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Zusammenfassung

Bei Versuchen an kleinskaligen Proben, wie metallischen Mikrodrähten,
werden Größeneffekte beobachtet. Kleinere Proben reagieren dabei
mechanisch steifer als größere Proben. In der vorliegenden Arbeit
wird eine numerisch effiziente Gradientenplastizitätstheorie mittels der
Finite Elemente Methode implementiert. Dieses Kontinuumsmodell
wird dann auf Größeneffekte für kubisch-flächenzentrierte Metalle an-
gewendet. Weiterhin werden Ergebnisse des Gradientenplastizitätsmo-
dells mit Ergebnissen aus diskreten Versetzungsdynamiksimulationen
verglichen. Dadurch können notwendige Erweiterungen der Theorie
identifiziert werden, um das Modellverhalten zu verbessern.
Die Einleitung beinhaltet einen Überblick der Grundlagen der verset-
zungsbasierten Plastizität und der Gradientenplastizitätsmodellierung.
Ein Kristallplastizitätsmodell wird mikromorph formuliert und mittels
der Finite Elemente Methode implementiert. Als zusätzlicher Freiheits-
grad wird die akkumulierte plastische Gleitung berücksichtigt. Die iso-
trope Verfestigung wird unter Verwendung des Voce-Ansatzes model-
liert. Numerische Ergebnisse dieses Modells werden dann verwendet,
um experimentelle Beobachtungen an bambusartigen Mikrodrähten
aus Gold zu erklären. Dies wird mit einer numerischen Untersuchung
des Einflusses der Kristallorientierung auf die plastischen Feldvertei-
lungen für zwei verschiedene Kristallorientierungen kombiniert.
Die Theorie wird erweitert, um den Gradienten der mikormorphen
Variable und Korngrenzfließen zu berücksichtigen. Dieses Modell wird
dann auf die Größeneffekte in Zugversuchen an wenig kristallinen
Mikrodrähten aus Kupfer angewendet. Der Einfluss zwei verschiedener
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Zusammenfassung

Kristallorientierungen wird berücksichtigt, um die gegensätzlichen
Größeneffekte in Zug- und Torsionsversuchen an Mikrodrähten aus
Gold zu erläutern.
Durch den Vergleich von Ergebnissen des Gradientenplastizitätsmo-
dells mit Ergebnissen aus diskreten Versetzungsdynamiksimulationen
wird eine Erweiterung der Theorie durch Korngrenzverfestigung mo-
tiviert. Damit kann die Evolution der plastischen Dehnungen nahe
der Korngrenzen vergleichsweise gut modelliert werden. Verbleibende
Abweichungen der Gradientenverteilungen motivieren die Berücksich-
tigung einer verallgemeinerten Gradientenenergie im Modell. Es wird
gezeigt, dass die Gradienten besser modelliert werden können, wenn
diese verallgemeinerte Energieformulierung mit einem geeigneten Ex-
ponenten verwendet wird.
Der Kristallorientierungseinfluss auf die Korngrenzplastizitätsmecha-
nismen wird in der vorliegenden Arbeit nicht berücksichtigt. Dennoch
wird ein Überblick über die Literatur solcher Implementierungen ge-
geben. Weiterhin werden die geometrischen Transmissionskriterien für
plastisches Gleiten von Versetzungen beschrieben. Die Limitierungen
des aktuellen Modells werden diskutiert und es werden Vorschläge zur
Entwicklung einer physikalisch weiterentwickelten Gradientenplastizi-
tätstheorie gemacht.
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Summary

On small-scale specimen such as metallic microwires, size effects are
experimentally observed with smaller specimens responding mechani-
cally stronger, compared to larger specimens. In this work, a numeri-
cally efficient gradient plasticity theory is implemented using the finite
element method. The continuum model is applied to size effects on
face-centered cubic metals. In addition, gradient plasticity results are
compared to discrete dislocation dynamics results. Thereby, extensions
of the theory are identified in order to improve the model behavior.
The introduction is comprised of an overview on dislocation-based plas-
ticity fundamentals and on gradient crystal-plasticity modeling. Sub-
sequently, a micromorphic crystal-plasticity finite element implementa-
tion is presented, using an accumulated plastic slip as additional degree
of freedom and a Voce-formulation for isotropic hardening. Numerical
results of this framework are used to explain experimental observations
on bamboo-structured gold microwires. This is combined with a numer-
ical investigation of the crystal-orientation influence on the plastic field
distributions for two distinct crystal orientations.
The theory is extended by consideration of the gradient of the micromor-
phic variable and by grain boundary yielding. This model is applied to
the size effects observed in tensile test experiments on oligocrystalline
copper microwires. The influence of two distinct crystal-orientations
is considered and the contrary size effects experimentally observed on
oligocrystalline gold microwires are, thereby, elucidated.
A comparison of gradient plasticity results to discrete dislocation dy-
namics results motivates the extension of the model by additional grain
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Summary

boundary hardening. Thereby, the evolution of plastic strain near the
grain boundaries is modeled comparably well. Remaining deviations
in the gradient distributions motivate the consideration of a generalized
defect energy in the model. It is shown that the gradients can be mod-
eled better, using this generalized energy form with a suitable exponent.
The orientation-dependence of grain boundary plasticity mechanisms
is not considered in the theory. However, an overview is given on
the literature on computational implementations of such concepts in
conjunction with a critical review of geometrical transmission criteria
for plastic slip of dislocations. The limitations of the current gradient
plasticity model are addressed and suggestions are made for the devel-
opment of a physically more advanced gradient plasticity theory.
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Motivation

Metals are an important class of materials for a wide range of industrial
applications due to their reliability and strength. Applications include,
for example, sheet metals for automotive parts such as chassis or cast
metals for engine blocks. In recent years, also more and more appli-
cation of metals in miniaturized medical devices such as, for instance,
cardiac pacemakers has gained much importance. In order to guarantee
safety of use, durability, and customer-satisfying lifetime of the prod-
ucts with a minimum material effort, a key engineering-discipline has
become the prediction of the behavior of materials, including metals,
and of their deformation under loading.
Therefore, many material models have been developed during the 20th

century. Determination of the material properties and required model
parameters in experiments, however, is a cost and time-intensive pro-
cess. Furthermore, during development, examination of products and
components under different loading conditions is necessary and has
traditionally been accomplished with experimental setups. Due to the
increasing availability and performance of personal computers, how-
ever, simulation approaches have been expedited and are commonly
used, nowadays. The benefits of such simulations are apparent: after
the material model has been calibrated to a reference experiment, fur-
ther simulations can be carried out, reducing the necessity of additional
experiments. Consequently, a broad variety of loading conditions can
easily be applied and tested just by means of simulations. The physical
quantities of interest, e.g., critical stresses, necessary to identify poten-
tial spots of failure of the product, can be obtained using computations.
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Motivation

