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Zusammenfassung

In industriellen Anwendungen wird bei Umformprozessen die Texturent-
wicklung gewöhnlicherweise fast ausschließlich phänomenologisch simu-
liert. Dies impliziert, dass die Mikrostrukturentwicklung und die daraus
resultierende verformungsinduzierte plastische Anisotropie nicht vor-
hergesagt werden können. Diese induzierte Anisotropie ist aber für die
Auslegung und Optimierung industrieller Formgebungsprozesse von
großer Bedeutung. Aus diesem Grund wurde im Rahmen dieser Arbeit ein
mikromechanisches Materialmodell für die Anwendung bei praxisnahen
Umformprozessen entwickelt. Darin wird ein kristallplastisches Mate-
rialmodell mit einem nichtlinearen Homogenisierungsansatz kombiniert.
Um die Simulation industriell relevanter Probleme zu ermöglichen, wurde
das Materialmodell mit Homogenisierungsschema in ein kommerziel-
les, explizites Finite Elemente Programm auf Gauss Punkt Ebene im-
plementiert. Das verwendete Homogenisierungsverfahren vom Hashin-
Shtrikman Typ wurde für den Sonderfall elastisch isotropen und plastisch
inkompressiblen Materialverhaltens vereinfacht, weswegen die Verteilung
der Spannungs- und Dehnungsfluktuationen von nur einem skalaren
Parameter abhängt. Der Minimal- und der Maximalwert des Parameters
ergeben als Spezialfall dieser Theorie die klassischen Mischungstheorien
von Taylor und Sachs.
Als industrienahe Anwendung wurde der Herstellungsprozess von Ge-
tränkedosen aus Aluminium ausgewählt. Für diesen Prozess ist bekannt,
dass phänomenologische Modelle nur sehr limitierte Vorhersagen für die
Zipfelprofile der Dosen liefern und somit immer noch beträchtliche Ein-
sparpotentiale bei Material und Energie nicht erschlossen werden konnten.
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Zusammenfassung

Die Ergebnisse aus den Blechumformsimulationen werden sowohl mit
experimentellen Ergebnissen als auch Simulationen eines phänomenologi-
schen Modells verglichen.
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Summary

The texture evolution in industrial forming processes is usually simu-
lated with phenomenological material models. Thereby, the evolution
of the microstructure and the resulting plastic anisotropy induced by
the deformation cannot be predicted. This kind of plastic anisotropy is
of great importance for the prediction and the improvement of forming
processes in industrial applications. Therefore, a micromechanical model
is proposed which combines a crystal plasticity constitutive law with a
non-linear homogenization scheme.
The constitutive law with homogenization scheme is implemented in a
commercial, explicit finite element code. The implementation at the Gauss
point level guarantees computational efficiency in order to perform indus-
trially relevant forming precesses. For the special case of elastic isotropy
and plastic incompressibility, a Hashin-Shtrikman type homogenization
scheme is developed, with the distribution of stress and strain fluctuations
dependent only on a scalar parameter. The minimum and maximum
values of the homogenization parameter give the classical mixture theory
results of Taylor and Sachs as a special case.
As the industrial application, the aluminum beverage can forming process
is chosen. It is well known for this application that phenomenological
material models are limited in their prediction of the non-uniform cup
height (earing profile). Thus, by predicting the earing profile with higher
accuracy there is tremendous potential to reduce costs by saving material
and energy consumption. The results of the sheet metal forming simula-
tions are compared to experimental measurements as well as simulations
with a phenomenological constitutive law.
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Chapter 1

Introduction

1.1 The can forming process

Cans are widely used in the packaging industry to contain and transport
a large variaty of beverages consumed in today’s society. The number
of annually produced beverage cans amounts to about 250 million of
which 90% are made purely from aluminum. Aluminum cans are a
lightweight product and are recyclable without a loss in quality. This
is a benefit compared to other used packaging materials, such as, for
example, plastic-based materials.
Beverage cans are produced in several manufacturing steps including
deep drawing, redrawing, ironing, necking and capping. In the first step,
a circular blank is cut out of the aluminum coil. Then, the blank is put on
a die and fixed with a blank-holder. After that, the cup is formed by deep
drawing during the punch motion, see Fig. 1.1.
In the subsequent redrawing step, a similar deep drawing operation
is performed using a smaller die and punch. Thereby, the cup height
is further increased. Then, three ironing steps are performed with the
same punch geometry as used in the redrawing step. With the stepwise
decreasing circumference of the die, the wall of the cup is thinned and the
cup height increases until the product height is reached.

1



1 Introduction

Figure 1.1: Deep drawing of initially circular blank

Predicting the final cup shape accurately is an important task. Even
through the reduction of small amount of scrap for every cup there is
potential to save costs due to the aforementioned large number of cups
produced per year.

1.2 Objective of this work

Phenomenological polycrystal models for sheet metal forming simula-
tions, used in the industrial context, do not produce fully satisfying
results. Usually, a lot of material parameters are needed and the parameter
identification has been proven to be quite challenging. Therefore, the
microstructure must be taken into account in order to develop a more
reliable prediction scheme.
A constitutive single crystal model as well as a homogenization scheme to
account for the polycrystalline behavior of sheet metals is proposed. At
the micro scale, crystal plasticity is used as constitutive model. In order
to perform the micro-to-macro scale-bridging transition, a mean-field
homogenization scheme will be used to account for the polycrystalline
sheet-metal behavior. As preliminary studies have shown, Taylor type
homogenization schemes do not suffice to predict the earing behavior
accurately enough. Therefore, a non-linear Hashin-Shtrikman type ho-
mogenization scheme and its properties are investigated using forming

2



simulations. Since the prediction of the resulting shape of structural
parts in deep drawing simulations is the main objective, a numerically
efficient implementation is crucial to keep computational times reasonable.
In this context, the constitutive laws are implemented in the explicit
FE-code which is especially well suited for the used material model and
the homogenization scheme.

1.3 Outline

The necessary fundamentals of continuum mechanics, i.e., kinematics
and balance equations, are briefly discussed in Section 2. Subsequently,
the constitutive equations on the grain scale, for the geometrically lin-
ear as well as for the geometrically non-linear case, are discussed in
Section 3. Accordingly, the numerical implementation of the material
model is discussed in Section 4. The Hashin-Shtrikman homogenization
scheme assuming constant stress polarizations is introduced in Section 5.
Moreover, experimental results (performed by Constellium) in form of
tensile tests, hydraulic bulge tests, texturemeasurements and earing profile
measurements are presented in Section 6. The parameter identification
of the material models with the assistance of the aforementioned experi-
mental results is carried out in Section 7. Section 8 shows the results of the
forming simulations and localization predictions. Finally, summary and
conclusions are given in Section 9.

1.4 State of the art

The aim of this section is to give an overview on the main research topics
linked to homogenization and two-scale simulations including a brief
overview of the basic literature.

3
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1 Introduction

1.4.1 Homogenization schemes and
data reduction procedures

Homogenization methods are utilized to predict the response of the het-
erogeneous material based on the material properties of the constituents.
For linear material behavior, key works include the ones by Voigt (1889)
and Reuss (1929), who assumed constant strains and stresses throughout
the material, respectively. Eshelby (1957) solved the problem of a single
inclusion in an infinite matrix and Hashin and Shtrikman (1962) obtained
second-order bounds by using a variational principle. A more detailed
overview on linear homogenization schemes is given in the works by
Willis (1981), Mura (1987), Nemat-Nasser and Hori (1999), Torquato (2002),
and Kanouté et al. (2009).
In the physically non-linear case, uniform strain is assumed by Taylor
(1938) throughout a polycrystal (comparably to the Voigt approach in
the aforementioned, linear case). This assumption provides an upper
bound to the effective potential (Bishop and Hill, 1951) where the dis-
placement field is kinematically compatible. In assuming overall uniform
stresses kinematic compatibility is violated (see, e.g., Hosford and Galdos,
1990) while static compatibility is satisfied. This method of uniform
stresses (lower bound) is often attributed to Sachs (Sachs, 1928), even
though proportional and non-uniform loading was assumed by Sachs. In
this context, proportional loading neither satisfies stress equilibrium nor
strain compatibility (Leffers, 1979; Kocks et al., 1998). However, the term
“Sachs-type behavior” for homogeneous stresses is commonly used in the
literature and will be referred to as such in this work, too.
The aforementioned assumptions of homogeneous strains and stresses
describe upper and lower bounds of the crystalline material behavior
which, in general, is not present in real-life applications. Therefore, numer-
ous attempts have been made to improve the homogenization resulting
in estimates rather than bounds. Relaxed constrained theories (see, e.g.,
Kocks and Chandra, 1982; Van Houtte, 1982), also called relaxed Taylor

4



1.4 State of the art

theories, do not prescribe certain shear components of the strain tensor
and thereby do not restrict the material behavior as much as in the Taylor
model. Other approaches, like LAMEL (Van Houtte et al., 1999), ALAMEL
(Van Houtte et al., 2005) or GIA models (Crumbach et al., 2001), con-
nect neighboring domains (grains) which are subjected to macroscopic
deformation. Similarly, the Sachs model, assuming homogeneous stresses
and inducing only single-slip, has been modified by introducing random
stresses in each grain and thereby inducing multi-slip (see, e.g., Leffers,
1979; Pedersen and Leffers, 1987).
An extension of the linear Hashin-Shtrikman scheme by assuming piece-
wise constant stress polarizations in every phase (or grain) and thereby
making a non-linear stress response possible in every grain has been
proposed by Jöchen and Böhlke (2012) and Jöchen (2013). A special case of
this non-linear Hashin-Shtrikman scheme for elastically isotropic materials
is formulated in Section 5.2 and applied to texture evolution, deep drawing
and Nakajima simulations in Section 8.
In order to perform micro-mechanical FE simulations, the microstructure
must be taken into account. For sheets the crystallographic texture is
measured (by Constellium) and the resulting experimentally obtained
orientation data or orientation distribution is too large for being handled
numerically in a feasible way. Therefore, the orientation data set is reduced
with the objective to still keep the texture representative. For this purpose,
numerous methods are proposed in the literature.
In the work of Tóth and Van Houtte (1992), the orientation space is
partitioned with a regular grid in order to create discrete orientations
with identical volume fractions. Extending this method in terms of joining
similar discrete orientations and weighting the volume fraction suitably,
Melchior and Delannay (2006) increased the accuracy of texture approxi-
mations in their work.
Another method makes use of a characteristic set of cubic texture compo-
nents such as cube, copper and brass components, which are represented
by a von Mises-Fisher distribution with a specified half-width and volume

5



1 Introduction

fraction being determined by merging orientations corresponding to a
certain misorientation angle (Cho et al., 2004). Similarly, Raabe and Roters
(2004) use characteristic metal texture components which are rotated
in order to approximate the texture. The effect of too sharp texture
representations compared to the uncompressed original, is counteracted
there with random background texture components.
A mixed integer quadratic programming procedure is utilized in the
work of Böhlke et al. (2006) to extract the main texture components with
corresponding volume portions. In an optimization procedure, a small
number of components is determined to represent the texture. This method
also incorporates the introduction of background texture to smoothen
overly sharp texture predictions.
Gao et al. (2006) used a partitioning of the orientation space with a suit-
able averaging procedure to obtain an orientation data set considerably
reduced in size compared to the experimentally characterized original.
An improvement of this method was suggested by Jöchen and Böhlke
(2013), where a better suited fundamental zone choice in the orientation
space is used, compared to the aforementioned method. This leads to
improved numerics in the calculation of the data reduction and overall a
more representative texture approximation of the original texture. Note
that for the data reduction in Section 3.5 and throughout this work, this
method is used exclusively.

