent results for physical observables. However, in the case of m2

12 process-dependent
schemes suffer from tight kinematical restrictions, such that they are applicable only in a
limited area of the 2HDM parameter space.
Alternatively, m2

12 can be defined by an MS prescription, demanding δm2
12 to cancel only the

terms proportional to ∆MS remaining in the amplitude of an arbitrary multi-Higgs process,
after all other counterterms have been added. Since these terms are universal, the resulting
δm2

12 is independent of the particular process chosen and furthermore the renormalization
prescription is not subject to kinematic restrictions. Moreover, unlike in the case of the
mixing angles, gauge dependence does not pose a problem for the renormalization of m2

12.
Both options will be discussed below. We begin with a discussion of the MS scheme in
Sec. 10.1 and afterwards address the possibility of a process-dependent definition in Sec. 10.2.

10.1. MS Definition of δm2
12

In order to fix δm2
12 according to MS conditions, we can choose an arbitrary cubic (or quartic)

Higgs vertex depending on m2
12 and impose the following requirement

[
Avirt(1)
S1S2S3

+Act(1)
S1S2S3

]
∆MS

= 0, Si ∈ {H, h, A0, H
±}. (10.1)

Avirt(1)
S1S2S3

denotes the sum of all virtual one-loop corrections to the vertex under consideration,

whereas Act(1)
S1S2S3

stands for the corresponding counterterm amplitude. Furthermore, the
subscript ∆MS indicates that only the UV-divergent part of Eq. (10.1) is to be considered
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12

when evaluating the renormalization condition. As in the previous chapter, we will omit the
superscript (1) henceforth, leaving the loop order implicit. Since Act

S1S2S3
contains a term

proportional to δm2
12, we can use Eq. (10.1) to fix the last renormalization constant yet

undetermined. One major advantage of the MS scheme is that it allows for a definition of the
counterterm at the level of the amplitude, evaluated for an arbitrary momentum configuration.
This is due to the fact that MS definitions only take into account the divergence of an
amplitude, which is independent of the kinematics. The resultant benefit is two-fold: On the
one hand, the expressions for the counterterms are greatly simplified, on the other hand the
scheme is not subject to any kinematic restrictions.
In principle, we are free to choose any convenient trilinear or quadrilinear scalar vertex in
condition Eq. (10.1). Since later in this thesis, we will examine the decay H → hh, it is
however recommended not to use the corresponding vertex to renormalize m2

12. Picking any
other vertex will provide us with a consistency check for our renormalization scheme.
Choosing e.g. the triple-h-vertex, the counterterm amplitude reads

Act
hhh =

3δZhh
2

ghhh +
3δZHh

2
gHhh +MWC

hhh
MW

(
δM2

W

2M2
W

− δg2

g2

)
(10.2)

+ Chhh

m2
h
δm2

h + Chhh

m2
H
δm2

H + Chhh
α δα+ Chhh

β δβ + Chhh

m2
12
δm2

12,

which together with Eq. (10.1) leads to

δm2,MS
12 =

−1

Chhh

m2
12

[
3δZhh

2
ghhh +

3δZHh
2

gHhh +MWC
hhh
MW

(
δM2

W

2M2
W

− δg2

g2

)
(10.3)

+Chhh

m2
h
δm2

h + Chhh

m2
H
δm2

H + Chhh
α δα+ Chhh

β δβ +Avirt
hhh

]
∆MS

.

The constants Chhh
pi appearing here can be determined by taking the derivative

Chhh
pi =

∂ghhh
∂pi

. (10.4)

Due to their length, we do not explicitly state them here. Moreover, the scalar couplings
gSiSjSk , i, j, k ∈ h,H, can be found in App. A.2.
Both the divergences contained in the virtual corrections Avirt

hhh and those included in the
renormalization constants (δZHh, δα and the mass counterterms) depend on the choice of
the tadpole scheme. However, the final result for δm2

12 is invariant under a change of the
tadpole scheme, since all tadpole-scheme-dependent terms cancel within Eq. (10.3). This is
to be expected, bearing in mind that m2

12 is a parameter of the original scalar potential V in
Eq. (5.4) and is as such independent of the vevs (and thus of the tadpoles).
Hence, we conclude that the application of MS conditions to the parameter m2

12 results in
gauge-independent S-matrix elements and in a gauge-independent counterterm δm2

12 irre-
spective of the chosen tadpole scheme.

10.2. Process-Dependent Definition of δm2
12

For completeness we shortly also illustrate the second possibility, which consists in a process-
dependent renormalization of m2

12, although its applicability is very limited due to kinematic
restrictions. Possible processes to fix δm2

12 are decays of a heavy Higgs boson into two lighter
ones, i.e.

H → hh, (10.5)

H → H+H−, (10.6)

H → A0A0, (10.7)

h→ A0A0. (10.8)
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Whether these decays are allowed depends on the mass ratios, which in turn is determined by
the chosen parameter point. Since no measurements are available for any of these processes,
we will again impose the condition already encountered in the process-dependent scheme for
the angular counterterms

Γ
O(1-loop)
S1→S2S3

= Γtree
S1→S2S3

. (10.9)

The first decay, Eq. (10.5), represents one of the processes we will study in detail in section
12. Therefore, we refrain from using this process to fix δm2

12. Out of the remaining decays,
the one in Eq. (10.7) is least restricted by experimental data and we will hence choose it for
a process-dependent definition of m2

12.
We proceed exactly as in Secs. 9.2 and 9.3, with the exception that this time we do not have
to separate IR divergent QED corrections, as no virtual photons appear in a process involving
only neutral scalars at one-loop order. With the help of Eqs. 3.22 and 3.25 and due to the
fact that the polarization sum is trivial for a purely scalar process, the condition in Eq. (10.9)
can be translated to

|AH→A0A0 |2O(1−loop) =
∣∣Atree

H→A0A0

∣∣2 + 2Re
[
Atree∗
H→A0A0

(
Avirt
H→A0A0

+Act
H→A0A0

)]
, (10.10)

and further to

Act
H→A0A0

= −Avirt
H→A0A0

. (10.11)

Avirt
H→A0A0

comprises all virtual one-loop corrections contributing to the decay H → A0A0

and the corresponding counterterm amplitude Act
H→A0A0

is given by

Act
H→A0A0

=ghA0A0

δZhH
2

+ gHA0A0

(
δZA0A0 +

δZHH
2

)
+ gHG0A0

δZG0A0 (10.12)

+MWC
HA0A0
MW

(
δM2

W

2M2
W

− δg2

g2

)
+ C

HA0A0

m2
H

δm2
H

+ C
HA0A0

m2
A0

δm2
A0

+ CHA0A0
α δα+ C

HA0A0
β δβ + C

HA0A0

m2
12

δm2
12,

with the coefficients

CHA0A0
pi =

∂gHA0A0

∂pi
. (10.13)

All scalar couplings appearing here can be found in App. A.2. Having fixed all the other
counterterms, we can solve Eq. (10.11) for δm2

12

δm2,proc
12 =

−1

C
HA0A0

m2
12

(
ghA0A0

δZhH
2

+ gHA0A0

(
δZA0A0 +

δZHH
2

)
+ gHG0A0

δZG0A0 (10.14)

+MWC
HA0A0
MW

(
δM2

W

2M2
W

− δg2

g2

)
+ C

HA0A0

m2
H

δm2
H

+C
HA0A0

m2
A0

δm2
A0

+ CHA0A0
α δα+ C

HA0A0
β δβ +Avirt

H→A0A0

)
.

Like in the MS scheme, δm2,proc
12 is independent of the tadpole scheme choice. This time,

though, δm2,proc
12 depends on the renormalization scheme selected for the angular countert-

erms.1 However, as long as δα and δβ are determined in the framework of a gauge-independent
scheme, δm2,proc

12 as well as all amplitudes are gauge independent.
Nevertheless, the adherence to a process-dependent definition is unsatisfactory. Such a def-
inition not only entails a loss of generality but it also limits the applicability of the renor-
malization scheme to the restricted area of the 2HDM parameter space, where mH ≥ 2mA0

holds. We will still have a brief glance at the numerical stability of this scheme in Sec. 12.

1It also depends on the renormalization of e, the masses and the fields. However, these are always defined by
OS conditions in this thesis.





CHAPTER 11

Overview of the Discussed Renormalization Schemes

Before we enter the investigation and discussion of the numerical stability of the possible
renormalization schemes, we briefly want to summarize the different options for the angular
counterterms and δm2

12 in the two tadpole schemes, proposed in the previous chapters.

The angular counterterms have been studied in chapters 7.4, 8.5, and 9, where we found that
the choice of a good renormalization scheme is strongly influenced by the selection of the
tadpole scheme.
Working in tadpole scheme I, gauge-independent physical observables can only be obtained
if δβ is chosen to be gauge independent whereas δα has to be gauge dependent. To be
more precise, the counterterm for α has to include the gauge-dependent A0-functions we
derived in Subs. 7.4.2 since otherwise, identical terms with opposite sign appearing in the
remaining amplitude are left uncancelled. This renders a process-independent definition of
the the angular counterterms difficult in scheme I. We have exemplified this point in Sec. 7.4
by means of the KOSY scheme, proposed in Ref. [40], and we have shown that this process-
independent scheme leads to gauge-dependent physical quantities. Furthermore, we argued
that it is not possible to eliminate this gauge dependence in a well-defined, unique way, which
can be traced back to the arbitrariness of defining the gauge-independent parts of Passarino-
Veltman functions. As a consequence, the KOSY scheme is unfavorable. We will still include
it in the set of schemes, which we subject to a detailed numerical study in Ch. 12, since
the KOSY scheme has proven to show a good numerical behaviour for various processes and
therefore serves as a reference point for a numerical comparison.
In Sec. 9.5 we stated that also an MS definition of the angular counterterms yields gauge-
dependent amplitudes in tadpole scheme I. This is due to the fact that the finite gauge-
dependent parts of the A0 functions, necessary in the definition of δα, are not captured in
this scheme. Furthermore, we already mentioned the fact that MS schemes for the angular
counterterms can lead to numerically huge corrections, if OS conditions are kept for masses
and fields.
Hence, in tadpole scheme I only the process-dependent scheme, detailed in Ch. 9, seems to
remain as a viable renormalization scheme.

The situation changes when we switch to tadpoles scheme II. In this scheme both angu-
lar counterterms have to be chosen gauge independent in order to attain gauge-independent
physical observables. Together with the fact that we have the PT at our disposal in tadpole
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scheme II, this allows for a straightforward definition of process- and gauge-independent an-
gular counterterms leading to gauge-independent amplitudes. This was elaborated in Sec. 8.5,
where we introduced two process- and gauge-independent definitions of δα and δβ and de-
noted the resulting schemes as p-OS and p-p∗ scheme. Both come in two versions, depending
on whether δβ is defined by means of the charged or the CP-odd scalar self-energy.
Alternatively, also in tadpole scheme II, we can define process-dependent angular counter-
terms as proposed in Ch. 9.
Finally, due to their gauge independence, δα and δβ can be determined by MS conditions.
However, like in tadpole scheme I, the MS scheme can lead to numerically unstable results
caused by uncancelled tadpole terms.

As far as the parameter m2
12 is concerned, we encountered entirely different circumstances.

Since m2
12 is a parameter of the original scalar potential and as such independent of the vevs,

δm2
12 is invariant under a change of the tadpole scheme. In both tadpole schemes, δm2

12 can
be determined by MS conditions, resulting in a gauge-independent renormalization scheme
and a gauge-independent counterterm δm2

12.
Alternatively, in both tadpole schemes a process-dependent definition of δm2

12 is possible in
principle. However, the resulting renormalization schemes are subject to severe kinematic
constraints, which limits their applicability to only a small part of the 2HDM parameter
space.



CHAPTER 12

Investigation of Numerical Stability

We have now several viable options at our disposal to renormalize the parameters of the
2HDM. As a next step, we want to test their performance as far as numerical stability is
concerned. To that end we investigate the three different decay processes

H± →W±h

H → ZZ

H → hh.

These processes cover three distinct classes of tree-level vertices, i.e. scalar-vector-vector,
scalar-scalar-vector and scalar-scalar-scalar vertices, and therefore represent a good set of
test cases to study our renormalization schemes. The decays H± → W±h and H → ZZ are
suitable to examine different renormalization schemes for the angles α and β. In the vertex
H±-W±-h, both angles appear as actual mixing angles, entering the vertex Feynman rules
by means of the rotation matrices. On the contrary in the vertex H-Z-Z, β occurs in its role
as ratio of the vevs v1 and v2. The last vertex, H-h-h, contains α both in its role as mixing
angle and as parameter of the potential and furthermore depends on m2

12. Hence, the corre-
sponding decay is appropriate to deepen the study of schemes for the angular counterterms
and to investigate different schemes for δm2

12.
Numerical stability is the last of the three criteria (gauge independence, process indepen-
dence, numerical stability) a good renormalization scheme should fulfill. Thus, this study
will allow us to answer the question whether there is a renormalization scheme for the 2HDM
that satisfies all three criteria.
To set the scene, we will first briefly introduce the employed software and utilized tools in
Sec. 12.1 and specify all sets of input parameters, adopted in our study, in Sec. 12.2.
Afterwards we will successively examine the three test processes and study the various renor-
malization schemes on their basis. Sec. 12.3 deals with the decay H± →W±h, while Sec. 12.4
is dedicated to the process H → ZZ. The last section (12.5), finally will be concerned with
the purely scalar process H → hh and analyze different renormalization schemes for m2

12.
The results shown in this chapter have been published in Refs. [42] and [43].

12.1. Tools and Software

In order to perform the numerical analysis, we developed a Fortran program, which calculates
the decay widths of the three example processes studied in this thesis. The program is based
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on the code CalcGamma developed for and introduced in Ref. [148], which computes the widths
for the two processes H± → W±h in the KOSY scheme (and other schemes, which are not
relevant in the following). Our code extends CalcGamma by the additional processes H → ZZ
and H → hh as well as by further renormalization schemes for the angular counterterms
(p-OS, p-p∗ , the MS and process-dependent scheme) and by all renormalization schemes for
δm2

12 we discussed in the previous chapters.
All amplitudes, self-energies and tadpole contributions implemented in our program were cal-
culated with the Mathematica packages FeynArts 3.7 [152] and FormCalc 8.1 [153]. Fey-

nArts 3.7 was employed to generate the Feynman diagrams and corresponding amplitudes,
making use of a model file for the 2HDM which is provided by the package. Subsequently,
FormCalc 8.1 was utilized to evaluate fermion traces, contract Lorentz and spinor indices
and perform the tensor reduction. The result, given in terms of Passarino-Veltman functions,
was then exported as Fortran code and implemented into our program.
For the computation of the decay widths, our program assembles all contributing pieces for
the desired tadpole and renormalization scheme. The evaluation of the Passarino-Veltman
functions is performed by linking the Fortran library LoopTools 2.9 [154].

12.2. Input Parameter Sets

As last ingredient for the numerical analysis, we still need to specify the values of all input
parameters entering our calculation. These will be quoted in the following.
The SM parameters comprise the masses of all SM particles, the electric charge e, or corre-
spondingly αem, and the CKM matrix elements. According to our renormalization condition
for the electric charge (cf. Eq. (7.21)), we have to use αem at the electroweak scale as input,
which is given by [54]

αem(M2
Z) =

1

128.962
. (12.1)

Since we do not take into account CP-violation, we consider the CKM matrix to be real,
using the values recommended in Ref. [54] for its elements

VCKM =



Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 =




0.97427 0.22536 0.00355
−0.22522 0.97343 0.0414
0.00886 −0.0405 0.99914


 . (12.2)

The masses of the SM particles are set to the values recommended by the Particle Data
Group [54] and the Higgs cross Section Working Group (HXSWG) [155, 156]. In the case
of the Higgs mass, we use the value quoted by the ATLAS and CMS groups [51]. All SM
mass values entering our calculation are summarized in Tab. 12.1. Note that the influence of
the light quark masses on our results is negligible. They are chosen in accordance with the
HXSWG.
Furthermore, we fix the detector sensitivity ∆E, which is needed in the real corrections to the
decays H± →W±h and whose impact on our analysis was also shown to be insignificant [148],
at a value of

∆E = 10 GeV. (12.3)

Apart from the SM parameters, we also have to specify the 2HDM specific parameters, which
we have chosen in Eq. (5.32) as independent input parameters. As a reminder, these are given
by the masses of the (non-SM) Higgs bosons, the mixing angles and m2

12

mH , mA0 , mH± , α, β, m
2
12. (12.4)
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parameter value

MW 80.385 GeV [54,156]

MZ 91.1876 GeV [54,156]

me 510.998928 keV [54,156]

mµ 105.6583715 MeV [54,156]

mτ 1.77682 GeV [54,156]

mu 100 MeV [157]

md 100 MeV [157]

ms 100 MeV [157]

mt 172.5 GeV [155,156]

mc 1.51 GeV [156]

mb 4.92 GeV [156]

mh 125.09 GeV [51]

Table 12.1.: Input values for the SM parameters used in our numerical analysis.

In our analysis, the SM-like Higgs boson will always be the lighter CP-even Higgs boson h.
However, in principle also the heavier one could play the role of the 125-GeV SM-like Higgs
boson. In this case, the parameter list in Eq. (12.4) would include mh instead of mH .
The parameters of the 2HDM cannot be chosen freely, but have to fulfill certain theoretical and
experimental constraints. In order to generate sets of input parameters complying with these,
we employed the program ScannerS [158, 159]. This tool performs a scan over the 2HDM
parameter space and checks for each point whether it is consistent with all requirements.
From the theoretical side, ScannerS guarantees that for each allowed parameter point the
chosen CP-conserving minimum is the global one [160], the scalar potential is bounded from
below [18] and tree-level unitarity is not violated [161,162].
Furthermore the program ensures consistency with the electroweak precision observables [163–
169] and takes into account constraints originating from B physics observables [170–172] as
well as from the measurement of Rb ≡ Γ(Z → bb)/Γ(Z → hadrons) [173–176]. The latter
primarily affect the mass of the charged Higgs boson, which was chosen according to the
current limit mH± ≥ 480 GeV for a type II 2HDM in our scans [177].
All LEP bounds [178] and the LHC bounds in Refs. [179, 180]1 are considered. In order to
test consistency with Higgs data, ScannerS is interfaced with SusHi [182], which calculates
Higgs production cross sections in gluon and b-quark fusion at NNLO QCD and with HDECAY

[183, 184], which computes the 2HDM Higgs decays. The remaining Higgs production cross
sections are taken at NLO as given in Ref. [185]. Electroweak corrections are consistently
omitted in all production cross sections and decay widths, since they are not available for the
2HDM. Afterwards, the program packages HiggsBounds [186–188] and HiggsSignals [189]
are linked to check agreement with experimental 95% C.L. Higgs exclusion limits and the
observed Higgs signals. Further details can be found in Ref. [159].

With the help of ScannerS three sets of 2HDM parameter points were generated2, compliant
with all constraints mentioned above, each of which corresponds to a specific 2HDM scenario.
In addition, the kinematic constraints summarized in Tab. 12.2 were imposed on the individual
scans and the conventions 0 ≤ β ≤ π

2 and −π
2 ≤ α ≤ π

2 were used throughout. The kinematic
restrictions in Scan I are chosen to allow for the decays H± →W±h, H → ZZ and H → hh.
Scan II was devised for an investigation of the decoupling regime (cf. Sec. 12.5), whereas

1Later results as published e.g. in [181] have not yet been included.
2We gratefully thank Marco Sampaio for providing us with these parameters sets.
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Scan I
mH± > MW +mh

mH > 2mh

Scan II
mH > 2mh

m2
H ≈ m2

A0
≈ m2

H± ≈
m2

12
sβcβ

Scan III
mH > 2mh

mH > 2mA0

Table 12.2.: Additional kinematic constraints for the parameter scans, providing the input parameters for
the numerical analysis.

Scan III enables us to study the process-dependent renormalization scheme for m2
12.

For selected scenarios of these scans, further points were produced by keeping all parameters
fixed apart from one of the non-SM Higgs boson masses, which was varied in both directions
as far as possible without violating any of the conditions implemented in ScannerS or of the
additionally imposed constraints.
In Tab. 12.3, we summarize the 2HDM specific input values for the scenarios, which will be
studied in the subsequent numerical analysis.

mH [GeV] mA0 [GeV] mH± [GeV] m2
12 [GeV2] tβ α Scan

Scenario 1a 742.84 700.13 [654. . .804] 2.076·105 1.46 -0.57 I

Scenario 1b 742.84 [700. . .867] 700.35 2.076·105 1.46 -0.57 I

Scenario 2 [690. . .809] 705.44 659.16 2.045·105 1.24 -0.61 I

Scenario 3 [600. . .762] 731.16 711.55 1.010·105 1.10 -0.73 I

Table 12.3.: 2HDM specific input parameters for specific scenarios studied in the following sections. All
parameter points fulfill the constraints imposed by ScannerS as described in the text. Furthermore, additional
kinematic constraints are imposed according to those of Scan I.

12.3. Numerical Analysis of the Decay H± → W±h

We start our numerical analysis with the investigation of various renormalization schemes

in the decay H± → W±h. The decay width Γ
O(1-loop)
H±→W±h comprises terms proportional to

δα and δβ, however does not depend on δm2
12. We can hence use this process to examine

different schemes for the angular counterterms. To be specific, we explore the KOSY scheme,
the pinched schemes (p-OS and p-p∗ ) as well as the process-dependent scheme presented
in Ch. 9. For the pinched schemes we consider both versions of δβ, δβo and δβc, which is
possible without violating the on-shell conditions for the scalars (cf. Sec. 8.5). In contrast,
for the KOSY scheme, we have to restrict ourselves to the charged version if we do not want
to include finite wave function correction factors. We use the following abbreviations for the
respective schemes

KOSYc,o : gauge-dependent KOSY scheme presented in section 7.4, using δβc,o

p-OSc,o : pinched OS-scheme scheme presented in section 8.5, using δβc,o (12.5)

p-pc,o∗ : pinched p∗ -scheme scheme presented in section 8.5, using δβc,o

proc : process-dependent scheme presented in Sec. 9.
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Figure 12.1.: Scatter plots for the process H± →W±h, showing the relative one-loop corrections ∆ΓH
±W±h

as as function of the tree-level decay width for the parameter points of Scan I. We have cut the plots at

Γtree
H±→W±h = 0.1 GeV and constrained the range for ∆ΓH

±W±h to −100% - +300% (see the discussion in
the text). In the right plot we have zoomed into the central region. Similar plots have been shown in our
publication [42].

Let us recall the fact that out of these, the KOSY scheme is based on tadpole scheme I,
whereas the pinched schemes require tadpole scheme II. The process-dependent scheme can
be applied within both frameworks and leads to a final result for the decay width which is
independent of the way the tadpoles are treated.
In order to estimate the numerical stability of the individual schemes, we define the quantity

∆ΓH
±W±h =

Γ
O(1-loop)
H±→W±h − Γtree

H±→W±h
Γtree
H±→W±h

, (12.6)

which constitutes a measure for the size of the O(1-loop)-corrections relative to the tree-level
result. To gain an overview of the typical behaviour of the renormalization schemes, we first
consider the scatter plot in Fig. 12.1, including the parameter points of Scan I. It shows the
relative one-loop corrections, quantified by ∆ΓH

±W±h, as a function of the tree-level decay
width Γtree

H±→W±h for the four schemes listed in Eq. (12.5). Here no distinction is made be-
tween the different versions of δβ in the pinched schemes.
As the plot on the left-hand side demonstrates, the process-dependent scheme leads to patho-
logically huge relative one-loop corrections, which can be up to two orders of magnitude larger
than the corresponding corrections in the other schemes in many scenarios. This behaviour is
caused by the electroweak radiative corrections to the decays A0 → ττ and H → ττ , included
in the angular counterterms of the process-dependent scheme.

A closer look at the one-loop amplitude AO(1-loop)
H±→W±h of the decay H± →W±h (cf. App. B.1)

reveals an overall proportionality of the radiative corrections to cβ−α, which is driven to
small values by LHC Higgs data. However, the angular counterterms (and the off-diagonal
WFRCs) enter with a prefactor sβ−α, which for the same reason attains values close to one.
Therefore, the contributions of the angular counterterms are enhanced by a factor sβ−α/cβ−α

relative to the other terms in AO(1-loop)
H±→W±h. While in the pinched and in the KOSY schemes

the finite parts of the angular counterterms partly cancel those in the off-diagonal WFRCs,
the process-dependent scheme introduces additional finite terms. Due to the enhancement
factor, the impact of these additional terms on the final result is huge, wherefore the process-
dependent scheme is not suitable for the renormalization of the decay H± →W±h.
In contrast to those of the process-dependent scheme, the relative corrections in the other
schemes typically range between −40% and +40% and are of comparable size in all three
schemes. This can be seen in the plot on the right in Fig. 12.1, which zooms into the central
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region of the left plot. It should be noted that all points at the far left of each plot correspond
to scenarios with values of cβ−α close to zero, for which the the tree-level coupling gH±W±h
and hence the tree-level decay width disappears. For these points the relative corrections
can go below −40% or beyond +40%, due to the fact that ∆ΓH

±→W±h, defined according
to Eq. (12.6), diverges for Γtree

H±→W±h → 0. However, this is not to be regarded as sign of
numerical instability but merely reflects the vanishing tree-level decay width. We checked

that also Γ
O(1-loop)
H±→W±h tends to zero for parameter points with vanishing Γtree

H±→W±h. The infla-

tion visible in the plots is due fact that Γtree
H±→W±h is proportional to c2

β−α, while Γ
O(1-loop)
H±→W±h

contains terms which are linear in cβ−α (cf. Eqs. B.5 and Eq. (B.7)). Hence ∆ΓH
±→W±h

behaves like 1/cβ−α in the limit cβ−α → 0 and thus diverges. Still, we can conclude that the
KOSY and the pinched schemes lead to numerically stable results for the decay H± →W±h.
Note that we do not show points where the relative corrections exceed −100% or +300% in the
process-dependent scheme. Corrections below −100% would lead to negative decay widths.
Hence, no physically meaningful result can be obtained within the corresponding scenarios at
one-loop order and the inclusion of higher orders would be required. By the same token, it is
debatable whether corrections of more than +100% are reasonable. We still display positive
corrections of up to +300% for illustrative purposes. The fact that the process-dependent
scheme yields corrections beyond 100% for many parameter points demonstrates its inappro-
priateness at one-loop order and hence manifests the preferability of the pinched schemes.
Moreover, we have discarded all points leading to tree-level decay widths below 0.1 GeV,
since the relative corrections defined according to Eq. (12.6) diverge for Γtree

H±→W±h → 0. If
not stated otherwise, we will proceed in the same manner, i.e. apply the same cuts on the
Γtree- and the ∆Γ-range, for all scatter plots shown in the subsequent sections.
To investigate the various renormalization schemes further, we now pick a particular scenario
and vary the mass of the charged and of the CP-odd Higgs boson in the allowed ranges, as
described in Sec. 12.2. Figs. 12.2 and 12.3 show the relative one-loop corrections for Scenarios
1a and 1b as a function of mH± and mA0 , respectively.

Figure 12.2.: Relative one-loop corrections to the decay H± → W±h as a function of mH± . The input
parameters have been chosen according to Scenario 1a. The left plot shows the results for the process-
dependent, the KOSYc, the p-OSo and the p-pc∗ schemes. The right plot shows results for the KOSYc and all
pinched schemes. Similar plots have been shown in our publication [42].

The plots on the left display the results for the process-dependent scheme, the KOSYc scheme
and one version of each pinched scheme, where we have chosen p-OSo and p-pc∗ as represen-
tatives. In the plots on the right, we display all versions of the pinched schemes together
with the KOSYc scheme. Note that the kinks appearing in these plots are due to threshold
effects in B0-functions, entering the amplitude through the scalar WFRCs and the angular
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Figure 12.3.: Relative one-loop corrections to the decay H± → W±h as a function of mA0 . The input
parameters have been chosen according to Scenario 1b. The left plot shows the results for the process-
dependent, the KOSYc, the p-OSo and the p-pc∗ schemes. The right plot shows results for the KOSYc and all
pinched schemes.

counterterms. They arise when the arguments of B0(m2
1, m

2
2, m

2
3) fulfill the condition

m1 = m2 +m3. (12.7)

Again, both plots on the left-hand side demonstrate that the process-dependent scheme leads
to huge corrections, ranging between 70% and 240% in Scenario 1a (Fig. 12.2) and from 100%
to −310% in Scenario 1b (Fig. 12.3), and is thus to be regarded as unsuitable for the process
H± → W±h. Note in particular that the results in the process-dependent scheme become

meaningless in Scenario 1b for mA0 & 770 GeV, where the decay width Γ
O(1−loop)
H±→W±h turns

negative.
The plots on the right-hand side allow for a closer investigation of the pinched schemes. First,
by comparing the plots on the right in Figs. 12.2 and 12.3 we can observe that the charged
schemes, KOSYc, p-OSc and p-pc∗, show a stronger dependence on mH± than the CP-odd
ones, whereas the opposite is true for the dependence on mA0 . This can be traced back to
the counterterm δβ, which in the charged versions depends on

1

m2
H±

Σ̃G±H±(m2
H±) or

1

m2
H±

Σ̃G±H±(
m2
H±

2
), (12.8)

whereas in the CP-odd versions it involves

1

m2
A0

Σ̃G0A0(m2
A0

) or
1

m2
A0

Σ̃G0A0(
m2
A0

2
). (12.9)

Due to the strong impact of the angular counterterms on the whole amplitude, this dependence
is clearly visible in the final result.
Furthermore, the numerical difference originating from a change between the p-OS and the
p-p∗ scheme is less pronounced for the charged version than for the CP-odd version of δβ as
can be seen by comparing the solid green and orange curves and the green and the orange
dashed curves, respectively. This behaviour can be observed for most scenarios we considered.
However it is not generic and depends delicately on the input parameters, especially on the
masses of the (non-SM) Higgs bosons.
Finally, note that the curve corresponding to the p-OSc scheme is very close to the one
belonging to the KOSYc scheme. This is to be expected, since both schemes incorporate the
charged versions of δβ and in both schemes the angular counterterms are defined in terms of
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Scenario 1a Scenario 1b

x, y ∆x,y
H±W±h ∆x,y

H±W±h

p-OSo, p-OSc . 11.0% . 10.6%

p-OSo, p-po∗ . 17.6% . 17.9%

p-OSc, p-pc∗ . 3.4% . 3.1%

p-po∗, p-pc∗ . 23.2% . 12.9%

p-OSo, p-pc∗ . 14.7% . 21.6%

p-po∗, p-OSc . 25.7% . 15.1%

Table 12.4.: Estimates of the theoretical uncertainty in the decay H± →W±h by a comparison of the results
for Γ

O(1-loop)

H±→W±h
obtained in different renormalization schemes.