In this context, the investigation of the plastic behavior, i.e., the perma-
nent deformation of materials is of large interest. This includes the de-
velopment of efficient manufacturing processes such as deep-drawing
and, for example, loading-dependent lifetime prediction of products.
Defects in the atomic structure of the material govern the plastic defor-
mation behavior. The movement of the defects and their interactions
result in local stress-inhomogeneities that, in turn, influence the overall
mechanical behavior of the materials. Metals (and many other materi-
als) are composed of periodic arrangements of atoms that are ordered
in unit cells, i.e., of crystals. It is possible to produce metallic parts
such that all unit cells are uniquely oriented. The material is then of
single-crystalline (lattice) structure. Usually, however, after the casting
process, metals are composed of many regions with different crystal
orientations, called grains. The interfaces between grains, the grain
boundaries (GBs), substantially influence the material behavior by, e.g.,
trapping defects in their vicinity.
The fundamental carrier of plastic deformation are line-defects called
dislocations. These move through the crystal lattice, attract and entan-
gle or repel each other. They can pile up at GBs or at other interfaces
such as precipitates. The discovery of dislocations, during the early
20th century, motivated researchers to consider these in their material
models. Continuum approaches have been developed to model the
dislocation-based plastic behavior. In such models, the dislocations are
accounted for in an averaged sense, i.e., not individual dislocations but
rather ensembles of dislocations are modeled. Single-crystal plasticity
theories are an example, modeling the movement of dislocations by
considering plastic slip on the different slip systems of the crystalline
unit structure. The work-hardening of the material is predicted, for
example, by a constitutive relation between the resolved shear stresses
and a scalar quantity describing the plastic deformation. They are com-
monly used in today’s industry and the scientific community. Discrete
simulation approaches such as discrete dislocation dynamics have also
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Motivation

been developed, modeling in detail the reactions and interactions of
the individual dislocations. These discrete models, however, are often
computationally expensive due to the discretization of all individual
dislocations present in the simulation volume. Thus, their use for large-
scale simulations is limited or, at least, time-consuming.
Continuum models offer substantial benefit in terms of fast computa-
tional times due to the averaged representation of dislocations. The
classic plasticity theories have been used successfully for many prob-
lems such as, e.g., for prediction of hardening behavior due to plastic
anisotropy or for prediction of texture evolution. However, their use
is limited when the plastic deformation of materials is localized and
strongly inhomogeneous. For example, it has been observed that, for
micron-sized wires, the grain size of the specimen influences the overall
mechanical response. Such phenomena are not present for larger wires
with, e.g., cross-section diameters of a few mm. While the classic plas-
ticity theories can be used for larger specimen with an at least overall
homogeneous plastic deformation, they fail to predict the mechanical
behavior adequately in the micro-range. This is due to the influence
arising from microstructural characteristics such as GBs. During plastic
deformation, dislocations pile up at the GBs leading to inhomogeneous
deformation stages and local stress concentrations preventing other dis-
locations to move further through the lattice. These inhomogeneities
lead to an increase in the overall mechanical strength, e.g., the macro
yield-stress, due to the arising higher local stresses required to advance
the plastic deformation.
A particular class of continuum theories, single-crystal gradient plastic-
ity theories, has been developed and pushed forward during the last
four decades. In these theories, the non-locality of plastic deformation
is considered by, e.g., taking into account the gradients of plastic slips.
In contrast to classic crystal-plasticity, phenomena such as stiffer me-
chanical responses of microwires due to, e.g., decreasing grain sizes can
be modeled. Due to their consideration of non-locality, these models
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Motivation

possess an internal length scale that the classic plasticity approaches
lack. However, within a full multi-slip scenario, e.g., for materials with
face-centered cubic crystal structure, these theories become increasingly
computationally expensive due to the necessity to evaluate all gradients
of the plastic slips. Therefore, in some contributions in the literature,
models have been presented based on a scalar measure of plastic slip,
and its gradient. Thereby, the computational benefit of classic single-
crystal theories can, for the most part, be maintained while still allowing
for modeling inhomogeneous plastic deformation phenomena, to some
extent. As a consequence, fully three-dimensional simulations are feasi-
ble, even for aggregates composed of several grains.
The point of departure for this thesis is a geometrically linear gradi-
ent plasticity theory using a single scalar quantity as an additional de-
gree of freedom to describe the plastic deformation. It has been pub-
lished in Wulfinghoff and Böhlke (2012), and been extended by a grain
boundary yield condition in Wulfinghoff et al. (2013). A first calibra-
tion to experimental results looked promising (Wulfinghoff et al., 2013),
although the texture of the specimens (i.e., the crystal orientation of
the grains) could not be considered. However, several open questions
regarding the model, its applicability, and its further development re-
mained. These include:

• Can the use of one scalar quantity and its gradient to describe the
plastic deformation give physically meaningful results, i.e., can
experimental results be reproduced?

• Is this model feasible for the prediction of experimentally ob-
served complex phenomena such as contrary size-effects under
different loading conditions?

• What is the influence of the microstructural characteristics, such
as the crystal orientations of the different grains, on these gradient-
attributed phenomena?
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Motivation

• How does the continuum model perform in comparison to physi-
cally more advanced, discrete dislocation-based models?

• Which enhancements of the theory are necessary in order to
model discrete dislocation mechanisms in an averaged manner
on the continuum scale?

In the present thesis, a step is taken towards clarification of these ques-
tions, identification of the model applicability and its limitations, and
an enhancement of the theory.
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State of the art

Dislocations in metals

In this chapter, an overview is given on dislocation-based plasticity
theories, focusing on metals. The state of the art of gradient crystal plas-
ticity for modeling dislocation-based plasticity on the continuum scale
is presented. Parts of this summary are taken from Bayerschen et al.
(2015), Bayerschen and Böhlke (2016), and Bayerschen et al. (2016a).
From a historical point of view, the discovery of dislocations revolu-
tionized the material modeling of metals. This started during the early
20th century with works by Orowan (1934a;b;c); Polanyi (1934); Tay-
lor (1934) (see also Hirth, 1985, for a brief overview on the history of
dislocation-related theories). In conjunction with theories of crystallo-
graphic shear, phenomena such as the difference between the theoreti-
cal and the measured shear strength (Schmid and Boas, 1935) or harden-
ing (Taylor, 1938) could be explained. Burgers (1939) developed a vector
field theory for the elastic dislocation fields. The concept of smearing
discrete dislocations into a continuous array of infinitesimal dislocation
goes back to a work by Brown Jr (1941), including the description of
a net-density of dislocations. Later on, Nye (1953) developed a mathe-
matical connection between the net-dislocation density tensor and the
lattice curvature of a crystal. Kröner (1959) introduced the concept of
incompatibility. Anisotropic elastic theories of dislocations originate in
the pioneering work by Eshelby et al. (1953). The idea of Frank-Read
sources was developed by Frank and Read Jr (1950), and the existence
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of dislocations could be proven using the in the 1930s developed experi-
mental method of transmission electron microscopy (Heidenreich, 1949;
Bollmann, 1956; Hirsch et al., 1956).
Important early works in the context of the presence of GBs and their
influence on the dislocation movement, and on the resulting mechanical
response, are the ones by Read and Shockley (1950); Bilby et al. (1964).
It was discovered that the presence of GBs in microstructured materials
can lead to “non-classic” plastic behavior with regard to the strength
of the material (e.g., specimens with smaller grain sizes respond stiffer
than specimens with larger grain sizes, Sylwestrowicz and Hall, 1951;
Hall, 1951a;b; Petch, 1953). Furthermore, dislocation interactions could
be shown to exist, also with GBs (see, e.g., Kacher et al., 2014, for an
overview). A review of the literature on criteria used to predict the
transmission of dislocations (and plastic slip) at GBs can be found in
Bayerschen et al. (2016a).
Theories of hardening were developed including phenomenological ap-
proaches (e.g., Koehler, 1952; Feltham and Meakin, 1957; Kocks, 1976;
Estrin and Mecking, 1984). These account, for example, for mobile dislo-
cations becoming randomly trapped during their movement. Chaboche
(1989) proposed a theory for kinematic hardening, in order to explain
the cyclic mechanical response of metals. The phenomenological the-
ories are handy in terms of their limited number of parameters which
can be calibrated by experiments (e.g., Seeger et al., 1957; Kovács and
Feltham, 1963; Mughrabi, 1978; Zehetbauer and Seumer, 1993). During
the early stages of dislocation-based models for hardening, no distinc-
tion was made between contributions by dislocations stored randomly
in the bulk and by dislocations accommodating inhomogeneous plastic
deformations. Experimental and theoretical works from the 1970s on
(Hirth, 1972; Thompson et al., 1973; Ronay, 1979), however, have shown
that many observable effects can be attributed to the latter, geometri-
cally necessary, dislocations. Their influence on the material response is
non-negligible when the deformations are comparably inhomogeneous.
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Atomistic and discrete dislocation modeling approaches

