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Abstract—This paper is about the decentralization and dis-
tribution of a Kalman filter for fractional order systems. A
fractional order discrete state space for a global system is
introduced and divided into different submodules. The distri-
bution of the model and of the state estimation algorithm into
submodules leads to small and scalable units, which do not
need a central processing node. Each submodule performs its
computation locally. All information required by other nodes is
communicated between the nodes directly. Finally, an example
is given to compare the fractional Kalman filter (FKF) for the
overall system with the distributed and decentralized fractional
Kalman filter (DDFKF).

I. INTRODUCTION

A. Fractional Systems

In the last years, several applications of fractional calculus
have been developed. For example fractional calculus has
introduced improvements in the fields of electromagnetism,
the diffusion and wave propagation, heat transmission, biology,
traffic systems and economics [1].

The main benefits of fractional calculus are the possibility to
obtain mathematical models, which describe the results closer
to the experimental measurements, the ability to predict more
accurately the dynamical behavior of physical systems and
the possibility to obtain simplified models with just a few
physically motivated parameters [2]–[4].

A fractional order dynamic model is also useful for mod-
elling electrodynamic processes. A remarkable advantage is
that it allows to introduce the non-linear effects like friction
and slipping in an easier way than any other dynamic model
of integer order [5], [6]. The fractional model forms a basis for
the state-feedback control, but if the states are not measurable,
an estimation tool suitable for fractional systems is required.
The state identification problem in fractional systems is more
complex than in integer order systems. For example in [1] a
fractional state variable filter and a fractional Kalman filter is
developed.

Another application of fractional calculus are approaches
for the estimation of Li-ion battery parameters which avoid
integer order approximations. It is important to estimate sev-
eral parameters, such as the state of charge (SOC), state of
health (SOH), voltages and temperatures with high accuracy.
This is essential in order to increase the power, reliability and
expected life of the battery. An example of a fractional order
battery model is described in [3]. That model results from a

simplification of an electrochemical model that describes the
battery behaviour using partial differential equations. Instead
of using integer order partial differential equations, a simpler
fractional order model is used in order to approximate the
experimental measurements accurately. In [4] a fractional
battery model is introduced using impedance measurements. A
late-lumping parameter identification method for a fractional
battery model is presented in [7].

B. Distribution and Decentralization

Until the 1960s, all calculations in a computer system were
performed by a central processor. The sensors of a system
transmitted the signals to the processor where all the infor-
mation was processed. However, this centralization presents
disadvantages for large scale systems. On the one hand, all
measurements must be available in a central processing unit
in order to proceed with the algorithm which can lead to
communication bottlenecks. On the other hand, the complete
state-vector has to be estimated, which is computationally in-
tensive. These properties can cause some problems in practical
applications [8]. A solution is a functional decentralization
and distribution of the system. So it is necessary to develop a
decentralized and distributed state estimation method for large
scale fractional order systems which is the subject of this
paper. An example for a large scale fractional order system
are battery packs where many cells are linked together.

II. FRACTIONAL CALCULUS

The Fractional Kalman Filter (FKF) [9] is defined for
discrete-time fractional order systems and therefore we in-
troduce the Grünwald-Letnikov approximation of a fractional
derivative:
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where q ∈ R+ is the order of the fractional derivative, k is
the current sample of the sequence for which the derivative is
calculated and h is the sampling interval. The symbol D is
used to represent the fractional derivative of a function with
the lower bound 0 and the upper bound tk. This section deals
with difference equations that use discrete sequences, and
not with differential equations based on continuous functions.
Therefore, according to the formula of the q-th order difference



in equation (1), and also for simplicity reasons the value of h
is set to h = 1, similar to [9].
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Isolating the term xk in the last equation, equation (3) is
obtained.
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Based on equation (3), the linear stochastic discrete frac-
tional order state space system can be obtained, which is
defined by equations (4) to (8) [9]:

∆γxk = Axk−1 +Buk−1 + ωk−1 (4)

xk = ∆γxk −
k∑
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 (8)

where xk is the state vector, uk is the system input, yk is
the system output, ωk is the system noise, νk is the output
noise and q1, . . . , qN are the orders of the particular system
equations.