OS self-energies.
The fact that we have different renormalization schemes at our disposal allows us to estimate
the theoretical uncertainty due to missing higher-order corrections. For this purpose we define
a measure for the theoretical uncertainty as

∆x,y
H±W±h =

∣∣∣∣∣
Γ
O(1-loop),x
H±→W±h − Γ

O(1-loop),y
H±→W±h

Γ
O(1-loop),x
H±→W±h

∣∣∣∣∣ , (12.10)

where x and y denote two different renormalization schemes. With the help of this measure we
can estimate the uncertainty resulting from the choice of the version for δβ and from the choice
of the scale (OS or p∗) for the angular counterterms. Comparing any two schemes, which
either differ by the version of δβ or by the scale, we find for the plotted ranges the values of
∆x,y
H±W±h shown in Tab. 12.4. Also shown are values which are obtained by comparing schemes

that differ in both, the definition of δβ and the choice of the scale, as these lead to the largest,
i.e. most conservative, estimations of the theoretical uncertainty. Note, however, that we do
not include the process-dependent scheme, since this scheme is clearly inappropriate. Using
these numbers as guideline, we estimate the theoretical uncertainty to be below 26% for
Scenario 1a and below 22% for Scenario 1b.

12.4. Numerical Analysis of the Decay H → ZZ

We now turn to the next process of our test set, the decay of the heavy CP-even Higgs boson
into two Z-bosons. Like the process studied in the previous section, its counterterm ampli-
tude comprises the angular counterterms but does not depend on δm2

12. This time, however,
δβ does not enter in its role as mixing angle, but as ratio of the two vevs v1 and v2.
Again, we start the discussion by investigating a scatter plot of the relative corrections
∆ΓHZZ , defined in analogy to Eq. (12.6), to get a general idea. The conventions used in
the corresponding plots in Fig. 12.4 are as explained in the previous section, apart from the
fact that this time we do not need to restrict ourselves to the charged version of the KOSY
scheme. Hence, the red dots correspond to results of both versions of the KOSY scheme. Sim-
ilar to the case of the decay H± → W±h, the corrections in the process-dependent scheme
can be up to two orders of magnitude larger than those of the other schemes, as the plot
on the left-hand side reveals. In contrast to that, the right plot, which concentrates on the
central region, shows that all the other schemes lead to corrections of the same size, remaining
between −40 and +40%. This is true for all parameter points that do not lead to vanishing
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Figure 12.4.: Scatter plots for the decay H → ZZ, showing the relative one-loop corrections ∆ΓHZZ as
a function of the tree-level decay width for the parameter points of Scan I. Again we have cut the plots at
Γtree
H→ZZ = 0.1 GeV and constrained the range for ∆ΓHZZ to −100% - +300% (see the discussion in Sec. 12.3).

In the right plot we have zoomed into the central region.

tree-level amplitudes (cf. the discussion above). Since the tree-level coupling for the decay
H → ZZ is proportional to cβ−α, whereas the angular counterterms enter with an overall
factor sβ−α, the situation is identical to the case of the decay H± → W±h. Therefore, the
discussion below Fig. 12.1 can directly be transferred to the decay H → ZZ and we can
conclude that all process-independent schemes can be regarded as numerically stable, while
the process-dependent scheme is not an appropriate choice for this decay.

Figure 12.5.: Relative one-loop corrections to the decay H → ZZ as a function of mH . The input parameters
are chosen according to Scenario 2. The left plot shows the results for the process-dependent, the KOSYc, the
p-OSo and the p-pc∗ schemes. The right plot shows results for the KOSYc and all pinched schemes. Similar
plots have been shown in our publication [42].

For a closer investigation, Fig. 12.5 shows the relative corrections ∆ΓHZZ as a function of
mH for one specific scenario (Scenario 2). The plot on the left makes apparent the numerical
instability of the process dependent scheme, which is found to yield corrections of up to 140%
for the chosen scenario. On the right-hand side, we compare again the different versions of
pinched schemes among each other and to the KOSYc scheme as reference. Like in the pre-
vious section we can use the quantity ∆x,y

HZZ , defined in analogy to Eq. (12.10), as a measure
for the theoretical uncertainty. For the plotted range this estimation yields the results shown
in Tab. 12.5, from which the theoretical uncertainty can be estimated to be below about 6.4%
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Scenario 2

x, y ∆x,y
HZZ

p-OSo, p-OSc . 0.4%

p-OSo, p-po∗ . 6.4%

p-OSc, p-pc∗ . 4.3%

p-po∗, p-pc∗ . 4.3%

p-OSo, p-pc∗ . 3.9%

p-po∗, p-OSc . 5.7%

Table 12.5.: Estimate of the theoretical uncertainty in the decay H → ZZ by a comparison of the results for
Γ
O(1-loop)
H→ZZ obtained in different renormalization schemes.

for the scenario under consideration.

12.5. Numerical Analysis of the Decay H → hh

The last process we consider is the decay of the heavy CP-even Higgs boson into two lighter
ones. As mentioned above, for all scenarios we consider, the light Higgs bosons always corre-
sponds to the SM-like Higgs boson, although in principle scenarios with interchanged roles of
the CP-even Higgs bosons are possible. Since the trilinear Higgs coupling gHhh depends on
m2

12, this process allows us to study different renormalization schemes for the last parameter
of the 2HDM potential. Moreover, we can use it to further test the numerical stability of
the renormalization schemes for the angular counterterms, as the coupling shows a compli-
cated dependence on α and β and hence the cancellation of huge tadpole contributions is
non-trivial.
We start with an investigation of the angular counterterms. For this purpose, we display
in Fig. 12.6 the relative one-loop corrections ∆ΓHhh, defined pursuant to Eq. (12.6), as a
function of the corresponding tree-level decay width for the process-dependent, the p-OS,
the p-p∗ and the KOSY scheme. m2

12 is renormalized according to MS conditions with the
renormalization scale µr set equal to 2mh.
In contrast to our observations in the previous sections, this time all schemes lead to huge
relative corrections easily reaching beyond 100% in the KOSY and the pinched schemes and
even further in the process-dependent scheme. Although striking at first glance, this is not
necessarily to be regarded as a sign of numerical instability but can rather be attributed to
non-decoupling effects, which generically arise in Higgs-to-Higgs decays in the 2HDM [40,190].
Their occurrence can be explained as follows: In the 2HDM the masses of the heavy Higgs
bosons mH , mA0 and mH± originate from two sources: the soft-Z2-breaking parameter m2

12

of the Higgs potential and the vevs v1 and v2 of the two Higgs doublets. Thus, schematically
they can be written as

m2
φ = c2

φM
2 + Lφ(λi)v

2, (12.11)

where Lφ(λi) denotes some linear combination of λ1-λ5 and φ represents either of H, A0 or
H±. Furthermore, we have introduced the abbreviation M2 = m2

12/cβsβ and the coefficient cφ,
given by

cφ =

{
1 for φ ∈ {A0, H

±}
sβ−α for φ = H

. (12.12)
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Figure 12.6.: Scatter plot for the decay H → hh, showing the relative one-loop corrections ∆ΓHhh as a
function of the tree-level decay width for the parameter points of Scan I. Again we have cut the plot at
Γtree
H→hh = 0.1 GeV and constrained the range for ∆ΓHhh to −100% - +300% (see the discussion in Sec. 12.3).

A similar plot has been shown in our publication [43].

The ratio between these two terms is crucial for the influence of radiative corrections originat-
ing from loops with heavy Higgs bosons. If c2

φM
2 � Lφ(λi)v

2 holds for all φ ∈ {H, A0, H
±},

the masses of the heavy Higgs bosons are determined by the soft-Z2-breaking parameter M2

and the second term is negligible. Since the λi, appearing in the second term, control the
size of the trilinear and quadrilinear Higgs couplings, this limit implies scalar couplings which
are small compared to the scalar masses. Therefore, this case corresponds to the decoupling
limit, where the loop effects of the heavy Higgs bosons vanish for mφ →∞ according to the
Appelquist-Carazzone decoupling theorem [84]. As a side-remark, note that the MSSM Higgs
sector automatically resides in the decoupling regime as the MSSM trilinear and quartic Higgs
couplings are determined through the gauge couplings g1 and g2.
The situation is different if instead we have c2

φM
2 . Lφ(λi)v

2 for at least one of the non-SM
Higgs bosons φ. In this case, the corresponding mass mφ receives a non-negligible contri-
bution from the coupling parameters λi and consequently the limit mφ → ∞ corresponds
to the strong coupling regime. Since in this case the scalar couplings increase in the same
proportion as the masses, no decoupling takes place. On the contrary, the contributions of
loops with heavy Higgs bosons grow according to m4

φ [40, 190]. For scenarios with heavy
non-SM-like Higgs bosons, this power law dependence gives rise to the huge corrections to
the decay H → hh, visible in Fig. 12.6.

Due to the large radiative corrections encountered in the decay of the heavy Higgs boson,
a meaningful investigation of the numerical stability of the various renormalization schemes
can only be conducted in the decoupling limit. In non-decoupled scenarios the large tree-level
couplings and the resulting huge radiative corrections necessitate the inclusion of higher-order
corrections to achieve reliable predictions. Therefore, a further parameter scan, Scan II, was
performed with the additional requirement

m2
H ≈ m2

A0
≈ m2

H± ≈M2. (12.13)

This constraint leads to scenarios with non-SM-like Higgs bosons whose masses are approxi-
mately degenerate and of the order of the Z2-breaking scale. Following the above reasoning,
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one would expect all coupling parameters λ1-λ5 to be small and the huge radiative correc-
tions to be absent in these scenarios. However, although this rationale is correct in most
cases, there is a subtlety that has to be considered: Even if Eq. (12.13) is fulfilled, decoupling
is not automatically guaranteed and actually is found to be impossible in the specific limit
sβ+α → 1. In the context of the 2HDM of type II (and F), this limit is often denoted as
the wrong sign limit, since in these model types, the Yukawa couplings of the SM-like Higgs
boson h to down-type fermions receive a relative minus sign w.r.t. the couplings to massive
gauge bosons and up-type fermions for sβ+α → 1 [159,191–193]. As was shown and discussed
in detail in Ref. [191], non-decoupling properties necessarily arise in the limit sβ+α → 1 of
the 2HDM. Similar observations, were made in Refs. [194–196], focusing like Ref. [191] on the
contribution of the charged Higgs boson to the decay h→ γγ.
In the context of our study, i.e. in the decay H → hh , the emergence of non-decoupling
effects in the wrong sign limit can be understood by considering the trigonometric relations
that are involved. For these examinations it is useful to treat the cases sβ−α ≈ 1 and sβ−α < 1
separately.
Let us first consider the second situation, i.e. a scenario where sβ−α differs sufficiently much
from one. Although the limit sβ−α → 1 corresponds to the SM limit, which is favoured by
LHC Higgs data, significant deviations from this limit can appear in the wrong sign regime.
This was shown in Refs. [159, 192, 193], where values of sβ−α ≈ 0.55 (0.62) were found to
be compatible at 3 (2)σ with the LHC Higgs data and to comply with the other constraints
implemented in ScannerS. As can directly be inferred from Eq. (12.11), such “small” values
of sβ−α, however, necessitate a significant contribution of the term LH(λi)v

2 to m2
H even if

the mass of the heavy Higgs boson H is of the order of the soft-Z2-breaking scale, i.e. if
m2
H ≈M2 holds. This, in turn, brings us back to the non-decoupling regime.

Moreover, also for values of sβ−α close to one, corresponding to the first case mentioned
above, the corrections to the vertex Hhh can be huge in the wrong sign limit. Here the
situation is similar to the case studied in Ref. [191], that is the non-decoupling of the charged
Higgs boson in the decay h→ γγ. As was shown by the authors of this publication, the ratio
ghH±H∓/m2

H±
approaches a constant, i.e. mass-independent, value for sβ+α → 1, viz. in the

wrong sign regime. Consequently, the charged Higgs boson does not decouple and contributes
significantly to the decay h→ γγ. An analogous observation can be made in the case of the
decay H → hh, where apart from H± also the other heavy Higgs bosons H and A0 show a
non-decoupling behaviour in the wrong sign limit. In the following, we briefly exemplify this
for the case of the CP-even Higgs boson H. For this purpose, we consider the ratio gHHh/m2

H ,
which plays an important role in the radiative corrections to the process under consideration.
In the limit sβ−α → 1, this ratio approaches the following values in the wrong sign and in the
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correct sign regime, respectively

gHHh
m2
H

=
1

m2
H

1

v

sβ−α
s2β

[
s2α(2m2

H +m2
h)−M2(3s2α + s2β)

]

m2
H≈M

2

≈ −1

v

sβ−α
s2β

[s2α + s2β] +O
(
m2
h

vm2
H

)

= −1

v
sβ−α

(
1 +

sαcα
sβcβ

)
+O

(
m2
h

vm2
H

)

= −1

v
sβ−α

(
1− sβ−α − cβ−αtβ

sβ−α + cβ−αtα

)
+O

(
m2
h

vm2
H

)

≈ −1

v
sβ−α




1−
sβ−α −

{
0 correct sign limit

2 wrong sign limit

sβ−α




+O
(
m2
h

vm2
H

)





sβ−α→1
≈ 0 correct sign limit

sβ−α→1
≈ − 2

v wrong sign limit

+O
(
m2
h

vm2
H

)
, (12.14)

Here we have used the fact that in the wrong sign limit, sβ−α → 1 is only possible for α→ 0
and β → π

2 , which in turn implies tβ → ∞. Therefore in the wrong sign limit we have
cβ−αtβ → 2 despite the fact that cβ−α approaches zero for sβ−α → 1. This can directly
be obtained from the considerations in Ref. [191]. As can be seen from Eq. (12.14), the
ratio gHHh/m2

H closes in on a constant value in the wrong sign regime, whereas it vanishes in
the correct sign case with growing mass m2

H as m2
h/(vm2

H). Consequently, the heavy CP-even
Higgs boson decouples for m2

H → ∞ in the correct sign regime, but not in the wrong sign
limit. Analogous observations can be made for the coupling gHhh. Furthermore, a comparable
treatment of the ratio ghA0A0/m2

A0
results in

ghA0A0

m2
A0

= −2

v

(
cβ−α

(
1

tβ
− tβ

))
+O

(
m2
h

vm2
A0

)
(12.15)





sβ−α→1
≈ 0 correct sign limit

sβ−α→1,

tβ→∞
≈ 2

v wrong sign limit

+O
(

m2
h

vm2
A0

)
.

Again, decoupling only takes place in the correct sign case. Finally, as far as H± is concerned,
the discussion can directly be taken from [191].
Due to these non-decoupling effects, it is advisable to exclude also all scenarios which reside
in the wrong sign regime from the samples in order to reach a conclusion on the numerical
stability of the various renormalization schemes. The large tree-level couplings which can
arise in non-decoupled settings, lead to huge radiative corrections, such that an inclusion
of higher-order effects is recommended and a discussion at one-loop order does not appear
sensible.
Therefore, we show in Fig. 12.7 a scatter plot of the relative one-loop corrections ∆ΓHhh for
the parameter points of Scan II which belong to scenarios in the correct sign regime. We
used the sign of sα as a discriminator between the two cases, assigning all parameter points
with sα < 0(> 0) to the correct (wrong) sign regime 3. Having excluded all non-decoupling

3Note that with 0 ≤ β ≤ π
2

, as imposed by ScannerS, the wrong sing regime with both sβ−α → 1 and sβ+α → 1
can only be obtained for sα > 0, while sα < 0 implies sβ+α < 1 for sβ−α → 1.
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Figure 12.7.: Scatter plots for the decay H → hh, showing the relative one-loop corrections ∆ΓHhh as a
function of the tree-level decay width for the parameter points of Scan II corresponding to scenarios in the
correct sign regime. In the right panel we only show the charged version of the p-p∗-scheme. We have cut the
plots at Γtree

H→hh = 0.1 GeV and constrained the range for ∆ΓHhh to −100% - +100% (see the discussion in
Sec. 12.3 and in the text below). Similar plots have been shown in our publication [43].

effects, we encounter the familiar situation of the previously studied processes. While the
process-dependent scheme leads to corrections beyond −100% and +100% (not shown in the
plot, which is restricted to a range between ±100%4), the data points belonging to the KOSY
and the p-OS schemes remain in a range between ±40%. Unlike before, however, there is a
difference visible in the left panel between the OS schemes (the KOSY and the p-OS scheme)
and the p-p∗ scheme. This difference originates from scenarios with comparably light CP-odd
Higgs bosons. Its occurrence can be traced back to the top resonance, which appears in the
mixed A0-G0-self-energy contributing to δβp-p∗

o and results from the diagram shown in Fig.
12.8. In the p-po∗-scheme this resonance is hit for a value of m2

A0/2 = 4m2
t , i.e. for mA0 ≈ 488

A0 G0

t

t

Figure 12.8.: Top quark contributing to the mixed A0-G0-self-energy becoming resonant for
m2

A0
2

= 4m2
t in

the p-po∗-scheme.

GeV, however its tail is visible up to values of mA0 ≈ 700 GeV. Since all scenarios of Scan I,
used for the previously studied processes, do not contain a CP-odd Higgs boson with a mass
below 700 GeV, we have not encountered this resonance in our investigations hitherto. Scan
II on the other hand, which is utilized for the present analysis, exhibits plenty of scenarios
with a pseudoscalar Higgs boson in the mass range 450 . . . 700 GeV.
In contrast to δβp-p∗

o , the charged version of δβp-p∗ is not affected by the top resonance, as
there is no comparable pure top loop contribution in the mixed H±-G±-self-energy. Indeed,
excluding the p-po∗-scheme from the scatter plot, the difference between the p-p∗ and the OS
schemes almost disappears, as can be seen in the right panel of Fig. 12.7. We can conclude
that the charged version of the p-p∗ scheme is preferable for scenarios with a light CP-odd
Higgs boson. Moreover, this plot clearly demonstrates the stable numerical properties of the
charged p-p∗ and the p-OS scheme.
On top of this, the above investigations also illustrate the good numerical behaviour of the

4For better visiblity, we do not go up to 300% in these plots.
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Figure 12.9.: Relative one-loop corrections to the decay H → hh as a function of mH . The plot shows the
results for the decoupled setting of Scenario 2 for the KOSYc and all pinched schemes.

MS scheme for m2
12, which was applied throughout.

In order to round off the discussion of the angular counterterms, we now examine one specific
scenario (Scenario 2), which resides in the decoupling limit. Note that the mass of the
pseudoscalar Higgs boson is large enough in this case to evade the top resonance. Fig. 12.9
shows the relative one-loop corrections ∆ΓHhh as a function of the mass mH for the selected
scenario. As can be seen, the corrections in Scenario 2 remain between about −8% and +50%
in all pinched schemes , which confirms the numerical stability of these. Furthermore, it is
interesting to note that the decoupling regime is gradually abandoned with growing mH such
that strict decoupling does not apply any longer towards the right end of the plot. This is
also reflected in the increasing radiative corrections.
Employing again the quantity ∆x,y

Hhh, defined in analogy to Eq. (12.10), as a measure for
the theoretical uncertainty in the decay H → hh, we obtain for Scenario 2 the estimates
summarized in Tab. 12.6. They imply a theoretical uncertainty below 6.6% within the plotted

Scenario 2

x, y ∆x,y
Hhh

p-OSo, p-OSc . 0.4%

p-OSo, p-po∗ . 6.6%

p-OSc, p-pc∗ . 3.6%

p-po∗, p-pc∗ . 3.9%

p-OSo, p-pc∗ . 5.8%

p-po∗, p-OSc . 3.3%

Table 12.6.: Estimates of the theoretical uncertainty in the decay H → hh by a comparison of the results for
Γ
O(1-loop)
H→hh obtained in different renormalization schemes.

range.

The last scheme which remains to be tested for numerical stability is the process-dependent
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Figure 12.10.: Scatter plot for the decay H → hh, showing the relative one-loop corrections ∆ΓHhh as a
function of the tree-level decay width for the parameter points of Scan III in the correct sign regime for two
different renormalization schemes for m2

12: the process-dependent scheme (dark green) and the MS scheme
(light green), with the renormalization scale fixed at µr = 2mh. The angular counterterms are renormalized
in the p-OSo scheme. Again we have cut the plot at Γtree

H→hh = 0.1 GeV and constrained the range for ∆ΓHhh

to −100% - +300% (see the discussion in Sec. 12.3). A similar plot has been shown in our publication [43].

renormalization scheme for m2
12. In order to examine this scheme, a third parameter scan,

Scan III, was performed, in which we demanded the scalar masses to obey the relation

mH ≥ 2mA0 , (12.16)

such that the decay H → A0A0 is kinematically allowed. This relation can only be fulfilled
in the non-decoupling regime as it requires a mass hierarchy among the non-SM-like Higgs
bosons. Therefore we expect to find large radiative corrections in the decay H → hh for
the parameter points of Scan III. Fig. 12.10, which displays the relative one-loop corrections
for the decay under consideration, confirms this anticipation. In this plot we compare the
two proposed renormalization schemes for m2

12, the process-dependent and the MS scheme,
where the renormalization scale has been fixed at µr = 2mh. For both cases, the angles are
renormalized in the p-OSo scheme. The relative one-loop corrections are found to be huge
in both schemes, however, the better performance of the MS scheme is still discernible if we
disregard the range to the left side of the plot, where the tree-level decay width vanishes
(cf. the discussion above). While all corresponding points in the MS scheme remain below
≈ 150%, there are outlying points scattered beyond 300% in the process-dependent scheme.
This observation suggests a numerical instability of the process-dependent scheme for m2

12,
which on top suffers from a limited applicability due to kinematic restrictions. Therefore,
the MS scheme, whose good performance was verified in the above studies in the decoupling
regime, is clearly preferable as renormalization scheme for m2

12.
As discussed above, the occurrence of radiative corrections as large as those encountered here
clearly calls for the inclusion of higher-order contributions to achieve reliable predictions.
This, however, is beyond the scope of this thesis.



CHAPTER 13

Conclusion of Part II

The purpose of this part of the thesis was the establishment and investigation of various renor-
malization schemes for the 2HDM. Throughout our considerations the focus was on finding a
suitable scheme for the mixing angles α and β and for the soft-Z2-breaking parameter m2

12.
As criteria for a good renormalization scheme we employed the three properties of process
independence, gauge independence and numerical stability. While process independence is
merely a preferable feature for an appropriate renormalization scheme, the latter two crite-
ria are indispensable. Meaningful higher-order predictions for physical observables are only
feasible within a renormalization framework leading to gauge-independent and numerically
stable results for physical quantities.
In the course of our investigations it has become apparent that the treatment of the tadpoles
is crucial for the matter of gauge independence. We proposed and investigated two differ-
ent tadpole schemes, the first of which, dubbed scheme I, introduces tadpole counterterms
such that all tadpole diagrams can be discarded. On the contrary, the second scheme, called
scheme II, forgoes tadpole counterterms, which in turn entails a proper inclusion of tadpole
diagrams in all Green's functions.
As we have discussed, within the framework of scheme II, all counterterms of physical param-
eters are manifestly gauge independent. In scheme I, however, gauge-dependent counterterms
for physical parameters are necessary in order to achieve gauge-independent expressions for
physical observables. We demonstrated that this fact prohibits a straightforward process-
independent definition of the angular counterterms in scheme I. In contrast, the gauge inde-
pendence of the counterterms in scheme II allows, in synergy with the pinch technique, for
a process-independent renormalization of the mixing angles, leading to gauge-independent
observables.
We investigated various renormalization schemes for the angular counterterms within both
tadpole frameworks. Concerning process-independent definitions, we considered the KOSY
scheme within tadpole scheme I and the p-OS and p-p∗ scheme, relying on the pinch technique
in the context of tadpole scheme II. Each of these schemes comes in two versions, depending
on whether the CP-odd or the charged Higgs sector is used to define the counterterm δβ. As
can be inferred from our discussion and as was explicitly verified, the KOSY scheme leads to
gauge-dependent expressions for physical quantities and therefore is to be regarded as unsus-
tainable. On the other hand, the pinched schemes are manifestly gauge independent.
As a further variant of a process-independent definition, we also briefly inspected an MS
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scheme for the mixing angles within both tadpole schemes. Again, this definition turned out
to yield gauge-dependent S-matrix -elements in tadpole scheme I while being evidently gauge
independent in scheme II.
On top of these schemes, we examined a process-dependent definition of the angular coun-
terterms, utilizing the decay processes A0 → ττ and H → ττ to fix δβ and δα, respectively.
Process-dependent schemes automatically lead to gauge-independent observables, irrespective
of the treatment of the tadpoles.
After the investigation of gauge dependence, we performed a thorough numerical analysis of
the proposed renormalization schemes, comprising three different test processes. The picture
emerging from this clearly showed that the process-dependent scheme for the mixing angles
is numerically unstable. Radiative corrections of more than 100% were seen to evolve within
this scheme for many of the investigated scenarios, regardless of the tadpole scheme. On the
other hand, the p-OS scheme and the charged version of the p-p∗ scheme were found to yield
numerically stable results in all processes we considered. The CP-odd version of the p-p∗
scheme is less favorable in scenarios featuring a light pseudoscalar Higgs bosons, which is due
to the emergence of the top resonance in δβ in this scheme, leading to enhanced radiative
corrections.

With regard to the parameter m2
12, we investigated two renormalization schemes, an MS

definition and a process-dependent scheme, fixing δm2
12 in terms of the decay H → A0A0.

Since m2
12 is a parameter of the original gauge-independent Lagrangian, gauge dependence

is of no concern in the renormalization of m2
12. Therefore both considered definitions are

manifestly gauge independent, irrespective of the tadpole scheme. However, the applicability
of the process-dependent scheme is subject to severe kinematic restrictions. Furthermore, the
numerical analysis suggests an unstable behaviour of the process-dependent scheme. Con-
trariwise, the MS definition of m2

12 leads to numerically stable results.

Summarizing all gained insights, we first of all clearly advocate the usage of tadpole scheme
II. Only within this framework, a renormalization scheme for the mixing angles can be found
that is at the same time process independent, gauge independent and numerically stable. In
the context of scheme II, the p-OS scheme and the charged version of the p-p∗ scheme have
proven good numerical properties in all processes and scenarios we considered. Therefore we
recommend their application in order to renormalize the mixing angles of the 2HDM.
Concerning the parameter m2

12, we suggest the usage of the MS scheme, which also fulfills all
three criteria established as prerequisites for an appropriate renormalization scheme.

For future research it would certainly be interesting to examine the numerical behaviour of the
advocated schemes in further processes and to test whether their numerical stability persists
as expected. An affirmative outcome of these investigations would manifest the role of the
p-OS and the p-pc∗ scheme as the preferable renormalization schemes for the mixing angles of
the 2HDM.
Finally, having set up a suitable renormalization scheme, we are now in the position to proceed
with a dedicated study of LHC phenomenology in order to investigate the implications of our
findings.
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CHAPTER 14

Outline of Part III

We now move on to the next extension of the SM, we want to consider in more detail in this
thesis. Already in part I, we have emphasized the elegance of SUSY and its capability of
providing a solution to many unanswered problems the SM is plagued with. In this part we
want to study one specific realization of a SUSY model, the Next-to-Minimal Supersymmetric
Standard Model (NMSSM) [30–37]. Our particular interest will be in the Higgs sector of the
NMSSM.
Although all evaluated data collected by the two general-purpose particle detectors ATLAS
and CMS at the LHC are up to now in good agreement with the Higgs boson discovered in
2012 being the SM Higgs boson [12–15], it is still premature to draw a definite conclusion.
More data is required in order to infer the properties and couplings of the Higgs boson with
a higher precision, before further insight can be gained. However, even if all measurements
turn out to confirm its SM-like behaviour, it is still possible that the discovered particle is a
Higgs boson of some BSM model, mimicking the one of the SM. In fact, it is conceivable that
a non-SM Higgs boson imitates the one of the SM with such a degree of perfection that a
distinction can be made only in high-precision measurements. This in turn necessitates from
the theory side predictions of comparable accuracy for physical observables within specific
BSM models.
Apart from precision measurements, another possibility of tracking down new physics is to
search for additional BSM particles. Since many BSM models feature an enlarged Higgs
sector, it is at hand to first look for additional Higgs bosons. In this endeavour, decays of
heavy Higgs bosons into lighter ones can play an important role.
For both of these possibilities of detecting new physics, trilinear Higgs self-couplings are of
particular importance. They enter prominent processes like Higgs pair production and Higgs-
to-Higgs decays and can hence have a significant phenomenological impact.
Moreover, they play a key role in the efforts of gaining further insight into the mechanism of
EWSB. In the SM with only one Higgs boson h, the Higgs potential is completely determined
by the mass mh of the Higgs boson and its trilinear and quadrilinear self-couplings λhhh and
λhhhh. Furthermore, there is a unique relation between the self-couplings and the Higgs mass,
given by

λhhh =
3m2

h

v
and λhhhh =

3m2
h

v2
. (14.1)
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The last step in the experimental verification of the Higgs mechanism requires the recon-
struction of the Higgs potential, and hence the determination of the trilinear and quadrilinear
Higgs self-couplings. However, the quartic Higgs coupling is experimentally out of reach in
the foreseeable future [197]. Also the determination of the trilinear Higgs self-coupling will
be a challenging task, but there is justified reason to assume that it may be accessible at
the high-luminosity LHC. At least, it should be feasible to determine, whether the trilinear
coupling is non-vanishing, as required for a non-vanishing vev, and thus to perform a first
consistency check of the SM Higgs mechanism.
Several groups have performed dedicated studies on the measurability of the trilinear Higgs
coupling at present and future colliders and estimated the accuracy, with which we can ex-
pect the latter to be extracted. Their analyses resulted in predicted accuracies ranging from
∼ O(1) to 30% for the high-luminosity LHC at 14 TeV [198–206], from 10 to 20% for the ILC
at 1 TeV [204, 207] and from 8 to 30% for a future 100 TeV hadron collider [204, 208, 209].
It should be noted, however, that some of these estimates are probably too optimistic, since
they underrate experimental uncertainties [209].
All quoted studies assume the SM as underlying model. For models with enlarged Higgs
sectors, the prospects for measuring the trilinear Higgs self-couplings are highly model de-
pendent [204, 210]. However, if in nature a model is realized that features large deviations
of the trilinear coupling λhhh of three SM-like Higgs bosons from the SM prediction, these
might be detectable at the LHC or future colliders. In this context it should be noted that
λhhh can still deviate substantially from its SM value without being in contradiction with
experiment, even if all other couplings and properties of the Higgs boson are close to the SM
predictions [209]. Therefore it is conceivable that new physics will first be detected by means
of the trilinear Higgs self-coupling [210, 211]. Furthermore, in case a sign of an extended
Higgs sector is found, the trilinear Higgs self-couplings might be used in order to discriminate
between different BSM models [212].
Models with an extended Higgs sector do not fulfill the relation between the masses and
trilinear couplings of their Higgs bosons stated in Eq. (14.1), as the Higgs potential is more
involved and the Higgs mass eigenstates are complicated mixtures of gauge eigenstates. Nev-
ertheless, Higgs masses and trilinear self-couplings are closely entwined, since both derive
from the Higgs potential. For that reason, the order of the corrections included in the trilin-
ear couplings should match the precision the Higgs boson masses are calculated with. Only
if both, the masses and the trilinear couplings, are known up to the same order in the per-
turbative expansion, consistent predictions for observables of that order can be made.
A treatment of the Higgs masses and trilinear self-couplings on an equal footing is also im-
portant in considerations of decoupling properties [213]. In some SM extension, e.g. the
MSSM, the coupling between three SM-like Higgs bosons approaches the SM value and ful-
fills Eq. (14.1) in the decoupling limit. In the MSSM this limit is attained for m2

A0
� M2

Z ,
where mA0 is the mass of the MSSM pseudoscalar Higgs boson. The relation remains valid
even if higher-order corrections of the same order are included in both the masses and the
couplings [214–217]. In the NMSSM on the other hand, the trilinear coupling of three SM-like
Higgs bosons does not necessarily approach the SM value in the decoupling limit, not even at
tree level, if the SM-like Higgs boson exhibits a substantial admixture of the NMSSM-specific
singlet component [46].