The experimental investigation of dislocation and grain-size related size
effects is still an ongoing task with more recent works by Fleck et al.
(1994); Chen and Ngan (2011); Yang et al. (2012); Chen et al. (2015).
A broad variety of modeling approaches for dislocations and the asso-
ciated interactions and mechanical phenomena has emerged with the
improvement of computational resources (see Dingreville et al., 2016,
for a recent overview on computational modeling and experimental
characterization across the length scales).

Atomistic and discrete dislocation

modeling approaches

In atomistic approaches, dislocations are modeled based on atomic
and interatomic potentials (e.g., Mishin et al., 1998; Lee et al., 2003).
Therefore, the interactions of dislocations can be investigated in a de-
tailed fashion also with regard to obstacles such as GBs (e.g., Bitzek and
Gumbsch, 2005; Bachurin et al., 2010). Discrete dislocation dynamics
(e.g., Weygand et al., 2002; 2009; Šiška et al., 2009) model the inter-
actions of dislocations without resolving all atoms in the simulation
volume. Instead, the dislocation line segments are discretized and
interaction rules are used to model multiplication, annihilation and
other interactions such as trapping of dislocations at interfaces. Due
to the physically detailed modeling, atomistics and discrete dislocation
dynamics can be used to “feed” multi-scale models (e.g., Dewald and
Curtin, 2007a), or to benchmark continuum models (e.g., Stricker et al.,
2016). The physically detailed modeling, however, often comes with
the drawback of increased computational times, prohibiting the direct
use for large-scale applications.
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Continuum modeling of dislocations

Continuum models do not resolve dislocations individually. Instead,
the mechanical behavior of ensembles of dislocations is modeled, often
in a phenomenological way. Examples of macroscopic material models
include, for example, the theories by Hill (1966); Teodosiu and Sidoroff
(1976); Asaro (1983); Needleman and Tvergaard (1993). Such theories
are implemented, for example, with finite elements and simulations
are carried out to support experimental findings (e.g., Yao et al., 2014;
Ziemann et al., 2015; Guery et al., 2016). Early computational works
considered only a reduced number of slip systems and date back to
the 1980s (e.g., Peirce et al., 1982, see Roters (2011) for a more detailed
treatise of the historic perspective). Crystal-plasticity models offer com-
parably low computational time requirements and a broad spectrum
of applicability to single- as well as polycrystalline materials. Applica-
tions include, for example, the prediction of hardening behavior due to
plastic anisotropy (Beyerlein et al., 2007) and texture evolution (Eyckens
et al., 2015), modeling phenomena such as deformation twinning (Ka-
lidindi, 1998), and shear banding (Forest, 1998). Whenever the material
response is of single-crystalline type (Zaafarani et al., 2006) or at least
polycrystalline such that individual grains are not predominant regard-
ing the effective material response (Zhang et al., 2015), macroscopic con-
tinuum approaches are valuable to use since the microstructure of the
material does not need to be accounted for, explicitly. In cases when mi-
crostructural characteristics of the material become predominant, con-
tinuum models need to be enriched by additional considerations, such
as the incorporation of strain gradients (Tian et al., 2014), and by explicit
modeling of the influence resulting from interfaces, e.g., in bimetallic
materials (Mayeur et al., 2015).
The classic plasticity theories, however, fail to model phenomena such
as size effects due to their lack of an internal length scale (Hutchinson,
2000). Therefore, the interest of the community in the modeling of these
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effects has been much increased and resulted in the emergence of a
variety of gradient plasticity theories.