1.4.2 Two-scale simulations and deep drawing

There is a strong demand to take the microstructure into account in FE
simulations of structural parts, especially in metal forming operations,
where several approaches have been persued (see, e.g., Geers et al.,
2010). In this context, the approach with the highest accuracy is the
so called FE2 method (e.g., Renard and Marmonier, 1987; Miehe et al.,
1999; Feyel, 2003). The microstructure, in this approach, is discretized
with a RVE using finite elements and is coupled with the macroscopic

6



1.4 State of the art

FE-discretization at the integration points. Therein, the macroscopic
FE-model provides the local boundary conditions for the RVE FE-model
on the micro-scale. So far, computational times for this method are
far too long for the approach being used in cases other than academic
examples, although the accuracy is tremendous (Van Houtte et al., 2012).
One application, for instance, is the investigation of crystallographic
texture on sheet metal failure in a limit dome height test (Nakamachi
et al., 2007; Kuramae et al., 2010). Furthermore, as mentioned beforehand
this method is very time consuming, that is why approaches have made
to increase feasibility. A statistically similar RVE was introduced by
Balzani et al. (2010) to accelerate the calculation at the microstructural level,
whereas Novák et al. (2012) used a coarser mesh for the RVE, enabled by
micromechanics-enhanced FE formulation.
Contrary to the FE2 method, where the microstructure is represented by a
RVE FE-problem, so called mean-field methods offer a computationally
less expensive approach. They incorporate homogenization schemes
rather then spatially discretizing the microstructure. In the Taylor method,
at the Gauss point level, homogeneous strains in all crystals is assumed.
Therewith, the deformation-induced crystallographic texture evolution can
bemodeled for rolling of sheet metals (Mathur et al., 1990; Aretz et al., 2000)
and for steady state bulk forming (Mathur and Dawson, 1989; Kalidindi
et al., 1992). Using the Taylor method in combination with an implicit
FE code, Phan Van et al. (2012) modeled cup-forming of ferritic steel
using deep drawing simulations. Combining FEs with the self-consistent
(SC) scheme, as Tomé et al. (2001) and Segurado et al. (2012) did in an
explicit and implicit FE-framework for the bending of a zirconium beam,
leads to higher accuracy predictions. Additionally, the SC approach has
been successfully applied to deep drawing of magnesium sheets (Walde
and Riedel, 2007) and rolling of a FCC plate (Segurado et al., 2012). In
order to even improve the computational efficiency, hierarchical multi-
scale modeling in terms of identifying an anisotropic, phenomenological
constitutive law by virtual experiments (Roters et al., 2010; Van Houtte
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1 Introduction

et al., 2012; Gawad et al., 2013; 2015) has been examined. In the hier-
archical model, the texture evolution in terms of the plastic potential is
updated locally if the deformation state requires a recomputation of the
yield surface. The update is carried out on the microscale with virtual
experiments based on crystal plasticity simulations (performedwith Taylor
and relaxed constrained Taylor models). Jöchen and Böhlke (2012) and
Jöchen (2013) used a non-linear extension of the Hashin-Shtrikman scheme
in an implicit FE code to perform deep drawing simulations of aluminum
sheets. The aforementioned method is extended for the special case of
elastic isotropy and plastic incompressibility in this work. This ansatz
leads to a scalar homogenization parameter which, combined with an
implementation in an explicit FE code, improves the numerical efficiency
of the two-scale simulation. The method is applied to deep drawing
simulations in Section 8.1.
Plastic anisotropy induced by crystallographic texture is a phenomenon
frequently observed in engineering materials. The non-uniform cup height
(earing) after deep drawing is a quality criterion in sheet metals, for
example, as it may cause difficulties in beverage cans manufacured of
aluminum (Blade, 1967; Hutchinson et al., 1989; Naess, 1991; Westerman,
1993; Ren and Das, 1998).
Forming operations have been simulated with FEM for a long time, where
a phenomenological yield function has been used to model the plastic
anisotropy of sheet metals (Gotoh and Ishise, 1978; Hill, 1990; Chung and
Shah, 1992; Inal et al., 2000; Yoon et al., 2000). Although the implementa-
tion of these constitutive laws is often handy, the accuracy of these models
is not always satisfying. For instance, many of these models cannot predict
the occurance of six or eight ears, an issue that Yoon et al. (2006) solved
by using the 18-parameter yield function of Barlat et al. (2005). Recently,
Aretz and Barlat (2013) applied a phenomenological yield function for
orthotropic sheet metals to the EN AW-3104 in deep drawing simulations.
Although the prediction of the earing behavior is in good agreement with
the experiments, a very large number (27) of parameters is needed to

8



State of the art

calibrate the material model. Unfortunately, the parameters of the yield
function cannot be directly correlated to physical quantities. Also, the
parameters cannot be calibrated by experiments only, as an additional
optimization procedure is necessary to determine all of the 27 parameters.
Another approach uses analytical yield functions, so called strain-rate
potentials, instead of phenomenological ones. Therein, the yield locus can
be determined with polycrystal-plasticity computations (e.g., Bacroix and
Gilormini, 1995; Chung et al., 1996; Zhou et al., 1998; Li et al., 2001).
Earing behavior has been investigated by Engler and Hirsch (2007); Engler
and Aegerter (2014), who applied the visco-plastic self-consistent scheme
(Lebensohn and Tomé, 1993) and, thereby, incorporated the microstructure
into their deep drawing simulations.
Utilizing crystal plasticity for earing predictions has been performed over
the years for, e.g., deep drawing simulations and aluminum single crystal
simulations (Becker et al., 1993), hydroforming of aluminum (Beaudoin
et al., 1994), deep drawing of copper cups (Grujicic and Batchu, 2002)
and the use of texture components for texture approximations in deep
drawing of aluminum (Raabe and Roters, 2004). Crystal plasticity models
have also been successfully applied to predict springback of metal sheets
(geometric change of the part after release of forming forces). Schulze
et al. (2009) incorporated texture information with a crystal plasticity
material model for BCC sheet metals in deep drawing simulations with
subsequent springback evaluation. In addition to predicting the earing
behavior, some effort has been made to minimize the occurence of earing
in deep drawn cups. For instance, Engler et al. (2011) used a texture-based
polycrystal-plasticity model to predict earing and devise an improved
blank shape to minimize it. A broad overview on crystal plasticity models
and their various applications in material science is given in the review
article of Roters et al. (2010).

9
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1.5 Notation

A direct tensor notation is used throughout the text. Scalars and tensors
of first-, second-, and fourth-order are denoted as a, a, A and A, respec-
tively. The scalar and dyadic product of two tensors of arbitrary order is
written as, e.g., A · B and A ⊗ B, respectively. In addition, the Rayleigh
product is defined as: Q � A = Aijkl(Qei) ⊗ (Qej) ⊗ (Qek) ⊗ (Qel). The
composition of two second-order tensors is denoted as AB. Moreover, a
linear mapping of a second-order tensor by a forth-order tensor is denoted
as B = C[A]. Furthermore, (A�B) [C] = ABC ∀A, B, C is defined as
well as the special contraction (a ⊗ b) · (C[[a ⊗ b]]) = (a ⊗ a) · (C[b ⊗ b]).
The spherical and deviatoric part of a second-order tensor A are defined
by A◦ = tr(A)/3 and A′ = A − A◦, respectively.

1.6 Frequently used symbols and abbreviations

(.)n Quantity at time n

(.)n+1 Quantity at time n+1

(.)TL Transpose of left index pair (left minor
transposition) for fourth-order tensors

(.)TR Transpose of right index pair (right minor
transposition) for fourth-order tensors

(.)T Transpose (major transposition for higher-
order tensors) of Tensor quantity

(.)0 Initial/reference value of quantity

(.)α Slip system index, for FCC materials
α = 1, . . . , 12

(.)∞ Asymptotic value of quantity

(.)e Elastic quantity

(.)p Plastic quantity

10



1.6 Frequently used symbols and abbreviations

Δ(.) Incremental quantity

(̄.) Effective (macroscopic) quantity
˙(.) Rate of quantity

〈.〉 Volume average / Macaulay brackets

det(.) Determinant

div (.) Divergence

Grad (.) Lagrangian gradient

grad (.) Eulerian gradient

sym(.) Symmetric part

skw(.) Skew-symmetric part

Greek letters
γ Accumulated plastic slip

Θ Hardening modulus

λHS Homogenization parameter λHS ∈ [0, 1]
λ, μ Lamé constants

ν Poisson’s ratio

ϕ1, Φ, ϕ2 Euler angles of crystallographic
orientation in Bunge convention

� Density

τα Schmid stress

τC Critical resolved shear stress

τD Drag stress

ε Strain tensor (infinitesimal)

τ Kichhoff stress tensor

σ Cauchy stress tensor

ω Rotation tensor (infinitesimal)

11



1 Introduction

Latin letters
cd Dilatational wave speed

le Characteristic element length

m Hardening exponent

r Lankford coefficient

t Time

Bi Box with index i for orientation reduction
in Euler space

E Young’s modulus

G Shear modulus

J Jacobian

K Bulk modulus

N Number of boxes (data reduction method)

Nα Number of slip systems

SO(3) Group of all rotations about the origin in
the three-dimensional space

V Volume

b Body force

d Slip direction

n Normal direction

t Traction

u Displacement

v Velocity

x and X Position vector in current and in
reference placement

C Right Cauchy Green Tensor

D Rate of deformation (sym(L))
E Green’s strain tensor

12



1.6 Frequently used symbols and abbreviations

F Deformation gradient

H Displacement gradient

I Identity on second-order tensors

L Velocity gradient

Mα Schmid tensor of α-th slip system

Q Orientation tensor

R Rotation tensor

S Second Piola-Kirchhoff tensor

U Right stretch tensor

W Spin tensor (skw(L))
A Fourth-order strain localization tensor

C Fourth-order stiffness tensor

C0 Stiffness of comparison medium

C
alg Algorithmic tangent operator

I Identity on fourth-order tensors

P0 Hill’s polarization tensor

P
iso
1 , P

iso
2 Isotropic fourth-order projectors

Abbreviations
Al Aluminum

BCC Body-centered cubic

Bs Brass

CODF Crystallite orientation distribution function

CPU Central processing unit

Cu Copper

EBSD Electron backscatter diffraction

FCC Face-centered cubic

FE Finite element
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1 Introduction

FEM Finite element method

FLC Forming limit curve

FLD Forming limit diagram

FZ Fundamental zone

HS Hashin-Shtrikman

ND Normal direction (sheet metal)

PLC Portevin-Le Chatelier

PSC Plane strain compression

RC Rotated cube orientation (22◦ around RD)

RD Rolling direction (sheet metal)

RVE Representative volume element

TD Transverse direction (sheet metal)
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Chapter 2

Kinematics and relevant
balance equations

The fundamentals in this section are in line with the derivations from the
textbooks Betten (2001), Haupt (2002) and Bertram (2008).

2.1 Kinematics

The position of a material point is described by the position vector X in
the reference placement and the position vector x = χ(X, t) in the current
placement, available for all material points in a three-dimensional body
at all times in the considered time interval. Moreover, the displacement
field is introduced as the difference between the position vector in the
current and the reference placement, i.e., u(X, t) = χ(X, t) − X . The
material time derivative is defined by ψ̇ = ∂ψL(X, t)/∂t. Furthermore, the
deformation gradient of a material point is introduced as the first spatial
derivative of χ with respect to X

F = Grad(x) = ∂χ(X, t)
∂X

. (2.1)

Analogously, the displacement gradient is defined as

H = Grad(u) = ∂u(X, t)
∂X

= F − I , (2.2)

15



2 Kinematics and relevant balance equations

with I being the identity on second-order tensors. The deformation gradi-
ent F accounts for both stretch and for rigid body rotations. Introducing
the polar decomposition applicable to all invertible tensors

F = RU , (2.3)

the deformation gradient can be split into a symmetric positive-definite
stretch tensor U and a proper-orthogonal rotation tensor R. Furthermore,
the velocity gradient can be defined as

L = grad(v) = ∂v(x, t)
∂x

= Ḟ F −1 , (2.4)

with grad being an Eulerian gradient. The velocity gradient can be addi-
tively decomposed into a symmetric part D (rate of deformation) and a
skew-symmetric part W (spin tensor)

L = sym(L) + skw(L) = D + W . (2.5)

Strain measures are used to describe the change of line elements in terms
of length and angle. Several strain tensors can be defined, e.g., Biot strain,
Hencky stain, etc. (Bertram, 2008). Another common strain measure is
Green’s strain tensor

E = 1
2

(
F TF − I

)
= 1

2

(
H + HT + HTH

)
, (2.6)

which, similar to all generalized strain measures, takes the form of the
infinitesimal strain tensor ε for small deformations. The infinitesimal
strain ε and the rotation tensor ω can be denoted in terms of the symmetric
and the skew-symmetric part of the displacement gradient, respectively:

ε = 1
2

(
H + HT

)
= sym(H) , ω = 1

2

(
H − HT

)
= skw(H) . (2.7)

16



2.2 Relevant balance equations

The infinitesimal strain tensor is valid if a geometrical linearization can be
performed, i.e., if ‖ H ‖ � 1 holds.

2.2 Relevant balance equations

The balance of linear momentum states that the time derivative of linear
momentum is equal to the external forces. With the mass density �, the
body forces b, and the Cauchy stress tensor σ, the local form of the balance
equation in regular points reads as

�ü = div (σ) + �b . (2.8)

The linear momentum is formulated for the solution with the FE method
in a weak form and reads (Wriggers, 2008)∫

B
σ · Grad (w) dV −

∫
B

�(b − ü) · w dV −
∫

∂Bσ

t · w dA = 0 (2.9)

with Cauchy’s theorem t = σn and the test function w.
Due to the balance of angular momentum for non-polar media, the sym-
metry of the stress tensor holds

σ = σT . (2.10)

In case of static equilibrium, the left-hand side of eq. (2.8) is equal to zero.
The boundary ∂B of a body B can be divided into a Dirichlet boundary
∂Bu (displacement u = ū is prescribed) and a Neumann boundary ∂Bσ

(traction t = σn = t̄ is prescribed) with

∂Bσ ∩ ∂Bu = ∅ , ∂Bσ ∪ ∂Bu = ∂B . (2.11)
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Chapter 3

Constitutive equations
on the grain scale

3.1 Geometrically linear formulation

The infinitesimal strain tensor ε can be split into a reversible, elastic part
εe and an inelastic part εp

ε = εe + εp . (3.1)

The Cauchy stress tensor σ is given by a linear mapping of the strain
tensor εe by the stiffness tensor C (Hooke’s law): σ = C [εe]. In rate form,
Hooke’s law reads

σ̇ = C [ε̇e] . (3.2)

Due to the elastically isotropic behavior of aluminum, the isotropic fourth-
order stiffness tensor C can be used: C = λI ⊗ I + 2μIS , with the Lamé
constants λ and μ, and the symmetric part of fourth-order identity I

S . The
evolution equation for the inelastic part of the strain tensor is given by the
flow rule (see e.g., Asaro, 1983; Bertram, 2008)

ε̇p =
Nα∑

α=1
γ̇α sym(Mα) , (3.3)
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3 Constitutive equations on the grain scale

with the Schmid tensor Mα = dα ⊗ nα, slip plane direction d and the slip
plane normal n of each slip system α. In case of face-centered cubic (FCC)
crystal symmetry Nα = 12 (four slip planes with three slip directions each).
Furthermore, the evolution of plastic slip in the α-th slip system can be
given by an overstress relation (see e.g., Méric et al., 1994)

γ̇α = γ̇0sgn (τα)
〈 |τα| − τC

τD

〉m

, (3.4)

with the Schmid stress τα = σ · sym(Mα), the critical resolved shear
stress τC , the drag stress τD, and the reference slip rate γ̇0. The Macaulay
brackets in eq. (3.4) are defined as 〈x〉 = (|x| + x)/2. Isotropic hardening
is often modeled with a Voce-type exponential saturation function (Voce,
1955). Here, this approach is combined with an additional linear term
Θ∞γ (e.g., Jain et al., 1996)

τC = τC
0 + Θ∞γ +

(
τC

∞ − τC
0

) (
1 − exp

(
−Θ0 − Θ∞

τC∞ − τC
0

γ

))
, (3.5)

with the initial and the asymptotic values for the critical resolved shear
stress (τC

0 , τC
∞), the hardening moduli (Θ0 , Θ∞), and the accumulated

plastic slip γ̇ =
∑Nα

α |γ̇α|.