Within the NMSSM considerable effort has been devoted in the recent years to the determi-
nation of higher-order corrections to the masses of the Higgs bosons. In the CP-conserving
NMSSM, featuring purely real parameters and vevs, the first leading corrections have been
calculated in Refs. [218–223]. Subsequently the full one-loop mass corrections have been pre-
sented in Refs. [224,225] in the DR scheme and in Ref. [226] in a scheme with mixed DR and
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OS conditions. Furthermore, the leading two-loop corrections of O(αtαs + αbαs)
1 have been

determined in the effective potential approach in Ref. [224] and even first corrections going
beyond have been announced in Refs. [227–230].
For the CP-violating NMSSM, where some of the parameters of the scalar potential as well
as the vevs can be complex (cf. Sec. 16.2), the first leading one-loop corrections to the Higgs
boson masses have been presented in Refs. [231–235]. Moreover, the full one-loop correc-
tions [236] as well as the corrections of O(αtαs) [44] and beyond [45] in the limit of vanishing
external momentum are available by now.
Concerning the trilinear Higgs self-couplings, the research activity with regard to higher-order
corrections has been much less pronounced. Until recently only the full one-loop corrections
in the framework of the CP-conserving NMSSM, determined in Ref. [46], were known. In
their numerical analysis, the authors have found the corrections to the trilinear couplings to
be important. Included into Higgs-to-Higgs decays, they were seen to yield deviations of up
to 90% in the decay widths compared to tree-level results. The incorporation of these correc-
tions in a program scanning the NMSSM parameter space for allowed parameter points was
found to lead to an exclusion of some parameter points that were allowed when only tree-level
trilinear couplings were used or the other way around to the admission of some parameter
configurations excluded at tree-level. Furthermore, the authors estimated the influence of the
corrections on Higgs pair production and concluded it to be substantial.
In view of these phenomenological investigations, the importance of higher-order corrections
to the trilinear Higgs self-couplings within the NMSSM becomes obvious. Moreover, the size
of the one-loop corrections found in Ref. [46] calls for the inclusion of higher orders to ver-
ify the convergence of the perturbative expansion and to reduce the theoretical uncertainty.
With regard to the precision available for the masses, it is besides clear that a consistent
prediction for physical observables of higher accuracy requires the inclusion of higher-order
corrections to the trilinear Higgs self-couplings. The next important higher-order corrections
are those of O(αtαs), which match the precision in the masses of Ref. [44].
The purpose of this part of the thesis is the determination and presentation of these correc-
tions in the limit of vanishing external momentum. Our results, which we will detail in the
following chapters, have been published in [47].

In order to set the scene, we will start in Ch. 15 with some preliminaries concerning notations
and conventions. An emphasis will lie on the introduction of the approximations which will
be used in the subsequent chapters as well as on the rough structure of the corrections.
Afterwards, in Ch. 16, we will give a brief introduction to the NMSSM, summarizing its parti-
cle content and detailing the sectors, which will be important for the following investigations.
Ch. 17 will be devoted to the specification of the renormalization scheme, focusing again
on those parts of the NMSSM which are relevant for our studies. Concerning the top-stop
sector, we will introduce two different renormalization schemes, the OS and the DR scheme,
and give the necessary conversion rules for switching between both. For the Higgs sector we
will suggest a hybrid scheme, mixing OS and DR conditions, in analogy to the one used in
Ref. [44].
We will then continue with the presentation of the calculation of the corrections to the tri-
linear Higgs self-couplings. In Ch. 18 we will first deal with the corrections of O(αt) and
illustrate their determination by means of the effective potential approach. They will allow
us to define effective trilinear Higgs self-couplings and give access to an estimation of the
goodness of our approximations.
Subsequently, we will turn to the calculation of the O(αtαs) corrections in Ch. 19. We will
explain our treatment of the two-loop integrals and go into details concerning a proper inclu-
sion of the counterterms at two-loop order.
Finally, we will turn to the numerical investigation of our results. In Ch. 20 we will consider

1For an explanation of this notation for the order see Ch. 15.
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the implications of our corrections, in particular for the trilinear self-coupling of three SM-like
Higgs bosons. First, we will discuss the range of validity of our approximations by means of
a comparison of the O(αt) corrections to the full one-loop corrections. Afterwards, we will
examine the size of the corrections at different orders and estimate the theoretical uncertainty
by comparing the results obtained in different renormalization schemes and by a variation of
the renormalization scale. Furthermore, we will examine the influence of the complex phases
on our results. Eventually, we will investigate the subject of Higgs-to-Higgs decays and dis-
cuss the limitation of neglecting the external momentum in the O(αtαs) corrections in this
context. The conclusions will be given in Ch. 21.



CHAPTER 15

Preliminaries on Used Approximations and the Structure of the Corrections

Before presenting the details of the calculation, we first want to explain the approximations
and limits, which will be used in the subsequent chapters. Furthermore, we want to present
the rough structure of the corrections to be calculated in order to make it easier for the reader
to follow our discussion.
First of all, let us clarify the meaning of the term O(αtαs) and similar specifications. Conven-
tionally, these terms are used to indicate the order of loop corrections in terms of the couplings
involved. For instance the term O(αtαs) denotes a proportionality of the corrections to αtαs.
Here αs is as usual defined as αs = g2

s/4π, where gs denotes the gauge coupling constant of
SU(3)C . Analogously, αt is given in terms of the top Yukawa coupling yt by αt = y2

t/4π.
Both coupling constants, gs and yt, are large compared to the electroweak gauge couplings
or the Yukawa couplings of other SM fermions, wherefore the corrections of O(αtαs) are the
dominant corrections at two-loop order. It should be noted, however, that the corrections
to the trilinear Higgs couplings presented in this thesis are actually proportional to ytαt and
ytαtαs. We will still denote them as the corrections of O(αt) and O(αtαs) to comply with the
convention used in the literature and to emphasize their compatibility with the corrections
of O(αt) and O(αtαs) to the Higgs boson masses.
The O(αtαs) corrections are obtained in the gaugeless limit, where the electroweak gauge
couplings g1 and g2 are neglected. Accordingly, also the electric charge e as well as the
masses of the gauge bosons are set to zero, as they vanish for g1, g2 → 0. However, care has
to be taken performing the gaugeless limit correctly in ratios of vanishing quantities. For
example, while MW , MZ and e vanish separately, their ratios, e.g. MW/MZ = cW 6= 0 or
MW/e = v/2sW , do not. This will be important in particular in the renormalization procedure
to be discussed below. Besides the gauge bosons, all SM fermions apart from the top quark
will be treated as massless. In particular, we will also consider the bottom quark as massless,
which is consistent with neglecting corrections of O(αbαs), where αb = y2

b/4π and yb denotes
the bottom Yukawa coupling.
Furthermore, we work in the limit of vanishing external momentum. Although we will use the
Feynman diagrammatic approach, the results obtained in this approximation are equivalent
to those obtained in the effective potential approach, where the external momenta are ne-
glected by definition. This approximation is justified, if all contributing virtual particles are
heavy as compared to the typical external momenta [40, 190, 237, 238]. Above the threshold
of on-shell production of the loop particles, however, the loop integrals develop an imaginary
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part, which is not captured in the effective potential approach, and the p2 = 0 approximation
breaks down. Below, we will discuss in detail the applicability of this approximation for our
purposes and consider its limitations.

In addition to the corrections of O(αtαs) we will also determine the corrections of O(αt),
which are the leading corrections at one-loop order. We will calculate these corrections sub-
ject to the same approximations outlined above, i.e. in the gaugeless limit and for vanishing
external momentum. This will allow us to establish effective trilinear Higgs self-couplings,
that is to say couplings incorporating the leading higher-order corrections defined in the limit
of vanishing external momentum. We will use these effective couplings in order to compare
the corrections of O(αt) and of O(αtαs), calculated under identical approximations, and thus
estimate the influence of higher-order corrections and the remaining theoretical uncertainty.
This is interesting in particular for the trilinear coupling of three SM-like Higgs bosons, for
which the effective couplings of O(αt) are a good approximation of the full one-loop-corrected
couplings (cf. Sec. 20.3). The reason behind our restriction to O(αt) in the effective couplings
at one-loop order is the fact that, at this order, only top quarks and their supersymmetric
partners the stops appear as loop particles. These are sufficiently heavy in order for the p2 = 0
approximation to be valid for our purposes in Sec. 20.4, where we consider the trilinear Higgs
coupling of three SM-like Higgs bosons.
In view of the above discussion, it is clear, however, that the approximation of vanishing
external momentum cannot be justified in the calculation of the decay widths of heavy Higgs
bosons with masses above the tt threshold, where on-shell top pair production becomes pos-
sible. Therefore, we will include the full one-loop corrections with explicit momentum de-
pendence when we discuss Higgs-to-Higgs decays in Sec. 20.5. Furthermore, we will ensure
the tt-resonance to be negligible for the two-loop results, such that the approximation of
vanishing external momentum remains applicable at O(αtαs).

The two-loop-corrected effective trilinear Higgs self-couplings Λ
O(αtαs)
ijk can be decomposed

into three pieces

Λ
O(αtαs)
ijk = λijk + ∆λ

O(αt)
ijk + ∆λ

O(αtαs)
ijk . (15.1)

Since the NMSSM comprises six neutral scalars in the Higgs sector, the indices of the couplings
i, j, k take values ∈ {1, . . . , 6}. We have not yet specified a particular basis, as the structure
of the couplings to be illustrated here is general. Hence, the indices can be interpreted as
indicating mass or gauge eigenstates. The first term in Eq. (15.1) represents the tree-level
coupling, whereas the second and the third term stand for the corrections of O(αt) and
O(αtαs), respectively. Both correction terms can be split up further according to

∆λ
O(αt)
ijk = ∆λ

O(αt),virt
ijk + ∆λ

O(αt),ct
ijk (15.2)

∆λ
O(αtαs)
ijk = ∆λ

O(αtαs),virt
ijk + ∆λ

O(αtαs),virt⊗ct
ijk + ∆λ

O(αtαs),ct
ijk . (15.3)

For the O(αt) corrections, the division corresponds to a neat separation into pure countert-
erm and pure virtual contributions, following the nomenclature introduced in Subs. 3.2.2.
However, in the case of the O(αtαs) corrections a mixed term appears, corresponding to con-
tributions of one-loop diagrams of order O(αt) with the insertion of a counterterm of O(αs).
The other two terms respectively stand for the contributions of genuine two-loop diagrams
and of pure counterterm diagrams, where the corresponding counterterms are of O(αtαs).
Since we will dedicate an own chapter to the corrections of one-loop order, we also define the
effective couplings of O(αt)

Λ
O(αt)
ijk = λijk + ∆λ

O(αt)
ijk . (15.4)
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Introduction to the NMSSM

The purpose of this chapter is to give a brief introduction to the NMSSM. In Sec. 16.1 we
will exhibit its particle content and explain the notation used in the following. Furthermore,
we will discuss the main motivations for studying the NMSSM. Afterwards, in Sec. 16.2, we
will deal with the Lagrangian of the NMSSM, going into details of the Higgs sector (sections
16.3, 16.4) and the stop sector (Sec. 16.5), which will be needed for the subsequent chapters.
Throughout, we will make considerable use of Refs. [36,37,48].

16.1. Motivations for and Particle Content of the NMSSM

We have already mentioned in Sec. 2.2, that in a supersymmetric model, all SM degrees
of freedom have to receive a supersymmetric counterpart, together with which they form a
supermultiplet. The members of a supermultiplet agree in all quantum numbers with the
exception of the spin, which differs by a unit of 1/2 between the SM particles and their super-
partners.
In the MSSM, the simplest realization of SUSY, each SM particle receives exactly one super-
partner and, with the exception of a second Higgs doublet (cf. Sec. 2.2), no further degrees of
freedom are added to the SM particle spectrum. As we will see below, although the MSSM is
attractive due to its sparingness, there are strong motivations to extend its particle content
by one further complex scalar singlet and its SUSY partner. The resulting model is called
the Next-to-Minimal Supersymmetric Standard Model (NMSSM).
Within the NMSSM (and equally in the MSSM), the SM fermions are arranged into chiral
supermultiplets. Each of the left- and right-handed components that was listed in Tab. 2.1
is assigned a complex scalar as superpartner, whose name is conventionally derived from the
name of the SM fermion by prepending an “s”. Equally, the symbols for the superpartner
fields are those of the corresponding SM fields decorated with a tilde. Like in the case of
the SM fermions, the left-handed sfermions are grouped into SU(2)L-doublets, whereas the
right-handed sfermions are singlets under SU(2)L. An overview of all SM fermions and their
superpartners can be found in Tab. 16.1. By convention, the chiral supermultiplets are de-
fined in terms of left-handed Weyl spinors. Following this custom, we list in the table the
conjugates of the right-handed fermions, which transform as left-handed spinors. We also
assign a handedness to the sfermions in Tab. 16.1. It is important to note, however, that this
does not refer to a property of the sfermions themselves, which, as scalar particles, cannot
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be allotted a chirality, but derives from their respective SM partners. Furthermore, we intro-
duce a symbol for each of the chiral supermultiplets as a whole, given by the notation of the
involved SM field, adorned with a hat.
Also the two Higgs doublets as well as the NMSSM singlet reside in chiral supermultiplets. As
they are scalars, their superpartners have to be spin-1/2 Weyl fermions. In the case of the two
Higgs doublets, the latter form left-handed SU(2)L doublets and are denoted as higgsinos.
The Higgs doublets are conventionally designated by the type of quark they couple to and
thus endow with a mass, i.e. by Hu and Hd, and the higgsinos are correspondingly denoted
as H̃u and H̃d. In this context, let us remind the reader of the fact, that the Higgs sector
of the MSSM constitutes a 2HDM of type II. The singlet, which does not couple to any SM
particle outside the Higgs sector, is symbolized by S, its superpartner, the singlino, by S̃.

chiral supermultiplets spin 0 spin 1/2 (SU(3)C ⊗ SU(2)L ⊗ U(1)Y )

squarks, quarks

Q̂ Q̃L =
(
ũL, d̃L

)T
QL = (uL, dL)T (3,2, 1

6)

û ũ∗R u†R (3,1,−2
3)

d̂ d̃∗R d†R (3,1, 1
3)

sleptons, leptons
L̂ L̃L = (ν̃L, ẽL)T LL = (νL, eL)T (1,2,−1

2)

ê ẽ∗R e†R (1,1, 1)

Higgs, higgsinos

Ĥu Hu =
(
H+
u , H

0
u

)T
H̃u =

(
H̃+
u , H̃

0
u

)T
(1,2, 1

2)

Ĥd Hd =
(
H+
d , H

0
d

)T
H̃d =

(
H̃+
d , H̃

0
d

)T
(1,2,−1

2)

Ŝ S S̃ (1,1, 0)

Table 16.1.: Chiral supermultiplets of the NMSSM. All fermions and sfermions come in three generations.
The last column shows the transformation properties of the particles w.r.t. the gauge groups, as introduced in
Sec. 2.1.

Unlike the matter particles, the gauge bosons have to be assigned to vector supermultiplets.
As they transform under the adjoint representation of the corresponding gauge group, their
superpartners, which are spin-1/2 Weyl fermions, called gauginos, must be vector fermions,
i.e. their left- and right-handed components have to behave identical under gauge transfor-
mations. This is due to the fact that the adjoint representation of a gauge group is its own
conjugate. Like the W bosons, their superpartners, the winos form a triplet under SU(2)L
whereas the bino, the superpartner of the B-boson, comes as a singlet. The gauge bosons
and their superpartners are summarized in Tab. 16.2. Note that in the case of the W -bosons
and winos it is convenient to quote states of definite charge, given by W± = 1√

2
(W1 ∓ iW2),

W 0 = W3 and analogous for the winos, instead of the triplet components.

In the discussion of the 2HDM, we have already become acquainted with the fact that particles
of identical quantum numbers mix. The NMSSM spectrum comprises a wealth of particles
with this property such that the gauge eigenstates listed in Tabs. 16.1 and 16.2 do not corre-
spond to the physical mass eigenstates. A closer look at the tables reveals that the charged
higgsinos can combine with the charged winos to form the charginos, while the neutral hig-
gsinos can combine with the singlino, the bino and neutral wino to form the neutralinos. Due
to the additional singlino, the number of neutralinos is enhanced by one compared to the
MSSM, resulting in a total of five neutralinos.
Mixing also takes place among the squarks and sleptons. Strictly speaking, all six squark
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gauge supermultiplets spin 1 spin 1/2 (SU(3)C ⊗ SU(2)L ⊗ U(1)Y )

gluons, gluinos g g̃ (8,1, 0)

W bosons, winos W±,W 0 W̃±, W̃ 0 (1,3, 0)

B bosons, bino B B̃ (1,1, 0)

Table 16.2.: Gauge supermultiplets of the NMSSM. The last column shows the transformation properties of
the particles w.r.t. the gauge groups, as introduced in Sec. 2.1.

species of one type, all six charged sleptons and all three sneutrinos respectively share identi-
cal quantum numbers and thus are capable of mixing. In practice, however, flavor violation in
the squark sector is usually not considered, such that inter-generational mixing does not take
place. Furthermore, mixing is often supposed to be negligible for the first two generations
and only the third generation sfermions are considered to be strongly mixing in pairs [48].
This approximation is justified, as the mixing between left- and right-handed sfermions is
controlled by the Yukawa couplings of the corresponding fermions. Thus, the physical mass
eigenstates of e.g. the stops are given by (t̃1, t̃2), where t̃1 and t̃2 are linear combinations of
t̃L and t̃R. Analogous relations hold for the sbottoms and staus.
Yet, most important for our purposes is the mixing in the Higgs sector. This will be dealt
with in detail in Sec. 16.3.

The core of any SUSY model is given by its superpotential Ŵ . Once the superpotential is
specified and the particle content and gauge transformation properties of the supermultiplets
are known, the supersymmetric gauge-invariant Lagrangian of the model and the correspond-
ing couplings, mass and tadpole terms can be derived. Only those parts of the Lagrangian
which explicitly break SUSY (denoted by Lsoft) or gauge invariance (Lgf and Lghost) cannot

directly be obtained from Ŵ and the transformation properties of the supermultiplets.
In order to motivate the study of the NMSSM, we will first consider the MSSM superpoten-
tial, as it already reveals one of the major shortcomings of the MSSM. Using the superfield
notation defined above, it is given by

ŴMSSM = ûY U
(
Q̂T εĤu

)
− d̂Y D

(
Q̂T εĤd

)
− êY E

(
L̂T εĤd

)
+ µ

(
ĤT
u εĤd

)
. (16.1)

As in Sec. 5.4, the Yukawa couplings Y J are 3 × 3 matrices in flavor space and ε denotes
the totally anti-symmetric tensor in 2 dimensions. For brevity we have suppressed all gauge
and family indices. Unlike in the case of the 2HDM, the Yukawa matrices will be considered
as diagonal. Furthermore, the quark fields can always be redefined in such a way that the
Yukawa couplings are real.
The dimensionful parameter µ appearing here is indispensable for the process of EWSB
since it assumes the role of the Higgs mass term in the scalar potential, derived from the
superpotential. For phenomenological reasons µ must be of the order of the electroweak scale.
However, since µ is a parameter of the symmetric phase and as such unrelated to EWSB,
there is no theoretical reason for why this parameter should be so small as compared e.g. to
the Planck mass MPl. This so-called µ-problem is often considered as the main motivation
for the NMSSM. Within the latter, the µ-term is replaced by the expression

λŜ
(
ĤT
u εĤd

)
, (16.2)

where λ is a dimensionless complex coupling. In this way, the introduction of a dimensionful
parameter in the superpotential is avoided and the necessary µ term in the scalar potential
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is generated only when the scalar component of Ŝ acquires a vev. Hence, the µ-parameter is
replaced by the effective parameter µeff = λ〈S〉, which is generated dynamically in the process
of EWSB and is therefore automatically of the desired order.
While this replacement of the µ-term solves the µ-problem, it leads to an invariance of the
superpotential under a global phase transformation, i.e. the superpotential gains an accidental
Peccei-Quinn (PQ) symmetry U(1)PQ [239–241]. Once the Higgs bosons acquire their vevs,
this PQ symmetry is spontaneously broken, resulting due to the Goldstone theorem in the
occurrence of a massless Peccei-Quinn axion. In order to avoid such an axion, whose existence
is subject to severe experimental constraints, the PQ symmetry has to be broken explicitly
by the introduction of the additional term

1

3
κŜ3 (16.3)

into the superpotential. Here κ is a complex dimensionless parameter.
In its most general form, the NMSSM superpotential could also include the following non-
scale-invariant terms

µ′
(
ĤT
u εĤd

)
+ τSŜ + µ′′Ŝ2. (16.4)

However, the additional dimensionful parameters µ′, µ′′ and τS in these terms would obviously
reintroduce the µ-problem. Therefore, in most studies of the NMSSM, a Z3-symmetry is
imposed on the superpotential, which prohibits the occurrence of these terms, resulting in
the following NMSSM superpotential

ŴNMSSM = ûY U
(
Q̂T εĤu

)
− d̂Y D

(
Q̂T εĤd

)
− êY E

(
L̂T εĤd

)
+ λŜ

(
ĤT
u εĤd

)
+

1

3
κŜ3.

(16.5)

In the subsequent discussion, we will follow the usual convention to refer to the Z3-invariant
NMSSM as the NMSSM. As a side remark, note that an exact Z3-symmetry, which is spon-
taneously broken by the vev of the singlet S, would lead to the formation of domain walls in
the early universe, spoiling the cosmic microwave background. This can be avoided by the
introduction of certain higher dimensional operators, which explicitly break the Z3-symmetry,
whose effect on low energy scales is, however, negligible. We do not go into further details
here and will henceforth assume the domain-wall problem to be solved in this way, pointing
to Ref. [36] and the references therein for more information.
Although the solution of the µ-problem is often referred to as the primary motivation for the
NMSSM, there are other benefits coming along with the introduction of a further singlet.
One is connected to the mass of the SM-like Higgs boson. In the MSSM, there is an upper
bound on the tree-level mass of the lightest CP-even Higgs boson h1, given by

(mMSSM
h1

)2 < M2
Zc

2
2β. (16.6)

Thus, in order to accommodate a Higgs mass of 125 GeV, huge radiative corrections are
necessary. As the dominant corrections to the Higgs mass arise from stop and top loops, this
in turn requires rather large stop masses. Yet, a too strong violation of the the degeneracy
between tops and stops endangers the main motivation for SUSY itself, which is the solution
of the hierarchy problem (cf. Sec. 2.2).
In the NMSSM the upper bound in Eq. (16.6) is alleviated by an additional contribution
coming from the coupling λ, which yields

(mNMSSM
h1

)2 < M2
Zc

2
2β +

|λ|2v2

2
s2

2β. (16.7)
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Owing to this additional term, a value of 125 GeV can more easily be realized, requiring less
enhancement of the mass through radiative corrections.
Another motivation for studying the NMSSM is the fact that, unlike the MSSM, it allows,
in its complex version, for CP-violation in the Higgs sector at tree level. As discussed in the
introduction 2.1, a sufficient amount of CP-violation is necessary in order to fulfill one of
the three Sakharov criteria for a successful baryogenesis, i.e. the generation of the baryon-
antibaryon asymmetry of the universe [50].
Furthermore, the additional cubic terms in the NMSSM Higgs potential, which are absent
in the MSSM, allow for an easier realization of a strong electroweak phase transition in the
early universe, which constitutes one of the favourite mechanisms to explain baryogenesis (see
Ref. [36] and references therein).

Beyond these theoretical advantages, the NMSSM offers a rich and interesting phenomenol-
ogy. For instance, the NMSSM allows for light Higgs bosons with masses below the LEP
bounds, evading the exclusion limits by a substantial singlet admixture [242, 243]. The en-
larged Higgs sector also offers a huge variety of possible Higgs-to-Higgs decays, which can
result in interesting and exotic final states [243].
In the context of dark matter searches, the NMSSM is often discussed due to its capability
of furnishing light neutralino dark matter candidates with masses around 10 GeV [244–247],
as favoured by some experiments [248–253]1.
All the given examples clearly show that there is a strong motivation to accept the enhance-
ment of the complexity caused by adding further degrees of freedom to the MSSM spectrum.

16.2. The Lagrangian of the NMSSM

We now want to have a closer look at the Lagrangian of the NMSSM. As we have mentioned
above, its supersymmetric, gauge-invariant part, denoted by LSUSY, directly follows from the
superpotential, specified in Eq. (16.5) and the transformation properties of the superfields
under gauge transformations. Adding the SUSY and gauge invariance violating terms, the
Lagrangian of the NMSSM is given by

LNMSSM = LSUSY + Lsoft + Lgf + Lghost. (16.8)

Both Lgf and Lghost are identical to the equivalent terms of the 2HDM, stated in Sec. 5.5.
LSUSY comprises the kinetic terms for all NMSSM particles, the Yukawa interactions and
(part of) the scalar potential. Finally, Lsoft incorporates all possible soft-SUSY-breaking
terms, which are necessary in order to prevent SUSY from being directly excluded by the non-
observation of any SM superpartners. Since the mechanism of SUSY breaking is unknown, we
have to include in Lsoft all possible terms which possess couplings of positive mass dimension
and are compatible with matter parity (cf. Sec. 2.2). Under these constraints, the soft-SUSY-
breaking Lagrangian of the NMSSM takes the form

−Lsoft = m2
Q̃
Q̃†Q̃+m2

ũR
|ũR|2 +m2

d̃R
|d̃R|2 +

(
AuY

U ũ∗R(Q̃T εHu)−AdY Dd̃∗R(Q̃T εHd) + h.c.
)

+m2
L̃
L̃†L̃+m2

ẽR
|ẽR|2 −

(
AeY

E ẽ∗R(L̃T εHd) + h.c.
)

+m2
HuH

†
uHu +m2

Hd
H†dHd +m2

S |S|2 +

(
Aλλ(HT

u εHd)S +
1

3
AκκS

3 + h.c.

)

+
1

2

(
M1B̃B̃ +M2W̃

iW̃ i +M3g̃g̃
)
. (16.9)

1Note, however, that there is tension between the results of these experiments and moreover they conflict with
the results of LUX XENON [254] and [255].
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Many new parameters are introduced by these SUSY violating terms. The first two rows
of Eq. (16.9) comprise the soft breaking terms for the squark and slepton sector, containing
the soft-SUSY-breaking mass parameters m

Q̃
, mũR , md̃R

, m
L̃
, mẽR and trilinear couplings

Au, Ad, Ae. Analogously, the third row incorporates the soft breaking masses and trilinear
couplings mHu , mHd , mS and Aλ, Aκ for the Higgs sector, while the last row holds the soft
breaking gaugino masses M1, M2, M3. In the case of the sfermions, the soft breaking mass
terms and trilinear couplings are in general complex 3×3 matrices in family space. However,
like the Yukawa matrices, they will be considered as diagonal in the following. Due to the
hermiticity of the mass matrices, the entries of the resulting diagonal soft-SUSY-breaking
mass terms have to be real. By the same token, also the soft-SUSY-breaking masses of the
Higgs and the gaugino sectors are real parameters, whereas the trilinear couplings Aλ and Aκ
are complex in general.
Together with parts of LSUSY, Lsoft constitutes the scalar potential of the NMSSM. Unlike
in the SM or the 2HDM, the scalar sector comprises particles not being part of the Higgs
sector, viz. the scalar superpartners of the SM fermions. Yet, in the following we will mainly
concentrate on the Higgs sector and therefore only discuss the corresponding Higgs potential
in more detail. Concerning the sfermion contributions to the scalar potential, we content
ourselves with the remark that the presence of additional charged and colored scalars in the
potential poses the danger of the development of charge and color breaking minima, which
have to be avoided, imposing limits on the NMSSM parameters [36, 37]. A comprehensive
treatment of the full NMSSM scalar potential can be found e.g. in Ref. [36].