Gradient plasticity theories for single crystals

Some of the first works using gradient plasticity approaches to de-
scribe the mechanical behavior of single crystals or crystal-ensembles
were published by Aifantis (1984; 1987). The gradient-extended crys-
tal plasticity theories can be classified into work-conjugate and non-
work-conjugate theories (Kuroda and Tvergaard, 2006). In the work-
conjugate theories, the free energy is extended by an additional contri-
bution. This so-called defect- or gradient energy considers, for example,
the gradients of plastic slips or plastic strain. The need to consider this
contribution arises from the coarsening error made in the continuum
formulation of the discrete dislocation ensembles (Mesarovic, 2010).
In the non-work-conjugate theories, however, additional hardening
stresses are posed on the individual slip systems based on physical
considerations of the collective dislocation behavior. It can be shown
that both types of approaches are equivalent within a three-dimensional
multislip context (Kuroda and Tvergaard, 2008). Therefore, both types
of theories can be used to predict the same kind of length-scale related
effects in the material response.
In gradient-extended continuum models, conservative glide of dis-
locations is often assumed and dislocation transfer across interfaces
such as GBs is modeled, usually, from a phenomenological perspective
(e.g., Aifantis et al., 2006). Thereby, the discrete causes of, for example,
strain fields close to GBs can, however, not be distinguished anymore.
For instance, continuum models incorporating GB yielding cannot
distinguish between strain fields caused by dislocation transmission
across the GB and strain fields caused by absorption of dislocations
from adjacent grains into the GB (Zhang et al., 2014). However, more
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sophisticated continuum models have been developed that incorpo-
rate physical mechanisms such as, for example, climbing of disloca-
tions (Geers et al., 2014). The model of van Beers et al. (2015a) considers
the redistribution of defects along the GBs in an averaged sense via a
diffusion-type equation for the spreading of the net-defect content of
the GBs along their planar surfaces. Dislocation transport is considered
in the models of Reuber et al. (2014); Dogge et al. (2015). In the latter
work, flux equations are explicitly accounted for at the interfaces, mod-
eling the transport across them. It has been experimentally determined
that the changes in line energy, accompanying dislocation motion, are
important in the context of GB dislocations (Lucadamo and Medlin,
2002). The framework by Wulfinghoff and Böhlke (2015) takes into
account the transport of dislocations in the bulk and curvature-induced
line-length production by coupling a physically enriched continuum
dislocation dynamics model (Hochrainer et al., 2014) with a simplified
gradient plasticity model (Wulfinghoff et al., 2013).
Modeling GB mechanisms within gradient plasticity theories is an
ongoing challenge, e.g., Aifantis and Willis (2005); Fredriksson and
Gudmundson (2005); Gurtin (2008); Van Beers et al. (2013). It is known
that five macroscopic and three microscopic degrees of freedom are
necessary to specify a general GB (Wolf, 1990). Continuum models,
however, commonly neglect the microscopic degrees of freedom, i.e.,
the translations between slip systems from adjacent grains at a GB are
not accounted for due to the coarsening made. Only the macroscopic
degrees of freedom are then considered which define the rotations
between slip systems and the GB, respectively. For large-grained
microstructures (Kacher et al., 2014), the GB modeling is of utmost
importance since the GB presence and influence on the dislocation
movement leads to pile-ups of dislocations that can, in turn, dominate
the material behavior.
Size effects can be modeled in gradient plasticity models by different
approaches. The free energy can be enhanced by terms taking into
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account excess dislocations (Gurtin, 2000; 2002). Thereby, gradient
stresses or back-stresses are induced which enter, for example, the equa-
tions for the plastic slip rates. Such approaches neglect the influence
of GBs or other obstacles on the dislocation structures. If, for example,
dislocation structures in dual-phase steels are to be described on the
grain scale taking into account interaction of ferrite grains and the
coverage of ferrite grains by martensite particles, then such an approach
is insufficient (Rieger and Böhlke, 2015). The aforementioned grain
interactions can be incorporated by a GB yield condition (Wulfinghoff
et al., 2013) which mimics the slip interaction on GBs by additional
constitutive equations which can take into account the misorientation
between grains (Van Beers et al., 2013), the orientation of the GB relative
to the grain orientations (Gurtin, 2008), and the GB defect structure and
energy (van Beers et al., 2015b;c). By such GB yield mechanisms, a
(grain) size effect is induced in the mechanical model response.
Nowadays, the computational resources allow more and more to imple-
ment material models with many degrees of freedom, e.g., Gottschalk
et al. (2016). Numerical efficiency, however, is still of utmost importance
in order to not loose the computational benefits of continuum models
with regard to time consumption. A numerical treatment of a strain
gradient plasticity theory has been presented in Niordson and Kysar
(2014). The model is of viscous type, and considers both dissipative
and energetic contributions. This is in contrast to frameworks, such as
the one treated in Reddy et al. (2012), which consider purely energetic
contributions. Within the implementation by Özdemir and Yalçinkaya
(2014) of the gradient plasticity theory by Gurtin (2008), all plastic
slips are considered as additional degrees of freedom and interface
elements are used for the GB discretization. Results are presented
for the two-dimensional case. In Gottschalk et al. (2016), however,
an implementation for three dimensions is discussed and numerical
examples are shown for both flow rules proposed by Gurtin (2008)
as well as for an additionally proposed form. The implementation of
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the theory is extended to finite deformations in McBride et al. (2016).
Variational formulations for single-crystal gradient plasticity at large
deformations are presented in Reddy (2013).
The approach Ettehad and Al-Rub (2015) suggests using a two-step
solution scheme for gradient plasticity, separating the computations
into a global solution and a local approximation that facilitates meshfree
methods. It is discussed that this two-step procedure simplifies the im-
plementation of gradient theories, with an emphasis on the enforcement
of boundary conditions.
Recently, a variational framework with thermomechanical coupling for
finite strains has been proposed by Bartels et al. (2015). The approach by
Anand et al. (2015) accounts for thermal annealing, and a computational
study of this model, including a viscous regularization, is presented in
McBride et al. (2015). In the recent work by Lubarda (2016), the fraction
of the rate of plastic work converted into heat is incorporated in the
free energy of two gradient plasticity formulations to account for the
“locked-in strain energy” around statistically stored dislocations. Both
isothermal and non-isothermal settings and boundary conditions are
explored, there.
In the spirit of keeping the numerical costs comparably low, a simpli-
fied gradient plasticity theory has been proposed by Wulfinghoff and
Böhlke (2012); Wulfinghoff et al. (2013), considering only one additional
degree of freedom to incorporate the plastic effects. Due to numerical
reasons, a micromorphic approach, suggested by Forest (2009), is used
for the implementation of this theory.

Micromorphic approaches

In micromorphic approaches, additional variables are introduced as ad-
ditional internal degrees of freedom. Micromorphic theories belong to
the class of generalized continuum theories. It can be formally shown
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that gradient theories, which also belong to this class, are special cases
of micromorphic theories (see Forest and Sievert (2003), and also Lazar
(2010) for an overview on dislocations in generalized continua frame-
works). In Forest (2009), a general framework for the micromorphic
approach is outlined. It includes balance equations governing the mi-
cromorphic degrees of freedom, boundary conditions, and higher-order
stresses (see also the references in Forest, 2009). An overview of applica-
tions to, e.g., elasticity and gradient plasticity is also given. In this con-
text, it is described in detail that models formulated with the micromor-
phic approach are related to existing gradient models. Therefore, the
micromorphic variable is constrained to be equal to its (macro) counter-
part (see also Forest, 2016). This constraint can be imposed by a penalty
term in the free energy. The constrained micromorphic approach yields
models that, e.g., belong to the class of gradient of internal variable
models (Maugin, 1990). For instance, the gradient theory by Gurtin
(2003) can be regarded as a constrained micromorphic theory (Forest,
2009). Micromorphic crystal-plasticity or gradient-plasticity theories
have recently been evaluated in comparison to discrete dislocation dy-
namics (e.g., Bayerschen et al., 2015; Chang et al., 2016).