3.2 Incremental form of the
geometrically linear formulation

An incremental form of eq. (3.1) is given by

Δε = Δεe + Δεp . (3.6)

Hence, the incremental form of the Hooke’s law reads

Δσ = C[Δε − Δεp] , (3.7)
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3.2 Incremental form of the geometrically linear formulation

where the inelastic part of the incremental strain tensor is given by the
following relation

Δεp =
Nα∑

α=1
Δγα sym(Mα) . (3.8)

In a given time increment Δt = tn+1 − tn, the deformation gradients at
the beginning, F n, and at the end, F n+1, are assumed to be given. Then,
the deformation during this time increment is ΔF = F n+1(F n)−1. In
metal forming operations, a widely used measure of deformation is the
Hencky strain EH = 1/2 ln (C) = ln (U). Expanding the Hencky strain
into a Taylor series and considering the incremental form, a second-order
approximation of the small strain measure is obtained:

Δε ∼= 1
2

(
ΔF TΔF − I

)
+ 1

4

(
ΔF TΔF − I

)2
, (3.9)

which is incrementally objective, i.e., pure rotations do not induce any
pseudo strains. Furthermore, with eq. (3.4), the slip increment of the α-th
slip system is

Δγα = Δtγ̇0sgn (τα)
〈 |τα| − τC

τD

〉m

. (3.10)

The accumulated incremental slip is Δγ =
∑Nα

α |Δγα|. As for the strain
increments, an additive split is valid also for the incremental rotations:

Δω = Δωe + Δωp , (3.11)

with the plastic rotation increment being obtained from the skew part of
the Schmid tensor and the slip increment as

Δωp =
Nα∑

α=1
Δγαskw(Mα) . (3.12)
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3 Constitutive equations on the grain scale

From eq. (2.4), one can obtain the differential equation Ḟ = LF which
leads to an objective approximation of the velocity gradient for an implicit
Euler scheme. With the relation Δω = ΔtW = Δt skw(L), the total spin
increment reads (see e.g., Simo and Hughes, 1998; Miehe et al., 2010)

Δω = 1
2(ΔF −T − ΔF −1) , (3.13)

with the skew-symmetric form of the equation ensuring that pure stretches
do not induce rotations. Moreover, with the differential equation for
Q̇Q−1 = ω̇e, the lattice rotation Qn+1 can be determined using the expo-
nential mapping

Qn+1 = exp (Δωe)Qn , (3.14)

with Δωe = Δω − Δωp.

The incremental rotation is given by

ΔQ = Qn+1(Qn)−1 = exp (Δωe) . (3.15)

With the computed lattice rotation, in every step of the computation, the
Eulerian Schmid tensor Mn

α = QnM̃αQnT is updated.

3.3 Geometrically non-linear formulation

Amultiplicative decomposition of the deformation gradient is assumed
as follows

F = F eF p , (3.16)

with the elastic and inelastic part, F e and F p , respectively (Asaro and
Needleman, 1985; Böhlke et al., 2005).
For the determinant of the inelastic part of the Jacobian Jp = det(F p) = 1
is assumed (plastic incompressibility), which implies that the determinant
of the deformation gradient and is equal to the determinant of the elastic
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3.3 Geometrically non-linear formulation

deformation gradient: J = det(F ) = det(F e) = Je. The elastic behavior is
modeled here with the St. Venant law

Se = C[Ee] . (3.17)

Therein, the second Piola-Kirchhoff tensor Se and elastic Green strain
tensor Ee = (F e

TF e − I)/2 (see eq. (2.6)). Hence, the Kirchhoff stress is

τ = F eSeF T
e . (3.18)

The evolution equation for the elastic part of the deformation gradient
reads

Ḟ e = LF e − F eLp , (3.19)

with the velocity gradient L according to eq. (2.4) and the inelastic part of
the velocity gradient Lp = Ḟ pF −1

p . The following ansatz is used for Lp:

Lp =
Nα∑
α

γ̇αMα , (3.20)

where the evolution of slip of the α-th slip system is γ̇α (see eq. (3.4)) and
the Schmid tensor is Mα. The accumulated slip rate reads

γ̇ =
Nα∑
α

|γ̇α| . (3.21)

In the large deformation setting, the Schmid stress from eq . (3.4) is

τα = CeSe · Mα
∼= Se · Mα , (3.22)

with the elastic right Cauchy Green Tensor Ce = F e
TF e, and the elastic

second Piola-Kirchhoff stress tensor Se. For small elastic deformations,
the approximation Ce

∼= I can be used in eq. (3.22). Analogously to the
linear framework, the hardening is modeled with a Voce-type law, see
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3 Constitutive equations on the grain scale

eq. (3.5). The initial conditions at t = 0 are as follows:

F e(0) = Q0 ∈ SO(3) Q0 = gi(0) ⊗ ei γ(t = 0) = 0 . (3.23)

Therein, the vectors gi(t) describe the local base vectors and, thereby, the
orientation Q at time t.

3.4 Representation of
crystallographic orientations

In order to describe the polycrystalline material behavior by a single-
crystalline constitutive law, the orientation of each crystal needs to be
considered appropriately. There are different mathematically equivalent
ways to describe an orientation, e.g., quaternions or axis-angle notation.
Here, the description of orientations with orthogonal tensors and Euler
angles is used. In the Bunge convention (Bunge, 1965; Bunge and Esling,
1982) the crystal orientation is described by three rotations of an initial
crystal orientation. First, a rotation around the reference z-axis is imposed,
followed by a rotation around the new x-axis, and then finally by a rotation
around the new z-axis. The angles describing these rotations are denoted
by ϕ1, Φ, ϕ2, respectively, with the following domains:

0 ≤ ϕ1 < 2π , 0 ≤ Φ < π , 0 ≤ ϕ2 < 2π . (3.24)

The z, x, z-rotation with respect to the reference coordinate system can be
expressed by the rotation tensor

Q(ϕ1, Φ, ϕ2) =

⎛
⎜⎝cϕ1cϕ2 − sϕ1cΦsϕ2 −cϕ1sϕ2 − sϕ1cΦcϕ2 cϕ1cΦ

sϕ1cϕ2 − cϕ1cΦsϕ2 −sϕ1sϕ2 + cϕ1cΦcϕ2 −cϕ1cΦ

sΦsϕ2 sΦcϕ2 cΦ

⎞
⎟⎠ ,

(3.25)
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3.4 Representation of crystallographic orientations

with the components of the rotation tensor abbreviated with the introduc-
tion of cα := cos(α) and sα := sin(α).
The symmetrically equivalent orientations due to crystal and sample
symmetry are defined through

Qeq = QSQQC , ∀ QC ∈ SC ⊆ SO(3) , ∀ QS ∈ SS ⊆ SO(3) . (3.26)

Here, SC and SS represent the symmetry group of the crystal (e.g., cu-
bic crystal symmetry for aluminum) and the sample (e.g., orthotropic
symmetry for ideal rolling textures with orthorhombic symmetry).

The crystallite orientation distribution function (CODF) has been proposed
to characterize the orientation distribution in a polycrystal. Bunge (1965)
defines f(Q) as the CODF with dv/v, the volume fraction of one crystal in
the polycrystal, Q + dQ, the appropriate orientation and dQ the volume
element in SO(3) as

dv

v
(Q) = f(Q) dQ . (3.27)

Furthermore, the CODF accounts for the sample symmetry as well as the
crystal symmetry of the polycrystalline aggregate and is both non-negative
and normalized (Bunge, 1982)∫

SO(3)

f(Q) dQ = 1 . (3.28)

For a more detailed look on this topic the interested reader is referred to
Bunge (1982); Engler and Randle (2010).

3.4.1 Pole figures and contour plots of CODF sections

The texture data can be visualized with, e.g., pole figures or CODF sections.
The fundamentals of the methods presented here are in line with the
derivations in Bunge (1982); Engler and Randle (2010); Schwartz et al.
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3 Constitutive equations on the grain scale

(2009). Pole figures are a widespread method to visualize orientation data
and textures. In Fig. 3.1, the stereographical projection is shown, where the
piercing point of the normals of the crystallographic planes with the upper
hemisphere of a unit spere is projected (through the south pole of the
sphere as reference point) onto the equatorial plane of the unit sphere. The
(100), (110) and (111) pole figures of one crystal have different numbers
of poles (three, six and four, respectively) resulting from the number of
crystallographic planes and the associated normals (see Fig. 3.2).

Figure 3.1: Stereographic projection (left) and (100) pole figure of the orientation with Euler
angles ϕ1 = 35◦, Φ = 50◦ and ϕ2 = 30◦

Figure 3.2: Pole figures (100), (110) and (111) of a cubic single crystal: Two orientations
with Euler angles ϕ1 = 0◦, Φ = 5◦, ϕ2 = 35◦ (•) and ϕ1 = 35◦, Φ = 50◦, ϕ2 = 30◦ (•)
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3.4 Representation of crystallographic orientations

For materials with a pronounced texture, there is a concentration of poles
in the pole figures, i.e., clusters of orientations are formed. This can be
seen for a cold-rolled aluminum alloy (EN AW-3104 from Section 6.7) in
form of a so-called rolling-induced texture in Fig. 3.3.

Figure 3.3: Discrete pole figures of aluminum EN AW-3104 (see Section 6.7): (100) (left) and
(111) (right) direction

Figure 3.4: Continuous pole figures of EN AW-3104 (see Section 6.7): (100) (left) and (111)
(right) direction
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3 Constitutive equations on the grain scale

Pole figures with continuous density distribution of orientations can
exhibit different volume fractions of crystals. This is contrary to discrete
pole figures where crystallographically equivalent orientations in terms
of their weights cannot be distinguished anymore. In order to generate a
continuous pole figure plot, each of the aforementioned crystals in SO(3)
is described by a continuous function, a so called kernel function (e.g., de
La Vallée Poussin (Schaeben, 1997)). The pole figures of a rolling texture
from Fig. 3.3 (discrete) are shown as continuous pole figures in Fig. 3.4.
Another method for displaying orientations is shown in Fig. 3.6, where a
cartesian coordinate system with the three Euler angles ϕ1, Φ and ϕ2 as
coordinates. The three-dimensional orientation space is depicted, here,
in two-dimensionial sections with ϕ2 = constant in Fig. 3.5. There, the
typical texture components for a rolling texture of an aluminum alloy are
shownwith their location in the orientation space. The texture components
of Cube, Goss, S, Brass and Copper are taken from Engler and Randle
(2010) and are summarized in Tab. 3.1.

Figure 3.5: Characteristic texture components of aluminum Cube �, Goss •, Bs �, Cu� and
S � (see Tab. 3.1): Sections in Euler space with constant ϕ1 = 90◦, 65◦, 45◦
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3.4 Representation of crystallographic orientations

Figure 3.6: Orientation distribution by contour plot of CODF in ϕ2-sections in Euler space of
EN AW-3104 (see Section 6.7) with contours at 1, 2, 3, 4, 5 and 6

In Fig. 3.6, ϕ2-sections of the Euler space are shown for the aluminum alloy
(EN AW-3104) with the characteristic orientations from Tab. 3.1 indicated
additionally. The characteristic texture components are in very good
agreement with the cold rolled texture. Throughout this work, the software
MTEX (Hielscher and Schaeben, 2008; Mainprice et al., 2011) is used for
evaluating pole figures and CODF, the software is redistributed through
Schaeben and Hielscher (2016). Furthermore, in the follwing the de La
Vallée Poussin kernel (Schaeben, 1997) will be used for the CODF with a
halfwidth of 6◦.