16.3. The NMSSM Higgs Potential

The NMSSM Higgs potential VH is composed of terms derived from the superpotential and
of terms entering through Lsoft. Assembling all pieces, VH is given by

VH =|λ|2|S|2
(
H†uHu +H†dHd

)
+
∣∣λ
(
HT
u εHd

)
+ κS2

∣∣2 (16.10)

+
1

2
g2

2

∣∣∣H†uHd

∣∣∣
2

+
1

8

(
g2

1 + g2
2

) (
H†uHu −H†dHd

)2

+m2
HuH

†
uHu +m2

Hd
H†dHd +m2

S |S|2 +

(
Aλλ

(
HT
u εHd

)
S +

1

3
AκκS

3 + h.c.

)
.

Like in the case of the 2HDM, we can expand the two Higgs doublets as well as the singlet S
around their vevs and split the neutral components into a CP-even and a CP-odd part

Hd =

(
H0
d

h−d

)
=

(
vd+hd+iad√

2

h−d

)
, Hu =

(
h+
u

H0
u

)
= eiϕu

(
h+
u

vu+hu+iau√
2

)
, (16.11)

S = eiϕs
vs + hs + ias√

2
. (16.12)

Due to the fact that we consider the complex NMSSM, we have to account for a possible
phase difference between the two doublets and between the doublets and the singlet. Since
only relative phases play a role, these can always be adjusted such that one of the scalars, Hd

in our case, comes without a phase. Note that the complex phase ϕu enters the expressions
for all up-type quark masses. In order to keep the Yukawa couplings and the quark masses
real, we redefine the left- and right-handed up-type quark fields, according to

uL → e−iϕu/2uL, uR → ei
ϕu/2uR, (16.13)

where as before, u represents u, c, and t. This redefinition leads to the appearance of the
phase ϕu in all couplings involving only one up-type quark.
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Inserting the expansions in Eqs. 16.11 and 16.12 into Eq. (16.10), the Higgs potential can be
cast into the following form (summation over recurring indices implied)

VH =
1

2
(Mφ)ij φiφj +

(
Mφ±

)
ij
φ+
i φ
−
j + (tφ)iφi

+ λφiφjφkφiφjφk + λ±
φ+
i φ
−
j φk
φ+
i φ
−
j φk + V φ

4

H + V const
H , (16.14)

with

φ = (hd, hu, hs, ad, au, as)
T and φ± = ((h∓d )∗, h±u )T . (16.15)

In this representation we have collected the neutral scalar components as well as the charged
ones in the vectors φ and φ±, respectively. As a result, the complex coefficients of the terms
bilinear in the scalar fields are grouped into the 6 × 6 matrix Mφ and the 2 × 2 matrix
Mφ± , which constitute the neutral and charged Higgs mass matrices in the gauge basis.
Furthermore, the terms linear in the scalar fields, the tree-level tadpoles, are gathered in
the vector tφ. λφiφjφk denotes the trilinear coupling between the three neutral scalars φi,
φj , φk, while those connecting one neutral scalar and two charged ones are summarized in

λ±
φ+
i φ
−
j φk

. All quartic scalar couplings are collected in V φ
4

H and irrelevant constant terms in

V const
H .

As in the 2HDM, the terms linear in the scalar fields have to vanish in the minimum of the
potential, i.e. it must hold

∂VH
∂φi

= (tφ)i
∣∣
〈Hu〉=vu,〈Hd〉=vd,〈S〉=vs = 0, i = 1, . . . , 6. (16.16)

These are six equations, one for each of the components of the vector φ. Unlike in the 2HDM,
the MSSM or the CP-conserving NMSSM, the terms linear in the pseudoscalar components
do not vanish trivially and lead to additional tadpole conditions. Due to the important role
the tadpoles play in the renormalization procedure, we will again keep the tadpole parameters
(tφ)i explicit and set them to zero only after renormalization has been performed. Expressed
in terms of the parameters of the Higgs potential and the vevs, the six tadpole parameters
are given by

thd =
1

2
|λ|
(
−
√

2vuvs|Aλ|cϕx + |λ|vd
(
v2
u + v2

s

)
− |κ|v2

svucϕy

)
(16.17)

+
1

8

(
g2

1 + g2
2

)
vd
(
v2
d − v2

u

)
+m2

Hd
vd,

thu =
1

2
|λ|
(
−
√

2vdvs|Aλ|cϕx + |λ|vu
(
v2
d + v2

s

)
− |κ|v2

svdcϕy

)
(16.18)

+
1

8

(
g2

1 + g2
2

)
vu
(
v2
u − v2

d

)
+m2

Huvu,

ths =
1

2
vs

(√
2vs|κ||Aκ|cϕz + |λ|2(v2

d + v2
u)− 2vdvu|κ||λ|cϕy + 2|κ|2v2

s

)
(16.19)

− 1√
2
vdvu|λ||Aλ|cϕx +m2

Svs,

tad =
1√
2
vuvs|λ||Aλ|sϕx +

1

2
v2
svu|κ||λ|sϕy , (16.20)

tau =
1√
2
vdvs|λ||Aλ|sϕx +

1

2
v2
svd|κ||λ|sϕy , (16.21)

tas =
1√
2
vdvu|λ||Aλ|sϕx −

1√
2
v2
s |κ||Aκ|sϕz − vdvuvs|κ||λ|sϕy , (16.22)
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where we have used the notation (tφ)i ≡ tφi . As can directly be read off, tad and tau are
not linearly independent, wherefore the total amount of tadpole conditions is reduced to five.
Subsequently, tad will be considered as independent, tau as dependent. In the expressions
Eqs. 16.17 - 16.22, we have introduced the abbreviations ϕx, ϕy and ϕz for the following
linear combinations of complex phases

ϕx = ϕu + ϕs + ϕλ + ϕAλ , (16.23)

ϕy = ϕu − 2ϕs + ϕλ − ϕκ, (16.24)

ϕz = 3ϕs + ϕκ + ϕAκ , (16.25)

where the phases of the parameters are defined via λ = eiϕλ |λ| and analogously for κ, Aλ and
Aκ. These linear combinations turn out to be the only ones appearing in the Higgs sector.
The five linearly independent tadpole parameters can be utilized to eliminate the soft-SUSY-
breaking masses mHd , mHu and mS and two of the complex phases, for which we choose ϕx
and ϕz.
In the complex NMSSM, all six neutral scalar degrees of freedom collected in φ can mix.
Therefore, Mφ, the mass matrix in the gauge basis, is a 6 × 6 matrix. Yet, it is instructive
to decompose Mφ into four 3× 3 blocks, according to

Mφ =

(
Mhh Mha

(Mha)
T Maa

)
. (16.26)

Considering the off-diagonal blocks

Mha =
1

2
|κ||λ|sϕy




0 0 vuvs
0 0 vdvs

−3vuvs −3vdvs 4vdvu


 , (16.27)

it becomes obvious, that in the CP-conserving case, where ϕy = 0, the mass matrix decom-
poses into a purely CP-even 3 × 3-block and a purely CP-odd 3 × 3-block and no mixing
between CP-even and CP-odd components takes place. Note that the tadpole conditions
have already been applied in Eq. (16.27).
Diagonalizing the mass matrix provides us with the rotation matrix R, which performs the
transformation between the gauge basis φ and the tree-level mass basis Φ, according to

Φi = Rijφj , with ΦT = (h1, h2, h3, h4, h5, G0). (16.28)

Here and in the following, we implicitly assume summation over recurring indices. Within
the vector Φ, the five tree-level mass eigenstates hi are arranged by their mass in ascending
order and the neutral Goldstone boson G0 has been singled out. For later convenience we
split up the rotation into two steps, according to

Rik = Rh,6ij R
GB
jk , (16.29)

where RGB
jk isolates the Goldstone boson in the gauge basis

(hd, hu, hs, a, as, G0)T = RGBφ, (16.30)

with RGB =




13×3 03×3

03×3

sβn cβn 0
0 0 1
−cβn sβn 0


 .
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The rotation angle βn appearing here coincides at tree-level with βp, defined as tan(βp) = vu
vd

.

Furthermore, we introduce the reduced gauge and tree-level mass bases φh,T = (hd, hu, hs, a, as)
and Φh,T = (h1, h2, h3, h4, h5), connected via

Φh
i = Rhijφ

h
j , with Rh,6 =

(
Rh 0
0 1

)
, i, j = 1, . . . , 5. (16.31)

We can proceed in the same way for the charged Higgs sector. Diagonalizing the mass matrix
Mφ± with the rotation matrix

Rc =

(
−cβc sβc
sβc cβc

)
, (16.32)

provides us with an expression for the mass of the charged Higgs boson H±

m2
H± =

1

2

|λ|vs
sβcβ

(√
2|Aλ|cϕx + |κ|vscϕy

)
− 1

4
v2
(
2|λ|2 − g2

2

)
(16.33)

and furthermore leads us to the tree-level mass basis

Φ± =

(
G±

H±

)
= Rc

(
(h∓d )∗

h±u

)
. (16.34)

Here H± and G± denote the charged Higgs mass eigenstate and Goldstone boson, respectively.
Like in the case of βn, at tree-level the identity βc = βp holds. In the following, we will not
distinguish between βp, βn and βc and denote all three of them as β. However, it should be
kept in mind, that care has to be taken during the renormalization procedure, as only βp
receives a counterterm in our scheme, to be defined below.
The calculations presented in the following sections will throughout be performed either in
the mass or in the gauge basis, which are related by the rotation matrices R and Rc. We
will refer to the (loop-corrected) neutral trilinear Higgs self-couplings in the gauge basis as
Λφiφjφk and to those in the tree-level mass basis as Λhihjhk . At tree level, the former can
directly be obtained by a differentiation of VH , according to

λφiφjφk = − ∂VH
∂φi∂φj∂φk

. (16.35)

The corresponding couplings in the tree-level mass basis are then found by a transformation
with R

λhihjhk = Rii′Rjj′Rkk′λφi′φj′φk′ . (16.36)

16.4. Independent Parameters of the NMSSM Higgs Potential

In the course of our calculation, we will have to renormalize the whole NMSSM Higgs sector.
For this purpose, it is indispensable to determine the number or independent parameters
present in the Higgs sector and subsequently to specify a set of parameters, that will be
treated as independent during the calculation. Starting from Eq. (16.10), we encounter the
following set of parameters in the Higgs sector

g1, g2, vd, vu, vs, κ, λ, Aκ, Aλ, m
2
Hd
, m2

Hu , m
2
S , ϕu, ϕs. (16.37)

We have already mentioned the fact, that the linear combinations of the complex phases stated
in Eqs. 16.23 - 16.25 are the only ones encountered in the Higgs sector and furthermore, two of
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them can be eliminated together with m2
Hu

, m2
Hd

and m2
S in favour of five tadpole parameters.

Concerning the remaining parameters, we first can trade g1, g2, vu and vd for M2
W , M2

Z , e
and tanβ, like in the case of the 2HDM. Moreover, Eq. (16.33) can be used to eliminate
|Aλ| in terms of m2

H± . However, due to the complication of five neutral Higgs bosons mixing
with each other, it is recommendable not to try and use any of the neutral Higgs masses
as independent parameter, but instead adhere to the original parameters of the potential.
Altogether, the resulting set of independent parameters is hence given by

e, M2
W , M

2
Z , m

2
H± , thd , thu , ths , tad , tas , tanβ, vs, |κ|, |λ|, |Aκ|, ϕy . (16.38)

16.5. The Stop Sector of the NMSSM

For the calculation of the corrections of order O(αsαt), we also need to renormalize the
NMSSM top and stop sector. To this end we have to determine the set of independent
parameters entering through this sector. The top sector is identical to the one of the SM and
introduces only one new parameter, the mass of the top quark mt.
Concerning the stop sector, the situation is complicated by the fact, that we have to take
into account mixing between the two stop species (cf. Sec. 16.1). In the gaugeless limit, i.e.
neglecting all terms proportional to the electroweak gauge couplings, the corresponding stop
mass matrix is given by

Mt̃ =


 m2

Q̃3
+m2

t mt

(
A∗t e

−iϕu − µeff
tanβ

)

mt

(
Ate

iϕu − µ∗eff
tanβ

)
mt̃2R

+m2
t


 , (16.39)

where m
Q̃3

, mt̃R
and At are the soft-SUSY-breaking masses and trilinear coupling for the

stop sector. Furthermore, we have used the abbreviation

µeff =
λvse

iϕs

√
2

. (16.40)

A diagonalization of Mt̃ with the unitary matrix Ut̃ leads to the physical stop masses mt̃1
and mt̃2

. Apart from the parameters present already in the Higgs sector, the top and stop
sector comprises four independent parameters, for which we choose

mt, m
2
t̃1
, m2

t̃2
, At. (16.41)

Besides top quarks and squarks also bottoms and sbottoms play a role in the calculation of
the counterterms for the charged Higgs mass and the mass of the W boson. According to the
approximation described in Sec. 14, we treat the bottom quarks as massless. This in turn
renders the mass matrix for the sbottoms, which is similar in form to the one of the stops,
diagonal. Therefore, there is no mixing between b̃L and b̃R in our approximation and only the
left-handed sbottom and its mass counterterm appear in our calculation. Since the mass of
the left-handed sbottom is given by m

Q̃3
for vanishing bottom quark mass, no new parameter

enters through the bottom and sbottom sector.
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Renormalization

In this chapter, we will set up the renormalization framework, used throughout the subsequent
calculations. We will start with a discussion of two different renormalization schemes for the
top-stop sector, the OS and the DR scheme, in Sec. 17.1. Afterwards, we will introduce
WFRCs for the Higgs fields in Sec. 17.2 and present the renormalization conditions for the
set of independent parameters of the Higgs potential in Sec. 17.3.

17.1. Renormalization of the Top-Stop Sector

At tree level, the trilinear Higgs couplings do not depend on the parameters specific to the
top and stop sector, which we have listed in the previous chapter. Therefore, in a calculation
of one-loop order, a renormalization of these parameters is not necessary. Starting from the
two-loop level, however, loop diagrams appear that feature the insertion of a counterterm
originating from the top and stop sector. In our case, these loop diagrams are of O(αt),
wherefore the top-stop-specific counterterms have to be determined up to order αs, such
that the overall contribution of these counterterm inserted diagrams is of O(αtαs). We will
examine two different renormalization schemes for the top-stop-sector, the OS scheme and
the DR scheme. This will enable us to estimate the theoretical uncertainty due to missing
higher orders by a comparison of the result obtained in the two schemes.
The mass of the top quark, mt, is a parameter of the SM and can hence be treated as detailed
in Sec. 7.3 for the case of the τ lepton. This results in the following expression for δ(αs)mt in
the OS scheme

δ(αs)mOS
t =

mt

2
R̃e
(

Σ
L,(αs)
tt (m2

t ) + Σ
R,(αs)
tt (m2

t ) + Σ
S,l,(αs)
tt (m2

t ) + Σ
S,r,(αs)
tt (m2

t )
)
. (17.1)

The constituents of the top-self-energy Σ
(αs)
tt appearing here are defined in the same way as

in Sec. 7.3. However, as the superscript indicates, only terms of O(αs) are to be considered

in Σ
(αs)
tt . Having derived an expression for δ(αs)mt in the OS scheme, the corresponding

counterterm in the DR scheme is obtained by extracting only the divergences contained in
δ(αs)mOS

t .
Also the OS counterterms for the two stop mass parameters, m2

t̃1
and m2

t̃2
, can be determined
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by the usual OS conditions. For the case of mixing scalar fields, these have been detailed in
Sec. 7.1. Adopted to the stop sector, they yield at O(αs)

δ(αs)m2,OS

t̃1
= Σ

(αs)

t̃1 t̃1

(
m2
t̃1

)
, (17.2)

δ(αs)m2,OS

t̃2
= Σ

(αs)

t̃2 t̃2

(
m2
t̃2

)
. (17.3)

Concerning the last parameter of the stop sector, the trilinear stop coupling At, we adhere
to the scheme proposed in [91,256] and subsequently applied in [44], which is suitable for the
case of a complex stop sector. Therein, δAt is fixed by the demixing condition

Σ̂t̃1 t̃2

(
m2
t̃1

)
+ Σ̂t̃1 t̃2

(
m2
t̃2

)
= 0. (17.4)

Solving for δAt and keeping only terms which are of order αs, we find

δ(αs)AOS
t =

e−iϕu

mt

[
Ut̃11
U∗
t̃12

(δ(αs)m2,OS

t̃1
− δ(αs)m2,OS

t̃2
) + Ut̃11

U∗
t̃22

(δ(αs)XOS
t )∗ (17.5)

+Ut̃21
U∗
t̃12
δ(αs)XOS

t −
(
Ate

iϕu − µ∗eff

tanβ

)
δ(αs)mOS

t

]
.

Here Ut̃ denotes the stop mixing matrix defined in Sec. 16.5 and δXOS
t , the off-diagonal stop

mass counterterm in the mass basis, is given by

δXOS
t =

(
Ut̃ δMt̃ U

†
t̃

)
12

=
(
Ut̃ δMt̃ U

†
t̃

)∗
21

=
1

2
R̃e
(

Σt̃∗1 t̃
∗
2

(
m2
t̃1

)
+ Σt̃∗1 t̃

∗
2

(
m2
t̃2

))
. (17.6)

Again, the corresponding counterterms in the DR scheme can be obtained by keeping only
the divergent terms of the OS expressions.
In order to perform the translation between the OS and the DR scheme properly, not only the
counterterms but also the input parameters have to be adapted. The correct relation between
the parameters in the two schemes can be derived by linking them to the bare parameter.
For an arbitrary parameter p, this yields [44]

pOS + δpOS = pb = pDR + δpDR, (17.7)

where pb, p
OS and pDR denote the bare, the OS and the DR parameter, respectively. Fur-

thermore, we have

δpOS = δpDR + δpOS
∣∣
fin
, (17.8)

which we can insert into Eq. (17.7), leading to the relation

pOS = pDR − δpOS
∣∣
fin
. (17.9)

Taking into account only counterterms of O(αs), these relations are no longer exact and hold
only up to higher orders. Moreover, they exhibit a residual dependence on the renormalization
scale µr, which strictly speaking has to be considered in the transformation. Especially in the
case of mt this is important, as the OS top mass is determined at a sale mOS

t , corresponding
to the top quark pole mass, which is far below the renormalization scale µr. The latter is
set equal to the SUSY breaking scale MSUSY in our calculation. Therefore, the conversion
between the OS top mass and the DR top mass has to incorporate RGE1 running from mOS

t

to MSUSY. In order to account for this, we proceed along the lines detailed in App. D.1, which
is based on dedicated studies performed in Refs. [257–261]. For all remaining parameters,
At, m

2
t̃1

and m2
t̃2

, corresponding RGE relations have not yet been worked out, wherefore we

have to rely on the lowest order linear approximations in Eq. (17.9). Note that the solution

of this equation requires an iterative procedure, if pDR is given as input, since δpOS
∣∣
fin

is to
be calculated in terms of OS parameters.

1The abbreviation RGE stands for Renormalization Group Equation. Details can be found in any text book
on QFT, e.g. in [58,59,109].
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17.2. Wave Function Renormalization

Apart from the counterterms for the Lagrangian parameters, we also introduce WFRCs for
the Higgs doublets and the singlet S. In doing so, we proceed along the lines of the minimal
scheme, defined in Eq. (6.3), i.e. we introduce exactly one complex WFRC for each doublet
and one for the singlet, resulting in

Hd →
(

1 +
1

2
δ(αt)ZHd +

1

2
δ(αtαs)ZHd

)
Hd, (17.10)

Hu →
(

1 +
1

2
δ(αt)ZHu +

1

2
δ(αtαs)ZHu

)
Hu, (17.11)

S →
(

1 +
1

2
δ(αt)ZS +

1

2
δ(αtαs)ZS

)
S. (17.12)

As already discussed in Sec. 6.1, this minimal set of WFRCs is sufficient to render all possible
Green's functions finite. However, it does not allow for a proper OS renormalization of all
Higgs fields. Hence, we will have to introduce finite wave function correction factors when we
consider processes with external Higgs bosons later in this thesis (cf. Sec. 20.5).
Yet, for the moment we content ourselves with an elimination of all UV divergences appearing
in the Green's functions, which is achieved by the following DR definition of the WFRCs

δ(αj)ZHi = −
∂Σ

(αj)
hihi

(p2)

∂p2

∣∣∣∣∣∣
div

, Hi ∈ {Hd, Hu, S}. (17.13)

Here Σ
(αj)
hihi

with i ∈ {d, u, s} denotes those terms of the self-energy for the respective Higgs
field in the gauge basis, which are of the order αj . For the purpose of treating both cases
simultaneously, we have introduced the symbol αj , standing for either of the two orders αt
and αtαs. We will make extensive use of this notation in the following. Besides, we will
denote by δZHi (no superscript) the sum of the O(αt) and the O(αtαs) parts

δZHi = δ(αt)ZHi + δ(αtαs)ZHi . (17.14)

It turns out that only δZHu contains terms of O(αt) and O(αtαs), while δZHd and δZS vanish
in our approximation. Furthermore, the form of δ(αj)ZHu , more precisely the distribution of
terms among the O(αt) and the O(αtαs) parts of δZHu , is found to depend on the renor-
malization scheme applied to the top-stop sector. This was derived and shown in detail in
Ref. [44], where the following relations were stated

δZDR
Hu = − 3m2,DR

t

8π2v2s2
β

1

ε
︸ ︷︷ ︸
δ(αt)ZDR

Hu

+
αsm

2,DR
t

4π3v2s2
β

(
1

ε2
− 1

ε

)

︸ ︷︷ ︸
δ(αtαs)ZDR

Hu

, (17.15)

δZOS
Hu = − 3m2,OS

t

8π2v2s2
β

1

ε
︸ ︷︷ ︸
δ(αt)ZOS

Hu

+
αsm

2,OS
t

4π3v2s2
β

(
1

ε2
− 1

ε

)
−

3mOS
t δmOS

t

∣∣
fin

4π2v2s2
β

1

ε
︸ ︷︷ ︸

δ(αtαs)ZOS
Hu

. (17.16)

Note that the superscripts OS and DR of the WFRCs refer to the renormalization scheme
utilized in the top-stop sector while calculating δZHu and not to the scheme for the WFRCs
themselves, which are always defined by DR conditions. The authors of [44] emphasized
the fact that, although δ(αt)ZHu and δ(αtαs)ZHu separately differ in the two schemes, their
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sum is independent of the treatment of the top-stop sector. This can be seen by inserting
mDR
t = mOS

t + δmOS
t

∣∣
fin

, with the finite top mass counterterms δmOS
t

∣∣
fin

given by

δmOS
t

∣∣
fin

=
αsmt

3π

[
3 ln

(
m2
t

µ2
r

)
− 5

]
+ dmSQCD

t (17.17)

into Eq. (17.15). Here dmSQCD
t denotes the SUSY-QCD corrections, which are stated in

App. D.1. Similar results were obtained in Refs. [262, 263], although their definition of the
OS top mass counterterm differs from ours by a term proportional to ε (see the discussion
in [263], in [44] and in Sec. 19.2). Moreover, the pure DR result in Eq. (17.15) can also be
extracted from the general formulae stated in Refs. [264,265].
Up to now, the WFRCs have been defined in the gauge basis. Yet, during the course of the
calculation, we will also need the WFRCs for the physical mass eigenstates. These can be
determined by a transformation with the rotation matrices R and Rc defined in Sec. 16.3.
Arranging the gauge basis WFRCs into the matrices

δZφ = diag (δZHd , δZHu , δZS , δZHd , δZHu , δZS) , (17.18)

δZφ± = diag (δZHd , δZHu) , (17.19)

such that

φb =

(
16×6 +

1

2
δZφ

)
φr ≡ Zφφr, (17.20)

φ±b =

(
12×2 +

1

2
δZφ±

)
φ±r ≡ Zφ±φ±r (17.21)

holds up to the considered order, the WFRCs in the mass basis are obtained via

δZΦ = R†δZφR, (17.22)

δZΦ± = Rc†δZφ±R
c. (17.23)

As before the subscripts b and r denote bare and renormalized quantities. For the case of the
charged mass eigenstates, we can explicitly state the result

δZΦ± =

(
s2
βδZHd + c2

βδZHu sβcβ (δZHu − δZHd)
sβcβ (δZHu − δZHd) c2

βδZHd + s2
βδZHu

)
, (17.24)

which will be needed further down.

17.3. Renormalization of the Higgs Potential

In Sec. 16.4 we have specified the set of independent parameters of the Higgs sector. This
enables us to introduce counterterms for the chosen parameters and to fix them by suitable
renormalization conditions. The order of the counterterms has to match the order of the
virtual corrections, wherefore we introduce the counterterms as

On-shell parameters/ tadpole scheme I: DR parameters:

e→e
(

1 + δ(αt)Ze + δ(αtαs)Ze

)
,

M2
W →M2

W + δ(αt)M2
W + δ(αtαs)M2

W ,

M2
Z →M2

Z + δ(αt)M2
Z + δ(αtαs)M2

Z ,

m2
H± →m2

H± + δ(αt)m2
H± + δ(αtαs)m2

H± ,

tφi →tφi + δ(αt)tφi + δ(αtαs)tφi ,

with φi ∈ {hd, hu, hs, ad, as},

tanβ → tanβ + δ(αt) tanβ + δ(αtαs) tanβ,

vs → vs + δ(αt)vs + δ(αtαs)vs,

|λ| → |λ|+ δ(αt)|λ|+ δ(αtαs)|λ|,
|κ| → |κ|+ δ(αt)|κ|+ δ(αtαs)|κ|,
|Aκ| → |Aκ|+ δ(αt)|Aκ|+ δ(αtαs)|Aκ|,
ϕy → ϕy + δ(αt)ϕy + δ(αtαs)ϕy.
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We have already arranged the counterterms in two groups according to the renormalization
scheme they will be determined in. The corresponding renormalization conditions will be
detailed in the following.

Since the treatment of the tadpoles has an impact on the whole renormalization scheme, we
start by establishing their renormalization conditions. Throughout this part of the thesis, we
will apply tadpole scheme I, as specified in Sec. 6.3, i.e. we will introduce tadpole counterterms,
which are chosen such that they exactly cancel the tadpole diagrams of O(αt) and O(αtαs).
Accordingly, the tadpole counterterms are given by

δ(αj)tφi = T
(αj)
φi

, φi ∈ {hd, hu, hs, ad, as}, (17.25)

where T
(αj)
φi

denotes the corresponding tadpole diagram of order αj ∈ {αt, αtαs}.
The elementary charge e can be determined in the same way as detailed in Eq. (7.21), taking
into account the contributions of the desired order. However, it turns out that, performing
the transition to the gaugeless limit, no terms ∝ δZe remain in our calculation. Hence, we
do not need to specify a counterterm δZe.

As in the previous part, the counterterms for the masses of the gauge bosons, δM2
W

and δM2
Z , are determined according to OS conditions. However, in order to comply with

the gaugeless limit, where M2
W = M2

Z = 0 holds, and furthermore since we work in the
approximation of vanishing external momentum, the corresponding self-energies have to be
evaluated at p2 = 0, which leads to

δ(αj)M2
W = Σ

T,(αj)
WW (0), (17.26)

δ(αj)M2
Z = Σ

T,(αj)
ZZ (0). (17.27)

As the involved Passarino-Veltman functions are purely real for vanishing external momenta,
we can omit the Re()/R̃e()-prescriptions we had to consider in Eqs. 7.10 and 7.11. Owing to
the fact that the self-energies ΣWW and ΣZZ are proportional to e2, the counterterms δ(αj)M2

W

and δ(αj)M2
Z only contribute if they appear in ratios proportional to δ(αj)M2

W/e2 or δ
(αj)M2

Z/e2. It
turns out that the only non-vanishing contributions containing δ(αj)M2

W and δ(αj)M2
Z appear

in a combination that corresponds to the counterterm of the vev v =
√
v2
d + v2

u and is given

by

δ(αj)v

v
=

c2
W

2s2
W

(
δ(αj)M2

Z

M2
Z

− δ(αj)M2
W

M2
W

)
+
δ(αj)M2

W

2M2
W

. (17.28)

Extracting only the UV-divergent part of Eq. (17.28), we find in an explicit calculation the
following relation between δ(αj)v

∣∣
div

and δ(αj)ZHu

δ(αj)v

v

∣∣∣∣∣
div

=
s2
β

2
δ(αj)ZHu . (17.29)

Similar to the mass counterterms for the gauge bosons, also the mass of the charged Higgs
boson m2

H± is fixed by an OS-like conditions with vanishing external momentum, i.e by the
requirement

Σ̂
(αj)

H±H±(0) = 0. (17.30)

Note that, in contrast to the case of the gauge bosons, this condition is not an OS condition
in the strict sense, since m2

H± does not vanish in the gaugeless limit. As a consequence,
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the counterterm δ(αj)m2
H± receives a contribution of the WFRC δ(αj)ZH±H± . This follows

directly from the fact that the renormalized self-energy Σ̂
(αj)

H±H± comprises a WFRC contri-

bution (cf. Sec. 7.1), given by the term (p2 − m2
H±)δ(αj)ZH±H± . In a proper OS scheme,

where the mass counterterm is defined at an external momentum p2 = m2
H± , this contribu-

tion would drop out in Eq. (17.30). However, in the OS-like scheme with p2 = 0 we consider
here, the term remains. According to our findings in Sec. 17.2, δ(αj)ZH±H± is given by
δ(αj)ZH±H± = c2

βδ
(αj)ZHu . Hence, we arrive at

δ(αj)m2
H± = Σ

(αj)

H±H±(0)−m2
H±c

2
βδ

(αj)ZHu . (17.31)

The ratio of the vevs vu and vd, tanβ, is renormalized according to DR conditions, as rec-
ommended in Ref. [138]. Following these DR prescriptions, tanβ can be expressed in terms
of the WFRCs as

δ(αj) tanβ =
1

2
tanβ

(
δ(αj)ZHu − δ(αj)Zhd

)∣∣∣
div

=
1

2
tanβ

(
δ(αj)ZHu

)∣∣∣
div
, (17.32)

where we have used the fact that only the WFRC of the doublet Hu yields contributions of
O(αt) or O(αtαs).