Defect energy in gradient plasticity theories

For the incorporation of the defect energy, several approaches exist. An
overview of energy formulations is given in Forest (2016), for micro-
morphic theories. The shared aim of continuum theories considering a
defect energy is the modeling of lattice distortion due to geometrically
necessary dislocations (GNDs), for example, by consideration of the
dislocation density tensor (Nye, 1953). It is, however, outlined in
Mesarovic (2010) that the common association of the gradients to
GNDs via the dislocation density tensor is not unique. In Gurtin
(2000), a geometrically non-linear theory is proposed using a defect
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energy chosen “for convenience” to be quadratic in the plastic part of
the deformation gradient. A quadratic defect energy is also used in
Cermelli and Gurtin (2002), formulated to depend on the geometrical
dislocation density tensor within a geometrically linear theory. This
formulation reduces to a quadratic form in the Burgers vector for strict
plane strain. The discrete dislocation dynamics results of Nicola et al.
(2005) include a comparison of several energy formulations. Their
results motivated Gurtin et al. (2007) to reformulate the defect energy
with dependence on the densities of screw and edge dislocations rather
than on the Burgers tensor. It is shown there, that this defect energy
can be recast in terms of the gradients of plastic slips. The discussion
of scaling regimes by Scardia et al. (2014) includes this defect energy by
Gurtin et al. (2007) in their intermediate scaling regime.
A defect energy that is quadratic in the geometric dislocation density
tensor has also been used in the recent variational implementations
of finite gradient plasticity by Miehe (2014); Miehe et al. (2014b;a).
In Miehe (2014), constitutive rate-type and algorithmic incremental
potentials are defined in order to formulate a general framework of
inelasticity, applicable, e.g., to construct single-crystal gradient plastic-
ity. In line with this framework, a computational approach to gradient
plasticity (of von Mises-type in the logarithmic strain space), using
mixed variational principles, is proposed in Miehe et al. (2014b). This
includes a separation into variables of long-range and short-range
character, i.e., of macro-motion and micro-motion, respectively. In
the variational approach by Miehe et al. (2014a), such a separation
is performed for multiplicative plasticity and a viscous regularization
technique is proposed to overcome the problems of classic active-set
search for rate-independent plasticity. In addition, mixed variational
principles have been exploited for small strains in the previous work
Miehe et al. (2013).
Apart from the commonly used quadratic defect energy formulations,
non-quadratic forms have also been proposed in the literature. In
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Ohno et al. (2008), a defect energy is introduced that is linear in the
accumulated GND-densities, thereby leading to a constant higher-order
(micro) stress. A defect energy of more general type is used by Gurtin
and Ohno (2011). In their work, several special cases are discussed
where they distinguish between recoverable and nonrecoverable defect
energies. Recoverable defect energies in this regard means that loading
and reverse loading, starting from a set of slip gradients, leads to the
same value of the defect energy. Nonrecoverable defect energy means,
however, that the same value of the defect energy is not necessarily
obtained after such a loading cycle. In Reddy (2011b), it is shown
that the defect energy proposed by Ohno and Okumura (2007) (see
also Kametani et al., 2012), is recoverable but non-differentiable for
vanishing slip gradients. It is also shown there, that the defect energy
by Ohno et al. (2008), formulated linear in the accumulated dislocation
densities, is, however, recoverable. In Ohno and Okumura (2007), it is
pointed out that the higher-order (micro) stress resulting from their
defect energy has the form of a step function. This behavior is in
contrast to the resulting behavior from the quadratic defect energies
which lead to gradient stresses changing linearly in dependence of,
e.g., the slip gradients. Furthermore, these two different defect energy
approaches are interpreted physically in Ohno and Okumura (2007).
The consideration of dislocation self-energy leads to a constant gradient
stress. Consideration of the dislocation interaction-energy, however,
leads to a gradient stress changing with slip gradients, and, thereby,
accounting for the strain hardening induced by dislocation pile-ups.
In Hurtado and Ortiz (2012), non-local effects are accounted for in the
deformation of micropillars by considering the energy of dislocation
surface steps, in addition to the self-energy of dislocations. The thermo-
mechanical framework of Anand et al. (2015) also uses the linear defect
energy by Ohno and Okumura (2007) in the mechanical contribution to
the free energy. In Reddy (2011a), the influence of the defect energy
and of internal-variable hardening is discussed with regard to the
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well-posedness of the mathematical problem statement for several
theories from the literature.
Linear as well as quadratic defect energies are reviewed in Forest
and Guéninchault (2013), and it is shown that the latter ones lead
to physically realistic slip profiles but also to unusual scaling laws.
Instead, a logarithmic defect energy is proposed and connected to the
statistical theory of Groma et al. (2003). Such a logarithmic defect energy
is further investigated in Wulfinghoff et al. (2015) and compared to a
linear defect energy by analytical calculations. In addition, numerical
calculations with a quadratic regularization of both energy approaches
are performed to resolve the issues of differentiability for vanishing
GND-densities. In the recent review by Forest (2016), the different
energy forms are contrasted, also in regard to the obtained scaling laws.
A non-convex strain gradient plasticity model for patterning is pro-
posed in Yalcinkaya et al. (2011). Although a quadratic defect energy is
used, an additional polynomial in terms of plastic slips is employed in
the free energy. The choice of the value of the internal length scale is
shown to affect the distributions of plastic slip. This model is extended
in Yalçinkaya et al. (2012) using a non-convex latent hardening formu-
lation by Ortiz and Repetto (1999).
A generalized power-law type defect energy is proposed by Bardella
(2010) and Bardella et al. (2013). It is formulated in dependence of Nye’s
dislocation density tensor. This dependence has originally been pro-
posed by Gurtin (2002). In Bayerschen and Böhlke (2016), a power-law
type defect energy using an accumulated plastic slip and its gradient
is investigated with regard to size effects of crystal aggregates. The
work of Voyiadjis et al. (2014) considers short-range and long-range
dislocation interactions in the defect energy of their theory. There, it
is discussed, with reference to Bardella (2010), that the exponent of the
proposed defect energy governs the non-linearity of the defect energy
approach (see also Bayerschen and Böhlke, 2016). In the recent work
of Bardella and Panteghini (2015), it is proposed to consider the defect

18



Defect energy in gradient plasticity models

energy as a function of two invariants of Nye’s tensor. A power-law
defect energy is proposed for this dependence and investigated for the
choice of a quadratic defect energy exponent. It is also shown, there,
that the experimental results by Fleck et al. (1994) can be fitted with
a regularized logarithmic defect energy. Recent atomistic simulations
(Begau et al., 2015) and theoretical works (Kooiman et al., 2015; 2016;
Berdichevsky, 2016) present indications that the mathematical form of
the defect energy could be of log-linear type (see also the discussion in
Forest, 2016).
In other recent works, it is discussed that further ingredients (aside
from the defect energy) should be considered in the development of
appropriate crystal plasticity models accounting for length scale effects.
These include, for example, dislocation transport (Reuber et al., 2014)
and vacancy diffusion in addition to coupled dislocation glide-climb
mechanisms (Geers et al., 2014).
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Outline of the thesis

In Chapter 1, the fundamentals of dislocation-based continuum plastic-
ity are summarized, including gradient-extended single-crystal plastic-
ity modeling. Then, in Chapter 2, results obtained with a basic micro-
morphic crystal-plasticity model are compared to experimental quasi-
single-crystalline microwire torsion-test results. Subsequently, in Chap-
ter 3, the model is extended by consideration of gradient plasticity with
grain boundary yielding, and size effects on oligocrystalline microwires
are modeled. The theory is supplemented by grain boundary hardening
and simulation results are compared to discrete dislocation dynamics
simulation results in Chapter 4. In Chapter 5, the defect energy ap-
proach is generalized, and the implications on the mechanical model
response are shown. Then, in Chapter 6, an overview on slip trans-
mission criteria is given and the limitations of the model to consider
these are addressed. A summary in Chapter 7, featuring also a brief
discussion of remaining open questions, concludes this thesis.
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Notation

A direct tensor notation is preferred throughout the text. Vectors and
2nd-order tensors are denoted by bold letters, e.g., by a or A. A lin-
ear mapping of 2nd-order tensors by a 4th-order tensor is written as
A = C[B]. The scalar product and the dyadic product are denoted, e.g.,
by A · B and A ⊗ B, respectively. The composition of two 2nd-order
tensors is formulated with AB. The 2nd-order unity tensor is denoted
by I . Matrices are denoted by a hat, e.g., by ε̂. The full list of symbols
and used operators can be found on pp. 224.
It is remarked that throughout this thesis the quantity γac, the accumu-
lated plastic slip, is used. In the journal publications corresponding
to contents of several chapters of this thesis, this quantity is termed
“equivalent plastic strain” and denoted by γeq.
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Chapter 1

Introduction

1.1 Dislocation-induced plastic deformation

It is known from experimental works that, with increasing loading, plas-
tically deformed material can require higher applied stresses to advance
the plastic deformation further. This material behavior is called harden-
ing, see Fig. 1.1, as opposed to softening.

σ

ε

hardening

ideal plastic behavior

softening

Figure 1.1: Nominal stress σ of specimens for applied nominal strain ε.