Table 3.1: Euler angles of most important orientations of aluminum alloys after rolling
(approximated) taken from Engler and Randle (2010); RC (22◦ rotated cube component)
orientation taken from Delannay (2001)

Designation Euler angles Designation Euler angles
ϕ1 Φ ϕ2 ϕ1 Φ ϕ2

Cube 0◦ 0◦ 0◦ S 59◦ 34◦ 65◦

Goss 0◦ 45◦ 0◦ Brass (Bs) 35◦ 45◦ 0◦

RC 22◦ 0◦ 0◦ Copper (Cu) 90◦ 30◦ 45◦
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3 Constitutive equations on the grain scale

3.5 Data reduction method for
crystallographic orientations

The measurement of crystallographic texture usually leads to a large
amount of orientation information. With EBSD, a sector of the grain
structure is characterized and experimental data can be gathered regarding
microstructure, texture and grain morphology (Engler and Randle, 2010).
In addition, with the X-ray diffraction method an orientation density
function (ODF) can be measured.
Contrary to the EBSD method, however, morphology information is
lost and the discrete set of orientations is not accessible. In order to
use the micromechanical model at the Gauss-point level, the method is
implemented in the commercial FE-code Abaqus. Due to the constrained
number of solution-dependent state variables in the Abaqus user interface
(10000 state variables is the limit as stated in Simulia (2012)) and in order to
account for numerically feasible calculation times of parts, the orientation
dataset needs to be reduced.
To perform such a reduction, the orientation data needs to be transformed
into fundamental zones (FZ). The Euler space with the 24 cubic funda-
mental zones (eight sub-cuboids with three FZ each) is shown in Fig. 3.7
(left), where every sub-cuboid has the dimensions of ϕ1 = 2π, Φ = π/2
and ϕ2 = π/2 (see, Jöchen and Böhlke, 2013). For orthorhombic sample
symmetry, as in the case of rolled sheets considered subsequently, there
are 24 × 4 = 96 FZ. For this case, the limit in ϕ1-direction decreases to
π/2 in comparison to the case of 24 fundamental zones. A data-reduction
technique for crystallographic orientations has been introduced by Gao
et al. (2006). The main texture components are obtained by transforming
the orientation in FZ depending on the crystallographic symmetry class.
The orientation space of the fundamental zone is then divided into sub-
zones (called tessellations) and averaged taking account the metrics of the
orientation space (see Fig. 3.8 (right)). The method was further developed
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3.5 Data reduction method for crystallographic orientations

Figure 3.7: Euler space: Full cartesian Euler space with cubic fundamental zones (left) and
cubic fundamental zones FZI , FZII and the chosen fundamental zone for the data reduction
FZIII highlighted in yellow (right)

Figure 3.8: Orientations of EN AW-3104 (see chapter 6.7) in FZ: original data set (left) and
reduced data set with NI = 6, NJ = 2 and NK = 6 (right)

by Jöchen and Böhlke (2013) in order to account for numerical aspects
in the calculation of the tessellations by choosing another FZ (FZIII in
Fig. 3.7 (right)) than in the previous works. This method is summarized
briefly in the following.
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3 Constitutive equations on the grain scale

The boxes are being formed with the constraint of equal volume cells in
the Euler orientation space and taking into account the sample symmetry

V (Bi) = 1
8π2N

∫
box

sin Φ dϕ1 dΦ dϕ2 = 1
FsymN

, Fsym = {24; 96} .

(3.29)
For a fixed and prescribed number of boxes their boundaries are deter-
mined in an iterative process. In ϕ1-direction,

0 ≤ ϕ1 <

{
2π triclinic sample symmetry
π/2 orthotropic sample symmetry

, (3.30)

the orientation space can be subdivided equidistantly with the prescribed
number of boxes in this direction. In the other directions, the nonlinear
bounding of the FZ domain

arccos
(

cos(ϕ2 + 3π/2)√
1 + cos2(ϕ2)

)
≤ Φ ≤ π

2 ∀ ϕ2 ∈
[
0,

π

4

]
, (3.31)

arccos
(

cos(ϕ2)√
1 + cos2(ϕ2)

)
< Φ <

π

2 ∀ ϕ2 ∈
(π

4 ,
π

2

)
, (3.32)

must be taken into account with 0 ≤ ϕ2 < π/2. Recursive computations
must be performed in order to establish the limits of the boxes (Jöchen
and Böhlke, 2013). The crystallographic texture from Section 7.2 can be
found in Tab. 7.2 (72 × 4) with NI , NJ and NK being the amount of boxes
in ϕ1-, Φ- and ϕ2-direction (two different examples can be found in Fig. 3.9,
wherein the right figure represents the tessellation in Fig. 3.8).
In Fig. 3.10, the volume fraction of the data set (EN AW-3104) in Fig. 3.8
(right) is shown. There, for instance, the boxes with the highest volume
fractions (box ID 17, 19, 53, 55) correspond to the characteristic Brass
component (see Fig. 3.5 and Tab. 3.1) and consequently produce the highest
intensity level in the CODF (see Fig. 3.6).
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3.5 Data reduction method for crystallographic orientations

Figure 3.9: Partition of FZIII with tessellation method: subdivisions with NJ = 4, NK = 8
(left) and NJ = 2, NK = 6 (right)

Figure 3.10: Statistics of orientation dataset with NI = 6, NJ = 2 and NK = 6: volume
fraction of orientations per box with mean value
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Chapter 4

Numerical implementation

4.1 Implementation of ABAQUS user routines

4.1.1 ABAQUS Explicit (VUMAT)

The VUMAT (Vectorized User MATerial) interface is used to numerically
integrate the constitutive equations in ABAQUS Explicit. The Fortran
subroutines are evaluated for blocks of data and are vectorized, which
improves the numerical performance. The stresses and internal variables
need to be updated with an appropriate integration scheme. The stresses
in the VUMAT are calculated in the corotational frame. ABAQUS auto-
matically accounts for rigid body motions and transforms the stresses into
the current configuration. Contrary to ABAQUS Standard, the algorithmic
tangent operator does not need to be computed (Simulia, 2012).

4.1.2 ABAQUS Standard (UMAT)

In ABAQUS Standard, an implicit finite element code is used for applica-
tions, for instance, in structural mechanics. A system of equations is solved
incrementally. The ABAQUS UMAT (User MATerial) interface can be used
to define the mechanical behavior of a material. The constitutive and
evolution equations are integrated, which is performed with an implicit
Euler scheme at every integration point of each finite element.
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4 Numerical implementation

For a prescribed deformation, the stresses, internal variables, and algorith-
mic tangent operator (see, e.g., Simo andHughes, 1998) need to be updated
with the UMAT interface (Simulia, 2012). For the case of large-strain crystal
plasticity, the integration algorithm of the internal variables is presented
in Section 4.2.2.

4.2 Numerical time integration
of the constitutive equations

4.2.1 Incremental formulation: explicit time integration

In an explicit finite element setting, the unknowns for the new time step
tn+1, e.g., accelerations, are solely computed from the known values at tn.
A stable time step must be smaller than a dilatational (i.e., pressure) wave
moving through the model. The appropriate step-size can be described by

Δt = le
cd

, (4.1)

with the characteristic length le of the smallest element and the dilata-
tional wave speed cd =

√
(λ + 2μ)/� (see, e.g., Wriggers, 2008). With

the material parameters of aluminum (E = 70 GPa, ν = 0.3 and � = 2700
kg/m3), the dilatational wave speed is cd ≈ 5907.31 m/s. For instance,
for a characteristic element length of le = 1 mm, the time step for the
simulations needs to be lower than Δt = 1.69 · 10−7 s. The integration
of the constitutive equations at the integration point level is done with
an explicit Euler scheme. The stresses and accumulated plastic slip are
updated using the relations

σn+1 = σn + Δσ , (4.2)

γn+1 = γn + Δγ , (4.3)
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4.2 Numerical time integration of the constitutive equations

respectively, with the stress increment evaluated by the incremental
Hooke’s from eq. (3.7)

Δσ = C
[
Δε − Δεn

p
]

, (4.4)

the plastic strain increment

Δεn
p =

N∑
α=1

Δγn
α sym(Mn

α) , (4.5)

the accumulated plastic slip increment

Δγ =
N∑
α

|Δγn
α| , (4.6)

the plastic slip increment at tn of component α

Δγn
α = Δtγ̇0sgn (τn

α)
〈 |τn

α| − τC
n

τD

〉m

, (4.7)

the resolved shear stress at tn of component α

τn
α = σn · sym(Mn

α) , (4.8)

the critical resolved shear stress at tn

τC
n = τC

0 + Θ∞γn +
(
τC

∞ − τC
0

) (
1 − exp

(
−Θ0 − Θ∞

τC∞ − τC
0

γn

))
, (4.9)

and the strain increment given in (3.9). Furthermore, with ΔQ from
eq. (3.14) the lattice rotation as an orthogonal tensor is updated with

Qn+1 = ΔQQn . (4.10)
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4 Numerical implementation

4.2.2 Geometrically non-linear formulation:
implicit time integration

With the evolution equations (3.19) and (3.21), F e and γ are integrated
with an implicit Euler scheme (assuming the flow stress does not change
during the time step), respectively:

F e
n+1 = F e

n + ΔtḞ e
n+1 , γn+1 = γn + Δtγ̇n+1 . (4.11)

Through the definition of the functions

G = F e
n+1 − F e

n − ΔtḞ e
n+1 , g = γn+1 − γn − Δtγ̇n+1 , (4.12)

the unknowns F e
n+1 and γn+1 can be determined by solving the non-

linear equations G = 0 and g = 0 with the Newton-Raphson method. In
a large deformations setting of an implicit FE analysis, the algorithmic
tangent operator Calg needs to be evaluated. In ABAQUS Standard, the
definition is as follows:

C
alg = 1

JΔt

∂τ n+1

∂Dn+1 . (4.13)

Hence,
∂τ n+1

∂Dn+1 = ∂τ n+1

∂F en+1
∂F e

n+1

∂Ln+1
∂Ln+1

∂Dn+1 , (4.14)

with a constant velocity gradient Ln+1 = Ln = L = const. The partial
derivatives of eq. (4.14) can be found in Appendix C.

4.3 Application of routines:
simple shear of a single crystal

The single crystal plasticity model introduced in Section 3.2 and 3.3 are im-
plemented in the explicit VUMAT and implicit UMAT setting, respectively.
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4.3 Application of routines: simple shear of a single crystal

As a benchmark example, the finite element implementation is applied to
a simple shear deformation of a crystal in standard orientation with the
material parameters from Table 4.1. The values of the stress components
σ11, σ22, σ12 are plotted over the shear deformation (see Fig. 4.1). For
the single crystal in initial orientation ϕ1 = 0, Φ = 0, ϕ2 = 0, there is a
deformation induced rotation of the crystal to ϕ1 = 0, Φ = π/2, ϕ2 = 0 in
both implicit and explicit cases.
Whereas the results for the shear stress σ12 are almost identical (≤ 0.4%)
for the explicit and implicit solution, there is a small difference in the
normal stress components σ11 and σ22 (≤ 2%). Overall, the results from the
explicit and implicit solutions are in good agreement and the incremental
implementation is verified.
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Figure 4.1: Simple shear: Comparison of implicit (solid line) and explicit (dashed line)
solution for stress components vs strain diagram
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4 Numerical implementation

Table 4.1: Material parameters for single crystal model

E ν γ̇0 τC
0 τC

∞ τD m Θ0 Θ∞
[MPa] [−] [s−1] [MPa] [MPa] [MPa] [−] [MPa] [MPa]
70000 0.3 0.001 100 0 20 20 0 0
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Chapter 5

Homogenization of the
polycrystal behavior

5.1 Effective kinematic and dynamic properties

Heterogeneous material behavior at the microstructural level is averaged
to predict the response of an effective medium at the macroscopic level,
a procedure known as homogenization. The concept of a representative
volume element (RVE) was introduced by Hill (1963). Therein, the RVE
is located at every material point of a macroscopic specimen. Further-
more, the RVE must be small enough compared to the overall size of
the specimen, and, simultaneously, sufficiently large to be representative
of the microstructure of the specimen. Then the mechanical behavior of
a specimen can be described using a RVE. Since it is assumed that the
microstructure does neither contain pores nor cracks, the effective stresses
and strains can be defined as the volume averages of the fluctuating
micro-stresses and strains (Hill, 1963; 1967),

σ̄ := 〈σ〉 = 1
V

∫
VRVE

σ(x) dV , ε̄ := 〈ε〉 = 1
V

∫
VRVE

ε(x) dV , (5.1)

respectively. The volume averages of stress and strain increments, 〈Δσ〉
and 〈Δε〉, are calculated analogously to eq. (5.1). The Hill theorem (Hill,
1963) states that the macroscopic stress power is equal to the average of
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5 Homogenization of the polycrystal behavior

the microscopic stress power

〈σ · ε̇〉 = 〈σ〉 · 〈ε̇〉 = σ̄ · ˙̄ε . (5.2)

This statement is valid for all kinematically admissible strain fields and
all statistically admissible stress fields. Hence, it is independent of the
material behavior of the constituents. The average stress and strain in a
phase α can be determined as follows:

εα = 1
Vα

∫
ε dV , σα = 1

Vα

∫
σ dV . (5.3)

In the context of large deformations, the effective quantities for the first
Piola-Kirchhoff tensor and deformation gradient are given by (see e.g.,
Nemat-Nasser, 1999)

S̄
1P K = 1

V

∫
S1P K dV and F̄ = 1

V

∫
F dV , (5.4)

respectively, with S1P K = JσF −T.

5.2 Non-linear Hashin-Shtrikman
type homogenization

Piecewise constant polarizations in the volume Vα of grain α are assumed
(Willis, 1977; 1981; Ponte Castañeda and Suquet, 1998)

p(x) = σ(x) − C0[ε(x)] , (5.5)

with

p(x) =
N∑

α=1
χα(x)pα, χα(x) =

{
1 ∀x ∈ V α

0 otherwise
. (5.6)
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5.2 Non-linear Hashin-Shtrikman type homogenization

The linear Hashin-Shtrikman method is generalized in terms of allowing
a non-linear stress response σα = σα(εα) in grain α. Furthermore, the
stiffness C0 of the reference medium is a parameter, which takes into
account statistics of strain and stress fields (Jöchen and Böhlke, 2012;
Jöchen, 2013).

