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Chapter 1

Introduction and Motivation

DECISION processes in corporations today often rely on quantitative forecasts,
which allow decision makers to anticipate future developments and to

take appropriate actions. In corporate planning, forecasts are an important ba-
sis for the generation and assessment of alternative courses of action (Hogarth
and Makridakis, 1981). In practice, a variety of external and internal forecasts are
used in different corporate decisions processes. Important external forecasts are
for instance macroeconomic forecasts that are a basis for an assessment of the sta-
tus of the economy. Sales forecasts are an example of internal forecasts, which are
used for business functions such as marketing, production planning, or procure-
ment. Efficiency and efficacy of these business functions strongly depend on the
accuracy of the forecasts; inaccurate forecasts can lead to suboptimal decisions
and undesirable outcomes.

As corporations are part of a complex and dynamic environment, judgment has
proven to be essential for the forecasting of various time series (Lawrence et al.,
2006), especially when contextual information plays a major role (Edmundson
et al., 1988). Research suggests that even simple eyeballing often leads to credible
forecasts (Lawrence et al., 1985). It is consequently not surprising that judgment
is widespread in forecasting. Webby and O’Connor (1996) for instance found that
judgment is involved in 40-50 % of time series forecasting tasks. More recent
studies confirm that corporations still rely on qualitative, judgment-based meth-
ods despite the availability of quantitative methods (Klassen and Flores, 2001;
Sanders and Manrodt, 2003; McCarthy et al., 2006).

Research from psychology as well as empirical studies of judgmental forecasts
show that cognitive biases and heuristics influence forecasts, which are conse-
quently likely to be biased (Hogarth and Makridakis, 1981; Lawrence et al., 2006).
As biases in forecasts can decrease accuracy and negatively influence corporate
functions (Leitner and Leopold-Wildburger, 2011), approaches aiming at reduc-
ing biases and improving forecast accuracy have been developed.

3



4 Introduction and Motivation

1.1 Motivation

In contrast to human judgment, statistical methods, which in general detect and
extrapolate systematic patterns from past data, can be considered objective. For
instance, as an alternative to judgmental forecasts, statistical model-based time
series forecasting models can be used if a sufficient history of past observations
is available. The judgmental and model-based approaches are very different
in terms of strengths and weaknesses (Webby and O’Connor, 1996; Makridakis,
1988; Sanders and Manrodt, 2003). While statistical methods can objectively iden-
tify patterns in past data, human experts tend to falsely identify signals and non-
existing patterns in noisy time series. However, human experts can incorporate
qualitative and contextual information that cannot be integrated into statistical
forecasting models in a straightforward way. The two approaches are conse-
quently largely complementary in terms of strengths and weaknesses.

One approach aiming at using the strengths of both approaches is a linear com-
bination of forecasts, where the forecasts are combined in a weighted average.
Forecast combination is known to increase forecast accuracy (Clemen, 1989) as
errors of individual forecasts are compensated, which results in a reduced error
variance. The reduction is largest if forecasts are sufficiently diverse regarding
error patterns. Judgmental and model-based forecasts are likely to be very differ-
ent, which makes this combination particularly promising.

Forecast correction, as another approach, assumes that cognitive biases and
heuristics as well as their influence on judgmental forecasts are largely stable
over time. Statistical methods can then be used to detect systematic linear biases
in past judgmental forecasts, which can then be removed from future forecasts.

Both integration mechanisms –forecast correction and combination– require
learning a model, which in turns involves estimating parameters that not only fit
past forecasts well but also perform well on future forecasts. In forecast combina-
tion, the parameters are the weights of the forecasts whereas parameters reflect
the biases in judgmental forecasts in forecast correction. In order to find param-
eters that are well suited for future unknown data, two sources of uncertainty
must be considered.

First, the true relationships and thus the optimal parameters of the model are
unknown in practice and have to be estimated. The estimation uses an available
sample of past observations, which consists of realizations of a random variable
from a statistical point of view, and which can by pure coincidence systematically
differ from future observations. This is especially the case if small samples are
used for the estimation.

The aspect of the estimation uncertainty is reflected by the so-called bias–
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variance trade-off from statistical learning theory (Hastie et al., 2009), which is
based upon a decomposition of the error when applying a model to unknown
data. The error is decomposed into a random error component and two com-
ponents related to the fit to the data (bias component) and the oversensitivity to
the data (variance component). The bias component reflects errors resulting from
the estimated parameters, in expectation, differing from the optimal parameters.
In contrast, the variance component covers errors resulting from parameter esti-
mates differing between samples from the same population.

Imagine, for instance a very simple model without any parameters is chosen.
Certainly, applying the model results in a systematic error as the available train-
ing data is not used (strong bias component), but the model does not differ be-
tween different training samples from the same population (no variance compo-
nent). If, in contrast, a complex model is estimated that strongly uses the available
training data, the estimated parameters in expectation match the optimal values
rather well (low bias component). However, errors are likely to result from differ-
ences between training data and future observations (high variance component).
This example also illustrates that a trade-off between the bias and the variance
component of the error exists. As an optimization of one component increases
the other component, a minimization of the overall error requires considering
both components.

Second, the relationships and parameters that are estimated might change as a
result of shifts or structural changes in the relationship. If, for instance, the expert
producing a judgmental forecast changes because of staff turnover, the biases in
the judgmental forecast are also likely to change. However, forecast correction
or combination models learned from past data are still calibrated to the old error
patterns. As a result, a corrected or combined forecast can perform worse than
the original judgmental forecast as new errors are introduced.

Overall, while forecast correction and combination are in general promising
approaches, the uncertainty resulting in the variance component has to be con-
sidered for a successful application in practice. However, established approaches
only address the bias component of the error and fit the parameters very closely to
available training data. As a consequence, little guidance exists on how to correct
or combine judgmental forecasts considering the different sources of uncertainty.
Analyzing and understanding forecast correction and combination in terms of
the bias–variance trade-off and regarding structural changes is an essential basis
for new models with reliable performance on unknown data.
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1.2 Research Questions

As uncertainty resulting from parameter estimation and from potential structural
breaks influence forecast correction and combination methods, this thesis focuses
on developing insights regarding the strength of these influences and on pro-
viding guidance on how to correct and combine forecasts. For this purpose, the
research questions derived and defined in this section are addressed. Initially,
the research questions regarding forecast correction are introduced, followed by
those addressing forecast combination.

As the parameters of established linear forecast correction models are esti-
mated from past observations, the size of the available training sample influences
the uncertainty of the parameter estimates. Small training samples result in very
uncertain estimates and thus a high variance component of the error of the cor-
rected forecast. Depending on the extent of the reduction of the bias component
of the error, the strong variance component can outweigh the reduction and result
in an overall increase of the error in comparison to the original forecast. As the
variance component of the error decreases with increasing training sample size,
a minimal training sample size in many cases exists for which the increased vari-
ance component resulting from using a forecast correction model is lower than
the reduction of the bias component. This minimal training sample size indicates
how many observations are required to make it reasonable to apply a forecast
correction model. This aspect is addressed in the first research question, RQ 1.

RQ 1 Forecast Correction – Training Sample Size
What is the training sample size required so that the variance com-
ponent of the error of a linearly corrected judgmental forecast is
smaller than the reduction of the bias component?

Besides estimation uncertainty, structural breaks can increase the errors when
applying forecast correction to unknown data. Structural breaks between past
and future observations result in a systematic error, i.e., bias component, that is
higher than expected. However, the errors resulting from the estimation uncer-
tainty (i.e. the variance component) remain unchanged. As the bias component
is not as strongly reduced as expected, the reduction can in some cases be too low
to balance the variance component of the error resulting from applying the cor-
rection model. While this effect is likely to be small for weak structural changes,
the strength of the effect increases with the strength of structural changes. Thus,
structural changes, which are at least as strong as a certain level, result in the cor-
rected forecast having higher overall error than the original forecast. Applying
a forecast correction model calibrated using outdated identified linear biases can
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for instance result in reinforcing the new biases after a structural change.
As a consequence, a relevant basis for the assessment of the robustness of fore-

cast correction methods is to quantify how large structural changes can be for the
corrected forecast to still outperform the original one. If structural changes have
substantial influence, considering potential breaks in the parameter estimation
procedure may be of importance for successful application of forecast correction
methods. Different approaches can in principle be used for this purpose that
might however increase estimation uncertainty resulting in increased errors. On
the one hand, structural breaks can, with considerable uncertainty, be detected
in past data. If a structural break is identified, it can be considered in the es-
timation of the parameters of forecast correction models. However, because of
the uncertainty in the detection of structural breaks, some structural changes are
likely to be diagnosed falsely. On the other hand, a weighting of past data can be
introduced, which reduces the influence of old observations with potentially out-
dated biases. While the influence of the old biases fades out if structural changes
exist, the uncertainty of the estimates is increased because of the stronger fit to
few recent observations. It is however unknown whether including structural
changes is beneficial and, if so, which approach is more beneficial. These aspects
are formulated in RQ 2.

RQ 2 Forecast Correction – Structural Changes
a) What is the maximal strength of structural breaks regarding linear

judgmental biases so that a linearly corrected judgmental forecast
has lower expected error variance than the original forecast?

b) Which error variance reduction can be achieved by extending linear
forecast correction methods to consider structural breaks?

Besides the uncertainty resulting from estimating the parameters of the fore-
cast correction model, an additional source of estimation uncertainty exists. As is
shown in this work, non-stationarity of time series has to be addressed as it can
be an issue for standard forecast correction methods. The different established
approaches to ensuring stationarity of time series however differ regarding their
properties in terms of the bias–variance trade-off. Most importantly, some ap-
proaches require estimating additional parameters, which can in turn increase
the variance component of the error. Consequently, RQ 3 aims at identifying
which approaches are most beneficial for application in forecast correction.
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RQ 3 Forecast Correction – Non-Stationarity
Which approaches to ensuring stationarity of time series provide an
additional reduction of the bias component of the error of a linearly
corrected judgmental forecast that is higher than the increase of the
variance component?

In forecast combination, a key result in the literature, especially on the combi-
nation of two forecasts, is the so-called forecast combination puzzle (Stock and
Watson, 2004). The puzzle refers to the empirical finding that a simple, un-
weighted average (SA) of forecasts is typically not outperformed by more com-
plex approaches. Different weighting schemes have different characteristics in
terms of the bias–variance trade-off. While the simple average does not necessar-
ily minimize errors on past data, it does not have issues with oversensitivity to the
training data. In contrast, more complex methods, such as the so-called optimal
weights (OW) proposed by Bates and Granger (1969) that minimize errors in the
training data, aim at minimizing the bias component but are highly sensitive to
the training data. The trade-off between these two extremes can be addressed by
considering the whole spectrum between the two methods by linearly shrinking
optimal weights towards the simple average.

Although the performance of the different combination methods is clearly re-
lated to the bias–variance trade-off, a decomposition of the combined error vari-
ance into a bias and a variance component has not yet been derived in the liter-
ature. As the decomposition is an important basis for understanding the perfor-
mance of different approaches, especially for different shrinkage levels of optimal
weights towards the simple average, deriving the necessary theory is of impor-
tance for all theoretical analyses of forecast combination.

Given the decomposition, two aspects regarding the bias–variance trade-off are
of interest. First, if low shrinkage is used, the sensitivity to the training data is
high and a large training sample is required to ensure sufficient stability of the
weight estimates. The reverse is true for strong shrinkage. Thus, the required
size of the training sample depends on the chosen shrinkage level and can be
analyzed to determine how large a sample must be for a combination to be ben-
eficial. Similarly, given a training sample size, a specific degree of sensitivity to
the training sample must minimize the expected error variance of the combined
forecast. These aspects are formulated in RQ 4 using the common assumption of
unbiased errors.
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RQ 4 Forecast Combination – Bias–Variance Trade-Off
a) Can the out-of-sample error variance of a combination of unbiased

forecasts using optimal weights (OW) shrinked towards the simple
average (SA) be decomposed into a bias and a variance component?

b) Given a linear shrinkage level of optimal weights (OW) towards
the simple average (SA), which training sample size is required for
a combination of unbiased forecasts to have lower out-of-sample
error variance than the simple average?

c) Given training sample size, which linear shrinkage level of optimal
weights (OW) towards the simple average (SA) minimizes the out-
of-sample error variance of a combination of unbiased forecasts?

Similarly to forecast correction, forecast combination is also influenced by
structural changes, which result in weights not fitting future observations even if
estimated without uncertainty. For a specific combination, small changes up to a
certain critical level can be expected not to affect the optimality of the decision.
The critical degree of changes can thus be seen as a measure of the robustness of
a decision. In general, a more robust decision can be expected to be related to
stronger shrinkage since the simple average as an extreme choice are completely
independent of structural changes. Thus, the critical changes quantifying the ro-
bustness can be used to determine a shrinkage level that is robust against changes
up to a certain extent, which can be chosen as a robustness requirement by the ex-
pert responsible for the forecast combination. These aspects regarding structural
changes and robustness are formulated in RQ 5.

RQ 5 Forecast Combination – Structural Changes
a) How strongly are error covariances allowed to change for a com-

bination of unbiased forecasts to outperform a combination with
lower shrinkage of optimal weights (OW) towards the simple aver-
age (SA)?

b) Given a robustness requirement in terms of maximum changes of
error covariances, what is the optimal linear shrinkage level of opti-
mal weights (OW) towards the simple average (SA) for a combina-
tion of unbiased forecasts?

Based on the derived research questions, this thesis makes several contribu-
tions to the literature on forecast correction and combination.

Although forecast correction is an established approach to improving the ac-
curacy of judgmental forecasts, this work is the first to analyze the robustness
of the approaches against small training samples and structural changes. More
precisely, critical values regarding training sample sizes as well as changes of
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the linear judgmental biases are introduced that result in a corrected forecast
having higher accuracy than the original one. Based on the insights into the ro-
bustness against structural changes, a new approach is proposed that improves
the robustness by explicitly detecting and including structural changes. The ap-
proach –as well as the existing approach using exponential weighting of past
observations– is empirically evaluated to provide insight into how to address
structural changes. Furthermore, non-stationarity is first identified as an issue for
forecast correction methods in this work. Several approaches ensuring stationar-
ity of time series are proposed for application in the context of forecast correction
and evaluated for different types of time series to provide guidance on which
approach to use in specific cases.

In forecast combination, it is well known that the so-called forecast combina-
tion puzzle –that complex combination methods do not empirically outperform
simple methods– is related to estimation uncertainty and consequently to the
bias–variance trade-off. However, this work is the first to aim at decomposing
the error of a combined forecast into components related to bias and variance.
Based on this decomposition, a minimal training sample is derived for which a
combination can be expected to outperform an alternative one, which aids deci-
sions on how to combine forecasts. Furthermore, a new and analytically derived
shrinkage level of optimal weights towards the simple average is introduced.
This shrinkage level allows explicitly addressing the uncertainty involved in esti-
mating weights from a limited set of past observations. The additionally derived
critical changes first provide the means to assess the robustness of a decision for
a combination. For this purpose, the changes quantify how strongly error charac-
teristics are allowed to change for a decision for a combination, i.e., a shrinkage
level, to still perform better than the robust alternative of using the simple aver-
age. Lastly, the robust shrinkage factor, which can be derived from the critical
changes, is the first combination approach that explicitly addresses the robust-
ness of a decision.

Overall, this thesis provides a variety of new insights into forecast correction
and combination and develops new methods and guidance for successful and
robust application of the methods in practical settings.

1.3 Structure of the Thesis

For the purpose of thorough analysis and evaluation of forecast correction and
combination, this thesis is structured as follows. The first part focuses on the
foundations of the work in this thesis. First, after the introduction and motiva-
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tion, judgmental forecasting and its strengths and weaknesses in comparison to
statistical model-based forecasting methods are discussed in combination with
the mechanisms that can be used to integrate judgmental forecasts and statistical
models in order to use the strengths of both approaches. As the integration meth-
ods require estimating parameters, relevant basic concepts of statistical learning
theory are discussed subsequently. Most importantly, the bias–variance trade-off
is introduced, which affects the integration mechanisms and is used throughout
this work.

The second part analyzes theoretical properties and bias–variance trade-offs
in forecast correction and combination methods as integration mechanisms for
judgmental forecasts and statistical methods. The robustness against small train-
ing samples and structural breaks is assessed and approaches are developed that
address the involved bias–variance trade-offs. The proofs of all theorems derived
or displayed in this part are provided in the appendix.

The proposed approaches are evaluated in an empirical case study in the third
part of this work. The case study in corporate cash flow forecasting and the
data from a sample company used for this purpose are introduced. The avail-
able forecast data set is then used to evaluate which approaches to solving the
bias–variance trade-offs in forecast correction and combination not only are ad-
vantageous regarding their theoretical properties but also perform well in prac-
tice.

The fourth and final part of this work concludes and provides an outlook on
possible extensions and future work.

A graphical overview of this thesis with its four parts is additionally provided
in Figure 1.1.

The analyses and evaluation of forecast correction methods are in parts based
on Blanc and Setzer (2015b) and Blanc and Ruchser (2016). Furthermore, the the-
oretical analyses and discussions of forecast combination are partially based on
Blanc and Setzer (2016a,b).
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Figure 1.1: The thesis is structured into four parts. The first part provides an introduction
and motivation to the thesis and introduces important foundations. The second part fo-
cuses on analyzing and improving the mechanisms for integrating judgmental forecasts
and statistical models, which are then applied and evaluated in the third part. The last
part concludes and gives an outlook on extensions and future work.



Chapter 2

Integration of Judgmental Forecasts
and Statistical Models

JUDGMENT, as an established approach to time series forecasting in practice,
has a variety of strengths and weaknesses in comparison to alternative model-

based forecasts. In the first section of this chapter, a short introduction to judg-
mental forecasting as well as a discussion of the strengths and weaknesses are
provided. Forecast correction and combination as integration mechanisms for
judgmental forecasts and statistical models aim at using the strengths of both
approaches to increase forecast accuracy. Both methods are introduced in detail
in Section 2.2, where a short overview of alternative integration mechanisms is
additionally provided. As both forecast correction and combination require esti-
mating a statistical model with parameters, the approaches can be analyzed using
results from the statistical learning theory. Relevant basic concepts, especially the
bias–variance trade-off, are introduced in Section 2.3 as a foundation for the anal-
yses in this work.

2.1 Judgmental Forecasting

Time series forecasting in general aims at predicting future values of a variable of
interest given available information. Important information for a forecast task are
on the one hand past observations of the time series as a temporal dependency or
development of the variable can often be suspected. On the other hand, available
contextual quantitative and qualitative information can be relevant and thus be
included in a forecast.

More formally, a forecast Ft+h is produced at time t and predicts the value at
time t + h where h is the forecast horizon. When a forecast Ft+h is produced, the
past realized, or actual, values A1, . . . , At are known and can be used as a basis
for the forecast. The predicted variable is realized at time t + h and the actual

13
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value At+h is then known. The accuracy of the forecast can then be assessed,
for instance using the mean squared error (MSE) defined in Equation 2.1, which
quantifies the accuracy for a set of m forecasts F1, . . . , Fm in comparison to the
corresponding actual values A1, . . . , Am. Since the MSE involves a quadratic pe-
nalization of errors, large errors have a much larger influence on the MSE than
small errors.

MSE =
1
m

m

∑
i=1

(Ai − Fi)
2 (2.1)

Various statistical time series forecasting models are available, which aim at
minimizing the forecast errors. See De Gooijer and Hyndman (2006) for an exten-
sive review of model-based time series forecasting. The model-based approaches
provide forecasts with reasonable forecast accuracy and sufficient time series data
for estimating the models is often available. As model-based forecasts are cheap
to calculate and “particularly simple models can outperform humans in a wide
range of situations” (Hogarth and Makridakis, 1981), statistical models could be
expected to dominate forecasting tasks in practice.

However, judgmental forecasts are nevertheless often used in practice. For in-
stance Sanders and Manrodt (2003) found that only 11 % of 240 surveyed US com-
panies use software in the forecasting process. See Webby and O’Connor (1996)
for an overview of the use of judgment in forecasting. Consequently, judgmental
forecasts seem to have strengths different from those of model-based forecasts.
For instance Makridakis (1988), Blattberg and Hoch (1990), Webby and O’Connor
(1996), and Sanders and Manrodt (2003) surveyed and discussed the strengths
and weaknesses of judgmental and model-based forecasting. A key result of the
surveys is that the relevance of contextual information is the main reason for the
continuing importance of judgment in forecast tasks. Humans producing judg-
mental forecasts can include all kinds of qualitative information besides the avail-
able quantitative information into their forecasts. Statistical forecasting models
are in contrast restricted to the limited set of quantitative information that are ex-
plicitly included in the model. The qualitative contextual knowledge is especially
important if the variables to be predicted are relatively unstable, for instance as
a result of changing external factors. Unstable time series are often easier to pre-
dict for human experts with contextual knowledge, which allows anticipating
changes to a certain extent. These aspects offer a comprehensible explanation of
the persistent importance of judgmental forecasting in practice, where contextual
factors are likely to be important.

In contrast to the key advantage of being able to include contextual informa-
tion, judgmental forecasts often exhibit various weaknesses. Most importantly,
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the judgmental forecasts are often influenced by cognitive heuristics and biases,
as for instance reviewed by Hogarth and Makridakis (1981), Bunn and Wright
(1991), Goodwin and Wright (1994), and Lawrence et al. (2006).

For example the anchoring and adjustment heuristic in time series forecast-
ing (Hogarth and Makridakis, 1981; Lawrence and O’Connor, 1995) results in
humans using the last available value as anchor and then adjusting until a rea-
sonably plausible forecast value is reached. The adjustments from the last value
resulting from this procedure are however often insufficient, which can in turn
considerably decrease forecast accuracy.

Beyond cognitive heuristics, different time series characteristics are known to
negatively influence the accuracy of judgmental forecasts. For instance random-
ness in time series is often found to influence judgmental forecasts, likely because
humans tend to interpret randomness as a signal, as researched by Lopes and
Oden (1987), Andreassen (1988), and Harvey (1995), amongst others. Similarly,
Reimers and Harvey (2011) found that autocorrelation of time series influences
judgmental forecasts. While judgmental forecasts are in general sensitive to auto-
correlation, uncorrelated time series are often judged with positive autocorrela-
tion. Furthermore, the autocorrelation of the time series, which was analyzed and
predicted before the current one, was found to influence the judgmental forecast.

Overall, judgmental forecasts are likely to be biased and influenced by various
factors, which in turn results in reduced forecast accuracy. Biased judgmental
forecasting and decision-making are phenomena observed in many contexts and
negative effects on business performance can often be found, as discussed by
Leitner and Leopold-Wildburger (2011). For instance, in a study by Lawrence
et al. (2000), errors in sales forecasts of three manufacturing-based companies
were attributed mainly to inefficiencies and biases. In another study, Enns (2002)
analyzed the influence of biased and uncertain demand forecasts on production
scheduling and found that biases significantly influence lateness of deliveries.

The effects biases and heuristics can, at least partly, be mitigated with well-
designed decision support systems, as for instance shown for the anchoring and
adjustment heuristic by Remus and Kottemann (1995) and George et al. (2000).
However, it is regularly observed that information provided by decision support
systems is undervalued by the user, which can result in biases being only partly
removed (Lim and O’Connor, 1996; Bhandari et al., 2008).

As biases, which and are likely to exist in judgmental forecasts, influence fore-
cast accuracy and cannot be completely removed by providing decision support
to the forecaster, alternative means aiming at improving forecast accuracy are of
interest. The integration with statistical models, which is introduced in the next
section, provides such methods aiming at improving the accuracy.
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2.2 Integration Mechanisms

In general, integration mechanisms for judgment and statistical models aim at
improving the accuracy of forecasts by combining the strengths of subjective
judgmental forecasts and objective statistical methods in an advantageous way.
Goodwin and Wright (1994), Webby and O’Connor (1996), Armstrong and Col-
lopy (1998), Goodwin (2002), Sanders and Ritzman (2004), and Lawrence et al.
(2006) provided overviews of the different approaches aiming at improving the
accuracy of judgmental forecasts. Four important approaches can be identified
from the surveys.

First, in the judgmental adjustment approach, a model-based forecast is pro-
duced first. The forecast is then presented to a human expert who can adjust the
forecast. The expert is expected to only deviate substantially from the objective
model-based forecast in case of strong evidence for an alternative one.

Second, in judgmental bootstrapping, going back to Bowman (1963), the re-
lationship between all available input data and the final judgmental forecast is
analyzed. Relevant input data and weightings are derived and a statistical model
of the original judgmental forecasts is estimated, which can be used to produce
new forecasts.

Third, forecast correction, as introduced by Theil (1966), aims at detecting lin-
ear biases in past forecasts. The identified biases can then be removed from new
forecasts in order to derive a more accurate corrected forecast.

Fourth, a combination of judgmental and model-based forecasts has been iden-
tified as a promising approach as they are likely to have very different strengths
and weaknesses, as previously discussed in Section 2.1. In a combination of fore-
casts, the errors of the different forecasts can cancel each other out, which in turn
reduces the error variance.

The first two approaches, adjustments of model-based forecasts and judgmen-
tal bootstrapping, are not considered in this work for two reasons. First, forecast
correction and combination are more likely to reduce biases in judgmental fore-
casts as forecast correction directly aims at removing biases and forecast combi-
nation reduces biases in a combination with an unbiased model-based forecast.
In contrast, biases are likely to persist in the judgmental bootstrapping approach
(as the biased judgmental forecasts are analyzed) and biases similar to those in
a judgmental forecast are likely to occur in judgmental adjustments of model-
based forecasts. Second, judgmental bootstrapping requires a great variety of rel-
evant input data in order to reproduce the judgmental forecast and implementing
judgmental adjustment of model-based forecasts requires changing the forecast-
ing process. However, this work is on the one hand not an experimental one. On
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the other hand, no data set of quantitative and contextual factors relevant to a
forecaster is available.

This selection is additionally supported by results in the literature, which indi-
cated that the two excluded approaches often do not improve forecast accuracy.
While early studies found considerable evidence in favor of judgmental boot-
strapping (Kleinmuntz, 1990), these results were later explained by unrealistic
assumptions, such as irrelevance of contextual information and input data with-
out autocorrelation (Bunn and Wright, 1991; Lawrence and O’Connor, 1996). Un-
der more realistic assumptions, the model of the judgmental forecast is found not
to outperform the original forecast. Judgmental adjustment of model-based fore-
casts are designated as “the least effective way to combine statistical and judg-
mental forecasts” by Sanders and Ritzman (2001) in a review of studies on judg-
mental adjustments. Model-based forecasts are adjusted very often, too weakly
for complex and too strongly for simple models (Franses, 2008). An optimism bias
can be suspected for positive adjustments, as these adjustments are less benefi-
cial (Syntetos et al., 2009). Furthermore, small adjustments are likely to decrease
accuracy (Fildes et al., 2009) and adjustments are frequently too large in volume
(Franses and Legerstee, 2010). These effects may be due to the experts having a
different loss functions or due to overconfidence (Franses, 2013).

The forecast correction and combination approaches, which are the focus of
this work, are introduced in greater detail next.

2.2.1 Correction of Judgmental Forecasts

The most common approach to forecast correction was introduced by Theil (1966)
and is commonly called Theil’s method. The approach is based on a decompo-
sition of the mean squared error and is introduced in Theorem 2.1. It should be
noted that the following analyses and discussions do not consider the forecast
horizon of the judgmental forecasts as Theil’s method can be applied for each
forecast horizon independently.
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Theorem 2.1 (Theil’s Decomposition of the MSE). Given means µF, µA and standard
deviations σF, σA of the forecasts and actuals, and correlation ρ between forecasts and
actuals, the MSE can be decomposed to

MSE = (µA − µF)
2 + (σF − ρσA)

2 +
(

1− ρ2
)

σ2
A

Interestingly, the terms of Theil’s composition have intuitive interpretations.
The first term, (µA − µF)

2, is the squared difference between the means of the
actuals and of the forecasts. The corresponding bias is consequently called mean
bias and refers to a constant shift of the forecasts in comparison to the actuals.

In contrast, the second term (σF − ρσA)
2 compares the standard deviation of

the forecasts to the standard deviation of the part of the actuals which is corre-
lated with the forecasts. The corresponding bias is referred to as regression bias.
Several cases can be imagined regarding the standard deviations and correlation
of forecasts and actuals. If forecasts and actuals have equal standard deviation
and a high correlation, the deviations from the mean match well and there is no
regression bias. In contrast, a bias exists for instance if there is no correlation
between forecasts and actuals (the forecasts are random in this case and do not
have explanatory power) or if forecasts and actuals are correlated but the stan-
dard deviation of the forecasts exceeds the one of the actuals. In the latter case,
small values are slightly overestimated whereas high actuals are strongly over-
estimated. The name regression bias is motivated by the fact that forecasts are
(linearly) correlated with the actuals but do not scale perfectly with the actuals.

The last term,
(
1− ρ2) σ2

A, reflects the part of the variance of the actuals that is
not included in the forecasts, i.e., the uncorrelated component. The unsystematic
error component reflected by this term is consequently called random error.

The three types of biases are illustrated in Figure 2.1 where forecast with dif-
ferent biases (dashed lines) are displayed for a short time series of actual values
(solid line). Additionally, the values of the three terms of the decomposition are
shown in the right part of the figure. In the first example, the forecasts match
the actuals well with only random fluctuations around the actual values. Con-
sequently, the MSE consists completely of the random error. In contrast, the sec-
ond and third example display forecasts with a mean or a regression bias. For
the mean bias in the second example, the forecasts are systematically lower than
the actual values. In the example with the regression bias, values close to zero
have small errors whereas higher (positive or negative) actuals are overestimated.
Lastly, the fourth example shows a combination of the two biases, where the actu-
als are systematically underestimated and the errors scale with the actual values.
This last example already resembles real-world time series and forecasts.
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Figure 2.1: Examples of biases considered by Theil’s method. The forecasts in the first ex-
ample are unbiased and fluctuate randomly around the actuals. In contrast, the forecasts
in the second and third example have a mean and a regression bias respectively. Both
biases are present in the third example.
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Based upon the decomposition of the MSE, Theil (1966) proposed the optimal
linear correction of forecasts introduced in Theorem 2.2, which removes the two
systematic components of the error, i.e., the mean and the regression bias.

Theorem 2.2 (Optimal Linear Correction). Mean and regression bias in Theil’s de-
composition can be eliminated by calculating a corrected forecast

FC = β0 + β1F

where β0, β1 are the regression coefficients in the linear regression A = β0 + β1F + ε.

The correction of the biases can also be derived from a forecast-actual plot,
which is shown in Figure 2.2 for the previous example. In case of an unbiased
forecast, the forecasts are randomly distributed around the line where the fore-
casts are equal to the actuals, which is indicated by a dashed line in the plot. The
upper left example clearly indicates unbiasedness and the regression slope is one
while the intercept is zero. In contrast, the intercept is unequal zero in the upper
right figure (mean bias) whereas the slope is unequal one in the lower left figure
(regression bias). If mean bias as well as regression bias exist in a forecast (lower
right figure), the intercept is unequal zero and the slope is unequal one. In each
case, the regression coefficients indicate how the forecasts have to be transformed
in order to match the actuals in expectation.

Empirical case studies applying Theil’s method in different domains have
shown that forecast correction often increases forecast accuracy substantially.

In an early study, Moriarty (1985) corrected one single sales time series span-
ning six years. The author found mean biases in four of the six years and addi-
tional significant regression biases. A correction of the biases led to a significant
reduction of the mean squared error for two of the years. In contrast to the years
for which the correction was advantageous, the other two years primarily exhib-
ited a much lower mean bias.

Bohara et al. (1987) used Theil’s method to correct macroeconomic forecasts
(GNP, real GNP, GDP deflator, and corporate profits after taxes) from the ASA-
NBER survey, which were the result of a survey amongst 50-60 forecasters. In
the empirical evaluation, the correction substantially increased the out-of-sample
errors for all four time series. It should however be noted that the ASA-NBER
forecasts are already combinations of multiple forecasts and consequently likely
to be less biased than individual forecasts and that all four time series are not
stationary and show clear trends.

llmakunnas (1990) analyzed forecast correction methods from a pretesting
point of view, i.e., assuming that a statistical test on past performance is used
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Figure 2.2: In a forecast-actual plot, the different biases and combination of biases corre-
spond to different patterns. In the unbiased case (upper left), the points are randomly
distributed around the dashed line where the forecasts are equal to the actuals. In con-
trast, in case of a mean (regression) bias in the upper right (lower left) figure, the regres-
sion line through the points is shifted (tilted) in comparison to the unbiased line. If both
biases exist (lower right figure), the regression line is shifted and tilted.

to decide whether the original forecast, a naïve forecast or the corrected forecast
is used. Based upon the results, the author cautioned against using forecast cor-
rection and suggested to use forecast correction only if the correction is superior
at a high confidence level or if systematic and persistent biases are likely to occur.

Elgers et al. (1995) corrected 6,302 yearly earnings forecasts generated by ana-
lysts. The mean squared error of the forecasts could be reduced significantly.

Extensive experiments were conducted by Goodwin (1996, 2000), both in a lab-
oratory setting and on empirical data. In the laboratory experiment, students pro-
duced one-period-ahead forecasts, for which a correction using Theil’s method
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was shown to increase accuracy. Special periods in the form of promotional
events were included in order to check for robustness against sporadic events.
The empirical experiments were based on forecasts from three companies from
different industries covering up to 42 months of sales data. The corrected fore-
casts outperformed the original expert forecasts for two of the companies. How-
ever, the improvements were only significant for one of the companies under
study. Additionally, the business impact of forecast correction was evaluated us-
ing a loss function with asymmetrical penalties for under- and overestimation.
It was shown that using corrected forecasts could have reduced costs resulting
from under- or overproduction as a result of inaccurate forecasts by 26-54 %, de-
pending on the assumed ratio between costs of under- and overproduction.

Goodwin (1997) used Theil’s method with discounted weights for older ob-
servations for the correction of forecasts resulting from a laboratory experiment.
The author found that using discounted weights of past errors led to lower mean
absolute errors for several types of time series. Significant improvements over
Theil’s method were observed for low-noise time series. For high-noise time se-
ries, both approaches showed comparable performance, except for time series
with a trend reversal, where the weighted approach performed better, and a time
series with a linear trend, where Theil’s method led to lower errors.

In an exploratory study, Shaffer (1998) analyzed 33 one-quarter-ahead forecasts
of a macroeconomic indicator produced by one expert and also found the fore-
casts to be biased. As a result of the correction, the mean squared error was
reduced by nearly 25 %.

In a case study on demand forecasts of a cell phone company, Utley (2011)
showed that using an alternative, more robust, estimation procedure can improve
the performance of Theil’s method. Robust regression methods were also applied
successfully for detecting (and predicting) errors in analysts’ earnings forecasts
(Boudt et al., 2014).

Blanc and Setzer (2015b) compared forecast correction methods in a case study
on corporate cash flow forecasts and found that exponential weighting is required
to achieve significant and robust accuracy improvements.

Theil’s decomposition and correction was also applied for analyses of the fore-
casting skill and the correction of model-based forecasts, see for instance Brandon
et al. (1983), Ashley (1985), and Stewart and Reagan-Cirincione (1991).

Overall, forecast correction is an established approach that is based upon a
solid theoretical foundation in the form of Theil’s decomposition. However, as
Theil’s method focuses on two specific linear biases, only these biases can be
identified and removed. Other biases can only be addressed implicitly and no
additional information is added by the correction. The combination of forecasts,
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which is introduced next, likewise allows implicitly addressing various biases.

2.2.2 Combination of Judgmental and Model-Based Forecasts

For a reduction of biases and errors independently of specific linear biases, a com-
bination of the judgmental with a model-based forecast can be used. As a com-
bined forecast should be within the interval spanned by the judgmental forecast
and the unbiased model-based forecast, all systematic biases in the judgmental
forecast are likely to be reduced. In general, statistical approaches to time series
forecasting aim at detecting patterns, such as trend or seasonality, in past values.
If systematic patterns are detected, the patterns can be extrapolated and to de-
rive forecasts for future values of the variable of interest. For example De Gooijer
and Hyndman (2006) and Makridakis et al. (2008) provide extensive reviews of
approaches to time series analysis and forecasting.

Empirical research indicates that autoregressive integrated moving aver-
age (ARIMA) models often represent patterns in time series well and often result
in good predictive accuracy (De Gooijer and Hyndman, 2006; Cryer and Chan,
2008). The main reason for this is that ARIMA models are very flexible and
different models and parameterizations can be used for various kinds of time
series. Damped trend exponential smoothing, another method that is often rec-
ommended (Gardner, 2006), is less flexible in comparison to ARIMA and always
uses the local trend as a basis. The trend is however dampened in order to “in-
troduce a note of conservatism” (Gardner and McKenzie, 2011).

As an alternative to choosing either the statistical or the judgmental forecast (or
between different judgmental or model-based forecasts), a combination of fore-
casts can be derived. Forecast combination is used in economics since the work
of Reid (1968) and Bates and Granger (1969) and has been shown to increase fore-
cast accuracy in many scenarios, as surveyed by Clemen and Winkler (1986) and
Timmermann (2006), amongst others. The combination of forecasts and its effec-
tiveness is motivated by the simple idea of a portfolio diversification effect, as
already argued by Bates and Granger (1969). In a combination of forecasts with
differing error characteristics, errors cancel each other out at least partially. Fur-
thermore, extreme errors of one forecast can be compensated by the other fore-
casts included in the combination, overall resulting in a substantial reduction of
the error variance of the combined forecast. Even a combination of misspecified
forecasting models can outperform individual well-specified forecasts (Hendry
and Clements, 2004).

Technically, given a vector of k forecasts ~F = (F1, . . . , Fk), forecast combination
is a linear combination of the forecasts defined as F = w>~F with weights w ∈ Rk
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and ∑ wi = 1. The weights w can be defined in advance or learned from past
forecast errors. In the latter case, the weights are estimated from one set of fore-
casts and corresponding errors (the training data) and then applied to another,
previously unknown set of forecasts (the evaluation data). The aim of forecast
combination is to choose weights w that perform well on the evaluation data,
even though only a limited set of training data is available.

A simple approach where weights are defined in advance is the simple aver-
age (SA), which weights the k forecasts equally. SA corresponds to the weight
vector wS in Equation 2.2, where~1k is a vector of ones of length k.

wS =
1
k
~1k (2.2)

The so-called optimal weights (OW), which were introduced by Bates and
Granger (1969) for the basic case with two forecasts, can be considered as the
complement to SA. While SA does not take available training data into account,
OW minimizes the combined error variance within the training sample. The mul-
tivariate generalization of the optimal weight estimate ŵO (see for instance Tim-
mermann (2006)), which uses an estimate of the error covariance matrix in the
training sample, Σ̂, is introduced in Equation 2.3.

ŵO =
Σ̂−1~1k

~1>k Σ̂−1~1k
(2.3)

The two approaches can be used to illustrate the error variance reduction effect
of forecast combination. The combined error variance on the training data of a
combination of two forecasts with SA and OW is shown in Figure 2.3. The error
variances of the two individual forecasts σ2

1 = 1 and σ2
2 = 4 are indicated by

dotted, horizontal lines in the figure.
The in-sample error variance of OW never exceeds the lowest error variance

amongst the individual forecasts. Error variances with SA are lowest for error
correlation −1, and then monotonically increase, at some level of error correla-
tion exceeding the variance of the best individual forecast, but never exceeding
the error variance of the worst individual forecast. The difference between error
variances with SA and OW is small for strong negative correlations and largest
for strong positive correlations.

Although the basic variance reduction effect is established, an important ques-
tion discussed in the literature is how many (and which) forecasts to include in
a combination to ensure the diversification effect and the resulting reduction in
error variance. Armstrong (2001) recommended to include at least five forecasts.
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Figure 2.3: Combined in-sample error variances for SA and OW combination of two fore-
casts with error variances σ2

1 = 1 and σ2
2 = 4, depending on the error correlation. With

SA, the combined error variance is always lower than the error variance of the worse
forecast and can be lower than the error variance of the better forecast, depending on the
error correlation. For OW, weights depend on the error correlation and are displayed in
the graph. The resulting combined in-sample error variance are –in the worst case– equal
to the error variance of the better forecast.

Davis-Stober et al. (2014) suggested constructing an optimally wise group by se-
lecting judgments that are as negatively correlated with each other as possible
and to even include less informed or biased forecasts to ensure diversity. Some
research suggests that selecting a subset of forecasts dominates averaging over
too many forecasts. For instance Mannes et al. (2014) suggested a select-crowd
strategy, which ranks judges by accuracy and only includes the opinions of the
top judges. Similarly, Budescu and Chen (2015) improved the aggregated judg-
ment by eliminating poorly performing individuals from the crowd. The number
and choice of forecasts included in a combination influences the combined error
variance in two ways. On the one hand, an increasing number of forecasts al-
lows finding weights that result in a large portion of the errors of the forecasts
canceling each other out. On the other hand, including more forecasts requires
estimating additional weights, which can increase errors because of estimation
errors. The consensus of including a number of forecasts that ensures diversity
while not including too many forecasts consequently tries to find a reasonable
trade-off between these two aspects.

Combining one or several judgmental and model-based forecasts to derive a
forecast that uses the strengths of both judgment and statistical models is a spe-
cial case of the general forecast combination. Although most of the literature
focuses on forecast combination in general or on the combination of different
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model-based forecasts, promising results on the combination of judgmental and
model-based forecasts have been found in empirical studies.

Lawrence et al. (1986) averaged judgmental forecasts and deseasonalized single
exponential smoothing forecasts of 68 monthly time series from the M Competi-
tion (Makridakis et al., 1982). The experiments showed that the benefits from
combining judgmental and model-based forecasts exceed those of combining
only model-based forecasts. The combination is most beneficial for short fore-
cast horizons and time series that are easier to predict.

Bohara et al. (1987) combined ARIMA forecasts of four macroeconomic time se-
ries (GNP, real GNP, GDP deflator and corporate profits after taxes) with forecasts
from the ASA-NBER survey using a simple average as well as unconstrained
and constrained (zero intercept and weights summing up to unity) multivariate
regression. The simple average outperformed both individual forecasts out-of-
sample for two of the four time series. For the GNP deflator, the simple aver-
age combination outperformed the ASA-NBER survey forecast. The unrestricted
combination as a more flexible approach performed worse than the simple aver-
age for all time series. Similarly, the restricted combination only outperformed
the simple average for the GNP deflator time series. It should however be noted
that the ASA-NBER forecasts are already combinations of multiple judgmental
forecasts.

Blattberg and Hoch (1990) used equal weighting of judgmental and custom-
made model-based forecasts of catalog fashion sales in two companies and
coupon redemption rates in three companies. The variance explained by the com-
bined forecast on average improved 16 % over the best individual forecast.

Lobo and Nair (1990) analyzed combinations of analyst forecasts with corre-
sponding statistical forecasts of earnings of 96 companies for the years 1976 to
1983. As judgmental forecasts, a forecast from the Value Line Investment Survey
and an average of analyst forecasts from the Institutional Brokers Estimate Sys-
tem were used. Statistical forecasts were produced using an ARIMA model and
a random walk with drift model, each calibrated using 60 quarters of data. The
authors found that combinations outperformed all individual forecasts. Further-
more, combinations using cross-sectional weights learned from two years of past
data outperformed equal weights of forecasts. Combining a higher number of
forecasts further increased accuracy.