Finally, also all remaining parameters |λ|, |κ|, |Aκ|, vs and ϕy are renormalized in the DR
scheme, by demanding their counterterms to cancel all remaining divergences in the 6 × 6

matrix of the renormalized neutral Higgs self-energy Σ̂
(αj)
φi,φj

, i.e by requiring

Σ̂
(αj)
φi,φj

∣∣∣
div

= 0, i, j ∈ {hd, hu, hs, ad, au, as}. (17.33)

Although not all 36 equations resulting from Eq. (17.33) are linearly independent, the system
of equations overdetermines the five counterterms to be established. Hence, the simultaneous
finiteness of all elements of Eq. (17.33) constitutes a strong consistency check. Solving for
the five counterterms provides us with

δ(αj)|λ| = −|λ|
2

(
c2
βδ

(αj)ZHu + 2
δ(αj)v

v

∣∣∣∣∣
div

)
= −|λ|

2
δ(αj)ZHu , (17.34)

δ(αj)|κ| = −|κ|
2

(
−s2

βδ
(αj)ZHu + 2

δ(αj)v

v

∣∣∣∣∣
div

)
= 0, (17.35)

δ(αj)vs = −vs
2

(
−s2

βδ
(αj)ZHu + 2

δ(αj)v

v

∣∣∣∣∣
div

)
= 0, (17.36)

δ(αj)|Aκ| = 0, (17.37)

δ(αj)ϕy = 0. (17.38)

In the approximation we consider, only |λ| receives a counterterm that contributes at O(αt) or
O(αtαs). All other parameters need not be renormalized for the purpose of our calculations.
This can be understood by considering the expressions derived in [236] for δ|κ|, δ|Aκ|, δvs and
the counterterms for the complex phases at full one-loop order. In this publication the authors
fix the counterterms in question by relating them to the neutralino and chargino sector. The
divergences of the resulting counterterms can be checked to vanish in the gaugeless limit at
O(αt). Going one order higher, i.e. to O(αtαs), which amounts to adding one further loop
containing gluons, gluinos or stops, does not change this statement.



CHAPTER 18

The Corrections of O(αt)

Having set up the renormalization scheme, we can now proceed with the actual calculation of
the corrections to the effective trilinear Higgs self-couplings. In this chapter, we will assail this
task and determine the corrections of O(αt). As outlined in the introduction, these consist
of a virtual and a counterterm part

∆λ
O(αt)
ijk = ∆λ

O(αt),virt
ijk + ∆λ

O(αt),ct
ijk . (18.1)

We will first deal with the virtual corrections. In order to calculate these, we will exploit the
well-known relation between Feynman diagrammatic calculations in the limit of vanishing
external momentum and the effective potential approach. This approach relies on the use of
an object called the effective potential, which is defined to embody all possible momentum-
independent radiative corrections to the tree-level scalar potential. With its help, higher-order
corrections in the limit of vanishing external momentum to any scalar Green's function can be
obtained by simply taking appropriate derivatives of the effective potential. The advantage of
this approach is at hand: Once the effective potential has been determined up to some order,
radiative corrections of that order to all existing scalar Green's functions are in principle
known and their determination reduces to straightforward, although occasionally tedious,
algebra.
We will give a brief introduction to the subject in Sec. 18.1, and present the method we use
to determine the effective NMSSM Higgs potential of O(αt). The actual calculation for the
NMSSM is carried out in Sec. 18.2, where we also extract the virtual O(αt) corrections to the
trilinear Higgs self-couplings. In the last section ( Sec. 18.3), we determine the corresponding
counterterms.
In this chapter, we will for convenience work in the gauge basis. The resulting corrections to
the couplings λφiφjφk can, however, easily be transferred to the mass basis by means of the
rotation matrix R, defined in Sec. 16.3, according to

∆λ
O(αt)
hihjhk

= Rii′Rjj′Rkk′∆λ
O(αt)
φi′φj′φk′

i, i′, j, j′, k, k′ ∈ {1, . . . , 6}, (18.2)

where a summation over recurring indices is implied and hi/φi represent a member of the
tree-level mass/gauge basis defined in 16.3.
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18.1. The Effective Potential Approach

We begin this chapter with a brief presentation of the effective potential approach. Our
treatment does not strive for completeness nor for rigorous derivations but rather has the
purpose of introducing the most important notions and concepts. To exemplify the approach,
we will first consider the simple case of a theory with only one scalar field ρ, before we examine
the more complicated situation we encounter in the NMSSM.
The effective potential Veff [ρ] for a scalar field ρ(x) is defined as the momentum independent
part of the effective action Γ [ρ]. This in turn is given by the Legendre transform of the
generating functional of connected Green's functions W [J ], i.e. by

Γ [ρ] =W [J ]−
∫

d4 xJ(x)ρ(x), (18.3)

with ρ(x) =
∂W [J ]

∂J(x)
. (18.4)

Here ρ(x), conventionally referred to as the classical field, denotes the expectation value of
the field ρ(x) in the presence of an external source J(x) in the vacuum |Ω〉

ρ(x) =
〈Ω|ρ(x)|Ω〉
〈Ω|Ω〉

∣∣∣∣
J(x)

. (18.5)

Moreover, the functional W [J ] is directly related to the generating functional of Green’s
functions, introduced in Sec. 3.3, via

eiW[J ] = Z [J ] =

∫
Dρ ei(S[ρ]+

∫
d4xρ(x)J(x)). (18.6)

Being a functional of the classical field, the effective action Γ [ρ] can be functionally expanded
in powers of ρ(x), according to

Γ [ρ] =
∞∑

n=1

1

n!

∫
d4x1 . . . d

4xn Γ(n)(x1 . . . xn) ρ(x1) . . . ρ(xn). (18.7)

Here we have labeled the coefficients of the expansion as Γ(n), hinting to the fact that these
objects exactly correspond to the 1PI n-particle Green's functions, i.e. the sum of all 1PI
Feynman diagrams with n external legs. The Γ(n) are sometimes also referred to as vertex
functions.
Alternatively, one may expand Γ [ρ] around constant (i.e. x-independent) values of ρ, which
corresponds to an expansion in powers of derivatives of ρ(x) [266,267]

Γ [ρ] =

∫
d4x

(
−Veff [ρ] +

1

2
(∂µρ(x)∂µρ(x))Z [ρ] + . . .

)
. (18.8)

The first term in this expansion represents the effective potential Veff. In order to clarify its
meaning, we introduce the Fourier transform of the vertex functions Γ(n) in Eq. (18.7)

Γ(n)(x1 . . . xn) =

∫
d4p1

2π4
. . .

d4pn
2π4

eix1p1 . . . eixnpn 2π4δ4(p1 + . . .+ pn) Γ̃(n)(p1 . . . pn), (18.9)

which, inserted into Eq. (18.7), leads to [267]

Γ [ρ] =
∞∑

n=1

1

n!

∫
d4x1 . . . d

4xn ρ(x1) . . . ρ(xn)

∫
d4p1

2π4
. . .

d4pn
2π4

eix1p1 . . . eixnpn 2π4δ4(p1 + . . .+ pn) Γ̃(n)(p1 . . . pn). (18.10)
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The four-dimensional δ-distribution appearing here is a consequence of translational invari-
ance of the vertex functions Γ(n) and naturally incorporates momentum conservation into
Eq. (18.10). In the following we will omit the tilde for the Fourier transform, to keep the
notation clean. If not stated otherwise, the vertex functions are henceforth assumed to be
defined in momentum space. A subsequent expansion of Γ(n)(p1 . . . pn) around vanishing ex-
ternal momenta {p1, . . . , pn} = {0, . . . , 0} and a comparison with Eq. (18.10) shows that Veff

is given by [267,268]

Veff [ρ] = −
∞∑

n=1

1

n!
Γ(n)(pi = 0) ρn, i = 1 . . . n, (18.11)

with a constant field ρ. As can be seen from this expression, Veff is the momentum-independent
part of the effective action. Furthermore, it can directly be inferred that the nth derivative
of Veff with respect to ρ, evaluated at ρ = 0, yields the corresponding 1PI n-point function in
the limit of vanishing external momentum

− ∂n

∂ρn
Veff [ρ]

∣∣∣∣
ρ=0

= Γ(n)(pi = 0), i = 1 . . . n. (18.12)

This confirms the statement we made in the introduction: Once the effective potential is
known up to some order in the perturbative expansion, all Green's functions of the corre-
sponding order can be extracted from it in the limit of vanishing external momentum by
straightforward differentiation.
Hence, the only task to be accomplished is the determination of the effective potential up
to the desired order. There are several methods proposed in the literature to calculate the
effective potential. In [267,269] the effective potential is determined by functional integration
of the generating functional of Green’s functions in Eq. (18.6), using the method of steepest
descent. A very different approach is used in [266, 270, 271], where the effective potential
is calculated by a summation over an infinite number of Feynman diagrams of fixed loop-
order, making explicit use of the definition in Eq. (18.11). For our calculation, we use a third
method, advocated in [268, 272, 273]. This approach, called the tadpole method, starts from
an expansion of the effective potential around some point ρ = ω. Then instead of Eq. (18.11),
where Veff is expanded around ρ = 0, we get

Veff [ρ] = −
∞∑

n=1

1

n!
Γ̄(n)(pi = 0) (ρ− ω)n, i = 1 . . . n. (18.13)

It should be noted that here Γ̄(n) stands for the 1PI n-point function evaluated in the shifted
theory. The shift parameter ω is most conveniently chosen equal to the vev of the scalar field
φ, in which case the usual Feynman rules can be used to calculate the Γ̄(n). However, in
principle, ω can be chosen freely, as it constitutes merely an auxiliary parameter [268]. Now
a differentiation of Veff with respect to ρ, evaluated at the point ρ = ω, yields

−dVeff [ρ]

dρ

∣∣∣∣
ρ=ω

= Γ̄(1), (18.14)

where Γ̄(1) is the 1PI one-point function, i.e. the sum of all tadpole diagrams with an external
ρ multiplied by (−i), of the shifted theory. According to our convention, the latter is denoted
by T̄ρ. The idea of the tadpole method now consists in reverting Eq. (18.14), which amounts
to calculating the tadpoles of the shifted theory, integrating them w.r.t. the shift parameter
ω and subsequently replacing ω → ρ [268,273]. Formally, these steps can be expressed as

Veff [ρ] = −
∫

dω Γ̄(1)

∣∣∣∣
ω→ρ

= −
∫

dω · T̄ρ
∣∣∣∣
ω→ρ

. (18.15)

We will exemplify this procedure in the following section for the case of the effective NMSSM
Higgs potential.
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18.2. The Virtual O(αt) Corrections to the Trilinear Higgs Self-
Couplings

Turning towards the case of the NMSSM, we encounter a slightly more complicated situation
since the NMSSM Higgs sector comprises a total of six neutral scalars. However, the gener-
alization of Eq. (18.11) is straightforward.
The goal of this chapter is the calculation of the O(αt) corrections to the trilinear Higgs
self-couplings by means of the effective potential. For this purpose, the latter has to be deter-
mined up to the O(αt). With the tadpole approach as our method of choice, this implies that
we have to calculate all O(αt) contributions to the tadpole diagrams, which entirely originate
from top quark and squark loops.
Unlike the simple toy model considered in the previous section, the NMSSM exhibits six
tadpoles, one for each of the neutral gauge eigenstates of the Higgs sector, five of which
are linearly independent. The corresponding tadpole diagrams differ by the couplings of the
gauge eigenstates to the loop particles. As we will see below, the dependence on these cou-
plings drops out completely during our calculation after applying a convenient substitution.
Therefore, we can choose any of the six tadpoles as integrand in Eq. (18.15) to determine
the effective potential and arrive at the same final result. One subtlety arises however, if the
coupling of the chosen gauge eigenstate to any of the loop particles vanishes identically, since
in this case, the contribution of the respective loop would be missed and special care would
have to be taken to include the absent terms properly [274]. In our case, we are interested
only in the contributions of top quarks and squarks. Hence, the hu tadpole suggests itself as
integrand in Eq. (18.15), since hu couples to both tops and stops and therefore all contribu-
tions are captured without the need of special measures.

A straightforward calculation of the O(αt) top and stop contributions to the hu-tadpole T
(αt)
hu

,
using DRed to regularize the divergences, leads to

T
(αt)
hu,t

=
3

4π2
ghuttm

3
t

(
1

ε
+ 1− ln

(
m2
t

Q2

))
≡ ghuttT

(αt)
t , (18.16)

T
(αt)

hu,t̃i
=
−3

16π2
g
hu t̃
†
i t̃i
m2
t̃i

(
1

ε
+ 1− ln

(mt̃2i

Q2

))
≡ g

hu t̃
†
i t̃i
T

(αt)

t̃i
. (18.17)

On the right hand side, we have defined the general top and stop tadpole contributions

T
(αt)
t and T

(αt)

t̃i
, which, having extracted the couplings to the Higgs boson, are devoid of

any dependence on hu. Using the vevs as the shift parameters in Eq. (18.13), we next have
to integrate these tadpoles with respect to vu. In order to guarantee the disappearance of
any dependence on the couplings and thus on the gauge eigenstate of the tadpole chosen as
integrand, we apply a substitution, such that the integration is performed w.r.t. the masses
of the loop particles

∫
dvu

(
−ghuttT

(αt)
t −

2∑

i=1

g
hu t̃
†
i t̃i
T

(αt)

t̃i

)

=

∫
dmt

(
∂mt

∂vu

)−1

︸ ︷︷ ︸
(−ghutt)

−1

(
−ghuttT

(αt)
t

)
+

2∑

i=1

∫
dmt̃i

2mt̃i

(
∂m2

t̃i

∂vu

)−1

︸ ︷︷ ︸(
−g

hut̃
†
i
t̃i

)−1

(
−g

hu t̃
†
i t̃i
T

(αt)

t̃i

)

=

∫
dmtT

(αt)
t +

2∑

i=1

∫
dmt̃i

2mt̃i
T

(αt)

t̃i
. (18.18)

Note that the substitution is crucial for a complete cancellation of any dependence on the
chosen tadpole component. Without performing it, the result of the integration would depend
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on the chosen gauge eigenstate and we would have to consider and determine integration
constants to account for this (cf. e.g.
citeBobrowski:2014dla,MILLER198359).
The remaining integrals can be evaluated by elementary calculus, yielding

V
O(αt)

eff =
3

16π2

[
m4
t

[
1

ε
+

3

2
− ln

(
m2
t

Q2

)]
− 1

2

[(
mt ↔ mt̃1

)
+
(
mt ↔ mt̃2

)]]
. (18.19)

In this expression the replacement vi → H0
i , vs → S, demanded by the prescription in

Eq. (18.15), has already been performed, wherefore the overlined masses appearing here have
to be interpreted as the field dependent masses

m2
t = |ytH0

u|2, (18.20)

m2
t̃1,2

=
1

2

(
m2
Q̃3

+m2
t̃R

+ 2m2
t ∓

√(
m2
Q̃3
−m2

t̃R

)2
+ 4|X̃|2

)
, (18.21)

with X̃ = yt|AtH0
u − λS∗H0∗

d |.

Furthermore, the last two terms in Eq. (18.19) are to be perceived as being identical to the
first one, with mt exchanged by mt̃1

or mt̃2
, respectively. As can directly be inferred from

Eq. (18.19), the effective potential contains UV divergences, which become manifest as poles
in the limit ε→ 0. These will be propagated into any quantity extracted from it and have to
be cancelled by suitably chosen counterterms.
It is now a matter of straightforward algebra to determine the corrections of O(αt) to all
trilinear Higgs self-couplings, according to

∆λ
O(αt),virt
φiφjφk

= − ∂3V
O(αt)

eff

∂φi∂φj∂φk
. (18.22)

Explicit expressions can be found in App. B.2. Our result is in accordance with the one
obtained in [275] for the case of the MSSM, if the necessary modifications for the NMSSM
are taken into account.

18.3. The Counterterm of O(αt)

After the calculation of all virtual corrections, only the counterterm contributions ∆λ
O(αt),ct
ijk

remain to be determined. To that end, the tree-level couplings have to be expressed in
terms of the parameters pi we chose in Sec. 16.4 as independent parameters. A subsequent
replacement pi → pi + δ(αt)pi of all parameters pi and an extraction of the terms linear
in the renormalization constants δ(αt)pi yields the counterterm for the respective coupling.
Taking into account WFRCs, the coupling counterterms can schematically be expressed as
(summation over repeated indices implied)

λφiφjφk(p1, . . . pn)

→ Zφ,i′iZφ,j′jZφ,k′k λφi′φj′φk′ (p1 + δp1, . . . pn + δpn)
∣∣∣
O(αt)

= λφiφjφk(p1, . . . pn) +
∂λφiφjφk
∂pl

δ(αt)pl

+
1

2

(
δ(αt)Zφ,i′iλφi′φjφk + δ(αt)Zφ,j′jλφiφj′φk + δ(αt)Zφ,k′kλφiφjφk′

)
+O(δ2)

= λφiφjφk(p1, . . . pn) + ∆λ
O(αt),ct
φiφjφk

+O(δ2). (18.23)
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Explicit expressions for ∆λ
O(αt),ct
φiφjφk

in terms of the parameter counterterms and WFRCs can be
found in App. B.3. We have already defined the counterterms for all independent parameters
as well as the WFRCs in sections 17.3 and 17.2, respectively. At this point, we only want to
emphasize the fact that both the tadpoles and the elements of the O(αt) Higgs self-energies
at vanishing external momentum, which are necessary in order to determine all counterterms
according to our renormalization program, can be obtained from the effective potential. To
be specific, the tadpoles are given by

T
(αt)
φi

= −∂V
(αt)

eff

∂φi
(18.24)

and the elements of the self-energies by

Σ
(αt)
ij (0) = −∂

2V
(αt)

eff

∂φi∂φj
. (18.25)

The resulting expressions can be used in Eqs. 17.25 and 17.30 for the determination of the
O(αt) counterterms.
We have checked explicitly that the coupling counterterms, determined pursuant to Eq. (18.23)
with the WFRCs and parameter counterterms defined according to Secs. 17.2 and 17.3, can-
cel all divergences that appear in the trilinear Higgs self-couplings calculated as specified in
Eq. (18.22).



CHAPTER 19

The Corrections of O(αtαs)

We can now proceed to the next loop-order and determine the O(αtαs) corrections to the
effective trilinear Higgs self-couplings. Due to the existence of sophisticated and well-tested
software tools for the evaluation of higher-order Feynman diagrams, we switch to the Feynman
diagrammatic approach for this undertaking. As already mentioned, there is a complete
equivalence between the effective potential approach and Feynman diagrammatic calculations
in the limit of vanishing external momentum. Therefore, the results of this chapter are
compatible with those obtained in the previous one, although the adopted approaches differ.
Furthermore, we will perform the calculation in the tree-level mass basis Φ = (h1, ...h5, G)
defined in Eq. (16.28).
The O(αtαs) corrections can be split into three parts, as outlined in the introduction to Part
III

∆λ
O(αtαs)
ijk = ∆λ

O(αtαs),virt
ijk + ∆λ

O(αtαs),virt⊗ct
ijk + ∆λ

O(αtαs),ct
ijk , (19.1)

which we will successively determine in this chapter.
We will start in Sec. 19.1 with the genuine two-loop contributions and explain in detail how
the two-loop integrals, appearing in the course of the calculation, can be coped with.
The second term in Eq. (19.1), which comprises contributions of one-loop diagrams with
inserted counterterms from the top-stop sector, will be treated in Sec. 19.2. We will close this
chapter in Sec. 19.3 with the discussion of the O(αtαs) counterterms to the trilinear Higgs
self-couplings.

19.1. The Genuine Two-Loop Corrections to the Trilinear Higgs
Self-Couplings

In order to determine the corrections of O(αtαs) to the trilinear Higgs self-couplings, we first
have to identify the relevant diagrams leading to contributions of the desired order. As before
the αt is procured by top quarks and squarks, coupling to the external Higgs bosons. The
additional corrections of O(αs) can arise in two different ways: Either they can originate from
additional gluons or their superpartners, the gluinos, coupled to the tops and stops, or they
can emerge from four-stop vertices. Some generic representative diagrams contributing at
O(αtαs) are shown in Fig. 19.1. As these diagrams lead to UV-divergent two-loop integrals,
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Figure 19.1.: Generic representative diagrams contributing to the O(αtαs) corrections to the trilinear Higgs
self-couplings between the Higgs bosons hi, hj , hk, i, j, k ∈ {1, 2, 3, 4, 5} in the tree-level mass basis. The
particles running in the loops are top quarks (t), top squarks (t̃a/b/c/d/e, with a, b, c, d, e ∈ {1, 2}), gluons (g)
and gluinos (g̃).

we need to define a regularization procedure, i.e. a method to isolate and extract the UV
divergences of these integrals. In the previous chapter, we have applied DRed without further
comment. Here however we have to be more careful. We have already mentioned in Subs. 3.1.1
that, unlike DReg, DRed is known to respect SUSY at full one-loop order. Yet, at two-loop
level no general proof of SUSY non-violation under DRed has been conducted so far and
only a few dedicated studies for certain special cases have been performed. In Ref. [76] the
authors have verified that DRed does not violate SUSY in O(αtαs) corrections to the Higgs
boson masses in the MSSM. Their results also hold for the NMSSM as explained in Ref. [44].
Moreover, their arguments are not changed by adding one further external Higgs boson, as
is required for our calculation. Hence, we conclude that we can apply DRed for our purposes
without the need for SUSY restoring counterterms.
For the calculation of the two-loop integrals, we availed ourselves of well-tested and widely-
used computer tools. FeynArts 3.7 [152] was employed to generate all diagrams and the
corresponding amplitudes. Subsequently, the Dirac and Lorentz indices were contracted and
the Dirac traces evaluated with the help of FeynCalc 8.2 [276, 277]. After this step, we
encountered integrals of the generic form

ID,α,β,γν1,ν2,ν3,ν4,ν5
(m2

1,m
2
2,m

2
3,m

2
4,m

2
5)

= C2

∫
dDq1 dDq2 (q2

1)α(q2
2)β(q1q2)γ

(q2
1 −m2

1)ν1(q2 −m2
2)ν2((q1 − q2)2 −m2

3)ν3(q2
1 −m2

4)ν4(q2
2 −m2

5)ν5
, (19.2)

with C =

(
(2πµr)

2ε

iπ2

)
.

These can further be manipulated and reduced to a set of basic integrals, the so-called master
integrals, which was accomplish by means of the Mathematica [278] package TARCER [279].
This package was designed for the reduction of an even more general type of integrals and can
handle the case of up to five different propagators and two external legs with non-vanishing
external momenta. It is based on an algorithm devised by Tarasov [280, 281], called the
Tarasov algorithm.
In our case all integrals can be reduced to only two master integrals, the one- and the two-loop
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one-point function AD
0 (m2) [282] and KD

0 (m2
1,m

2
2,m

2
3) [283–289], given by

AD
0 (m2) = C

∫
dDq

q2 −m2
= m2 1

ε
+ Afin(m2) + εAε(m

2) +O(ε2), (19.3)

KD
0 (m2

1,m
2
2,m

2
3) = C2

∫
dDq1dDq2

(q2
1 −m2

1)(q2 −m2
2)((q1 − q2)2 −m2

3)
(19.4)

= Kdiv2(m2
1,m

2
2,m

2
3)

1

ε2
+ Kdiv1(m2

1,m
2
2,m

2
3)

1

ε
+ Kfin(m2

1,m
2
2,m

2
3) +O(ε).

With their help all integrals ID,α,β,γν1,ν2,ν3,ν4,ν5(m2
1,m

2
2,m

2
3,m

2
4,m

2
5), and thus all diagrams, can be

expressed in the following form

ID,α,β,γν1,ν2,ν3,ν4,ν5
(m2

1,m
2
2,m

2
3,m

2
4,m

2
5) (19.5)

=
5∑

j,k=1

cAjk(D, {mi})AD
0 (m2

j )A
D
0 (m2

k) +
5∑

l,m,n=1

cKlmn(D, {mi})KD
0 (m2

l ,m
2
m,m

2
n).

The coefficients cAjk and cKlmn in general depend on the set of masses {mi} = {m1, . . .m5},
appearing in the integrand, and on the dimension D and are specific to the particular integral
ID,α,β,γν1,ν2,ν3,ν4,ν5 under consideration.
For the final result, only the finite, ε-independent terms of Eq. (19.5) are relevant. However,
in order to check for a proper cancellation of all divergences, we also have to consistently
extract the overall coefficients of the single and the double pole. To that end, Eq. (19.5) has
to be expanded in a series in the regulator ε.
In Eqs. 19.3 and 19.4, we have already performed the required expansion for the loop functions
AD

0 and KD
0 . Being a two-loop function, KD

0 comprises, apart from a term ∝ 1/ε, also a double
pole ∝ 1/ε2. Furthermore, a term ∝ ε has to be considered in the expansion of AD

0 . Although
this term vanishes for D → 4, it leads to a non-vanishing finite part in Eq. (19.5), when
multiplied with the pole term of the second AD

0 . Finally, for a complete expansion also the
dependence of the coefficients cAjk and cKlmn on ε has to be considered. These can contain
terms ∝ ε but are free of poles. Inserting all expansions into Eq. (19.5), the coefficients of
the single and double pole as well as the finite terms can be extracted.

19.2. Diagrams with Counterterms from the Top-Stop Sector

Apart from the genuine two-loop diagrams considered in the previous section, corrections
of O(αtαs) also arise from one-loop diagrams of O(αt) containing the insertion of an O(αs)
counterterm from the top-stop sector. Generic representatives of these counterterm inserted
diagrams are shown in Fig. 19.2.
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Figure 19.2.: Generic one-loop diagrams with the insertion of a counterterm from the top-stop sector con-
tributing to the O(αtαs) corrections to the trilinear Higgs self-couplings between the Higgs bosons hi, hj , hk,
i, j, k ∈ {1, 2, 3, 4, 5} in the tree-level mass basis. The particles running in the loops are top quarks (t) and top
squarks (t̃a/b/c, with a, b, c ∈ {1, 2}).

Being of one-loop order, these diagrams do not require special treatment and can straightfor-
wardly be calculated with the help of the usual chain FeynArts 3.7 - FormCalc 8.2 [152,153].
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The results for the one-loop diagrams can be expressed in terms of the scalar Passarino-
Veltman functions AD

0 , BD
0 , CD

0 and DD
0 with vanishing external momenta, while the inserted

top-stop counterterms also contain BD
1 and BD

0 -functions at finite momentum. All occurring
loop functions with vanishing external momenta can be reduced to AD

0 functions, however
special care has to be taken to properly include terms proportional to the regulator ε. Multi-
plied with the poles of the inserted top-stop counterterms these can yield finite contributions
to the final result. We quote the relevant relations in App. C.1.
Furthermore, the two-point function BD

1 (q2,m2
1,m

2
2), appearing in the OS counterterms of

the top-stop sector, can be reduced to AD
0 functions and the scalar two-point function

BD
0 (q2,m2

1,m
2
2) at finite external momentum (cf. App. C.1). In our convention the latter

is given by

BD
0 (p2,m2

1,m
2
2) = C

∫
dDq

(q2 −m2
1)((q + p)2 −m2

2)
(19.6)

=
1

ε
+ Bfin(p2,m2

1,m
2
2) +O(ε), (19.7)

where as before, an expansion in the regulator ε has to be performed as indicated. Note,
however, that we have not quoted a terms ∝ ε in this expansion. This is due to the fact that
we do not include any terms proportional to ε in the OS counterterms of the top-stop sector
(cf. Sec. 17.1). Although their inclusion would lead to additional finite contributions to the
counterterm inserted diagrams, they would not have any net effect on the final result. This
can be attributed to the fact that the ε-terms, if included, would also enter the Higgs WFRCs
via the top mass counterterm (cf. Eq. (17.15)), as discussed in [44, 290]. It was explicitly
checked that the effect of the thereby generated additional finite terms in the WFRCs exactly
cancel those of the counterterm inserted diagrams. Hence, we can make use of our freedom
to choose the finite parts of the counterterms in a convenient way and not incorporate the
ε-terms into the OS top-stop counterterms.
Like the results of the genuine two-loop diagrams, the expression for the counterterm inserted
diagrams have to be expanded in ε such that the coefficients of the single and double pole as
well as the finite terms can be extracted.

19.3. The Counterterm of O(αtαs)

In order to achieve a complete cancellation of all UV divergences, we also have to include

the O(αtαs) counterterms of the Higgs sector. The coupling counterterms ∆λ
O(αtαs),ct
ijk in the

gauge basis have the same form as those derived in Eq. (18.23), where now instead of the
O(αt) parameter counterterms and WFRCs those of O(αtαs) have to be inserted. Explicit
expressions for the coupling counterterms in the gauge basis are given in App. B.3. Again,
the corresponding counterterms in the mass basis are attained via a rotation with the matrix
R. After an expansion of the resulting coupling counterterms in ε, the cancellation of all

UV divergences can be checked. We verified the finiteness of every component of ∆λ
O(αtαs)
hihjhk

,
which provides a strong consistency check for our procedure.

The final result for the effective trilinear Higgs self-couplings of O(αtαs) can now be obtained
by assembling all pieces determined in the previous sections. We cross-checked our results
with an independent calculation performed by Dr. Dao Thi Nhung and found full agreement
within numerical uncertainties in all steps. Furthermore, we considered our results in the
limit of the real MSSM, which is achieved by λ, κ → 0, while keeping µeff = λvs/

√
2 as well

as Aλ and Aκ fixed and setting all complex phases to zero. This allowed us to compare our
results to those obtained by the authors of Ref. [275], who determined the O(αtαs) corrections
to the trilinear Higgs self-couplings in the real MSSM. Again complete accordance could be
verified.