Both phenomena are caused by the presence, generation, movement,
and interaction of defects in the atomic structure of the material. Defects
of line-like character are called dislocations. These can be experimen-
tally observed, see, for example, Fig. 1.2.
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0.2 µm

A
B

C

Figure 1.2: Visible dislocation structures in a ferrite grain of a dual-phase steel obtained
by electron channeling contrast imaging. A, B: dislocation loops and segments. C: dislo-
cation forest. Preparation and image courtesy of M. Wenk, Institute of Applied Materials,
Karlsruhe Institute of Technology (KIT).

When the material is macroscopically plastically deformed, the defor-
mation is locally resolved by plastic slip of the dislocations (Essmann
et al., 1968). This phenomenon affects metals but also other crystalline
materials, e.g., calcite (De Bresser, 1996). The crystal lattice is locally
sheared in certain slip directions, depending on the orientation of the
crystal with regard to the applied loading, and dislocation movement
becomes observable in form of slip traces, see, e.g., Lim and Raj (1985a).
From a theoretical point of view, a dislocation can be defined as in the
following described procedure. An ideal, defect-free crystal lattice of
atoms is schematically depicted in Fig. 1.3a. The atoms are ordered in
equidistant positions. In contrast, the crystal lattice in the presence of
a dislocation is depicted in Fig. 1.3b. Upon removal of several atoms
from one of the lattice lines, i.e., formally, the introduction of a dislo-
cation, there, elastic deformation occurs in the immediate vicinity of
the dislocation until an equilibrium state of the atomic positions has
been reached (Fig. 1.3b). This change in position affects atoms up to
a few atomic layers around the dislocation. Further away from the
dislocation, the crystal lattice is not affected anymore and retains the
unaltered lattice structure (see also Fig. 1.3b). The dislocation can be
characterized by its so-called Burgers vector. This can be obtained by
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evaluating the Burgers circuit which is constituted by a line integral
around the dislocation in the elastically deformed state, see Fig. 1.3c.
Starting at a chosen atom (highlighted in the figure in blue color), a
closed line segment around the dislocation can be defined. However, if
the elastic deformation is relaxed, i.e., the atoms assume their original,
unaltered positions, the same line segment exhibits a gap, Fig. 1.3d. The
vector associated to the closure-failure between the two ends of the line
segment is called the Burgers vector. Its magnitude b characterizes the
shortest distance between both ends. A vector l̃ can be attached to the
direction of the dislocation line, see Fig. 1.3c (in the present example, l̃

is perpendicular to the drawing plane).

(a) (b)

l̃

(c)

b

(d)

Figure 1.3: (a) Undeformed crystal lattice. (b) Deformed crystal lattice in the presence of
a dislocation. (c) Burgers circuit around a dislocation in the deformed crystal lattice. The
line direction is indicated by l̃. (d) Burgers circuit around a dislocation in the undeformed
crystal lattice.

Mathematically, the definition of the Burgers vector can be given in
terms of the following line integral (e.g., Shetty, 2013)

b =

∮
due

ds̃
ds̃. (1.1)

The vector ue denotes the (elastic) displacement, and s̃ is the variable of
the circuit. According to this definition, the sign of the Burgers vector
depends on the convention employed for the direction of the parame-
trization variable s̃ of the line integral, see Fig. 1.4. Dislocation lines
cannot end within the bulk material (Hull and Bacon, 2011).
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l̃

s̃

Figure 1.4: Burgers circuit, parametrized by s̃, around a dislocation line segment with line
direction l̃ in the deformed lattice.

They either form closed loops, inside the material, or end at the outside
surface or at interfaces, also inside of the material. For junctions of
dislocations, this implies the necessary condition that

n∑

i=1

bi = 0, (1.2)

where bi are the Burgers vectors of the dislocations i = 1, . . . , n.
Idealized, two different types of dislocations can be distinguished.
Based on the orientation of the Burgers vector b with regard to the
line direction l̃ of the dislocation, the dislocation is either of edge-type
or screw-type. For edge dislocations, b ⊥ l̃, and, for screw dislocations,
b ‖ l̃. In general, however, dislocations are curved and can be composed
of different line segments from both types.
During plastic deformation, dislocations in the crystal lattice move
on specific planes, depending on the crystal structure. The smallest
periodic entity is named unit cell. Many metals posses the face-centered
cubic (FCC) unit cell structure (Fig. 1.5a). Examples include copper,
nickel, aluminum, and gold. The planes are located in between closest-
packed atomic layers. They are called slip planes and are defined by
their normal vectors n. The direction in which the dislocation moves on
such a plane is called slip direction d. Both vectors, n and d, constitute a
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(a)

d

n

(b) (c)

Figure 1.5: (a) Face-centered cubic unit cell. (b) Slip directions d and normal n of
exemplary slip plane. (c) Slip planes of face-centered cubic unit cell. Basic visualization
tool courtesy of V. Glavas.

slip system. An example of a slip plane for the FCC unit cell is depicted
in Fig. 1.5b. The full set of FCC slip planes is shown in Fig. 1.5c. For
this type of crystal unit cell, four planes of closest-packed atomic layers
exist with three possible slip directions each. Taking into account that
dislocations can move in both positive and negative direction with
respect to d, dislocations can move on 24 different combinations of slip
planes and slip directions.

1.2 Interaction of dislocations

As the plastic deformation proceeds, more and more dislocations are
generated by dislocation sources (e.g., by Frank-Read sources), and the
dislocations progressively entangle due to the increasing density of dis-
locations. They also interact with other defects present in the atomic
structure. These include voids, precipitates, substitutional and intersti-
tial atoms. In addition, dislocations pile up, for example, at interfaces
that they encounter during their movement. These pile-ups lead to an
increase in the stresses necessary to move the dislocations through the
lattice. Consequently, the interactions of dislocations can impede their
motion. These interactions are complex processes.
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For example, dislocations can be resolved into partial dislocations. They
can also annihilate other dislocations of opposite character. At obstacles,
dislocation climb is also a common mechanism. Depending on the load-
ing and the microstructure, dislocations are generated, interact, and ac-
cumulate by random trapping in the bulk material. These dislocations
are referred to as statistically stored dislocations (SSDs) (Ashby, 1970).
At interfaces, however, dislocations distribute such that an excess of
dislocations with identical sign can be observed. These dislocations are
required for compatible deformation and are called geometrically nec-
essary dislocations (GNDs). They occur due to gradients of the plastic
shear in the material (Nye, 1953) that are caused by the geometry of the
loading or by inhomogeneous deformations. Both types of dislocations
influence the hardening behavior of the material.

1.3 Dislocation behavior at grain boundaries

The interfaces between different grains, i.e., between regions of different
crystal orientations, are called grain boundaries (GBs). In general, GBs
are curved but they also exhibit regions of planar type. Grain bound-
aries can impede the motion of dislocations in which case these tend
to pile up, there. In the following, the basic dislocation mechanisms
near GBs are briefly discussed. Parts of this section are taken from
Bayerschen et al. (2016a).
In Fig. 1.6a, a schematic of a dislocation pile-up at a GB with normal nΓ

is depicted for a single slip system. Here, nA is the slip plane normal of
the depicted slip system in grain A, and dA is a slip direction within the
slip plane. The dislocations encounter resistance against their motion
by GBs, due to the mismatch of the crystal lattices of the adjacent grains,
there. This resistance is affected by both geometrical and physical influ-
ences. First of all, the above-mentioned mismatch in the crystal lattices
at GBs leads to a mismatch of slip planes and directions, there.