Sanders and Ritzman (1990) combined daily demand forecasts of 22 time series
covering three years. Forecasts were produced by warehouse planners and by
different statistical models. It was found that the model-based forecasts already
outperformed the judgmental forecasts, while the combination of judgmental and
model-based forecast improved accuracy even further. In an ensuing experiment,
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Sanders and Ritzman (1995) compared forecasts with contextual knowledge (pro-
duced by warehouse managers with information from real-world experience) to
forecasts with technical knowledge (produced by students with knowledge on
forecasting models and data analysis). The authors found that combinations in-
cluding the forecasts with contextual knowledge significantly dominated other
combinations, indicating that contextual knowledge is essential for a contribu-
tion to the combined forecast.

Goodwin (2000) combined judgmental forecasts of eight time series of quar-
terly sales figures (produced by 16 students with technical knowledge) with
model-based forecasts calculated by the Forecast Pro software. Furthermore,
judgmental sales forecasts from two companies were combined with exponen-
tial smoothing forecasts. In the experiment with students, the combined forecasts
improved over the judgmental forecasts but did not outperform the model-based
forecasts, except for special periods, where the students had additional informa-
tion. In contrast, the combination of the real-world judgmental forecasts resulted
in improvements over all individual forecasts for both companies.

Franses (2011) analyzed why averaging of statistical and judgmental forecasts
works although the expert forecasts are regularly found to be biased. The analy-
sis was based upon the idea that a judgmental forecast can be decomposed into
a reproducible part (which can be modeled using bootstrapping of judgmental
forecasts) and a non-reproducible part (the intuition). In this setting, the repro-
ducible part makes the combination work whereas the intuition part is of smaller
importance and is partly averaged out.

Overall, considerable evidence exists that forecast combination is not only ad-
vantageous in general but that the combination of judgmental and model-based
forecasts is often especially beneficial for the forecast accuracy. While simple av-
eraging of forecasts is often successfully applied, alternative combination meth-
ods, such as optimal weights, exist that involve estimating parameters, i.e., the
weights of the included forecasts.

2.3 Statistical Learning Theory

As weights have to be estimated from available data in forecast correction as well
as forecast combination, the statistical learning theory aiming at understanding
statistical model involving estimated parameters can be applied. In this sec-
tion, basic aspects of the statistical learning theory, especially the so-called bias–
variance trade-off, are introduced based upon Hastie et al. (2009) and James et al.
(2014).
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In a first step, it can be assumed that there is a functional relationship f between
a set of predictors X and the dependent variable (corresponding to the actuals in
the forecasting setting) A as shown in Equation 2.4, where ε is a random error
term with mean zero that is independent of X.

A = f (X) + ε (2.4)

If the true functional relationship is known, the values of the predictors can be
plugged into the function, resulting in a prediction or forecast F = f (X) with
an error only consisting of the random error ε. However, it is rarely the case
that the true function relationship is known, except for instance for physical laws.
Consequently, the function f has to be estimated as f̂ from available observations.
Using the estimated function, a prediction can be calculated as F = f̂ (X).

In contrast to the case with known f , the prediction error not only depends
on the random error ε if the functional relationship is estimated. If the estimate
f̂ is very different from the true function f , errors are likely to be substantially
higher than for a good estimate f̂ . Thus, the accuracy of the estimate of f can also
influence the prediction error.

As for instance shown by James et al. (2014), the expected MSE can be decom-
posed into parts that are related to properties of f̂ , as shown in Equation 2.5.

E
[(

A− f̂ (X)
)2
]
=
(

Bias
[

f̂ (X)
])2

+ Var
[

f̂ (X)
]
+ Var [ε] (2.5)

In this decomposition, the bias and the variance of f̂ (X) are defined as shown
in Equations 2.6 and 2.7. Throughout this work, the terms bias component and
variance component are used when referring to the bias and variance parts of the
expected MSE in order to avoid confusion with the general statistical variance
and with judgmental biases.

Bias
[

f̂ (X)
]
= E

[
f̂ (X)

]
− f (X) (2.6)

Var
[

f̂ (x)
]
= E

[(
f̂ (X)− E

[
f̂ (X)

])2
]

(2.7)

It should be noted that the expectation and variance in the decomposition re-
sult from applying different f̂ estimated from different samples from the sample
population to all possible X. The bias component then reflects how much the val-
ues f̂ (X) in expectation deviate from the true values f (X). If the expectation of
different estimates of f equals the true function, there is no systematic (constant)
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bias component of the estimates. A bias component is in general caused by the
estimate f̂ missing a relevant relationship between X and A. In contrast, the vari-
ance component reflects how strong the predictions f̂ (X) differ across different
estimates. If different estimates lead to very different (similar) results, the vari-
ance component is high (low). A high variance component is usually caused by a
high sensitivity to different training samples where f̂ changes substantially upon
random fluctuations in the sample that is used for the estimation.

The last term of the decomposition in Equation 2.5, Var [ε] results from the ran-
dom error and does not depend on f̂ . This term is consequently irreducible and
imposes a lower bound on the expected MSE. Thus, in order to minimize the
expected MSE, the bias and the variance components have to minimized. Unfor-
tunately, bias and variance components cannot be minimized independently as a
result of the nature of the two components. The bias component is reduced if all
potentially relevant relationships between X and A are included in the estimate
f̂ . To achieve this goal, a high sensitivity is required since all minor fluctuation in
the training sample can indicate a relevant relationship that must be included in
f̂ in order to minimize the bias. However, considering increasingly minor fluc-
tuations in the training sample by definition increases the variance component.
Bias and variance components consequently have diametrically opposed behav-
ior when the sensitivity of f̂ is changed and the two components cannot be min-
imized simultaneously. This relationship is illustrated qualitatively in Figure 2.4.
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Figure 2.4: Qualitative illustration of the bias–variance trade-off. The squared bias com-
ponent decreases with increasing model flexibility whereas the variance increases. The
MSE, composed of the squared bias component and the variance component, is mini-
mized for a medium model flexibility.



30 Integration of Judgmental Forecasts and Statistical Models

The bias component clearly decreases with increasing model flexibility or com-
plexity whereas the variance component continuously increases. Consequently,
there is a certain degree of model flexibility where the sum of the squared bias
component and the variance component is minimal, which in turn minimizes the
expected MSE.

While the basic relationship between the bias and variance components is clear
and well understood, the values of the components given model flexibility are in
general unknown. As a consequence, the optimal degree of model flexibility can-
not be determined in a straightforward way. For this reason, deriving insights on
how the bias and variance components are shaped and how they relate to each
other in forecast correction and combination is the issue this work focuses on. Un-
derstanding the involved bias–variance trade-offs gives an important orientation
on how to successfully and robustly correct and combine judgmental forecasts.
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Bias–Variance Aware Integration





Chapter 3

Robust Forecast Correction

AS a variety of biases can influence the accuracy of judgmental forecasts, the
correction of judgmental forecasts using Theil’s method (Theil, 1966) aims

at identifying and removing these biases to improve accuracy. While Theil’s
method is in theory straightforward and has a solid foundation in the form of the
decomposition of the MSE, the robust application in practice is more complex.

The population variances of the forecasts and actuals as well as their correla-
tion, which are used in the decomposition and the optimal linear correction, are
unknown in practice. As a consequence, these parameters have to be estimated
from available data to identify systematic biases that can then be removed from
future forecasts. Section 3.1 gives an overview over the different approaches for
estimating the parameters of the correction model that are used in the literature.

As a result of using estimated parameters, the uncertainty caused by the esti-
mation itself as well as by structural breaks influences the accuracy of the cor-
rected forecasts. This aspect is analyzed in Section 3.2. First, as a result of the re-
quired parameter estimation and the resulting uncertainty, the statistical learning
theory suggests that the error of the corrected forecast has an additional variance
component in comparison to the original forecast. This variance component is
influenced by the size of the available training sample that is analyzed in a first
step. Second, the optimal correction assumes that the biases in future forecasts
are equal to those in past forecasts. However, structural changes in forecast er-
rors as a result of biases changing over time can result in estimated biases being
inaccurate, which in turn increases the bias component of the error of the cor-
rected forecast. Changes can for instance occur because of learning effects or staff
turnover. Consequently, the relevance of structural changes and the impact of
breaks is assessed. Third, non-stationarity of time series, which is likely to occur
in practice, is proven to be an issue that can severely decrease the performance
of Theil’s method. While non-stationarity can be addressed, additional param-
eters have to be estimated for some approaches, which can in turn additionally
increase the variance component of the error of the corrected forecast.

33
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The theoretical results for the three aspects are illustrated and discussed in
Section 3.3. Based upon the derived insights, Section 3.4 proposes extensions to
Theil’s method that aim at transferring the theoretical results into practice. The
extensions enable addressing structural changes in a more flexible way by detect-
ing and incorporating potential breakpoints while still allowing for discounted
weights of old observations. Furthermore, the extensions are designed to enable
addressing non-stationarity in different ways.

Finally, Section 3.5 concludes and discusses the implications and the limitations
of the analyses and results.

3.1 Model Estimation in Forecast Correction

Theil’s decomposition of the MSE and the resulting linear correction, as intro-
duced in Theorems 2.1 and 2.2, use the population means and variances of the
forecasts and the actuals as well as their population correlation. However, these
population parameters cannot be expected to be known in practice. Thus the co-
efficients of the linear regression underlying the optimal correction have to be
estimated from past data. For this purpose, slope and intercept are estimated as
β̂0, β̂1 in a regression A = β0 + β1F + ε with past actuals and forecasts A, F and
residuals ε.

In the literature, different approaches to estimating the regression coefficients
β0 and β1 have been used for the application in forecast correction. In general,
the coefficient estimation problem can be stated as a minimization of the sum of
the penalized errors, as shown in Equation 3.1. The errors are penalized using
a function p : R → R+

0 , which is symmetrical, non-decreasing and has unique
minimum at zero.

arg min
β̂0,β̂1

∑
t

p
(

At −
(

β̂0 + β̂1Ft
))

(3.1)

In Theil’s method (Theil, 1966), ordinary least squares (OLS) penalties are used,
which corresponds to the penalty function presented in Equation 3.2

pOLS (ε) = ε2 (3.2)

The OLS estimator results in an estimate that is unbiased and minimizes the
variance of the residuals, which are in general preferable properties over alterna-
tive estimators. However, an issue well known to influence parameter estimates
especially in OLS linear regression are outliers. For instance Cook (1977) and
Chatterjee and Hadi (1986) analyzed and discussed the influence of outliers on
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OLS estimates of linear regression coefficients. In the case of forecast correction,
observations can exist in the training data where the actual value is strongly in-
creased or unexpectedly low, for instance because of unexpected one-time effects
or business-related changes, whereas the forecast value is in the normal range of
forecast values. Depending on the strength of the effect, these observations can be
outliers in the linear regression that strongly influence the regression coefficient
estimates.

In linear regression theory, a considerable body of literature focuses on robust
regression, i.e., estimators that are to a certain extent robust against outliers or
other violations of the assumptions of linear regression. See Rousseeuw and
Leroy (2005) for an overview of robust methods in linear regression. A simple
approach to robust regression is using least absolute deviation (LAD) estimates
instead of OLS estimates. LAD increases the robustness against outliers by using
a minimization of the sum of absolute values of the errors instead of squared er-
rors, which reduces the influence of extreme errors. The corresponding penalty
function is shown in Equation 3.3.

pLAD (ε) = |ε| (3.3)

Ensuring robustness against outliers can also be seen in the context of the bias–
variance trade-off. Treating outliers always requires reducing the weight of some
observations that are likely to be outliers. As a consequence, the expected fit of the
estimated model is worse than for a standard OLS regression without treatment
of outliers. The bias component of the error consequently increases, depending
on the desired degree of robustness against outliers. However, the variance com-
ponent decreases since outliers are less likely to influence estimates, resulting in
a decreased variance of the estimates.

For application in forecast correction, LAD was proposed by Utley (2011). Us-
ing LAD in a linear regression results in robustness against outliers in the in-
dependent variable, i.e., against unusually high or low actual values in forecast
correction. However, robustness against leverage points, i.e., unusually high or
low forecasts, is not achieved and the estimated regression coefficients can still
be influenced by outliers of this type (Rousseeuw and Leroy, 2005; Giloni et al.,
2006).

As a side-effect, LAD may better reflect a non-quadratic loss function of fore-
casters, which has been shown to be likely for instance for financial analysts (Basu
and Markov, 2004).

Besides outliers, structural changes in the forecast-actual relationship can in-
fluence the performance of forecast correction. Technically, a structural change
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results in the characteristics of the training data differing significantly from those
of the data the estimated model is applied to. In terms of the bias–variance trade-
off, a structural change results in an increased bias component of the error of the
corrected forecast while the variance component is unchanged since parameter
estimates are still used. Overall, structural changes can result in substantially in-
creased errors of the corrected forecast and even negate the benefits of correcting
judgmental forecasts.

As a consequence, Goodwin (1997) extended Theil’s method with discounted
weights to give more weight to recent observations. Technically, the approach
corresponds to a weighted least squares regression (WLS) with exponential
weights if the same discount factor is used for β0 and β1. The errors in the min-
imization problem are weighted geometrically with descending weights γt for
older observations. The decrease of the weights over time can be controlled by
the discount factor γ ≥ 1. The corresponding minimization problem is defined in
Equation 3.4, where the weights γt are included in comparison to Equation 3.1.
While Goodwin (1997) used OLS estimation, the weighted approach can also be
used with LAD and the definition consequently uses a generic penalty function
p.

arg min
β̂0,β̂1

∑
t

γt p
(

At −
(

β̂0 + β̂1Ft
))

(3.4)

Theil’s method as well as its variants proposed by Goodwin (1997) and Utley
(2011) are obviously special cases of Equation 3.4. All approaches can conse-
quently be treated as special cases of the weighted approach.

The discount factor γ used in the weighted approach introduces an additional
parameter which has to be defined in advance or learned from available data.
Goodwin (1997) proposed determining the discount factor in a rolling pseudo
out-of-sample evaluation for the last 12 data points of the available training data.
In this evaluation, a correction model is estimated for different discount factors
using Equation 3.4 and OLS and all observations except the last 12 observations.
The models are then applied to the first of the twelve hold-out data points. The
data point is then added to the training data and the procedure is repeated for
the remaining data points. The errors resulting from the correction models with
different discount factors are aggregated, for instance using the MSE, and the
discount factor with the lowest aggregated error is chosen.

This procedure can be expected to address structural breaks in the training
data (for instance a changing bias) in an indirect and implicit way. If a structural
break exists in the training data, not only the final correction model but also the
pseudo out-of-sample models and their outcomes are likely to be influenced by
the structural break. If a structural break exists, weights are chosen that minimize
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the influence of outdated observations before the structural break while, at the
same time, preferring weights resulting in stable models.

Overall, the weighted method with the pseudo out-of-sample identification
of the discount factor tries to address the bias–variance trade-off resulting from
structural changes in the training data. Treating structural breaks using the ap-
proach reduces the bias component and increases the variance component be-
cause of the additional parameter and the unevenly distributed weights that re-
sult in a lower stability of the estimates. However, if no structural break exists, the
bias component is unchanged while the variance component slightly increases.
The assumption of the procedure is consequently that the reduction of the bias
component in cases with structural changes outweighs the increase of the vari-
ance component in these as well as all other cases.

In summary, outliers and structural breaks in Theil’s method have been identi-
fied as issues and estimation methods that are expected to address these aspects
have been proposed for application in forecast correction. Outliers and their ef-
fect on linear regression have received much attention in the statistical literature
(Rousseeuw and Leroy, 2005). In contrast, while there is awareness that structural
changes are an issue, it is currently unknown which effect they have on forecast
correction models. More precisely, the means required to assess the robustness
of forecast correction against structural changes, i.e., how strongly biases are al-
lowed to change, do not exist. Furthermore, although estimation is always used
when applying Theil’s method, it is currently unknown how strongly the estima-
tion influences the error of the corrected forecast. This includes the parameters
estimation that is additionally required in the preprocessing of the forecasts and
actuals before application of forecast correction models. Thus, the next sections
focus on understanding the influences of parameter estimation and structural
changes on forecast correction. For the theoretical analyses, an unweighted OLS
estimation is assumed as the estimator and its properties are, in comparison, well
studied.

3.2 Robustness in Forecast Correction

The different estimation procedures introduced and discussed in the previous
section all rely on available past data. Thus, a key aspect driving the bias–
variance trade-off is the size of the available data, which is analyzed first in this
section in order to determine the robustness against small training samples.

Furthermore, structural changes can result in substantial differences between
past and future data, which can in turn introduce an additional bias component



38 Robust Forecast Correction

and increase errors. The robustness of forecast correction methods against struc-
tural changes is thus analyzed subsequently. Lastly, non-stationarity is shown
to be an issue for forecast correction methods. Although non-stationarity can be
addressed, the approaches aiming at ensuring stationarity additionally influence
the bias–variance trade-off.

3.2.1 Training Sample Size

In forecast correction models, the parameters are in general estimated from an
available set of training data (consisting of past forecasts and realizations), as dis-
cussed in the previous section. As the instability of the estimated parameters
increases with decreasing training sample size, the variance component can be
expected to increase with decreasing number of observations. A relevant ques-
tion is consequently whether the training sample sizes available in practice are
large enough to allow an application of forecast correction methods to be robust
and beneficial.

The MSE is a random variable depending on the population characteristics of
the samples a correction model is estimated from and applied to. Thus, deriving
the expected MSE of the corrected forecast when the parameters are estimated is
required for an analysis of the influence of the sample size. Theorem 3.1 presents
the MSE of the corrected forecast when the parameters of the correction model
are estimated from a training sample of finite size and then applied to a second
sample with identical population characteristics.

Theorem 3.1 (MSE of Corrected Forecast With Estimation). Assuming that the pa-
rameter β1 of the forecast correction model is estimated as β̂1 from a finite bivariate sample
and applied to a second independent bivariate sample (both with variances of actuals and
forecasts σ2

A, σ2
F and correlation ρ). Then the expected MSE is

MSE = σ2
A + σ2

F

(
Var

[
β̂1
]
+
(
E
[
β̂1
])2
)
− 2E

[
β̂1
]

ρσAσF

Besides the characteristics of the forecasts and errors, the error variance of the
corrected forecast (which is equal to the MSE) presented in Theorem 3.1 depends
on the expectation and variance of the regression coefficient estimate β̂1. Thus,
a more detailed analysis of the expectation of the MSE requires a formally de-
fined sampling distribution of the estimate β̂1. This distribution is only known
under the assumption of bivariate normality of the forecasts and actuals. Using
this assumption, the error distribution of the corrected forecast is displayed in
Theorem 3.2 for the special case.
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Theorem 3.2 (MSE of Corrected Forecast With Estimation Under Normality). As-
suming bivariate normality of forecasts and actuals (with variances of actuals and fore-
casts σ2

A, σ2
F and correlation ρ), the expected MSE of the corrected forecast is

MSE =

(
1 +

1
n− 3

)(
1− ρ2

)
σ2

A

As a clear result of Theorem 3.2, estimating β̂1 from a training data set increases
the MSE of the corrected forecast in comparison to the result without estimation.
This result is intuitive and in line with the statistical learning theory. Although
the result was obtained under the assumption of bivariate normality of forecasts
and actuals, this basic relationship can be expected to be independent of the dis-
tribution of the data while the strength of the effect might differ.

Since a finite training sample is used to estimate the coefficients of the forecast
correction model, the basic property that the corrected forecast is at least as accu-
rate as the original forecast is no longer necessarily true. Cases with very small
training samples can be imagined, where estimation errors result in a very high
variance component of the error that negates all potential accuracy increases of
the correction. Consequently, a minimal training sample size in many cases exists
for which the corrected forecast can be expected to, in expectation, outperform the
original (biased) forecast. Again using the assumption of bivariate normality of
actuals and forecasts, Theorem 3.3 introduces this minimal sample size.

Theorem 3.3 (Minimal Training Sample Size Under Normality). Assuming bivari-
ate normality of actuals and forecasts (with variances of actuals and forecasts σ2

A, σ2
F and

correlation ρ). Then the minimal sample size, which is required so that the corrected fore-
cast can be expected to have a lower MSE than the original biased forecast, can be derived
as

n̊ = d
(
1− ρ2) σ2

A

(µA − µF)
2 + (σF − ρσA)

2 e+ 3

Interestingly, the critical value is closely related to the terms of Theil’s decom-
position (Theorem 2.1). The numerator is the random error component whereas
the denominator is the sum of the mean and regression bias components. Con-
sequently, the minimal training sample size is the smaller the lower the random
error component in comparison to the systematic components. In other words,
a forecast with strong biases requires smaller training samples for the corrected
forecast to outperform the original one.

The minimal training sample size under the bivariate normality assumption is
illustrated and discussed in Section 3.3 to assess the actual training sample size
required, depending on the characteristics of the actuals and forecasts.
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It should again be noted that the derived training sample size is only valid
for normal distributed actuals and forecasts. However, the actuals and forecasts
could follow other distributions such as a t-distribution as an extreme example.
In this case, outliers, which are likely to destabilize the regression coefficient es-
timates, are much more likely. The destabilization results in a larger sampling
variance of the coefficient and, as a consequence, a higher minimal training sam-
ple size in comparison to the one derived under the normality assumption. Thus,
the derived minimal sample sizes should only be seen as an approximate guide-
line and a substantial number of additional training data points should be used,
depending on the distribution of the data.

Another assumption underlying the analysis of the minimal training sample
size is that the population parameters of the forecasts and actuals are identical
for the training and the evaluation data, i.e., that no structural change occurs.
The next analyses focus on the additional effect of these changes.

3.2.2 Structural Change

Structural changes in error patterns and biases are likely to occur in practice, for
instance because of learning effects or staff turnover. As biases are assumed to
be time-invariant in forecast correction methods, at least some changes can be
expected to negatively influence forecast correction. If, for instance, biases com-
pletely vanish and future forecasts are completely unbiased, the old biases are
falsely removed, which in turn introduces a new systematic bias.

To enable a thorough analysis and discussion of the effect of structural changes,
some additional notation has to be introduced.

In contrast to the previous analyses, an analysis of structural changes requires
at least two samples: one data sample before and one after the structural break.
A model learned from data before and after the structural break is applied to new
data from after the structural break. In order to limit the complexity of the analy-
ses, it can be assumed that the structural break occurs between the two samples,
i.e., the parameters are estimated from data with old biases and applied to data
with changed biases.

The random variables representing the actuals and forecasts are denoted A, F
for the training sample and Ã, F̃ for the evaluation sample. Actuals and fore-
casts have standard deviations σA, σF (σ̃A, σ̃F) and correlation ρ (ρ̃) in the training
(evaluation) sample. Based upon these characteristics, the regression slope coef-
ficient can be calculated for both samples as β1 and β̃1. Given these definitions,
the expected MSE in the evaluation sample is defined in Equation 3.5.
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MSE =E
[(

Ã−
(

β0 + β1F̃
))2
]

=E
[((

Ã− µA
)
− β1

(
F̃− µF

))2
]

(3.5)

If no change occurs between training and evaluation sample, all parameters
are equal for both samples and the MSE reduces to the random error, as shown
in Theorem 2.2.

In contrast, the MSE is higher than the random error if one of the sample char-
acteristics changes. This can be motivated intuitively since the forecast error is
only completely reduced to the random error component if the biases detected in
the training sample match the biases in the evaluation sample perfectly (and if
the parameter estimation uncertainty is ignored). This is not the case if a change
occurs, resulting in an increase of the MSE, which can be analyzed for different
types of changes.

First, the mean error (corresponding to the mean bias) can change between
training and evaluation sample. Assuming that the mean of the actuals is un-
changed, the change of the mean error directly corresponds to a change of the
mean of the forecasts. In this case, the MSE increases as presented in Theorem 3.4.

Theorem 3.4 (Influence of Mean Error Change). Assuming a change of the mean
forecast value between the training and the evaluation sample by ∆µ. Given the coefficient
estimate in the evaluation sample, β̃1, the MSE increases in comparison to the in-sample
random error by

∆MSE =

(
ρ̃

σ̃A

σ̃F
∆µ

)2

The change of the mean forecast has quadratic influence on the MSE, which
matches the influence of the difference of the mean actual and mean forecast val-
ues in Theil’s decomposition. Furthermore, the influence is stronger for larger
values of β1 = β̃1. This results is also clear as the intercept term in a linear re-
gression uses the estimate of β1. Larger values of β1 have consequently stronger
influence on the intercept estimate and thus on the error if the mean forecast (and
in turn the optimal intercept) changes.

The MSE increase can be used to derive a critical change of the mean forecast
value, which results in the corrected forecast performing equal to the original
forecast. The critical change is shown in Theorem 3.5.

Theorem 3.5 (Critical Change of Mean Forecast). Assuming a correction model is
applied to an evaluation sample (with σ̃A, σ̃F, ρ̃, µ̃A, µ̃F), then the corrected and the orig-
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inal forecast have equal MSE if the mean value of the forecast changed, from the training
to the evaluation sample, by

∆̊µ = ± σ̃F

ρ̃σ̃A

√
(µ̃A − µ̃F)

2 + (σ̃F − ρ̃σ̃A)
2

Like for the critical sample size, a close relationship to the terms of Theil’s de-
composition can be noted for the critical change in Theorem 3.5. The expression
under the square root is the bias-related part of the MSE. Consequently, the crit-
ical change increases with increasing biases within the evaluation sample. The
critical value is, however, also influenced by the inverse of β1, which introduces
an additional dependency on the bias in the forecasts. If the standard deviation
of the forecasts is substantially lower than the correlated part of the standard
deviations of the actuals (i.e. the variance of the actuals is systematically under-
estimated by the forecasts), the critical value further decreases.

Second, the correlation between actuals and forecasts can increase or decrease
from one sample to the other. This change corresponds to a shift between the
random error and the regression bias component. For instance an increase in
correlation indicates a reduction of the random error component. The influence
of this change of the MSE is analyzed in Theorem 3.6

Theorem 3.6 (Influence of Correlation Change). Assuming a change of the correla-
tion between forecasts and actuals from the training to the evaluation sample by ∆ρ. Then
the MSE increases in comparison to the in-sample random error by

∆MSE =
(
∆ρ

)2
σ̃2

A

As can be seen in Theorem 3.6, the change of the correlation has a quadratic
influence on the MSE of the corrected forecast. As a change of the correlation
corresponds to a shift between regression bias and random error in Theil’s de-
composition, the strength of the regression bias is over- or underestimated if the
correlation changes. Thus, the bias in the evaluation sample cannot be removed
completely or the correction is too strong.

The introduced MSE change as a result of the correlation change can be used
to derive a critical change of the correlation so that the corrected forecast per-
forms equal to the original biased forecast. This critical change is presented in
Theorem 3.7.

Theorem 3.7 (Critical Change of Correlation). Assuming a correction model is ap-
plied to an evaluation sample (with σ̃A, σ̃F, ρ̃, µ̃A, µ̃F), then the corrected and the original
forecast have equal MSE if the correlation between forecast and actuals changed, from the
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training to the evaluation sample, by

∆̊ρ = ± 1
σ̃A

√
(µ̃A − µ̃F)

2 + (σ̃F − ρ̃σ̃A)
2

Interestingly, the critical correlation change in Theorem 3.7 resembles the crit-
ical mean forecast change in Theorem 3.5 as the same square root (of the sum of
the bias components in Theil’s decomposition) is included in both formulae. Con-
sequently, the threshold of the correlation change also increases with increasing
systematic biases since larger changes are required to negate the advantage of the
corrected forecast over the original biased forecast. Additionally, a smaller vari-
ance of the actual values decreases the critical value. This effect can be explained
by the change of the regression bias. Noting that the variance of the forecasts is
fixed and unchanged, a small variance of the actuals corresponds to a strong re-
gression bias where the corrected forecast has a substantial benefit in comparison
to the original forecast, which requires larger changes to negate.

Third, the variance of the errors can change. Assuming that the characteristics
of the actuals are unchanged, this corresponds to a change of the variance of the
forecasts. The forecast variance, like the correlation, influences the regression bias
component of the forecast error. For instance if the forecast variance increases, the
part of the forecast variance exceeding the variance of the actuals also increases,
in turn increasing the regression bias component. The increase of the MSE, which
results from a change in forecast variance, is analyzed in Theorem 3.8.

Theorem 3.8 (Influence of Forecast Variance Change). Assuming a change of the
standard deviation of the forecasts by ∆σ between training and evaluation sample. Given
standard deviations of actuals and forecasts σ̃A, σ̃F and correlation ρ̃ in the evaluation
sample, the MSE increases in comparison to the in-sample random error by

∆MSE =

(
ρ̃

∆σ

σ̃F − ∆σ

)2

σ̃2
A

The change of the MSE in Theorem 3.8 is the stronger, the larger the change of
the standard deviation of the forecasts ∆σ in comparison to σ̃F. Clearly, a slight
increase of the variance of the forecasts has a smaller impact when the variance is
already high. Furthermore, the change depends on the correlation between fore-
casts and actuals. If the correlation is low, the original forecast has little weight
in the corrected forecast and the change of the forecast variance has consequently
little impact. In contrast, if (in the training sample) the correlation was high and
the forecasts were highly correlated to the actuals, a change of the variance would
results in a considerable change of the regression bias.
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Using the introduced change of the MSE in case of a change of the forecast
variance, a third critical change can be derived, which is shown in Theorem 3.9.

Theorem 3.9 (Critical Change of the Forecast Variance). Assuming a correction
model is applied to an evaluation sample (with σ̃A, σ̃F, ρ̃, µ̃A, µ̃F), then the corrected and
the original forecast have equal MSE if the variance of the forecasts changed, from the
training to the evaluation sample, by

∆̊σ =
σF

(
(µ̃A − µ̃F)

2 + (σ̃F − ρ̃σ̃A)
2
)
± ρ̃σ̃A

√
(µ̃A − µ̃F)

2 + (σ̃F − ρ̃σ̃A)
2

(µ̃A − µ̃F)
2 + (σ̃F − ρ̃σ̃A)

2 − ρ̃2σ̃2
A

The critical value in Theorem 3.9 can have two solutions which are valid, i.e.,
correspond to a positive standard deviation of the forecasts in the training sam-
ple. Consequently, different increases or decreases of the can be critical. Unfor-
tunately, as a result of the complexity of the critical value formula, a detailed
discussion of the influences on the critical value as well as of their strengths is
not straightforward. However, Section 3.3 later illustrates the thresholds derived
in this section, including the complex variance change threshold.

Clearly, the changes of MSE resulting from the three changes that are studied
in this section are not completely independent. The changes presented in Theo-
rems 3.4 to 3.8 are consequently not additive and changes can reinforce or negate
each other. Nevertheless, the analyzed influences allow interesting insights into
the influence of structural changes on forecast correction methods.

In summary, changes of the sample characteristics and biases clearly affect the
performance of forecast correction methods. However, as discussed in two of the
three analyses, as long as substantial biases exists in the forecasts, larger changes
are in most cases required in order to put the original biased forecast substan-
tially in favor of the corrected forecast. This is a result of the advantage that the
corrected forecast can be expected to have in comparison to the original forecast
and that requires substantial changes to negate.

Up to this point, estimation uncertainty as well as structural changes, which
are likely to influence forecast correction in practice, have been analyzed. How-
ever, the analyses for this purpose only focused on the population parameters of
the forecasts and actuals while other characteristics of the time series have been
excluded. The influence of non-stationarity as an important characteristic of time
series is analyzed next.
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3.2.3 Non-Stationarity

Systematic components such as seasonal or a linear trend components are likely
to occur in time series in practical applications,. These systematic components
can for instance be a result of business characteristics such as seasonal cycles or a
business growth. In judgmental forecasting, a human expert producing a forecast
for a time series with a strong systematic component is likely to notice the sys-
tematic component and include it into the forecast. Consequently, the underlying
business developments not only influence the actual values of the time series but
also the corresponding forecasts.

This relationship is a clear case of a spurious relationship, as introduced by
Yule (1926), since the forecast and actual time series are to a certain extent in-
fluenced by the same underlying factor. If variables, such as time series, with
a spurious relationship are used in a linear regression, the results can be rather
unexpected, an effect for which the term spurious regression was coined. See
Granger and Newbold (2014) for an overview of the characteristics and effects of
spurious regression.

As forecast correction relies on linear regression, spurious relationships as a
result of systematic components in time series can be expected to influence the
models. This can for instance be seen in the results of the experiments of Good-
win (1997), who included time series with a linear trend into the experiments. For
these time series, the results showed that using Theil’s method substantially de-
creased the accuracy of the forecasts when a low noise was present in the actual
time series. While Goodwin attributed this observation to how humans forecast
time series with a linear trend, the spurious relationship provides an alternative
explanation. The effect of a spurious relationship between actuals and forecasts
is analyzed in Theorem 3.10.

Theorem 3.10 (Spurious Relationship in Theil’s Method). Let T be a systematic
component with variance σ2

T and with zero covariance with forecasts and actuals. If T is
added to actuals and forecasts, resulting in modified forecasts F′ and actuals A′, then the
regression bias component in Theil’s method is influenced towards 0.

Theorem 3.10 shows that the detectable regression bias vanishes with increas-
ing strength of the systematic component. The strength of the component is for
this purpose measured by its variance. Clearly, a stronger linear trend compo-
nent has a higher variance than a weaker one. Likewise, a strong cyclical seasonal
component has higher variance.

As the detectable regression bias vanishes for strong systematic components,
the potential reduction of the bias component of the forecast error by using fore-
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cast correction also decreases. However, if a forecast correction method is never-
theless applied, the variance component is still increased as a result of the param-
eter estimation. Thus, in terms of the bias–variance trade-off, a spurious relation-
ship results in a low reduction of the bias component that can be negated by the
variance component.

Overall, forecast correction is clearly prone to spurious relationships as a re-
sult of non-stationarity of time series. In time series forecasting, where non-
stationarity is also an issue, the standard approach is to apply pre-whitening to
non-stationary time series, for instance by differencing or detecting and remov-
ing the systematic component. Different approaches are for instance discussed
by Brockwell and Davis (2013).

Many approaches to pre-whitening time series introduce additional parame-
ters, which have to be estimated from past data. An example is detrending, where
a trend, i.e., an on average constant increase per time period, is first estimated and
then removed from past actuals and forecasts as well as from future forecasts.

On the one hand, pre-whitening can decrease the bias component of the error
of the corrected forecast. If non-stationarity prevents detecting and removing bi-
ases in a reasonable way, pre-whitening is an essential basis for the correction
approach. However, on the other hand, the estimation for the pre-whitening ap-
proach can introduce additional parameters, which results in an increased vari-
ance component of the error.

As a consequence of the resulting bias–variance trade-off, pre-whitening
should not be applied to all time series. Depending on the time series, the pre-
whitening approach (or no pre-whitening approach) should be applied that re-
sults in the best trade-off between the bias and the variance components. Com-
plex pre-whitening approaches should only be used if justified by the time series
characteristics. The question which approach to use in which case is a main as-
pect of the empirical evaluation in Chapter 6.

Although the basic effect of non-stationarity is clear from the analysis in this
section, the next section gives an example to illustrate the consequences of non-
stationarity. Likewise, the results regarding training samples size and structural
changes are illustrated to provide additional insights.

3.3 Illustration and Discussion

The analyses in the previous section resulted in a variety of theoretical re-
sults regarding the effects of training sample size, structural changes, and non-
stationarity of time series. While important influences and characteristics have
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already been discussed for some of the analytical results in order to derive a ba-
sic understanding, this section provides further illustration and discussion of the
results. First, the minimal training sample size threshold is illustrated. Subse-
quently, the critical changes of the different bias-related parameters are analyzed
and discussed. Lastly, an example illustrating the effect of non-stationarity of
time series on the detectability of biases is given.

3.3.1 Training Sample Size

For a discussion of the minimal sample size required to –in expectation– outper-
form the original forecast (as introduced in Theorem 3.3 under the assumption of
bivariate normality of forecasts and actuals), two assumptions are useful. First,
σA = 1, which does not limit generality since the actuals and forecasts can al-
ways be scaled in a way to satisfy this assumption. Second, µA − µF = 0, which
corresponds to a forecast without mean bias. As can easily be seen, the minimal
sample size decreases if a mean bias exists. Assuming that no mean bias exists
consequently results in a more conservative value of the minimal training sample
size.

The resulting minimal sample size is displayed in Figure 3.1 as a function of σF
and for selected values of the correlation between forecasts and actuals ρ. As can
be expected from the formula, the minimal sample size strongly increases if σF
approaches ρσA = ρ. This result can be interpreted intuitively since the regression
bias vanishes in this case (while there already is no mean bias by assumption).
Weak biases make it increasingly harder for the corrected forecast to outperform
the original forecast. To outperform the original forecast in case of a very weak
bias, a very large sample is required in order to make the estimated parameters
very stable. The small reduction of the bias component is only larger than the
increase of the variance component if the estimates are very stable.

However, if a substantial bias exists, relatively small training samples suffice
for the corrected forecast to outperform the original biased one. Under the as-
sumption of bivariate normality, sample sizes of 10 to 20 are in most cases suffi-
cient, which is a sample size available in many practical applications. Approxi-
mate guidelines for cases where a correction is likely to be reasonable could be
derived from Figure 3.1. For instance

∣∣∣ σF
σA
− ρ
∣∣∣ > 0.2 would cover most cases

where a training sample size of 10 to 20 is sufficient.
It should again be noted that the analysis of the minimal training sample size

is based upon the assumption of bivariate normality of the actuals and forecasts.
While the errors of the forecasts might often satisfy normality, the normality of
actuals and forecasts cannot be assumed in general. The required sample sizes
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Figure 3.1: Minimal training sample size for the corrected forecast to outperform the orig-
inal biased forecast without mean bias. The minimal sample size increases for a regres-
sion bias approaching zero (σF = ρσA = ρ, horizontal dashed line).

required to outperform the original forecast can be substantially larger for other
distributions. However, the analysis excluded the mean bias, which would again
decrease the required minimal training sample size. Considering both aspects,
the guidelines should only be seen as approximate ones and larger sample sizes
should be used to ensure sufficient stability.

Overall, the analysis of the analytically derived minimal training sample size
in case of bivariate normality of forecasts and actuals implies that relatively small
training sample sizes of 10 to 20 suffice for the corrected forecast to outperform
the original one. This is especially the case if the original forecast is strongly bi-
ased, which results in a strong advantage of the corrected forecast and makes the
outcome less prone to estimation errors. Thus, considering the required training
sample size, forecast correction can be expected to be successful in many settings.

3.3.2 Structural Change

Although relatively small training sample sizes are often sufficient, a low robust-
ness against structural changes can also limit applicability. To discuss this aspect,
the derived critical values regarding structural changes can be analyzed.

The first analyzed threshold is the change of the mean error as a result of a
change of the mean value of the forecasts, which was introduced in Theorem 3.5
depending on the characteristics of the evaluation sample. The critical value an-
swers the question how strongly the mean error must have changed from the
training to the evaluation sample if the corrected forecast and the biased forecast
perform equal in the evaluation sample. The critical change of the mean value
of the forecasts ∆̊µ is displayed in Figure 3.2 as a function of the mean bias in
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the evaluation sample and for different values of σF = σ̃F, ρ = ρ̃. It should be
noted that only the positive critical value is shown. Additional negative critical
values exist that are however symmetrical to the positive ones, as can be seen in
Theorem 3.5.
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Figure 3.2: Positive critical changes of the mean forecast value for different ρ = ρ̃ and
σF = σ̃F. The critical change increases with increasing mean bias of the forecast and with
increasing regression bias, i.e., higher σF or lower ρ. Negative changes are symmetric to
the positive ones.

The critical change of the forecast mean clearly increases with increasing mean
bias in the evaluation sample. If a bias exists, the corrected forecast has a sub-
stantial advantage over the original forecast, which requires a large change of the
bias to negate the effect. This effect is even stronger if the correlation between
forecasts and actuals is very low or if σF = σ̃F substantially exceeds σA = 1. In
these cases, the corrected forecast can remove a substantial regression bias from
the forecast, which results in lower errors and in turn requires larger changes of
the mean bias for the MSE of the two forecasts to be equal.

Figure 3.3 displays the critical change of the correlation between forecasts and
actuals, introduced in Theorem 3.7, as a function of the correlation ρ̃ and for dif-
ferent values of the mean bias and forecast standard deviation σF = σ̃F. The crit-
ical change again indicates how strongly a change must have been if the original
and the corrected forecast perform equal in the evaluation sample.

The figure illustrates a strong relationship between the critical change and the
mean bias. The critical value increases with the strength of the mean bias. If the
mean bias is strong enough (µ̃A − µ̃F = 2 in the figure) critical changes do not
exist, i.e., would require correlations with absolute value larger than one. The
critical change is, independently of the mean bias, lowest for σ̃F = ρ̃, σ̃A = ρ̃ as
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Figure 3.3: Positive changes of the correlation between actuals and forecasts for different
values of µA− µF = µ̃A− µ̃F and σF = σ̃F. The critical changes increase with the strength
of the mean bias. If the mean bias is strong enough, critical changes do not exist, i.e.,
would require correlations with absolute value greater than one. The critical change is
lowest for σ̃F = ρ̃, σ̃A = ρ̃ where the regression bias vanishes.

the regression bias vanishes in this case. If both biases are low, the critical value
decreases towards zero. This confirms the previous discussion of the analyti-
cal thresholds, which indicated that stronger biases increase robustness against
changes.

Lastly, Figure 3.4 presents the critical changes of the standard deviation of the
forecasts introduced in Theorem 3.9 as a function of the standard deviation in the
evaluation sample σ̃F and for different values of the mean bias and correlation
between forecasts and actuals ρ = ρ̃. Like in the previous analyses, the critical
change indicates how strongly the standard deviation must have changed if the
corrected and original forecast have equal MSE.

As can be expected from the complexity of the threshold formula in Theo-
rem 3.9, the critical changes are rather complex, especially if the mean bias is
zero. Two aspects can immediately be noted in the case without mean bias. First,
increases as well as decreases can be critical in some cases. The standard devia-
tion of the forecast can influence the regression bias in both directions, which can
both be critical, however at a different level. Second, the correction has the lowest
robustness if the regression bias is also close to zero, i.e., for σ̃F = ρ̃, σ̃A = ρ̃. If
a mean bias exist, the critical changes are much higher and relatively systematic,
except for µ̃A − µ̃F = 1 and ρ̃ = 0.99. Thus, the critical values regarding changes
of the variance of the forecast conforms to the results of the previous analyses:
stronger biases increase robustness against changes.
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Figure 3.4: Positive and negative changes of the standard deviation of the forecasts for
different values of µA− µF = µ̃A− µ̃F and ρ = ρ̃. Critical changes are smallest if no mean
bias exists (upper row), especially if the regression bias is also small, i.e., σ̃F = ρ̃, σ̃A = ρ̃.
A mean bias quickly leads to considerable robustness.