As described in [10] and [11], the initial values for the states
have to be given from t = −∞ to the current time t = tk = kh
in order to calculate the fractional derivative. Therefore the
sums in equations (1), (2), (3) and (5) have to consider the
values from j = 1 to j =∞. On the one hand in the practical
implementation of such a filter the past values are usually
unknown, so that we can deal only with the data given from
t = 0 on. We also suppose that the estimation algorithm starts
while the system is in a position of rest. On the other hand, the
memory length BL in a particular processor is limited. Due to
the weighting of the past values with the binomial coefficients,
we can neglect values that lie farther in the past which is
known as short memory principle. In [9] it was shown that
depending on the sampling time and system time constants a
value for BL can be found, which shows enough accuracy so
that a further increase gives no additional advantage. For the
following sections, it can be assumed that the buffer length
is chosen sufficiently large so that all relevant values are
considered. It also should be noted, that according to [11] the
representation of the fractional system given by equations (4)
to (8) builds not a classical state space description. It is rather
a pseudo state space description, because it depends not only
on the current state xk, but also on the values of x from the
past. However, for simplicity reasons, in the following sections
the system described above is named ”state space system”.

III. FRACTIONAL KALMAN FILTER

The recursive algorithm of the FKF for a linear stochastic
discrete fractional order state space is given by equations (9)
to (16) [9].
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which is usually initialized with

x̂+
0 = E{x0} ≈ 0, (15)

P+
0 = E{(x0 − x̂+

0 )(x0 − x̂+
0 )T } ≈ (100 . . . 1000)I (16)

when the initial values are unknown. (∗)− presents the a
priori estimation and (∗)+ the a posteriori estimation, P,Q,R
are the covariance matrices of the estimated values, the system
noise and the measurement noise, respectively. It is assumed
that P , R and Q are symmetric, νk and ωk are uncorrelated
and with zero expected value and E{(xjxk)} ≈ 0 for j 6= k.
The proof of the FKF can be found in [9]. It is an optimal state
vector estimator using the knowledge of the system model,
input and output signals.

IV. DISTRIBUTION AND DECENTRALIZATION

In the case of fractional order systems, there is the need for
higher computation power and memory, because the estimation
of the states and covariance matrices has to consider vectors
of past values and is therefore computationally more intensive
compared to a classical (integer order) Kalman filter.

Therefore, the reliability, efficiency, and cost of the compu-
tation for a large scale system can be improved if a decentral-
ized and distributed approach is used. The components of a
distributed system communicate and coordinate their actions
by passing messages, in order to achieve a common goal.

Decentralization means that different measuring or sensing
devices are grouped into some nodes or subsystems, so that
each node performs a filtering based on locally available
measurements. Distribution means, that a different subspace of
the global state space is formed in each subsystem [8], [12].
Since different nodes have to exchange local estimates in a
fusion step, the use of transformation matrices is required. This
structure makes possible that - in general - not every node is
necessarily connected with each of the other nodes. In [13] and
[12] a Distributed and Decentralized Kalman filter (DDKF)



for linear and nonlinear integer order systems is presented. In
[8] it was shown that the DDKF is equivalent to the linear
Kalman filter, if there is no decentralization of measurements
and distribution of the model applied. The main advantages
of the DDKF are the scalability of the filter network and the
reduced order of the local systems compared to the global one
[8].

A. Distribution of the System Equations

In complex systems, the order of the local subsystems is
substantial smaller than the order of the global system which
allows to perform their calculations comfortably. Assuming
that not all equations of the global system are coupled. [8]

To contemplate a distributed and decentralized system, we
have to project the global system into the different subsystems
by a division of the vectors and the use of convenient transfor-
mations, respectively. First, we define different transformation
matrices for the states, the input and the output as follows to
indicate and differ the local values of the subsystem i from
the global ones:

xi,k = T ixk (17)
ui,k = Siuk (18)
yi,k = M iyk (19)

If the dynamic system has multiple inputs, a distribution of
the input-vector is possible using the transformation matrix
Si, so that each subsystem will have a local input signal
or input-vector. Similarly, the state and output vectors can
be partitioned using the matrices T i and M i. Therefore the
dimension of the local vectors form a subspace of the global
state space.