30



1.3 Dislocation behavior at grain boundaries

nΓ

nA

dA

nB

dB

(a)

nΓ

nA

dA

nB

dB

(b)

nΓ

nA

dA

nB

dB

(c)

nΓ

nA

dA

nB

dB

(d)

nΓ

nA

dA

nB

dB

(e)

nΓ

nA

dA

nB

dB

(f)

nΓ

nA

dA

nB

dB

(g)

nΓ

nA
1

dA
1

nA
2

dA
2

nB

dB

(h)

nΓ

nA

dA

nB
1

dB
1

nB
2

dB
2

(i)

Figure 1.6: Schematic: (a) Pile-up of dislocations. (b) Ideal transmission of a dislocation.
(c) Dissociation of a dislocation into the grain boundary. (d) Absorption of two disloca-
tions into the grain boundary, generating one dislocation. (e) Re-emission of dissociated
dislocation. (f) Generation and emission of a dislocation into grain B and generation of a
residual dislocation. (g) Direct transmission of dislocation, and generation of a residual
dislocation. (h) Reflection of a dislocation at the grain boundary and generation of a
residual dislocation. (i) Dislocation splitting up onto different slip systems and generation
of a residual dislocation. Figures (a-h) reprinted from Bayerschen et al. (2016a) with
permission from Springer.

The resistance is also influenced by the orientation of the GBs, i.e., by
their inclinations, and by the structure of the atomic layers close to
the GBs, which differs from the ideal lattice. This is the case because
of the elastic deformations due to the different atom positions in the
adjacent grains. As a result, GBs pose barriers for the movement of
dislocations. Furthermore, trapped dislocations at GBs can impose an
additional barrier for the passing of dislocations. It has been found
that, the better the alignment of slip systems from the adjacent grains
at a GB, the higher is the probability of dislocations passing the GB,
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or of activating dislocation sources on the adjacent slip systems. Ideal
alignment of two slip systems and a direct transfer of a dislocation is
schematically shown in Fig. 1.6b.
In real plastic deformation processes, many more rather complex mech-
anisms take place at GBs. For instance, dislocations from one grain
(Fig. 1.6c) or from both grains (Fig. 1.6d) can be resolved into the GB.
The deposited dislocations influence arriving dislocations or can be re-
emitted (Fig. 1.6e). Grain boundaries can also act as a source for the
generation of new dislocations that subsequently move onto the adja-
cent slip systems (Fig. 1.6f). If a dislocation is transmitted to a slip
system of different orientation, a residual dislocation is generated in the
GB (Fig. 1.6g). The reason for the generation of residual dislocations is
the necessary continuity of the Burgers vector, Eq. (1.2). Depending on
the orientation of the line integral around the dislocation, the residual
Burgers vector (RBV) can be defined, e.g., by (Lim and Raj, 1985c)

br + bB = bA. (1.3)

This residual Burgers vector remains in the GB and ensures the continu-
ity of the Burgers vector across the GB. Dislocation mechanisms at GBs
usually involve more than one slip system in each grain. Exemplarily,
the reflection of a dislocation at a GB is depicted in Fig. 1.6h, and a
dislocation splitting up onto different slip systems is shown in Fig. 1.6i.
More involved mechanisms at GBs include, for example, the absorption
of dislocations into the GBs by either dissociation of the dislocation
into displacement-shift-complete dislocations (Pond and Smith, 1977),
suitable for the specific type of GB (Clark and Smith, 1979), or by re-
maining as localized dislocations. Furthermore, which of these mech-
anisms become active (some may also act simultaneously Shen et al.,
1988) depends not only on the crystal-lattice orientations of both grains
and of the GB but also on the type of dislocations, i.e., whether these
are of edge, screw, or mixed type. Screw dislocations can, in principle,
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1.3 Dislocation behavior at grain boundaries

cross GBs without leaving a residual dislocation (Lim and Raj, 1985b).
Continuous screw slip-bands across GBs are more likely to occur due to
a transfer of dislocations than due to activation of dislocation sources in
the adjacent grain (Lim and Raj, 1985a).
Transmission of dislocations across GBs is a transfer of line defects and
can be associated to the transfer of plastic slip by means of the Orowan
equation (Orowan, 1934a). In experiments, the activity of slip systems
in the grains adjacent to a GB can be investigated by analysis of the
slip traces (Lall et al., 1979) which show different degrees of continuity
or discontinuity across GBs (Seal et al., 2012; West and Was, 2013). A
discontinuous slip trace is schematically shown in Fig. 1.7a.
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Figure 1.7: (a) Discontinuity and (b-d) continuity of slip traces and dislocation movement
across a grain boundary with normal nΓ between two slip systems α, β in grains A, B.
Figure reprinted from Bayerschen et al. (2016a) with permission from Springer.

For instance, in West and Was (2013), some of the developing slip traces,
in the grain adjacent to a grain with a dislocation pile-up, were observed
to spread over the whole grain (see schematic in Fig. 1.7b), but others
reached only a few microns into the adjacent grain (see schematic in
Fig. 1.7c). The authors of the latter work propose to classify slip traces
into the continuous and the discontinuous type, and to consider all GBs
intersected by dislocation channels for this evaluation.

33



1 Introduction

This consideration also includes GBs where dislocation channels stopped
to develop further into the adjacent grain on the incoming grain-side of
the GB but new channels developed a few microns away from the GB in
the adjacent grain for the same slip system (see Fig. 1.7d). Furthermore,
slip traces can be continuous on parts of a GB and be discontinuous on
other parts of the same GB (Bridier et al., 2005; Abuzaid et al., 2012).
Summarizing, one can state that the effective transmission and activa-
tion behavior of dislocations at GBs is a result of dislocation reactions
(Lee et al., 1989a; Medlin et al., 1997), the type of dislocations involved
(Zghal et al., 2001; Zghal and Couret, 2001), and the microstructural
characteristics such as the GB type (Lim and Raj, 1985a; Gemperlova
et al., 2004; Gemperle et al., 2005; Pond et al., 2006) or phase compo-
sition in multi-phase materials (Takasugi et al., 1978; Forwood and
Clarebrough, 1981; De Hosson et al., 2006).

1.4 An overview on slip transmission criteria

1.4.1 Motivation

In the literature, criteria have been proposed to predict the dislocation
transmission and activation behavior of slip systems in the grains ad-
jacent to GBs. Continuum theories that would be able to model such
phenomena need to account for these criteria that, for example, consider
the orientation of slip systems and of the GB, respectively. Therefore, at
first, an overview on these criteria is given with the focus on works con-
sidering experimental data. Subsequently, in Section 6.2, this overview
is supplemented by a discussion of the literature on continuum crystal
plasticity models considering slip transmission criteria. Finally, all geo-
metric criteria are compared in a single-slip setting in Section 6.4. The
following overview is taken from Bayerschen et al. (2016a).
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1.4 An overview on slip transmission criteria

1.4.2 Criteria that account for slip system orientations

Livingston and Chalmers (1957) were among the first to use geometric
slip transmission criteria in experiments to predict the activated slip
systems in a grain adjacent to a grain featuring a dislocation pile-up.
Their criterion accounts for the orientations of the slip directions dA

α , dB
β ,

and the orientations of the slip plane normals nA
α , nB

β (Fig. 1.8).
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Figure 1.8: Nomenclature for slip systems α, β in adjacent grains A, B, separated by
a grain boundary Γ. Figure reprinted from Bayerschen et al. (2016a) with permission
from Springer.