CHAPTER 20

Numerical Analysis of the Corrections

Having completed the calculation of the corrections of O(αt) and O(αtαs), we can now
continue with the numerical analysis of our findings. Beforehand, however, in Sec. 20.1
we will go into details concerning the Higgs mass bases at different loop orders and dwell on
the necessity of external leg corrections.
Afterwards, in Sec. 20.2, we will present the software tools that are applied for the numerical
study and state all input parameters entering our calculations.
In Sec. 20.3 we will then first consider the corrections of O(αt). A comparison to the complete
one-loop results with full momentum dependence will allow us to assess the reliability of our
approximations.
Subsequently, we will study in Sec. 20.4 the impact of the corrections of O(αtαs) on the
trilinear Higgs self-couplings and investigate the convergence of the perturbative series and
the theoretical uncertainty due do missing higher-order corrections. We will also consider the
influence of the complex phases.
Sec. 20.5 will finally be dedicated to an examination of the effect of the O(αtαs) corrections
on Higgs-to-Higgs decays. We will add a discussion on the reliability of the approximation of
vanishing external momentum in this context before we draw our conclusions.

20.1. Different Mass Bases

Up to now we have been working either in the gauge basis or in the tree-level mass basis. In
order to examine and interpret physical results, however, neither of both is the proper choice.
Instead, we have to introduce yet another basis ΦH , the physical mass basis at O(αtαs). In
part II of this thesis, we chose our renormalization scheme of the 2HDM Higgs sector in such
a way that the tree-level mass basis corresponds to the physical mass basis to all loop orders.
Hence, the whole calculation could be carried out in terms of properly OS renormalized
fields. However, in the NMSSM the much more involved situation with five mixing neutral
Higgs bosons renders such a procedure virtually impossible and calls for performing the
calculation in terms of DR renormalized fields instead. This comes at the expense of working
in a basis, that does not correspond to the physical basis. Consequently, when we calculate
processes with external Higgs bosons, we have to take into account external leg corrections (cf
Subs. 3.2.1), which we will incorporate in terms of finite wave function correction factors Ẑ.
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The matrix Ẑ, which is in general complex and non-unitary, can be decomposed as [91,291]

Ẑij =
√
ẑiẑij , i, j = 1, . . . , 5, (20.1)

with

ẑi =



(

∂

∂p2

i

Ĝii(p2)

)∣∣∣∣∣
p2=M2

Hi



−1

and ẑij =
Ĝij(p

2)

Ĝii(p2)

∣∣∣∣∣
p2=M2

Hi

. (20.2)

Again, summation over recurring indices is assumed throughout this section. Ĝ(p2) denotes
the renormalized propagator matrix, i.e. the inverse of the renormalized two-point function

Ĝ(p2) = iΓ̂−1(p2), (20.3)

defined in analogy to Eq. (6.40). Here Γ̂(p2) includes the complete one-loop corrections with
full momentum dependence and the O(αtαs) corrections at p2 = 0. Moreover, MHi denotes
the mass of the Higgs boson Hi in the O(αtαs) mass basis ΦH , which is related to the reduced
tree-level mass basis Φh by

ΦH
i = ẐijΦ

h
j , with

(
ΦH
)T

= (H1, H2, H3, H4, H5) . (20.4)

Calculating a process with external Higgs bosons in the tree-level mass basis, the properly OS
renormalized quantity is obtained by multiplication with a factor of Ẑ for each external Higgs
boson. For instance, the properly normalized partial width ΓHiHjHk for the Higgs-to-Higgs
decay Hi → HjHk is given by

ΓHiHjHk = Ẑii′Ẑjj′Ẑkk′Γhi′hj′hk′ . (20.5)

The matrix Ẑ yields the proper relation between the tree-level and the O(αtαs) mass basis
and diagonalizes the loop-corrected Higgs mass matrix in the reduced tree-level mass basis.
However, it is not unitary and can hence not be treated as a rotation matrix. Consequently,
Ẑ can also not be utilized to define effective tree-level Higgs couplings1. These are are conve-
niently employed to incorporate higher-order effects into an observable and are obtained by
rotating the tree-level Higgs couplings with a loop-corrected rotation matrix.
In order to arrive at the unitary loop-corrected rotation matrix required for this purpose,
the p2 = 0 approximation has to be applied in the calculation of the Higgs mass matrix.
That is, the external momentum has to be neglected both in the one-loop corrections and in
the O(αtαs) corrections to the Higgs mass matrix. In the p2 = 0 approximation, the loop-
corrected mass matrix in the tree-level mass basis is hermitian such that its diagonalization is
achieved by an orthogonal matrix Ẑ0. It was shown in Ref. [290] that the absolute values of
the elements of the matrices ẐRh and Ẑ0Rh differ by less then 10%. Here Rh is the reduced
rotation matrix introduced in Eq. (16.31), such that ẐRh and Ẑ0Rh diagonalize the O(αtαs)
mass matrix in the gauge basis with or without full momentum dependence, respectively.
We will use the matrix Ẑ0 in the following sections, where we discuss the effective trilinear
Higgs self-couplings Λijk of O(αt) and O(αtαs) as defined in Ch. 15. Hence, these couplings
will be given in a basis

ΦH,0
i = Ẑ0

ijΦ
h
j , (20.6)

which does not exactly correspond to the proper O(αtαs) mass basis. However, in order to
keep the notation clean, we will omit the index 0.

1Note that the notion of the term effective in this context differs slightly from the one in the remaining thesis,
where we use this terms to denote the O(αt)- or O(αtαs)-corrected couplings at p2 = 0.
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When we discuss Higgs-to-Higgs decays in Sec. 20.5 on the other hand, we will apply Eq. (20.5)
with full momentum dependence taken into account in Ẑ at one-loop order to guarantee proper
OS renormalized external fields.
All rotation matrices and wave function correction factors discussed here can be obtained by
means of the program package NMSSMCALC [292], which we will detail in the following section.

20.2. Software Tools and Numerical Setup

In order to perform the numerical analysis, we implemented all described corrections of O(αt)
and O(αtαs) in the approximation of vanishing external momentum into a Fortran program.
Furthermore, one of the authors2 of Ref. [46] provided us with a Fortran code for the calcula-
tion of the full one-loop corrections to the trilinear Higgs self-couplings, as described in their
publication, but extended to include the case of the CP-violating NMSSM.
Both were linked to the program package NMSSMCALC [292], which calculates corrections to
the NMSSM Higgs boson masses up to O(αtαs) as well as decay widths and branching ratios
of all Higgs bosons for the CP-conserving and the CP-violating NMSSM. As in our calcu-
lation of the trilinear couplings, the O(αtαs) corrections to the masses are determined for
two different renormalization schemes in the top-stop sector, the OS and the DR scheme.
NMSSMCALC contains a routine performing the conversion of the relevant parameters between
the two schemes (cf. Sec. 17.1), necessary for a meaningful comparison of the OS and the DR
results. Furthermore, the running of the top mass is implemented as described in App. D.1.
The decay widths of the NMSSM Higgs bosons are calculated by a routine based on the
Fortran code HDECAY [183, 184], which was extended to the case of the NMSSM. All decays
include the dominant QCD corrections, augmented by SUSY corrections for the fermionic
decays. Details can be found in [292].
We used NMSSMCALC for the calculation of the Higgs boson masses up to O(αtαs) and for the
conversion of the parameters, to guarantee a consistent treatment of the latter in the correc-
tions to the masses and the trilinear self-couplings. Furthermore, we employed the program
to determine the partial decay widths and branching ratios of Higgs-to-Higgs decays, subject
to higher-order corrections. For this purpose we extended the relevant routine in NMSSMCALC

such that the corresponding decay widths include the full one-loop corrections and the newly
determined O(αtαs) corrections to the trilinear Higgs self-couplings.
On the other hand, NMSSMCALC was employed in a parameter scan over the NMSSM parameter
space to find input parameter configurations which are consistent with current LHC Higgs
and SUSY data as well as theoretical constraints. To that end, NMSSMCALC was linked to
the program packages HiggsBounds [186–188] and HiggsSignals [189] (cf. Sec. 12.2). All
effective couplings, masses, widths and branching ratios of the Higgs bosons, required as in-
put to these programs, were provided by NMSSMCALC. The effective couplings to gluons and
photons, normalized to the respective SM couplings, were obtained by taking the ratio of the
partial decay widths of the Higgs bosons into gluons and photons in the NMSSM and those
in the SM for a Higgs boson of the corresponding mass. For the relevant widths, higher-order
QCD and EW corrections were taken into account as far as they are known for the NMSSM.
Corrections which are not available for the NMSSM were neglected consistently also in the
SM decay widths. Again we refer to Ref. [292] for further details. Moreover, accordance with
theoretical constraints from perturbativity and from color or charge breaking minima men-
tioned in [36,37] as well as with experimental constraints from SUSY searches [293] available
at that time was guaranteed by choosing the range of the soft SUSY breaking masses and
trilinear couplings and of λ and κ appropriately. Our scanning routine is based on the one
developed for Ref. [290]3, where more information can be found.

2We are grateful to Dr. Dao Thi Nhung.
3We thank Dr. Kathrin Walz for sharing her code.



152 20. Numerical Analysis of the Corrections

Scenario 1 Scenario 2 Scenario 3

m
f̃R

= m
F̃

3000 GeV 3000 GeV 3000 GeV

mt̃R
1909 GeV 1170 GeV 1940 GeV

m
Q̃3

2764 GeV 1336 GeV 2480 GeV

m
b̃R

1108 GeV 1029 GeV 1979 GeV

m
L̃3

472 GeV 2465 GeV 2667 GeV

mτ̃R 1855 GeV 301 GeV 1689 GeV
mOS

t̃1
1992 GeV 1145 GeV 1996 GeV

mOS

t̃2
2820 GeV 1421 GeV 2528 GeV

mH± 1491 GeV 788 GeV 613 GeV
tanβ 7.52 4.02 8.97
ϕu 0 0 0

|Au,c,t| ϕAu,c,t
|Ad,s,b| ϕAd,s,b
|Ae,µ,τ | ϕAe,µ,τ
|M1| ϕM1

|M2| ϕM2

|M3| ϕM3

|Aκ| ϕAκ
|µ[eff ]| ϕµeff

|λ| ϕλ
|κ| ϕκ

1283 GeV π
1020 GeV π
751 GeV π
908 GeV 0
237 GeV 0
1966 GeV 0
178 GeV π
184 GeV 0

0.374 0
0.162 0

1824 GeV 0
16539 GeV π
1503 GeV π
862 GeV 0
211 GeV 0
2285 GeV 0
180 GeV 0
174 GeV 0

0.629 0
0.208 π

1192 GeV π
685 GeV 0
778 GeV 0
517 GeV 0
239 GeV 0
1544 GeV 0
810 GeV π
104 GeV 0

0.267 0
0.539 0

Table 20.1.: Input parameters for the scenarios studied in the following. mf̃R
/mF̃ denotes the mass of all

right-/left-handed first and second generation sfermions. We also give the values for the OS stop masses mOS
t̃1

and mOS
t̃2

. All scenarios have been obtained by means of a scan of the NMSSM parameter space as described
in the text.

In the following numerical analysis, we will consider three different scenarios, resulting from
the parameter scan. All SUSY parameters for the three scenarios are summarized in Tab. 20.1.
Following SLHA [294, 295] conventions, we treat the soft-SUSY-breaking parameters as well
as λ, κ, Aκ, µeff and tanβ as DR parameters at the SUSY breaking scale MSUSY, which we
set to

MSUSY =
√
m
Q̃3
mt̃R

. (20.7)

As a result, all parameters entering the stop sector have to be converted to OS parameters,
if the OS scheme is chosen for the top-stop sector. mH± on the other hand is treated as OS
parameter, in accordance with our renormalization conditions. The mass values for all SM
particles that enter the calculation can be found in Tab. 20.2. In case DR conditions are

MZ [GeV] MW [GeV] mt [GeV] mMS
b (mMS

b ) [GeV] ms [MeV] mc [GeV]

91.1876 80.385 173.5 4.18 100 1.42

mu [MeV] md [MeV] me [keV] mµ [MeV] mτ [GeV]

2.5 4.95 510.99891 105.658367 1.77684

Table 20.2.: Masses of the SM particles used in the calculation. All values were taken from Ref. [54]. Note
that the light quark masses have only a small impact on the higher-order corrections.



20.2. Software Tools and Numerical Setup 153

applied for the top-stop sector, a conversion of the quoted OS top mass to its DR value is
necessary. Moreover, we use as input for the coupling constants [54,141]

α(MZ) =
1

128.962
and αMS

s (MZ) = 0.1184. (20.8)

For αs we take into account SM two-loop RGE evolution [296] up to MSUSY, where a conver-

sion to αDR
s [297] is performed .

Using the input parameters specified above, NMSSMCALC determines the physical mass spec-
trum for the Higgs bosons and all SUSY particles. For our purposes, especially the masses
of the Higgs bosons and the composition of the Higgs mass eigenstates in terms of gauge
eigenstates will be important. Therefore we summarize the masses of the five physical Higgs
bosons, calculated up to O(αtαs), in Tab. 20.3, where we also state the main component
of the respective mass eigenstates. Furthermore, we quote the tree-level mass values, since
these will be needed for the calculation of the full one-loop corrections to the trilinear Higgs
self-couplings.

H1 H2 H3 H4 H5

Scenario 1

mtree
Hi

[GeV] 71.14 (hu) 117.49 (hs) 211.12 (as) 1491.05 (a) 1491.61 (hd)

m
O(αtαs),OS
Hi

[GeV] 94.68 (hs) 125.06 (hu) 217.32 (as) 1490.47 (a) 1491.70 (hd)

m
O(αtαs),DR
Hi

[GeV] 94.41 (hs) 124.24 (hu) 217.33 (as) 1490.49 (a) 1491.07 (hd)

Scenario 2

mtree
Hi

[GeV] 79.15 (hs) 103.55 (hu) 146.78 (as) 796.62 (hd) 803.86 (a)

m
O(αtαs),OS
Hi

[GeV] 102.99 (hs) 126.09 (hu) 128.94 (as) 796.45 (hd) 803.07 (a)

m
O(αtαs),DR
Hi

[GeV] 103.09 (hs) 124.55 (hu) 128.91 (as) 796.36 (hd) 803.03 (a)

Scenario 3

mtree
Hi

[GeV] 49.17 (hs) 99.83 (hu) 608.21 (a) 611.77 (hd) 715.92 (as)

m
O(αtαs),OS
Hi

[GeV] 83.66 (hs) 124.95 (hu) 608.73 (a) 611.37 (hd) 694.76 (as)

m
O(αtαs),DR
Hi

[GeV] 83.03 (hs) 124.34 (hu) 608.71 (a) 611.36 (hd) 694.78 (as)

Table 20.3.: Masses of the five physical NMSSM Higgs bosons within the Scenario 1, 2 and 3 at tree level
and at O(αtαs) for the two renormalization schemes in the top-stop sector. In parentheses we quote the main
components of the respective mass eigenstates.

All three scenarios, to be investigated below, feature an SM-like Higgs boson4, i.e. a Higgs
boson with a mass of mh = 125 ± 3 GeV, which is capable of reproducing the Higgs signals
observed at the LHC within current uncertainties. In the following sections, we will denote a
Higgs boson featuring these properties by h. Note that the comparatively large uncertainty
range of ±3 GeV, which is considered in the scan for mh, accounts for typical theoretical
uncertainties in SUSY Higgs mass calculations [298]. The LHC constraints force the SM-like
Higgs boson to be dominated by the hu gauge eigenstate. This is due to the fact that Higgs

4In principle also scenarios are possible, in which two Higgs bosons, that are close in mass, account for the Higgs
signals observed at the LHC [46,242,243]. We will, however, not consider such scenarios in the following.
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production mainly proceeds via gluon fusion, which is mostly mediated by top loops for the
small to moderate values of tanβ of our scenarios. Hence, sufficiently large production rates
can only be accommodated by a substantial hu admixture.
Subsequently, we will denote the mass eigenstate with the largest hu component as SM-like.

20.3. Comparison between Full One-Loop-Corrected and Effec-
tive O(αt) Couplings

In Sec. 15 we have defined the effective trilinear Higgs self-couplings as the sum of the tree-
level couplings and the O(αt) and O(αtαs) corrections at vanishing external momentum.
We will use these effective couplings in the subsequent section to investigate the numerical
impact of the O(αtαs) corrections on the trilinear couplings of three SM-like Higgs bosons,
on the theoretical uncertainty and on the convergence of the perturbative expansion. First,
however, we want to examine the goodness of the O(αt) corrections as compared to the full
one-loop results. This will allow us to estimate the reliability of the approximations made in
calculating the effective trilinear Higgs self-couplings.
There are two important points to be considered. On the one hand, we have to investigate
the influence of corrections originating from outside the top-stop sector, which are neglected
in the O(αt) and the O(αtαs) approximation. On the other hand, we must examine the
goodness of the approximation of vanishing external momentum. As mentioned in Ch. 15,
the approximation of vanishing external momentum is known to be applicable if the typical
external momentum remains below the threshold of on-shell production of the loop particles.
The O(αt) corrections are hence expected to yield reliable results below the top resonance at
p2 = (2mt)

2. We can explicitly check this as well as the influence of non-O(αt) corrections
since we have the complete one-loop corrections with full momentum dependence at our
disposal.

Figure 20.1.: Comparison of different approximations for the couplings Λhhh and Λuuu ≡ Λhuhuhu at one-
loop order. The upper panels show the couplings Λhhh (left) and Λhuhuhu (right) with full one-loop corrections
(red), momentum dependent O(αt) corrections (orange dashed) and O(αt) corrections at vanishing external
momentum (green), as a function of the external momentum p. The lower panels display the relative corrections
as defined in Eq. (20.9). All input parameters are chosen according to Scenario 1.

Fig. 20.1 shows a comparison of three different one-loop approximations of the trilinear Higgs
self-couplings of three SM-like Higgs bosons in the mass eigenstates (left plot) and of three
hu gauge eigenstates (right plot). All couplings are depicted as a function of the absolute
value of the external momentum below the top resonance. For the displayed results, we have
chosen the input parameters according to Scenario 1 and fixed the top and stop masses at
their OS values.
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The red curve represents the full one-loop-corrected trilinear couplings (III), whereas the
dashed orange and the green curves display the results including only O(αt) corrections. For
the dashed orange curve, we have taken into account a non-vanishing external momentum
(II), while the green curve shows the results obtained in the effective potential approach (I),
as described in Sec. 18.2. In the lower panel we show the normalized differences

∆a,b =

∣∣∣∣∣
Λaijk − Λbijk

Λaijk

∣∣∣∣∣ (20.9)

expressed as a percentage, where a and b denote the approximation applied for the couplings,
abbreviated by I, II and III.
An estimation for the goodness of the approximation of vanishing external momentum in the
O(αt) corrections can be obtained from the dashed green curve in the lower panels, which
represents the relative difference between curves I and II. In both bases the influence of the
external momentum p on the O(αt) corrections remains below 10% for p . 340 GeV. Since
we are considering here the coupling of three SM-like Higgs bosons or of three hu eigenstates,
which constitute the main component of the SM-like Higgs boson (cf. Sec. 20.2), a typical
external momentum is of the order of p ≈ 2mh ≈ 250 GeV, corresponding to the threshold
of on-shell h pair production. For this value of p, the relative difference between the two
O(αt) curves approximately amounts to 4%, which demonstrates the validity of the effective
potential approximation for the O(αt) corrections in the typical momentum range.
Concerning the applicability of the O(αt) approximation itself, i.e. the neglect of all particles
apart from top quarks and squarks in the loops, we can compare the orange dashed and the
red curve in the upper panels, whose relative difference is displayed as red-dashed curve in the
lower panels. As this curve reflects, the non-O(αt) corrections give rise to a nearly constant
off-set amounting to 3% and 5% in the mass and gauge eigenstates, respectively, modulated
only by tiny resonances. The latter are caused by virtual contributions of the light Higgs mass
eigenstates h1 and h2, which exhibit tree-level masses of 71 GeV and 117 GeV in the chosen
scenario5. As it shows, the resonances completely drown in the huge corrections resulting
from top and stop loops. Furthermore, in view of the corresponding tree-level couplings of
λhhh = 76.2 GeV and λhuhuhu = 101.7 GeV, it becomes obvious that the O(αt) corrections
by far dominate the one-loop corrections, amounting to 90% and 94% of the full corrections,
respectively.
Finally, we can compare directly our effective couplings of O(αt) to the full one-loop-corrected
ones. From the solid green curve in the lower panel, we can deduce a relative difference below
4% (mass eigenstates) and 6% (gauge eigenstates) over the whole plotted momentum range
for the chosen scenario. This demonstrates the effective O(αt) corrections to capture the
dominant corrections at one-loop order and the external momentum to be negligible in the
shown range.
Up to now we have discussed only the trilinear Higgs couplings of three hu gauge eigenstates
and of three SM-like Higgs bosons h, which are mainly hu-like. For other gauge eigenstates
(apart from au), the O(αt) corrections are less pronounced, due to a vanishing coupling of
the doublet Hd and the singlet S to top quarks. As a consequence, for these components
the influence of other contributions, e.g. of bottoms, sbottoms and especially of light Higgs
bosons, gain importance. Hence, the O(αt)-approximation deteriorates, most notably in the
considered range below the tt threshold, where the contributions of light Higgs loops become
resonant. This can be seen in Fig. 20.2, which shows the full one-loop corrections together
with the momentum dependent O(αt) corrections for different couplings in the gauge basis in
Scenario 2 (left) and Scenario 3 (right) as function of the external momentum. The resonances
resulting from light Higgs bosons are clearly visible and a comparison with Tab. 20.3 shows

5Note, that we use the tree-level masses for all particles appearing in loops.
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Figure 20.2.: Comparison of full one-loop and momentum dependent O(αt)-corrected couplings in the gauge
basis for components as specified in the legend as a function of the external momentum. The left plot contains
results for Scenario 2, the right one shows results for Scenario 3.

that they appear at momenta corresponding to linear combinations of the three (Scenario 2)
or two (Scenario 3) lightest tree-level Higgs masses. These resonances are particularly impor-
tant for all scenarios with large Aλ or Aκ, leading to increased tree-level couplings λhdhuhs or
λhshshs , respectively (cf. App. A.3). For the trilinear couplings with external hd-dominated
Higgs bosons, a large coupling λhdhuhs implies enhanced contributions of loops with hu and
hs dominated mass eigenstates. An increased coupling λhshshs , in turn, leads to heightened
contributions of loops with hs-dominated states to the trilinear couplings with external hs-like
Higgs bosons. Since hu and hs are the main constituents of the light Higgs mass eigenstates
h1 and h2 in the considered scenarios, this corresponds to an increased influence of light Higgs
boson loops on the respective trilinear couplings.
Within Scenario 2, which exhibits a relatively large value of Aλ, this increased influence

becomes particularly visible in the coupling Λ
O(αt)
hdhdhd

(dark blue curve), where the loops con-

taining the light Higgs bosons h1 and h2 are proportional to λ3
hdhuhs

, i.e. A3
λ. Near the

resonances, the difference between the full one-loop and the O(αt)-corrected couplings can

become as large as 165%. For the other two curves, corresponding to Λ
O(αt)
hdhdhu

(pink curve)

and Λ
O(αt)
hdhuhu

(light blue curve), the resonances are still clearly visible but suppressed since
one or two external hds are replaced by hus, such that the light Higgs loops are enhanced
only by factors of A2

λ or Aλ.
Scenario 3 features a comparatively large value of Aκ, hence couplings with external hs-like

Higgs bosons, like Λ
O(αt)
hdhshs

(red curve) or Λ
O(αt)
huhshs

(black curve) are particularly affected by the

resonances, since for these the diagrams with light Higgs bosons are proportional to λ2
hshshs

,
i.e. A2

κ. Here the deviation of the full-one loop from the O(αt) result can become as large as

71% for Λ
O(αt)
huhshs

and 66% for Λ
O(αt)
hdhshs

near the resonances. For the purple curve, corresponding

to Λ
O(αt)
hdhdhs

, the deviation is reduced to less than 21% due to the replacement of one external
hs by hd.
Note, however, that a large value of Aλ, i.e. an enhanced coupling λhdhuhs , does not at the
same time have a huge effect on the corrections to the trilinear hu-couplings. This is due to
the fact that for an external hu, the coupling λhdhuhs only appears in diagrams containing
at least one virtual hd dominated state, which corresponds to a heavy Higgs boson in all
considered scenarios. Hence the contributions of these diagrams are suppressed.
We conclude that the restriction to the corrections of O(αt) is reliable for hu dominated Higgs
bosons, while for hd and hs dominated mass eigenstates it is recommended to include the full
one-loop corrections, in particular in the region where the resonances of light Higgs bosons
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are important.
In the following sections, we will hence examine the effective couplings as defined in Ch. 15
only for the hu gauge eigenstates or for the hu dominated SM-like mass eigenstates h. As
argued above, for these the O(αt) corrections capture the dominant contributions and fur-
thermore the approximation of vanishing external momentum is justified for typical momenta
around p ≈ 2mh.
Once we go beyond the momentum range considered in this section, the approximation of
vanishing external momentum no longer needs to be reliable. Therefore, we will take into
account the full one-loop corrections to the trilinear Higgs self-couplings when we investigate
the decays of heavy Higgs bosons with masses above 350 GeV in Sec. 20.5.

20.4. Numerical Analysis of the O(αtαs) Corrections

Having defined the range of validity of our approximations, we are now in the position to
examine and discuss the effective trilinear Higgs self-couplings of O(αtαs). Our particular
interest is in investigating the stability of the perturbative expansion and in estimating the
theoretical uncertainty due to missing higher-order corrections. Furthermore, we want to
consider the influence of the complex phases, entering through radiative corrections, on the
trilinear Higgs self-couplings.
One possibility to estimate the theoretical uncertainty entails comparing the results obtained
in two different renormalization schemes. As mentioned in Subs. 3.1.2, every renormalization
scheme must eventually lead to the same final answer, if all terms in the perturbative series
are summed up. At finite orders, however, the results differ due to missing higher-order
terms, which can be exploited to estimate the size of the latter. In order for the perturbative
expansion to be meaningful, both the size of the additional corrections and the remaining
theoretical uncertainty have to decrease at higher orders.
We investigate these issues in Fig. 20.3, showing the effective coupling Λhhh for three SM-like
Higgs bosons at O(αt) (blue curves) and O(αtαs) (red curves) within Scenario 1. Depending
on the choice of the renormalization scheme for the top-stop sector, the curves are labelled
as DR (dashed curves) or OS (solid curves). In the following, the designation OS and DR
will always refer to the renormalization of the top-stop sector. Furthermore, we illustrate for

comparison the effective trilinear Higgs self-coupling of the SM Λ
O(αtαs)
SM (magenta curves),

calculated within the same approximations, i.e. including corrections of O(αt) and O(αtαs)
at vanishing external momentum. This time, the dashed\solid curve represents the result for
DR \OS renormalization of the top sector only. All couplings are shown as a function of the

soft-SUSY-breaking parameter ADR
t , which enters the calculation as input parameter and is

varied for illustrative purposes in a range from −3000 to +3000 GeV. Note that we demand
the constraints of the parameter scan to be fulfilled only at ADR

t = −1283 GeV, corresponding

to the value of ADR
t quoted in Tab. 20.1.

The corrections, both those of O(αt) and those of O(αtαs), are found to be large in the

chosen scenario. A comparison at the Scenario 1 value ADR
t = −1283 GeV reveals that the

O(αt) corrections enhance the tree-level coupling λOS
hhh = 76.2 GeV or λDR

hhh = 71.86 GeV
by 123% in the OS and by 53% in the DR scheme, while the O(αtαs) corrections lead to a
reduction of the one-loop results by 21% in the OS scheme and to a further increase by 8%
in the DR scheme. This indicates on the one hand that, although the corrections are huge,
especially in the OS scheme, they decline with growing loop order such that our confidence
in the convergence of the perturbative series is corroborated. Note in this context that the

better convergence of the DR scheme is due to the fact that the coupling Λ
O(αt),DR
hhh already

6The scheme dependence of the tree-level coupling results from the rotation with the loop-corrected matrix Ẑ0

to the O(αtαs) mass basis ΦH,0.
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Figure 20.3.: Effective trilinear Higgs self-couplings for three SM(-like) Higgs bosons as a function of the

input parameter ADR
t . The blue (red) curves show the results for the couplings in the complex NMSSM at

O(αt) (O(αtαs)), the magenta curves illustrate the couplings in the SM at O(αtαs). The solid (dashed) curves
display the results for the OS (DR ) scheme. In the lower panel we show an estimation for the theoretical
uncertainty, defined according to Eq. (20.10), at O(αt) (blue) and O(αtαs) (red). A similar plot was published
in [47].

includes part of the corrections which in the OS scheme enter only at O(αtαs). This is caused
by the conversion of the OS top mass used as input parameter to its DR value, as discussed
in [44].
On the other hand, it shows that the results in the two different schemes, which are far apart
at O(αt), approach each other when the corrections of O(αtαs) are added. This can be seen in

the lower panel, where we display the quantity ∆DR,OS, defined as the normalized difference

∆DR,OS =

∣∣∣∣∣
Λa,OS
hhh − Λa,DR

hhh

Λa,DR
hhh

∣∣∣∣∣ , with a ∈ {O(αt),O(αtαs)}. (20.10)

Using the thus defined ∆DR,OS as a measure for the theoretical uncertainty, we find the latter
to be reduced from about 55% at O(αt) to 12% at O(αtαs) (for ADR

t = −1283 GeV).
Another interesting investigation is the comparison between the NMSSM and the SM results.
At ADR

t = −1283 GeV we find

Λ
O(αtαs),OS
hhh = 0.75 · ΛO(αtαs),OS

SM , (20.11)

Λ
O(αtαs),DR
hhh = 0.66 · ΛO(αtαs),DR

SM . (20.12)

Hence, within the chosen scenario we encounter a reduction of the trilinear Higgs self-coupling
with respect to the corresponding SM value. Note in particular that the inclusion of the
O(αtαs) corrections has a large influence on these findings. Taking into account only O(αt)

corrections both in the NMSSM and the SM, we arrive at Λ
O(αt),OS
hhh = 0.98Λ

O(αt),OS
SM and

Λ
O(αt),DR
hhh = 0.59Λ

O(αt),DR
SM , whereas at tree-level we get λOS

hhh = 0.39λSM and λDR
hhh = 0.37λSM.

So, while the tree-level results suggest a strong reduction of the coupling λhhh in Scenario 1,
at O(αt) it depends on the choice of the renormalization scheme whether or not we obtain
a decrease of the trilinear Higgs self-coupling. Only at O(αtαs) a clear picture, predicting a

reduction of Λ
O(αtαs)
hhh by 25%-34% within Scenario 1, emerges7.