Overall, the robustness against structural breaks can in some cases be very low
with respect to all three influences under study. Since this was always found to be
the case if mean and regression bias are very low, i.e., if the forecast is close to un-
biasedness, biases in the forecasts result in robustness against changes. If biases
exist, the bias es must be strongly reduced or disappear for the original forecast
to outperform the corrected one. In other words, if only a small bias existed in
the original forecast (and the potential advantage is consequently very small) and
the bias additionally change in a disadvantageous way, the corrected forecast can
have worse accuracy than the original forecast. Thus, if large biases exist, a cor-
rection can be applied with higher confidence regarding error improvements than
in cases with low biases.
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3.3.3 Non-Stationarity

Whereas biases increase robustness against changes, the analyses indicated very
different influence of non-stationarity of time series on forecast correction. Strong
non-stationarity of time series results in vanishing biases, which not only de-
creases robustness against changes but also decreases the potential bias reduction
effect of forecast correction.

To illustrate the effect of non-stationarity of time series, an illustrative simple
example is shown in Figure 3.5 for a simple example. In the left part of the fig-
ure, an actual time series and a corresponding forecast time series is displayed
in the upper plot. The actuals and the forecasts clearly have a shared trend com-
ponent that causes the strong increase of actuals and forecasts. The lower left
plot displays the corresponding forecast-actual plot and the estimated regression
coefficients. The estimates indicate that the forecasts are nearly unbiased, with
β̂1 = 0.99 close to 1 and β̂0 close to 0 (considering the range of the actuals and
forecasts). The forecast-actual plot alone indicates that the forecasts are reason-
ably unbiased.

Since actuals and forecasts exhibit a shared trend component, the upper right
part of the figures shows the time series after removal of the trend component.
Actuals as well as forecasts fluctuate randomly and the previously clear relation-
ship between forecast and actuals vanishes. This is even clearer for the forecast-
actual plot of the detrended forecasts and actuals in the lower right part of the
figure. The forecasts in the example contain no information regarding the actual
values (since β̂1 = 0) beyond the shared trend component.

The example clearly illustrates the influence of a shared systematic component
in forecasts and actuals. Although the example is an artificial and extreme one,
the effect can be expected to generalize well even though forecasts are in practice
(and in contrast to the example) likely to contain information beyond the shared
component.

Thus, a systematic component in the time series, which results in non-
stationarity, is a clear issue for forecast correction. If for instance trended time
series are corrected, the detectable bias –and consequently the error reduction– is
very weak whereas the error is increased by the required parameter estimation.

This result motivates that not only robustness against structural changes, but
also an adequate treatment of non-stationarity of time series might be essential
for a successful application of forecast correction. Both aspects are considered in
an extended forecast correction model in the next section.
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Figure 3.5: Example of the effect of a spurious relationship between actuals and forecasts.
While the original time series show a clear relationship between forecasts and actuals
and the forecast-actual plot indicates unbiasedness (left part of the figure), a detrending
of the time series reveals that the forecasts contain no information on the actuals beyond
the shared trend component (right part of the figure).

3.4 Correction Considering Structural Change and
Non-Stationarity

The analyses and discussions in the previous sections allowed various insights
into the robustness of Theil’s method. The results indicated that a corrected fore-
cast can be expected to outperform the original forecast in many cases even when
only a small training sample is available. In contrast, structural breaks, result-
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ing in changed biases, can often lead to the original biased forecast performing
better than the corrected forecast. Furthermore, non-stationarity of time series
decreases the biases that are identifiable with forecast correction models.

In order to transfer these analytical findings to real-world situations with
changes and disruptions regarding biases as well as with time series with var-
ious characteristics, forecast correction models have to be adapted. The aim is to
use the analytical results to change the estimation procedure in a way that the
estimated parameters fit future, unknown data better.

First, regarding structural breaks, the existing weighted approach introduced
by Goodwin (1997) is one promising approach. However, as Figure 3.6 illus-
trates, the exponential weighting approach must not necessarily be optimal in
case of a structural break. The figure displays an example of exponential and
equal weights for a time series with length 36 and a breakpoint at time 18. The
discount factor for exponential weights is set to a moderate value of γ = 1.1.
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Figure 3.6: The weight distributions for equal and exponential weighting of observations
differ strongly. Assuming a breakpoint (dashed vertical line), equal weights assign high
weight to observations before the breakpoint. Exponential weights aim at minimizing
the weight of outdated observations, but have a very unequal distribution of the weight
of the observations after the breakpoint.

Theil’s method assigns equal weights to all observations and can clearly be
expected not to perform well since the observations before the breakpoint have
the same weight as the observations after the breakpoint.

In contrast, the weight function smoothly increases for exponential weights.
This weighting scheme assigns far less weight to the observations before the
breakpoint. Although the weight of old observations is reduced, weight is still
wrongly assigned to these observations (gray area 1). The weight after the break-
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point is furthermore not distributed equally. While weights below equal weights
are assigned to some observations after the breakpoint (gray area 2), the weights
of the most recent observations by far exceed equal weights (gray area 3). Us-
ing exponential weights consequently involves a trade-off between reducing the
weights before a breakpoint (corresponding to a reduction of the bias compo-
nent) and the equality of the weights after a breakpoint (influencing the variance
component).

Addressing this trade-off clearly requires information about a potential break-
point. Since Theil’s method is a linear regression approach, techniques from re-
gression theory aiming at detecting and dating structural breaks can also be used
in Theil’s method. These approaches for detecting breakpoints in linear regres-
sion have received much attention in statistics; see for instance Zeileis et al. (2003)
for an overview of different approaches.

In principle, detecting the points of time of structural changes (henceforth
called breakpoints) corresponds to finding significantly differing partitions of the
data separated by the breakpoints. Partitions of the data with a set of m break-
points τ1, . . . , τm can be identified using Equation 3.6 where RSS is the residual
sum of squares resulting from applying separate regressions to the m + 1 parti-
tions separated by the breakpoints.

arg min
τ1,...,τm

RSS (τ1, . . . , τm) (3.6)

Clearly, RSS must decrease for increasing numbers of breakpoints. Each break-
point adds parameters to the model and consequently results in a closer fit to the
data. In an extreme case, the data could be segmented in a way so that at most
two data points are contained in a segment. In this case, the model would consist
of many linear regression models for at most two data points, which must always
fit the data perfectly. Such extreme cases are obviously not beneficial, especially
if the model is later applied to unknown data. As a consequence, the number of
breakpoints in a model must be penalized when comparing the RSS results for
different number of breakpoints.

The Bayesian information criterion (BIC) proposed by Schwarz (1978) intro-
duces a penalization of the number of parameters of a model and allows a com-
parison of models with different numbers of parameters. The number of break-
points (and the corresponding partitions of the data) that minimize the BIC can
then be selected.

After a set of potential breakpoints has been identified, the key question is how
to incorporate the detected breakpoints into the estimation of a forecast correction
model. Since the training data is segmented along the time axis, no reasonable
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model with multiple regression lines for different segments, which might be ap-
propriate in other applications, can be used in forecast correction models. Clearly,
the most important segment is the last segment, which should always be used for
parameter estimation since the data is the most recent and consequently most
likely to include biases that are identical to those in future forecasts.

In contrast to the last segment, the treatment of other segments is not straight-
forward. On the one hand, older segments can be ignored if the last segment is
large enough and results in a stable model. On the other hand, a small last seg-
ment can result in an unstable model and in turn an increased variance compo-
nent of the error of the corrected forecast. In this case, including older segments
might decrease the variance component much more than the increase of the bias
component by the old training data with outdated biases. Clearly, the old train-
ing data should still not have the same weight as more recent observations and a
reduction of the weights must be considered.

A model meeting these requirements is introduced in Equation 3.7 based on
the model in Equation 3.4 and using the last detected breakpoint τm.

arg min
β̂0,β̂1

τm−1

∑
t=1

αγt p
(

At −
(

β̂0 + β̂1Ft
))

+
T

∑
t=τm

γt p
(

At −
(

β̂0 + β̂1Ft
))

(3.7)

The minimization in the extended estimation model involves two sums, one
with the observations before the last breakpoint and one with those after. In both
cases, the errors are again penalized with a function p such as OLS. An exponen-
tial discount with parameter γ ≥ 1 is again included in both sums to allow a slow
decrease of the influence of older observations. The first sum with the penalized
deviations for the observations before the last breakpoint additionally includes a
parameter α ∈ [0, 1], which can be used to further reduce the weight of the obser-
vations before the breakpoint. If no breakpoint is detected, only the second term
of the model is used with τm = 1.

While the motivation for and effect of the exponential weighting parameter γ is
clear from the discussion in Section 3.1, the new parameter α requires additional
explanation and motivation. If the last breakpoint is at an early point of time, low
values for the parameter α result in obsolete observations before the breakpoint
having negligible influence, consequently ensuring a low bias component of the
error while stable estimates of the parameters and a low variance component of
the error are likely because of the high number of remaining observations. In
contrast, if the breakpoint occurred at a late point of time, higher values for the
parameter α stabilize the estimates by including more observations.

A special case of the introduced model is the simple strategy of ignoring the
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observations prior to the last detected breakpoint. This strategy can be imple-
mented by simply setting α = 0, which results in zero influence of the data points
before the breakpoint. Another simple strategy is ignoring the breakpoint and
only relying on the exponential weighting for the treatment of the breakpoint.
This strategy corresponds to α = 1.

However, in contrast to these simple strategies, where the value of α is fixed,
a more differentiated treatment of breakpoints requires learning the parameter
from past observations. A promising approach is to learn the parameter using
the same procedure used for choosing a value for γ: the pseudo out-of-sample
evaluation on the last observations of the training data introduced in Section 3.1.
Instead of running the same procedure separately for α and γ, the procedure
can be executed for combinations of the two parameters in order to identify the
optimal combination of values of the two parameters.

Overall, if breakpoints are detected correctly (or at least reasonably accurate),
the extended approach can be expected to perform well by balancing model sta-
bility and an increased bias component as a result of outdated observations. This
promises more robust parameter estimates and an increased out-of-sample per-
formance.

As the estimation model in Equation 3.7 allows a differentiated treatment of
structural breaks, which were identified to be important in many cases in the
theoretical analyses, an additional extension addressing non-stationarity of time
series can be considered. For this purpose, some approaches to ensuring station-
arity of time series are discussed first. For this discussion, the forecast horizon h
is, in contrast to the previous analyses and discussions, explicitly used since the
approaches mostly rely on past data, which is only available up to At−h when
producing a forecast Ft.

A simple approach is to differentiate the available observations, i.e., to use the
realized and predicted changes from the last available actual value. This cor-
responds to the function introduced in Equation 3.8, where Xt is an (available)
actual or forecast value and A are all available actual values in the training data.
Differentiation in many cases results in stationarity since for instance values fluc-
tuating around a constant trend results in a stationary fluctuation around a con-
stant value, the slope of the trend.

ξD (Xt, A) = Xt − At−h (3.8)

Another simple approach, which is common especially in the domain of finan-
cial forecasting, is using logarithmic returns, which corresponds to Equation 3.9.
The approach also removes a trend from the data. In comparison to differen-
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tiation, logarithmic returns also take into account that values are likely to have
larger fluctuations for higher levels by using relative changes in the formula. It
should be noted that logarithmic returns are not defined if At−h = 0 and should
consequently not be applied if zero values are likely to occur in the time series.

ξL (Xt, A) = log
Xt

At−h
(3.9)

Another approach that can be used to remove a trend from a time series is to
explicitly detect and remove the trend. A linear trend in the actual values can be
detected by regressing the actual values on the time, i.e., A = βtrend

0 + βtrend
1

~t + ε

where~t = (1, . . . , t). The estimate β̂trend
1 is then the average linear trend in the

actual time series whereas β̂trend
0 is a constant offset. Defining trendL(A, t) =

β̂trend
0 + β̂trend

1 t as the value of the linear trend component a time t allows defining
the trend removal as shown in Equation 3.10.

ξT (Xt, A) = Xt − trendL(A, t) (3.10)

The previous approach assumes a constant linear trend in the time series. How-
ever, a trend can change in many practical settings. Furthermore, time series can
also exhibit a seasonal component where deviations from a trend (or a constant
value) occur in a yearly pattern. Both aspects can be addressed in more complex
approaches such as the decomposition of time series into seasonality and trend
components by Loess (STL), which was introduced by Cleveland et al. (1990). STL
results in a decomposition into a trend component trendNL(A, t), which can de-
viate from linearity, and a seasonal component seas(A, t). These components can
be used, as defined in Equation 3.11, similarly to the linear trend in the previous
approach.

ξTS (Xt, A) = Xt − trendNL(A, t)− seas(A, t) (3.11)

The different approaches addressing non-stationarity of time series have dif-
ferent properties in terms of the bias–variance trade-off. The basic approach,
not addressing non-stationarity, can result in a forecast correction model strongly
deviating from the optimal one and consequently introduce a substantial bias
component. In contrast, using pre-whitening can reduce the bias component
but can also, depending on the approach, introduce additional parameters that
in turn increase the variance component. This is particularly true for complex
pre-whitening approaches that rely on detecting a systematic trend or even more
complex systematic components within forecasts and actuals.

After the approaches to ensuring stationarity of time series have been intro-
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duced, the model in Equation 3.7 can be further extended as presented in Equa-
tion 3.12, where the actual as well as the forecasts in the training data are trans-
formed, i.e., pre-whitened, for the estimation process.

arg min
β̂0,β̂1

τm−1

∑
t=1

αγt p
(
ζ(At, A)−

(
β̂0 + β̂1ζ(Ft, A)

))
+

T

∑
t=τm

γt p
(
ζ(At, A)−

(
β̂0 + β̂1ζ(Ft, A)

))
(3.12)

After a model has been estimated, the resulting model can be used for correct-
ing a forecast of a future value. However, in contrast to established approaches,
a forecast cannot be corrected directly and the corrected forecast cannot be used
as calculated by the model. First, the forecast to which the correction model is
applied must be transformed in the same way as the actuals and forecasts in the
training data. For differentiation and log returns, this step is straightforward.
Second, the transformation has to be reversed in order to derive a final corrected
forecast. The reversal of the transformation is simple for differentiation and log
returns; the corresponding functions are presented in Equations 3.13 and 3.14.

ξ
−1
D (FT+h, A) = AT + FT+h (3.13)

ξ
−1
L (FT+h, A) = ATeFT+h (3.14)

However, if a trend (or trend and seasonality) is explicitly detected and re-
moved from the time series, the values for the trend and the seasonality com-
ponent do not exist for future values. As a consequence, the future values of
the components have to be predicted. If a linear regression is used for a linear
trend detection, the time can simply plugged into the model to derive an extrap-
olation of the trend component. The resulting linear trend component, denoted
trendL(A, T + h), can then be used to derive a forecast value as presented in Equa-
tion 3.15.

ξ
−1
T (FT+h, A) = trendL(A, T + h) + FT+h (3.15)

If more complex approaches such as STL are used, more advanced extrapola-
tion approaches have to be used since there is not always a linear relationship
between the time and the trend or seasonality. A promising approach is to use
time series forecasting methods to extrapolate the values of the components. For
instance exponential smoothing can be used for the extrapolation of the trend
component while the value of the seasonal component is assumed to be identical
to the previous seasonal cycle. The resulting extrapolated trend and seasonality
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components trendNL(A, T + h) and seas(A, T + h) can then be used for deriving
a forecast value as displayed in Equation 3.16.

ξ
−1
TS (FT+h, A) = trendNL(A, T + h) + seas(A, T + h) + FT+h (3.16)

Using the introduced methods and the estimated model parameters β̂0, β̂1, the
final forecast is defined as presented in Equation 3.17.

FC = ξ
−1 (

β̂0 + β̂1ξ(Ft)
)

(3.17)

It should be noted that this approach, including the transformation, must also
be used in the pseudo out-of-sample evaluation used for determining the values
of the parameters α and γ. Consequently, a transformation of the data points
prior to each evaluation data point in this procedure is required in a first step.
Then, models with different parameter values are applied. In a last step, the
correction models are applied and the transformation of the forecast is reversed.
After all observations in the pseudo out-of-sample evaluation are treated, errors
are calculated and aggregated and a parameterization is chosen. Breakpoints also
have to be detected on the transformed actual and forecast values.

In summary, after the theoretical properties of forecast correction approaches
have been studied in the previous sections, an extended forecast correction model
has been proposed in this section, which is based upon the findings of the theoret-
ical analyses. As structural changes as well as non-stationarity were identified to
be relevant issues, the extended model allows a flexible treatment of both aspects.
The extended model and its parameterization are evaluated in Chapter 6. In the
evaluation, a special focus is placed on which approach to ensuring stationarity
should be used in which cases and how robustness against structural changes can
be achieved best in practical applications.

3.5 Conclusions and Limitations

Forecast correction is an established approach to improving the accuracy of judg-
mental forecasts by identifying biases in past forecasts and removing them from
new ones. In this chapter, the theoretical properties of forecast correction methods
and the influence of three different issues on the accuracy of a corrected forecast
were analyzed. First, an analysis of the minimal training sample size required for
the corrected forecast to outperform the original biased one revealed that small
training samples are unlikely to be an issue for forecast correction. Second, struc-
tural changes were shown to have a substantial influence, which can result in the
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original forecast outperforming the corrected one, especially if the removable bi-
ases are already relatively weak. Third, non-stationarity of time series was shown
to result in decreased detectability of existing biases, which can in turn result in
the correction decreasing forecast accuracy.

As a consequence, an extended model was proposed in order to transfer the
analytical results into applications in practice. In contrast to existing forecast
correction models, the proposed model explicitly addresses structural changes
and considers transformations of actuals and forecasts that ensure stationarity.
Structural changes are considered by including breaks detected by established
statistical methods into the estimation procedure. Additionally, the exponential
weighting of past observations proposed in the literature can be used to address
continuously changing biases in the forecasts.

The extensions aim at finding a reasonable trade-off between decreases of the
bias component (treating non-stationarity and structural breaks appropriately)
and the variance component (estimating additional parameters for data transfor-
mation and structural break detection).

While the theoretical analyses revealed that structural changes and non-
stationarity are relevant issues, the analyses cannot provide insights into how
to address the issues best. The proposed extended model allows various differ-
ent parameterizations, some of which might be more appropriate than others. In
addition, a dependency on the characteristics of the time series can be expected,
especially for the data transformation approach, where some approaches might
introduce too much uncertainty (such as detecting and removing trend and sea-
sonality from stationary time series).

Overall, additional analyses using real-world forecast data are required to de-
rive guidelines when to use which model and parameterization. A case study
evaluating the different methods and aiming at identifying advantageous fore-
cast correction models in a differentiated is presented in Chapters 5 and 6.

The analyses and discussions on forecast correction in this chapter are subject
to several limitations. The limitations can be differentiated into general ones,
which relate to applying Theil’s method for forecast correction, and others that
are specific to the analyses in this chapter.

Regarding limitations of Theil’s method as the standard approach to correcting
judgmental forecasts, an important limitation is that the method relies on the
availability of forecast and realization data. Especially if time series are short or
past forecasts were not recorded, forecast correction methods cannot be applied.
Theil’s method is furthermore restricted to detecting and removing linear biases.
However, biases might be non-linear in practice and have more complex patterns,
which are not considered in the framework of Theil’s decomposition.
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As Theil’s method uses a linear regression, some of the assumptions of linear
regression might be violated, which can make the estimates more unreliable. For
instance heteroscedasticity might be present in practical applications as forecast
errors are likely to have higher variance for higher actuals values. This issue is
however not addressed by Theil’s method or any of the extensions, including the
one introduced in this chapter. Furthermore, the forecast errors, which influence
the residuals in the linear regression, might be correlated, for instance as a result
of seasonal time series and error patterns.

Regarding limitations of the analyses in this chapter, a first aspect is that the
derivation of the minimal training sample size and the conclusions drawn from
the analysis depend on the assumption of bivariate normality of the forecasts and
actuals. Forecast and actuals must however not always follow a normal distribu-
tion in practice. Especially if the distribution of forecasts or actuals has heavy
tails, the minimal training sample size required to reasonably learn a forecast cor-
rection model might be considerably larger.

The derived critical changes of the biases and forecast characteristics only con-
sidered independent changes of individual characteristic. However, structural
changes are in practice likely to affect several characteristics. For instance a
change of the expert responsible for the forecast not only changes error variance
but also the correlation between forecasts and actuals. Simultaneous changes of
multiple characteristics can interact, which can reinforce or dampen the influence
of the change and result in lower or higher critical changes. The analyses addi-
tionally only considered bias changes whereas characteristics of the time series
for which forecasts are produced are also likely to be of influence. Actual values
might strongly decrease or increase, for instance as a result of business-related
changes. Furthermore, the predictability of the time series, and consequently the
error variance, can change over time.

However, notwithstanding these limitations, the analyses in this chapter pro-
vided various insights into the robustness of forecast correction, which has not
been formally analyzed in the literature before. The empirical evaluation pre-
sented later in this work analyzes how well the model extensions derived from
the theoretical results perform in practice, where the assumptions and limitations
are not always satisfied.



Chapter 4

Advances in Forecast Combination

THE combination of forecasts is an established method for improving predic-
tive accuracy. In a combination, errors of individual forecasts cancel each

other out and the influence of high errors of one of the forecasts is reduced. Under
certain conditions, the combined forecasts can even have lower errors than the
most accurate forecast. In economics, the combination of forecasts has been sub-
ject to research since the pioneering work of Reid (1968) and Bates and Granger
(1969). Numerous studies have shown that the combination of forecasts typically
results in increased accuracy in comparison to individual forecasts (Makridakis
et al., 1982; Clemen, 1989; Makridakis and Hibon, 2000).

Similar results exist in social psychology, where the wisdom of the crowd phe-
nomenon refers to the fact that an aggregate of judgments often performs bet-
ter than the best-performing individual, which has been demonstrated in nu-
merous studies (for the benefits of judgment aggregation, see for instance Hill
(1982), Hastie (1986), Wallsten et al. (1997), Gigone and Hastie (1997), Hastie and
Kameda (2005), or Kerr and Tindale (2011)).

The key questions that are subject to ongoing research are (i) how many and
which forecasts to include and (ii) which combination mechanism, i.e., weighting
scheme, to use for a combination. To address these questions, the literature on
forecast combination as well as on crowd wisdom provides qualitative guidelines
and recommendations mainly derived from empirical results.

A clear relationship to the bias–variance trade-off exists for both questions.
Most forecast combination methods involve learning the weights of the forecasts
from past forecasts and corresponding errors. With each additional forecast in-
cluded in a combination, additional parameters have to be estimated and the
variance component increases. The bias component on the other hand decreases
because of the better fit to the data, but the decrease might be negligible in com-
parison to the increase of the variance component. Likewise, different combina-
tion methods are likely to have differing properties in terms of the bias–variance
trade-off as the sensitivity to the training data differs. Furthermore, combina-
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tion methods are likely to be prone to structural breaks in the error patterns to a
different degree, depending on the sensitivity.

While the relationship to the bias–variance trade-off is clear, the exact nature of
the trade-off and how it is best addressed is unknown. In order to address this
issue, Section 4.1 first reviews the theory and literature on forecast combination.
Section 4.2 then analyzes the theoretical properties of a class of forecast combina-
tion methods. The identified properties are used in Section 4.3 to determine the
robustness of a decision on a forecast combination method against small training
sample sizes as well as structural changes regarding error covariances.

In Section 4.4, two new combination methods are introduced using the pre-
vious analytical results. The optimal shrinkage level optimally solves the bias–
variance trade-off involved in forecast combination whereas the robust shrinkage
factor ensures robustness against structural breaks to a certain extent.

The results of the theoretical analyses of the robustness and the introduced
shrinkage levels are illustrated and discussed in Section 4.5. Finally, Section 4.6
concludes and discusses the implications and limitations of the results.

4.1 Theory and Issues of Forecast Combination

The two combination methods previously introduced in Section 2.2, the simple
average (SA) and optimal weights (OW), are completely different and extreme
approaches in terms of the bias–variance trade-off. OW aims at minimizing the
bias component and consequently results in lower in-sample error variance than
any other weighting approach while the variance component of the error of the
combined forecast is ignored. In contrast, SA ignores the training data and thus
does not aim at minimizing the bias component. However, the weights are fixed,
which eliminates the variance component.

Since SA and OW as extreme approaches in terms of the bias–variance trade-
off do not necessarily result in minimal out-of-sample error variance, alterna-
tive weight estimation approaches have been proposed and evaluated. These
for instance include variants of optimal weights constrained to the interval
[0, 1], shrinkage towards the average, and Bayesian outperformance probabilities.
Clemen (1989), Diebold and Lopez (1996), Armstrong (2001), and Timmermann
(2006) provided thorough literature reviews and guidelines regarding the various
approaches to forecast combination. A surprising observation of these reviews is
that other approaches typically do not outperform SA in out-of-sample evalua-
tions and that weights should only be learned in case of strong evidence against
equal weights. See for instance Aksu and Gunter (1992), Stock and Watson (1999),
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Stock and Watson (2004), and Genre et al. (2013) for studies with this result. Stock
and Watson (2004) coined the term “forecast combination puzzle” for this result.

In judgment aggregation, simple rules for aggregating judgments (such as me-
dian or mean) are also regularly found to perform at least as good as complex
strategies. Mannes et al. (2014) proposed to use averaging after the top judges
have been selected. Genre et al. (2013) observed that averaging expert forecasts
of unemployment rate and GDP growth typically outperforms the best individ-
ual forecast as well as more complex combination schemes. Although the average
was outperformed in some cases, the authors cautioned against any assumption
that the improvements in these cases would persist in the future.

For the case with two forecasts, differentiated guidelines on which forecast
combination method to choose have been proposed based on theoretical and em-
pirical results. Schmittlein et al. (1990) recommended SA combination when er-
rors have similar variances and are only weakly correlated, or for small training
samples. More concretely, for sample sizes of ten or below, SA was recommended
when error standard deviations differ by at most 20 % and the error correlation is
between −0.6 and 0.6. For larger sample sizes of 25 and more and with error cor-
relation between −0.4 and 0.4, error standard deviations must not differ by more
than 10 %. However, Schmittlein et al. (1990) did not derive guidelines for more
than two forecasts but instead proposed a heuristic using the Akaike Information
Criterion (AIC) to compare the different combination methods.

Similarly, de Menezes et al. (2000) recommended SA only for approximately
equal error variances. For unequal error variances, medium or large training sam-
ples, and error correlations over 0.5, the authors proposed optimal weights con-
strained to the interval [0, 1]. This form of regularization is applied to prevent ex-
treme weights, which can potentially result in increased combined errors. For er-
ror correlations below 0.5, outperformance probabilities were recommended for
small sample sizes, OW with independence assumption (i.e. using an assumed
correlation of zero instead of the estimated correlation) was recommended for
medium sample sizes, and OW was recommended for large samples. Thresholds
for the similarity of error variances or sample sizes separating small, medium,
and large samples were however not quantified.

Overall, the guidelines recommend SA in various cases, except for when strong
evidence for another weighting scheme exists. This recommendation and the
forecast combination puzzle can be considered surprising as SA does not use
available training data, which could in principle be used for learning weights.

From a statistical perspective, the combination weighting schemes and con-
sequently the forecast combination puzzle can be analyzed on the basis of the
bias–variance trade-off. SA as a simple approach does not learn from the training
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data and can consequently have a considerable bias component while a variance
component does not exist. In contrast, complex mechanisms have many param-
eters and are thus highly sensitive to the training data, which results in a low
bias component and an increased variance component. The forecast combination
puzzle indicates that either the reduction of the bias component in comparison to
SA is negated by the increase of the variance component or that the reduction of
the bias component is unexpectedly low. Two issues can be identified from the
literature as potential causes of these effects.

On the one hand, structural changes of time series characteristics or in the fore-
casting process are likely to entail changes in the error covariance matrix (which
is the basis of weight estimation) over time. In such cases, parameters are differ-
ing within the training sample and also between training sample and evaluation
sample. This difference in turn results in an unexpectedly low decrease or even
increase of the bias component of the combined error of complex approaches.
For instance, in a simulation study for the case with three forecasts, Miller et al.
(1992) showed that SA, in contrast to other approaches that learn weights from
the training sample, benefits from several types of structural breaks such as loca-
tion shifts. Diebold and Pauly (1987) found that structural changes in time series
generally lead to decreased robustness of more complex approaches and weights
that are increasingly differing from the ones that would be optimal in the eval-
uation sample. To decrease the out-of-sample error variance of the combined
forecast in these cases, the authors proposed placing more emphasis on recent
errors of the forecasts in the weight estimation.

On the other hand, weight estimates have to be treated as random variables, as
for instance noted by Smith and Wallis (2009) and Claeskens et al. (2016), since the
weights minimizing the error variance in the evaluation sample are unknown and
thus have to be estimated from the training sample. This results in an increased
combined error variance for finite samples and can cause the low empirical per-
formance of learned weights. In contrast, simple techniques –such as SA– do not
estimate weights and the errors consequently do not have a variance component
while exhibiting an increased bias.

In general, SA can be expected to perform well with similar error variances
of the forecasts and low or medium error correlations (Bunn, 1985; Gupta and
Wilton, 1987) since the weights minimizing the combined error variance in the
evaluation sample are then close to equal weights and the potential reduction of
the bias component is small.

Besides this relationship, in an early theoretical work, Dickinson (1973) found
that the error variance reduction resulting from forecast combination with esti-
mated weights is often smaller than expected because of sampling issues. The
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author showed that the confidence intervals for weight estimates are often very
broad, which indicates a high uncertainty. Winkler and Clemen (1992) addition-
ally included correlation between the errors of different forecast mechanisms and
concluded that the probability of strongly deviating weights between training
and test sample is considerable, in particular when the error variances of in-
dividual forecasts are similar. Smith and Wallis (2009) showed that estimation
uncertainty of the parameters can easily result in SA performing better than esti-
mated weights when the variance-minimizing weights in the evaluation sample
are close to equal weights. Elliott (2011) analyzed potential accuracy gains of OW
over SA combination and identified bounds on the error covariance matrix when
gains are too small to balance estimation errors. In addition, Claeskens et al.
(2016) derived analytically that combinations of individually unbiased forecasts
can be biased, overall leading to a higher error variance than expected.

Unstable weight estimates have also been found to be the key to the high com-
petitiveness of SA in Monte Carlo simulations (Kang, 1986; Gupta and Wilton,
1987) and comparable results are observed with real-world data. For instance,
Figlewski and Urich (1983) combined forecast for the U.S. money supply and
found that model instability resulting from sampling issues prevented complex
methods from performing better than SA. Kang (1986) and Clemen and Winkler
(1986) examined combinations of GNP forecasts and consistently concluded that
OW are too unstable to perform well while SA does not have extreme weights,
leading to higher robustness and better predictive performance .

The issues with unstable weight estimates can be illustrated using the previous
example in Figure 2.3. In the example, OW corresponds to a weight of 2 for one
forecast (and consequently weight −1 for the other) when the error correlation
approaches 1. The weight strongly declines with decreasing error correlation,
down to a weight of 1.5 with error correlation of 0.9. OW is thus prone to small
differences between the error characteristics estimated from the training sample
and the characteristics in the evaluation sample.

Overall, the bias–variance trade-off an its facets can be identified as a main
problem underlying the issues of forecast combination methods. Although em-
pirical guidelines on how to address the trade-off in forecast combination in prac-
tice have been introduced in the literature, the trade-off is not understood theo-
retically and analytically. An analytical model of the error of a combined forecast
separating the bias and variance components, which is required for understand-
ing and addressing the trade-off, does not exist.
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4.2 Properties of Combination Methods

In the recent literature on prediction, the bias–variance trade-off is often ad-
dressed by using estimates that are shrinked towards a common value to reduce
sensitivity to training data. This approach balances the resulting increase of the
bias component and the reduction of the variance of the estimates (and conse-
quently the reduction of the variance component of the error) in a straightfor-
ward fashion. The intuition of shrinkage can easily be summarized: extremely
high or low estimates are likely to contain high error and should consequently
be reduced. Hence, shrinkage aims at decreasing the sensitivity of one or several
weights to training data.

In forecast combination, a common direction of shrinkage is to shrink towards
SA, which addresses the trade-off between the two extremes, OW and SA, and
implicitly regulates the shares of the bias and variance components. Diebold and
Pauly (1990) and Aiolfi and Timmermann (2005), amongst others, successfully
applied shrinkage towards SA.

More formally, OW can be linearly shrinked towards SA using a shrinkage
parameter λ ∈ [0, 1] resulting in the weight vector ŵλ defined in Equation 4.1.
In the course of this work, ŵλ

i is used to refer to the weight of the i-th element
(corresponding to the i-th forecast) of the weight vector ŵλ.

ŵλ = λwS + (1− λ) ŵO (4.1)

Obviously, λ = 0 corresponds to OW while λ = 1 corresponds to SA. Equa-
tion 4.1 is consequently a generalization of Equations 2.2 and 2.3. As a conse-
quence, this weight formulation is in the following theoretical analyses and dis-
cussions of forecast combination methods.

Weights are estimated from one set of forecasts and corresponding errors (the
training data) and then applied to another, previously unknown set of forecasts
(the evaluation data). It is commonly assumed that forecasts are unbiased and
follow a multivariate normal distribution with mean zero. The errors of the k
forecasts can therefore be modeled as E ∼ Nk(0, Σ) in the training sample and
as Ẽ ∼ Nk(0, Σ̃) in the evaluation sample with error covariance matrices Σ, Σ̃ ∈
Rk×k. For two forecasts, the error covariance matrices and their elements, which
are used in later analyses, can be defined as shown in Equation 4.2.

Σ =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
, Σ̃ =

[
σ̃2

1 ρ̃σ̃1σ̃2

ρ̃σ̃1σ̃2 σ̃2
2

]
(4.2)

When fixed weights are used to combine forecasts, the expected error variance
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of the combined forecast is Var
[(

wλ
)> Ẽ

]
=
(
wλ
)> Σ̃wλ. Because of the unbi-

asedness assumption of the forecasts, the expected error of the combined forecast
is zero and the MSE is equal to the error variance of the combined forecast. Since
predefined fixed weights, such as SA, are not fitted to the error characteristics of
the forecasts, they seldom minimize the combined error variance. However, if
weights are estimated from training data, the estimates are subject to uncertainty,
which in turn influences the combined error variance. As a consequence, the es-
timation uncertainty has to be considered appropriately in order to address the
bias–variance trade-off.

If the weights are estimated from training data, they strongly depend on the
specific training data sample drawn from the population and have to be treated as
random variables as a consequence. The distribution of the weight estimate ran-
dom variable can be described in the form of the sampling distribution, which is
introduced for OW shrinked towards SA next. Subsequently, the sampling distri-
bution is used to determine the expected combined out-of-sample error variance
of a combination.

4.2.1 Sampling Distribution of Weight Estimates

The distribution of the weight estimates can be characterized by the expected
weight estimates and the covariance of the weight estimates. As shrinked weights
are a linear combination of OW estimates and SA, the expectation of shrinked
weights can also be expected to be a linear combination of the expectations of the
two extremes. The expectation of ŵλ is shown in Theorem 4.1.

Theorem 4.1 (Expectation of Shrinked Weights). The expectation of the k optimal
weights estimated from a sample with error covariance matrix Σ and shrinked with λ ∈
[0, 1] towards equal weights is

E
[
ŵλ
]
= λ

1
k
~1 + (1− λ)

Σ−1~1
~1>Σ−1~1

The expectation defined in Theorem 4.1 can be adapted to the case with two
forecasts, which allows expressing the expectation using the two error variances
and the error correlation (instead of the error covariance matrix), as shown in
Theorem 4.2.

Theorem 4.2 (Expectation of Shrinked Bivariate Weights). The expectation of bi-
variate optimal weights estimated from a training sample (with error variances σ2

1 , σ2
2
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and error correlation ρ) shrinked towards equal weights with λ ∈ [0, 1] is

E
[
ŵλ
]
=

(
λ
2

(
σ2

1 − σ2
2
)
+ σ2

2 − ρσ1σ2

σ2
1 + σ2

2 − 2ρσ1σ2
,

λ
2

(
σ2

2 − σ2
1
)
+ σ2

1 − ρσ1σ2

σ2
1 + σ2

2 − 2ρσ1σ2

)

Theorem 4.2 furthermore allows additional insight into how the shrinkage of
the weights works. For both weights, the difference between the error variance is
shrinked using the shrinkage factor λ. In case of λ = 0, only one error variance
is included in the weight calculation (σ2 for ŵλ

1 and σ1 for ŵλ
2 ), resulting in strong

weights. With increasing λ, the influence of the other error variance is increasing
until both error variances have equal influence (resulting in equal weights). Con-
sequently, shrinkage in a sense uses the error variance of one forecast to dampen
the influence of the error variance of the other forecast.

While deriving the expectation of shrinked weights is straightforward, the
sampling covariance of OW –and consequently of shrinked weights– is more
complex and has not yet been derived. The sampling covariance of ŵλ is shown
in Theorem 4.3.

Theorem 4.3 (Sampling Covariance of Shrinked Weights). Defining a modified co-
variance matrix of the k forecasts

Σ′ =

[
Σ′11 Σ′12

(Σ′12)
> Σk,k

]

where

Σ′11 ∈ Rk−1,k−1 with
(
Σ′11
)

i,j = Σk,k − Σi,k − Σk,j + Σi,j

Σ′12 = ([Σk,k − Σk,1] , . . . , [Σk,k − Σk,k−1])

Then the sampling covariance matrix of the OW estimates (estimated from a training
sample of size n and with error covariance matrix Σ) shrinked towards equal weights with
λ ∈ [0, 1] is

Ωλ =
(1− λ)2

n− k− 1
ΩO

(
Σk,k −

(
Σ′12
)> (Σ′11

)−1
Σ′12

)
with

ΩO =

[
(Σ′11)

−1 Ω12

Ω>12 Ω22

]
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Ω12 =

([
−∑

i

(
Σ′11
)−1

1,i

]
, . . . ,

[
−∑

i

(
Σ′11
)−1

k−1,i

])
Ω22 = ∑

i,j

(
Σ′11
)−1

i,j

Three basic and intuitive properties of the sampling covariance can be de-
rived from Theorem 4.3. First, the sampling covariance decreases with increasing
shrinkage because of (1− λ)2 in the numerator. Increasing the shrinkage fac-
tor decreases the sensitivity to different training samples. In the extreme case
with λ = 1 there is no sensitivity. The decreasing sensitivity directly results in a
decrease of the sampling variance. Interestingly, the relationship is not a linear
but a quadratic one, halving the shrinkage factor thus quadruples the sampling
covariances. Second, the sampling covariance increases with decreasing size of
the training sample size (as a result of n in the denominator). Small training
samples decrease the stability of the estimator, which makes extreme estimates
more likely, which in turn increases the sampling variance. Third, the sampling
covariance also increases with increasing number of included forecasts as more
parameters have to be estimated.

The sampling covariance matrix for the general case introduced in Theorem 4.3
can again be adapted to the bivariate case, as presented in Theorem 4.4.

Theorem 4.4 (Sampling Covariance of Shrinked Bivariate Weights). The sampling
covariance of bivariate optimal weights estimated from a training sample (size n, error
variances σ2

1 , σ2
2 and error correlation ρ) shrinked towards equal weights with λ ∈ [0, 1]

is

Ωλ =
(1− λ)2

n− 3

(
1− ρ2) σ2

1 σ2
2(

σ2
2 − 2ρσ1σ2 + σ2

1

)2

[
1 −1
−1 1

]
The variance of the weight estimate found in Theorem 4.4 matches the results

of Winkler and Clemen (1992), who derived the variance for the bivariate case de-
pending on the ratio of the error variances instead of the original error variances.

The introduced expectation and sampling covariance of the shrinked weights
allow understanding how the weights are distributed for different training sam-
ples from the sample population. The distribution can be used as a basis for the
expected combined out-of-sample error variance, which is derived next.
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4.2.2 Expected Combined Out-of-Sample Error Variance

For the derivation of the error variance of the combined forecast, a reasonable
and simplifying assumption is that the weights estimated from the training sam-
ple and the forecast errors in the evaluation sample have zero covariance, i.e.,
∀i, j ∈ {1, . . . , k} : Cov

(
Ẽi, ŵλ

j

)
= 0. This assumption directly results from the

modeling of the training and evaluation samples and the symmetrical distribu-
tion of individual forecast errors around zero. It should be noted that indepen-
dence of weights estimated from the training sample and errors in the evaluation
sample is not assumed in a general sense. Clearly, weight estimates typically have
negative covariance with out-of-sample error variance and absolute error levels,
and weights are similar between training and evaluation sample. The assumption
is that the covariance between non-absolute error levels and weight estimates is
zero because of the symmetrical distribution of errors around zero as unbiased
forecasts are assumed.

Using this assumption, Theorem 4.5 introduces the combined out-of-sample
error variance.

Theorem 4.5 (Expected Error Variance). Assuming ∀i, j ∈ {1, . . . , k} :
Cov

(
Ẽi, ŵλ

j

)
= 0, the expected error variance resulting from combining k forecasts with

error covariance matrix Σ̃ using weights learned from a training sample (sample size n
and error covariance matrix Σ) is

Var
[(

ŵλ
)>

Ẽ
]
= ∑

i,j
Σ̃i,jΩλ

i,j + ∑
i,j

Σ̃i,jE
[
ŵλ

i

]
E
[
ŵλ

j

]
The combined error variance with shrinkage factor λ in Theorem 4.5 strongly

resembles the bias–variance trade-off. The first term of the combined error vari-
ance is driven by the estimation uncertainty. Predefined fixed weights, such as
SA, do not vary between training samples and consequently have zero variance
and covariance. In this case, the first term is zero. In contrast, the second term
is the part of the error variance of the combined forecast that relates to the (in-
sample) bias of a combination. The in-sample bias is in this case the difference
between the combined error variance with the shrinked weights and the weights
that are optimal in the evaluation sample. Hypothetically, learning weights opti-
mal for Σ̃ would lead to the minimal value of the second term and can even be
zero if forecast errors neutralize each other perfectly. Learning optimal weights
however increases the first term of the equation.

As shown by Claeskens et al. (2016), a violation of the assumption used in the
derivation would lead to a biased combination and an additional increase in error
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variance. Both effects could increase the combined error variance in comparison
to Theorem 4.5, in particular for combinations with low shrinkage factors since
equal weighting does not introduce the effect. Consequently, a violation of the
assumption would recommend stronger shrinkage levels.

Theorem 4.6 introduces the expected combined error variance for the special
case with two forecasts.

Theorem 4.6 (Expected Error Variance With Two Forecasts). In the bivariate case,
where weights are estimated from a training sample (sample size n, error variances and
error correlation σ2

1 , σ2
2 , ρ), the combined error variance in the evaluation sample (error

variances and error correlation σ̃2
1 , σ̃2

2 , ρ̃) is

Var
[(

ŵλ
)>

Ẽ
]
=

1(
σ2

2 − 2ρσ1σ2 + σ2
1

)2

(
(1− λ)2

n− 3

(
1− ρ2

)
σ2

1 σ2
2

(
σ̃2

1 + 2ρ̃σ̃1σ̃2 + σ̃2
2

)
+ σ̃2

1

(
λ

2

(
σ2

1 − σ2
2

)
+ σ2

2 − ρσ1σ2

)2

+ σ̃2
2

(
λ

2

(
σ2

2 − σ2
1

)
+ σ2

1 − ρσ1σ2

)2

+ 2ρ̃σ̃1σ̃2

(
λ

2

(
σ2

1 − σ2
2

)
+ σ2

2 − ρσ1σ2

)(
λ

2

(
σ2

2 − σ2
1

)
+ σ2

1 − ρσ1σ2

))
Special cases of Theorem 4.6 for SA (λ = 1) and OW (λ = 0) can easily be

derived as shown in Equation 4.3 and 4.4 under the assumption of identical error
covariance matrices in the training and the evaluation sample.