Furthermore, all elements of the transformation matrices
will be either 0 or 1, because they represent a selection of
the elements of the global state-vector. The partition of the
global model is often based on the different components of
the system or different physical domains as described in [8].
The output vector is then divided as follows:

yk =
(
yT1,k yT2,k . . . yTl,k

)T
. (20)

The output noise is divided analogously and it is assumed
that the different components of the output noise vectors are
uncorrelated

νk =
(
νT1,k νT2,k . . . νTl,k

)T
. (21)

Then the local measurement equation can be written as
follows [14]:

yi,k = M iCxk + νi,k (22)

B. Selection of the Transformation Matrices

The selection of the local state-vector depends on the
transformation matrix. If the global system model is known
in advance, the transformation matrices will define each sub-
system. In practical applications, two situations can appear. On
the one hand, it is possible that the global system is identified
and modelled first, and then local subsystems are derived from
it. On the other hand, it is also possible that the different local
subsystems are modelled independently, and then, based on
their connection, the global system is obtained. The result in
both cases will be a set of global system matrices and a group
of transformation matrices T i,Si,M i that will determine the
local system matrices.

However, it is also possible that, due to the equations of the
global model, all subsystems are connected with each other,
so that the distribution might have no extent.

In order to avoid this, single states with a small influence
on the local states can be neglected. This can be done
systematically, if all entries of the system matrix, which are
below a minimum value, are set to zero. This procedure can be
implemented based on an analysis of the global state matrix
[8].

As every submodule uses only a subspace of the system, it
is necessary to add a fusion step in the Kalman filter where
the estimates of different submodules are transferred to each
other and merged. More details about the distribution of the
system can be found in [13], [15] and [8].

V. DISTRIBUTED AND DECENTRALIZED FRACTIONAL
KALMAN FILTER

A. Initialization

In the first step of the Distributed and Decentralized Frac-
tional Kalman Filter (DDFKF), we make use of the transfor-
mation matrices from equations (17) to (19) to calculate the
system matrices of the local subsystems:

Ai = T iAT
�
i (23)

Bi = T iBS
�
i (24)

Ci = M iCT
�
i (25)

Γi,j = T iΓjT
�
i (26)

Qi = T iQT
�
i (27)

Ri = M iRM
�
i (28)

Z� means the Moore-Penrose-Pseudoinverse of a matrix Z:

Z� =
(
ZTZ

)−1

ZT (29)

which is used, because the transformation matrices are not
square in general, so that it is not always possible to calculate
the inverse. The local system matrices (eq. (23) to (28)) can be
used to define the local system equations for each subsystem
with index i. After all transformation matrices have been
selected, the initialization of the DDFKF algorithm is done
in the same form as in the DDKF:



x̂+
i,0 = 0 (30)

P+
i,0 = (100 . . . 1000)I (31)

B. Prediction

With the previous transformation matrices, the prediction
step is defined in a form similar to the FKF, by equations (32)
to (34).
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z = min[k,BL] stands for the upper limit of the sum, with
BL being the buffer or memory length. As it can be seen, all
matrices defined in the global system have to be transformed
into the local subsystems using the corresponding transforma-
tion matrices. Equation (33) provides the local a priori state
vector estimate and equation (34) gives the corresponding local
a priori covariance matrix.

C. Correction

In the next step, the estimates of the state-vector and the
covariance matrix are corrected based on local measurements,
as shown by equations (35) to (37). However, these are not
the a posteriori estimation values. These will be obtained later
using the information of all relevant measurements. This is
why we use a tilde ˜(∗) in the equations for this values. For
calculating the covariance matrix after correction in equation
(35), an equivalent form is used, that is positive definite, if the
corresponding a priori matrix is also positive definite. Equation
(36) provides the Kalman gain, which scales the influence of
the measurements in the correction step.