7Note that within other scenarios, the trilinear coupling can also be increased w.r.t. the SM.
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Figure 20.4.: Upper panels: Effective trilinear Higgs self-couplings of three SM-like Higgs bosons (left plot) or
three hu components (right plot) as a function of the complex phases ϕM3 (blue), ϕAt (red) and ϕµ (green) at
O(αt) (dashed) and O(αtαs) (solid) for Scenario 1 for DR renormalization in the top-stop sector. Lower panels:
Relative size of the corrections as defined in Eq. (20.13), with (a, b) = (tree, αt) (dashed) and (a, b) = (αt, αtαs)
(solid). Similar plots were published in [47].

According to most studies, such a reduction will probably escape detection at the LHC
[201–203, 205, 206, 208, 209]. Of course, we have to be careful in drawing any conclusions
on experimental observability of our findings. In practice the trilinear Higgs self-coupling
is in most studies extracted from the Higgs pair production cross section, whose invariant
mass distribution features a maximum at mhh ≈ 400 GeV [206, 208], i.e. above the top
resonance, where the external momentum is no longer negligible. One might, in a very first
estimation, assume the leading momentum dependent corrections, dominated by the top
resonance, to be universal in the SM and the NMSSM for stops with masses far above 400
GeV. This would allow investigating the influence of an NMSSM-specifically modified trilinear

coupling Λ
O(αtαs)
hhh on the SM Higgs pair production cross section. However, without having

calculated the full momentum dependent corrections for the NMSSM we can not verify this
assumption. Furthermore, it is clear that a consistent examination would have to take into
account further NMSSM-specific corrections, apart from the corrections to the trilinear Higgs
self-coupling, playing a role in Higgs pair production. Hence, any considerations concerning
the observability of deviations from the SM have to be regarded as a very rough estimate
giving merely a hint of possible deviations.
Still, our results show that the difference between the trilinear Higgs self-coupling in the
SM and the NMSSM can be sizeable. In particular, however, our findings emphasize the
importance of including the corrections of O(αtαs), seeing that without them, no useful
statement can be made at all in the inspected scenario.

Since we consider the complex NMSSM, we next want to study the impact of the CP-violating
phases on the trilinear Higgs self-couplings. For this purpose we start from Scenario 2, which
resides in the CP-conserving limit, and successively vary the three phases ϕAt , ϕM3 and ϕµeff

of the trilinear stop coupling At, the soft-SUSY-breaking gluino mass parameter M3 and the
effective µ-parameter µeff. In the following we will omit the subscript “eff” keeping in mind
that µ ≡ µeff = λvseiϕs/

√
2. Furthermore, while varying ϕµ = ϕs + ϕλ, we will make sure that

ϕy = ϕu−2ϕs+ϕλ−ϕκ, which is the only phase entering at tree-level, remains at zero. This
is achieved by a simultaneous variation of ϕs and ϕλ in such a way that ϕλ = 2ϕs = 2/3ϕµ,
keeping ϕu = ϕκ = 0. In this way, our investigations are sensitive to CP-violating effects
entering only through radiative corrections. Fig. 20.4 illustrates the behaviour of the couplings
Λhhh (left plot) and Λuuu ≡ Λhuhuhu (right plot) at O(αt) (dashed) and O(αtαs) (solid)
under the variations of ϕM3 (blue), ϕAt (red) and ϕµ (green). Note that we vary all phases
for illustrative purposes in the range [−π, π], although part of these values may be excluded
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δ
ϕx,O(αt)
hhh δ

ϕx,O(αtαs)
hhh δ

ϕx,O(αt)
huhuhu

δ
ϕx,O(αtαs)
huhuhu

ϕAt -3.2% -1.5% -4.3% -2.1%

ϕµ 2.3% 2.1% 0.4% 0.4%

ϕM3 -4.2% -2.5% -4.5% -2.3%

Table 20.4.: Influence of the complex phases on the couplings Λhhh and Λhuhuhu at O(αt) and O(αtαs) in
Scenario 2, defined according to Eq. (20.14).

by constraints coming from LHC Higgs data and measurements of electric dipole moments
(EDMs) [299]. In the lower panels we display the relative size of the corrections, i.e.

∆Ohihihi =

∣∣∣∣∣
Λ
O(a)
hihihi

− Λ
O(b)
hihihi

Λ
O(a)
hihihi

∣∣∣∣∣ , with hi ∈ {h, hu} (20.13)

and (a, b) ∈ {(tree, αt), (αt, αtαs)}.

All results have been obtained with a DR -renormalized top-stop sector.
At first sight it might be surprising that an influence of ϕM3 is visible already at O(αt),
although gluinos only enter at O(αtαs). However, this can be explained by the fact that

ϕM3 enters through the conversion of the OS top mass to the DR mass mDR
t along the lines

detailed in App. D.1. In order to estimate the impact of the phases, we define the quantity

δ
ϕx,O(a)
hihihi

δ
ϕx,O(a)
hihihi

=
Λ
O(a)
hihihi

(ϕx = 0)− Λ
O(a)
hihihi

(ϕx = π)

Λ
O(a)
hihihi

(ϕx = 0)
, hi ∈ {h, hu}, a ∈ {αt, αtαs}, (20.14)

which compares the value of a particular coupling at ϕx = 0 to its value at ϕx = π. The
corresponding results for all three phases are summarized in Tab. 20.4. Concentrating first
on the O(αt) couplings, we see that the impact of ϕAt and ϕM3 is slightly more pronounced
in the gauge basis. This is due to the fact that ϕAt enters at O(αt) mostly through the

coupling ghu t̃i t̃j , i, j = 1, 2, of the hu component to stops. Similarly, ϕM3 contributes via mDR
t

and hence mainly through top quarks, which couple only to hu (and au). As the SM-like
Higgs boson h contains apart from hu an admixture of the hs component, the influence of

the phases on Λ
O(αt)
hhh is diluted as compared to Λ

O(αt)
huhuhu

. The opposite is true for ϕµ, which
appears in the couplings of hd, hs, ad and as to stops. Hence, ϕµ shows only a tiny effect

on Λ
O(αt)
huhuhu

, caused by the stop mass matrix, while the admixture of hs to h leads to a more

pronounced influence on Λ
O(αt)
hhh . At O(αtαs) the impact of the phases is reduced, however,

since the two-loop corrections are generally smaller than those of one-loop order, the overall
trend visible at O(αt) is preserved.
Altogether, the influence of the phases is seen to be very small, amounting to less than 4.5%
at O(αt) and less than 2.5% at O(αtαs). Comparing this to the typical size of the remaining
theoretical uncertainty, estimated above, we conclude their impact to be negligible. Note
again, however, that, having chosen the tree-level phase ϕy to remain zero, we only investigate
the influence of phases entering through radiative corrections, wherefore the smallness of their
effect was to be expected. Allowing for CP violation already at tree-level, the impact of the
phases would be more pronounced.
The lower panels again demonstrate the convergence of the perturbative expansion, showing
that the radiative corrections decrease from 50-60% and 70-80% at O(αt) to less than 10%
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Figure 20.5.: Upper panel: Dependence of the couplings Λ
O(αt)
hhh (blue dashed) and Λ

O(αtαs)
hhh (red solid) on

the renormalization scale µ for Scenario 1 (left) and 2 (right) and a DR -renormalized top-stop sector. The
curves are plotted as functions of ζ = µr/µ0. Lower panel: Relative deviation from the central scale µ0 as
defined in Eq. (20.15) with the same color code as in the upper panel. Similar plots were published in [47].

at O(αtαs) in the mass and the gauge eigenstates, respectively.
Before, we have estimated the theoretical uncertainty due to missing higher-order corrections
by comparing the results obtained in different renormalization schemes. Another possibility,
available in MS - and DR -like schemes, which exhibit a dependence on the renormalization
scale µr, is to investigate the behaviour of the results under a variation of this unphysical
scale. Summing up all orders of the perturbative series, the scale dependence has to vanish.
Hence, the µr-dependence remaining at finite orders can be interpreted as a measure for
missing higher-order corrections. A dedicated study of the renormalization scale dependence
would require two-loop RGEs for all DR parameters of the Higgs sector and one-loop RGEs
for the top-stop sector within the complex NMSSM. However, since we are interested here
only in a rough estimate of the scale uncertainty and do not strive for rigorous derivations, we
content ourselves with a linear approximation of the RGEs, similar to our treatment of the
top-stop parameters in Sec. 17.1. Due to the more involved situation at O(αtαs), we detail
our procedure in App. D.2.
Fig. 20.5 shows the result of a µr-variation in this vein within a range of [1/3µ0, 3µ0] around
the central scale µ0 = MSUSY for Scenario 1 (left plot) and 2 (right plot). In the upper panel
we illustrate the impact of the variation on the absolute size of the coupling Λhhh at O(αt)
(blue dashed) and O(αtαs) (red solid) as a function of ζ = µr/µ0 for a DR -renormalized
top-stop sector. One can readily recognize the flattening of the curve when going from O(αt)
to O(αtαs), which indicates a reduction of the theoretical uncertainty. This can even more
clearly be seen in the lower panels, where we display the relative deviation from the central
scale, i.e.

∆Oζ =

∣∣∣∣∣
Λ
O(a)
hhh (µ0)− Λ

O(a)
hhh (ζµ0)

Λ
O(a)
hhh (µ0)

∣∣∣∣∣ , with a ∈ {O(αt),O(αtαs)}. (20.15)

Using ∆ζ as a measure for the theoretical uncertainty, we conclude the latter to be reduced
from ≈ 7% (Scenario 1) and ≈ 3.5% (Scenario 2) at O(αt) to ≈ 4.5% and ≈ 2.5% at
O(αtαs). These findings further consolidate the conclusions drawn above, when estimating
the theoretical uncertainty from a comparison of different schemes. Note that the estimates
resulting from the scale variation are smaller than those obtained from a scheme comparison.
This is due to the fact that we consider only the DR scheme in the scale variation analysis,
which shows better convergence properties, as discussed above. However, let us emphasize
again that the results from the scale variation can be considered as a rough estimate only,
owing to our simplistic approximation of the RGE evolution.
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20.5. Higgs-to-Higgs Decays

Before closing this chapter, we want to have a brief glance at possible applications of our
findings. For this purpose, we will now turn to the subject of Higgs-to-Higgs decays and
investigate the decay of a heavier Higgs boson into two SM-like Higgs bosons.
The partial width ΓHi→HjHk for the decay Hi → HjHk can be obtained along the lines
described in Subs. 3.2.2. Making use of the general formulae Eqs. 3.22 and 3.23 stated there,
we arrive at the following expression for the width

Γ
(a)
Hi→HjHk =

σ

16πm3
Hi

λ(m2
Hi ,m

2
Hj ,m

2
Hk

)
∣∣∣A(a)

Hi→HjHk

∣∣∣
2
, σ =

{
1
2 j = k

1 else
, (20.16)

with (a) ∈ {(1-loop), (αtαs)}. According to this definition, the width Γ
(a)
Hi→HjHk comprises

the squared amplitude A(a)
Hi→HjHk of the respective Higgs-to-Higgs decay, which in turn is

given by

A(a)
Hi→HjHk =

5∑

i′,j′,k′=1

Ẑii′Ẑjj′Ẑkk′Λ
O(a)
hi′hj′hk′

+AG0,Z
Hi→HjHk . (20.17)

Here Λ
O(a)
hi′hj′hk′

denotes the trilinear Higgs self-coupling in the reduced tree-level mass basis,

including the complete one-loop corrections with full momentum dependence and for a = αtαs
also the corrections of O(αtαs) at p2 = 0. Furthermore, as previously announced, the Ẑ-
factors now comprise the full momentum dependence at one-loop order, such that the resulting
decay widths are defined in the proper O(αtαs) mass basis ΦH (cf. Sec. 20.1). Note at this
point that we define both, the decay widths comprising the one-loop corrections and those
containing on top the O(αtαs) corrections, in the same basis ΦH . Likewise, the Higgs masses
appearing in Eq. (20.16) are always to be interpreted as those calculated at O(αtαs). The
last term in Eq. (20.17) accounts for external leg corrections which arise from mixing between
the pseudoscalar components of the Higgs bosons and the Goldstone or Z boson. In order
to preserve gauge invariance, the external momenta for these contributions have to be set
equal to the tree-level masses of the external scalars [46,91,291]. For this reason, we consider
mixing with Goldstone and Z bosons only at one-loop order. However, since these mixing
contributions are found to be small, we expect the corresponding two-loop terms to be safely
negligible.
Both the external leg corrections expressed through the wave function correction factors and
those incorporating mixing with Goldstone and Z bosons are a consequence of our non-OS
renormalization of the scalar fields (cf. Subs. 3.2.1).

As becomes obvious from the above definitions, neither Γ
(a)
Hi→HjHk nor A(a)

Hi→HjHk can be

assigned a strict loop order, since the incorporation of the Ẑ-factors leads to contributions,
which are formally of higher order. Hence, the superscript (a) merely refers to the order of

the corrections included in Λ
O(a)
hihjhk

.

In order to examine the impact of the O(αtαs) corrections on Higgs-to-Higgs decays, we now
turn to a specific example, given by the decay H4 → H2H2 within Scenario 2. Fig. 20.6
shows the partial decay widths (left plot) and the branching ratios (right plot) for the chosen
decay at one-loop order (blue) and two-loop order (red) within the DR (dashed) and the

OS (solid) scheme. All curves are shown as a function of the input parameter ADR
t , which

was varied in a range from −3000 to +3000 GeV. Again, we demand the constraints of the
parameter scan to be fulfilled only at ADR

t = 1824 GeV, corresponding to the value quoted
in Tab. 20.1. The Higgs masses, Ẑ-factors, all partial widths as well as the total width

Γ
(a)
H4,tot of the fourth Higgs mass eigenstate have been calculated with NMSSMCALC, extended
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Figure 20.6.: Upper panel: Partial decay width (left) and branching ratio (right) for the decay H4 → H2H2 in

Scenario 2 in dependence of the input parameter ADR
t at O(αt) (blue) and O(αtαs) (red) in the OS (solid) and

DR (dashed) scheme. Lower panel: Estimation of the theoretical uncertainty, defined according to Eq. (20.10),
at O(αt) (blue) and O(αtαs) (red).

by our corrections to the trilinear Higgs self-couplings as described in Sec. 20.2. Γ
(a)
H4,tot,

which includes the corrections to the trilinear Higgs couplings of O(a), is needed in order to
determine the branching ratio

BR
(a)
H4→H2H2

=
Γ

(a)
H4→H2H2

Γ
(a)
H4,tot

. (20.18)

In the lower panels we display the relative difference ∆DR,OS between the results obtained in
the OS and in the DR scheme, as defined in Eq. (20.10).
A comparison to the partial width at tree-level, corresponding to 0.34 GeV in the OS and
0.35 GeV in the DR scheme at ADR

t = 1824 GeV, shows that the one-loop corrections lead to
a reduction of the width by 37.1% and 22.1%, respectively. In the DR scheme the O(αtαs)
corrections further reduce the partial width by another 2.8% while they enhance the one-loop
width by 16.3% in the OS scheme. Consequently, we can again observe an approach of the
results in the two schemes when adding the corrections of O(αtαs) resulting in a reduction

of the theoretical uncertainty ∆DR,OS from 22% to 6.7%. As the plot on the right-hand side
reveals, the branching ratio for the decay of the heavy Higgs boson H4 is very small in the
considered scenario, staying below 2.3% over the whole plotted range and corresponding to
1.2% at ADR

t = 1824 GeV. The scenario has been chosen for illustrative purposes rather than
to derive phenomenological implications, since it clearly features the relevance of the O(αtαs)
corrections and the reduction of the theoretical uncertainty.
One important comment is in order concerning the applicability of the approximation of van-
ishing external momentum in the O(αtαs) corrections. As discussed in Sec. 20.3, the p2 = 0
approximation is applicable if the external momentum does not exceed the threshold of on-
shell production of the loop particles. Above this threshold, the loop integrals develop an
imaginary part, which is not captured in the effective potential approximation, wherefore the
latter is no longer reliable.
Regarding the decay under consideration, it is obvious that, with a mass of the decaying Higgs
boson of mH4 = 796 GeV, we are far above the tt-threshold. Thus, the top quarks which
appear in some diagrams contributing to the O(αtαs) corrections can go on-shell and the ap-
proximation of vanishing external momentum is strictly speaking not applicable. However, as
we will show in the following, for the chosen decay and scenario, the dangerous contributions
of internal top quarks are small compared to the remaining corrections of O(αtαs). Hence,
we estimate the error made by neglecting the external momenta in these diagrams, to be of
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minor importance in our specific case.
There are two groups of diagrams at O(αtαs) featuring potentially dangerous top contribu-
tions. The first precarious type is represented by the first to third diagram in Fig. 19.1 and
the first two diagrams in Fig. 19.2, containing a top triangle with an intermediate gluon or
stop-gluino exchange or a counterterm insertion. For the decay under consideration, these
diagrams exhibit a H4tt-coupling on the left, which strongly suppresses the contribution of
these topologies. The suppression is due to the fact that H4 is mostly hd-like in Scenario 2
and hence barely couples to top quarks. We can assess the negligibility of the momentum
dependence, entering through these contributions, by considering the one-loop corrections of
O(αt), where the same diagram without the gluon or the stop-gluino supplement or without

the counterterm appears. A comparison of the width Γ
(αt)
H4→H2H2

, comprising the one-loop cor-
rections of O(αt) with full momentum dependence, to the one including the same corrections
in the p2 = 0 approximation, shows the relative difference between both to be less than 5.4%
in the OS and 4% in the DR scheme. We assume the additional gluons, stops and gluinos
or counterterms entering at O(αtαs) not to change this behaviour drastically and hence the
error made by neglecting the external momentum in diagrams of this type to be of minor
significance.
The second group of diagrams, potentially invalidating the p2 = 0 approximation, is repre-
sentatively depicted by the fourth to seventh diagram in Fig. 19.1. In this case the incoming
H4 couples to stops and the dangerous top propagator appears on the right, coupling to the
mostly hu-like mass eigenstates H2, or in a loop 8. Hence, we cannot rely on a suppression
of this contribution by a small top coupling. However, the diagrams still turn out to yield
only a minor contribution to the corrections of O(αtαs), amounting to less than 6.6% within
the considered scenario. This can be traced back to the fact that the contribution of these
diagrams are proportional to the ratio µeff/mt̃, which is small (≈ 0.15) in Scenario 2. There-
fore, we estimate the influence of neglecting the external momentum in the diagrams of the
second type on the full O(αtαs) corrections to be small.
It is important to note, however, that in particular the last statement is highly scenario de-
pendent. In scenarios featuring a ratio of µeff/mt̃ ∼ O(1), the relative importance of diagrams
of the second type can be enhanced. Varying µeff, we found the contributions to rise up to
30 % of the O(αtαs) corrections. Therefore, we clearly cannot rely on the approximation of
vanishing external momentum in general scenarios and its applicability has to be checked on
a case-by-case basis.
Nonetheless, for the scenario and the decay discussed here, the neglect of the external mo-
mentum is well-motivated and we hence consider our results as trustworthy.

8For the sixth diagram, a flipping between initial and final states of the external Higgs bosons has to be
considered in order to obtain a contribution as described in the text. In the form shown in Fig. 19.1, the
diagram is even more suppressed, due to the coupling H4tt appearing on the left.
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Conclusion of Part III

The goal of this part of the thesis was the determination and investigation of the O(αtαs)
corrections to the trilinear Higgs self-couplings of the complex NMSSM in the approximation
of vanishing external momentum and in the gaugeless limit.
These corrections are required in order to match the precision reached in the calculation of
the NMSSM Higgs boson masses. Due to the entwinement of the Higgs boson masses and
trilinear self-couplings, which both derive from the Higgs potential, a consistent description
of the NMSSM Higgs sector demands the corrections to both to be of the same order. Fur-
thermore, also the huge size of the corrections to the trilinear Higgs self-couplings as well as
the theoretical uncertainty found at one-loop level call for the inclusion of higher orders.
In this thesis we presented the calculation of the corrections of O(αtαs) to the trilinear
NMSSM Higgs self-couplings in the Feynman diagrammatic approach. All necessary steps
were exposed in detail. Restricting ourselves to the limit of vanishing external momentum,
the occurring two-loop integrals could be reduced with the help of the Tarasov algorithm,
implemented in the Mathematica package TARCER, to two known master integrals. These were
expanded in a series in ε, the regulator of dimensional reduction, such that all divergences
could be extracted and cancelled by a suitable renormalization procedure.
The latter was explained thoroughly. For the Higgs sector, which has to be renormalized up
to O(αtαs), we introduced a hybrid scheme, mixing OS and DR conditions. Concerning the
top-stop sector, contributing counterterms of O(αs), we applied two separate schemes, the
OS and the DR scheme. A comparison of the results obtained in the two different renormal-
ization schemes allows us to assess the theoretical uncertainty of our results.
Apart from the corrections of O(αtαs), we also presented the calculation of the O(αt) correc-
tions in the effective potential approach, subject to the same approximations as the former.
With their help we defined effective trilinear Higgs self-couplings, comprising the O(αt) and
O(αtαs) corrections at p2 = 0. Including only top quarks and squarks in the loops, these ef-
fective couplings can be used as an approximation, as long as the external momentum remains
below the threshold of on-shell tt production. As further benefit, the O(αt) corrections allow
us to estimate the goodness of our approximations. This can be achieved by comparing the
couplings of O(αt) to those including the complete one-loop corrections with full momentum
dependence.
A corresponding comparison was subject of the first part of our numerical investigations,
where we contrasted three different one-loop approximations of the trilinear Higgs self-couplings:
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the full one-loop-corrected ones, those including O(αt) corrections with full momentum de-
pendence and the effective O(αt) couplings at p2 = 0. Concerning the coupling of three
SM-like, i.e. hu-dominated, Higgs bosons, we found the effective O(αt) corrections to approx-
imate well the full one-loop corrections for external momenta below the tt-threshold. Both
the neglection of contributions outside the top-stop sector and of the external momentum
were found to be applicable in this case. However, we also demonstrated that non-O(αt)
contributions can be significant for the couplings of Higgs bosons dominated by hd and hs
components. These can receive large contributions from loops with light Higgs bosons, which
are relevant in particular in the range of small external momenta.
In the subsequent study of the effective trilinear Higgs self-couplings, including corrections
of O(αt) and O(αtαs), we hence restricted ourselves to the coupling of three SM-like Higgs
bosons h or three hu gauge eigenstates, where the investigations at one-loop order support
the applicability of our approximations. As we demonstrated, the O(αtαs) corrections are
important for several reasons. On the one hand, they can have a significant impact on the
absolute size of the effective trilinear couplings. We exemplified this by means of a specific
scenario, where the O(αtαs) corrections were found to lead to an enhancement (reduction) of
21% (8%) of the results at O(αt) in the OS (DR ) scheme. On the other hand, they lead to a
considerable reduction of the theoretical uncertainty. We estimated the latter in two different
ways: by a comparison of the results obtained in the OS and in the DR scheme and by a
variation of the renormalization scale. Both methods of assessing the theoretical uncertainty
due to missing higher-order corrections demonstrated the O(αtαs) corrections to reduce the
latter noticeably.
We demonstrated the importance of this reduction by a comparison of the NMSSM trilinear
coupling of three SM-like Higgs bosons to the one of the SM, calculated in the same approx-
imation. Within the chosen scenario, the large theoretical uncertainty remaining at O(αt)
precludes any statement on whether or not the effective NMSSM trilinear Higgs coupling is
altered significantly w.r.t. the corresponding SM coupling. At O(αtαs) the ambiguity is re-
solved and a clear picture emerges, showing in the presented case a reduction of the effective
coupling by 25-34% as compared to the SM.
We also investigated the influence of the complex phases, entering the effective trilinear Higgs
couplings through radiative corrections. However, their impact was found to be small.
In the last section, we studied the effect of the O(αtαs) corrections on partial widths of
Higgs-to-Higgs decays. As an example we considered the decay of the heavy fourth Higgs
mass eigenstate H4 into two SM-like Higgs bosons. For the purpose of this investigation,
we included at one-loop order the complete electroweak corrections with full momentum de-
pendence. Again, we found the O(αtαs) corrections to be non-negligible and ascertained a
reduction of the theoretical uncertainty from 22% at one-loop order to 6.7% at O(αtαs) in
the considered scenario. We furthermore discussed the applicability of the approximation
of vanishing external momentum in the O(αtαs) corrections. We argued that, although the
external momentum is far above the tt threshold in the considered decay, we estimate the
error made by neglecting the external momentum to be small for the chosen scenario. This
estimation was justified by the fact that the diagrams containing possibly resonant top quark
contributions are suppressed in the studied case.
Still, these investigations clearly exhibit the limitations of the p2 = 0 approximation. For
other scenarios and other decays, the impact of the external momentum can be significant.
The same is true for the process of Higgs pair production, where the external momentum is
known to be non-negligible. Furthermore, from our investigations of the one-loop corrections,
it is presumable that other corrections, e.g. Higgs loops or bottom-sbottom contributions,
become important in processes featuring external non-hu-like Higgs bosons.
Hence, it would be interesting to include these contributions as well and to perform the cal-
culation with full momentum dependence. Especially the latter is, however, clearly beyond
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the scope of this thesis.
If in the future the trilinear Higgs self-coupling can be determined with higher accuracy, an
inclusion of the momentum dependent effects in the corrections of O(αtαs) and beyond is
advisable. Our analysis has shown that the one-loop corrections alone may not be sufficient
to make a conclusive statement about the size of the trilinear Higgs couplings of the NMSSM
compared to the one of the SM. In this case the corrections of O(αtαs) and beyond will be
required to gain a clear picture. Due to the limitations of the approximation of vanishing
external momentum, however, a thorough study is possible only if the latter are determined
with full momentum dependence. Also for a dedicated investigation of Higgs-to-Higgs de-
cays, an inclusion of momentum dependent effects at two-loop order as well as of corrections
going beyond O(αtαs) are mandatory. We consider an endeavour in this direction as very
interesting and rewarding, should the trilinear Higgs self-coupling be measured at a future
collider with adequate precision, in particular if on top, other observations hint to a possible
realization of SUSY in nature.





CHAPTER 22

Conclusion

Despite its tremendous success in predicting numerous observables and processes of elemen-
tary particle physics with high precision, the Standard Model of particle physics leaves unan-
swered many fundamental questions concerning the true nature of our universe. It can hence
not be considered as the ultimate description of nature, but rather has to be regarded as
low-energy approximation of some underlying theory. Huge efforts are therefore constantly
being undertaken in developing and investigating possible extensions of the SM.
The discovery of the Higgs boson in 2012 might have opened the door to a more complete
description of nature. Since many extensions of the SM feature an enlarged Higgs sector, its
observation has encouraged an enhanced activity in research trying to use the Higgs sector
as an entrance to physics beyond the SM.
In this thesis, we examined two specific extensions of the SM with enlarged Higgs sectors,
the 2HDM and the NMSSM. Our focus was on the calculation of higher-order corrections to
observables connected to the Higgs sectors of the respective models. As the measurements of
Higgs properties at the LHC more and more seem to converge towards the SM expectations,
the importance of higher-order corrections grows, since deviations from the SM might be
small, calling for precise theoretical predictions.

A suitable renormalization scheme is an important prerequisite for higher-order corrections.
For this reason, we pursued in part II of this thesis the goal of developing an appropri-
ate renormalization scheme for the 2HDM. In doing so, we concentrated our attention in
particular on the three 2HDM-specific parameters, the mixing angles α and β and the soft-
Z2-breaking scale m2

12, for which no well-proven renormalization scheme had been established
so far. Throughout our study, the three criteria of gauge independence, process independence
and numerical stability served us as guideline to a suitable renormalization scheme.
Our investigations revealed that, in particular with regard to gauge dependence, the treatment
of the tadpoles plays a key role. Having examined two different tadpole schemes and various
renormalization prescriptions for the mixing angles, we clearly advocate the usage of what we
baptized tadpole scheme II. Within this scheme no tadpole counterterms are introduced. As
a consequence, tadpole diagrams have to be taken into account in all Green's functions. Only
this treatment of the tadpoles enables, in combination with the pinch technique, the formu-
lation of a gauge-independent renormalization scheme for the mixing angles. We performed
a dedicated numerical study, comprising three test processes, for the various renormalization
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schemes introduced in this thesis. From our examinations we concluded that the p-OSc,o

and the pc∗ scheme, which are versions of gauge- and process-independent renormalization
prescriptions for the mixing angles, lead to numerically stable results. Hence, these schemes
comply with all three criteria of a suitable renormalization scheme.
Regarding the parameter m2

12, gauge dependence is of no concern and our studies suggest an
MS definition of m2

12 to be the best choice, fulfilling likewise all three criteria.
In conclusion, we were able to develop a complete, suitable renormalization scheme for the
2HDM, which is at the same time process and gauge independent and numerically stable.
This scheme can henceforth be applied in higher-order calculations and thus in a thorough
investigation of LHC phenomenology in the framework of the 2HDM.

Part III of this thesis dealt with the calculation of the O(αtαs) corrections to the trilinear
Higgs self-couplings of the complex NMSSM in the approximation of vanishing external mo-
mentum and in the gaugeless limit. Trilinear Higgs self-couplings play an important role in
the intentions of gaining more insight into the mechanism of electroweak symmetry breaking.
Furthermore, they enter interesting processes like Higgs pair production and Higgs-to-Higgs
decays. Due to the close connection between the trilinear couplings and the masses of the
Higgs bosons, a consistent description of the NMSSM Higgs sector requires both to be cal-
culated with comparable precision. As the masses are know up to O(αtαs) in the complex
NMSSM, this implies the necessity of corrections of this order to the trilinear Higgs self-
couplings.
We presented all steps of the calculation, which entails a reduction of the contributing two-
loop integrals to master integrals, in detail. Moreover, we illustrated the renormalization of
the Higgs sector up to O(αtαs) and of the top-stop sector up to O(αs). To allow for an
estimation of the theoretical uncertainty due to missing higher-order corrections, we applied
two different renormalization schemes to the top-stop sector, the OS and the DR scheme.
Our subsequent numerical analysis demonstrated the importance of the O(αtαs) corrections
to the trilinear Higgs self-couplings. Depending on the scenario, they can have a large im-
pact on the size of the couplings. Furthermore, they can lead to a drastic reduction of the
theoretical uncertainty. The latter was estimated by a comparison of the results obtained in
the OS and the DR scheme and also by a variation of the renormalization scale.
The same picture emerged when we investigated the effect of the O(αtαs) corrections on the
partial widths of Higgs-to-Higgs decays.
However, our examinations also revealed the limitation of the used approximations. More
dedicated studies of Higgs-to-Higgs decays and investigations of Higgs pair production should
definitely include both, contributions beyond O(αtαs) and effects of non-vanishing external
momenta.