Var
[(

wS
)>

Ẽ
]
=

1
4

σ̃2
1 +

1
4

σ̃2
2 +

1
2

ρ̃σ̃1σ̃2 (4.3)

Var
[(

ŵO
)>

Ẽ
]
=

1(
σ2

2 − 2ρσ1σ2 + σ2
1

)2

(
1

n− 3

(
1− ρ2

)
σ2

1 σ2
2

(
σ̃2

1 + 2ρ̃σ̃1σ̃2 + σ̃2
2

)
+ σ̃2

1

(
σ2

2 − ρσ1σ2

)2
+ σ̃2

2

(
σ2

1 − ρσ1σ2

)2

+ 2ρ̃σ̃1σ̃2

(
σ2

2 − ρσ1σ2

) (
σ2

1 − ρσ1σ2

))
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=
1

n− 3

(
1− ρ2) σ2

1 σ2
2(

σ2
2 − 2ρσ1σ2 + σ2

1

)2

(
σ̃2

1 + 2ρ̃σ̃1σ̃2 + σ̃2
2

)
(4.4)

On the basis of the derived sampling distribution of OW estimates shrinked to-
wards equal weights, the expected out-of-sample error variance has been quanti-
fied for the general case and for selected special cases in the formulae introduced
in this section. These formulations of the expected combined error variance not
only allow identifying how strong the influence of the bias and variance compo-
nents are in a combination, but also enables further analysis regarding different
aspects. First of all, the robustness of the combined error variance depending
on the shrinkage level is analyzed in the next section by deriving thresholds re-
garding training sample size as well as changes in the error covariance matrix..
Subsequently, an optimal shrinkage level is derived that minimizes the expected
out-of-sample error variances and different combinations are related to derive a
robust level of shrinkage.

4.3 Robustness in Forecast Combination

Depending on the chosen shrinkage level, combinations are influenced by esti-
mation uncertainty to a different extent. While combinations with very strong
shrinkage are only weakly influenced, combinations with weak shrinkage are
strongly affected. A main aspect influencing the estimation uncertainty is the
size of the training sample used for the estimation. In order to assess the robust-
ness of a forecast combination against small training samples in comparison to
an alternative combination, the first part of this section focuses on the training
sample size.

However, not only instable parameter estimates and small training sample
sizes must be considered in applications in practice. Another factor potentially
influencing out-of-sample performance are structural changes between the train-
ing and the evaluation sample. The previously introduced expected combined
error variance is used in the second part of this section to analyze how changes
in the error covariance matrix affect the combined error variance. Using these
results, critical changes of individual error variances or error correlations are de-
rived. These critical changes quantify how much individual error characteristics
are allowed to change for a combination with one shrinkage factor still perform-
ing at least as good as an alternative combination.
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4.3.1 Training Sample Size

The analytical formulation of the combined error variance introduced in the pre-
vious section not only depends on the error covariance matrix but also on the
sample size. Although it is clear from the formulation of the sampling distri-
bution of the weights that larger training samples decrease uncertainty, it is un-
known how the sample size influences the optimal selection of a combination
model and thus the robustness of a decision.

Theorem 4.5 can be used to compare the expected out-of-sample error vari-
ances when applying two different shrinkage factors λ1 and λ2 to decide which
of the two is preferable. In general, a lower shrinkage factor (leading to weights
closer to OW) is mainly beneficial in case of a large training sample since OW can
be estimated more precisely. In contrast, high shrinkage factors (weights close
to equal weights) can be expected to be advantageous especially for small train-
ing samples since the otherwise high variance component is strongly reduced
while accepting a slight increase of the bias component. As the two components
change differently for different shrinkage factors, a critical sample size for which
two combinations have the same expected combined out-of-sample error vari-
ance exists in most cases. This critical sample size is presented in Theorem 4.7.

Theorem 4.7 (Minimal Training Sample Size). The expected error variances resulting
from combining k forecasts with error covariance matrix Σ̃ using weights learned from a
training sample (with error covariance matrix Σ) and shrinked with λ1 and λ2 are equal
for sample size

n̊ =

(
(1− λ1)

2 − (1− λ2)
2
)

∑i,j Σ̃i,jΩO
i,j

(
Σk,k − (Σ′12)

> (Σ′11)
−1 Σ12

)
∑i,j Σ̃i,j

(
E
[
ŵλ2

i

]
E
[
ŵλ2

j

]
− E

[
ŵλ1

i

]
E
[
ŵλ1

j

]) + k + 1

The term k + 1 is trivial and indicates that the critical sample size must exceed
the number of forecasts. Learning weights requires inverting the estimated co-
variance matrix, which is only possible if the estimated matrix is non-singular,
which in turn requires at least k + 1 observations for the covariance calculation.

The ratio term in the equation reveals two additional interesting relationships.
First, n̊ not only depends on the difference between λ1 and λ2, but also on the lev-
els of the shrinkage factors themselves. For instance much more observations are
required to prefer a model with shrinkage of 20 % over one with a shrinkage of
30 % compared to preferring a 70 % shrinkage over a 80 % shrinkage. This can be
directly derived from (1− λ1)

2 − (1− λ2)
2 in the numerator of the term. Refor-

mulating to (λ1 − λ2)(λ1 + λ2 − 2) illustrates that the numerator grows with in-
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creasing difference between the two shrinkage factors and is closer to zero when
both shrinkage factors are close to one. Second, n̊ is less likely to have extreme
values for higher numbers of forecasts. The denominator is clearly closely re-
lated to the differences of the bias components of the combinations with the two
different shrinkage factors. OW close to equal weights are more likely for lower
numbers of forecasts (because higher numbers of forecasts enable a closer fit), in
turn leading to a higher probability of a low difference of the bias components. In
these cases, a much larger training sample is required for the weaker shrinkage
to outperform the stronger one.

Clearly, the critical sample size derived from Theorem 4.7 is not a whole num-
ber. As a consequence, rounding of the sample size is required. In most cases,
rounding the critical value upwards is more appropriate since it slightly favors
lower shrinkage factors, which tend to be more robust.

An interesting special case of Theorem 4.7 is the comparison with SA (λ =

1). Equation 4.5 allows determining the training sample size required to make a
specific alternative shrinkage factor a reasonable choice in comparison to SA.

n̊ =
(1− λ)2 ∑i,j Σ̃i,j

(
Σk,k − (Σ′12)

> (Σ′11)
−1 Σ12

)
ΩO

i,j

∑i,j Σ̃i,j

(
1
k − E

[
ŵλ

i
]) ( 1

k − E
[
ŵλ

j

]) + k + 1 (4.5)

An additional interesting special case of Equation 4.5 is presented in Theo-
rem 4.8 where a shrinkage factor is compared to SA in the bivariate case under the
assumption of unchanged error characteristics, i.e., unchanged error covariance
matrix, between training and evaluation sample. This special case has the most
simplifying assumptions, but however results in a compact formulation of the
minimal training sample size. Despite the simplifications, it resembles practical
settings closely. First, in practice, different shrinkage factors are seldom com-
pared regarding training sample size. Instead, different shrinkage factors are
compared to SA, which is always a robust alternative. Second, while there is
little information available about the error characteristics underlying the training
sample (since only one estimate is available), there is by definition no informa-
tion available regarding the evaluation sample. The only reasonable assumption
is consequently that the error characteristics do not change between the two sam-
ples.

Theorem 4.8 (Minimal Sample Size for the Bivariate Case Without Changes). In
the bivariate case, assuming error variances and correlation σ2

1 , σ2
2 , ρ (unchanged between

training and evaluation sample), the expected combined error variance with weights
learned from the training sample and shrinked with λ is equal to the combined error
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variance with SA for training sample size

n̊ = (1− λ)2
(

1− ρ2
)( 2σ1σ2

σ2
2 − σ2

1

)2

+ 3 (4.6)

The simplified case shows several influences on the minimal training sample
size. First, as already discussed for the general case, the training sample size in-
creases with lower levels of shrinkage. Second, the minimal training sample size
decreases with increasing (absolute) correlation. As already illustrated in Sec-
tion 2.2, strong correlations allow strong weights and consequently an expected
substantial reduction of the bias component. Even for relatively low training
samples, this effect is not completely negated by the increased variance compo-
nent. Third, n̊ decreases for increasing differences in error variance between the
forecasts. This result is also closely related to the previous discussions, as similar
error variances result in a low potential reduction of the bias component, which
is easily negated by the increased variance component. For σ1 = σ2, the value of
the minimal training sample size even reaches infinity as SA is the optimal choice
in this case.

While the first result was already clear from the previous analyses of the gen-
eral case, the other results can also be expected to be transferable to an arbitrary
number of forecasts. Thus, if the diagonal elements of the error covariance ma-
trix, i.e., the error variances, are very similar, the training sample size required
to outperform SA is rather large. In contrast, the sample size decreases with in-
creasing values of the non-diagonal elements.

Overall, the introduced minimal training sample size allows comparing mod-
els with different shrinkages and determining whether the available training data
is large enough for a combination to outperform an alternative one. This aspect
addresses the bias–variance involved in the combination by balancing errors re-
sulting from the estimation uncertainty and from undersensitivity to the training
data. Thus, under the assumption that the population error covariance matrix is
known for the training sample and, additionally, that it is identical to the one of
the evaluation sample, models can be compared using the training sample size.

However, the error covariance matrices must not necessarily be identical for
past and future data in practical settings. Structural changes, which are analyzed
next, can result in significant differences that in turn influence the robustness of
a decision.
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4.3.2 Error Covariance Change

Changes of individual error variances or correlations can result in the parameter
estimated from the training sample not being very well suited for the evalua-
tion sample. A simple example is a combination where one of the forecasts was
very accurate in the training sample, but, for some reason, performs substantially
worse in the evaluation sample. The forecast is assigned a high weight because
of its accuracy in the training sample, which however substantially increases the
combined error variance when applied to the evaluation sample. In contrast to
estimated weights, SA is affected far less by this change as the forecast with the
increasing error variance has equal weight as the other forecasts.

The definition of the combined error variance in Theorem 4.5 uses two com-
pletely different error covariance matrices Σ in the training sample and Σ̃ in the
evaluation sample. Although, in general, the two covariance matrices can change
completely, changes are more likely to occur for a limited set of error variances
or error correlations. Assuming that only one error variance or error correlation
within the error covariance matrix changes, the influence of the change on the
combined error variance can be analyzed.

To enable a compact formulation, a new definition is introduced in Equation 4.7
so that the combined error variance can be expressed as ∑i,j Σ̃i,jΨλ

i,j. The elements
of Ψλ in a sense indicate how strongly an element of the error covariance matrix
influences the combined error variance, either by having a high weight or by
being very uncertain.

Ψλ = Ωλ + E
[
ŵλ
]

E
[
ŵλ
]>

(4.7)

In a first step, the error correlation between two forecasts p and q is assumed
to change by ∆ρ while all other error correlations as well as the error variances
are fixed. The resulting combined error variance can be defined as shown in
Theorem 4.9. Interestingly, the combined error variance can be expressed as the
combined error variance without change with an additional adjustment term.

Theorem 4.9 (Combined Error Variance with Correlation Change). Assuming that
the error correlation between forecasts p and q changes by ∆ρ between training and eval-
uation sample, the combined out-of-sample error variance resulting from combining k
forecasts with weights learned from a training sample (sample size n and error covariance
matrix Σ) and shrinked with λ ∈ [0, 1] is

Var
[(

ŵλ
)>

Ẽ
]
= ∑

i,j
Σi,jΨλ

i,j + 2∆ρ

√
Σp,pΣq,qΨλ

p,q
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The first term in Theorem 4.9 is the combined error variance for Σ = Σ̃, the
second term then corrects the error covariance between forecasts p and q for the
change of the covariance by ∆ρ. Clearly, the influence of a correlation change is
determined by the influence of the corresponding element of the error covariance
matrix on the combined error variance, as quantified by Ψλ. The case of multiple
correlation changes can be considered by introducing additional correction terms.

The impact of a change of the error variance of an individual forecast can be
analyzed in a similar manner. Assuming a change of the error standard deviation
of forecast p by ∆σ, the combined error variance can be reformulated as presented
in Theorem 4.10, where the second term corrects for the additional error variance
resulting from the variance change while the third terms corrects for the covari-
ance changes.

Theorem 4.10 (Combined Error Variance with Variance Change). Assuming that
the error standard deviation of forecast p changes by ∆σ between training and evaluation
sample, the combined out-of-sample error variance resulting from combining k forecasts
with weights learned from a training sample (sample size n and error covariance matrix
Σ) and shrinked with λ ∈ [0, 1] is

Var
[(

ŵλ
)>

Ẽ
]
=∑

i,j
Σi,jΨλ

i,j +
2∆σ√
Σp,p

∑
j 6=p

Σp,jΨλ
p,j +

(
2∆σ

√
Σp,p + ∆2

σ

)
Ψλ

p,p

As can be seen in Theorem 4.10, the influence of a variance change is also de-
termined by the influence of the elements of the error covariance matrix affected
by the change on the combined error variance, as quantified by Ψλ. The affected
elements are, in contrast to the correlation change, not only the error variance
itself, but also all error covariances involving the forecast.

Overall, the introduced formulae quantify how the combined error variance
changes if an error correlation or error variance changes from its value in the
training sample. The influence of a change depends, as can be expected, on the
importance of the changed element of the error covariance matrix for the com-
bined error variance, i.e., whether the element had a high weight or high uncer-
tainty.

As Theorems 4.9 and 4.10 allows determining the impact of changes to the error
covariance matrix, the impacts can be compared for combinations with different
shrinkage levels. Since the impact depends on the value chosen for the shrinkage
factor λ, combinations with different levels of shrinkage are more or less prone
to structural changes. As a result of the high sensitivity to different training sam-
ples, combinations with small λ are more prone to changes. In contrast, a strong
shrinkage with a high λ is more robust to changes. Consequently, a strength of
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change of error correlation or variance must in many cases exist, for which com-
binations with different shrinkage factors have equal expected combined out-of-
sample error variance.

Before these critical changes are identified, an additional definition is intro-
duced in Equation 4.8 for convenience, based upon the previously defined matrix
Ψλ.

∆Ψλ1,λ2 = Ψλ1 −Ψλ2 (4.8)

Using this definition, Theorem 4.11 introduces the critical error correlation
change, i.e., how much an error correlation is allowed to change for a decision
for a combination with shrinkage λ1 to still perform at least as good as an alter-
native combination with shrinkage λ2.

Theorem 4.11 (Critical Correlation Change). The combined out-of-sample error vari-
ances resulting from combining k forecasts with weights learned from a training sample
(sample size n and error covariance matrix Σ) are equal for shrinkage with λ1 and λ2 in
case of a change of the error correlation between forecasts p and q between training and
evaluation sample by

∆̊ρ = −
∑i,j Σi,j∆Ψλ1,λ2

i,j

2
√

Σp,pΣq,q∆Ψλ1,λ2
p,q

The numerator in Theorem 4.11 is equal to the first term in Theorem 4.9 with
∆Ψλ1,λ2 instead of Ψλ. The numerator is consequently the difference in combined
error variance if the error covariance matrix is unchanged. For an interpretation
of the denominator, the elements in ∆Ψλ1,λ2 can be interpreted as a quantified
influence of the corresponding element of the error covariance matrix on the dif-
ference between the combined error variance of the two combinations. The de-
nominator consequently reflects the influence of the original error covariance of
forecasts p and q on the difference in combined error variance. As a result, the
critical value is small (high) if the changing error covariance is responsible for a
large (small) portion of the difference.

Likewise, a critical change of individual error variances can be derived for
which two combinations with different shrinkage parameters have equal com-
bined out-of-sample error variance. The critical error variance change is intro-
duced in Theorem 4.12.

Theorem 4.12 (Critical Variance Change). The combined out-of-sample error vari-
ances resulting from combining k forecasts with weights learned from a training sample
(sample size n and error covariance matrix Σ) are equal for shrinkage with λ1 and λ2
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in case of a change of the error standard deviation of forecast p between training and
evaluation sample by

∆̊σ =−∑
i

Σp,i√
Σp,p

∆Ψλ1,λ2
p,i

∆Ψλ1,λ2
p,p

±

√√√√√∑
i

Σp,i√
Σp,p

∆Ψλ1,λ2
p,i

∆Ψλ1,λ2
p,p

2

−∑
i,j

Σi,j
∆Ψλ1,λ2

i,j

∆Ψλ1,λ2
p,p

(4.9)

All ratios in the Theorem 4.12 contain ∆Ψλ1,λ2
p,p in the denominator. Since this

term can be interpreted as the strength of the influence of the error variance of the
p-th forecast on the difference in combined error variance, small changes of the
error variance are critical if the influence is strong. In contrast, the critical value
is large if the difference in influence is small.

Calculating the critical value in Theorem 4.12 in most cases leads to two solu-
tions, ∆̊+

σ and ∆̊−σ . Hence, different cases have to be considered regarding critical
changes in error standard deviation: either 0 ∈

[
∆̊−σ , ∆̊+

σ

]
or 0 /∈

[
∆̊−σ , ∆̊+

σ

]
. In

the former case, decreases as well as increases in error variance over particular
threshold values are critical. In the latter case, increases or decreases are critical
between the two threshold values only, while stronger changes again lead to the
original method performing better. For instance, if ∆̊−σ < ∆̊+

σ < 0, only decreases
between ∆̊−σ and ∆̊+

σ are critical.
It should however be noted that changes in the covariance matrix cannot occur

in an arbitrary fashion. Regarding changes of correlation, a change of a correla-
tion by ∆ρ must not necessarily result in a valid (i.e. positive definite) covariance
matrix. Subtracting ∆−σ from the original error standard deviation can further-
more lead to negative values, in which case the change is invalid.

Unfortunately, both critical changes are rather complex and can consequently
not be formulated compactly for the bivariate case. However, additionally re-
stricting to SA and OW allows deriving a formulation, which is introduced in
Theorem 4.13. Since both sampling issues due to small sample sizes and changes
in the error covariance matrix can lead to increased out-of-sample error variance,
the theorem additionally provides an analysis that isolates the effect of diverg-
ing sample characteristics from estimation errors. For this purpose, an additional
critical change of the error correlation is provided under the assumption of an
infinitely large training sample.

Theorem 4.13 (Critical Correlation Change With Two Forecasts for SA and OW).
The combined out-of-sample error variances of a SA and an OW combination of two
forecasts are equal for a specific training sample (sample size n and error variances and
correlation σ2

1 , σ2
2 , ρ) for a change of the error correlation between training and evaluation
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sample by

∆̊ρ = −

(
1
4

(
σ2

1 − σ2
2
)2 − 1−ρ2

n−3 σ2
1 σ2

2

) (
σ2

1 + σ2
2 − 2ρσ1σ2

)
2σ1σ2

(
1
4

(
σ2

1 − σ2
2
)2

+ 1+ρ2

n−3 σ2
1 σ2

2

)
Assuming a training sample of infinite size, the critical change of error correlation is

∆̊∞
ρ = ρ−

σ2
1 + σ2

2
2σ1σ2

Critical values for changes of an error variance can be defined in the bivariate
case for SA and OW in a similar manner, as presented in Theorem 4.14. In or-
der to isolate the influence of the changed variance from parameter instability,
an additional critical value is again derived under the assumption of an infinite
training sample.

Theorem 4.14 (Critical Variance Change With Two Forecasts for SA and OW). The
combined out-of-sample error variances of a SA and an OW combination of two forecasts
are equal given a training sample (sample size n and error variances and correlation
σ2

1 , σ2
2 , ρ) for a change of the error standard deviation of forecast 1 between training and

evaluation sample by

∆̊σ =−
1
4 d2 (σ1 + ρσ2) + σ1d

(
σ2

2 − ρσ1σ2
)
−m (σ1 − ρσ2)

1
4 d2 + d

(
σ2

2 − ρσ1σ2
)
−m

±
(( 1

4 d2 (σ1 + ρσ2) + σ1d
(
σ2

2 − ρσ1σ2
)
−m (σ1 − ρσ2)

1
4 d2 + d

(
σ2

2 − ρσ1σ2
)
−m

)2

−

(
1
4 d2 −mσ2

2

) (
σ2

1 + σ2
2 − 2ρσ1σ2

)
1
4 d2 + d

(
σ2

2 − ρσ1σ2
)
−m

) 1
2

where d = σ2
1 − σ2

2 and m = 1−ρ2

n−3 σ2
1 σ2

2 .
Assuming a training sample of infinite size, the critical change of error standard devi-

ation is

∆̊∞
σ = −σ1 −

ρσ2
(
σ2

1 − σ2
2
)

σ2
1 + 3σ2

2 − 4ρσ1σ2

±

√√√√(σ1 +
ρσ2

(
σ2

1 − σ2
2
)

σ2
1 + 3σ2

2 − 4ρσ1σ2

)2

−
(
σ2

1 − σ2
2
) (

σ2
1 + σ2

2 − 2ρσ1σ2
)

σ2
1 + 3σ2

2 − 4ρσ1σ2
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As already pointed out in the discussion of Theorem 4.12, two critical values
can exist in some cases. In the case with two forecasts, the first solution is reached
by changing σ1 towards σ2, in which case SA and OW at some point have equal
combined error variance. The second solution, however, is reached when σ1 de-
creases to a value approaching zero, in which case OW is also expected not to out-
perform SA. While the first solution is expected and conforms to insights from the
literature and the discussion in Section 4.1, the second solution can be explained
by comparing OW estimated from the training sample to the weights that would
minimize the combined error variance in the evaluation sample. For example,
assuming ρ = ρ̃ = 0.9, σ2 = 1 and σ1 = 0.6 changing to σ̃1 = 0.01. In this case,
the OW estimate ŵO

1 is 1.643 whereas the weight that is optimal in the evaluation
sample is 1.009 ≈ 1. In this example, equal weights are “closer” than the esti-
mated weights – even though the difference between the error variances of the
forecasts increased, which usually benefits OW.

Overall, the results of this section allow assessing the robustness of a decision.
For this purpose, the training sample size and the maximum changes of error
covariances can be determined that make one combination more beneficial that
an alternative one. Thus, given a decision for a shrinkage level, the robustness
can be evaluated in comparison to an alternative combination such as SA. As
the robustness clearly depends on the chosen shrinkage level (stronger shrinkage
in general increases robustness), the shrinkage level can be used to increase the
robustness to a desired level, as is shown in the next section.

4.4 Combination Considering Bias–Variance and
Structural Change

The previous section has shown how large training samples must be to make a
specific shrinkage factor a reasonable choice. The derived training sample size
addresses the trade-off between the bias and variance related components of the
combined error variance for a specific shrinkage level. In the first part of this
section, the shrinkage parameter that optimally solves the bias–variance trade-
off and minimizes the expected error variance is introduced as the shrinkage can,
in contrast to the sample size, be controlled directly.

Likewise, the introduced critical changes of error covariances allow determin-
ing the robustness of a decision for a specific shrinkage level. Different shrinkage
levels can consequently be compared regarding their robustness against changes.
In the second part of this section, the critical changes are used to define a robust
shrinkage level, which allows a definable robustness against changes.
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4.4.1 Optimal Bias–Variance Aware Shrinkage

The shrinkage level allows a direct trade-off between the bias and the variance
component. While the variance component is reduced by stronger shrinkage, the
bias component is increased as a result of the weaker fit to the data. The statis-
tical learning theory motivates the assumption that the relationship between the
two components is non-linear and that an optimal level of model flexibility, i.e.,
shrinkage, exists. Since Theorem 4.5 provides a closed formulation for the ex-
pected error variance of a combination with shrinkage parameter λ, the optimal
shrinkage parameter λ̊, which is presented in Theorem 4.15, can be derived.

Theorem 4.15 (Optimal Shrinkage). The expected error variance resulting from com-
bining k forecasts with error covariance matrix Σ̃ using OW learned from a training
sample (sample size n and error covariance matrix Σ) is minimized by using the shrink-
age factor

λ̊ =
∑i,j Σ̃i,j

(
Ωi,j − 1

2k E
[
ŵO

i
]
− 1

2k E
[
ŵO

j

]
+ E

[
ŵO

i
]

E
[
ŵO

j

])
∑i,j Σ̃i,j

(
Ωi,j +

(
1
k

)2
− 1

k E
[
ŵO

i
]
− 1

k E
[
ŵO

j

]
+ E

[
ŵO

i
]

E
[
ŵO

j

])
The formula of the optimal shrinkage shows two main relationships. First, λ̊

decreases with increasing number of forecasts k. The equation can be interpreted
as the ratio of two weighted sums of the elements of Σ̃ with different weights in
the numerator and the denominator. For these weights, Ωi,j is equal in numerator
and denominator, while the terms involving k clearly shrink much faster in the
numerator for increasing k, overall leading to a decrease of the ratio. Second,
λ̊ decreases with sample size. Ωi,j is the only term involving the sample size
and its value decreases for increasing n (since the uncertainty reflected by this
term decreases). When keeping the other terms fixed, increasing the sample size
results in a decrease of the optimal shrinkage factor since the other terms are
substantially smaller in the numerator than in the denominator.

Unfortunately, the optimal shrinkage factor is rather complex in the bivariate
case and no compact representation can be derived. The formula is consequently
omitted for reasons of comprehensiveness since all analyses and discussion can
also be based upon the general definition.

While the introduced optimal shrinkage level adjust for the estimation uncer-
tainty by optimally balancing the bias and the variance component, it does not
ensure additional robustness against structural changes. The robust shrinkage
level that focuses on this aspect is introduced next.
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4.4.2 Robust Shrinkage

While the critical changes derived in the previous section allow interesting in-
sights into the robustness of forecast combination, they furthermore allow de-
termining a robust shrinkage level. As the critical values are defined based on
a comparison to an alternative shrinkage level, the robust shrinkage factor is in
this context defined as the shrinkage level performing at least as good as an al-
ternative shrinkage factor λ, for instance λ = 1, as long as certain robustness
requirements are met.

More formally, a shrinkage factor that is robust against (positive or negative)
changes of error correlation up to a definable value r can easily be derived us-
ing the critical values introduced in Theorems 4.11 and 4.12. Let ∆ρ(λ1, λ2, p, q)
denote the critical correlation change for forecasts p and q and shrinkage factors
λ1, λ2 (Σ, k and n are omitted as parameters for reasons of simplicity). Using
the previous definition, the shrinkage factor with robustness against correlation
changes is the minimum shrinkage for which changes of the error correlation of
all pairs p 6= q up to a certain level r are uncritical, as defined in Equation 4.10.

λ̊ρ(λ, r) = min
{

l | ∀p 6= q :
∣∣∆ρ(l, λ, p, q)

∣∣ < r
}

(4.10)

Similarly, a shrinkage factor with robustness against changes of error variance
can be introduced. With ∆+

σ (λ1, λ2, p) and ∆−σ (λ1, λ2, p) as positive and nega-
tive critical changes for forecast p and shrinkage factors λ1, λ2, Equation 4.11 de-
fines the robust shrinkage factor as the minimum shrinkage for which all relative
changes by v are uncritical. For instance, v = 0.1 results in robustness against
changes by ±10 %. In this case, relative changes are used since the error vari-
ances can, in contrast to the error correlations, differ by orders of magnitude,
depending on the scale of the time series.

λ̊σ(λ, v) = min


l | ∀p :



∆+
σ (l,λ,p)√

Σp,p
> 1−

√
1 + v if ∆+

σ (l, λ, p) < 0

∆−σ (l,λ,p)√
Σp,p

<
√

1 + v− 1 if ∆−σ (l, λ, p) > 0

∆−σ (l,λ,p)√
Σp,p

> 1−
√

1 + v

∧ ∆−σ (l,λ,p)√
Σp,p

<
√

1 + v− 1 otherwise


(4.11)

The three cases in the equation are related to the different cases regarding posi-
tive and negative values of the two critical values, as previously discussed. While
the last case is the standard one, the two other cases use the critical value closer to
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zero as critical value since the other again leads to the original method perform-
ing better.

If robustness against changes of error variances as well as error correlations is
desired, the corresponding robust shrinkage factor is the maximum of the two
introduced shrinkage factors, as shown in Equation 4.12.

λ̊R(λ, r, v) = max
{

λ̊ρ(λ, r), λ̊σ(λ, v)
}

(4.12)

In summary, based upon the assumption that only one error correlation or er-
ror variance changes between training and evaluation sample, the impact of the
change on the combined error variance has been analyzed. This influence in turn
allowed deriving critical changes, which indicate maximum allowed changes for
a combination to still outperform an alternative one. As critical changes can be
calculated for different shrinkage levels, a shrinkage level can be chosen that sat-
isfies predefined robustness requirements in the form of maximum changes. The
resulting robust shrinkage level can be used instead of optimal shrinkage in or-
der to minimize the combined error variance while ensuring a certain degree of
robustness.

While it is clear that robustness requires a stronger shrinkage, the size of this
effect, especially depending on parameters such as the number of forecast, is un-
known. For this reason, the robust shrinkage level (and all previously derived
results on forecast combination) are illustrated and discussed in the next section.

4.5 Illustration and Discussion

The previous sections first provided an analytical formulation of the combined
error variance with a decomposition into a bias and a variance component. The
combined error variance was then analyzed regarding different aspects, ranging
from the critical training sample size and critical changes to the two introduced
shrinkage levels. Although most of the analytical results were briefly discussed
on the basis of the derived formulae, only relatively basic insights could be de-
rived because of the complexity of the results. In this section, the analytical results
are illustrated for an in-depth discussion of the results.

The combined error variance as well as the derived thresholds and results de-
pend on a large number of parameters (k error variances, k(k−1)

2 error correla-
tions, and the sample size). Consequently, analyses of the results as a function
of individual parameters are only possible for the case with two forecasts. For
the discussion of the general case, complete error covariance matrices are used.
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For this purpose, the error covariances of the forecasts of the M3 Competition
(Makridakis and Hibon, 2000) are used. In order to ensure a sufficient number
of observations, only the 1,428 monthly time series are used. Of the 24 forecast-
ing methods considered in the competition (see Makridakis and Hibon (2000)
for a description of the individual approaches), the method Comb S-H-D is ex-
cluded for the error covariance calculation since it already is a combination of
three forecasts. For each of the 23 forecasting methods, 18 monthly forecasts (and
corresponding actuals) are available per time series, from which error covariance
matrices can be estimated.

The error characteristics of the forecasts are presented in Table 4.1, where the
error variances are scaled by the error variance of Naïve2. The error variances
across time series vary substantially between forecasting models and on average
(winsorized at the 5 % quantile) range from 94 % for ForecastPro to 120 % for
Flores/Pearce1, relative to Naïve2. Some models furthermore perform relatively
stable (e.g. Dampen with a very low standard deviation of 13.9 % of the error
variance of Naïve2) while others vary strongly (for instance Flores/Pearce1 with a
standard deviation of 97.5 %). Forecast errors are strongly correlated with the
lowest mean correlation between the errors of one model and all other models
being 0.71 (between Robust-Trend and Automat ANN).

As the complete estimated of the error covariance matrix with 18 observations
for 23 models is singular, non-singular sub-matrices of the original complete er-
ror covariance matrices are generated. For this purpose, the following iterative
procedure is used. Forecasting models are sorted (either randomly or by average
symmetric mean absolute percentage error (sMAPE), the main evaluation crite-
rion of the M3 Competition) and the first model is always included in the error
covariance sub-matrices. The next forecast is added only if the resulting error
covariance matrix is still non-singular (a reciprocal condition number larger than
10−10 is used as a criterion). The procedure is repeated until 10 forecasts are
included or all remaining forecasts would result in the covariance matrix being
singular. Of the 1,428 time series, 153 time series did not result in covariance ma-
trices of size 10. These matrices have size 9× 9 (73 matrices), 8× 8 (44 matrices),
7× 7 (10 matrices), 6× 6 (10 matrices) , 5× 5 (11 matrices), 4× 4 (2 matrices) and
3× 3 (3 matrices).

For the discussion, primarily the error covariance matrices with random or-
dering of the forecasts are used. Only if the results for the forecasts ordered
by performance differ substantially, these results are displayed additionally. As
the case with two forecasts allows an explicit discussion of the derived formulae
and thresholds, these relationships are additionally illustrated and discussed as a
function of selected parameters. Furthermore, the results are compared to similar
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Error Variance Error Correlation

Forecast Mean Std. Dev. Mean Std. Dev.

Naïve2 1.000 0.000 0.852 0.294
Single 0.999 0.005 0.853 0.293
Holt 1.055 0.606 0.846 0.280
Dampen 0.959 0.139 0.867 0.264
Winter 1.037 0.526 0.849 0.277
B-J automatic 0.978 0.324 0.849 0.268
Autobox1 1.150 0.709 0.797 0.291
Autobox2 1.044 0.490 0.832 0.269
Autobox3 1.206 0.806 0.791 0.303
Robust-Trend 1.160 0.732 0.788 0.304
ARARMA 1.150 0.691 0.794 0.294
Automat ANN 1.182 0.704 0.792 0.310
Flores/Pearce1 1.285 0.975 0.807 0.324
Flores/Pearce2 1.093 0.547 0.833 0.288
PP-autocast 1.020 0.279 0.844 0.272
ForecastPro 0.942 0.375 0.856 0.262
Smart-Fcs 1.096 0.587 0.822 0.285
Theta-sm 1.072 0.314 0.818 0.275
Theta 0.947 0.320 0.866 0.246
RBF 1.055 0.555 0.833 0.245
ForecastX 0.954 0.252 0.860 0.267
AAM1 1.077 0.658 0.818 0.289
AAM2 1.124 0.712 0.803 0.297

Table 4.1: Error characteristics of the forecasts of the M3 Competition. The winsorized
mean and standard deviation of error variances of the forecasts (scaled by the error vari-
ance of Naïve2) vary strongly. Mean and standard deviation of the error correlation be-
tween a model and all other models indicate correlations that are on average above 0.8
and a standard deviation of correlations around 0.28.

results from the literature for an additional validation of the derived formulae
and thresholds.

First, the bias–variance trade-off in forecast combination is discusses as it mo-
tivates the derived minimal training sample size and the optimal shrinkage fac-
tor, which are discussed subsequently. In order to illustrate the importance of
structural changes, the impact of a change of error covariance is analyzed next,
followed by a discussion of the robust shrinkage factor.

4.5.1 Bias–Variance Trade-Off

As the derived formulation of the combined error variance and the introduced
bias and variance components are the basis for most of the other results, the bias–
variance trade-off is illustrated in a first step. The statistical learning theory and
the theoretical analyses in the previous sections indicate that the bias (variance)
component should increase (decrease) with increasing shrinkage. As this results
in a U-shape of the combined error variance, an optimal shrinkage level can be
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expected. This shrinkage level is likely to depend on the training sample size and
the number of forecasts included in the combination.

Figure 4.1 presents the two terms of the combined error variance (Theorem 4.5)
and their sum for different shrinkage factors, depending on the numbers of fore-
casts k and the sample size n. For the analysis, the error covariance matrices of
the M3 Competition are used under the assumption that the error covariance ma-
trices do not change between training and evaluation sample (i.e. Σ = Σ̃). The
values of the components are scaled by the MSE (i.e. sum of the components) for
k = 2 and λ = 1 and the median of the components and their sum across the time
series is displayed.
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Figure 4.1: Median scaled values of the components of the MSE depending on the shrink-
age factor λ. The shrinkage clearly influences the bias and variance components in dif-
ferent ways, depending on the number of forecasts k and the size of the training sample
n. The optimal shrinkage factor minimizing the sum of both components (vertical line)
decreases with sample size and with the number of forecasts as long as the sample size
suffices.

The figure strongly resembles the illustrative example of the bias–variance
trade-off in Figure 2.4. For the combined error variance, the trade-off (and con-
sequently the U-shape) is stronger for higher numbers of forecasts where the in-
fluence of the variance component on the sum is substantially stronger than for
fewer forecasts. Increasing sample size leads to a decrease of the variance com-
ponent, easing the trade-off and allowing lower shrinkage. Overall, the optimal
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shrinkage factor (indicated by a vertical line) decreases with sample size and also
decreases for higher numbers of forecasts as long as the sample size is not too
small in relation to the number of forecasts. While the former effect is a clear re-
sult of the estimation uncertainty, the latter effect can be explained by the achiev-
able bias reduction that is substantially larger for higher numbers of forecasts
(allowing a better fit), and that outweighs the variance increase.

Overall, the bias–variance trade-off in forecast combination clearly exists and
the observed relationships match the expectations, which can be derived from
the statistical learning theory and the theoretical analyses in this work. Most
importantly, the influence of the training sample size and the shrinkage level is
illustrated, which are the focus of the next analyses.

4.5.2 Training Sample Size

The training sample size influences the uncertainty in the weight estimation and
consequently the variance component of the error of the combined forecast. As
discussed using the analytical results, the training sample size required for two
combinations with different shrinkage to perform equal can be expected to be
large for a high difference between the shrinkage levels (because of the large dif-
ference regarding the influence of the uncertainty) and for combinations of few
forecasts (because of the weaker reduction of the bias component).

For an illustration of the impact of the training sample size, the empirical cu-
mulative relative frequencies of critical sample sizes for the error covariance ma-
trices of the M3 Competition are presented in Figure 4.2 for different shrinkage
factors λ2 when comparing with λ1 = 1. It is again assumed that error covariance
matrices are identical for training and evaluation sample (Σ = Σ̃). The outer left
plot depicts the critical sample sizes n̊ required to prefer OW (λ2 = 0) over SA
(λ1 = 1). The other plots present critical sample sizes required to outperform SA
with different shrinkage levels between 0.25 and 0.75.

The two expected relationships can be identified in the figure. First, critical
sample sizes decrease with increasing shrinkage level λ2 (and thus smaller dif-
ference of shrinkages). This effect is a result of the bias–variance trade-off where
a high shrinkage still offers a substantial reduction of the bias component while
the increase of the variance component is relatively small. Second, smaller train-
ing samples suffice for higher numbers of forecasts to outperform SA. Based upon
the earlier theoretical analysis of the equation of the critical sample size, this effect
can be attributed to the fact that the bias component decreases with the number
of forecasts, which especially benefits the combination with weaker shrinkage.
Because of the reduced bias component with larger numbers of forecasts, smaller
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Figure 4.2: Empirical cumulative relative frequencies of critical sample sizes n̊ for dif-
ferent shrinkage parameters λ2 and λ1 = 1, depending on the number of forecasts
k. Higher numbers of forecasts typically require smaller training samples to prefer the
weaker shrinkage. While a sample size of 25 suffices for λ2 = 0.5 in 80 % of all cases even
for k = 2, λ2 = 0 requires larger training samples more frequently.

training samples are required to reduce the variance component to a level where
the overall combined error variance is smaller than for lower shrinkage.

For the bivariate case, the critical size of the training sample n̊ is depicted in
Figure 4.3 as a function of ρ and for different shrinkage levels and values of σ2

between 1.2 and 2. The value of σ1 is without loss of generality fixed to 1, which
can always be achieved by scaling.

As already noted in the general case, the critical training sample sizes decreases
with stronger shrinkage. However, the bivariate case illustrates two additional
effects.

First, the figure shows that n̊ increases with decreasing difference between
σ1 = 1 and σ2. Consequently, the smaller the difference between the error vari-
ances of the individual forecasts, the larger the training sample required to put a
combination in favor of SA. This result is consistent with the literature and intu-
itively clear. If error variances are very similar, OW estimates are close to equal
weights, which makes the potential bias component reduction effect very small
whereas the variance component still negatively affects the combined error vari-
ance.

Second, for fixed σ2, the higher the absolute value of ρ, the smaller the re-
quired training sample. Choosing a combination other than SA always requires
the largest training samples in case of uncorrelated errors and n̊ then decreases
with increasing correlation. This relationship can, for positive error correlations,
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Figure 4.3: Critical training sample size n̊ to favor a combination with shrinkage λ2 over
SA. Cases with σ2 close to σ1 = 1 require larger training samples. Higher shrinkage
levels and strong correlation of forecast errors decreases the required size of the training
sample.

be explained on the basis of the strong OW values, as already shown in the in-
troductory example in Figure 2.3. Strong positive error correlations can result in
OW over 1 for one forecast and a negative weight for the other. The strong corre-
lation allows strong weighting and a substantial reduction of the bias component
of the combined error variance. Since extreme weights are in this case optimal,
the estimated weights are likely to perform better than SA, even when accounting
for estimation errors. The relationship between n̊ and ρ for negative values of ρ

is in contrast less obvious since the error variance with SA also decreases with ρ

decreasing from 0 to−1. However, as also illustrated in the introductory example
in Figure 2.3, OW only differ slightly between different values of ρ as long as the
correlation is strongly negative. This makes OW more robust against estimation
errors of ρ. For instance, OW for σ1 = 1, σ2 = 2 results in wO

1 = 0.714 for ρ = −0.5
and wO

1 = 0.667 for ρ = −1, a difference of only around 7 %. Similarly, estimation
errors of σ1 or σ2 do not lead to large differences in estimated weights.

These results for the case with two forecasts can be expected to generalize well



Advances in Forecast Combination 93

to higher numbers of forecasts. OW are always close to equal weights for very
similar error variances, which requires a larger training sample size to justify
estimating OW independently of the number of forecasts. Likewise, correlations
(i.e. non-diagonal elements of the error covariance matrix) close to zero require
larger training sample sizes as the potential reduction of the bias component is
smaller in this case whereas the variance components remains largely unchanged.

The training sample size threshold for SA and OW introduced in Theorem 4.8
can also easily be used to derive decision boundaries regarding error variances
and correlation, given training sample size. These decision boundaries can be
compared to the recommendations of Schmittlein et al. (1990) for validation.
Based on the MSE of combinations with SA and OW observed in Monte Carlo
simulations for different combinations of n, σ2, and ρ, Schmittlein et al. analyzed
when to use which combination method (OW with independence assumption
was additionally included, which is omitted here for a direct comparison of SA
and OW). While σ1 was fixed to 1, 20 values for σ2 and 19 values for ρ were eval-
uated for training sample sizes of 10, 25, 50, and 100. The results for instance
suggest using SA for training samples with 10 or less error observations when
error standard deviations of both forecasts differ by at most 0.2 and error correla-
tions ρ are between −0.6 and 0.6.

Figure 4.4 displays the results of the reproduced simulation experiment, how-
ever with 10,000 instead of the 100 runs in the original experiment for more ac-
curate results. The four plots show whether SA or OW leads to lower mean MSE
across runs per parameter combination. Filled circles indicate parameter combi-
nations where SA outperformed OW while empty circles indicate a recommenda-
tion for OW instead of SA. It should be noted that the plots differ slightly from the
plots in Schmittlein et al. (1990) since results for equal error variances (i.e. σ2 = 1)
were apparently omitted there. The analytical decision boundary is indicated by
a solid line.

Comparing the results in the upper-left plot with the result from Schmittlein
et al. (1990) to choose SA when |ρ| < 0.6 and σ2 > 1.2 for n ≤ 10 reveals the
congruence of the results. The decision boundary separates both regions precisely
without mis-classifications, even when the parameter combinations are close to
the boundary.