The polarization tensor P0

P0(C0, A) = 1
4πdet(A)

∫
||n||=1

H(C0, n)
(

n · (A−TA−1n)
)−3/2

dn ,

(5.7)
with

H = I
S (N�(n ⊗ n)) IS , N = K−1, K = C0[[n ⊗ n]], (5.8)

relates the stress polarizations and strain fluctuations to each other. In rate
form, the interaction law reads

Δσα − Δσ̄ = L[Δεα − Δε̄], L = C0 − P
−1
0 . (5.9)

For a spherical inclusion in an isotropic material, the polarization tensor
P0 simplifies to

P0 = 1
3K0 + 4G0

P
iso
1 + 3(K0 + 2G0)

5G0(3K0 + 4G0)P
iso
2 , (5.10)

with the isotropic projectors Piso
1 = 1/3(I ⊗ I) and P

iso
2 = I

S − P
iso
1 .

For the special case of an isotropic material stiffness and isotropic medium
stiffness (C and C0 isotropic), and the difference between material and
reference stiffness being proportional to the second isotropic projector
(C − C0 ∼ P

iso
2 ), the following equations are derived for the stress

Δσ◦ = 3KΔε◦ , (5.11)

Δσ′ = 2G
(

Δε̄′ +
(
(1 − λHS)Δεp + λHS〈Δεp〉))

. (5.12)
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5 Homogenization of the polycrystal behavior

In this formulation, the scalar homogenization parameter λHS ∈ [0, 1]
controls the stiffness response. Considering eq. (5.12), the upper and lower
homogenization bounds can be described with an appropriate choice for
λHS. Then, the Voigt solution with homogeneous strains for λHS = 0

Δσ′ = 2G
(
Δε̄′ − Δεp

)
(5.13)

and the Reuss solution with homogeneous stresses for λHS = 1

Δσ′ = 2G
(
Δε̄′ − 〈Δεp〉) = 〈Δσ′〉 . (5.14)

can be obtained as a special case, respectively.
A proof of the corresponding derivations can be found in Appendix A.
The sensitivity of the homogenization parameter λHS is discussed in detail
in Section 7.5.

5.3 Distribution of the components
of the stress tensor σ

The influence of the aforementioned homogenization procedure in a plane
strain compression (PSC) test is investigated. Therefore, an initially quasi-
isotropic texture, generated with 1000 random orientations, is subjected to
2% and 50% thickness reduction in the PSC simulation. The influence of
the homogenization parameter λHS on the stress distribution of the stress
components for 2% thickness reduction is shown in Tab. 5.1, where for
each stress component and λHS combination, a histogram is plotted with a
superimposed best-fit normal distribution.
In the Reuss-Sachs case with λHS = 1, the stresses in all phases are equal,
i.e., a single peak is visible in the stress-distribution diagram. With
decreasing λHS, the stress response from the different phases is diversified
with a trend towards a pronounced Gaussian distribution. Furthermore,
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5.3 Distribution of the components of the stress tensor σ

in the Taylor case with λHS = 0, all stress components exhibit a normal
distribution (Gaussian distribution).
In the case of a larger PSC deformation, as it, e.g., can be seen for 50%
thickness reduction in Tab. 5.2, a typical rolling texture is obtained and
preferred crystal orientations are present. Due to this, only the shear
stresses σ12 and σ23 show a Gaussian distribution, whereas the other stress
components show distributions with distinct stress level peaks based on
the preferred orientations.
The numerical findings confirm as shown the theoretical result that for
soft comparison materials, the stress distribution is close to the Reuss-
Sachs approximation, whereas for very stiff comparison materials, the
distribution of strain increments or strain rates is close to the classical
Voigt-Taylor approximation.
Therefore, the suggested homogenization scheme represents a mean field
approach with variable statistical properties of the stress and strain fields.
As mentioned before, the appropriate comparison material is determined
based on a suitable texture approximation which depends itself on the
stress fluctuations.
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5 Homogenization of the polycrystal behavior
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5.3 Distribution of the components of the stress tensor σ
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Chapter 6

Experimental characterization of
aluminum EN AW-3104

6.1 Preliminaries

In the following, experimental results are shown for the EN AW-3104 alloy
(for the chemical composition of the alloy see Tab. 6.1). The deep drawing
of packaging material of this or similiar alloys has already been studied in
previous works (e.g., Hutchinson et al., 1989; Ren and Das, 1998; Hirsch,
2005). Here, tensile tests, hydraulic bulge tests, earing measurements,
Nakajima tests as well as crystallographic texture measurements have
been performed by Constellium to characterize the material behavior.

Table 6.1: EN AW-3104 (EN AW-Al Mn1Mg1Cu): Chemical composition of alloy with
remainder Al in wt. % (DIN EN 573-3, 2013)

Chemical composition [weight % max. or range]

Si Fe Cu Mn Mg Zn Ti Ga V

0.6 0.8 0.05 – 0.25 0.8 – 1.4 0.8 – 1.3 0.25 0.1 0.05 0.05
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6 Experimental characterization of aluminum EN AW-3104

6.2 Flow curves

Uniaxial tension tests were performed at Constellium on the can body stock
aluminum EN AWAl-3104 (Suisse Technology Partners AG Test Report
M-13-005, 2013). Therein, the experiments were performed based on EN
10002-1 (2001). The sheet metal specimen had a thickness of t = 0.264 mm
and a width of w = 15 mm. Furthermore, the experiments were performed
at 10 mm/s testing speed.
Different orientations of specimens in the sheet metal were tested, starting
with the rolling direction (RD), and then in 15◦ steps up to 90◦ (see Fig. 6.1–
6.3), where 10 experiments were performed in each configuration.
In the tensile experiments, the EN AW-3104 aluminum alloy exhibits a
Portevin-Le Chatelier (PLC) effect, which has beenwell documented before
(e.g., Park and Morris, 1993) and there fails comparably early at a rather
low overall strain.
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Figure 6.1: Tensile test in 0◦ to RD on 10 specimens (Suisse Technology Partners AG Test
Report M-13-005, 2013)
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6.2 Flow curves
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Figure 6.2: Tensile test in 15◦ (top), 30◦ (middle) and 45◦ (bottom) to RD on 10 specimens
each (Suisse Technology Partners AG Test Report M-13-005, 2013)
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6 Experimental characterization of aluminum EN AW-3104
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Figure 6.3: Tensile test in 60◦ (top), 75◦ (middle) and 90◦ (bottom) to RD on 10 specimens
each (Suisse Technology Partners AG Test Report M-13-005, 2013)
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6. Lankford coefficient

6.3 Lankford coefficient

Anisotropy of sheet metals can be characterized with Lankford coefficients
(r-values). To determine the r-value, specimens are cut from the sheet at
different angles to the RD (0◦, 15◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦), and the
strain ratio of width to thickness direction is calculated by r = εw/εt (Lank-
ford et al., 1950). All results shown here were measured by Constellium
(Suisse Technology Partners AG Test Report M-13-005, 2013). The results
are summarized in Fig. 6.4. Typically, Lankford coefficients are measured
in 0◦, 45◦, 90◦ to the RD, in the literature. The additional measurements
performed here give further insight into the anisotropic behavior of the
alloy. Whereas the specimen behaves rather isotropic (r ≈ 1) at 45◦ to the
RD, the most anisotropic behavior is observed in the RD and the transverse
direction (TD) (r �= 1 at 0◦ and 90◦). While the measurements in RD are
consistent, the scatter of the data is pronounced in TD.
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Figure 6.4: Lankford coefficients (r-values) (Suisse Technology Partners AG Test Report
M-13-005, 2013)
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6 Experimental characterization of aluminum EN AW-3104

6.4 Hydraulic Bulge tests

In a hydraulic bulge test, a sheet metal test specimen is placed over a
circular hole, clamped and bulged outward by a fluid medium (Olsen,
1920; Hosford and Caddell, 2011). During the test, the pressure of the fluid,
the radius of the bulge, and the strain field (using optical measurement
systems) are measured. Furthermore, the die diameter is 100 mm and
the piston speed is 0.6 mm/s. The results were measured by Constellium
(Suisse Technology Partners AG Test Report E-13-025, 2013) with the
method proposed in DIN EN ISO 16808 (2014).
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Figure 6.5: Hydraulic bulge test (Suisse Technology Partners AG Test Report E-13-025, 2013)

6.5 Earing profiles

Deep drawing of a circular sheet is performed at Constellium (Constellium
CRV Test Report 43-11-1-3, 2013), and the non-uniform cup height (earing)
due to the anisotropy of the sheet metal is measured (Banabic, 2010).
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6.5 Earing profiles

The single measurements around the circumference of the cup are plot-
ted over the angle to the RD. For the BUP measurements (initial blank
diameter: 64 mm), three data sets were measured which are shown as
raw data (Fig. 6.6) and as symmetrized data (Fig. 6.7). Analogously, for
the CUP measurements five data sets were measured which are shown
as raw data (Fig. 6.8) and as symmetrized data (Fig. 6.9). The observed
earing profile is typical for low-alloyed aluminum used in the packaging
industry, exhibiting six ears.
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Figure 6.6: BUP: Experimentally measured earing profile (Constellium CRV Test Report
43-11-1-3, 2013)
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Figure 6.7: BUP: Experimentally measured symmetrized earing profile (Constellium CRV
Test Report 43-11-1-3, 2013)

55



6 Experimental characterization of aluminum EN AW-3104
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Figure 6.8: CUP: Experimentally measured earing profile (Constellium CRV Test Report
43-11-1-3, 2013)
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Figure 6.9: CUP: Experimentally measured symmetrized earing profile (Constellium CRV
Test Report 43-11-1-3, 2013)

6.6 Forming limit curves

For the forming limit curves, biaxial Nakajima tests (Hosford and Caddell,
2011) were performed at Constellium (Suisse Technology Partners AG Test
Report E-13-030, 2013) with a punch velocity of 1 mm/s.
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6.7 Crystallographic texture measurements

The specimens were orientated in rolling direction and a random pattern
was applied to the sample in order tomeasure the strains with the ARAMIS
system. Three geometries were tested and the results are summarized in
Fig. 6.10. This is not a full FLC according to DIN EN ISO 12004-2 (2008)
due to the fact that only three geometries have been tested.

0

0.05

0.1

0.15

0.2

-0.05 0 0.05 0.1 0.15

M
aj
or

st
ra
in

[-
]

Minor strain [-]

FLC
Geometry 1
Geometry 2
Geometry 3

Figure 6.10: Forming limit curve (Suisse Technology Partners AG Test Report E-13-030, 2013)

6.7 Crystallographic texture measurements

The crystallographic texture measurements were performed at Constel-
lium (Constellium CRV Test Report 49-14-1-5, 2013) with the X-ray diffrac-
tion technique (Kocks et al., 2000).
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6 Experimental characterization of aluminum EN AW-3104

For every dataset measurement, orientation distribution function (ODF)
and (100), (110), and (111) pole figures are shown. The sample geometries
are 50x50 mm for the initial texture and 13x24 mm for the subsequent
forming operations were used. The sections through Euler space with
ϕ2 = const. of the CODF as well as (100), (110), and (111) pole figures are
shown. For the texture after deformation, measurement in RD as well as
in TD have been performed.
The initial texture is a typical rolling texture with a pronounced brass
component in the ϕ2 = 0◦ section and a significant S component in the
ϕ2 = 65◦ section of Fig. 6.11. For the texture after deep drawing in the
small scale experiment (BUP) in RD, there is a shift in the brass and S
component in the ϕ2 = 0◦ and ϕ2 = 65◦ sections of Fig. 6.12, respectively.
For the same sample in TD (Fig. 6.13), the Goss component has vanished
and only the shifted brass component is present for ϕ2 = 0◦. For the sam-
ple with original beverage can geometry, there have been measurements
in different cup heights of the deep drawn specimen. The middle of the
cup height as well as the top of the cup height for both RD and TD have
been distinguished, respectively. Comparing the measurements in RD,
the texture at the middle of the cup height in Fig. 6.14 is not as sharp
as the texture at the top of the cup height in Fig. 6.16. As in the case of
the small scale sample BUP, there is a shift in the brass and S component.
Furthermore, for the measurements in TD, the texture at the top of the cup
height in Fig. 6.17 is sharper, not only in the CODF but also in the pole
figures, best visible in the (110) pole figure compared to the middle of cup
height in Fig. 6.15.
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6.7 Crystallographic texture measurements

Figure 6.11: Experimentally measured texture of initial sheet (Constellium CRV Test Report
49-14-1-5, 2013): CODF sections with ϕ2 = const. with contours at 1, 2, 3, 4, 5 and 6 (top);
(100), (110), and (111) pole figures (bottom, from left to right)
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6 Experimental characterization of aluminum EN AW-3104

Figure 6.12: Experimentally measured texture of BUP in RD (Constellium CRV Test Report
49-14-1-5, 2013): CODF sections with ϕ2 = const. with contours at 1, 3, 5, 7 and 9 (top); (100),
(110), and (111) pole figures (bottom, from left to right)
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6.7 Crystallographic texture measurements

Figure 6.13: Experimentally measured texture BUP in TD (Constellium CRV Test Report
49-14-1-5, 2013): CODF sections with ϕ2 = const. with contours at 1, 3, 5, 7 and 9 (top); (100),
(110), and (111) pole figures (bottom, from left to right)
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6 Experimental characterization of aluminum EN AW-3104

Figure 6.14: Experimentally measured texture middle of cup height in RD (Constellium CRV
Test Report 49-14-1-5, 2013): CODF sections with ϕ2 = const. with contours at 1, 3, 5, 7 and 9
(top); (100), (110), and (111) pole figures (bottom, from left to right)
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6.7 Crystallographic texture measurements

Figure 6.15: Experimentally measured texture middle of cup height in TD (Constellium CRV
Test Report 49-14-1-5, 2013): CODF sections with ϕ2 = const. with contours at 1, 3, 5, 7, 9
and 11 (top); (100), (110), and (111) pole figures (bottom, from left to right)
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6 Experimental characterization of aluminum EN AW-3104

Figure 6.16: Experimentally measured texture top of cup height in RD (Constellium CRV
Test Report 49-14-1-5, 2013): CODF sections with ϕ2 = const. with contours at 1, 3, 5, 7, 9, 11
and 13 (top); (100), (110), and (111) pole figures (bottom, from left to right)

64



6.7 Crystallographic texture measurements

Figure 6.17: Experimentally measured texture top of cup height in TD (Constellium CRV
Test Report 49-14-1-5, 2013): CODF sections with ϕ2 = const. with contours at 1, 2, 3, 4, and
5 (top); (100), (110), and (111) pole figures (bottom, from left to right) (Constellium CRV Test
Report 49-14-1-5, 2013)
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Chapter 7

Parameter identification and
microstructure description

7.1 Material parameters of the
crystal plasticity constitutive law

The elastic material parameters are taken for an aluminum alloy with
the Young’s modulus and Poisson’s ration equal to E = 70000 MPa and
ν = 0.3, respectively. With the texture measurements of an undeformed
sheet, a uniaxial tension test simulation is performed and the stress result is
compared to the experimental results. The measured orientations serve as
an input at the Gauss point level for the finite element simulation, where a
Taylor type (λHS

PI,I = 0) and a Reuss type (λHS
PI,II = 0.999) homogenization is

performed in order to simulate the polycrystalline behavior of the sample.
Both of the identified sets of material parameters are shown in Tab. 7.1.