P̃
+

i,k =
(

(P−
i,k)−1 +CT

i,kR
−1
i,kCi,k

)−1

(35)

Ki,k = P̃
+

i,kC
T
i,kR

−1
i,k (36)

x̃+
i,k = x̂−

i,k +Ki,k(yi,k −Ci,kx̂
−
i,k) (37)

D. Fusion

Finally, the local estimates calculated by each node are
corrected in the fusion step, taking the estimates obtained
by other nodes into account. This last step is identical to the
fusion step of the DDKF [8], [13]–[15]:
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l is the number of the local subsystems and V ji = T iT
�
j is

used to transform an estimation from subsystem j to subsys-
tem i. Equation (38) indicates how much the information, that
is, the inverse of the state estimation covariance matrix, in the
local subsystem j has increased due to the local measurements
and is then transformed into subsystem i. Equation (39) gives
analogously the raise of the information of the estimated states
in subsystem j which is transformed into subsystem i. The last
two equations provide the a posteriori values after the fusion
of the local estimates. In order to obtain these equations, we
make all the assumptions explained in this article.

E. Proof

The proof of the presented algorithm is similar to the proofs
of the FKF and DDKF. The main difference with respect
to the FKF is that local matrices and vectors are used in
each subsystem instead of using the global model and vectors.
The main difference with respect to the DDKF is that some
deductions are more complicated due to the fractional operator.

Based on the algorithm of the FKF, substituting equation
(9) in (10), equation (42) is obtained:

x̂−
k = Ax̂+

k−1 +Buk−1 −
k∑
j=1

(−1)jΓjx̂
+
k−j (42)

On the other hand equation (23) yields to:

A = T �
iAiT i (43)

Similarly, substituting xk from (17) and B and Γj from
(24) and (26) in equation (42), equation (44) is obtained:
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Then, premultiplying equation (44) by T i and taking into
account that T iT �

i = SiS
�
i = I , equation (45) can be

achieved:

x̂−
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+
i,k−1 +Biui,k−1 −
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(−1)jΓi,jx̂
+
i,k−j (45)



Finally, substituting equations (23) to (26) and replacing the
upper limit of the sum by z = min[k,BL], equations (32) and
(33) of the DDFKF algorithm are obtained.

Equation (34) is proved analogously with the assumption
that past state vectors are uncorrelated. This assumption can
be relaxed by using the infinite dimensional form of the state-
space representation, but this will lead to a higher computa-
tional cost.

P−
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= (Ai + Γi,1)·
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+
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T
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Substituting the local matrices using equations (23) to (28),
equation (34) is obtained.

The proof of equations (35) to (37) is exactly identical to
the corresponding proof of the DDKF or the FKF, respectively.
The proof can be found in [8], [13] or [9].

The proof of the fusion step is also similar to the proof of
the fusion step of the DDKF which is shown in detail in [8],
[13]. The main difference is how the transformation of the
covariance matrices from a subsystem j into subsystem i is
derived which is shown in the following paragraph. First, the a
priori state covariance matrix of subsystem j transformed into
the global system description g can be expressed as follows:

P−
jg,k = E

{
(xjg,k − x̂−

jg,k)(xjg,k − x̂−
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}
= E

{
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(
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)T
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Transforming the obtained result into another subsystem i,
equation (47) can be established:

P−
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which describes a transformation of the covariance matrix
from subsystem j to subsystem i. Using equation (34), replac-
ing i by j and excluding T j on the left side and T Tj on the
right side, we obtain equation (48)
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where the middle terms are summarized in Gj,k. Replacing
P−
j,k in equation (47) by equation (48), the following equation

holds:

P−
ji,k = T iT

�
jT jGj,kT

T
j

(
T �
j

)T
T Ti (49)

Following the same structure as the DDKF, we reduce equation
(49) as follows:

P−
ji,k = V jiT jGj,kT

T
j V

T
ji = V jiP

−
j,kV

T
ji (50)

The rest of the proof of the fusion step is identical to the
proof of the DDKF with the usage of equations (46) to (50).