For larger sample sizes, for instance 25, the plots in Schmittlein et al. (1990)
suggest using SA when error standard deviations differ by at most 0.1 and the
error correlation is between −0.4 and 0.4. Comparing this recommendation with
the upper-right plot in Figure 4.4 shows that this recommendation is also well
covered by the boundary, which again separates both regions precisely. The de-
cision boundaries for training sample sizes 50 and 100 at the bottom of the figure
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Figure 4.4: Decision boundaries (OW vs. SA) depending on σ2, ρ, and on the training sam-
ple size n. The plots also show which model leads to lower mean MSE in a Monte Carlo
experiment reproduced from Schmittlein et al. (1990). The analytical decision boundaries
separate the outcomes of the simulations perfectly.

also separate the cases for and against SA precisely.
Overall, the derived critical sample size matches results from the literature well

and allow a decision between two different shrinkage levels for a combination,
given the size of the available training data. The optimal shrinkage level, which
was introduced based on the combined error variance, however allows an even
more flexible model selection.

4.5.3 Optimal Bias–Variance Aware Shrinkage

The previous discussion of the critical training sample sizes showed that rela-
tively small training samples are sufficient to prefer a lower shrinkage level in
many cases. The optimal shrinkage level, which balances the bias and the vari-
ance component of the combined error variance in an optimal way, uses this effect
for a more flexible model selection.

Again assuming that error covariance matrices do not change between training
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and evaluation sample, the optimal shrinkage parameter from Theorem 4.15 can
be calculated for the error covariance matrices of the M3 Competition. As λ̊ de-
pends on the sample size and on the number of forecasts, the optimal shrinkage
λ̊ is displayed for different values of k and n in Figure 4.5. In each plot, the solid
line indicates the median of the optimal shrinkage parameters. The dark gray
(light gray) areas contain 50 % (90 %) of all optimal shrinkage parameter values
across the different error covariance matrices.
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Figure 4.5: Median optimal shrinkage λ̊ (solid line) for different numbers of forecasts k
and training sample sizes n. Dark gray areas contain 50 % of optimal shrinkage param-
eters per sample size. The optimal shrinkage parameters decrease with n. Furthermore,
the uncertainty in the optimal shrinkage parameter decreases with k.

As previously derived from the analytical equation, the optimal shrinkage pa-
rameter decreases with increasing sample size for all numbers of forecasts. Start-
ing from λ̊ exceeding 0.75 for sample size k + 1, λ̊ decreases with a steep descent
for slightly larger sample sizes. The decrease is declining with sample size and λ̊

decreases only slightly for sample sizes over 25.
Increasing the number of forecasts clearly reduces the uncertainty in optimal

shrinkage parameters. While the 90 % interval nearly spans the complete spec-
trum of shrinkage parameters for two forecasts even for large samples, optimal
shrinkage parameters are concentrated in smaller intervals for larger numbers of
forecasts. In particular, the uncertainty decreases when adding additional fore-
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casts to a combination. However, adding forecasts to a combination with five or
more forecasts only leads to very small differences in λ̊.

Figure 4.6 additionally displays the optimal shrinkage level for two forecasts
with σ1 = 1 and different values of ρ, σ2 and n. Optimal shrinkage levels increase
with decreasing difference between σ1 and σ2 and decrease with increasing sam-
ple size. Furthermore, the optimal shrinkage decreases with increasing (absolute)
correlation. Comparing the figure to the plot of the minimal training sample size
(Figure 4.3) reveals an interesting similarity. Optimal shrinkage levels are low
if minimal training sample sizes are also low and high if the minimal training
sample size is large. This similarity is caused by both minimal training size and
optimal shrinkage resulting from the bias–variance trade-off. In cases where the
weights, which are optimal in the evaluation sample are far away from equal
weights (e.g. for strong correlation), estimation errors are less likely to be an is-
sue, consequently a smaller training sample or weaker shrinkage is sufficient. In
contrast, when the optimal weights in the evaluation sample are close to equal
weights, a large training sample is required to keep the variance component of
the combined error variance low and a strong shrinkage is required.
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Figure 4.6: Optimal shrinkage in case of two forecasts, depending on the error correlation
ρ. Results are displayed for different training sample sizes n and values of σ2. The op-
timal shrinkage level decreases with training sample sizes and difference between error
variances. Furthermore, stronger (absolute) correlation requires lower shrinkage.

As argued for the minimal training sample size, these basic relationships can
be expected to be directly transferable to more than two forecasts

After the optimal shrinkage parameters have been analyzed, the impact of the
shrinkage on the combined error variance (scaled by the corresponding combined
error variance with k = 2) is displayed in Figure 4.7 for different numbers of fore-
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casts and sample sizes (15, 30 and 50 as examples). The solid line again indicates
the median while the dark gray (light gray) area contains 50 % (75 %) of the obser-
vations per shrinkage level. The combined error variances clearly decrease with
increasing number of forecasts. The strength of the decrease increases with the
size of the training sample.
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Figure 4.7: Combined error variance (scaled by the combined error variance with k =
2) for different sample sizes n and number of forecasts k when applying the optimal
shrinkage factor. The relative combined error variance decreases with the number of
forecasts and the training sample size.

The negative dependency of the expected error variance (and consequently the
MSE) on the sample size follows intuitively from the decreasing variance compo-
nent. The strong and monotonous effect of the number of forecasts results from
the continuously decreasing bias component and would basically recommend in-
cluding as many forecasts as possible since the expected error variance decreases
with each additional forecast.

The result that all available forecasts should be combined with appropriately
shrinked weights (as long as the training sample is not too small) to minimize the
error variance clearly conflicts with existing empirical findings and guidelines,
which recommend using a limited set of forecasts. Although the instability of
covariance estimates, and consequently weight estimates, is accounted for, the
theoretical results deviate from practical guidelines. However, the theoretical
analyses have up to now only considered the uncertainty resulting from small
training samples. Differences of the error covariance matrices of the training and
the evaluation sample are an additional source of uncertainty. The next part of
the discussion focuses on the impact of changes and on robust shrinkage.
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4.5.4 Error Covariance Change

The introduced robust shrinkage factor promises a certain degree of robustness
against changes of elements of the error covariance matrix. While the theoreti-
cal analyses clearly showed that changes influence the combined error variance
and, consequently, the choice of the shrinkage factor, the strength of the effect is
unclear. Thus, before the robust shrinkage factor is discussed, the importance of
robustness is illustrated.

Since changes of error correlations do not always result in a positive definite
error covariance matrix, changes in error variance are used for the illustration. In
Figure 4.8, the impact of changes of the error variance of a forecast p for n = 50
and optimal shrinkage is displayed using the error covariance matrices from the
M3 Competition. For this purpose, the expected error variance scaled by the one
obtained upon no change is plotted for changes of the error variance of forecast p
by −100 % to +100 %. In each row, the number of forecasts is increased from two
forecasts in the first row to five forecasts in the last row. The forecasts are ordered
by difference between the weights shrinked with optimal shrinkage and equal
weights in decreasing order from left to right. Consequently, the shrinked weight
of p = 1 has the largest positive difference to equal weights. While the solid line
indicates the median, the dark gray (light gray) areas contain 50 % (75 %) of all
scaled error variances per value of the change.

The median scaled combined error variance is in all cases equal to one for no
change. Depending on the number of forecast and on the forecast for which the
error variance changes, the combined error variance then changes more or less
strongly for increasing changes.

For two forecasts (first row, k = 2), the influence on the combined error vari-
ance is –in comparison– relatively low. The combined error variance only slowly
increases with increasing changes. For the forecast with the stronger positive
weight (p = 1), increases in error variance can negatively influence the combi-
nation whereas decreases in error variance can even be beneficial. The reverse is
true for the other forecast.

For k = 3, only changes of the error variance of the forecast with medium
weight (p = 2) result in small changes of the combined error variance. For p = 1
(p = 3), increases (decreases) in error variance quickly increase the combined
error variance while decreases (increases) tend to be less influential up to a certain
level.

This relationship is even stronger for higher numbers of forecasts, such as k = 4
and k = 5. In these cases, changes affecting the forecasts with weight strongly
deviating from equal weights (last and first forecast) immediately result in strong



Advances in Forecast Combination 99

p = 1 p = 2 p = 3 p = 4 p = 5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

k
 = 2

k
 = 3

k
 = 4

k
 = 5

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Relative Change of  sp
2

S
ca

le
d

 C
o

m
b

in
ed

 E
rr

o
r 

V
ar

ia
n

ce

50 % 75 % Median

Figure 4.8: Expected combined error variance (relative to the error variance without a
change) for different numbers of forecasts k and optimal shrinkage after a change of the
error variance of forecast p. The forecasts are ordered by difference to equal weights in
descending order. For k = 2, the impact of changes is relatively small. For k = 3, changes
for the two forecasts with the highest weights can be an issue. Starting from k = 4, small
changes can result in extreme increases in combined error variance for some forecasts.

increases in combined error variance ranging up to increases by 10 times and
more.

Overall, even small changes of one error variance can have a substantial impact
on the performance of the combined forecast and negate all potential benefits of
a combination. The example demonstrates that in particular higher numbers of
forecasts require stronger shrinkage for robustness since small changes in the er-
ror covariance matrix can otherwise result in strongly increased combined error
variance that easily exceeds the error variance of a SA combination. The influ-
ence of changes can be reduced by using stronger shrinkage, which results in less
extreme weights for individual forecasts. The robust shrinkage factor, which is
motivated by this idea, is illustrated and discussed in the next section.

Beforehand, the case with two forecasts, restricted to SA and OW, is again used
to discuss the influence of changes of error correlation and variance in greater
detail.
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For this case, the critical change of the error correlation ∆̊∞
ρ in case of two fore-

casts, as presented in Theorem 4.13, is depicted in Figure 4.9 as a function of ρ

for different values of σ2 = σ̃2 (σ1 = σ̃1 is kept fixed at 1). The figure shows five
curves for different values of σ2 between 1.2 and 2. It is clear from the figure that
only decreases of the error correlation are critical while the stronger the (positive)
error correlation, the smaller the critical change. Furthermore, different values of
σ2 lead to critical changes differing by a constant factor, which is consequently
independent of ρ. It can overall be stated that OW is least robust for ρ close to 1
and values of σ2 close to σ1 = 1.
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Figure 4.9: Thresholds regarding changes of error correlation in the bivariate case with
SA and OW as a function of the error correlation ρ and for different values of σ2. Forecasts
with high error correlation are less robust to changes than forecasts with weak error cor-
relation. Larger differences in accuracy between forecasts (high σ2) increase robustness.

Both dependencies are intuitive. Strong positive error correlations can lead to
extreme weight estimates with OW. In these cases, even small decreases of the
error correlation lead to equal weights being closer to the weights that minimize
the combined error variance in the evaluation sample. The increased robustness
with increasing difference of error variances can be explained in terms of the bias–
variance trade-off. In these cases, OW can decrease the bias component much
more than SA. High changes of ρ are consequently required to negate this effect.

The critical change of the error standard deviation ∆̊∞
σ for two forecasts intro-

duced in Theorem 4.14 is depicted in Figure 4.10 as a function of σ2 between 1 and
2 (values below σ1 = 1 are symmetrical). σ1 = σ̃1 is again fixed to 1 and the error
correlation is assumed to be identical in the training and the evaluation sample,
i.e., ρ = ρ̃. The figure shows four curves for different values of ρ between −0.99
and 0.99.
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Figure 4.10: Thresholds regarding changes of error variance in the bivariate case with
SA and OW as a function of the error standard deviation σ2. Results are presented for
different values of the error correlation ρ. The thresholds most strongly depend on σ2
and thus on the difference of the accuracy of the forecasts. The error correlation only
substantially influences the thresholds for strong positive correlation.

The critical change of error standard deviation increases with increasing dif-
ference between σ1 and σ2. The threshold values are small for very similar error
variances and continuously grow in (absolute) value for increasing difference.
Clearly, changes must negate a large part of the initial difference of the error
variances of the two forecasts for SA to outperform the OW combination. The
most pronounced case is for strong positive error correlation, where the required
changes are largest. This is again due to the strong potential reduction of the
bias component by using OW, which requires even larger changes to make SA
perform better than OW.

The discussion of the critical changes for two forecasts can again be directly
transferred to combinations of more forecasts. If the error variances are very sim-
ilar, small changes of one error variance can result in SA outperforming a combi-
nation with learned weights (with and without shrinkage) if the changes occur in
a disadvantageous way. If a correlation (i.e. a non-diagonal element of the error
covariance matrix) changes, SA can also outperform learned weights, especially
if the covariance element has –in comparison– a relatively high value.

So far, for reasons of complexity, the analytical derivations as well as the discus-
sion were limited to a change of either error variance or error correlation, while
assuming the other remained constant. However, the formula for the combined
error variance introduced in Theorem 4.6 also allows a numeric analysis of a com-
bination depending on multiple criteria. To provide further insights, numerical
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Figure 4.11: Numerical thresholds for changes of error variance as well as error correla-
tion for different initial error characteristics ρ, σ2 and training sample sizes. For reference,
the dot in each plot marks no change of both characteristics. SA is beneficial for combi-
nations on the left of the boundaries. Critical changes of ρ and σ2 are dependent, SA can
be beneficial as a result of combinations of changes of ρ and σ2.

results for changes of error correlation and error variance in the bivariate case
with SA and OW are presented in Figure 4.11. While σ1 = σ̃1 = 1 is again con-
stant, combinations of changes of the error correlation and the error variance of
σ2 that result in SA and OW having equal combined error variance are displayed,
depending on the initial values of σ2 and ρ as well as on the size of the training
sample n.

For combinations of changes of ρ and σ2 on the left side of the threshold lines,
SA is advantageous. Taking ρ = 0, σ2 = 2 as an example (the plot on the upper-
right of the figure), SA can be expected to perform better if either ρ decreases very
strongly or σ2 decreases substantially. Alternatively, a combination of smaller
decreases of both ρ and σ2 can result in SA being superior to OW.

The thresholds in Figure 4.11 at large confirm the previous discussions. How-
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ever, two additional interesting results can be seen in the figure. First, issues
with small sample sizes can be noted in some cases, especially for σ2 = 1.2 and
n = 10, where the no-change point is left of the threshold line. This indicates that
changes in favor of OW are required to make OW a reasonable choice. Second, as
previously discussed based on the analytical formula, two threshold values (one
positive, one negative) for σ2 exist for some initial error characteristics. For in-
stance, for σ2 = 1.4 and ρ = 0.9, a small negative change or a very large positive
change of σ2 with fixed ρ can result in SA performing better.

Besides the analysis and discussion of the thresholds for changes of the error
characteristics, a comparison to results from the literature can provide validation
and additional insights. For this purpose, the thresholds are applied to the case
study of Miller et al. (1992), who analyzed the impact of breaks in error time
series on different combination methods. Their simulation experiment are repro-
duced with three forecast error time series of length 100, which are randomly
generated and combined with different combination methods. For direct com-
parability, only SA and OW are used. The experiments start at time interval 8,
where OW are first estimated on all past observations. Then, the size of the train-
ing sample is incremented and revised weights are estimated, again on all past
observations. At time 30, one characteristic of the errors (either the error variance
of forecast 1, σ2

1 , or the error correlation ρ1,2 between forecasts 1 and 2) increases
or decreases from its initial value, depending on the different treatments. The
initial error characteristics as well as the changes for the treatments are defined
for two different sets of initial parameters, as shown in Table 4.2.

Initial Error Characteristics

Set Treatment σ2
1 σ2

2 σ2
3 ρ1,2 ρ1,3 ρ2,3 Change Crit. Change

1

Variance Increase 1

0.9 1.1

0.8

0.6 0.7

∆σ2
1 = 0.7 ∞ *

Variance Decrease 1.7 0.8 ∆σ2
1 = −0.7 −0.295

Correlation Increase 1 0.4 ∆ρ1,2 = 0.4 −0.013 *
Correlation Decrease 1 0.8 ∆ρ1,2 = −0.4 0.514 *

2

Variance Increase 1

0.7 1.4

0.8

0.6 0.7

∆σ2
1 = 0.8 −0.270

Variance Decrease 1.8 0.8 ∆σ2
1 = −0.8 −0.847

Correlation Increase 1 0.4 ∆ρ1,2 = 0.4 0.393
Correlation Decrease 1 0.8 ∆ρ1,2 = −0.4 −0.289

Table 4.2: Treatments regarding the initial values of the error characteristics and their
changed values after the structural break in the experiments adapted from Miller et al.
(1992). The outer right column displays the analytically derived critical change (for n =
29) of the changing error correlation or variance. Cases where the actual change exceeds
the critical change are printed in bold. A star indicates that SA is already superior to
OW before the structural break. Overall, three cases of changing characteristics can be
expected to be critical for the OW combination.
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Using the initial characteristics and n = 29, the critical changes of σ2
1 and ρ1,2,

for which OW and SA can be expected to perform similarly after the structural
break, can be calculated using Theorems 4.13 and 4.14. In most cases, the thresh-
old indicates how much the error variance or correlation is allowed to change for
OW to outperform SA even after the structural change. However, in some cases
(for instance the correlation decrease treatment for set 1), SA already performs
better than OW. Consequently, the threshold then indicates how much error vari-
ance or correlation would have to change to make OW perform at least as good as
SA after the structural break. Critical values are in these cases marked by a star.
Changed characteristics exceeding the critical value are printed bold. Overall, of
the eight different treatments, three can be expected to be critical changes. In the
two critical cases for set 2, the changes are relatively close to the critical value, the
performance of SA and OW can thus be expected to be similar after the structural
break.

The average root mean squared error (RMSE) outcomes of the simulation ex-
periments over 50,000 runs (instead of the 3,000 runs in the original experiment
for higher stability of the result) are shown per time interval in Figure 4.12. For
visualization purposes, the curves are slightly smoothed with smoothing splines,
as done by Miller et al. (1992). It is important to note that OW continuously learns
updated weights with each (seen) observation, i.e., the training period increases
over time and the weights are adjusted continuously after the structural break,
which explains the decreasing RMSE of OW after the structural break.

Results indicate that the derived thresholds properly differentiate between un-
critical and critical cases of structural breaks. All cases where the new value of
the changed characteristic is far away from the critical value are indeed uncriti-
cal. On the other hand, for the variance decrease treatment for set 1, SA is clearly
superior after the structural break while it was outperformed by OW before. In
the two treatments with critical changes for set 2, the RMSE values after the struc-
tural break are very close, albeit confirm the critical value and its implication. The
derived analytical thresholds consequently match the results of the reproduced
simulation experiment very well.

Overall, the results confirm the derived thresholds. The discussion further-
more shows that especially combinations involving many forecasts are very
prone to changes of error characteristics. Even small changes can result in strong
increases of the combined error variance on unknown data. As using OW es-
timates shrinked towards equal weights with the introduced optimal shrinkage
level only considers estimation uncertainty, a higher degree of shrinkage is re-
quired for an increased robustness against changes.
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4.5.5 Robust Shrinkage

A stronger shrinkage towards equal weights is required for robustness against
changes since SA, as an extreme approach, is completely independent of the train-
ing sample and can consequently not increase errors because of weights with a
suboptimal fit to unknown data.

The previous discussions indicated that especially combinations including
higher numbers of forecasts are prone to small changes of the error characteris-
tics. Thus, the shrinkage level required for robustness can be expected to increase
with the number of forecasts. To provide insights into this aspect, Figure 4.13
shows the robust shrinkage factor for the M3 error covariance matrices, indi-
cating to which extent OW must to be shrinked to achieve a certain degree of
robustness. For the example, a training sample size of n = 50 is assumed and
robustness parameters are set to r = 0.05 and v = 0.1. Consequently, robustness
against an absolute change of an error correlation by 0.05 and a relative change
of an error variance by 10 % is desired. The figure shows the empirical cumula-
tive frequencies of robust shrinkage factors (the lowest shrinkage factor leading
to lower expected error variance than SA under changes up to the desired ro-
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Figure 4.12: Average RMSE per time interval before and after the structural break (vertical
line) for different parameter sets and treatments. While the same combination in many
cases performs best before and after the structural break, the superior combination in
some cases changes from OW to SA. The performance of OW improves again after the
break since observations with the new error characteristic are included into the weight
estimation.
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bustness degree) for selected numbers of forecasts. The three plots in the figure
present results for robustness only against changes of error correlation, of error
variance, and of both characteristics.
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Figure 4.13: Empirical cumulative frequency of the robust shrinkage factor λ̊R required
to ensure robustness against changes of correlation up to ±0.05 (left), of error variances
changes up to±10 % (center) and against both (right) for training sample size n = 50 and
different numbers of forecasts k. Higher numbers of forecasts require using SA (λ̊R = 1)
in most cases to ensure robustness against both changes individually as well as against
both.

The plots confirm the general tendency that the more forecasts are included,
the higher the shrinkage required for robustness. The plots also show that the
shapes of the cumulative frequencies are nonlinear: the higher the number of
forecasts, the higher the frequency of robust shrinkage factors approaching one.
While many cases allow a robust shrinkage factor below one for lower numbers
of forecasts, an alternative to SA that is robust against variance or correlation
changes, exists for less than 20 % of all matrices for ten forecasts.

As previously discussed, estimated weights tend to be more extreme for higher
numbers of forecasts. Consequently, a stronger shrinkage must be used to achieve
weights on a level comparable to the weights for fewer forecasts. To gain insights
on the shrinked weights after applying the robust shrinkage factor, Figure 4.14
presents the distributions of the shrinked weights differing from equal weights
(i.e. without the cases with λ̊R = 1) for different numbers of forecasts. The fore-
casts are again ordered by difference of the weight estimate to equal weights in
decreasing order. For instance p = 1 is the forecast with the strongest positive
weight.

First of all, it can be noted that the number of cases where the weights after
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Figure 4.14: Histogram (gray) and density estimate (black line) of the weights shrinked
with robust shrinkage, excluding cases with λ̊R = 1, for different numbers of forecasts k.
The distributions are displayed for individual forecasts and ordered by shrinked weight
so that p = 1 has highest weight among the k forecasts. With increasing k, fewer robust
combinations use weights other than equal weights. Furthermore, the shrinked weights
are less differentiated.

robust shrinkage differ from equal weights decreases with increasing number of
forecasts. This result is consistent with the previous discussions as combinations
with more forecasts tend to be more prone to changes. Furthermore, the weights
shrinked with robust shrinkage are less differentiated for higher numbers of fore-
casts. While weights with robust shrinkage are in a substantial number of cases
higher than 2 or below 0 for k = 2, only few weights shrinked with robust shrink-
age are as strong for k = 4 or k = 5. Consequently, lower numbers of forecasts
allow a stronger fit to past errors while still ensuring robustness whereas higher
numbers of forecasts require a weaker fit to past errors for robustness.

The earlier discussion and illustration of optimal shrinkage showed that the
combined error variance with optimal shrinkage can be expected to continuously
decrease with increasing number of forecasts. However, this is not necessary true
when robustness is required as the discussion showed that strong shrinkage is
required for robustness in case of many forecasts.
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In order to analyze the impact of the (stronger) robust shrinkage factor on the
performance of the combined forecast, Figure 4.15 presents the empirical distri-
bution of the expected error variance with robust shrinkage (again with r = 0.05
and v = 0.1), relative to the k = 2 combination, for different numbers of forecasts.
In contrast to the previous analyses, the forecasts are ordered by accuracy. The
solid line again indicates the median and the light gray (dark gray) areas con-
tain 75 % (50 %) of all observations per value of k. Since various different kinds
of changes can occur, the worst case for robust shrinkage is considered, i.e., that
error covariances do not change.
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Figure 4.15: Distribution of the expected combined error variance with robust shrinkage
when forecasts are ordered by accuracy, relative to the result for k = 2. The distribution
is displayed for different training sample sizes. The median relative combined error vari-
ance is largely independent of the training sample size and increases with the number of
forecasts, except for k = 3, which is slightly beneficial.

Comparing the distribution of the relative expected combined error variance
for robust shrinkage to the results for optimal shrinkage (see Figure 4.7) reveals
substantial differences. While optimal shrinkage results in a decreasing expected
combined error variance, the combined error variance with robust shrinkage de-
creases only slightly for k = 3 and then increases. Consequently, using two or
three forecasts is most beneficial in median when using robust shrinkage if the
forecasts are ordered by accuracy.

Interestingly, the results differ substantially for a random ordering of the fore-
casts. Figures 4.16(a) presents the combined error variances, scaled by the cor-
responding results for k = 2. It can be noted that the distribution of the relative
combined error variance in this case changes when increasing the number of fore-
casts. Left-tailed distributions can be observed when increasing k up to five, and
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then right-tailed shapes when including more forecasts in a combination. This
can be seen as with k ≤ 5 the 75th percentile is much closer to the median than
the 25th percentile. This shape transformation can be observed for all training
sample sizes considered. Hence, with lower number of forecasts, the mean rela-
tive combined error variance is lower than the median, while the mean exceeds
the median for k > 5, significantly increasing with larger k. In contrast, the distri-
butions are less beneficial when the forecasts are ordered by accuracy. While the
distributions are largely symmetrical for small k, the distribution quickly changes
to a right-tailed distribution with increasing k.

Overall, in contrast to the case with ordered forecasts, a range of three to five
forecasts is beneficial when combining randomly ordered forecasts with robust
shrinkage. However, as a result of the scaling, the previously discussed results of
the two orderings cannot be compared directly. For this reason, Figure 4.16(b) ad-
ditionally displays the combined error variances with random ordering scaled by
the results for k = 2 in the ordered case. This scaling allows a direct comparison
of the two orderings.

Interestingly, the plots indicate that the combined error variance with robust
shrinkage is lower for a random ordering of the forecasts for the range of three to
five forecasts. In other words, if three to five forecasts are combined, it is better
to randomly select the included forecast instead of using the forecasts that can be
expected to be most accurate.

This finding might be counterintuitive at a first glance. However, it is in line
with the literature on judgment aggregation (see Section 2.2), where diversity
is often highlighted instead of accuracy. For instance, Davis-Stober et al. (2014)
suggested selecting judgments that are as negatively correlated with each other
as possible.

In order to provide insights into the diversity, Figure 4.17 compares the distri-
bution of the mean correlation of the errors of one forecast with all other forecasts
(which can be considered a measure of diversity) for the two different orderings.
For instance the plot for p = 2 only considers the error correlation between the
first two forecasts, either by random ordering or ordered by accuracy. For p = 10
the error correlations of the last with all other forecasts are considered.

The mean correlations are –besides random fluctuations– distributed very sim-
ilarly for all forecasts in case of random ordering. In contrast, error correlations
are highest for p = 2 for forecasts ordered by accuracy. The distributions are only
similar for the two orderings for less accurate forecast (starting from p = 7). Thus,
the ordering by accuracy also results in choosing forecasts with a higher error cor-
relation when selecting a specific number of forecasts. However, as shown in the
previous analyses and discussions, a higher error correlation results in weights
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(a) Scaled by k = 2 for Random Ordering
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(b) Scaled by k = 2 for Ordering by Accuracy

Figure 4.16: Distribution of the expected combined error variance with robust shrinkage
in case of random ordering of the forecasts for different sample sizes n. The results in the
upper plot are scaled by the combined error variances for k = 2 and random ordering
whereas the lower plot uses scaling with the corresponding results for an ordering by
accuracy. Both plots indicate that the combined error variance is lowest for a range of
three to five forecasts and the advantage is most pronounced for k = 4. The lower plot
furthermore shows that the combined error variance is lower for the random selection.
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Figure 4.17: Distribution of the mean error correlation between forecast p and the previ-
ous forecasts, for random ordering and ordering by accuracy. The error correlations are
strongest when the forecasts are selected by accuracy, as the distributions indicate higher
correlations for this ordering up to approximately the seventh most accurate forecast.

that are more prone to structural changes and thus require a stronger shrinkage
for robustness. This effect in turn increases the combined error variance.

In summary, the results indicate that using robust shrinkage instead of opti-
mal shrinkage comes at substantial costs in terms of combined error variance. As
higher numbers of forecasts require a stronger shrinkage for robustness, the ex-
pected combined error variance does not continuously decrease with increasing
number of forecasts but has a minimum for a low number of forecasts. Thus, in
contrast to the results for optimal shrinkage, only a limited set of forecasts should
be included in the combination when aiming at robustness of the combination.
Furthermore, randomly selecting forecasts for a combination with robust shrink-
age can be expected to be more beneficial than selecting forecasts by accuracy.
The higher diversity of randomly selected forecasts can be assumed as a key as-
pect leading to this result. The illustration and discussion of the analytical results
thus provided valuable new insights into robustness in forecast combination and
provides guidelines for practical application.
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4.6 Conclusions and Limitations

In this chapter, a model of the expected out-of-sample error variance, consisting
of a bias- and a variance-related component, of a forecast combination with op-
timal weights shrinked towards the simple average was introduced. The model
was used to determine a shrinkage level that minimizes the combined out-of-
sample error variance by balancing the bias and the variance component in order
to adjust for the estimation uncertainty resulting from small training samples.
Furthermore, critical changes of elements of the error covariance matrix were
derived, which can for instance be used to determine how much elements are
allowed to change for a combination to still outperform the simple average. The
critical changes were finally used to introduce a novel robust shrinkage factor
that ensures robustness against changes up to a definable extent.

The discussion of the optimal shrinkage level and the resulting expected com-
bined error variance indicated that as much forecasts as possible should be in-
cluded in the combination, as long as the available training sample is large
enough. As little as 25 observations were found to be sufficient in most cases
even when many forecasts, for instance 10, are combined. Especially for higher
number of forecasts, only a moderate degree of shrinkage is required.

However, including as many forecasts as possible in a combination and not
using strong shrinkage towards the average clearly contradicts the empirical re-
sults and recommendations in the literature. Consequently, estimation errors as a
result of small training samples cannot completely explain the established result
that simple averaging strategies perform as good as combinations with learned
weights.

However, the illustration and discussion of the critical changes of error vari-
ances and correlations indicated that especially the combinations with larger
numbers of forecasts are highly prone to small changes. The resulting expected
increases in combined error variance can be large and easily result in a perfor-
mance worse than the simple average.

The introduced robust shrinkage factor addresses this issue by increasing the
shrinkage up to a level that ensures that the combination performs better than
an alternative combination up to definable changes. The discussion showed that,
as a result of the low initial robustness against changes, strong increases of the
shrinkage level are required for more than three or four forecasts, often resulting
in using the simple average. As a result, the combined error variance does not
decrease as strongly with increasing number of forecasts. Only a range of three to
five forecasts is beneficial over a combination of just two forecasts. Furthermore,
a combination, which considers robustness by using the robust shrinkage level,
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is more beneficial when the forecasts included in the combination are selected
randomly as a high diversity is ensured.

Thus, if structural changes have to be expected, a combination using the robust
shrinkage factor introduced in this chapter should be considered. Furthermore,
only a low number of forecasts should be included in the combination and the
forecasts should not be selected by accuracy in order to ensure sufficient diversity
of the forecasts.

The theoretical analyses as well as the illustration and discussion are subject
to several limitations. First of all, the derived formulation of the expected out-
of-sample combined error variance is based on the assumption of a multivariate
normal distribution of the errors. Although this is a very widespread assumption,
it might not be satisfied in practice and the errors might for instance follow a dis-
tribution with heavier tails, which would in turn increase estimation uncertainty
and expected error variance. The distribution of the errors additionally assumed
that the expected errors are zero, i.e., that the forecasts are unbiased. This as-
sumption is especially likely to be violated if a judgmental forecast is included
in the combination. However, although a bias of a forecast influences the combi-
nation and increases errors, the bias is reduced in a combination with unbiased
forecast.

The derivation furthermore used the assumption that the weight estimates
have no covariance with the errors of the forecasts included in the combination.
As shown by Claeskens et al. (2016), a violation of this assumption can result in a
bias of the combined forecast and an increased error, which is not considered in
the analyses in this chapter, such as the optimal or robust shrinkage factor.

From a statistical point of view, the derived optimal shrinkage level is another
random variable that has to be estimated. The uncertainty related to this esti-
mation however increases the variance component of the error of the combined
forecast. Thus using a more conservative than the calculated optimal shrinkage
factor might be reasonable. This aspect is however not included in the analyses
as it would introduce another layer of complexity.

The robust shrinkage as an alternative shrinkage level aims at increasing the
robustness against structural changes. These changes of error characteristics can
in practice occur in an arbitrary fashion for one or several of the characteristics
and for one or several forecasts. However, the analyses of structural changes, and
consequently the introduced robust shrinkage level, only considered one change
at a time. Thus, the robust shrinkage level does not ensure robustness against
multiple concurrent changes that might reinforce or negate each other.

Lastly, the derived models are theoretical ones and strongly rely on the error
covariance matrix. Given a error covariance matrix, the analyses assume that
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weights are estimated from one sample, which is drawn from the distribution
parameterized by the error covariance matrix, and then quantify the error vari-
ance resulting from applying these weight estimates. However, in practice, the
error covariance matrix is unknown and only one sample of errors is available
and used for parameter estimation. Thus, the model cannot be directly applied
in specific settings. An application is only possible under the assumption that
the estimate is equal to the population error covariance matrix. This assumption
is clearly unlikely to be met in practice. However, the variance component in-
cluded in the model, which is based on the sampling distribution, can be seen as
a compensation of this aspect.

In order to analyze whether the analyses and models derived in this chapter
not only provide guidelines for forecast combination, but can also be applied in
practice despite potential violation of the discussed assumptions and limitations,
an empirical evaluation is required. The corresponding empirical case study is
presented in the next part of this work.



Part III

Application in Practice and Empirical
Evaluation





Chapter 5

Case Study: Corporate Cash Flow
Forecasting

THE previous chapters mainly focused on the theoretical properties of fore-
cast correction and combination methods. In order to transfer the derived

insights and the developed new models to practical applications, this chapter in-
troduces a case study in corporate cash flow forecasting, where forecast correction
and combination can be applied to judgmental forecasts.

Forecasts of future cash flows in different currencies play an important role
in various management tasks in corporate finance. Cash flow forecasts are for
instance used in liquidity management and foreign-exchange risk management.
In liquidity management, the forecasts are used to anticipate cash shortages or
surpluses in order to ensure solvency on the one hand and to limit cash reserves
(which reduce profitability) on the other hand. In foreign-exchange risk manage-
ment, cash flow forecasts are a basis for determining exposures resulting from
business transactions in foreign currencies, which can then be hedged. Inaccu-
rate forecast are an unreliable basis for financial plans. In liquidity and foreign-
exchange risk management, inaccurate forecasts can lead to liquidity shortages
and even insolvency, uncovered risks or increased hedging costs. Evidence for
the importance of the accuracy of cash flow forecasts was for instance provided
by Gormley and Meade (2007), who showed that the transactional costs for
corporate-wide cash balance management using short-term cash flow forecasts
strongly depends on the forecast accuracy.

In order to illustrate how judgmental cash flow forecasts are produced in prac-
tice, Section 5.1 introduces the sample company of the case study and empirical
evaluation as well as the process in which the cash flow forecasts are produced.
Subsequently, the forecast and realization data that is available from the sample
company are introduced and described in Section 5.2. Lastly, the preprocessing
applied to the available data is described in Section 5.3 before the data is used for
an evaluation of forecast correction and combination methods in the next chapter.
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5.1 Sample Company

In the sample company of the case study, cash flow forecasts of expected foreign
currency denominated accounts receivables and accounts payables are used for
instance for foreign-exchange risk management. The sample company is a multi-
national corporation with headquarters in Germany whereas operations are dis-
tributed worldwide. The company is, at the time of the case study, structured into
three relatively independent business divisions with very different products and
markets. Based on their business portfolios, the divisions are named “agricul-
tural products” (AP), “health and pharmaceuticals” (HP) and “industrial materi-
als” (IM) in this case study. Subsidiaries that cannot unambiguously be assigned
to one division are grouped into the “diverse” (DIV) group. Over 300 separate
legal entities with over 100,000 employees belong to the company. Thus, the com-
pany is strongly diversified and heterogeneous. Annual revenues amount to over
40 billion Euro, which mainly result from business in Europe, North America, as
well as Asia and the Pacific Region.

As a result of the legal structure of the company, the financial management is
centralized and the financial managers of the subsidiaries report to the central
corporate financial controlling at the headquarters. The cash flow forecasts of the
accounts receivables and accounts payables are consequently generated world-
wide by the subsidiaries and are then submitted to the central corporate financial
controlling. The accounts receivables result mainly from sales whereas the ac-
counts payables are invoices from suppliers and other partners. Taken literally,
accounts receivables and accounts payables are accruals rather than cash flows.
As in most companies, historical data and forecasts of cash-ins and cash-outs are
not available since the sample company’s reporting systems are oriented towards
revenues and expenses. The accounts receivables and accounts payables used in
the analysis are however, for all practical purposes, comparable to cash-ins and
cash-outs. For the sake of simplicity, the term cash flows is used even when re-
ferring to the accounts payables and receivables.

As the cash flow forecasts are produced by the financial managers of the sub-
sidiaries based on available information, the forecasts are judgmental forecasts.
However, as discussed in Section 2.1, judgmental forecasts are regularly found to
be biased and strongly influenced by cognitive heuristics. The cash flow forecasts
of the sample company are consequently likely to have substantial inaccuracies
that can be reduced using statistical methods. It is furthermore likely that the
biases substantially influence corporate planning and decision processes.

Despite the general awareness of the importance of accurate financial forecasts
for corporate planning and control (Kim et al., 1998; Graham and Harvey, 2001),
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there is no research available that analyzes how judgmental corporate cash flow
forecasts can be improved using statistical methods. This is in particular true
for the correction of judgmental forecasts using systematic biases identified from
past forecasts and the combination with model-based forecasts. The empirical
application and evaluation consequently apply the forecast correction and com-
bination approaches discussed in the previous chapters to the cash flow forecasts
of the sample company. As a basis for the evaluation, the next section describes
the available data as well as the preprocessing steps that were taken.

5.2 Available Data and Preprocessing

The data set available for the case study consists of forecasts and corresponding
realizations and is provided by the sample company described in the previous
section.

The forecasts are delivered by the subsidiaries at regular intervals and cover
monthly intervals with differing forecast horizons of up to at least 12 months.
As a schematic illustration, Table 5.1 shows the temporal structure of forecast
deliveries for cash flows in 2012, with the months of forecast delivery (labeled F)
and the month of the realization of the corresponding cash flows (labeled A). For
instance, the forecasts for cash flows from January till March 2012 are delivered in
March 2011 (with a horizon of four quarters), June 2011 (with a horizon of three
quarters), and so on.

2011 2012

Horizon 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

4 Quarters
F A A A

F A A A
F A A A

F A A A

3 Quarters
F A A A

F A A A
F A A A

F A A A

2 Quarters
F A A A

F A A A
F A A A

F A A A

1 Quarter
F A A A

F A A A
F A A A

F A A A

Table 5.1: Temporal structure of the deliveries of the judgmental cash flow forecasts in the
case study in 2012. For different forecast horizons and months of actual cash flows (A),
the delivery of the corresponding forecasts (F) is shown. For instance, the first forecasts
for cash flows in January 2012 are delivered approximately four quarters ahead in March
2011 (1st row of the table) and are then revised in June 2011 (5th row of the table), in
September 2011 (9th row of the table), and finally in November 2011 (13th row of the
table), when the final forecasts for cash flows in January 2012 are delivered.
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It should be noted that the structure of forecast deliveries has been changed
several times during the time under study. For instance, the forecast deliveries in
March and June were changed to February and May for practical reasons.

The forecasts and actual cash flow data are available for accounts payables and
receivables. The data set spans actuals for the period from July 2008 to June 2014
and corresponding forecasts. The forecasts were delivered from November 2006
to May 2014 on an approximately quarterly basis.

The forecasts and actual values are available at a relatively fine grained level,
which involves separate values for different partners. However, as business part-
ners can regularly change, the data is aggregated to only differentiate between
external and internal partners. As a result, the forecasts and actuals are available
per subsidiary, currency, account payable or receivable, and external or internal
partner.

Because of changes to the delivery structure, forecasts for some months are only
available with horizons of up to 9 months. For reasons of consistency, forecasts
with longer forecast horizons are excluded from the empirical evaluation. Fur-
thermore, some of the available time series have only a short history and are thus
not well suited for a thorough evaluation of the different forecast correction and
combination approaches where parameters have to be estimated using past ob-
servations. At most 6 observations with zero or non-existing values are allowed
within the first five years of the data and none within the last year as it used as
evaluation period. Time series that do not meet these requirements are excluded
from the evaluation.

Lastly, as illustrated in Table 5.1, forecast are produced approximately once
every quarter in an irregular manner. For each actual value, only up to five
unique forecasts exist. As a consequence, when considering the forecast hori-
zon in months, relatively few observations exist per horizon. To circumvent this
issue, the forecasts are considered up-to-date until a new forecast is available, i.e.,
forecast horizons that do not exist for a particular actual value are filled in with
the last available forecast. This approach closely resembles practical applications,
where a forecast is used until a revised one is available.

In order to provide more detailed insights into the data available after the pre-
processing and its characteristics, the next section provides descriptives and fur-
thermore classifies the data into categories as a basis for the analyses in the eval-
uation.
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5.3 Data Characteristics and Classification

The data set used for the empirical evaluation results from applying the prepro-
cessing steps described in the previous section to the available data set. The re-
sulting time series data spans a period of six years and consists of 175 actuals
time series and corresponding forecasts from 41 different subsidiaries and in 27
different currencies. Since several forecasts are available for each actual item,
over 113,000 forecasts can overall be analyzed. The data statistics per division are
presented in greater detail in Table 5.2.

All Divisions AP HP IM DIV

Period 07/2008 – 06/2014
Length of actual time series 72 months
Subsidiaries 41 6 12 6 17
Currencies 27 10 21 15 5
# Actual Time Series 175 30 68 23 54
# Actuals 12,600 2,160 4,896 1,656 3,888
# Forecast Time Series 1,575 270 612 207 486
# Forecasts 113,400 19,440 44,064 14,904 34,992

Table 5.2: Descriptives of the available time series in the case study by business divi-
sion. Overall, more than 12,000 actual values and corresponding forecasts with different
horizons are available. Most observations are available for the HP and DIV business
divisions.

The time series are likely to have different characteristics per business division
because of their specific business characteristics. Companies in AP produce a
broad spectrum of agricultural supplies and therefore largely depend on agricul-
tural cycles, i.e., a yearly cycle of seeding, pest and insect protection, and har-
vesting. In contrast, IM develops and produces industrial materials. IM conse-
quently depends on orders from manufacturing companies, which depend on the
global economy and therefore on macroeconomic uncertainty. HP researches and
produces health related products and pharmaceuticals, which do not (or only
weakly) depend on the economy or annual cycles. These differences regarding
dependencies of the business divisions’ cash flows on seasonality and macroeco-
nomic developments can also be seen in Figure 5.1, where the characteristics of
the actuals time series and the judgmental forecasts are summarized.