Table 7.1: Material parameters for the hardening behavior: parameter identification with
Taylor type λHS

PI,I = 0) or Reuss type (λ
HS
PI,II = 0.999) homogenization parameter

PI λHS
PI γ̇0 τC

0 τC
∞ τD m Θ0 Θ∞

[−] [s−1] [MPa] [MPa] [MPa] [−] [MPa] [MPa]
I 0.0 0.001 83 88 20 20 1 2
II 0.999 0.001 93 115 20 20 8000 0
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7 Parameter identification and microstructure description

These material parameters are used for the subsequent deep drawing and
localization behavior simulations. A tensile test with the different set of
material parameters in comparison to the experiment is shown in Fig. 7.1.
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Figure 7.1: Tension test: Experiment and simulation with identified material parameters
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with λHS

PI,I = 0)
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7.2 Low dimensional description of the crystallographic texture

In Fig. 7.2 and 7.3 the influence of the homogenization parameter λHS is
shown for a tensile test simulation and the resulting stress strain curve. The
Taylor solution (λHS = 0) leads to the highest stress level (upper bound),
while the Reuss solution (λHS = 1) has the lowest stress level (lower
bound). The homogenization parameter is sensitive to small changes
in the vicinity of the Reuss bound which lead to considerable changes in
the stress regime. This behavior is described in more detail in Section 7.3.
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Figure 7.3: Influence of λHS on stress-strain curve in tensile test (parameter identification
with λHS

PI,II = 0.999)

7.2 Low dimensional description
of the crystallographic texture

The texture information is taken into account in the constitutive modeling
in terms of orientation information which is used in the crystal plasticity
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7 Parameter identification and microstructure description

model. As the number of experimentally measured orientations is signif-
icant (about 13500 orientations per specimen) and a homogenization is
performed at the Gauss point level, the number of orientations needs to be
reduced significantly in order to perform simulations in a feasible amount
of time.
The method used in this work was proposed by Jöchen and Böhlke (2013)
and briefly summarized in Section 3.5. Therein, all available orientations
in Euler space are transformed into the fundamental zone with crystal and
specimen symmetry transformations. The fundamental zone is subdivided
into a prescribed number of boxes. All orientations in one box are averaged
and, per box, an average orientation and a weighting factor of this average
orientation is exported to establish a reduced dataset. By varying the size
of the boxes, a variable approximation of the higher dimensional crystallo-
graphic texture, based on a low dimensional discrete set of orientations,
can be obtained. With this approach, several reductions of the original
orientation dataset are generated. They are shown in Tab. 7.2, where pole
figures and CODFs are compared to the initial texture.

7.3 Influence of homogenization
parameter λHS on deformation texture

To study the influence of the homogenization scheme on the texture devel-
opment during deformation, plane strain compression (PSC) simulations
are performed for several exemplary cases. In the first case, a quasi-
isotropic texture is created with the help of random orientations. Therein,
each orientation is created with a set of random numbers x1, x2, x3

with xi ∈ [0, 1], i = 1, 2, 3, and their corresponding Euler angles with the
relation (see, e.g., Murnaghan, 1962; Bunge, 1982; Böhlke, 2000):

ϕ1 = 2πx1 , Φ = arccos (2x2 − 1) , ϕ2 = 2πx3 . (7.1)
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7.3 Influence of homogenization parameter λHS on deformation texture

Table 7.2: Pole figures (100 and 111) and CODF of initial and reduced aluminum alloy
EN AW-3104 orientation data
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7 Parameter identification and microstructure description

In Tab. 7.3, the results of a quasi-isoropic initial texture with 1000 ori-
entations and the rolling texture after 50% thickness reduction are sum-
marized in form of CODF plots (sections with φ2 = 90◦, φ2 = 65◦ and
φ2 = 45◦). Two simulations are shown which cover the domain of λHS.
For λHS = 0.99, there is a pronounced Brass, Goss and S component and
no cube components in the φ2 = 90◦-plot. Furthermore, for λHS = 0, there
exist cube components and there is a split into two peaks in the vicinity of
the Brass component. The same PSC simulations as described above are
now carried out for the second case, the measured texture of the beverage
can aluminum alloy, see Tab. 7.4. At 50% thickness reduction and λHS = 0,
there are pronounced Cube as well as Brass components, but Cu and S are
present, too. In the case of λHS = 0.99, there are no cube components, and
the peaks around the Brass component are scattered, while copper and S
components are pronounced.
Consequently, as shown above, different textures can be obtained during
the deformation process with an appropriate choice of λHS.

Table 7.3: Evolution of crystallographic texture for 50% thickness reduction (th. red.): rolling
of quasi-isotropic initial texture (characteristic texture components: • Goss, � Cu, � S, �
Cube, � Bs)

th.red. λHS=0.99 λHS=0

0%

50%
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7.4 Characteristic orientations in deformation texture

Table 7.4: Evolution of crystallographic texture for 50% thickness reduction (th. red.): rolling
of EN AW-3104 initial texture (characteristic texture components: • Goss, � Cu, � S, �
Cube, � Bs)

th.red. λHS=0.99 λHS=0

0%

50%

7.4 Characteristic orientations
in deformation texture

In order to further investigate the influence of the homogenization on
deformation texture, the aforementioned rolling process is focused on. A
quasi-isotropic texture is subjected to plane strain compression. Charac-
teristic orientations can be used to describe textures. Here, a certain set of
them is used, in form of an orthogonal matrix:

Qα, α ∈ {S, Cu, Cube, Bs, Goss} , (7.2)

with the values for the orientations summarized in Tab. 3.1. For each
of the calculated orientations in the simulation, Qi

c, i = 1, . . . , nori, the
misorientation angle is computed by

cos(ωmis) = 1
2 (tr(ΔQ) − 1) , with ΔQ = QαQi

c

T
. (7.3)

Subsequently, for all symmetric transformations of one orientation Qi
c, the

calculated minimal misorientation angle ωmin
mis is determined. In Fig. 7.4 –
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7 Parameter identification and microstructure description

7.8, all the misorientations for a +/ − 5◦ threshold are plotted over the
subjected deformation.
For the Sachs type homogenization (λHS = 1.0), there is a peak in volume
fraction for the Goss component in Fig. 7.4. The Cube component in Fig. 7.5
completely vanishes for a Sachs type homogenization after 0.5 equivalent
strain, the more Taylor like the homogenization is the higher is the volume
fraction of cube components. In Fig. 7.6, the volume fraction of the S
component for λHS = 1.0 at equivalent strain equal to one has a maximum
and then completely vanishes for 1.5 equivalent strain. The development
for the Copper component in Fig. 7.7 is monotonously increasing for all
homogenization parameters, for Sachs type deformation the formation of
Copper components starts at 1.0 equivalent strain contrary to the almost
immediate formation in the transition to Taylor type texture. The Brass
component volume fraction in Fig. 7.8 has a distinct peak at 1.2 equivalent
strain for λHS = 1.0. For larger deformations applied, this component
completely vanishes.
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7.4 Characteristic orientations in deformation texture
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7 Parameter identification and microstructure description
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7.5 Sensitivity of homogenization parameter λHS

7.5 Sensitivity of homogenization parameter λHS

As shown in Appendix A, the homogenization parameter λHS is calculated
with eq. (A.19) and its domain is λHS ∈ [0, 1], with the first-order bounds
by Voigt (λHS = 0) and by Reuss (λHS = 1). The question arises whether
λHS is equally sensitive with respect to the reference stiffness C0 and its
eigenvalue G0 on the whole domain [0,1], or if there are certain ranges
where a small deviation of G0 has already a significant influence on the
texture development.
By choosing a material, e.g., aluminum (E = 70000 MPa, ν = 0.3), the
shear modulus G and the bulk modulus K are known, as well. Due to
the assumptions made in deriving the homogenization method, K0 is
also known and equal to K of aluminum. The only variable remaining
in eq. (A.19) is the reference shear modulus G0. Its influence on the
homogenization parameter λHS is shown in Fig. 7.9. The gradient of λHS

can be obtained by differentiating eq. (A.19) with respect to G0, which
leads to:

dλHS

dG0
= − 6G(16G2

0 + 16G0K0 + 9K2
0 )

(6G(2G0 + K0) + G0(8G0 + 9K0))2 , (7.4)

with the limits

lim
G0→0

dλHS

dG0
= − 3

2G
, lim

G0→∞
dλHS

dG0
= 0 . (7.5)

The gradient of λHS is shown in Fig. 7.10. By jointly interpreting Fig. 7.9
and Fig. 7.10, it is concluded that λHS is, in fact, more sensitive to changes
in G0 in the vicinity of the Reuss bound (λHS = 1), where small changes in
λHS can already imply a substantial effect on the texture evolution.
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7 Parameter identification and microstructure description
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Chapter 8

Multi-scale simulations based
on crystal plasticity with
non-linear Hashin-Shtrikman
type homogenization

8.1 Forming simulations

8.1.1 Deep-drawing of BUP

The crystal plasticity constitutive equations described in Section 3.2 with
the HS homogenization are applied to a deep-drawing of aluminum sheets
in this section.
The BUP cup is a small-scale experiment of the beverage can deep-drawing
process in order to investigate the earing behavior of the aluminum alloy.
In the experimental setting, a circular blank (d = 64 mm, t = 0.264 mm)
is set on top of a die and hold in place with a blank-holder (applied
blank-holder force 8 kN). The punch displacement is applied until the
sheet is completely drawn-in and a cup is formed. For the simulation,
the same set up is used as for the above described experiment. Texture
measurements of the aluminum alloy EN AW-3104 by Constellium are
used as initial conditions for the crystallographic texture at the Gauss point
level. To reduce the computation time, a reduced data set of EN AW-3104

79



8 Multi-scale simulations: crystal plasticity with HS type homogenization

is chosen with 48 × 4 orientations and the homogenization parameter
λHS = 0. The simulations are carried out with ABAQUS Explicit, with a
mesh consisting of 1074 finite elements. The computational time (using
identical time increments) compared to a ABAQUS von Mises plasticity
model (and the same amount of CPUs) is about 150 times higher. This
increase can be explained by the loop over 96 texture components at every
Gauss point, where the material law must be evaluated for all 12 slip
systems and with the rotation update performed by matrix-multiplication
operations. The simulation is contrasted with the experimental earing
profile in Fig. 8.1. There, the simulation predicts the number of ears
and their location (with respect to the RD) accurately. Furthermore, the
cup height, in general, is underestimated, and the earing behavior is
overestimated significantly.
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height of BUP vs angle to the RD
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8.1 Forming simulations
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Figure 8.2: Influence of number of texture components on earing profile (with λHS = 0):
normalized cup height of BUP vs angle to the RD

In Fig. 8.2, where the cup height is normalized to the mean value of the
cup height, this behavior is highlighted even more. In the following, a
non Taylor homogenization parameter, i.e. λHS > 0, and its influence on
the earing profile is investigated. Figure 8.3 shows the influence of λHS

on the earing profile after deep-drawing for a texture with 24 × 4 texture
components. In a relatively large part of the homogenization parameter
domain, for 0 ≤ λHS < 0.9, the resulting earing profiles remain very similar
to each other. With λHS ≥ 0.99, the absolute cup height decreases and the
earing behavior, in general, is less pronounced than in the aforementioned
cases. The results for 45◦ to the RD improve whereas the local maximum
at 0◦ to the RD cannot be predicted anymore. Furthermore, the curvature
of the earing profile for 45◦ to the RD with 1 − 10−4 ≤ λHS < 1 − 10−5

shows an opposing trend to the experimental results. Furthermore, the
measured earing profile is shown, together with the Hill prediction as well
as the best matching micro-mechanical prediction with λHS = 1 − 10−3, in
Fig. 8.4. Therein, the percentage variance, in terms of area difference,
between the simulations and the experiment is shown as well. The
phenomenological Hill prediction has a ≈ 50% higher area between the
experiment compared to the micromechanical approach.
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8 Multi-scale simulations: crystal plasticity with HS type homogenization
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Figure 8.4: Earing profile BUP drawing: normalized cup height vs angle to the RD
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8.1 Forming simulations

