KIT | KIT-Bibliothek | Impressum | Datenschutz

Nonlinear prediction for circular filtering using Fourier series

Pfaff, Florian ORCID iD icon 1; Kurz, Gerhard 1; Hanebeck, Uwe D. 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

While nonlinear filtering for circular quantities is closely related to nonlinear filtering on linear domains, the underlying manifold enables the development of novel filters that take advantage of the boundedness of the domain. Previously, we introduced Fourier filters that approximate the density or its square root using Fourier series. For these filters, we proposed filter steps for arbitrary likelihoods and prediction steps for the identity system model with additive noise. This paper adds the capability of handling arbitrary transition densities in the prediction step, which facilitates, e.g., the use of the filters for nonlinear systems with additive noise. In the evaluation, the new prediction steps for the Fourier filters outperform an SIR particle filter, a grid filter, and a nonlinear variant of the von Mises filter.


Postprint §
DOI: 10.5445/IR/1000062047
Veröffentlicht am 15.06.2020
Scopus
Zitationen: 9
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2016
Sprache Englisch
Identifikator ISBN: 978-0-9964-5274-8
KITopen-ID: 1000062047
Erschienen in 19th International Conference on Information Fusion (FUSION), Heidelberg, Germany, 5-8 July 2016
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 1821-1828
Schlagwörter Directional statistics, Chapman–Kolmogorov equation, nonlinear filtering, Fourier series, recursive Bayesian estimation
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page