The left plot in the figure illustrates the different variability of the time series in
the different business divisions. One boxplot shows the coefficient of variation in
one division, where one observation corresponds to the coefficient of one actual
time series from an entity belonging to that division. The variability of the time
series is on comparable levels except for the division AP, where the time series
fluctuate more strongly.
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Figure 5.1: Characteristics of the actual and error time series by business division. The
variability of the time series (measured by the coefficient of variation) is increased for
AP, which is however largely explained by the yearly autocorrelation that is increased
because of the dependence on annual agricultural cycles. The errors of forecasts for cash
flows in business division IM show substantial correlation with the volatility of the Dow
Jones Index, which is commonly used as a proxy of macroeconomic uncertainty.

The middle plot in the figure shows the correlation of the forecast errors (mea-
sured by the absolute percentage errors, APE) and the volatility of the Dow
Jones (DJ) Index, which is often used as a proxy for macroeconomic uncertainty.
A strong relationship is only found for cash flows in division IM but not in other
divisions. This is a result of the division’s dependency on the global economy.

The right plot in the figure shows the distribution of the autocorrelation of
actual cash flow time series with a lag of twelve months (yearly seasonality) by
business division. AP exhibits the largest autocorrelation in its cash flows, as
can be expected from the agricultural business. The high autocorrelation also
explains the high volatility quantified by the coefficient of variation. The other
two divisions and DIV overall show little autocorrelation.

The different business characteristics highlight the high diversity of the time
series included in the empirical evaluation. Even though the data only stems from
one corporation, the results can be expected to be largely generalizable because
of the heterogeneity of the time series.

As time series characteristics are still relatively heterogeneous within the busi-
ness divisions, a more detailed classification of the time series is of interest for
the analyses. Some approaches, especially in forecast correction, can be expected
to perform better for specific types of the time series, such as time series with
seasonality.
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Time Series Classification

Division None Trended Seasonal Both

AP 6 6 10 8
HP 16 33 4 15
IM 6 10 0 7
DIV 14 24 1 15

Sum 42 73 15 45

Table 5.3: Number of time series per type by division as a result of the time series clas-
sification. For AP, most time series are either seasonal or seasonal and trended, whereas
trended time series are most frequent for the other divisions.

In order to evaluate this dependency, the available time series are classified
into the four following types. (i) Trended if a KPSS unit root test (Kwiatkowski
et al., 1992) indicates non-stationarity. (ii) Seasonal if the yearly autocorrelation is
strong (above the 66 % quantile, 0.324 for the available time series). (iii) Trended
& Seasonal if a time series is trended and seasonal according to the criteria above.
(iv) Stationary if a time series does not match any of the previous types.

The resulting classification is shown in Table 5.3, where the number of time
series of the different types is displayed by business division. Overall, the classi-
fication results in 73 trended (42 %), 15 seasonal (9 %), 45 trended and seasonal
(26 %) and 42 stationary time series (24 %).

As some approaches might be more robust against time series with higher vari-
ability, an additional label is generated indicating whether a time series of actual
values has a high variability. For this purpose, the 66 % quantiles of the coeffi-
cient of variation per time series type are used. In the case study, the threshold
is approximately 0.5 for all types of time series except for seasonal time series,
where the threshold is 0.76. Besides measuring the variability of the time series,
the metric can furthermore indicate whether an actual time series is likely to con-
tain an outlier, as the coefficient of variation is often strongly increased for time
series with outliers.

Overall, a large data set of judgmental forecasts and corresponding realizations
from a real-world application is available for the empirical evaluation. The data
set is very heterogeneous regarding characteristics of the time series as well as
regarding biases and error patterns in forecasts as they were produced by a va-
riety of experts. Thus, the data set is a solid basis for the empirical evaluation of
forecast correction and combination approaches, which is presented in the next
chapter.





Chapter 6

Empirical Evaluation

THE case study in corporate cash flow forecasting introduced in the last chap-
ter illustrates the importance of the accuracy of judgmental forecasts. As a

considerable history of past forecasts and realizations are available, forecast cor-
rection as well as combination can be applied in order to improve the accuracy
of the judgmental forecasts. In this chapter, the available data is used to evalu-
ate the different approaches introduced in this work. First, Section 6.1 introduces
the research design, which is used in the empirical evaluation. Subsequently, the
results on forecast correction and combination are discussed separately in Sec-
tions 6.2 and 6.3. The two approaches are then compared in Section 6.4. Lastly,
conclusions regarding the available mechanisms as well as limitations of the em-
pirical evaluation are discussed in Section 6.5. Furthermore, potential starting
points for future improvements in the integration of human judgment and statis-
tics in forecasting tasks are derived.

6.1 Research Design

For a thorough evaluation of the forecast correction and combination methods,
the design of the empirical evaluation should resemble real-world applications
as closely as possible. Thus, the various parameters required for the different
models have to be estimated from a training data set and then be applied to an
independent evaluation data set, which is not considered in the estimation. The
evaluation data set can then be used to measure and compare the performance of
different methods.

Of the six years of available data in the case study, actuals (and correspond-
ing forecasts) of the last 12 months (07/2013 – 06/2014) are used as evaluation
data, where the performance of different forecast correction and combination ap-
proaches are compared. The evaluation uses a rolling approach where models
are learned for the first data point of the evaluation data set using the complete
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available history of available data prior to the evaluation data point (while con-
sidering restrictions resulting from the forecast horizon) as training data. The
data point is then added to the training data and the procedure is repeated until
the complete evaluation data set is processed.

It should be noted how forecast horizons influence the available training data.
If for instance models for July 2013 are learned, all data until June 2013 is available
as training data for a forecast horizon of one month whereas only data until April
2013 is available in case of a forecast horizon of three months. This restriction
ensures comparability to applications in practice, where actual values are only
available after the realization date has passed.

This evaluation setting is used for the evaluation of forecast combination as
well as forecast correction models. The different treatments regarding models
and their parameterizations, which are compared in the evaluation, are intro-
duced next. Furthermore, a short introduction and overview is given how the
model-based forecasts required for a forecast combination are calculated.

6.1.1 Treatments Regarding Forecast Correction

In the empirical evaluation, different configurations of the proposed extended
forecast correction method, as introduced in Section 3.4, can be applied. A first
parameter is the estimation method used in the linear regression. OLS as well as
LAD are included in the evaluation, where the former can be expected to result
in a better fit to the training data whereas the latter ensures a higher robustness
against outliers.

In the estimation procedure, different weights of past observations can be used.
The standard approach is to assign equal weights to all past observations. As a
simple alternative, exponentially decreasing weights with a fixed discount factor
can be used. Reasonable choices of discount factors clearly depend on specific
time series and no universally valid recommendation exists. Goodwin (1997)
used discount factors ranging from 1.0 to 1.2 with increments of 0.01. In the eval-
uation, a wider range of weights between 1.0 and 2.0 with increments of 0.01 is
considered. A more complex alternative is learning weights by minimizing the er-
ror in the pseudo out-of-sample evaluation described in Section 3.1, as proposed
by Goodwin (1997) and .

In order to address non-stationarity of time series, two methods that ensure
stationary of trended time series are included. One the one hand, simple differ-
entiation of time series with a lag equal to the forecast horizon is used. On the
other hand, a trend is estimated and removed using an OLS linear regression.
The common approach of using log-returns of time series is not included in the
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Treatment: Estimation Method Weighting Transformation Breakpoint

Scope: WLS
LAD

Equal Weigthing
Fixed Weighting (1.0 - 2.0, step 0.01)
Weight Learning

None
Differentation
Detrending
STL

No Breakpoint
Breakpoint

Count: 2 3 4 2

Table 6.1: Treatments regarding different forecast correction methods included in the
evaluation. Two different estimation methods are used with either equal weighting, fixed
exponential weighting or weights learned from past observations. A breakpoint detec-
tion is used for some models. Before the forecast correction methods are applied, different
transformations to the time series are used to ensure stationarity.

empirical evaluation since applying this approach requires time series having no
zero values, which is not the case in the available data. A seasonal component
can be addressed by using STL (Cleveland et al., 1990) to identify (and remove)
systematic trend and seasonal components, which can then be extrapolated to the
evaluation sample with exponential smoothing.

Lastly, models can be differentiated into ones that detect and incorporate po-
tential breakpoints, as proposed in Section 3.4, and ones that ignore structural
changes.

Table 6.1 summarizes the different treatment variables and their values. Over-
all, 48 treatments regarding the different model configurations are available when
ignoring the different fixed weights.

Experiments are conducted using R (R Core Team, 2015) and the provided
methods for (weighted) linear regression and STL. For LAD, the quantreg pack-
age (Koenker, 2015) is used. Breakpoints are detected using the corresponding
function of the strucchange package (Zeileis et al., 2002).

It should be noted that a dedicated model is learned for each time series and
forecast horizon individually and not for groups of time series. Time series char-
acteristics and error patterns can differ substantially between time series, thus
learning correction models for multiple time series is not reasonable. Likewise,
error patterns can differ between forecast horizons (most obviously, error vari-
ances decrease with decreasing forecast horizon). Consequently, a differentiation
between forecast horizons is required.

In contrast to forecast correction, forecasts besides the judgmental one are re-
quired for a combination of forecasts. Thus, before the treatments regarding fore-
cast combination are introduced, the calculation of the model-based forecasts is
discussed next.
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6.1.2 Calculation of Model-Based Forecasts

While the previously described evaluation setting can be used for evaluating fore-
cast correction approaches, which only use past forecasts and corresponding er-
rors for model estimation, an evaluation of forecast combination approaches re-
quires a more complex setting. A combination of forecasts obviously requires at
least two available forecasts. Whereas judgmental forecasts are already available
per time series, model-based forecasts have to be calculated additionally. Since
most forecast combination approaches use past error variances and correlations
of forecasts to estimate weights, model-based forecasts not only have to be pro-
duced for the evaluation data but also for a large part of the training data.

For the evaluation, model-based forecasts are produced starting from 07/2011
where, depending on the forecast horizon, up to three years of training data are
available for estimation of the forecasting model. Consequently, between 14 and
35 past errors are available per forecast for estimating combination weights, de-
pending on the forecast horizon and the position of the forecast in the evaluation
sample.

As statistical time series forecasting models, autoregressive integrated moving
average (ARIMA) and damped trend exponential smoothing (DTES) models are
used. Both models are often recommended in the literature, as discussed in Sec-
tion 2.2. Both models are shortly introduced below in order to illustrate the basic
idea of the time series forecasting models.

An ARIMA model can first be decomposed into an autoregressive (AR) and a
moving average (MA) model. In an AR model, generally denoted by AR(p), each
observation At of a time series is modeled as a weighted (linear) sum of the last p
values, as shown in 6.1. The reasoning behind this modeling is that the last p val-
ues, which are weighted with φ, are expected to contain most information about
the next value. An additional constant c is used and only a random unsystematic
component εt remains.

At = c + φ1At−1 + · · ·+ φp At−p + εt (6.1)

In contrast, a MA model, denoted by MA(q), uses the last q errors (instead of
actual values) for modeling At. For this purpose, the last q errors are weighted
with a vector θ and an additional shift µ is introduced, as shown in Equation 6.2.
It should be noted that the error terms εt, εt−1, . . . , εt−q are not observable. The
interpretation of a MA model is that, beyond µ, the value of At only depends on
the last errors, i.e., white noise disturbances. This modeling is chosen to allow the
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disturbances to result in deviations from the mean, which then fade over time.

At = µ + θ1εt−1 + · · ·+ θqεt−q + εt (6.2)

The introduced AR and MA models can be combined in an ARMA(p, q) model,
as shown in 6.3, which considers autoregressive dependencies as well as distur-
bances away from the mean influencing the time series.

At = c + φ1At−1 + · · ·+ φp At−p + θ1εt−1 + · · ·+ θqεt−q + εt (6.3)

The previous definitions assumed stationarity of time series, i.e., that character-
istics such as the mean and the variance to not change over time. If a time series is
not stationary, deriving a stationary time series with values A′t is required by dif-
ferencing the observations d times, as shown in Equation 6.4. The ARMA model,
which uses observations differenced d times instead of the original observations,
is then denoted ARIMA(p, d, q).

d = 0 : A′t = At

d = 1 : A′t = At − At−1

d = 2 : A′t = (At − At−1)− (At−1 − At−2)

. . . . . . (6.4)

All of the different models depend on parameters such as φ and θ, which have
to be estimated from past observations. After the parameters have been esti-
mated, the model can be used to forecast, i.e., extrapolate, future developments
of the time series by using the observations up to At to predict At+1.

However, before the parameters can be estimated, the model (i.e. the values
of p, d, q) has to be selected. This step can either be done by a forecasting expert
focusing on time series modeling or by automatically estimating various models
and selecting the one with the best performance, considering model complexity,
on the basis of a comparison using the Akaike Information Criterion (AIC), as
proposed by Hyndman and Khandakar (2008).

Although it was developed from exponential smoothing models, damped
trend exponential smoothing corresponds to a specific ARIMA model,
ARIMA(1, 1, 2), which is shown in Equation 6.5. The idea of damped trend expo-
nential smoothing is to extrapolate the local trend At−1− At−2, but to dampen the
trend using the last disturbance terms. This “introduces a note of conservatism”,
as stated by Gardner and McKenzie (2011).



130 Empirical Evaluation

At = At−1 + φ1 (At−1 − At−2)− θt−1εt−1 − θt−2εt−2 (6.5)

In the case study, DTES and ARIMA forecasts are calculated for all time series.
Thus, two model-based forecasts are available in addition to the judgmental fore-
cast, which allows different combinations of the forecasts. The combinations as
well as the different combination methods in the empirical evaluation of forecast
combination are introduced next.

6.1.3 Treatments for Forecast Combination

A forecast combination, as analyzed in Chapter 4, can differ by the forecast in-
cluded in the combination and by the approach used to determine the weights of
the forecasts. In the evaluation, a judgmental forecast produced by an expert (de-
noted Exp) is already available. Alternative model-based forecasts are produced
using the previously introduced DTES and ARIMA models. Overall, three fore-
casts are available, allowing three different combinations with two forecasts and
one combination with three forecasts.

As standard weighting approaches of the forecasts, the simple average (SA)
and Bates and Granger’s optimal weights (OW) are considered. Beyond these
two in terms of the bias–variance trade-off extreme variants, weights with opti-
mal and robust shrinkage, as introduced in Chapter 4, are used. Robust shrink-
age requires additional parameterization, error variance or correlation changes
against which the combination should be robust. For relative changes of the error
variances, values indicating low (10 %), medium (30 % and 60 %) as well as high
robustness (90 %) are included in the evaluation. Absolute changes are used for
the error correlation, with different values for low (0.1), medium (0.3 and 0.6) as
well as high (0.9) robustness.

Table 6.2 summarizes the different treatment variables and their values. Over-
all, 16 basic treatment combinations are included in the evaluation. When con-
sidering the different variants of robust shrinkage, the number of combinations
increases to 76.

Experiments are conducted using R (R Core Team, 2015) and the model-based
forecasts are produced using the auto-ARIMA and Damped Trend Exponential
Smoothing models in the forecast package (Hyndman, 2015).

It should again be noted that a dedicated combination model is learned for
each time series and forecast horizon individually and not for groups of time
series or multiple horizons as time series characteristics and error patterns can
differ substantially between time series.
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Weighting Scheme

Treatment: Forecasts Approach Robustness Variance Robustness Correlation

Scope: Exp, DTES
Exp, ARIMA
DTES, ARIMA
All

SA
OW
Opt. Shrinkage
Rob. Shrinkage

none
none
none
0.1, 0.3, 0.6, 0.9

none
none
none
0.1, 0.3, 0.6, 0.9

Count: 4 19

Table 6.2: Treatments regarding different forecast combinations. Three different forecasts
are available, resulting in four different combinations with two or three forecasts. The
available forecasts can be combined with SA, OW or with OW shrinked towards SA using
the two introduced shrinkage levels.

Based on the introduced experimental setting of the empirical evaluation, the
results on forecast correction and combination using different approaches are pre-
sented in the next section.

6.2 Results on Forecast Correction

The evaluation setting and the heterogeneous time series data introduced in the
previous sections allows a thorough evaluation of forecast correction. The results
of the evaluation of the different correction methods and parameterizations are
presented and discussed in this section.

As a metric of the performance of the different forecast correction approaches,
the MSE is used as it is the metric optimized by the correction methods. However,
MSE values are likely to differ by orders of magnitude between time series as a
result of the different scale of the time series and, consequently, the errors. Thus,
to ensure comparability, the relative difference between the MSE of the corrected
forecast and of the original judgmental forecast is used. This metric furthermore
allows a direct assessment of the improvements over the original forecast. A neg-
ative relative MSE difference indicates that the corrected forecast performs better
than the original forecast whereas a positive value indicates that the accuracy is
negatively influenced.

As the data transformation method used to ensure stationarity of the time se-
ries as well as the time series characteristics can be expected to influence the re-
sults most fundamentally, both aspects are included in all analyses.

Since the various other different treatments regarding forecast correction meth-
ods allow a great variety of parameterizations, the results are analyzed in multi-
ple steps. In a first step, different estimation methods, i.e., penalty functions, are
compared. Then, the weighting schemes under study are compared for different
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data transformations and time series types. Subsequently, methods that consider
breakpoints are compared to methods without explicit detection and incorpo-
ration of potential breakpoints. Lastly, all results are compared in a regression
analysis in order to identify potential multivariate effects as well as to examine
the significance of the results.

6.2.1 Estimation Method

Forecast correction methods can be expected to be prone to outliers in the data
since a linear regression is used. Alternative estimators promise to increase ro-
bustness against potential outliers by reducing the weight of extreme deviations.

In order to evaluate the influence of the chosen estimator on the result of the
forecast correction, Figure 6.1 compares results for OLS and LAD estimation.
For this purpose, the relative MSE differences are presented for different data
transformations and by type of time series. Furthermore, results are presented
separately for time series with a high variability (measured by the coefficient of
variation, CoV) as these are more likely to contain outliers. For this first analysis,
approaches with breakpoints are not considered whereas equal as well as learned
weights are included in the analysis.

Whether improvements over the original forecast can be achieved strongly de-
pends on the time series characteristics in combination with the data transforma-
tion used as well as on the variability of the time series.

For time series with low or medium variability, the transformation methods
overall match the time series well. In case of stationarity, no transformation is
required, detrending or differentiation is beneficial for trended time series. For
seasonal or trended and seasonal time series, a transformation using STL is re-
quired. One interesting result is that for seasonal time series, no transformation
also results in substantial improvements. This indicates that the original forecast
correction method by Theil (1966) is better suited for seasonal non-stationarity
than for regular non-stationarity.

The differences between outcomes when using OLS or LAD are relatively
small, both estimation methods result in approximately equal performance. In
most cases, differences are however slightly in favor of OLS. Only in few cases
for time series with high variability, an advantage of using LAD can be noted. For
these time series, LAD is always of advantage regarding the median when using
STL or when using detrending for seasonal or trended and seasonal time series.

In comparison to the original judgmental forecast, the median MSE difference
is negative (indicating improvements) for almost all types of time series and
transformations for time series with low or medium variability. In contrast, the
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Figure 6.1: Distribution of the MSE difference to the original forecast for correction using
OLS and LAD estimation. Results are presented by time series type and data transforma-
tion as well as for different degrees of variability of time series. LAD only in few cases
performs better than OLS. The plot furthermore indicates clear guidelines on which data
transformation to use for which type of time series.

forecast accuracy is negatively influenced (positive MSE difference) in many cases
with high variability, especially for seasonal time series.

Overall, using OLS estimation can be recommended while using no transfor-
mation for stationary time series, differentiation for trended time series, and STL
for trended and seasonal time series. In case of seasonal time series, STL should
be used, except for cases with high variability, where a correction can be expected
not to be beneficial.

The analyses on which these guidelines are based however included results
for equal weighting as well as learned weights and did not consider breakpoints.
These aspects are discussed next. All of the following analyses are limited to
results for OLS estimation as LAD estimation only showed performance superior
to OLS in few cases.

6.2.2 Weighting of Past Observations

In contrast to LAD, which aims at increasing robustness against outliers, a
weighting of past observations aims at increasing robustness against changing
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Figure 6.2: Distribution of the relative MSE difference to the original forecast for correc-
tion using equal and learned weights. Results are presented by time series type and data
transformation. Learning weights is slightly beneficial when no preprocessing is used
and time series at least have a trend. No clear advantage can be noticed in most other
cases.

biases in forecasts. Besides an equal weighting of past observations, an exponen-
tial weighting can be learned in a pseudo out-of-sample evaluation on available
training data. Detected breakpoints are, in a first step, excluded for the evaluation
of the weighting schemes.

Figure 6.2 compares the outcomes for the two weighting approaches, differ-
entiated by type of time series and data transformation. Surprisingly, no clear
general performance increase of the learned weights can be noticed. Learning
weights is only of clear benefit when using no preprocessing in case of trended or
trended and seasonal time series. In most other cases, learning weights increases
errors or results in both approaches performing approximately equal.

The observation that learning weights is beneficial for no preprocessing and
time series with at least a trend likely results from issues with the standard cor-
rection method in case of non-stationary time series. If equal weighting is ap-
plied, the estimated mean is far away from the last actual value of the time series
and consequently also differs substantially from the actual corresponding to the
forecast that is corrected. By learning weights, strong exponential weights can be
learned, which result in the estimated mean being closer to the last actual value
and thus to future values. The more accurate estimate of the mean is clearly a
better basis for the correction.

Overall, learning weights has no clear benefit over using equal weights if non-
stationarity is treated appropriately. In order to assess this result in greater de-
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tail, Figure 6.3 provides an additional analysis for the treatment with exponen-
tial weighting with fixed discount factor and, consequently, without breakpoints.
The relationship between the relative MSE difference and the exponential weight-
ing factor is displayed for the different time series types and data transformation
methods. The solid line indicates the median relative MSE difference whereas the
dark gray (light gray) areas contain 50 % (75 %) of all observations per exponen-
tial weighting factor γ.
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Figure 6.3: Distribution of the relative MSE difference to the original forecast for cor-
rection using exponential weighting with fixed discount factor γ. Results are presented
by time series type and data transformation. An exponential weighting with discount
γ ≈ 1.1 is of clear benefit when no preprocessing is used. In other cases, equal weights
perform as least as good as exponential weights if non-stationarity is addressed appro-
priately.

If no data transformation is applied, discount factors are beneficial (in compar-
ison to the original forecast) up to 1.25, when taking the median of the relative
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MSE difference as a criterion. In these cases, except for stationary time series, the
MSE difference a U-shape, indicating that there is in fact a discount factor that
outperforms equal weights. The most promising exponential weighting is with
a moderate discount of approximately 1.1, for which the weights decrease rela-
tively slowly but virtually no weight is assigned to observations older than 1-2
years.

However, if a data transformation is used, the plots only exhibit U-shapes few
cases, indicating that an equal weighting is in most cases most beneficial across
time series, especially if the non-stationarity of time series has been treated ap-
propriately.

Overall, there is only a global optimum of the discount factor unequal to no dis-
count if non-stationarity is ignored. Thus, learning weights is only of clear benefit
when no transformation is used. There might however be beneficial discounts for
individual time series that could improve accuracy in these cases. However, the
previous results, which showed that learning weights often decreases accuracy,
indicate that advantageous discounts are not trivial to identify and do not im-
prove the bias–variance trade-off as the increase of the variance component is
only in few cases balanced by a reduction of the bias component.

Thus, learning weights can in general not be recommended if –in contrast to
existing evaluations in the literature– a reasonable transformation of the data is
applied that ensures stationarity. However, the extended model proposed in this
work additionally introduced new weighting approaches if breakpoints are ex-
plicitly detected and incorporated. The results for these approaches are analyzed
next.

6.2.3 Approaches to Treating Structural Change

Structural changes or breaks can be implicitly addressed in the approach with
learned weights by reducing the weight of old observations in order to minimize
the weight of outdated observations. However, this also results in a very unequal
distribution of the weights of more recent observations, which in turn increases
the instability of the estimates. For this reason, the extended model included the
possibility to explicitly incorporate potential structural breaks that are detected
using established statistical means.

As a consequence, after the correction approaches that identify and treat poten-
tial breakpoints have been ignored in the previous analyses, Figure 6.4 presents
results comparing methods with and without breakpoint. The results are differ-
entiated by the general weighting approach as the proposed extended correction
model considers identified breakpoints differently for equal and learned weights,
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Figure 6.4: Distribution of the relative MSE difference to the original forecast for correc-
tion using methods with and without explicit identification and treatment of breakpoints.
Results are presented by time series type and data transformation. Detecting and incor-
porating potential breakpoints is of no clear benefit in terms of median relative MSE
difference and, in most cases, upper and lower quantiles.

as described in Chapter 3. The presented results are again restricted to OLS esti-
mation.

Using approaches with breakpoints clearly does not improve median rela-
tive MSE difference, independently of time series type and data transformation
method. Results differ only slightly for equal and learned weights, where identi-
fied breakpoints are considered in different ways.

Overall, either there are few time series with structural changes in the data set
or the methods with breakpoints are not beneficial in terms of the bias–variance
trade-off. Since the time series and forecasts of the case study are real-world data,
it is very likely that bias changed over time or that one or several forecasters
responsible for specific forecasts changed. Thus, it is unlikely that there are few
structural changes within the available data.

In contrast, detecting breakpoints is clearly a complex task with substantial
uncertainty. Detecting a false breakpoint can result in decreased training sample
sizes and consequently increased instability of parameter estimates. This rea-
soning is confirmed by various additional analyses not shown in this work for
reasons of comprehensibility. For instance using equal weights while reducing



138 Empirical Evaluation

the weights of observations before an identified breakpoint using the parameter
α did not result in increased accuracy. Thus identifying breakpoints that can be
treated in a way that is beneficial for the correction is already a complex task.
Furthermore, as shown in Chapter 3, the robustness of the correction methods is
in many cases relatively high even without exponential weighting or explicitly
considering potential breakpoints.

In summary, the analyses of the correction results clearly indicate that treat-
ing non-stationarity appropriately is of high importance. However, if non-
stationarity is treated, learning weights is not required or beneficial. Likewise,
explicitly detecting and incorporating breakpoints cannot be recommended as it
seems to introduce too much uncertainty. In order to summarize the previous
analyses into a comprehensive one and to assess the significance of the differ-
ences, a regression analysis is presented next.

6.2.4 Regression Analysis

The performance of forecast correction methods depends on a variety of aspects,
as the previous analyses have shown. These include choices regarding the fore-
cast correction model as well as the characteristics of the time series.

Both aspects are considered in the regression analyses of the relative MSE dif-
ferences shown in Table 6.3. The results of four different regressions for the time
series types are shown in the table. The basic correction model (no transforma-
tion of the time series, OLS estimation, equal weights, no breakpoints) for low to
medium variability is used as baseline in the regression.

The intercepts in the regressions show that the base model already results
in significant improvements for stationary and seasonal time series and low to
medium variability. The improvements are strongest for stationary time series,
where the standard forecast correction method without transformation of the
time series could be expected to perform best, based on the theoretical analy-
ses in Chapter 3. No accuracy differences to the original judgmental forecast are
found for trended as well as trended and seasonal time series.

For stationary time series, applying any transformation to the time series sig-
nificantly decreases the performance of the forecast correction. In contrast, for
trended time series, using differentiation is significantly beneficial and essential
for improvements in comparison to the original forecast, whereas all other trans-
formations significantly reduce performance. Interestingly, no significant differ-
ences between transformations are found for seasonal time series. Lastly, for time
series with trend and seasonality, using STL is most beneficial while using differ-
entiation is also of significant advantage.
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Stationary Trended Seasonal Trended &
Seasonal

(Intercept) −0.114 ∗∗∗ −0.004 −0.088 ∗∗ 0.004
Detrending/No Transf. 0.071 ∗∗∗ 0.091 ∗∗∗ 0.004 0.026
Diff/No Transf. 0.156 ∗∗∗ −0.092 ∗∗∗ −0.040 −0.091 ∗∗∗

STL/No Transf. 0.216 ∗∗∗ 0.141 ∗∗∗ 0.047 −0.155 ∗∗∗

Learned/Equal W. −0.001 −0.058 ∗∗ 0.117 ∗∗ 0.010
Detrending/No Transf. × Learned/Equal W. 0.011 0.028 −0.033 0.016
Diff/No Transf. × Learned/Equal W. 0.067 ∗ 0.124 ∗∗∗ 0.023 0.026
STL/No Transf. × Learned/Equal W. 0.010 0.068 ∗∗ −0.093 0.014
LAD/OLS 0.006 0.018 −0.073 ∗∗ 0.023
High/Low to Medium CoV −0.041 ∗ 0.154 ∗∗∗ 0.462 ∗∗∗ 0.156 ∗∗∗

LAD/OLS × High/Low to Medium CoV −0.006 −0.012 0.141 ∗∗∗ −0.021
Breakpoint/No Breakpoint 0.061 ∗∗∗ 0.073 ∗∗∗ 0.099 ∗∗∗ 0.041 ∗∗∗

R-squared 0.027 0.030 0.145 0.029
adj. R-squared 0.026 0.030 0.143 0.028
N 12,096 21,024 4,320 12,960

∗∗∗ p < 0.001 ∗∗ p < 0.01 ∗ p < 0.05

Table 6.3: Results of regression analyses of the relative MSE differences for the different
types of time series. The regression analyses confirm the previous results and derived
guidelines. Most importantly, depending on the time series type, choosing an appropri-
ate transformation to address non-stationarity is found to be essential.

The results regarding the weighting indicate that there are only significant dif-
ferences for trended and seasonal time series. For trended time series, learning
weights positively influences the correction, however –as the estimates for the
interaction terms indicate– only in case of no transformation or detrending. This
result is in line with the previous discussion of the weighting approaches. In
contrast, learning weights has a significant negative influence for seasonal time
series.

Using LAD instead of OLS results in significant differences in favor of LAD
only for seasonal time series. However, judging from the interaction term, this
is only the case for time series with low to medium variability. A high variabil-
ity in general reduced the performance of forecast correction method, except for
stationary time series.

Lastly, the regression clearly indicates that considering breakpoints in any form
has a significant negative influence on forecast correction, independently of the
time series type.

Overall, the regressions confirm the previous discussions and the significance
of the effects on which the derived guidelines are based. While the analyses up
to this point demonstrated which model to use under which conditions, an ad-
ditional interesting point is how the different models actually work, i.e., which
parameters they estimate for the correction. This question is addressed next in an
analysis and discussion of the parameter estimates.
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Figure 6.5: Distribution of slope and (scaled) intercept estimates for different data trans-
formation methods and time series types. The estimates differ strongly between time
series types and transformations. All parameters indicate substantial damping of the
original judgmental forecasts.

6.2.5 Discussion of Parameter Estimates

As the previous analyses have shown, advantageous correction methods can be
found for all time series types. Thus, the corresponding models seem to success-
fully identify linear biases that can be removed in order to improve accuracy. To
gain further insights into the biases affecting forecast accuracy, the parameters
estimated by the forecast correction models are now analyzed.

Figure 6.5 displays the distribution of the estimates of slope and intercept by
time series type and by data transformation method. As the intercept estimates
can vary by orders of magnitude, depending on the scale of the time series, the
intercept estimates are scaled by the mean of the actual values in order to ensure
comparability of the intercepts across time series.

Reconsidering that an unbiased forecast results in an estimated intercept β̂0 = 0
and slope β̂1 = 1, substantial deviations from unbiasedness can be noted for the
results of the case study. The results are now discussed in detail for each data
transformation approach.

First, without transformation, intercepts are very high for stationary time series
whereas slopes are very low. Consequently, the original forecasts have only weak
influence on the corrected forecast. Instead, a high intercept is estimated close to
the mean of the time series, which is then the major part of the corrected forecast.
Thus, for stationary time series, a very strong damping effect towards the mean
of the time series can be observed. To a weaker extent, this effect can also be
observed for trended as well as seasonal time series. In both cases, a substantial
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portion of the mean of the time series is used as a basis. However, in order to
match the trend or seasonality of the time series, a stronger influence of the orig-
inal forecast is required. This is even more pronounced for time series with trend
and seasonality, where the original forecasts are only slightly damped.

Second, when applying differentiation to the time series, slopes are high but
mostly substantially below one for all types of time series. Estimated intercepts
are in contrast very low. Consequently, for differentiated data, the predicted
changes are slightly damped, which is in line with the reasoning for the previ-
ous case without transformation.

Third, for detrending of the time series, intercepts for all types of time series
are close to zero. Consequently, after adjusting for the trend, there are no large
mean biases left. However, the predicted deviations from the trend component
are weighted down very strongly for stationary and trended time series. Thus,
a large regression bias exists and the judgmental forecasts exaggerate deviations
from the systematic trend component. Only if a seasonal component exists (i.e.
time series of type seasonal or trended and seasonal), a large portion of the devia-
tions from the trend are included in the corrected forecast. This effect is explained
by the seasonal component, which should –at least approximately– be included
in the forecasts whereas it is not included in the trend component.

Lastly, when using STL to remove a trend as well as a seasonal component, the
estimated intercepts are very close to zero, most likely as a result of the included
detrending of the time series. However, in addition to this previously discussed
effect, the estimated slopes are also very low. Accordingly, in the correction, only
small deviations from the systematic trend and seasonal components are intro-
duced and the expert forecast has little influence on the corrected forecast. As a
consequence, the experts who produced the judgmental forecasts seem to have
little skill in predicting deviations from the systematic components.

Overall, independently of the data transformation used, the findings indicate
that the forecasts are –on average– damped by the forecast correction methods.
A substantial part of the original judgmental forecast is replaced by a systematic
component, such as the estimated intercept without preprocessing or the iden-
tified trend and/or seasonal components. While this result may be surprising
at a first glance, comparable observations have been reported in the literature
in other contexts. Amongst others, Eggleton (1982) and O’Connor et al. (1993)
found that one of the main problems with judgmental forecasts is that forecast-
ers often wrongly identify systematic patterns in the noise of a time series. As
a result, forecasters tend to move their forecast in the direction of their expected
patterns (resulting in too extreme values), which in turn results in reduced accu-
racy as forecasts vary too strongly. Lopes and Oden (1987), Andreassen (1988),
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and Harvey (1995) provide more studies showing that people tend to respond to
randomness as if it was signal and found that accuracy decreases disproportion-
ately with reduced predictability of a forecasting task.

By applying forecast correction, these effects are –at least partially– corrected
by reducing the variability of the judgmental forecasts. This approach results in
increased accuracy, as demonstrated in this section. Furthermore, the damping
effect of the correction motivates the importance of the choice of an adequate
transformation of the time series as damping is only reasonable after adjusting
for systematic components in the time series.

Overall, the influence of the original judgmental forecast is in many cases
smaller than could be expected and the corrected forecast mostly consists of a
prediction of the systematic components of the time series. While this effect is
indirectly achieved in forecast correction by introducing transformations of the
time series, it can directly be achieved in forecast combination methods. Statis-
tical time series forecasting methods aim at predicting systematic components
with high accuracy. Thus a combination of forecasts, which is analyzed in the
next section, can result in similar effects.

6.3 Results on Forecast Combination

Various forecast combination methods have been proposed in the literature that
did not systematically outperform the SA of forecasts. In this section, the opti-
mal and robust shrinkage approaches introduced in this work are evaluated and
compared to a SA combination.

As a metric for the performance of the different forecast combination ap-
proaches, the MSE is again used as it is the metric optimized by weight estimation
methods. To ensure comparability, the relative MSE difference to the correspond-
ing SA combination is used as SA is the benchmark method to be outperformed
in forecast combination. Negative values indicate that an alternative combination
outperformed SA.

In a first step, the mean and the median of the relative MSE can be analyzed
for different approaches. The significance of the difference of the mean from zero
can be tested using a t-test.

As preliminary evaluations showed that the median of the relative MSE differ-
ence is always very close to zero, additional quantiles are analyzed. The quantiles
allow an evaluation whether the accuracy increases outweigh the decreases, i.e.,
whether the distribution is skewed in favor or to the disadvantage of a combina-
tion. The skewness of the quantiles can be quantified by calculating the quantile
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skewness (Groeneveld, 1991) introduced by Bowley (1901), as defined in Equa-
tion 6.6. A positive quantile skewness indicates a skew in favor of SA whereas a
negative value indicates that the alternative combination is beneficial.

QSα =
(x1−α − x0.5)− (x0.5 − xα)

x1−α − xα
(6.6)

To test whether the skew is significantly different from zero, a bootstrap test with
5,000 replications is used.

Using these metrics, the forecast combination methods, established or pro-
posed in this work, can be analyzed for different sets of forecasts included in the
combination. First, results of the combination of the two model-based forecasts
are analyzed. The combination of a model-based with the judgmental forecast
are evaluated subsequently. Lastly, results are provided for a combination of all
three available forecasts.

6.3.1 Two Model-Based Forecasts

Different model-based forecasts are likely to differ regarding the ability to predict
specific aspects of time series. Thus, combinations of model-based forecasts can
often be beneficial. Depending on the errors of the forecasts, a SA combination
may be reasonable in many cases whereas other cases allow a stronger weighting
of one forecast.

Table 6.4 presents the results for the combination of the two model-based fore-
casts for different methods (first column) and robustness parameters (second and
third column, if applicable). Besides the mean relative MSE difference to a SA
combination (fourth column), different quantiles (fifth to ninth column) as well
as the skewness of the quantiles (last two columns) are presented.

A combination using OW is already slightly beneficial in comparison to SA
regarding the outer quantiles of the relative MSE difference. The 10 % and 90 %
quantiles indicate that improvements of 39 % are not completely negated by the
decreases in accuracy of 32 %. This is confirmed by the significantly negative
skewness of these quantiles. However, mean as well as median relative MSE
differences are clearly positive.

In contrast to the OW combination, clearer advantages can be noted if optimal
shrinkage or robust shrinkage is used. Especially for higher robustness param-
eters, the mean relative MSE difference is significantly negative and the quan-
tiles are additionally significantly skewed in favor of the combination with robust
shrinkage. For instance using robust shrinkage with 0.1 for both robustness pa-
rameters results in only minor decreases in accuracy of 0.2 % for the 75 % quantile
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Quantile Skewness

Method r v Mean 0.1 0.25 0.5 0.75 0.9 0.25 0.1

OW 0.06 ∗∗∗ −0.39 −0.08 0 0.09 0.32 0.01 −0.11 †

Opt. Shr. 0.00 −0.33 −0.06 0 0.04 0.20 −0.20 † −0.25 †

Rob. Shr.

0.1

0.1 −0.03 ∗∗∗ −0.32 −0.05 0 0.02 0.14 −0.36 † −0.40 †

0.3 −0.04 ∗∗∗ −0.23 −0.00 0 0 0.06 −1.00 † −0.61 †

0.6 −0.02 ∗∗∗ −0.01 0 0 0 0 n. def. −1.00 †

0.9 0.00 0 0 0 0 0 n. def. n. def.

0.3

0.1 −0.04 ∗∗∗ −0.30 −0.05 0 0.02 0.10 −0.44 † −0.49 †

0.3 −0.04 ∗∗∗ −0.23 −0.00 0 0 0.05 −1.00 † −0.63 †

0.6 −0.02 ∗∗∗ −0.01 0 0 0 0 n. def. −1.00 †

0.9 0.00 0 0 0 0 0 n. def. n. def.

0.6

0.1 −0.04 ∗∗∗ −0.25 −0.03 0 0.01 0.07 −0.52 † −0.55 †

0.3 −0.04 ∗∗∗ −0.22 −0.00 0 0 0.05 −1.00 † −0.66 †

0.6 −0.02 ∗∗∗ −0.01 0 0 0 0 n. def. −1.00 †

0.9 0.00 0 0 0 0 0 n. def. n. def.

0.9

0.1 −0.04 ∗∗∗ −0.21 −0.03 0 0.01 0.05 −0.57 † −0.60 †

0.3 −0.04 ∗∗∗ −0.19 −0.01 0 0 0.03 −1.00 † −0.70 †

0.6 −0.02 ∗∗∗ −0.01 0 0 0 0 n. def. −1.00 †

0.9 0.00 0 0 0 0 0 n. def. n. def.
∗∗∗ p < 0.001 ∗∗ p < 0.01 ∗ p < 0.05 † p < 0.05 (bootstrap test)

Table 6.4: Mean, quantiles, and quantile skewness of the relative MSE difference between
different combination methods and SA when combining DTES and ARIMA forecasts.
Optimal shrinkage is already beneficial regarding the quantiles. Increasing robustness to
a moderate level results in significant performance increases.

whereas the 25 % quantile corresponds to an improvement of 5 %. This effect is
even more pronounced for the outer quantiles, where accuracy decreases of 14 %
are more than compensated by improvements of 32 %. The mean relative MSE
difference is in this case−3 %, which confirms the significant skew in favor of the
robust shrinkage combination.

The mean relative MSE difference is optimized when at least one of the two
robustness parameters is set to a value around 0.3. Increasing the robustness
parameters further again decreases the advantage in comparison to SA as higher
robustness requires stronger shrinkage, which in turn results in a high similarity
to SA.

Thus, in a combination of model-based forecast, the optimal and robust shrink-
age levels not only provide insights into theoretical aspects of forecast combina-
tion, but also result in significant advantages over the SA combination. While the
optimal shrinkage level is already beneficial, increasing robustness to a moderate
level further increases the performance advantage over SA.

The next analyses provide insights on the applicability when the combination
not only involves model-based but also judgmental forecasts.
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6.3.2 One Judgmental and One Model-Based Forecast

For the evaluation of combinations of judgmental and model-based forecasts, two
combinations can be analyzed. First, results for the combination of judgmental
and ARIMA forecasts are provided in Table 6.5. Second, the combination of judg-
mental and DTES forecasts is evaluated in Table 6.6.

For the combination of judgmental and ARIMA forecasts, neither a combina-
tion using OW nor using the proposed optimal shrinkage factor improves over
the SA combination. The mean relative MSE difference is significantly positive
for both methods and is even in the best case 8 %. The quantiles furthermore
have a significant positive skew, indicating that cases with accuracy decreases in
comparison to SA additionally significantly outweigh the cases where the accu-
racy improved.

However, increasing the robustness parameters has a substantial influence on
the mean MSE difference as well as on the quantiles and their skewness. The dif-
ferences vanish if the robustness parameter indicating robustness against error
variance changes reaches v = 0.6. If v is further increased to 0.9, a very small and
significant improvement over SA can be noticed, albeit only with p < 0.05. Thus,
if judgmental and ARIMA forecasts are combined, a very high robustness is re-
quired, which in most cases results in shrinking the weights completely towards
SA.

Results are similar but less pronounced for the combination of judgmental and
DTES forecasts. While OW and optimal shrinkage significantly decrease accuracy
in comparison to SA, some combinations using robust shrinkage result in signif-
icant improvements. For instance for v = 0.6, all relative MSE differences are
negative and significantly different from zero. In addition to the negative mean
of the MSE difference, the quantiles are skewed in favor of the robust shrinkage
combination. However, increasing to robustness against error variance changes
to much (to v = 0.9) again decreases the accuracy improvements. Furthermore,
only increasing the robustness against changes of error correlation has only a
small influence on the forecast combinations.