8.1.2 Deep drawing of a cup

The beverage can cup drawing experiment is performed similarly to
the aforementioned BUP cup drawing. Analogously, a circular blank
(d = 139.52 mm, t = 0.264 mm) is set on top of a die and hold in place with
a blank-holder (applied blank-holder force 15kN). The texture measure-
ments of the aluminum alloy EN AW-3104 are used as initial conditions
for the texture at the Gauss point level. To reduce the computational time,
a reduced data set of EN AW-3104 is chosen with 24 × 4 orientations and
tested with a varying homogenization parameter λHS. The simulations are
carried out with ABAQUS Explicit, with a mesh consisting of 1145 finite
elements. The results are shown in Fig. 8.5 and Fig. 8.6.
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8 Multi-scale simulations: crystal plasticity with HS type homogenization
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Figure 8.6: Earing profile CUP 1 drawing, comparison of simulations, experiments and
results of Roters (2011): normalized cup height vs angle to the RD

Contrary to the BUP results, the mean cup height is approximated
adequately in these simulations (with vanishing friction parameter) in
Fig. 8.5. As in the aforementioned results, the simulations with λHS = 0
and λHS = 1 − 10−1 overestimate the cup height in the RD significantly
and do, as well, not predict the absolute cup height minimum at 90◦

to the RD. In the case of λHS = 1 − 10−3, the cup height in the RD is
approximated best by using this set of simulations. At 90◦ to the RD, the
cup height shows a local minimum compared to the globally minimal
cup height in the experimental results. In Fig. 8.6, the comparison of
normalized cup height between the experimental earing profile and the
phenomenological Hill as well as the best fit with λHS = 1 − 10−3 of the
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8.1 Forming simulations

micromechanical model is shown. These results are shown together with
the results of Roters (2011), which was carried out for the same cold rolled
aluminum alloy EN AW-3104. It should be noted that the experimental
earing profile documented by Roters (2011) differs from the experiments
in (Constellium CRV Test Report 43-11-1-3, 2013), as the maximum at
45◦ is higher and the minimum at 90◦ lower. However, the trend is
captured best with the micromechanical model presented in this work
with λHS = 1 − 10−3, capturing the behavior at 0◦ to the RD better than
all other models.

8.1.3 Texture after deformation

The texture after deep-drawing in the RD and the TD is shown in Tab. 8.1.
As previously shown in Fig. 6.14 and 6.15, the texture has been measured
in the middle of the cup height. The simulation results were taken as mean
value of the Gauss points of the corresponding element according to the
cup height. The initially reduced texture of 24 × 4 orientations (cf. data
reduction in Tab. 7.2) has been chosen mainly for numerical reasons in
order to obtain simulation results in a managable amount of time.
In the top row of Tab. 8.1, the experimentally measured texture is
shown. While in the RD the typical rolling texture, although with highest
distribution density at the poles, is evident in the (111) pole figure. The
texture in the TD is significantly different. On the left-hand side of the
table, the results in the RD are shown. There, the CODF sections of the
sample in the RD show a pronounced peak at the section with ϕ2 = 20◦

which cannot be predicted by either of the simulations. While there
is a pronounced peak in the λHS = 1 − 10−3 simulation, it is, however,
shifted by 30◦ into the negative Φ-direction. Furthermore, the section
at ϕ2 = 45◦ has its maximal value at 90◦ and 30◦ in Φ- and ϕ1-direction,
respectively. There is a small peak present in the simulation with the
largest homogenization parameter, whereas other components at Φ and
ϕ1 equal 90◦ are not observable in the simulations. The highest value of
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8 Multi-scale simulations: crystal plasticity with HS type homogenization

the CODF in the simulations is at Φ = 0◦ and ϕ1 = 90◦. The high intensity
peak of the experiment in this section is shifted to Φ = 30◦. In the section at
ϕ2 = 65◦, the pronounced texture component is present in the Sachs type
homogenization results. Moreover, the highest intesity in the simulations
is at ϕ1 = 90, but in the experiments this trend cannot be confirmed.
For the right-hand side of Tab. 8.1 the texture results in the TD are
shown. Overall, the (111) pole figure is approximated acceptably by the
simulations, with the best correspondance for λHS = 1 − 10−3. Compared
to the undeformed texture, the brass component in the CODF section with
ϕ2 = 20◦ has moved nearly 30◦ into the Φ-direction. This trend is cap-
tured with the homogenization parameter λHS = 1 − 10−3, although the
orientation density is distributed between two peaks, the brass component
peak and the stronger pronounced experimentally observed component
peak. With a lower homogenization parameter value, the distribution is
spread out more. The texture for Taylor type homogenization showing
texture components nearly in cube component configuration. In the
sections ϕ2 = 45◦ and ϕ2 = 65◦ there is a reasonably good approximation
of the obtained texture component. Once again, the λHS = 1 − 10−3

homogenization parameter leads to more accurate results compared to the
Taylor type solution of λHS = 0.0.
The earing profile prediction, as well now as the texture prediction,
confirm that the best suited value for the homogenization parameter is
λHS = 1 − 10−3.
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8 Multi-scale simulations: crystal plasticity with HS type homogenization

8.2 Localization

8.2.1 Tensile tests

From the tensile tests on sheet stripes (length l = 300 mm, width w = 15
mm and thickness t = 0.264 mm) described in Section 6.2 the fracture
angles are shown in Fig. 8.7, 8.8, and 8.9 for the specimen orientations of
0◦, 45◦, and 90◦ to the RD, respectively.
The tensile test simulations are performed on models of sheet-metal stripes
according to the experimental specimens. The polycrystalline model,
with HS homogenization and 24 × 4 orientations, is used throughout
the simulations. A heterogeneous mesh size is chosen to achieve a high
resolution at locations where the localization is expected.

Figure 8.7: Three tested specimens in 0◦ to the RD (Suisse Technology Partners AG Test
Report M-13-005, 2013)
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8.2 Localization

Figure 8.8: Three tested specimens in 45◦ to the RD (Suisse Technology Partners AG Test
Report M-13-005, 2013)

Figure 8.9: Three tested specimens in 90◦ to the RD (Suisse Technology Partners AG Test
Report M-13-005, 2013)
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8 Multi-scale simulations: crystal plasticity with HS type homogenization

The FE mesh can be seen in Fig. 8.10, where three elements used along
the thickness-direction of the sheet. The localization is triggered by a
decreased flow stress in a small set of elements in the geometric center of
the specimen.

Figure 8.10: Localization behavior tensile test in 0◦ to the RD: equivalent plastic strain
(parameter identification with λHS

P I,I = 0.0) for λHS = 0.0, 0.5, 0.9 (from top to bottom)

For the experimental data, three specimens were taken per each orientation
(0◦, 45◦ and 90◦ to the RD) of the sheet. The fracture angle is averaged over
these three orientations and shown in Fig. 8.11 with the corresponding
error bars. Localization angles for the example of 0◦ to the RD and λHS

PI = 0
are shown in Fig. 8.10. Other simulations for the different directions
have been performed. These results for the localization angles, as well
as the fracture angles from the experiments in Fig. 8.7, 8.8, and 8.9, are
summarized in Fig. 8.11. Therein, at 0◦ to the RD, the localization angle is
underestimated throughout the variation of homogenization parameters
(deviation 5 − 25%) with the best fit obtained for λHS

PI,I = 0. At 45◦ to the
RD, the best prediction is achieved with this parameter, too, in comparison
to the experiments. The results for λHS

PI,II = 0.999 (Reuss type) as well as
the λHS = 0 solution of λHS

PI,I = 0.0 (Taylor type) is in good agreement with
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8.2 Localization

the experiment. Furthermore, the results of λHS = 0.5 and λHS = 1 − 10−1

deviate by ∼ 12% compared to the localization in the experiments.
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Figure 8.11: Localization angle: Experiments (Suisse Technology Partners AG Test Report
M-13-005, 2013) and simulation for varying homogenization parameter λHS with different
parameter identification (λHS

P I )

In Fig. 8.12, the critical strain in terms of the localization of the FE solution
is shown with respect to the parameter identification process, the homoge-
nization parameter, and the angle to rolling direction. Generally, with an
increasing homogenization parameter λHS from 0 to 1, the critical strain
increases, with a fairly linear behavior between λHS = 0 and λHS = 0.5,
and a non-linear behavior in the rest of the domain. The most sensitive
behavior is again detected between λHS = 1 − 10−1 and λHS = 1.0, as in
the previous case, too. With the parameter identification λHS

PI,I, the results
between 0◦, 45◦, and 90◦ to the RD are almost identical.
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8 Multi-scale simulations: crystal plasticity with HS type homogenization
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Furthermore, with the parameter identification λHS
PI,II, the critical strains

corresponding to the homogenization parameter have a generally larger
regime than for the latter parameter identification procedure. In this case,
the results in 45◦ to the RD differ from the experimental solutions.

The localization in the FE solution is evaluated for all different directions to
the RD in Fig. 8.13, where the critical strain increases with increasing angle
to the RD in the experiment. This trend is captured best with λHS = 0.99,
although the strain at 0◦ and 45◦ to the RD is overestimated.
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Figure 8.13: Critical strain over angle to RD: parameters identified with λHS
PI,I and

experiments according to Suisse Technology Partners AG Test Report M-13-005 (2013)

8.2.2 Nakajima tests

In order to determine the formability of the aluminum alloy a so called
forming limit diagram (FLD) and forming limit curve (FLC) are used.
These curves show the deformation localization for certain principle strain
ratios. Nakajima tests are used to generate the FLDs, where the strains in
the specimen plane (major and minor strain) are being evaluated.
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8 Multi-scale simulations: crystal plasticity with HS type homogenization

All experiments shown here have been performed by C. Leppin (Suisse
Technology Partners AG) on behalf of the industrial partner Constellium.
In a Nakajima test, a fixed blank is being deformed until failure by a
punch with a hemispherical top surface. Here, three geometries have been
used (Geometry 1: w = 40 mm, Geometry 2: w = 115 mm and Geometry
3: w = 168 mm) with w describing the width of the specimen. Three
specimens have been used for each geometry and the specimens after
failure are shown in Tab. 8.2 a) – c) for Geometry 1, Tab. 8.2 d) – f) for
Geometry 2 and Tab. 8.2 g) – h) for Geometry 3.
For the simulations, the localization is triggered by a (slightly) reduced
flow stress in four elements in the center of the circular specimen. The
simulations are carried out with the micromechanical model with Hashin-
Shtrikman homogenization and are compared to the phenomenological
solution using the Hill model. In Fig. 8.14, the experimental results of the
Nakajima tests and the simulation results are both shown in one picture.
The mean over four elements is shown for the values obtained by the
simulation. More detailed FLDs are given in Fig. 8.15 – 8.17, where
for each of the three geometries the experimental results as well as the
localization initiation (+) and after localization (�) are shown for different
homogenization parameters.
For all of the three geometries, the Hill model underestimates the major
strain compared to the experiment. For the micromechanical simulations,
the localization initiation is under the FLC and after localization above
the FLC. In conclusion, with a suitable choice of the homogenization
parameter λHS, the experimental results can be predicted, whereas it is not
possible to achieve a similarly good prediction with model of Hill.
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8 Multi-scale simulations: crystal plasticity with HS type homogenization

Figure 8.14: FLD - Experiments (Suisse Technology Partners AG Test Report E-13-030, 2013)
and simulations for the three geometries in the Nakajima test
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Figure 8.15: FLD - Experiments (Suisse Technology Partners AG Test Report E-13-030, 2013)
and simulations (before (+) and after (�) localization) for Geometry 3 in the Nakajima test
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Figure 8.16: FLD - Experiments (Suisse Technology Partners AG Test Report E-13-030, 2013)
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Figure 8.17: FLD - Experiments (Suisse Technology Partners AG Test Report E-13-030, 2013)
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97





Chapter 9

Summary

For forming simulations in industrial applications, usually phenomenolog-
ical models are chosen to predict the texture development. This implies,
however, that the microstructure development and the resulting plastic
anisotropy cannot be simulated with these kind of models anymore. In or-
der to take into account the microstructure evolution, a micro-mechanical
approach for the constitutive modeling of sheet metal behavior during
deep drawing has been formulated for aluminum (EN AW-3104). This
particular material is often used in the packaging industry. The material
model uses crystal plasticity theory and a non-linear homogenization
scheme. In order to perform industrially applicable simulations, the
constitutive model has been implemented in a commercial, explicit finite
element tool (ABAQUS Explicit).
The application to a beverage can deep drawing process was chosen based
on the fact that phenomenological models, there, produce unsatisfactory
results. Furthermore, due to the high quantities in beverage can produc-
tions the reduction of scrap is also of great importance in this context. The
deep drawing in the manufacturing process consists of two deep drawing
steps followed by three ironing steps. In order to understand the material
behavior, different kind of experiments (uniaxial tension tests in different
directions to the rolling direction, texture measurements, evaluation of
earing profiles, hydraulic bulge and Nakajima test) have been performed
by the industrial partner Constellium. The hardening behavior has been
identified with the hydraulic bulge tests.
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9 Summary