VI. SIMULATION RESULTS

Example 1: In this section, we provide a comparison
between the estimated states of the FKF, the DDFKF and the
state values from the simulation of a fractional order system.
We consider a linear stochastic discrete fractional order state
space system defined by the following matrices and vectors:

A =

−1.2 0 0
0 −1.4 −0.6
0 0.4 −0.3

 , B =

1
1
0


C =

[
1 0 0
0 1 0

]
, γ =

0.7
1.2
0.8

 , x0 =

0
0
0


R = E[νkν

T
k ] =

[
0.01 0

0 0.01

]

Q = E[ωkω
T
k ] =

0.003 0 0
0 0.003 0
0 0 0.003


P 0 =

100 0 0
0 100 0
0 0 100


with the sampling period T = 1 s, the simulation time

is 300 s and the buffer length is 300. This system can be
divided into two independent subsystems. The dimensions of
the state matrix in the first node will be 1x1 and in the second
subsystem 2x2. The transformation matrices are chosen as
follows:

T 1 =
[
1 0 0

]
, T 2 =

[
0 1 0
0 0 1

]
S1 = S2 = 1

M1 =
[
1 0

]
, M2 =

[
0 1

]
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Fig. 3. Estimation of the states. x̂1 is given from the first subsystem, x̂2 and
x̂3 are given from the second subsystem

The input and output signals are shown in Fig. 1 and the
original state variables from the simulation are given in Fig. 2.
The signal to noise ratios of the output signals are calculated to
SNR1 = 31 dB and SNR2 = 26 dB for y1 and y2, respectively.
Comparing the results of the DDFKF in Fig. 3 with the original
variables in Fig. 2, it follows that the estimation algorithm
works accurately. In Fig. 4 the estimation error in percent is
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the DDFKF

given for the central FKF. Comparing the results of the FKF
with the DDFKF given in Fig. 5 it can be seen that both
algorithms work adequate. In both cases the error is unbiased
as it tends to zero for t→∞.

Example 2: In this section we consider a slightly modified
system compared to example 1. As the system in example 1
can easily be divided into separate submodules, we are now
dealing with a system where the submodules are coupled.
Therefore, the system matrix A is modified as follows:

A =

−1.2 0.05 0
0 −1.4 −0.6
0 0.4 −0.3


The rest of the system of example 1 remains the same. We

see that now the state x2 influences subsystem 1. Therefore,
it has to be considered in the local system equations. Since
x2 also depends on x3 and we want to achieve an order
reduction in the submodules, we assume x2 as time invariant in
subsystem 1. Additionally, since x2 has only a small influence
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Fig. 6. Estimation errors of the state variables in percent for example 2 using
the central FKF
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Fig. 7. Estimation errors of the state variables in percent for example 2 using
the DDFKF

on x1 and also the estimation of x2 from subsystem 2 is
transferred to subsystem 1, we expect still a good estimation
of all the states. Summarizing this procedure, the following
system matrices are chosen in the subsystems:

A1 =

[
−1.2 0.05

0 1

]
, A2 =

[
−1.4 −0.6
0.4 −0.3

]
Along with this adaption, we additionally reduce the buffer

length to BL = 100. In Fig. 6 the estimation error in percent
of the FKF for example 2 is given. Since all information
is available in the central algorithm, it shows similar results
compared to example 1 in Fig. 4. It shows only a small
impairment, because the buffer length is reduced. In Fig. 7 the
estimation error of the DDFKF is given. It shows that even if
the buffer length is reduced and the model is simplified, the
DDFKF algorithm leads to accurate estimations. However, a
bias in the estimation is observable, but from a practical view
it can be neglected as long it is in the range of about 1%.

VII. CONCLUSION

This article presents a distributed and decentralized Kalman
filter algorithm for a fractional order system. This algorithm
combines the advantages of the fractional Kalman filter with
the distribution and decentralization scheme. Regarding the
distribution and decentralization, it was shown how the system
is divided into submodules using transformation matrices for
the input vector, output vector and the state vector. These
matrices split the respective vectors into different components,
which correspond to each subsystem. The distribution and
decentralization of the system results in small and scalable
nodes with reduced computational effort and less required
memory. Especially in the case of fractional order systems,
where the complexity is higher compared to an integer order
system this leads to a large benefit. It is also shown that the
DDFKF features as high accuracy for the estimated states as
the FKF even though not all measurements are available in
the respective nodes. Another advantage is that only relevant
information is transmitted between the nodes, which reduces
the communication effort and leads to a higher flexibility and
scalability.
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