In summary, when combining one judgmental with one model-based forecast,
choosing relatively high robustness parameters, especially for changes of error
variances, are required. This strongly contrasts the previous results for the com-
bination of two model-based forecasts, where a much lower degree of robustness
was required to outperform SA. As these results are very different, an obvious
question is how combining two model-based forecasts with the judgmental fore-
cast affects the choice of the combination method. This aspect is analyzed next.
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Quantile Skewness

Method r v Mean 0.1 0.25 0.5 0.75 0.9 0.25 0.1

OW 0.13 ∗∗∗ −0.31 −0.09 0.02 0.23 0.63 0.31 † 0.30 †

Opt. Shr. 0.08 ∗∗∗ −0.27 −0.06 0 0.13 0.46 0.37 † 0.25 †

Rob. Shr.

0.1

0.1 0.07 ∗∗∗ −0.27 −0.05 0 0.11 0.42 0.34 † 0.21 †

0.3 0.05 ∗∗∗ −0.23 −0.02 0 0.05 0.35 0.39 † 0.19 †

0.6 0.01 −0.01 0 0 0 0.01 n. def. −0.31
0.9 −0.00 ∗ 0 0 0 0 0 n. def. n. def.

0.3

0.1 0.05 ∗∗∗ −0.27 −0.05 0 0.09 0.38 0.27 † 0.16 †

0.3 0.04 ∗∗∗ −0.24 −0.02 0 0.04 0.34 0.34 † 0.17 †

0.6 0.01 −0.01 0 0 0 0.01 n. def. −0.31
0.9 −0.00 ∗ 0 0 0 0 0 n. def. n. def.

0.6

0.1 0.03 ∗∗∗ −0.24 −0.05 0 0.07 0.32 0.12 0.14 †

0.3 0.03 ∗∗∗ −0.23 −0.02 0 0.03 0.3 0.16 0.13 †

0.6 0.01 −0.01 0 0 0 0.01 n. def. −0.34
0.9 −0.00 ∗ 0 0 0 0 0 n. def. n. def.

0.9

0.1 0.02 ∗∗ −0.22 −0.04 0 0.05 0.26 0.04 0.09
0.3 0.02 ∗∗ −0.21 −0.02 0 0.03 0.24 0.03 0.07
0.6 0.00 −0.01 0 0 0 0.01 n. def. −0.32
0.9 −0.00 ∗ 0 0 0 0 0 n. def. n. def.

∗∗∗ p < 0.001 ∗∗ p < 0.01 ∗ p < 0.05 † p < 0.05 (bootstrap test)

Table 6.5: Mean, quantiles, and quantile skewness of the relative MSE difference between
different combinations and SA when combining Exp and ARIMA. A very high degree of
robustness is require to achieve a small advantage over SA.

Quantile Skewness

Method r v Mean 0.1 0.25 0.5 0.75 0.9 0.25 0.1

OW 0.20 ∗∗∗ −0.39 −0.09 0.03 0.21 0.40 0.17 † 0.23 †

Opt. Shr. 0.10 ∗∗∗ −0.36 −0.07 0.01 0.11 0.47 0.18 † 0.12

Rob. Shr.

0.1

0.1 0.06 ∗∗∗ −0.33 −0.06 0 0.09 0.38 0.19 † 0.07
0.3 0.03 ∗ −0.28 −0.01 0 0.02 0.20 0.20 −0.16
0.6 −0.03 ∗∗∗ −0.10 0 0 0 0 n. def. −1.00 †

0.9 −0.00 ∗∗ 0 0 0 0 0 n. def. n. def.

0.3

0.1 0.03 ∗∗ −0.34 −0.06 0 0.06 0.28 0.06 −0.10
0.3 0.02 −0.28 −0.01 0 0.02 0.19 0.08 −0.21 †

0.6 −0.03 ∗∗∗ −0.10 0 0 0 0 n. def. −1.00 †

0.9 −0.00 ∗∗ 0 0 0 0 0 n. def. n. def.

0.6

0.1 0.00 −0.3 −0.05 0 0.04 0.19 −0.10 −0.23 †

0.3 −0.00 −0.28 −0.02 0 0.01 0.15 −0.28 −0.30 †

0.6 −0.03 ∗∗∗ −0.10 0 0 0 0 n. def. −1.00 †

0.9 −0.00 ∗∗ 0 0 0 0 0 n. def. n. def.

0.9

0.1 −0.02 ∗ −0.28 −0.05 0 0.03 0.15 −0.18 −0.31 †

0.3 −0.02 ∗∗ −0.27 −0.02 0 0.01 0.11 −0.45 † −0.41 †

0.6 −0.03 ∗∗∗ −0.10 0 0 0 0 n. def. −1.00 †

0.9 −0.00 ∗∗ 0 0 0 0 0 n. def. n. def.
∗∗∗ p < 0.001 ∗∗ p < 0.01 ∗ p < 0.05 † p < 0.05 (bootstrap test)

Table 6.6: Mean, quantiles, and quantile skewness of the relative MSE difference between
different combinations and SA when combining Exp and DTES. A considerable robust-
ness especially against variance changes is required to outperform SA.
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Quantile Skewness

Method r v Mean 0.1 0.25 0.5 0.75 0.9 0.25 0.1

OW 0.39 ∗∗∗ −0.36 −0.13 0.04 0.34 1.09 0.28 † 0.45 †

Opt. Shr. 0.17 ∗∗∗ −0.34 −0.11 0.01 0.17 0.70 0.18 † 0.34 †

Rob. Shr.

0.1

0.1 0.10 ∗∗∗ −0.33 −0.10 0 0.13 0.55 0.12 0.24 †

0.3 0.07 ∗∗∗ −0.29 −0.06 0 0.05 0.38 −0.08 0.13 †

0.6 0.02 ∗ −0.16 −0.00 0 0 0.08 −1.00 † −0.35 †

0.9 −0.01 ∗∗ −0.00 0 0 0 0 n. def. −1.00 †

0.3

0.1 0.06 ∗∗∗ −0.31 −0.09 0 0.07 0.35 −0.08 0.07
0.3 0.05 ∗∗∗ −0.29 −0.06 0 0.04 0.32 −0.17 0.06
0.6 0.02 ∗ −0.16 0 0 0 0.08 −1.00 † −0.35 †

0.9 −0.01 ∗∗ −0.00 0 0 0 0 n. def. −1.00 †

0.6

0.1 0.02 −0.27 −0.04 0 0.01 0.18 −0.50 † −0.19 †

0.3 0.02 −0.27 −0.04 0 0.01 0.18 −0.64 † −0.21 †

0.6 0.01 −0.17 0 0 0 0.07 n. def. −0.42 †

0.9 −0.01 ∗∗ −0.00 0 0 0 0 n. def. −1.00 †

0.9

0.1 −0.00 −0.19 −0.01 0 0 0.09 −1.00 † −0.37 †

0.3 −0.00 −0.19 0 0 0 0.09 −1.00 † −0.37 †

0.6 0 −0.14 0 0 0 0.03 n. def. −0.61 †

0.9 −0.01 ∗∗∗ −0.00 0 0 0 0 n. def. −1.00 †

∗∗∗ p < 0.001 ∗∗ p < 0.01 ∗ p < 0.05 † p < 0.05 (bootstrap test)

Table 6.7: Mean, quantiles, and quantile skewness of the relative MSE difference between
different combinations and SA when combining all three forecasts. A very high degree
of robustness is required to achieve a small advantage over SA.

6.3.3 One Judgmental and Two Model-Based Forecasts

The theoretical analyses and discussions in Chapter 4 showed that a combination
of three forecasts can often be expected to outperform a combination of two fore-
casts, even when considering the additional shrinkage required to meet robust-
ness requirements. As a higher number of forecasts included in a combination
might require other combination mechanisms, Table 6.7 provides results of the
combination of all three available forecasts.

Overall, the results are mostly similar to the results for the combination of judg-
mental and ARIMA forecasts. OW and the combination using optimal shrinkage
significantly again decrease the accuracy of the combined forecast in comparison
to SA. Considering the positive mean relative MSE difference and the positive
skewness of the quantiles, which are both mostly significantly different from zero,
SA is clearly superior to these two alternative combinations. However, using ro-
bust shrinkage with a high robustness level regarding changes of error variances
(v = 0.9) results in small but significant improvement over SA. As for the combi-
nation of Exp and DTES, the robustness against changes of the error variances is
of higher importance than the robustness against changes of error correlation.

The analyses of combinations with different numbers and choices of forecasts
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overall show that only the robust shrinkage combination with appropriate ro-
bustness levels is a reasonable alternative to SA. Using the optimal shrinkage
level, which adjusts for the estimation uncertainty, was in most cases disadvan-
tageous in comparison to SA.

As adjusting for the estimation uncertainty is not sufficient and a considerable
degree of robustness is required in all combinations, substantial changes of the
error characteristics (especially the error variances) can be suspected for the fore-
casts of the case study. This especially seems to be the case for combinations
involving the judgmental forecast as the combination that did not include the
judgmental forecast required the lowest robustness. In order to derive more in-
sights into this aspect, structural changes in the errors of the forecasts of the case
study are analyzed next.

6.3.4 Structural Change in Practice

Forecast combinations with weights that are based on estimation from past obser-
vations can, as extensively discussed in Chapter 4, perform worse than a SA com-
bination if the error characteristics change over time in a disadvantageous way.
OW as an extreme approach can be expected to be especially prone to changes.

In the empirical evaluation, the results on forecast combination clearly confirm
that OW combination is seldom superior to SA combination. Likewise, using
optimal shrinkage only resulted in slight improvements (regarding the quantile
skewness) over SA for the combination of the two model-based forecasts. Thus,
adjusting for the uncertainty resulting from the estimation from finite samples
is not sufficient for a successful combination. This result can be explained by
structural changes within the error covariance matrix, which might especially
be strong for judgmental forecasts. This is also confirmed by the fact that using
robust shrinkage with high robustness settings did result in accuracy improve-
ments in most cases.

Unfortunately, the true error covariance matrices are unknown in practice (es-
pecially for observations for one point of time) and can therefore not be analyzed
for changes. As an alternative, rolling error correlations and error variances are
estimated with a window of one year for the three years for which the judgmen-
tal as well as the model-based forecasts are available. The last estimated value
in the rolling analysis is most likely to be closest the true value in the evaluation
sample. Consequently, this value is used as a basis for comparing and analyzing
the error correlations and error variances over time.

Figure 6.6 presents the differences between the estimated rolling error correla-
tion or ratio of error variances and the last corresponding estimate for different
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Figure 6.6: Distribution of the difference of rolling error characteristic estimates and the
last estimate. Results for the error correlation as well as for the ratio of error variances
are presented for different pairs of forecasts. A high uncertainty over time exists for all
combinations.

pairs of forecasts. Ratios of error variances are used since, on the one hand, er-
ror variances differ between time series and, on the other hand, weights reflect
the relative instead of the absolute performance of forecasts. The solid lines indi-
cate the median of the difference between estimates whereas the dark gray (light
gray) areas contain 50 % (75 %) of all observations per center date of the rolling
window.

First, regarding error correlations (upper plot), the median fluctuates around
zero for all pairs of forecasts, indicating that the overall distribution of error vari-
ances is centered on the same values. However, the quantiles of the difference
increase for earlier error correlations (i.e. for earlier center dates of the rolling
window). This result gives a first indication that the error correlations might
systematically change over time. Furthermore, there is a substantial uncertainty
regarding the error correlation over the different rolling window estimates. These
results are very similar for all pairs of forecasts.

Second, regarding error variances, the difference between estimates of the ratio
of error variances and the last estimate fluctuates, similarly to the error corre-
lation, around zero. This again indicates that the estimates are overall centered
on the same values while the uncertainty is high, the ratio of error variances can
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Figure 6.7: Correlation between different rolling estimates and the last rolling estimate as
a proxy for the information content of older estimates regarding newer estimates. The
error characteristics of the ARIMA, DTES pair has clearly highest predictability while
Exp, ARIMA has the lowest.

change by ±1. The development of the ratio of error variances over time is very
similar between the combinations of DTES and ARIMA on the one hand and the
judgmental forecast and ARIMA on the other hand. Only the combination of the
judgmental forecast and DTES differs slightly.

In summary, the analyses illustrate that there is considerable uncertainty re-
garding error variances and error correlation and that the overall distribution
does not shift as the median is more or less constant. It can however not be
concluded whether individual estimates also fluctuate around the last value or
whether there are systematic changes. This aspect is addressed in Figure 6.7,
where correlations (slightly trimmed at the 1 % and 99 % quantile) of the rolling
estimates with the last rolling estimate are displayed. The correlation is used as a
proxy for the information content of older estimates regarding newer estimates.

If only random fluctuations occurred per time series, the correlations could be
expected to be relatively high, albeit decreasing with earlier estimates. However,
the analysis shows that the correlation is in many cases very low, especially for
early estimates.

Regarding the error correlation estimates, the correlation is close to or approxi-
mately zero, especially for early estimates for the combination of judgmental and
ARIMA forecasts. The correlations then increase over time in a near-linear way.
This clearly indicates that early estimates contain little information about later
estimates and that systematic changes on the time series level occur frequently.
The effect is most pronounced for the judgmental forecast and ARIMA where all
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correlations increase later and are at a lower level than those of the other two
combinations.

Regarding the ratio of error variances, a similar effect can be noted except for
the combination of DTES and ARIMA forecasts. The correlation of the ratio of er-
ror variances is in this case is substantially higher for all observations and already
approximately 0.5 for the first estimate. The correlation again increases latest for
the combination of judgmental and ARIMA forecasts.

Thus, although error variances and error correlations change for all forecasts,
the changes are more or less systematic for different combinations. While the
changes for DTES and ARIMA consist of more random fluctuations, changes are
more systematic for the other pairs, especially the judgmental and ARIMA fore-
casts.

The observed changes in summary match the robustness parameters required
for successful combination in the previous analyses very well. The combination
of ARIMA and DTES required lowest robustness parameters and changes are
found to be mostly random fluctuations. In contrast, the other pairs required
stronger shrinkage for robustness and early estimates are found to contain lit-
tle information in these cases. The observed structural changes thus explain the
differing robustness required for different combinations.

Overall, the novel shrinkage approaches introduced in this work showed in-
teresting results in the case study. Only controlling for estimation uncertainty
by using optimal shrinkage only resulted in improvements over SA for one com-
bination. In contrast, robust shrinkage resulted in improvements in most cases
when an appropriate level of robustness was used. The required robustness de-
gree depends on the forecasts included in the combination. Although changes
are likely to occur for all forecasts, the changes differ between forecasts. While
some changes can be explained by random fluctuations, other changes seem to be
systematic. Finding an adequate degree of robustness of the combination models
is thus an important basis for a successful combination of forecasts.

Up to this point, both forecast correction as well as combination models were
found to be mostly beneficial in the previous analyses. As a consequence, the
next section provides a comparison of the performance of the two approaches in
order to derive comprehensive guidelines.

6.4 Comparison of Correction and Combination

In the previous sections, forecast correction and combination were analyzed sep-
arately. Main results were that appropriately treating non-stationarity of time
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series is of importance in forecast correction and that the novel robust shrinkage-
based forecast combination method is of advantage if adequate robustness levels
are chosen.

However, the previous analyses do not allow deriving comprehensive guide-
lines that include when to choose either forecast correction or forecast combina-
tion. For this purpose, Table 6.8 provides the median relative MSE difference
to the judgmental forecast for the different approaches and by time series type.
Additionally, ranks of the approaches per time series type are provided in paren-
thesis. From the various available methods in forecast correction, the methods
with OLS estimation, no breakpoint and equal weighting are considered. For
the forecast combination methods with robust shrinkage, different robustness re-
quirements are used, depending on the forecasts included in the combination.
Based on the results of the previous section, r = v = 0.3 is used for the combi-
nation of DTES and ARIMA forecasts as robustness requirements were found to
be lowest in this case. For the combination of judgmental and DTES forecasts,
r = v = 0.6 is used. As combinations including ARIMA as well as judgmental
forecasts required the highest robustness, r = v = 0.9 is used in these cases. The
robustness parameter used for the robust shrinkage combination is additionally
stated in the table in parentheses behind the robust shrinkage method.

In case of stationary time series, forecast correction without transformation per-
forms best amongst the methods under study. While it is clear from the previous
analyses that using no data transformation results in forecast correction models
with the best performance in case of stationarity, the analysis now shows that all
combinations of forecasts are outperformed. Thus, the model-based forecast in
these cases seem to add no additional information that is not yet considered by
the forecast correction method. This finding is even clearer when considering that
a no-change forecast is often relatively accurate for stationary time series. Thus,
a combination of the judgmental with a model-based forecast results in a damp-
ing effect similar to the one in forecast correction. Amongst the different forecast
combination approaches, a combination of DTES and the judgmental forecast is
most beneficial. Comparing the different combination methods shows that SA
performs best and only slightly outperforms the corresponding robust shrinkage
combination for these two forecasts.

In contrast to the result for stationary time series, forecast correction models do
not outperform forecast combinations for trended, seasonal, as well as trended
and seasonal time series. For trended time series, a combination of DTES and the
judgmental forecast is most accurate. As DTES is a forecasting model focusing
on trends (that are additionally damped), it is not surprising that it outperforms
combinations involving the more general ARIMA forecasts. Amongst the differ-
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Time Series Type

Trended &
Approach Method Stationary Trended Seasonal Seasonal

Correction

No Transformation −0.24 (1) 0.01 (19) 0.03 (12) −0.00 (20)
Diff −0.02 (20) −0.08 (7) 0.03 (11) −0.07 (16)
Detrending −0.17 (6) −0.06 (10) 0.03 (10) −0.03 (19)
STL −0.03 (19) 0.02 (20) 0.09 (16) −0.20 (10)

Combination

DTES, ARIMA / SA −0.15 (10) −0.04 (14) 0.91 (20) −0.21 (9)
DTES, ARIMA / OW −0.14 (12) −0.05 (13) 0.06 (15) −0.24 (5)
DTES, ARIMA / Opt. Shr. −0.14 (11) −0.06 (12) 0.05 (14) −0.24 (6)
DTES, ARIMA / Rob. Shr. (0.3) −0.15 (9) −0.06 (11) 0.05 (13) −0.24 (6)

Exp, ARIMA / SA −0.15 (7) −0.11 (5) −0.16 (1) −0.30 (2)
Exp, ARIMA / OW −0.05 (18) −0.01 (18) −0.05 (6) −0.17 (13)
Exp, ARIMA / Opt. Shr. −0.09 (15) −0.04 (16) −0.07 (5) −0.23 (8)
Exp, ARIMA / Rob. Shr. (0.9) −0.15 (7) −0.11 (5) −0.16 (1) −0.30 (1)

Exp, DTES / SA −0.22 (2) −0.16 (1) 0.85 (19) −0.19 (11)
Exp, DTES / OW −0.08 (16) −0.04 (15) −0.04 (7) −0.03 (18)
Exp, DTES / Opt. Shr. −0.14 (13) −0.08 (8) −0.03 (8) −0.06 (17)
Exp, DTES / Rob. Shr. (0.6) −0.21 (3) −0.16 (2) −0.02 (9) −0.17 (14)

All / SA −0.19 (4) −0.13 (3) 0.40 (18) −0.27 (3)
All / OW −0.07 (17) −0.03 (17) −0.10 (4) −0.14 (15)
All / Opt. Shr. −0.10 (14) −0.08 (9) −0.12 (3) −0.19 (12)
All / Rob. Shr. (0.9) −0.19 (4) −0.13 (3) 0.26 (17) −0.27 (4)

Table 6.8: Comparison of the median relative MSE differences between different forecast
correction or combination methods and the judgmental forecast. For stationary time se-
ries, the standard forecast correction method performs best. For other time series, differ-
ent combinations are most successful. Combinations with robust shrinkage often perform
equal to or better than SA combinations.

ent combination methods, SA again slightly outperforms the robust shrinkage
combination.

For seasonal as well as trended and seasonal time series, the combination of
judgmental and ARIMA forecasts performed best. SA and robust shrinkage com-
bination in both cases performed best; results are identical for seasonal time series
(because of the high robustness requirement) and robust shrinkage marginally
outperforms SA for trended and seasonal time series.

Thus, two results can be noted at a first glance. First, all of the most beneficial
methods included the judgmental forecast and a statistical model. While correc-
tion performed best for stationary time series, the best combinations for the other
types of time series always included the judgmental forecast. Second, the robust
shrinkage combination performs very similar to the SA combination if the best
set of forecasts is chosen for a time series type. This result however differs for
other forecasts included in the combination.

Interesting results can for instance be noted for the seasonal time series. First
of all, DTES has a relatively low performance for seasonal time series. This result
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can be derived from the fact that all SA combinations involving DTES substan-
tially increase the errors over the errors of the judgmental forecast (up to 91 %
for the combination of DTES and ARIMA). In these cases, a weighting different
from equal weights is of high importance in order to reduce the weight of the
forecast with low accuracy. Thus, the alternative approaches, especially the ones
with optimal and robust shrinkage, improve performance in these cases. Sim-
ilar results can be noted for combinations of DTES and ARIMA forecasts and
trended or trended and seasonal time series. As a consequence, the shrinkage-
based methods can be recommended in cases where the accuracy of the forecasts
differs substantially.

The robust shrinkage level introduced in this work overall performs very simi-
lar to SA as high robustness parameters are used, which often result in a complete
shrinkage towards SA. However, in cases where SA is not very well suited as the
accuracy of the forecasts differs strongly, the robust shrinkage combinations of-
fer additional benefits. Thus, using robust shrinkage with adequate robustness
parameters instead of SA is overall a promising approach, which only substan-
tially deviates from SA for combinations where a stronger weighting is likely to
be reasonable.

Overall, forecast correction methods are very strong for stationary time series.
While correction methods offer benefits for all other except seasonal time series,
forecast combination methods perform substantially better in these cases. When
using forecast combination, an SA combination is –as can be expected from the
literature– often a good or the best choice. However, the proposed robust shrink-
age combination is also a viable alternative as it performs better than SA if fore-
cast accuracies differ substantially and very similar in other cases.

6.5 Conclusions and Limitations

While the previous chapters focused on understanding and improving the ro-
bustness of forecast correction and combination methods, this chapter evaluated
whether the analytical results can be transferred to applications in practice.

The analyses showed that at least some of the extensions to forecast correc-
tion models, especially the ones aiming at ensuring robustness against non-
stationarity, can increase the performance of forecast correction methods.

In forecast combination, the analyses confirmed that structural change of error
characteristics is likely to be one of the main reasons for the success of simple
averaging in forecast combination. Only for the combination of two model-based
forecasts, which were found to be most stable regarding error characteristics, ad-
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justing the weights to consider estimation uncertainty increased performance in
comparison to the simple average. Thus, structural changes were found to be
too strong in other cases, which consequently required a higher degree of robust-
ness against changes in a combination. Especially if both the judgmental and
the ARIMA forecast are involved in a combination, structural changes can be
very large and require a very strong shrinkage. This confirms the results of the
theoretical analyses that a complete shrinkage, i.e., using the simple average, is
required if the error characteristics are too unstable. The robust shrinkage com-
bination approach was overall found to be a successful approach when adequate
robustness levels are used.

Although using forecast correction and combination methods often improves
the overall accuracy, automatic correction or combination of forecasts bears the
risk of changing originally accurate forecasts in a disadvantageous way. For in-
stance, an expert might have considered knowledge on future events not deriv-
able from past time series and error histories by statistical means. The results on
forecast correction and combination (see for instance Figure 6.5) clearly show that
strongly increased errors occur in some cases.

This issue is most likely hard to address using statistical means. If methods are
designed towards maximum conservativeness, not only the disadvantageous but
also the beneficial changes increasingly vanish. Thus, in order to mainly prevent
strongly disadvantageous changes, an additional interaction with the human ex-
pert who produced the judgmental forecast is required. Critical cases, which can
for instance be identified on the basis of the difference between the changed and
the original forecast, can be presented to the forecaster in order to differentiate
between cases that would result in strong accuracy improvements or declines. A
solid decision basis is required for this task since the expert likely requires a com-
prehensible explanation of why and how a statistical model suggested changes to
the original forecast for the decision. Blanc and Setzer (2015a) proposed a design
of a forecast support system that aims at supporting this interaction.

The empirical evaluation is subject to several limitations. Most importantly,
the data set used in the evaluation stems from one company and one applica-
tion. Thus, the generalizability of the results might be limited. However, the time
series and forecasts used in the case study are from different subsidiaries of the
sample company, which are very different in terms of business characteristics and
forecasting processes. As a consequence, it is likely that the time series are reason-
able representatives for time series from real-world applications. As the forecasts
are produced by different forecasters with various cultural backgrounds, biases
can be expected to vary strongly across forecasts.

Furthermore, as a result of the design of the forecasting process in the sam-
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ple company, only one judgmental forecast is available per time series. For this
reason, only combinations of different model-based or of model-based and the
judgmental forecasts could be analyzed in the evaluation. However, as including
one judgmental forecast already results in high robustness requirements and thus
very often using the simple average for the combination, introducing additional
judgmental forecasts would most likely only allow a simple average combination.

As the time series are real-world time series, which additionally include data
from the economic crisis that began 2007, various effects not considered in this
work might be present. These effects might cause some of the results found in
this chapter or might make other effects disappear. However, thorough analyses
of the data, including analyses by experts at the sample company, were conducted
to ensure a high degree of reliability of the data.

The filtering of the time series used to derive the data set of the empirical eval-
uation involved excluding short time series as well as time series with too many
zero values. Thus, only recommendations for time series with sufficient length as
well as a sufficient number of non-zero values can be derived from the analyses.

The empirical evaluation was furthermore limited to a small set of forecast cor-
rection and combination methods, which were discussed in this work. Although
various approaches exist, especially in forecast combination, only few methods
have been included in the evaluation for reasons of complexity. However, SA
was included in the evaluation, which is the most important benchmark from a
theoretical as well as from a practical point of view.

The discussions regarding structural changes in this chapter are based on the
assumption that the chosen data analysis methods, especially the correlation
analysis, are able to detect structural changes in the error characteristics. As no
standard method exists for analyzing these aspects, a new approach was devel-
oped that is likely to detect the effects of interest. As the approach is not an estab-
lished one, the effects that were found in the analysis might be different from the
ones assumed and discussed in the analysis. However, the results of the discus-
sion fit the other results of this chapter very well as they provide comprehensible
explanations.

Overall, notwithstanding these limitations, the empirical evaluation allowed a
variety of insights into the robust application of forecast correction and combina-
tion in practice. These results and the derived guidelines matched the theoretical
analyses and discussions very well and reveal promising starting points for fu-
ture work, as is discussed in the next part of this work.
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Chapter 7

Conclusions and Outlook

JUDGMENTAL forecasts are widely used in practice as human experts can in-
clude contextual information into the forecasts. However, judgmental fore-

casts are regularly found to be inefficient as a result of cognitive biases and heuris-
tics. An integration with quantitative statistical methods aims at increasing the
accuracy of judgmental forecasts by mitigating these issues.

In this work, the robustness of forecast correction and combination, two es-
tablished integration methods, was studied. Forecast correction aims at identi-
fying systematic biases in past judgmental forecasts, which can then be removed
from new forecasts. In contrast, forecast combination does not alter the original
judgmental forecasts but uses a linear combination with alternative model-based
ones. Applying the approaches requires estimating parameters from past data.
In forecast correction, the parameters quantify the biases found in past forecasts
whereas the weights of the forecasts are parameters that have to be chosen or
estimated in forecast combination.

The statistical learning theory indicates that using estimated parameters in a
model influences the error of the model outcomes on unknown data. While com-
plex models can be expected to have low systematic errors (low bias component),
the estimation uncertainty can result in additional errors (high variance compo-
nent). In contrast, simple models have few parameters and thus small errors re-
sulting from estimation uncertainty but can be expected to introduce systematic
errors (high bias and low variance component). As a result of this trade-off, mod-
els can be expected to be influenced differently by small training samples, one
of the key aspects driving estimation uncertainty. Another issue introducing un-
certainty in practice is structural change, which results in systematic differences
between past observations and future unknown data.

Analyzing and understanding these influences is a key requirement for devel-
oping models that can be robustly applied in practical applications.

159
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7.1 Contribution

This work aimed at understanding the theoretical properties and trade-offs of
forecast correction and combination methods regarding robustness against esti-
mation uncertainty as well as structural changes. The derived insights were used
to develop novel mechanisms which aim at transferring the theoretical results to
applications in practice in order to achieve a more robust performance on un-
known data.

Although forecast correction and combination are established approaches,
there is little previous research analyzing the robustness of the methods. Most
importantly, there is no previous work that explicitly aims at understanding and
solving the involved trade-offs. In order to summarize the contributions of this
work, the individual contributions are discussed below on the basis of the re-
search questions introduced in Chapter 1.

Forecast Correction – Training Sample Size: Although small training sam-
ples are known to result in increasingly unstable parameter estimates, which in
turn increase errors on unknown data, this influence has not yet been analyzed
in forecast correction methods. The theoretical analyses in this work indicated
that, at least under the assumption of multivariate normality, the training sam-
ple size required for the corrected forecast to outperform the original judgmental
forecast is relatively small. Training samples available in practice might only be
too small if the removable biases are weak, i.e., if the judgmental forecasts are
close to unbiasedness. The empirical evaluation showed that forecast correction
overall results in improvements if other aspects, especially non-stationarity, are
addressed adequately. Thus, considerable removable biases exist and the training
sample sizes available in practice are not an issue for forecast correction.

Forecast Correction – Structural Breaks: Biases in judgmental forecasts de-
pend on the human experts who produce the forecasts. The biases can change
over time as a consequence. For instance, biases can decrease over time due
to learning effects. Or, alternatively, biases can change completely because of a
change of the forecaster. Changing biases also influence forecast correction mod-
els that use past data to identify biases that are then removed from future fore-
casts. If a bias change occurs, outdated biases are removed from future forecasts,
which can result in the new biases not being optimally removed or even in in-
troducing additional biases. Despite the high likelihood of structural changes in
practice, the influence of these changes has not yet been researched. The analyses
in this work identified that as long as the strength of the bias is not reduced too
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much towards unbiasedness, forecast correction methods can be expected to be
largely robust against structural changes. In other words, the corrected forecast
can be expected to be more accurate than the original forecast expect for relatively
strong changes of the biases. However, although the corrected forecast is likely
to be more accurate than the original one, structural breaks still influence the ac-
curacy of the corrected forecast and the results of the correction are suboptimal.

In order to address structural changes, the existing approach using exponen-
tial weighting of past observations or the new approach proposed in this work,
which explicitly treats detected structural breaks, can be used. Although includ-
ing structural changes directly or indirectly in the weight estimation procedure
could be expected to be beneficial, the empirical evaluation with real-world data
in this work showed that including structural breaks does not improve the ac-
curacy of corrected forecasts. Thus, although structural changes influence the
accuracy of corrected forecasts, the additional instability and uncertainty in the
correction model resulting from treating potential structural breaks likely out-
weighs possible accuracy gains.

Forecast Correction – Non-Stationarity: Previous studies mostly applied fore-
cast correction methods directly to the time series data, independently of the char-
acteristics of the time series. In this work, non-stationarity of time series, for in-
stance because of a trend or seasonality, was shown to be a relevant issue in the
theoretical analyses. In case of non-stationarity of time series, the biases that are
considered by linear forecast correction models are increasingly undetectable. Re-
moving biases is consequently increasingly impossible for non-stationarity and
even a strongly biased forecast can be detected as unbiased. However, if fore-
cast correction is nevertheless applied, the parameter estimation introduces ad-
ditional uncertainty, and consequently errors, while no biases can be removed.
Thus, the overall error of the corrected forecast can easily increase over the origi-
nal forecast. This result is confirmed by the empirical evaluation. Applying fore-
cast correction without addressing non-stationarity of time series did not result in
improved forecast accuracy for trended time series as well as for time series with
trend and seasonality. Especially for these time series, a detrending or desea-
sonalization was found to be essential for increasing the accuracy of judgmental
forecasts. In summary, non-stationarity of time series is a key issue that has to be
addressed for a successful application of forecast correction in practice.

Forecast Combination – Bias–Variance Trade-Off: The bias–variance trade-
off from statistical learning theory allows understanding how the performance
of a statistical model is related to the expected fit of the model to the data on
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the one hand and to estimation uncertainty on the other hand. The trade-off is
based upon a decomposition of the error on unknown data into two error com-
ponents quantifying these aspects. Although the decomposition provides a use-
ful framework for understanding the performance of statistical models with es-
timated parameters, no decomposition of the error of a combined forecast has
been introduced in the literature. In this work, the decomposition of the com-
bined error variance, including the required and previously unknown general
case of the sampling distribution of the weight estimates, has been derived for
the case of weights that minimize the in-sample error variance shrinked towards
equal weights.

The formulation of the decomposed expected error variance of a forecast com-
bination allowed analytically deriving the minimal training sample size required
to outperform an alternative combination. The threshold can for instance be used
to determine whether a combination with a specific shrinkage can be expected to
outperform an equal weights combination. The discussion of the threshold value
using forecast errors from the M3 Competition revealed that many combinations
could be expected to outperform an equal weights combination for relative small
sample sizes, in many cases below 20.

Furthermore, given the error covariance matrix of the forecasts, a shrinkage
level was derived that optimally solves the bias–variance trade-off involved in
forecast combination by balancing potential accuracy gains and errors result from
estimation uncertainty. The discussion using the forecast errors from the M3
Competition illustrated that, using this shrinkage level, the expected combined
error variance can be expected to continuously decrease with increasing train-
ing sample size and number of forecasts in a combination. While the former
result is expected, the latter one contradicts existing guidelines on forecast com-
bination, which suggest including only a limited set of forecasts in the combi-
nation. Furthermore, in the empirical evaluation, the optimal shrinkage method
in most cases performed better than in-sample optimal weights but did not out-
perform an equal weights combination. Slight advantages over equal weighting
were only found for combinations of model-based forecasts. Thus, in real-world
applications, only a part of the error of a combined forecast can be attributed to
estimation uncertainty and additional effects influence the errors.

Forecast Combination – Structural Changes: Similar to forecast correction,
structural changes in the error characteristics can influence forecast combination
methods. If error patterns differ too strongly between past observations and fu-
ture errors, the combination of forecasts does not reduce error levels and can even
result in strongly increased errors. Although structural changes are especially
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likely to occur in the combination of judgmental or judgmental and model-based
forecasts, this aspect has received scant attention in the literature.

In order to assess the relevance of structural breaks for forecast combination
models, critical changes have been derived, which quantify how strongly error
characteristics are allowed to change for a combination to still outperform an al-
ternative one such as an equal weights combination. The discussion of the thresh-
olds showed that combinations of more than three to four forecasts are highly
prone to changes of the error characteristics. For instance small changes of one
error variance can result in combined error variances increased by a multiple over
the error variance expected without a change. Thus, structural changes can ex-
plain why combinations of too many forecasts are not beneficial and often not
recommended in the literature.

As the theoretical analyses clearly show the strong influence of structural
changes, a potential approach to improve the performance of forecast combi-
nation is increasing the robustness against structural changes. Based upon the
derived critical changes for a combination with a certain shrinkage level and a
robustness requirement in terms of maximum changes, a robust shrinkage level
was derived. This robust shrinkage level ensures that the combined forecast can
be expected to perform as least as good as an alternative combination, such as
an equal weights combination, as long as changes do not exceed the robustness
requirements. The discussion using the forecast errors of the M3 Competition re-
vealed that combining three to five forecasts is most promising when aiming at
robustness by using the robust shrinkage level. While this finding explains exist-
ing guidelines, the analyses also showed that using a random set of forecasts is
often a better choice than selecting the most accurate ones. This aspect can mainly
be attributed to the high correlation of the most accurate forecasts, which results
in lower diversity and thus lower robustness.

In the empirical evaluation, the robust shrinkage level was shown to improve
over optimal shrinkage, which only considers estimation uncertainty. However,
if combinations involve a judgmental forecast, error characteristics were found
to be very unstable over time and a high robustness level is required, which in
turn often results in using the simple average of forecasts. If adequate robustness
levels are used, the robust shrinkage performs very similar to a simple average
combination in many cases but performs better if the accuracy differs strongly
between forecasts. Thus, the theoretical analyses provided important insights
into the robustness against structural changes as well as means to addressing
these changes. In order to transfer the theoretical results into practice, the choice
of the robustness requirement is a key aspect.
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Overall, the theoretical analyses in this work allowed deep insights into the ro-
bustness and performance of forecast correction and combination methods. The
results on forecast correction can be easily transferred into practice and improve
the real-world performance of forecast correction methods and thus the efficiency
and efficacy of corporate processes relying on judgmental forecasts. Likewise, the
introduced optimal and robust shrinkage levels can be implemented in practice
for the combination of model-based and judgmental forecasts while adjusting for
the differing likelihood and strength of structural changes by setting adequate
robustness requirements for the combination.

Although a detailed understanding of the aspects influencing the robustness
of the methods has been developed in this work, a variety of starting points for
future work exist, which especially aim at improving the transfer of the theoret-
ical results into practice. A selected set of promising directions of future work is
presented in the next section.

7.2 Future Work

Developing a theoretical understanding of the various aspects influencing fore-
cast correction and combination methods has in this work been demonstrated to
be an important basis for improving existing approaches as well as for develop-
ing new ones. The proposed directions of future research thus focus on starting
points for further theoretical insights as well as for approaches that better transfer
the insights derived in this work into practice. First, future work on correction
and subsequently on forecast combination is discussed. Lastly, future work be-
yond the two methods is proposed.

While the theoretical analysis of the robustness of forecast correction methods
against structural changes focused on changes of only one parameter, simulta-
neous changes of the biases are likely to occur in practice. For instance, if an
expert producing judgmental forecasts changes, not only the error variance but
also the correlation between forecasts and realizations is likely to change. Thus,
analyzing simultaneous bias changes can provide additional insights into the ro-
bustness. Furthermore, analyses of the biases in real-word forecasts could re-
veal how biases change in practice and how strong occurring changes are, which
would provide additional insights in combination with the results of the theoret-
ical analyses.

As detecting and explicitly considering structural breaks in the estimation of
the forecast correction model did not result in improved accuracy of the corrected
forecasts, novel approaches to addressing changes could be researched. Dynamic
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linear models, which allow estimating time-varying parameters (see for instance
Harrison and West (1999)) would be an interesting approach that allows consid-
ering structural changes, especially slow bias changes, in a more flexible way. As
an alternative, the so-called indicator saturation estimation can be used, which
allows a very flexible detection of structural changes on the basis of predefined
change pattern (see for instance Pretis et al. (2016) on how the approach can be
used in a time series context).

Using more flexible estimation methods can be seen as a part of the more gen-
eral problem that the detection of structural breaks and the transformation of
the time series are treated as tasks that are independent from the estimation of
the parameters of the correction model. However, there are strong dependen-
cies between the individual steps. Identified breakpoints as well as the chosen
transformation of the time series strongly influence the identifiable biases and
the estimated parameters. Thus, all steps should in principle be geared towards
maximizing the accuracy of the corrected forecast. However, separating the tasks
into independent steps does not guarantee that the overall approach is well suited
for the correction. For instance the breakpoint detection aims at identifying struc-
tural breaks that separate the data as cleanly as possible. However, an identified
breakpoint break must not necessarily be of importance for the forecast correc-
tion as it might for instance be relatively weak. Likewise, the data transformation
methods only aim at finding a preprocessing of the time series that ensures sta-
tionarity as good as possible. The chosen transformation can however not be
guaranteed to result in stationary time series that can be corrected in a beneficial
way. Overall, an integration of the different steps into one model is required in
order to enable finding a model that improves the bias–variance trade-off when
considering all of the relevant estimation and preprocessing steps.

In forecast combination, deriving novel means of estimating and shrinking
weights are a promising area of research. The shrinkage applied in this work
shrinked all weight estimates towards equal weights by the same percentage.
While this already affects extreme weights more strongly than weaker ones, al-
ternative shrinkage methods are of interest. For instance a non-linear shrinkage
can be used, which does not shrink all forecasts in the same way but shrinks
the weights of precisely those forecasts most strongly that are either unimportant
for the combination (and thus only introduce errors because of estimation uncer-
tainty) or that make the combination prone to structural changes. For instance,
in this work, using shrinked weights outperformed the simple average in the
combination of different model-based forecasts for an adequate robustness level.
However, when a judgmental forecast was additionally included, a much higher
degree of robustness was required to achieve performance comparable to the sim-
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ple average. Thus, including the judgmental forecasts, which were shown to have
stronger structural changes, was a clear issue for using shrinked weights. In cases
such as this one, strongly shrinking the forecast that is likely to have structural
changes except for cases where it is highly important might be beneficial. The
idea of shrinking the parameter estimates differently is established in regression
theory, where for instance lasso regression (Tibshirani, 1996) is used. Non-linear
shrinkage furthermore enables shrinking a forecast out of the combination, i.e.,
reducing its weight to zero. An interesting question is how strongly this effect
would be used in non-linear shrinkage and whether it could also explain the ex-
isting guidelines regarding the number of forecasts included in a combination.

In this work, shrinkage was not only used to reduce the model instability re-
sulting from estimation errors, but also to achieve robustness against structural
changes. Structural changes were analyzed in terms of critical changes, which
were then used to determine weights that are, to a definable extent, robust against
changes. However, the critical changes only considered changes of one error
characteristic. Simultaneous changes, which can regularly occur in practice, were
not considered. The model in this work could, in principle, be extended to con-
sider multiple changes. However, the robust shrinkage level would then have
to consider the worst case combination of changes. This would in turn result in
a very conservative shrinkage factor and thus using equal weights in practically
all cases. As a consequence, new approaches for determining a robust shrinkage
level are of great interest. One approach could be based on resampling methods,
which are often used in the literature to assess the estimation uncertainty. If error
covariance estimates, or the resulting weight estimates, are very uncertain across
resampling iterations, a stronger shrinkage must be used for robustness. Even
more advanced approaches could aim at taking changes over time into account
by using a weighted resampling method or by deriving reasonable robustness
requirements or a robust shrinkage level from the observed development of the
error characteristics in the past. This approach could address one of the key is-
sues identified in this work, correctly setting the robustness requirements that are
used for calculating the robust shrinkage level.

While forecast correction and combination are two established approaches to
improving forecast accuracy, the two approaches are mostly implemented and
applied separately, as has been done in this work. The only study analyzing the
combination of both approaches was conducted by Goodwin (2000), who first
corrected the judgmental forecast and then combined the corrected forecast with
a model-based one. Although both individual approaches were found to be ben-
eficial, the combination of the approaches did not result in additional significant
improvements of the forecast accuracy. As the discussions in the empirical eval-
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uation in this work revealed, there is a similarity between forecast correction and
combination. The parameters estimated by the forecast correction models indi-
cated that the judgmental forecasts are substantially damped towards the sys-
tematic component in the time series (or a constant value in case of stationarity).
As model-based forecasts aim at modeling and predicting this systematic com-
ponent, a combination of the judgmental forecast with a model-based one also
often results in a shift towards the systematic component. This similarity is likely
to result in the low additional benefit of using both methods as most of the im-
provements are already realized by applying one of the two methods. While the
qualitative relationship is largely clear, the exact nature of the similarity is un-
known. Furthermore, applying both methods might be beneficial in some cases
and not be reasonable in others. Thus, understanding and modeling the relation-
ship between forecast correction and combination is of importance and can result
in guidelines when to use which method and when to apply both.