Texture measurements have been used to specify the initial texture in the
micromechanical model.
Due to the fact that the experimental orientation data, obtained with
X-ray diffraction or EBSD measurements, is very large and the constitutive
model is implemented at the Gauss point level, a reduction of this dataset
is necessary. In this reduction method, all orientation data is transformed
into fundamental zones in the Cartesian Euler angle space. This space
is tessellated and averaged within the metrics of the Euler space. As
a result, crystallographic texture of the material can be described by
considerably less orientations. An important step is choosing a sufficient
degree of compression, for the data set to be large enough for still being
representative, and small enough to be used efficiently in an explicit finite
element implementation.
Due to the nature of the aluminum alloy and the necessity for low compu-
tational costs, the homogenization scheme has been simplified for the case
of elastically isotropic and plastically incompressible materials. Thereby,
the distribution of stress and strain fluctuations is governed by a scalar
parameter. This parameter varies between zero and one. The minimal
and maximal values of the parameter give the classical simple bounds of
Taylor and Sachs, respectively. Furthermore, the investigation showed
that this homogenization parameter has a crucial influence in a rolling
process simulation on the texture formation and on the stress level. Due
to the fact that the parameter is deduced from an approximation of the
stress field through constant stress polarizations directly from Green’s
function and is not introduced ad hoc, this is a new and promising way of
considering stress and strain fluctuations. This novel mean field approach
can be applied to other materials and other deformation processes as well.
For a deep drawing process of a circular blank, the micromechanical
model was applied. As in the case of the rolling process, the homoge-
nization parameter has a great impact on the non-uniform cup height
(earing). The simulation results for Sachs type behavior predict the correct
number of six ears, whereas the phenomenological Hill model leads to
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9 Summary

inferior overall results and only predicts four ears. More sophisticated
phenomenological models of the Barlat type (e.g., Aretz and Barlat,
2013) can predict the earing behavior but neither are they implemented
in commercially used codes (e.g., Autoform) nor is their application
straight forward due to the very high number (27) of material parameters.
Therefore, these models are restricted to academia research and not used
in industrial simulations. Another benefit of the micromechanical model
is that the texture data is available after the cup drawing process and can
be compared to experimentally obtained results. In comparison with the
experiment, the simulation can predict the leading texture components,
where the Sachs type behavior is again preferable to the Taylor type
homogenization procedure. This result is particularly in good agreement
with the experimentally measured pole figures and CODFs in transversal
direction. Furthermore, the predictions of the newmicromechanical model
for the localization observed in the Nakajima test are preferable to the
prediction by the commercially used Hill model.
Summarizing, this work presents a framework for incorporating informa-
tion from microstructure to simulations for metal forming applications.
A theory has been formulated for the special case of elastically isotropic
media. This approach, together with data reduction and an efficient im-
plementation in the framework of an explicit finite element scheme, offers
the possibility to investigate behavior of a crystalline material (aluminum)
under different boundary conditions. This two-scale approach offers
new possibilities for sheet metal forming simulations, where conventional
phenomenological models are no longer able to meet the demands of
accurate predictions in industrial applications.
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Appendix A

Derivation of the new
effective medium equations
for the polycrystal

As introduced in Section 5.2, an interaction law is given in eq. (5.9) for
the non-linear Hashin-Shtrikman type homogenization scheme. In order
to increase the readability, the subscript α is omitted in the following
derivation. The Hashin-Shtrikman interaction law reads

Δσ − Δσ̄ = L[Δε − Δε̄] . (A.1)

where the stress increment can be substituted by the incremental form of
Hooke’s law

Δσ = C [Δε − Δεp] . (A.2)

For solving eq. (A.1), the following ansatz is taken from Jöchen (2013) for
the strain localization

Δε = Ae [Δε̄] − Ap . (A.3)

Therein, the elastic strain localization tensor and the plastic strain localiza-
tion tensor read

Ae = R〈R〉−1
, Ap = −RC [Δεp] + Ae〈RC [Δεp]〉 , (A.4)

respectively. The fourth-order tensor R, used in the strain localization
tensors, is defined by
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R =
(
P0

−1 + δC
)−1

, (A.5)

with δC = C − C0. These equations hold under the assumption of constant
stress polarization for a Hashin-Shtrikman localization.

In order to determine the governing equations, an elastically isotropic
material behavior is assumed (for both C and C0). Furthermore, plastic
incompressibility is assumed (i.e.,C − C0 ∼ P

iso
2 ). The fourth-order tensors

C0 and C are then given by

C0 = c0
1P

iso
1 + c0

2P
iso
2 , (A.6)

C = c1P
iso
1 + c2P

iso
2 , with c1 = c0

1 . (A.7)

Hill’s polarization tensor for the assumption of a spherical inclusion in an
isotropic material reads (Mura, 1987; Gross and Seelig, 2011)

P0 = p1P
iso
1 + p2P

iso
2 (A.8)

with the two factors

p1 = 1
3K0 + 4G0

and p2 = 3(K0 + 2G0)
5G0(3K0 + 4G0) . (A.9)

With these assumptions it is implied that R is constant and homogeneous

R =
(
P0

−1 + (c2 − c0
2)Piso

2
)−1

, (A.10)

R = m1P
iso
1 + m2P

iso
2 , (A.11)

with the two factors

m1 = p1 and m2 = 1
1/p2 + c2 − c0

2
. (A.12)
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Consequently, 〈R〉 = R holds and the elastic strain localization tensor from
eq. (A.4) reduces to

Ae = R〈R〉−1 = RR
−1 = I

S . (A.13)

The fourth-order composition of R and C is simplified with the equations
(A.11) and (A.7), respectively, to

RC = m1c0
1P

iso
1 + m2c2P

iso
2 . (A.14)

To obtain the plastic localization tensor Ap from eq. (A.4), the results from
equations (A.13) and (A.14) are taken into account as well as the deviatoric
nature of the plastic strain increment (Δεp = Δε′

p), leading to

Ap = m2c2 (Δεp − 〈Δεp〉) . (A.15)

Combining the results from eq. (A.13) and (A.15) gives the strain localiza-
tion increment in eq. (A.3)

Δε = Ae [Δε̄] − Ap = Δε̄ − m2c2 (Δεp − 〈Δεp〉) . (A.16)

Together with Hooke’s law from eq. (A.2), the spherical and deviatoric
stress increments are

Δσ0 = 3KΔε̄0 , (A.17)

Δσ′ = 2G
(
Δε̄′ − Δεp + m2c2︸ ︷︷ ︸

=:λHS

(Δεp − 〈Δεp〉) )
, (A.18)

respectively, with the scalar homogenization parameter being defined as

λHS = m2c2 = 6G(2G0 + K0)
6G(2G0 + K0) + G0(8G0 + 9K0) . (A.19)
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It should be noted that under the assumptions made, a single scalar
parameter λHS governs the localization relation. The domain of λHS is
derived by considering the special cases for G0 → 0 and G0 → ∞:

lim
G0→0

λHS = 1 , (A.20)

lim
G0→∞

λHS = 0 . (A.21)

As shown in Fig. 7.9 in Section 7.5, the function of λHS has a global
maximum (equal to one) for G0 → 0, then monotonically decreases to
the global minimum (equal to zero) for G0 → ∞. Therefore, the domain
for the homogenization parameter is λHS ∈ [0, 1]. The simple bounds by
Voigt and Reuss (Ponte Castañeda and Suquet, 1998) can be found for this
Hashin-Shtrikman non-linear homogenization as follows:
Voigt (λHS = 0)

Δσ′ = 2G
(
Δε̄′ − Δεp

)
, (A.22)

Reuss (λHS = 1)

Δσ′ = 2G
(
Δε̄′ − 〈Δεp〉) = 〈Δσ′〉 . (A.23)

In eq. (A.22) the Voigt approximation with homogeneous strains is shown.
Homogeneous stresses, as calculated by the volume average of the devi-
atoric stresses, lead to a Reuss type solution in eq. (A.23). Intermediate
values of lambda give estimates between the Voigt and the Reuss estimate.
The Hashin-Shtrikman type homogenization scheme

(
λHS ∈ (0, 1)

)
can be

written as

Δσ′ = 2G
(

Δε̄′ − (
(1 − λHS)Δεp + λHS〈Δεp〉))

. (A.24)
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Anisotropic phenomenological
material model: Hill yield criterion

One of the widely used yield criteria for anisotropic materials (for or-
thotropic symmetry with three orthogonal symmetry planes) was pro-
posed by Hill (1948) (see also von Mises (1928)). A more detailed overview
of the properties of the model described here is given in Banabic et al.
(2000). The Hill yield surface is given by:

f(σ) =
√

Σn + Σs , (B.1)

Σn = F (σ22 − σ33)2 + G (σ33 − σ11)2 + H (σ11 − σ22)2
, (B.2)

Σs = 2
(
Lσ2

23 + Mσ2
13 + Nσ2

12
)

. (B.3)

The material constants F, G, H, L, M and N are defined as:

F = σ2
0

2

(
1

σ̂2
22

+ 1
σ̂2

33
− 1

σ̂2
11

)
= 1

2

(
1

R2
22

+ 1
R2

33
− 1

R2
11

)
, (B.4)

G = σ2
0

2

(
1

σ̂2
33

+ 1
σ̂2

11
− 1

σ̂2
22

)
= 1

2

(
1

R2
33

+ 1
R2

11
− 1

R2
22

)
, (B.5)

H = σ2
0

2

(
1

σ̂2
11

+ 1
σ̂2

22
− 1

σ̂2
33

)
= 1

2

(
1

R2
11

+ 1
R2

22
− 1

R2
33

)
, (B.6)
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L = 3
2

(
τ0
σ̂23

)2
= 3

2
1

R2
23

, (B.7)

M = 3
2

(
τ0
σ̂13

)2
= 3

2
1

R2
13

, (B.8)

N = 3
2

(
τ0
σ̂12

)2
= 3

2
1

R2
12

, (B.9)

where σ̂ij is the measured yield stress when σij is applied as the stress-
component not equal to zero. Furthermore, σ0 is a fixed but arbitrary
reference yield stress, Rij are anisotropic yield stress ratios and τ0 = σ0/

√
3.

The six yield stress ratios are defined as follows:

R11 = σ̂11
σ0

, R22 = σ̂22
σ0

, R33 = σ̂33
σ0

, (B.10)

R12 = σ̂12
τ0

, R13 = σ̂13
τ0

, R23 = σ̂23
τ0

. (B.11)

They must be specified for the use of the material model in Abaqus
(Simulia, 2012).
Hill’s yield surface is defined through parameters Rij for the stress ratios
describing the onset of plasticity. However, in sheet metal forming appli-
cations, the use of strain ratios for material characterization is common
(Lankford coefficient, see Section 6.3). Therefore, the ratios of width-strain
to thickness-strain (r-value, Lankford coefficient) need to be converted for
the use in the Abaqus Hill model (Simulia, 2012).
With the rolling direction aligned with the 11-direction, the r-value in
rolling direction reads

r0 = dε22
dε33

= H

G
, (B.12)

and the r-value in transverse direction is defined by

r90 = dε11
dε33

= H

F
. (B.13)
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The r-value at angle α is described in Simulia (2012) by

rα = H + (2N − F − G − 4H) sin2 α cos2 α

F sin2 α + G cos2 α
. (B.14)

For sheet metals, the following relations can be derived for the Rij values
that need to be specified in the Abaqus Hill model (see Simulia, 2012):

R11 = 1 , (B.15)

R22 =

√
r0(1 + r90)
r90(1 + r0) , (B.16)

R33 =

√
r90(1 + r0)

r0 + r90
, (B.17)

R12 =

√
3(1 + r0)r90

(2r45 + 1)(r0 + r90) , (B.18)

R13 = 1 , (B.19)

R23 = 1 . (B.20)

For each r-value r0, r45 and r90, the arithmetic mean is taken from the
experimentally measured Lankford coefficients in Fig. 6.4. Thereby, the
parameters Rij in eq. (B.15) – (B.20) for the aluminum alloy EN AW-3104
can be calculated and they are summarized in Tab. B.1.

Table B.1: Parameters Rij for the Hill yield surface

R11 R22 R33 R12 R13 R23
1 1.39173 1.03655 1.0528 1 1
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Appendix C

Algorithmic tangent operator:
partial derivatives

In order to improve the readability, the superscript n + 1 is omitted from all
quantities at the time step tn+1. If the elastic part of deformation is small,
the approximation Ce ≈ I holds. With the implicit Euler integration-
scheme from eq. (4.11) and eq. (4.12), the partial derivatives of eq. (4.14)
lead to:

∂τ

∂F e
≈ 1

2(F e � C

[
I�F T

e + (F e�I)TR
]

, (C.1)

∂L

∂D
= I

S , (C.2)

∂F e

∂L
= −

(
∂G

∂F e

)−1
∂G

∂L
, (C.3)

∂τα

∂F e
≈ F eC [Mα] , (C.4)

∂G

∂L
= −ΔtI�F e . (C.5)

Substituting these partial derivatives with eq. (4.14), the algorithmic tan-
gent, in eq. (4.13) leads to

C
alg = 1

2det(F ) (F e � C)
[
I�F T

e + (F e�I)TR
] (

∂G

∂F e

)−1
(I�F e) IS ,

(C.6)
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with the partial derivative

∂G

∂F e
= I − Δt (L�I − I�Lp − F1) , (C.7)

and the definition

F1 =
N∑

α=1

mγ̇0
τD

〈 |τα| − τC

τD

〉m−1

(F eMα) ⊗ (F eC[Mα]) , (C.8)

which is the algorithmic tangent operator from Böhlke et al. (2005).
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