

Karlsruhe Institute of Technology

Improved quantification of far-infrared water vapor absorption by long-term radiative closure measurements at the Zugspitze Reichert, R. Sussmann, and M. Rettinger

Karlsruhe Institute of Technology, IMK-IFU, Garmisch-Partenkirchen, Germany

Abstract

• Missing quantitative knowledge of water vapor absorption is a key problem that limits accuracy of atmospheric radiative transfer calculations, e.g. in climate models

• Zugspitze site offers ideal conditions for high-precision closure study: extensive instrumentation, long-term measurements, very low IWV

• First results include validation of water vapor line parameters and continuum coefficients

 \leftarrow IWV climatology of the

Liuzzi, G. et al.: Validation of H₂O continuum absorption models in the wave number range 180-600 cm⁻¹ with atmospheric emitted spectral radiance measured at the Antarctica Dome-C site, Opt. Express, 22, 16784-16801, 2014.

Mlawer, E. J. et al.: Development and recent evaluation of the MT_CKD model of continuum absorption, Phil. Trans. R. Soc. A, 370, 2520–2556, 2012

Acknowledgment

This research project is funded by the Bavarian State Ministry of the Environment and Consumer Protection (via contracts TLK01U-49581 and VAO-II TP I/01) as well as by the Deutsche Bundesstiftung Umwelt (DBU) via a dissertation fellowship.

www.imk-ifu.kit.edu KIT – The Research University in the Helmholtz Association