Lastly, forecast correction as well as combination only increase accuracy on av-
erage. Although the accuracy is often substantially increased, a decrease of the
accuracy must be expected in a substantial number of cases. Substantial decreases
must especially be expected directly after structural changes, when the forecast
correction or combination model does not yet have enough new data to reason-
ably address the change, or in cases where the expert has knowledge for instance
about special events. Although the robustness of the applied methods can be in-
creased to avoid decreasing forecast accuracy as much as possible, decreases of
the accuracy cannot be eliminated completely and are an inevitable result of the
integration with statistical models. This aspect can only be addressed by check-
ing with the expert who produced the judgmental forecast in cases where the
difference to the original forecast is large. Currently, a project is underway with
the sample company of the case study, in which a novel forecast support system
is conceptualized and implemented that enables this interaction.

In summary, various directions for future research on the integration of judg-
mental forecasts with statistical models exist, which promise to provide new in-
sights and to further improve performance in practice. This thesis provided a
valuable basis for the theoretical understanding and improvement of forecast
correction and combination, which enables promising future research as well as
application in practice.
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Appendix A

Proofs

Proof of Theorem 2.1. The decomposition of the MSE can be derived as shown in
Equation A.1.

MSE =E
[
(A− F)2

]
= (E [A− F])2 + Var [A− F]

= (E [A]− E [F])2 + Var [A] + Var [F]− 2Cov (F, A)

= (µA − µF)
2 + σ2

A + σ2
F − 2ρσAσF

= (µA − µF)
2 + (σF − ρσA)

2 + σAr− ρ2σ2
A

= (µA − µF)
2 + (σF − ρσA)

2 +
(

1− ρ2
)

σ2
A (A.1)

Proof of Theorem 2.2. In an ordinary least squares regression, the coefficients are
defined as

β1 = ρ
σA

σF

and
β0 = µA − β1µF

Calculating the MSE of the derived corrected forecast, as shown in Equa-
tion A.2, shows that only the random (unsystematic) component of the MSE re-
mains.

MSE =E
[
(A− (β0 + β1F))2

]
=E

[
((A− µA)− β1 (F− µF))

2
]

=E
[
(A− µA)

2
]
− 2β1E [(A− µA) (F− µF)] + β2

1E
[
(F− µF)

2
]
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=σ2
A − 2ρ

σA

σF
ρσAσF + ρ2 σ2

A
σ2

F
σ2

F

=σ2
A − 2ρ2σ2

A + ρ2σ2
A

=(1− ρ2)σ2
A (A.2)

Proof of Theorem 3.1. First, the expectation can easily be found as display in Equa-
tion A.3.

E [A− FC]

=E
[
(A− µ̂A)− β̂1 (F− µ̂F)

]
=E [A]− E [µ̂A]− E

[
β̂1
]

E [F− µ̂F]−Cov
(

β̂1, F− µ̂F
)︸ ︷︷ ︸

0

=µA − µA − β1µF + β1µF

=0 (A.3)

Second, the variance of the error can be derived as presented in Equation A.4.

Var
[
(A− µ̂A)− β̂1 (F− µ̂F)

]
=Var [A− µ̂A] + Var

[
β̂1 (F− µ̂F)

]
+ Cov

(
A− µ̂A, β̂1 (F− µ̂F)

)
=σ2

A + Var
[
β̂1
]

Var [F− µ̂F] + Var
[
β̂1
]
(E [F− µ̂F])

2︸ ︷︷ ︸
0

+
(
E
[
β̂1
])2

Var [F− µ̂F] + E
[
β̂1
]

Cov (A− µ̂A, F− µ̂F)

=σ2
A + Var

[
β̂1
]

σ2
F +

(
E
[
β̂1
])2

σ2
F + E

[
β̂1
]

Cov (A, F)

=σ2
A + σ2

F

(
Var

[
β̂1
]
+
(
E
[
β̂1
])2
)
− 2E

[
β̂1
]

ρσAσF (A.4)

As the MSE can be decomposed into the squared expected error plus the error
variance, the expected MSE is equal to the error variance.

Proof of Theorem 3.2. First, E
[
β̂1
]
= ρ σA

σF
since the OLS estimator is the best lin-

ear unbiased estimator (BLUE). Regarding the variance of the estimate, Pearson

(1926) and Romanovsky (1926) independently found that Var
[
β̂1
]
=

σ2
A

σ2
F

1−ρ2

n−3 in

case of multivariate normality.
Plugging expectation and variance of the coefficient estimate into the expected

MSE in Theorem 3.1 yields the expected MSE of the corrected forecast as shown
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in Equation A.5.

Var [A− FC] =σ2
A + σ2

F

(
σ2

A
σ2

F

1− ρ2

n− 3
+ ρ2 σ2

A
σ2

F

)
− 2ρ

σA

σF
ρσAσF

=σ2
A +

1− ρ2

n− 3
σ2

A + ρ2σ2
A − 2ρ2σ2

A

=σ2
A +

1− ρ2

n− 3
σ2

A − ρ2σ2
A

=

(
1 +

1
n− 3

)(
1− ρ2

)
σ2

A (A.5)

Proof of Theorem 3.3. Reconsidering that the MSE of the original forecast is, in its
decomposed form, (µA − µF)

2 + (σF − ρσA)
2 +

(
1− ρ2) σ2

A. Equalizing the MSE
with the result of Theorem 3.2 and solving for n̊ yields the minimal training sam-
ple size as shown in Equation A.6.(

1 +
1

n̊− 3

)(
1− ρ2

)
σ2

A = (µA − µF)
2 + (σF − ρσA)

2 +
(

1− ρ2
)

σ2
A

1
n̊− 3

(
1− ρ2

)
σ2

A = (µA − µF)
2 + (σF − ρσA)

2

1
n̊− 3

=
(µA − µF)

2 + σ2
F − 2ρσAσF + ρ2σ2

A
(1− ρ2) σ2

A

n̊ =

(
1− ρ2) σ2

A

(µA − µF)
2 + (σF − ρσA)

2 + 3 (A.6)

The theorem then results by rounding the result up to the next integer since frac-
tional or real-valued sample sizes do not exist.

Proof of Theorem 3.4. Plugging µA = µ̃A, µF = µ̃F − ∆µ, and β1 = β̃1 into Equa-
tion 3.5 yields the theorem as shown in Equation A.7.

MSE =E
[((

Ã− µ̃A
)
− β̃1

(
F̃− µ̃F − ∆µ

))2
]

=E
[((

Ã− µ̃A
)
− β̃1

(
F̃− µ̃F

)
+ β̃1∆µ

)2
]

=
(

1− ρ̃2
)

σ̃2
A + 2β̃1∆µE

[
Ã− µ̃A

]
− 2β̃2

1∆µE
[
F̃− µ̃F

]
+
(

β̃1∆µ

)2

=
(

1− ρ̃2
)

σ̃2
A +

(
β̃1∆µ

)2
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=
(

1− ρ̃2
)

σ̃2
A +

(
ρ̃

σ̃A

σ̃F
∆µ

)2

(A.7)

Proof of Theorem 3.5. Comparing the MSE for a correlation change in Theorem 3.4
with the decomposed MSE of the original forecast and solving for ∆̊µ yields in
the critical value as shown in Equation A.8.(

1− ρ̃2
)

σ̃2
A +

(
β̃1∆̊µ

)2
= (µ̃A − µ̃F)

2 + (σ̃F − ρ̃σ̃A)
2 +

(
1− ρ̃2

)
σ̃2

A(
β̃1∆̊µ

)2
= (µ̃A − µ̃F)

2 + (σ̃F − ρ̃σ̃A)
2

∆̊µ =±

√
(µ̃A − µ̃F)

2 + (σ̃F − ρ̃σ̃A)
2

β̃2
1

∆̊µ =± σ̃F

ρ̃σ̃A

√
(µ̃A − µ̃F)

2 + (σ̃F − ρ̃σ̃A)
2 (A.8)

Proof of Theorem 3.6. Plugging µA = µ̃A, µF = µ̃F, and β1 = ρ σA
σF

=
(
ρ̃− ∆ρ

) σ̃A
σ̃F

=

β̃1 − ∆ρ
σ̃A
σ̃F

into Equation 3.5 yields the impact as shown in Equation A.9.

MSE =E

[((
Ã− µ̃A

)
−
(

β̃1 − ∆ρ
σ̃A

σ̃F

) (
F̃− µ̃F

))2
]

=E

[((
Ã− µ̃A

)
− β̃1

(
F̃− µ̃F

)
+ ∆ρ

σ̃A

σ̃F

(
F̃− µ̃F

))2
]

=
(

1− ρ̃2
)

σ̃2
A + 2∆ρ

σ̃A

σ̃F
E
[(

Ã− µ̃A
) (

F̃− µ̃F
)]

− 2β̃1∆ρ
σ̃A

σ̃F
E
[(

F̃− µ̃F
)2
]
+

(
∆ρ

σ̃A

σ̃F

)2

E
[(

F̃− µ̃F
)2
]

=
(

1− ρ̃2
)

σ̃2
A + 2β̃1∆ρσ̃Aσ̃F − 2β̃1∆ρσ̃Aσ̃F +

(
∆ρσ̃A

)2

=
(

1− ρ̃2
)

σ̃2
A +

(
∆ρ

)2
σ̃2

A (A.9)

Proof of Theorem 3.7. Equalizing the MSE for a correlation change in Theorem 3.6
with the decomposed MSE of the original forecast and solving for ∆̊ρ results in
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the critical value derived in Equation A.10.(
1− ρ̃2

)
σ̃2

A +
(

∆̊ρ

)2
σ̃2

A = (µ̃A − µ̃F)
2 + (σ̃F − ρ̃σ̃A)

2 +
(

1− ρ̃2
)

σ̃2
A(

∆̊ρ

)2
σ̃2

A = (µ̃A − µ̃F)
2 + (σ̃F − ρ̃σ̃A)

2

∆̊ρ =±

√
(µ̃A − µ̃F)

2 + (σ̃F − ρ̃σ̃A)
2

σ̃2
A

∆̊ρ =± 1
σ̃A

√
(µ̃A − µ̃F)

2 + (σ̃F − ρ̃σ̃A)
2 (A.10)

Proof of Theorem 3.8. First note the relationship between β1 and β̃1 derived in
Equation A.11.

β1 = ρ
σA

σF
= ρ̃

σ̃A

σ̃F − ∆σ
= β̃1

σ̃F

σ̃F − ∆σ
= β̃1 + β̃1

∆σ

σ̃F − ∆σ
(A.11)

Plugging this relationship, µA = µ̃A, and µF = µ̃F into Equation 3.5 yields the
theorem as shown in Equation A.12.

MSE =E

[((
Ã− µ̃A

)
−
(

β̃1 + β̃1
∆σ

σ̃F − ∆σ

) (
F̃− µ̃F

))2
]

=E
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)
− β̃1

(
F̃− µ̃F

)
− β̃1

∆σ

σ̃F − ∆σ

(
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))2
]
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)

σ̃2
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∆σ

σ̃F − ∆σ
E
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Ã− µ̃A
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1
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E
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]
+
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σ̃F − ∆σ

)2

E
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)2
]

=
(
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)

σ̃2
A − 2β̃2

1σ̃2
F

∆σ

σ̃F − ∆σ

+ 2β̃2
1σ̃2

F
∆σ

σ̃F − ∆σ
+

(
ρ̃

∆σ

σ̃F − ∆σ

)2

(σ̃A)
2

=
(

1− ρ̃2
)

σ̃2
A +

(
ρ̃

∆σ

σ̃F − ∆σ

)2

σ̃2
A (A.12)

Proof of Theorem 3.9. Equalizing the MSE under a forecast variance change (The-



176 Proofs

orem 3.8) with the decomposed MSE of the original forecast yields the critical
change as shown in Equation A.13.

0 =
(

1− ρ̃2
)

σ̃2
A +

(
ρ̃

∆̊σ

σ̃F − ∆̊σ

)2

σ̃2
A − (µ̃A − µ̃F)

2 − (σ̃F − ρ̃σ̃A)
2 −

(
1− ρ̃2

)
σ̃2

A

0 =

(
ρ̃

∆̊σ

σ̃F − ∆̊σ

)2

σ̃2
A − (µ̃A − µ̃F)

2 − (σ̃F − ρ̃σ̃A)
2

0 =
(

∆̊σ

)2 (
(µ̃A − µ̃F)

2 + (σ̃F − ρ̃σ̃A)
2 − ρ̃2σ̃2

A

)
− ∆̊σ

(
2σ̃F

(
(µ̃A − µ̃F)

2 + (σ̃F − ρ̃σ̃A)
2
))

+ σ̃2
F

(
(µ̃A − µ̃F)

2 + (σ̃F − ρ̃σ̃A)
2
)

∆̊σ =
σF

(
(µ̃A − µ̃F)

2 + (σ̃F − ρ̃σ̃A)
2
)
± ρ̃σ̃A

√
(µ̃A − µ̃F)

2 + (σ̃F − ρ̃σ̃A)
2

(µ̃A − µ̃F)
2 + (σ̃F − ρ̃σ̃A)

2 − ρ̃2σ̃2
A

(A.13)

Proof of Theorem 3.10. The variances of the modified forecasts and actuals with
added systematic component T are displayed in Equations A.14 and A.15.

σ2
A′ = σ2

A + σ2
T (A.14)

σ2
F′ = σ2

F + σ2
F (A.15)

The covariance between the modified forecasts and actuals is

Cov
(

A′, F′
)
= Cov (A + T, F + T)

= Cov (A, F) + Cov (A, T)︸ ︷︷ ︸
0

+Cov (F, T)︸ ︷︷ ︸
0

+σ2
T

= ρσAσF + σ2
T (A.16)

Using Equations A.14, A.15, A.16, the regression coefficient β′1 for the actuals
and forecasts with the systematic component can be calculated as shown in Equa-
tion A.17.

β′1 =
Cov (A′, F′)

σ2
F′

=
ρσAσF + σ2

T
σ2

F + σ2
T

(A.17)

Clearly, limσT→∞ β′1 = 1, indicating that regression bias vanishes for increasing
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variance of the systematic component.

Proof of Theorem 4.1. The expectation of shrinked weights is a linear combination
of the expectations of SA and ow, as shown in Equation A.18.

E
[
ŵλ
]
= E

[
λwS + (1− λ) ŵO

]
= λE

[
wS
]
+ (1− λ)E

[
ŵO
]

(A.18)

Since the weights are fixed for SA and thus not a random variable, the expec-
tation E

[
wS] is directly determined by k. For the estimation of OW, Granger

and Ramanathan (1984) proved an equivalence to a multiple ordinary least
squares (OLS) linear regression. Since the OLS linear regression estimator is the
best linear unbiased estimator (BLUE), the optimal weights estimator must nec-
essarily be unbiased. As a consequence, simply plugging the definitions of SA
and OW into Equation A.18 yields Equation A.19.

E
[
ŵλ
]
= λ

1
k
~1 + (1− λ)

Σ−1~1
~1>Σ−1~1

(A.19)

Proof of Theorem 4.2. With wO
1 = E

[
ŵO

1
]
=

σ2
2−ρσ1σ2

σ2
2−2ρσ1σ2+σ2

1
(Bates and Granger, 1969),

the expectation of the shrinked weights in the bivariate case is introduced in
Equation A.20.

E
[
ŵλ
]
=

(
λ

2
+ (1− λ)E

[
ŵO

1

]
,

λ

2
+ (1− λ)E

[
ŵO

2

])
=

(
λ

2
+ (1− λ)wO

1 ,
λ

2
+ (1− λ)wO

2

)
=

(
λ

2
+

(1− λ)
(
σ2

2 − ρσ1σ2
)

σ2
2 − 2ρσ1σ2 + σ2

1
,

λ

2
+

(1− λ)
(
σ2

1 − ρσ1σ2
)

σ2
2 − 2ρσ1σ2 + σ2

1

)

=

(
λσ2

1 + (2− λ) σ2
2 − 2ρσ1σ2

2
(
σ2

1 + σ2
2 − 2ρσ1σ2

) ,
(2− λ) σ2

1 + λσ2
2 − 2ρσ1σ2

2
(
σ2

1 + σ2
2 − 2ρσ1σ2

) )

=

(
λ
2

(
σ2

1 − σ2
2
)
+ σ2

2 − ρσ1σ2

σ2
1 + σ2

2 − 2ρσ1σ2
,

λ
2

(
σ2

2 − σ2
1
)
+ σ2

1 − ρσ1σ2

σ2
1 + σ2

2 − 2ρσ1σ2

)
(A.20)

Proof of Theorem 4.3. If Ω, the sampling covariance matrix of OW, is known, the
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sampling covariance matrix Ωλ ∈ Rk×k of the elements in ŵλ can easily be de-
rived, as shown in Equation A.21.

Ωλ =Cov
(

ŵλ, ŵλ
)

=Cov
(

λwS + (1− λ) ŵO, λwS + (1− λ) ŵO
)

=λ2 Cov
(

wS, wS
)

︸ ︷︷ ︸
0

+2λ (1− λ)Cov
(

wS, ŵO
)

︸ ︷︷ ︸
0

+ (1− λ)2 Cov
(

ŵO, ŵO
)

= (1− λ)2 Cov
(

ŵO, ŵO
)

= (1− λ)2 Ω (A.21)

Hence, the challenge reduces to deriving the sampling covariance matrix of
ŵO, which can be done by utilizing the equivalence of OW and the coefficients
of a multiple linear regression shown by Granger and Ramanathan (1984). They
have proven that the weight estimates ŵO

1 , . . . , ŵO
k−1 can be calculated by linearly

regressing the error of the k-th forecast, Ek, on the differences to the other er-
rors, as shown in Equation A.22. Although an intercept term is included when
calculating the coefficients, the intercept can then be omitted because of the
unbiasedness-assumption of the individual forecasts and the resulting true in-
tercept of zero.

Ek = wO
1 (Ek − E1) + · · ·+ wO

k−1 (Ek − Ek−1) + ε (A.22)

The covariance matrix of independent and the dependent variables can be
found to be the defined modified covariance matrix Σ′. More precisely, Σ′11 is
the covariance between the independent variables, Σk,k the variance of the de-
pendent variable (the error of the k-th forecast) and Σ′12 the covariance between
the dependent variable and the independent variables.

Kshirsagar (1961) derived the distribution of the coefficients of a multiple
regression by specifying the density. The density corresponds to a matrix t-
distribution. Consequently, because of the equivalence between optimal weights
combination and linear regression, the sampling distribution of

(
ŵO

1 , . . . , ŵO
k−1

)
is a matrix t-distribution with n − k + 1 degrees of freedom, and scales (Σ′11)

−1

and Σk,k − (Σ′12)
> (Σ′11)

−1 Σ′12.
The sampling covariance matrix of the first k− 1 weights follows from the re-

sults of Gupta and Nagar (1999) on the properties of matrix variate t-distributions
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and is shown in Equation A.23.

Ω′ =
1

n− k− 1
(
Σ′11
)−1
(

Σk,k −
(
Σ′12
)> (Σ′11

)−1
Σ′12

)
(A.23)

Since this sampling covariance matrix only includes the first k− 1, the matrix
has to be further modified to include the last forecast. Trivially, the estimate for
the last weight ŵO

k suffices Equation A.24.

ŵO
k = 1−

k−1

∑
i=1

ŵO
i (A.24)

Using this relationship, the complete sampling covariance matrix can easily be
derived. Since Σk,k − (Σ′12)

> (Σ′11)
−1 Σ′12 is a scalar value, adding the last forecast

reduces to extending (Σ′11)
−1 appropriately. The required augmented matrix is

clearly the defined matrix ΩO. Replacing the matrix yields the sampling covari-
ance matrix of optimal weights in Equation A.25.

Ω =
1

n− k− 1
ΩO

(
Σk,k −

(
Σ′12
)> (Σ′11

)−1
Σ′12

)
(A.25)

Plugging Ω into Equation A.21 proves the claimed sampling covariance matrix.

Proof of Theorem 4.4. In a first step, the bivariate case of the modified covariance
matrix Σ′, as presented in Equation A.26, can be directly found by simply plug-
ging in the definitions of the elements of Σ.

Σ′ =
[

σ2
2 − 2ρσ1σ2 + σ2

1 σ2
2 − ρσ1σ2

σ2
2 − ρσ1σ2 σ2

2

]
(A.26)

Using the general definition of ΩO and the bivariate variant of Σ′, ΩO in the
bivariate case is defined as shown in Equation A.27.

ΩO =
1

σ2
2 − 2ρσ1σ2 + σ2

1

[
1 −1
−1 1

]
(A.27)

The weight covariance matrix can then be derived as shown in Equation A.28.

Ωλ =
(1− λ)2

n− k− 1
ΩO

(
Σk,k −

(
Σ′12
)> (Σ′11

)−1
Σ12

)
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=
(1− λ)2

n− 3
ΩO

(
σ2

2 −
(
σ2

2 − ρσ1σ2
)2

σ2
2 − 2ρσ1σ2 + σ2

1

)

=
(1− λ)2

n− 3
ΩO

(
1− ρ2) σ2

1 σ2
2

σ2
2 − 2ρσ1σ2 + σ2

1

=
(1− λ)2

n− 3

(
1− ρ2) σ2

1 σ2
2(

σ2
2 − 2ρσ1σ2 + σ2

1

)2

[
1 −1
−1 1

]
(A.28)

Proof of Theorem 4.5. Using the result on the covariance of products of random
variables with vanishing third moments by Bohrnstedt and Goldberger (1969),
the combined error variance can be derived as presented in Equation A.29.

Var
[(

ŵλ
)>

Ẽ
]
= ∑

i,j
Cov

(
ŵλ

i Ẽi, ŵλ
j Ẽj

)
=∑

i,j
E
[
Ẽi
]

E
[
Ẽj
]

Cov
(

ŵλ
i , ŵλ

j

)
︸ ︷︷ ︸

0

+∑
i,j

E
[
Ẽi
]

E
[
ŵλ

j

]
Cov

(
ŵλ

i , Ẽj

)
︸ ︷︷ ︸

0

+ ∑
i,j

E
[
ŵλ

i

]
E
[
Ẽj
]

Cov
(

Ẽi, ŵλ
j

)
︸ ︷︷ ︸

0

+∑
i,j

E
[
ŵλ

i

]
E
[
ŵλ

j

]
Cov

(
Ẽi, Ẽj

)
+ ∑

i,j
Cov

(
Ẽi, Ẽj

)
Cov

(
ŵλ

i , ŵλ
j

)
+ ∑

i,j
Cov

(
Ẽi, ŵλ

j

)
Cov

(
ŵλ

i , Ẽj

)
︸ ︷︷ ︸

0 (by assumption)

=∑
i,j

Cov
(
Ẽi, Ẽj

)
Cov

(
ŵλ

i , ŵλ
j

)
+ ∑

i,j
Cov

(
Ẽi, Ẽj

)
E
[
ŵλ

i

]
E
[
ŵλ

j

]
=∑

i,j
Σ̃i,jΩλ

i,j + ∑
i,j

Σ̃i,jE
[
ŵλ

i

]
E
[
ŵλ

j

]
(A.29)

Proof of Theorem 4.6. Plugging the expectation and sampling covariance of
shrinked weights in the bivariate case introduced in Theorems 4.2 and 4.4 into
the result for the general case (Theorem 4.5) yields the combined error variance
as derived in Equation A.30.

Var
[(

ŵλ
)>

Ẽ
]
= ∑

i,j
Σ̃i,jΩλ

i,j + ∑
i,j

Σ̃i,jE
[
ŵλ

i

]
E
[
ŵλ

j

]
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=
(1− λ)2

n− 3

(
1− ρ2) σ2

1 σ2
2(

σ2
2 − 2ρσ1σ2 + σ2

1

)2

(
σ̃2

1 + 2ρ̃σ̃1σ̃2 + σ̃2
2

)

+ σ̃2
1

(
λ
2

(
σ2

1 − σ2
2
)
+ σ2

2 − ρσ1σ2

σ2
1 + σ2

2 − 2ρσ1σ2

)2

+ σ̃2
2

(
λ
2

(
σ2

2 − σ2
1
)
+ σ2

1 − ρσ1σ2

σ2
1 + σ2

2 − 2ρσ1σ2

)2

+ 2ρ̃σ̃1σ̃2

λ
2

(
σ2

1 − σ2
2
)
+ σ2

2 − ρσ1σ2

σ2
1 + σ2

2 − 2ρσ1σ2

λ
2

(
σ2

2 − σ2
1
)
+ σ2

1 − ρσ1σ2

σ2
1 + σ2

2 − 2ρσ1σ2

=
1(

σ2
2 − 2ρσ1σ2 + σ2

1

)2

(
(1− λ)2

n− 3

(
1− ρ2

)
σ2

1 σ2
2

(
σ̃2

1 + 2ρ̃σ̃1σ̃2 + σ̃2
2

)
+ σ̃2

1

(
λ

2

(
σ2

1 − σ2
2

)
+ σ2

2 − ρσ1σ2

)2

+ σ̃2
2

(
λ

2

(
σ2

2 − σ2
1

)
+ σ2

1 − ρσ1σ2

)2

+ 2ρ̃σ̃1σ̃2

(
λ

2

(
σ2

1 − σ2
2

)
+ σ2

2 − ρσ1σ2

)(
λ

2

(
σ2

2 − σ2
1

)
+ σ2

1 − ρσ1σ2

))
(A.30)

Proof of Theorem 4.7. Equalizing the expected combined out-of-sample error vari-
ances of two combinations with λ1 and λ2 and solving for n̊ yields the minimal
sample size, as presented in Equation A.31.

0 =Var
[(

ŵλ1
)>

Ẽ
]
−Var

[(
ŵλ2

)>
Ẽ
]

0 =∑
i,j

Σ̃i,j

(
Ωλ1

i,j −Ωλ2
i,j

)
+ ∑

i,j
Σ̃i,j

(
E
[
ŵλ1

i

]
− E

[
ŵλ2

i

]) (
E
[
ŵλ1

j

]
− E

[
ŵλ2

j

])
0 =∑

i,j
Σ̃i,j

((
(1− λ1)

2

n̊− k− 1
− (1− λ2)

2

n̊− k− 1

)
ΩO

i,j

(
Σk,k −

(
Σ′12
)> (Σ′11

)−1
Σ′12

))
+ ∑

i,j
Σ̃i,j

(
E
[
ŵλ1

i

]
− E

[
ŵλ2

i

]) (
E
[
ŵλ1

j

]
− E

[
ŵλ2

j

])
0 =

(
(1− λ1)

2

n̊− k− 1
− (1− λ2)

2

n̊− k− 1

)
∑
i,j

Σ̃i,jΩO
i,j

(
Σk,k −

(
Σ′12
)> (Σ′11

)−1
Σ′12

)
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+ ∑
i,j

Σ̃i,j

(
E
[
ŵλ1

i

]
− E

[
ŵλ2

i

]) (
E
[
ŵλ1

j

]
− E

[
ŵλ2

j

])

n̊ =

(
(1− λ2)

2 − (1− λ1)
2
)

∑i,j Σ̃i,jΩO
i,j

(
Σk,k − (Σ′12)

> (Σ′11)
−1 Σ12

)
∑i,j Σ̃i,j

(
E
[
ŵλ1

i

]
− E

[
ŵλ2

i

]) (
E
[
ŵλ1

j

]
− E

[
ŵλ2

j

]) + k + 1

(A.31)

Proof of Theorem 4.8. Plugging the previously derived formuale for the bivariate
case into Equation 4.5 and simplifying results in the critical value as presented in
Equation A.32.

n̊ =
(1− λ)2 ∑i,j Σ̃i,j

(
Σk,k − (Σ′12)

> (Σ′11)
−1 Σ12

)
ΩO

i,j

∑i,j Σ̃i,j

(
1
k − E

[
ŵλ

i
]) ( 1

k − E
[
ŵλ

j

]) + k + 1

=

(1− λ)2 ∑i,j Σi,j
(1−ρ2)σ2

1 σ2
2

(σ2
1+σ2

2−2ρσ1σ2)
2

[
1 −1
−1 1

]
σ2

1

(
1
2 − wO

1

)2
+ σ2

2

(
1
2 −

(
1− wO

1

))2
+ 2ρσ1σ2

(
1
2 − wO

1

) (
1
2 −

(
1− wO

1

))
+ 3

=

(1− λ)2 (σ2
1 + σ2

2 − 2ρσ1σ2
) (1−ρ2)σ2

1 σ2
2

(σ2
1+σ2

2−2ρσ1σ2)
2

σ2
1

(
1
2 − wO

1

)2
+ σ2

2

(
1
2 − wO

1

)2
− 2ρσ1σ2

(
1
2 − wO

1

)2 + 3

=
(1− λ)2 (1−ρ2)σ2

1 σ2
2

σ2
1+σ2

2−2ρσ1σ2(
σ2

1 + σ2
2 − 2ρσ1σ2

) ( σ2
2−σ2

1
2(σ2

1+σ2
2−2ρσ1σ2)

)2 + 3

= (1− λ)2
(

1− ρ2
) 4σ2

1 σ2
2(

σ2
2 − σ2

1

)2 + 3

= (1− λ)2
(

1− ρ2
)( 2σ1σ2

σ2
2 − σ2

1

)2

+ 3 (A.32)

Proof of Theorem 4.9. If the error correlation between forecasts p and q changes,
only the elements p, q and q, p differ between Σ and Σ̃. The combined error vari-
ance can consequently be expressed using Σ while adjusting for the two changed
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elements.
Let σ2

p, σ2
q denote the error variance of the two forecasts and ρp,q the error cor-

relation. Then the first term of the combined error variance in Theorem 4.5 can
be reformulated as shown in Equation A.33.

∑
i,j

Σ̃i,jΩλ
i,j = ∑

i,j/∈{p,q}
Σi,jΩλ

i,j + Σ̃p,qΩλ
p,q + Σ̃q,pΩλ

q,p

= ∑
i,j/∈{p,q}

Σi,jΩλ
i,j + 2Σ̃p,qΩλ

p,q

= ∑
i,j/∈{p,q}

Σi,jΩλ
i,j + 2

(
Σp,q + ∆ρ

√
Σp,pΣq,q

)
Ωλ

p,q

=∑
i,j

Σi,jΩλ
i,j + 2∆ρ

√
Σp,pΣq,qΩλ

p,q (A.33)

Likewise, the second term in Theorem 4.5 can be reformulated as presented in
Equation A.34.

∑
i,j

Σ̃i,jE
[
ŵλ

i

]
E
[
ŵλ

j

]
= ∑

i,j/∈{p,q}
Σi,jE

[
ŵλ

i

]
E
[
ŵλ

j

]
+ Σ̃p,qE

[
ŵλ

p

]
E
[
ŵλ

q

]
+ Σ̃q,pE

[
ŵλ

p

]
E
[
ŵλ

q

]
= ∑

i,j/∈{p,q}
Σi,jE

[
ŵλ

i

]
E
[
ŵλ

j

]
+ 2Σ̃p,qE

[
ŵλ

p

]
E
[
ŵλ

q

]
= ∑

i,j/∈{p,q}
Σi,jE

[
ŵλ

i

]
E
[
ŵλ

j

]
+ 2

(
Σp,q + ∆ρ

√
Σp,pΣq,q

)
E
[
ŵλ

p

]
E
[
ŵλ

q

]
=∑

i,j
Σi,jE

[
ŵλ

i

]
E
[
ŵλ

j

]
+ 2∆ρ

√
Σp,pΣq,qE

[
ŵλ

p

]
E
[
ŵλ

q

]
(A.34)

Combining Equations A.33 and A.34 yields the claimed formulation as shown
in Equation A.35.

Var
[(

ŵλ
)>

Ẽ
]
=∑

i,j
Σi,jΩλ

i,j + ∑
i,j

Σi,jE
[
ŵλ

i

]
E
[
ŵλ

j

]
+ 2∆ρ

√
Σp,pΣq,qΩλ

p,q + 2∆ρ

√
Σp,pΣq,qE

[
ŵλ

p

]
E
[
ŵλ

q

]
=∑

i,j
Σi,j

(
Ωλ

i,j + E
[
ŵλ

i

]
E
[
ŵλ

j

])
+ 2∆ρ

√
Σp,pΣq,q

(
Ωλ

p,q + E
[
ŵλ

q

])
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=∑
i,j

Σi,jΨλ
i,j + 2∆ρ

√
Σp,pΣq,qΨλ

p,q (A.35)

Proof of Theorem 4.10. Let σ2
p denote the error variance of the forecast. and ρp,q the

error correlation between forecast p and another forecast q. Then the first term
of the combined error variance in Theorem 4.5 can be reformulated as shown in
Equation A.36.

∑
i,j

Σ̃i,jΩλ
i,j = ∑

i 6=p,j 6=p
Σi,jΩλ

i,j + ∑
j 6=p

Σ̃p,jΩλ
p,j + ∑

i 6=p
Σ̃i,pΩλ

i,p + Σ̃p,pΩλ
p,p

= ∑
i 6=p,j 6=p

Σi,jΩλ
i,j + 2 ∑

j 6=p
Σ̃p,jΩλ

p,j + Σ̃p,pΩλ
p,p

= ∑
i 6=p,j 6=p

Σi,jΩλ
i,j + 2 ∑

j 6=p
ρp,jσ̃pσjΩλ

p,j + σ̃2
pΩλ

p,p

= ∑
i 6=p,j 6=p

Σi,jΩλ
i,j + 2 ∑

j 6=p
ρp,j

(
σp + ∆σ

)
σjΩλ

p,j +
(
σp + ∆σ

)2 Ωλ
p,p

= ∑
i 6=p,j 6=p

Σi,jΩλ
i,j + 2 ∑

j 6=p
ρp,jσpσjΩλ

p,j + σ2
pΩλ

p,p

+ 2 ∑
j 6=p

ρp,j∆σσjΩλ
p,j +

(
2σp∆σ + ∆2

σ

)
Ωλ

p,p

=∑
i,j

Σi,jΩλ
i,j + 2 ∑

j 6=p
ρp,j∆σσjΩλ

p,j +
(

2σp∆σ + ∆2
σ

)
Ωλ

p,p

=∑
i,j

Σi,jΩλ
i,j +

2∆σ√
Σp,p

∑
j 6=p

Σp,jΩλ
p,j +

(
2
√

Σp,p∆σ + ∆2
σ

)
Ωλ

p,p (A.36)

Likewise, the second term in Theorem 4.5 can be reformulated as presented in
Equation A.37.

∑
i,j

Σ̃i,jE
[
ŵλ

i

]
E
[
ŵλ

j

]
= ∑

i 6=p,j 6=p
Σi,jE

[
ŵλ

i

]
E
[
ŵλ

j

]
+ ∑

j 6=p
Σ̃p,jE

[
ŵλ

p

]
E
[
ŵλ

j

]
+ ∑

i 6=p
Σ̃i,pE

[
ŵλ

i

]
E
[
ŵλ

p

]
+ Σ̃p,p

(
E
[
ŵλ

p

])2

= ∑
i 6=p,j 6=p

Σi,jE
[
ŵλ

i

]
E
[
ŵλ

j

]
+ 2 ∑

j 6=p
Σ̃p,jE

[
ŵλ

p

]
E
[
ŵλ

j

]
+ Σ̃p,p

(
E
[
ŵλ

p

])2
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= ∑
i 6=p,j 6=p

Σi,jE
[
ŵλ

i

]
E
[
ŵλ

j

]
+ 2 ∑

j 6=p
ρp,jσ̃pσjE

[
ŵλ

p

]
E
[
ŵλ

j

]
+ σ̃2

p

(
E
[
ŵλ

p

])2

= ∑
i 6=p,j 6=p

Σi,jE
[
ŵλ

i

]
E
[
ŵλ

j

]
+ 2 ∑

j 6=p
ρp,j

(
σp + ∆σ

)
σjE

[
ŵλ

p

]
E
[
ŵλ

j

]
+
(
σp + ∆σ

)2
(

E
[
ŵλ

p

])2

= ∑
i 6=p,j 6=p

Σi,jE
[
ŵλ

i

]
E
[
ŵλ

j

]
+ 2 ∑

j 6=p
ρp,jσpσjE

[
ŵλ

p

]
E
[
ŵλ

j

]
+ σ2

p

(
E
[
ŵλ

p

])2

+ 2 ∑
j 6=p

ρp,j∆σσjE
[
ŵλ

p

]
E
[
ŵλ

j

]
+
(

2σp∆σ + ∆2
σ

) (
E
[
ŵλ

p

])2

=∑
i,j

Σi,jE
[
ŵλ

i

]
E
[
ŵλ

j

]
+ 2 ∑

j 6=p
ρp,j∆σσjE

[
ŵλ

p

]
E
[
ŵλ

j

]
+
(

2σp∆σ + ∆2
σ

) (
E
[
ŵλ

p

])2

=∑
i,j

Σi,jE
[
ŵλ

i

]
E
[
ŵλ

j

]
+

2∆σ√
Σp,p

∑
j 6=p

Σp,jE
[
ŵλ

p

]
E
[
ŵλ

j

]
+
(

2
√

Σp,p∆σ + ∆2
σ

) (
E
[
ŵλ

p

])2
(A.37)

Combining Equations A.36 and A.37 yields the claimed as shown in Equa-
tion A.38

Var
[(

ŵλ
)>

Ẽ
]
=∑

i,j
Σi,jΩλ

i,j + ∑
i,j

Σi,jE
[
ŵλ

i

]
E
[
ŵλ

j

]
+

2∆σ√
Σp,p

∑
j 6=p

Σp,jΩλ
p,j +

2∆σ√
Σp,p

∑
j 6=p

Σp,jE
[
ŵλ

p

]
E
[
ŵλ

j

]
+
(

2
√

Σp,p∆σ + ∆2
σ

)
Ωλ

p,p +
(

2
√

Σp,p∆σ + ∆2
σ

) (
E
[
ŵλ

p

])2

=∑
i,j

Σi,j

(
Ωλ

i,j + E
[
ŵλ

i

]
E
[
ŵλ

j

])
+

2∆σ√
Σp,p

∑
j 6=p

Σp,j

(
Ωλ

p,j + E
[
ŵλ

p

]
E
[
ŵλ

j

])
+
(

2
√

Σp,p∆σ + ∆2
σ

)(
Ωλ

p,p +
(

E
[
ŵλ

p

])2
)

=∑
i,j

Σi,jΨλ
i,j +

2∆σ√
Σp,p

∑
j 6=p

Σp,jΨλ
p,j +

(
2
√

Σp,p∆σ + ∆2
σ

)
Ψλ

p,p

(A.38)
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Proof of Theorem 4.11. Plugging λ1 and λ2 into Theorem 4.9 and equalizing results
in the critical value as shown in Equation A.39.

0 =Var
[(

ŵλ1
)>

Ẽ
]
−Var

[(
ŵλ2

)>
Ẽ
]

0 =∑
i,j

Σi,jΨ
λ1
i,j + 2∆̊ρ

√
Σp,pΣq,qΨλ1

p,q −∑
i,j

Σi,jΨ
λ2
i,j − 2∆̊ρ

√
Σp,pΣq,qΨλ2

p,q

0 =∑
i,j

Σi,j

(
Ψλ1

i,j −Ψλ2
i,j

)
+ 2∆̊ρ

√
Σp,pΣq,q

(
Ψλ1

p,q −Ψλ2
p,q

)
0 =∑

i,j
Σi,j∆Ψλ1

i,j + 2∆̊ρ

√
Σp,pΣq,q∆Ψλ1

p,q

∆̊ρ =−
∑i,j Σi,j∆Ψλ1,λ2

i,j

2
√

Σp,pΣq,q∆Ψλ1,λ2
p,q

(A.39)

Proof of Theorem 4.12. Plugging λ1 and λ2 into Theorem 4.10 and equalizing
yields the critical value as displayed in Equation A.40.

0 =Var
[(

ŵλ1
)>

Ẽ
]
−Var

[(
ŵλ2

)>
Ẽ
]

0 =∑
i,j

Σi,jΨ
λ1
i,j −∑

i,j
Σi,jΨ

λ2
i,j +

2∆̊σ√
Σp,p

∑
j 6=p

Σp,jΨ
λ1
p,j −

2∆̊σ√
Σp,p

∑
j 6=p

Σp,jΨ
λ2
p,j

+
(

2
√

Σp,p∆̊σ + ∆̊2
σ

)
Ψλ1

p,p −
(

2
√

Σp,p∆̊σ + ∆̊2
σ

)
Ψλ2

p,p

0 =∑
i,j

Σi,j∆Ψλ1,λ2
i,j +

2∆̊σ√
Σp,p

∑
j 6=p

Σp,j∆Ψλ1,λ2
p,j +

(
2
√

Σp,p∆̊σ + ∆̊2
σ

)
∆Ψλ1,λ2

p,p

0 =∆̊2
σ∆Ψλ1,λ2
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Proof of Theorem 4.13. As a basis for a definition for the thresholds in this case,
Equation 4.8 is adapted to the bivariate case with λ1 = 1 and λ2 = 0 in a first step
in Equation A.41.
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This result can be used to derive the term ∑i,j Σi,j∆Ψλ1,λ2
i,j , as presented in Equa-

tion A.42.
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Plugging Ψ1,0 into Theorem 4.11 gives the special case of the critical value as
shown in Equation A.43.
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Under the assumption of a training sample of infinite size, the critical value is
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derived in Equation A.44.
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Proof of Theorem 4.14. For ∆̊σ, additionally deriving ∑j Σp,j∆Ψλ1,λ2
p,j is required.

Without loss of generality, p = 1 can be assumed since the threshold for p = 2
can always be calculated by using a slightly modified version of Σ.

With d = σ2
1 − σ2

2 and m = 1−ρ2

n−3 σ2
1 σ2

2 , the required ∑j Σp,j∆Ψλ1,λ2
p,j is derived in

Equation A.45.
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Plugging ∑i,j Σi,j∆Ψ1,0
i,j derived in Theorem 4.13 (Equation A.45) and

∑j Σ1,j∆Ψ1,0
1,j into Theorem 4.12 yields the claimed critical value as presented in

Equation A.46.
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Under the assumption of a training sample of infinite size, the critical value is
derived in Equation A.47.
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Proof of Theorem 4.15. The expected out-of-sample error variance introduced in
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Theorem 4.5 can be differentiated with respect to λ, resulting in Equation A.48.
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Solving δVar
δλ̊

= 0 for λ̊ then quickly results in the critical value in Equation A.49.
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The second derivative of the expected out-of-sample error variance with re-
spect to λ is shown in Equation A.50.

δVar
δ2λ

=∑
i,j

Σ̃i,j

(
2Ωi,j +

2
k2 −

(
E
[
wO

i

]
− E

[
wO

j

]) 2
k
+ 2E

[
wO

i

]
E
[
wO

j

])
=∑

i,j
Σ̃i,j

(
2Ωi,j + 2

(
1
k
− E

[
wO

i

])(1
k
− E

[
wO

j

]))

=2~1>k
(
ΩΣ̃
)
~1k + 2

(
1
k
− E

[
wO
])>

Σ̃
(

1
k
− E

[
wO
])

(A.50)

Since both Ω and Σ̃ are covariance matrices, ΩΣ̃ is a product of positive definite
matrices, which is again a positive definite matrix. Consequently, the first term
of the combined error variance in Theorem 4.5 is positive. Likewise, since Σ̃ is
positive definite, the second term is positive. Overall, the second derivative is
always positive and λ̊ minimizes the combined error variance.
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