Currently, the second run is ongoing at the LHC, which is operating at a center of mass
energy of 13 TeV. The data collected in the course of this run will allow for a more precise
determination of the properties of the Higgs boson and thus lead to a better assessment
of its nature. Furthermore, the new data might contain first signals of physics beyond the
SM. Therefore, Higgs sectors of models beyond the SM are currently an exciting object of
research and we are expectantly looking forward to future insights. We hope, our work has
contributed to the endeavour of unveiling the nature of the Higgs boson and of exploring new
physics beyond the SM.



APPENDIX A

Parameters and Couplings

A.1. Shifts in the 2HDM Parameters

In Sec. 8.2 we dealt with the shifts, which are induced in the mass parameters by the vev
shifts ∆v1 and ∆v2. Apart from the masses, also the parameters αp and βp receive shifts ∆αp
and ∆βp. These can directly be obtained by performing the shifts vi → vi + ∆vi, i = 1, 2,
in the definitions of αp and βp in dependence of v1 and v2. Using Eqs. 8.11 and 8.12, these

shifts can at one-loop order be expressed in terms of the tadpoles T
(1)
h and T

(1)
H . We find

∆ tan(βp) =∆

(
v2

v1

)
= tan(βp)

(
∆v2

v2
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=
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, (A.1)
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=− gHhh
(m2

H −m2
h)

T
(1)
h

m2
h

− gHHh
(m2

H −m2
h)

T
(1)
H

m2
H

,

where we have applied the transformation rules between the parameter sets 1 and 2 in Eqs.
5.33 - 5.37 and afterwards dropped a differentiation between αp, βp and αrot, βrot. Further-
more, we have used the couplings in Eqs. Eqs. A.9 and A.10. These shifts lead, together
with the shifts in the mass parameters and with additional shifts entering by means of the
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translation between the sets 1 and 2, to a restoration of the tadpole diagrams in all vertices,
the latter can be attached to. In order to properly account for the shifts entering via the
parameter translation rules, all tadpole terms have to be kept explicit in these. Instead of
the relations Eqs. 5.33 - 5.37, where the tadpole terms have already been set to zero, the
following rules have to be applied for that purpose
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1

v2c2
β

(
s2
αm

2
h + c2
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2
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12

)
− T 0

1

v3c3
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, (A.3)
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A.2. Couplings of the 2HDM

We state here the 2HDM Higgs couplings needed in Sec. 8.2, to derive the relations Eq. (8.33)
to Eq. (8.37), and in Ch. 10:
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ghWW =
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sW
, gHWW =

MW ecβ−α
sW

, (A.15)

ghττ = −yτY1√
2
, gHττ = −yτY2√

2
. (A.16)

The Yukawa coupling modifiers Y1, Y2 and Y3, parametrizing the couplings between the
fermions and the Higgs bosons in the 2HDM, depend on the type of 2HDM under considera-
tion. For type I and II they are summarized in Tab. A.1:
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2HDM type Y1 Y2 Y3

I cα
sβ

sα
sβ

− 1
tβ

II − sα
cβ

cα
cβ

tβ

Table A.1.: The Yukawa coupling modifiers Y1, Y2 and Y3, parametrizing the couplings between the fermions
and the Higgs bosons in the 2HDM of type I and II.

A.3. Trilinear Higgs Self-Couplings of the NMSSM at Tree
Level

In this appendix we quote the tree-level trilinear Higgs couplings of the NMSSM in the gauge
basis φ, introduced in Eq. (16.15). The complex phases ϕx, ϕy and ϕz were defined in Eqs.
16.23 - 16.25. The couplings are symmetric in the indices. All couplings, which do not appear
here, vanish at tree level.
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These expressions are also given in our publication [47].





APPENDIX B

Explicit Expressions for Selected Loop Corrections

B.1. The Width Γ
O(1-loop)
H+→W+h

In this appendix we state the expression for the decay width Γ
O(1-loop)
H+→W+h

, which comprises the
tree-level, virtual and counterterm contributions. We do not give an explicit expression for

the real corrections Γ
soft,(1)
H+→W+hγ

, which have to be added incoherently to Γ
O(1-loop)
H+→W+h

in order

to arrive at the physically meaningful, IR finite result Γ
O(1-loop),phys
H+→W+h

(cf. Subs. 3.2.2). An

expression for Γ
soft,(1)
H+→W+hγ

can be found in Refs. [100,148]. To obtain Γ
O(1-loop)
H+→W+h

we can make
use of the general formulae stated in Eqs. 3.22 - 3.25, leading us to

Γ
O(1-loop)
H+→W+h

=
1

16πm3
H+

λ(m2
H± , M

2
W , m

2
h)
∑

λ
W+

|AH+→W+h|2O(1-loop) . (B.1)

Here the sum runs over all possible polarizations λW+ of the outgoing W -boson. Furthermore
we have

|AH+→W+h|2O(1-loop) =
∣∣Atree

H+→W+h

∣∣2 + 2Re
[
Atree∗
H+→W+h

(
Avirt(1)
H+→W+h

+Act(1)
H+→W+h

)]
. (B.2)

The tree-level amplitude Atree
H+→W+h for this process is given by

Atree
H+→W+h =

−gcβ−α
2

gµν(pH+ + ph)
µε∗,ν

W+ (B.3)

= −gcβ−α(pH+ε∗
W+),

where pH+ denotes the momentum of the incoming H+, ph the one of the outgoing h and
ε∗,ν
W+ ≡ ε∗,νW+(pW+) stands for the polarization vector of the outgoing W+ with momentum pW+ .

In the last row we have used momentum conservation, pH+ = ph+pW+ , and the transversality
of the external W -boson, yielding pW+ε∗

W+ = 0.

Both the virtual amplitude Avirt(1)
H+→W+h

and the counterterm amplitude Act(1)
H+→W+h

can be
written in a factorized form by extracting a factor of Atree

H+→W+h. Omitting from now on the
superscript (1), we have

AO(1-loop)
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(
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)
= Atree
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(
Fvirt
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)
, (B.4)
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where we introduced the scalar form factors Fvirt
H+→W+h and Fct

H+→W+h. The virtual amplitude
comprises all possible virtual corrections of one-loop order. As there exists no vertex con-
necting one gauge boson and three Higgs bosons and hence no tadpole can be attached to the
vertex H+W+h, Avirt

H+→W+h is identical in both tadpole schemes. Furthermore, Avirt
H+→W+h

does not receive contributions from mixing on the external legs since we have renormalized
all particles on-shell (cf. Subs. 3.2.2).
The counterterm amplitude Act

H+→W+h is given by
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[
Fct
H+→W+h

]
(B.5)
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2
+ δα− δβ

)]
.

All counterterms appearing in the last two rows of Eq. (B.5) individually depend on the
treatment of the tadpoles. However, their sum is invariant under a change of the tadpole
scheme, which is due to the fact that all contributions of tadpole counterterms (scheme I) or
diagrams (scheme II) cancel among δZG+H+ and δβ or δZHh and δα. Of course, δα and δβ
and therefore also Act

H+→W+h depend on the renormalization scheme used to fix the angular
counterterms.
As can directly be seen from the factorizability of the virtual and the counterterm amplitude,
the polarization sum contains only one term, determined by the Lorentz structure of the
tree-level amplitude
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Assembling all ingredients, Eq. (B.1) becomes
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The physically meaningful decay width is then obtained as

Γ
O(1-loop),phys
H+→W+h

= Γ
O(1-loop)
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+ Γ
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. (B.8)

B.2. Trilinear Higgs Self-Couplings of the NMSSM at O(αt)

In this appendix we quote the virtualO(αt) corrections ∆λ
O(αt),virt
ijk , i, j, k ∈ 1, . . . , 6 as defined

in Eq. (18.22), in the gauge basis φ, introduced in Eq. (16.15).
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where and µr denotes the renormalization scale and we have used the following abbreviations
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The non-vanishing couplings appearing in Eq. (B.9) are given by
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where U denotes the stop rotation matrix defined in Sec. 16.5. These expressions are also
given in our publication [47].

B.3. The Coupling Counterterms ∆λ
O(αt),ct
φiφjφk

and ∆λ
O(αtαs),ct
φiφjφk

In this appendix we quote the counterterm ∆λ
O(a),ct
φiφjφk

, a ∈ {O(αt),O(αtαs)}, for the trilinear
Higgs self-coupling in the gauge basis. The superscript a denotes the order of the coupling
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counterterm and of the parameter counterterms to be inserted in the following expressions.
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β(2m2

H± + v2|λ|2)δ(a)tanβ

2vs

−
s3
βδ

(a)thd + c3
βδ

(a)thu

vvs
+
cβsβδ

(a)M2
H±

vs
+
vcβsβ|λ|2δ(a)v

vs

+
(s2βm

2
H± + v2

scϕy |κ||λ|+ v2cβsβ|λ|2)δ(a)Zhu
4vs

,

∆λ
O(a),ct
126 =

3

2
vssϕy |κ|δ(a)|λ|+ 3

4
vssϕy |κ||λ|δ(a)Zhu −

δ(a)tad
vvssβ

,

∆λ
O(a),ct
133 = v(cϕysβ|κ| − 2cβ|λ|)δ(a)|λ|+ vc2

β|λ|(cβcϕy |κ|+ sβ|λ|)δ(a)tanβ

+ |λ|(cϕysβ|κ| − cβ|λ|)δ(a)v,

∆λ
O(a),ct
135 = −1

2
vs|κ|sϕyδ(a)|λ| − 1

4
vs|κ||λ|sϕyδ(a)Zhu −

δ(a)tad
vvssβ

,

∆λ
O(a),ct
136 = vsβsϕy |κ|δ(a)|λ|+ vc3

βsϕy |κ||λ|δ(a)tanβ + sβsϕy |κ||λ|δ(a)v,

∆λ
O(a),ct
155 = ∆λ

O(a),ct
122 , ∆λ

O(a),ct
156 = −∆λ

O(a),ct
123 ,

∆λ
O(a),ct
166 = −v(cϕysβ|κ|+ 2cβ|λ|)δ(a)|λ| − vc2

β|λ|(cβcϕy |κ| − sβ|λ|)δ(a)tanβ

− |λ|(cϕysβ|κ|+ cβ|λ|)δ(a)v,

∆λ
O(a),ct
223 = −2vs|λ|δ(a)|λ| − vs|λ|2δ(a)Zhu ,

∆λ
O(a),ct
233 = (vcβcϕy |κ| − 2vsβ|λ|)δ(a)|λ| − vc2

β|λ|(cϕysβ|κ|+ cβ|λ|)δ(a)tanβ

+ |λ|(cβcϕy |κ| − sβ|λ|)δ(a)v +
1

2
v|λ|(cβcϕy |κ| − sβ|λ|)δ(a)Zhu ,

∆λ
O(a),ct
234 = ∆λ

O(a),ct
135 ,

∆λ
O(a),ct
236 = vcβ|κ|sϕyδ(a)|λ| − vc2

βsβ|κ||λ|sϕyδ(a)tanβ + cβ|κ||λ|sϕyδ(a)v +
1

2
vcβ|κ||λ|sϕyδ(a)Zhu ,

∆λ
O(a),ct
244 = ∆λ

O(a),ct
112 ,

∆λ
O(a),ct
246 =

(
3

2
vscϕy |κ| −

v2cβsβ|λ|
vs

)
δ(a)|λ| −

c2βc
2
β(2m2

H± + v2|λ|2)δ(a)tanβ

2vs

+
s3
βδ

(a)thd − c3
βδ

(a)thu

vvs
− vcβsβ|λ|2δ(a)v

vs
− cβsβδ

(a)M2
H±

vs

− (s2βm
2
H± − 3v2

scϕy |κ||λ|+ v2cβsβ|λ|2)δ(a)Zhu
4vs

,

∆λ
O(a),ct
266 = −v(cβcϕy |κ|+ 2sβ|λ|)δ(a)|λ|+ vc2

β|λ|(cϕysβ|κ| − cβ|λ|)δ(a)tanβ

− |λ|(cβcϕy |κ|+ sβ|λ|)δ(a)v − 1

2
v|λ|(cβcϕy |κ|+ sβ|λ|)δ(a)Zhu ,

∆λ
O(a),ct
333 = −3v2cβsβsϕy tϕz |κ|δ(a)|λ|

vs
−

3v2c2
βc2βsϕy tϕz |κ||λ|δ(a)tanβ

vs
− 6vcβsβsϕy tϕz |κ||λ|δ(a)v

vs
,

∆λ
O(a),ct
334 = −vsβsϕy |κ|δ(a)|λ| − vc3

βsϕy |κ||λ|δ(a)tanβ − sβsϕy |κ||λ|δ(a)v,
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∆λ
O(a),ct
335 = −vcβsϕy |κ|δ(a)|λ|+ vc2

βsβsϕy |κ||λ|δ(a)tanβ − cβsϕy |κ||λ|δ(a)v − 1

2
vcβsϕy |κ||λ|δ(a)Zhu ,

∆λ
O(a),ct
336 = −3v2cβsβsϕy |κ|δ(a)|λ|

vs
−

3v2c2
βc2βsϕy |κ||λ|δ(a)tanβ

vs
− 6vcβsβsϕy |κ||λ|δ(a)v

vs
,

∆λ
O(a),ct
344 = ∆λ

O(a),ct
113 , ∆λ

O(a),ct
345 = −∆λ

O(a),ct
123 , ∆λ

O(a),ct
346 =

cϕy
sϕy

∆λ
O(a),ct
136 ,

∆λ
O(a),ct
355 = ∆λ

O(a),ct
223 , ∆λ

O(a),ct
356 =

cϕy
sϕy

∆λ
O(a),ct
335 , ∆λ

O(a),ct
366 = −∆λ

O(a),ct
333 ,

∆λ
O(a),ct
456 = −∆λ

O(a),ct
126 , ∆λ

O(a),ct
466 = −∆λ

O(a),ct
334 , ∆λ

O(a),ct
566 = −∆λ

O(a),ct
335 ,

∆λ
O(a),ct
666 = −∆λ

O(a),ct
336 .

All couplings not stated in this list do not receive a counterterm at O(αt) and O(αtαs)
respectively. These expressions are also given in our publication [47].





APPENDIX C

Loop Functions

C.1. Reduction of the Scalar Loop Functions

In this appendix we state the conventions for all Passarino-Veltman functions appearing in
this thesis and give important relations, which are used in our calculation.
Defining

C =

(
(2πµr)

2ε

iπ2

)
, (C.1)

we use the following conventions

AD
0 (m2

1) = C

∫
dDq

1

q2 −m2
1

, (C.2)

BD
0 (p2,m2

1,m
2
2) = C

∫
dDq

1

(q2 −m2
1)((q + p)2 −m2

2)
, (C.3)

pµ1 BD
1 (p2,m2

1,m
2
2) = C

∫
dDq

qµ

(q2 −m2
1)((q + p)2 −m2

2)
, (C.4)

CD
0 (0, 0, 0,m2

1,m
2
2,m

2
3) = C

∫
dDq

1

(q2 −m2
1)(q2 −m2

2)(q2 −m2
3)
, (C.5)

DD
0 (0, 0, 0, 0,m2

1,m
2
2,m

2
3,m

2
4) = C

∫
dDq

1

(q2 −m2
1)(q2 −m2

2)(q2 −m2
3)(q2 −m2

4)
, (C.6)

KD
0 (m2

1,m
2
2,m

2
3) = C2

∫
dDq1dDq2

1

(q2
1 −m2

1)(q2 −m2
2)((q1 − q2)2 −m2

3)
.

(C.7)

The explicit expressions for the D-dimensional scalar one- and two-point functions are given
by

AD
0 (m2

1) = m2
1

(
1

ε
+ 1− ln

(
m2

1

Q2

))
(C.8)

+m2
1ε

(
1 +

π2

12
− ln

(
m2

1

Q2

)
+

1

2
ln

(
m2

1

Q2

)2
)

+O(ε2)

≡ A0(m2
1) + εAε(m

2
1) +O(ε2),
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BD
0 (p2,m2

1,m
2
2) =

1

ε
− ln

(
p2

Q2

)
− fB(x−)− fB(x+) +O(ε), (C.9)

≡ B0(p2,m2
1,m

2
2) +O(ε),

with fB(x) = ln(1− x)− x ln(1− x−1)− 1, (C.10)

x± =
s±

√
s2 − 4p2(m2

1 − iε)
2p2

, s = p2 −m2
2 +m2

1. (C.11)

Here Q2 is defined as

Q2 = 4πe−γEµ2
r , (C.12)

with the renormalization scale µr and the Euler–Mascheroni constant γE . Note that in Part
II, where we remain at one-loop order, we do not need the terms proportional to ε in Eq. (C.8)
but can restrict ourselves to A0 and B0. Furthermore, note that the following relations are
valid

A0(m2
1) = m2

1

(
1

ε
+ 1− ln

(
m2

1

Q2

))
= m2

1

(
∆MS + 1− ln

(
m2

1

µ2
r

))
, (C.13)

B0(p2,m2
1,m

2
2) =

1

ε
− ln

(
p2

Q2

)
− fB(x−)− fB(x+), (C.14)

= ∆MS − ln

(
p2

µ2
r

)
− fB(x−)− fB(x+),

with ∆MS = 1
ε − γE + ln(4π) as defined in Eq. (3.4).

The tensor coefficient BD
1 (p2,m2

1,m
2
2) = B1(p2,m2

1,m
2
2)+O(ε) can be related to BD

0 (p2,m2
1,m

2
2)

and AD
0 functions via

BD
1 (p2,m2

1,m
2
2) =

1

2p2

[
AD

0 (m2
1)−AD

0 (m2
2)−

(
p2 +m2

1 −m2
2

)
BD

0 (p2,m2
1,m

2
2)
]
. (C.15)

Moreover, all scalar functions with vanishing external momenta we need in Sec. 19.2 can be
expressed in terms of AD

0 functions. The following representations for all scalar functions
appearing in our calculation were achieved by partial differentiation and partial fraction
decomposition as described e.g. in [291]

BD
0 (0,m2

1,m
2
1) = −1 +

1

m2
1

AD
0 (m2

1)− ε
(

1− ln

(
m2

1

Q2

))
, (C.16)

BD
0 (0,m2

1,m
2
2) =

1

m2
1 −m2

2

(
AD

0 (m2
1)−AD

0 (m2
2)
)
, (C.17)

CD
0 ({0},m2

1,m
2
1,m

2
1) = − 1

2m2
1

+
ε

2

1

m2
1

ln

(
m2

1

Q2

)
, (C.18)

CD
0 ({0},m2

1,m
2
1,m

2
2) =

1

m2
1 −m2

2

(
BD

0 (0,m2
1,m

2
1)− BD

0 (0,m2
1,m

2
2)
)
, (C.19)

DD
0 ({0},m2

1,m
2
1,m

2
1,m

2
1) =

1

6m4
1

+
ε

6

(
1

m4
1

− 1

m4
1

ln

(
m2

1

Q2

))
, (C.20)

DD
0 ({0},m2

1,m
2
1,m

2
1,m

2
2) =

1

m2
1 −m2

2

(
CD

0 ({0},m2
1,m

2
1,m

2
1)− CD

0 ({0},m2
1,m

2
1,m

2
2)
)
,

(C.21)

DD
0 ({0},m2

1,m
2
1,m

2
2,m

2
2) =

1

m2
1 −m2

2

(
CD

0 ({0},m2
1,m

2
1,m

2
2)− CD

0 ({0},m2
1,m

2
2,m

2
2)
)
.

(C.22)

The symbol {0} collectively denotes all external momenta.
We refrain from giving explicit expression for the two-loop vacuum function KD(m2

1,m
2
2,m

2
3),

which can, however, be found in the literature [283–289].
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C.2. Splitting of Gauge-Dependent A0 and B0 Functions

In this appendix we demonstrate the non-uniqueness of the gauge-dependent terms, appearing
e.g. in δαK and δβK in Sec. 7.4.2. There, we expressed the terms containing gauge fixing
parameters in terms of the Passarino-Veltman functions A0(ξVM

2
V ), B0(m2

S1
,m2

S2
, ξVM

2
V )

and B0(m2
S1
, ξVM

2
V , ξVM

2
V ), with S1, S2 ∈ {h,H,A0, H

±} and V ∈ {Z,W}. These functions
can, however, not be regarded as a unique representation of the gauge-dependent parts of the
counterterms. Further gauge-independent terms can be split off these A0 and B0 functions
as we demonstate explicitly for the case of A0, consistently omitting terms of O(ε).

A0(ξVM
2
V ) = C

∫
dDq

1

q2 − ξVM2
V

= C

∫
dDq

(q2 −M2
V ) + ξVM

2
V − ξVM2

V

(q2 − ξVM2
V )(q2 −M2

V )
(C.23)

= A0(M2
V )− (1− ξV )M2

V C

∫
dDq

1

(q2 − ξVM2
V )(q2 −M2

V )
,

where we have expanded by a term (q2 −M2
V ) and added a zero in the form ξVM

2
V − ξVM2

V

in the first line. By means of this rearrangement, we have split off a gauge-independent A0

function, appearing as first term in the second line. The same procedure can be repeated for
the second term in the second line, such that further gauge-independent pieces can be split
off. This demonstrates that the gauge-parameter-dependent terms quoted in Eq. (7.38) and
Eq. (7.39) cannot be regarded as the unique gauge-dependent part of the counterterms. It
also shows the impossibility of defining the truly gauge-independent parts without a suitable
technique like the pinch technique.





APPENDIX D

RGEs and Approximations

D.1. The Running of mDR
t

In this appendix we state the formulae needed for the proper transformation of the OS top
mass mOS

t to the DR top mass mDR
t . We closely follow the appendix A of [44]. In order to

make the distinction between the OS and the DR and MS top mass more clearly, we introduce
the notation Mt for the OS top mass (i.e. the pole mass). Starting from Mt, we first have to

perform the transformation to the MS top mass mMS
t (Mt) at the scale Mt, which is achieved

by means of the two-loop SM relation, to be found e.g. in [259],

mMS
t (Mt) =

(
1− 4

3

(
αs(Mt)

π

)
− 9.1253

(
αs(Mt)

π

)2
)
Mt. (D.1)

Subsequently, the SM renormalization group equations are utilized in order to evolve mMS
t

to the scale MSUSY, where the influence of SUSY particles becomes relevant. The resulting
relation between the two values of mMS

t at the two different scales is given by [258]

mMS
t (µr) = U6(µr,Mt)m

MS
t (Mt), for µr > Mt, (D.2)

with

Un(Q2, Q1) =

(
αs(Q2)

αs(Q1)

)dn [
1 +

αs(Q1)− αs(Q2)

4π
Jn

]
, Q2 > Q1 (D.3)

dn =
12

33− 2n
, Jn = −8982− 504n+ 40n2

3(33− 2n)2
. (D.4)

Here n denotes the number of active flavours, which has to be set to n = 6 for µr > Mt.
Above MSUSY, the MS mass has to be converted to the DR mass in order to respect SUSY,
wherefore the two-loop formula

mDR,SM
t (MSUSY) = mMS

t (MSUSY)

[
1− αs(MSUSY)

3π
− α2

s(MSUSY)

144π2
(73− 3n)

]
, (D.5)

stated in Ref. [257,260,261], can be applied. Note that above MSUSY no distinction between

the evanescent coupling αe and αDR
s is necessary, as detailed in [260, 261]. To arrive at the
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correct NMSSM DR top mass, we still have to include SUSY-QCD corrections, which we
denote by dmSQCD

t

mDR,NMSSM
t = mDR,SM

t (MSUSY) + dmSQCD
t . (D.6)

For completeness, we also state dmSQCD
t [44]

dmSQCD
t =

αs(MSUSY)

6π

[
−2mtRe

(
B1(m2

t , m
2
g̃, m

2
t̃1

) + B1(m2
t , m

2
g̃, m

2
t̃2

)
)

(D.7)

+ 2mg̃Re
(

B0(m2
t , m

2
g̃, m

2
t̃1

)− B0(m2
t , m

2
g̃, m

2
t̃2

)
)

(D.8)

×
(
ei(ϕ3+ϕu)Ut̃22

U∗
t̃21

+ e−i(ϕ3+ϕu)Ut̃21
U∗
t̃22

)]
, (D.9)

where the convention we use for the B1 and B0 functions are given in App. C.1 and ϕM3

denotes the phase of the soft-SUSY-breaking gluino mass parameter M3.

D.2. Approximation of the Two-Loop RGEs for the Parameters
of the NMSSM Higgs Sector

In this appendix we illustrate the approximation of the renormalization scale dependence of
the DR parameters, which we apply in Sec. 20.4. We demonstrate the procedure using the
example of the parameter tanβ. As starting point, we employ the relation

pOS + δpOS(µr) = pDR(µr) + δpDR(µr), (D.10)

outlined in Sec. 17.1, where pOS (pDR) is a parameter renormalized in the OS (DR) scheme,

δpOS (δpDR) the corresponding counterterm and µr the renormalization scale. Note that the
scale dependence of the DR counterterm, which is defined to be purely divergent, is solely due
to the scale dependence of other parameters, e.g. αs(µr), entering δpDR. In the following we
will consider the parameter tanβOS as parameter fixed by OS conditions while applying the
OS scheme in the top-stop sector. Equally, tanβDR is to be regarded as a parameter defined
in the DR scheme, using at the same time DR conditions for tops and stops. At two-loop
order, the following relation between both holds (up to terms of higher order)

tanβOS + δ(1) tanβOS + δ(2) tanβOS = tanβDR + δ(1) tanβDR + δ(2) tanβDR, (D.11)

where the superscripts indicate the loop order of the respective counterterms. In the OS
scheme, the counterterms can schematically be expressed as

δ(1) tanβOS = µ2ε
r

(
a1(mOS

t )

ε
+ f1(mOS

t )

)
, (D.12)

δ(2) tanβOS = µ4ε
r

(
b2(mOS

t , αDR
s (µr))

ε2
+
a2(mOS

t , αDR
s (µr))

ε
+ f2(mOS

t , αDR
s (µr))

)
. (D.13)

The functions a1, f1, a2, b2 and f2 do not explicitly depend on µr, however an implicit
dependence enters a2, b2 and f2 via αs(µr)

DR. Furthermore, note that Eqs. D.12 and D.13
hold in this form only in the context of our calculation, where δ tanβ is proportional to δZhu
and only corrections from the top-stop sector are taken into account. For ε → 0, we can
expand these equations in terms of ε, leading to

δ(1) tanβOS =
a1(mOS

t )

ε
+ a1(mOS

t ) ln(µ2
r) + f1(mOS

t ), (D.14)

δ(2) tanβOS =
b2(mOS

t , αDR
s (µr))

ε2
+
a2(mOS

t , αDR
s (µr)) + 2b2(mOS

t , αDR
s (µr)) ln(µ2

r)

ε
(D.15)

+ 2a2(mOS
t , αDR

s (µr)) ln(µ2
r) + 2b2(mOS

t , αDR
s (µr)) ln2(µ2

r)

+ f2(mOS
t , αDR

s (µr)).
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The corresponding relation in the pure DR scheme takes the following form

δ(1) tanβDR =
a1(mDR

t )

ε
, (D.16)

δ(2) tanβDR =
b2(mDR

t , αDR
s (µr))

ε2
+
a2(mDR

t , αDR
s (µr))

ε
. (D.17)

Using the relation

mDR
t = mOS

t + δmOS
t

∣∣
fin
, (D.18)

where δmOS
t

∣∣
fin

denotes the finite part of the OS top-mass counterterm, and furthermore
exploiting the explicit forms of a1 and b2 in the context of our calculation, one can show the
following equality

a1(mOS
t ) δmOS

t

∣∣
µr−term

= b2(mOS
t , αDR

s (µr)) ln(µ2
r), (D.19)

where δmOS
t

∣∣
µr−term

denotes the term ∝ ln(µ2
r) in δmOS

t

∣∣
fin

. Inserting Eqs. D.14 - D.16 into

Eq. (D.11), taking advantage of Eq. (D.19), we can solve for tanβDR(µr). Doing so at two

different scales µ1 and µ2 and taking the difference between the resulting tanβDR(µ1) and

tanβDR(µ2), we arrive at

tanβDR(µ1)− tanβDR(µ2) =

a1(mOS
t ) ln

(
µ2

1

µ2
2

)

+ 2a2(mOS
t , αDR

s (µ1)) ln(µ2
1)− 2a2(mOS

t , αDR
s (µ2)) ln(µ2

2)

+ 2b2(mOS
t , αDR

s (µ1)) ln2(µ2
1)− 2b2(mOS

t , αDR
s (µ2)) ln2(µ2

2). (D.20)

We utilize this relation in Sec. 20.4 in order to obtain an approximation for the value of
tanβDR at a scale µr, starting from the central scale µ0. Apart from tanβ, we apply an anal-
ogous relation at O(αtαs) for λ, which is like tanβ proportional to δZhu . In our calculation,
these are the only DR parameters receiving a counterterm at O(αtαs).
For all other DR parameters, the simpler one-loop relation

pDR(µ1)− pDR(µ2) = ap1 ln

(
µ2

1

µ2
2

)
(D.21)

is applied, where the coefficient of the logarithm ap1 is specific for the parameter p under
consideration.
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[44] M. Mühlleitner, D. T. Nhung, H. Rzehak, and K. Walz JHEP 1505 (2015) 128,
arXiv:1412.0918 [hep-ph].

[45] M. D. Goodsell and F. Staub arXiv:1604.05335 [hep-ph].

[46] D. T. Nhung, M. Mühlleitner, J. Streicher, and K. Walz JHEP 1311 (2013) 181,
arXiv:1306.3926 [hep-ph].
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