Their used geometric transmission factor matrix for this purpose reads

N̂αβ = (nA
α · nB

β )(dA
α · dB

β ) + (nA
α · dB

β )(nB
β · dA

α ), (1.4)

and has N × N components. With this criterion, the activation stress of
the outgoing slip system is calculated (Livingston and Chalmers, 1957).
It is based on the approximation that the stress state in the adjacent
grain, resulting from a dislocation pile-up on the incoming slip system
at the GB, is of pure shear stress type. Thus, the shear stresses on the
incoming and on the outgoing slip systems are interconnected by the
individual transmission factors. This purely geometric criterion is also
used in Davis et al. (1966), following the interpretation of an activation
of dislocation sources due to pile-ups.
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A slightly modified version of the geometric transmission factor matrix
(1.4) is employed in Luster and Morris (1995). The second term of (1.4)
is dropped, and the transmission factor, therefore, reads

N̂mod
αβ = (nA

α · nB
β )(dA

α · dB
β ). (1.5)

In the transmission evaluation of Guo et al. (2014), this factor is com-
bined with the Schmid factors (Schmid and Boas, 1935) and a stress-
intensity factor resulting from pile-ups (based on Eshelby et al., 1951).
It is found, there, that a lower stress-intensity factor (leading to a lower
resolved shear stress) on the emission slip system correlates to larger
RBVs. For controlling the slip system activation, good alignment of slip
systems has proved to be more important than a high Schmid factor.
The importance of misalignment of slip systems for slip transmission
processes has also been demonstrated with the preceding geometric
factor in micro-hardness measurements of GBs (Wo and Ngan, 2004).

1.4.3 Criteria that account for slip system orientations

and grain boundary orientation

In Shen et al. (1986), using (1.4) for the activation prediction is compared
to using a different criterion incorporating the GB orientation via

M̂αβ = (lA
α · l

B
β )(dA

α · d
B
β ), (1.6)

where lA
α , lB

β are normalized vectors of the lines of intersection, see
Fig. 1.8. They can be obtained from, e.g., lA

α = (nA
α × nΓ)/|(nA

α × nΓ)|.
Here, nΓ denotes the GB normal. In combination with a stress criterion,
based on maximizing the Peach-Koehler force on the emitted dislo-
cation, (1.6) is shown to predict all slip system activations, whereas
the geometric criterion (1.4) did not. The geometric criterion (1.6)
determines the slip plane, and the stress criterion determines the slip
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1.4 An overview on slip transmission criteria

direction of the emitted dislocation. These criteria are also used to
predict the activation of slip systems in Shen et al. (1988).
The criteria for slip transmission are further extended by Lee et al.
(1989b) to account for the RBV, where

M̂mod
αβ = lA

α · lB
β (1.7)

is used instead of (1.6). At first, the slip plane for a possible transmission
is found by the slip plane normal that maximizes the scalar product
between the lines of intersection. This corresponds to a minimization
of the angle δ̃, see “1.” in Fig. 1.9. Then, the slip direction on this
slip plane is determined by finding the maximum resolved shear stress
(RSS) on the outgoing slip directions (see “2.” in Fig. 1.9). In case of
multiple slip directions with similar RSS, the direction is chosen which
minimizes the RBV br left behind in the GB after a transmission event.
Thus, the angle κ between the slip directions is minimized (see “3.” in
Fig. 1.9). This approach removed remaining inconsistencies highlighted
in the approach of Shen et al. (1988), and is used by Abuzaid et al. (2012).
In Lee et al. (1990), it is proposed that the criteria of maximum RSS and
minimum RBV need to be combined as they are competitive in nature
(see also Lim and Raj, 1985b). It is found, however, that minimizing the
RBV is of dominant influence for the slip transmission events. In Clark
et al. (1992), it is outlined, with reference to Bamford et al. (1988), that
this combined criterion is not applicable to multiple active slip systems.
For the case of intermetallic phase boundaries, the combined criteria
by Lee et al. (1990) have been shown to be applicable upon a slight
refinement for metals with multiple types of slip systems (Misra and
Gibala, 1999). The purely geometric criterion (1.6) is applied in Soer and
De Hosson (2005), while in Tiba et al. (2015), it is applied and combined
with investigations considering the RBV criterion and the incompatibil-
ity stresses. The importance of the RBV for slip transmission prediction
is emphasized in Patriarca et al. (2013), as well.
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1.4.4 Criteria that consider threshold values for

the slip system and grain boundary angles

The geometrical criteria outlined in the previous sections were evalu-
ated for each slip system, individually, to determine the most likely
system for slip transfer across GBs. However, it has also been proposed
in the literature to calculate an overall measure of slip transfer by, e.g.,
summing over the individual components of all possible slip system
combinations. Such an approach is used in Werner and Prantl (1990).
The mismatch between slip systems in adjacent grains is taken into
account via a sum of the form

λ̃ =

N∑

α=1

N∑

β=1

cos

(
90°
ωc

arcos
(
nA

α · nB
β

))
cos

(
90°
κc

arcos
(

dA
α · dB

β

))
.

(1.8)

Here, ωc and κc are critical angles above which no slip transfer is ex-
pected to occur on the associated slip systems. Thus, slip system combi-
nations featuring a higher shared angle are not considered and removed
from the sum. As it is discussed in Werner and Prantl (1990), the mis-
match between slip plane normals is taken into account, rather than the
mismatch between lines of intersection on Γ. This is due to the fact that
the GB orientation was difficult to measure. The critical angles, above
which slip transmission is not expected to occur, are taken to be κc = 45°
and ωc = 15° for α/α- and α/β-phase boundaries in brass. For β/β-
phase boundaries ωc = 30° is used as critical angle for the slip plane
normals. The limit angle ωc = 15° was motivated by the work of Davis
et al. (1966) using (1.4), where the critical angle δ̃c between the lines of
intersection is estimated to be in the range of 10° − 20°. Furthermore, it
is argued that the angle of lines of intersection for a pair of slip systems
on adjacent sides of a GB cannot exceed the angle between adjacent slip
plane normals, i.e., δ̃ ≤ ω → l

A
α · l

B
β ≤ nA

α · nB
β . Thus, ω is used in place
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of δ̃, see Fig. 1.8. This approach predicted the behavior of phase- / GBs
with regard to their slip permeability.
In Kumar (2010), however, (1.8) is used in combination with the Schmid
factors to investigate both criteria regarding the tensile strength of the
considered material. It is found that the trend of the tensile strength
is opposite to that of the calculated transmission number λ̃, i.e., a high
value of λ̃ does not lead to an increased yield strength.
In Beyerlein et al. (2012), the angle δ̃ between the lines of intersection
is taken into account, rather than the angle ω between the slip plane
normals. Instead of the summation in (1.8), individual components

χ̂αβ = cos

(
90°
δ̃c

arcos
(

l
A
α · l

B
β

))
cos

(
90°
κc

arcos
(

d
A
α · d

B
β

))
(1.9)

are considered. The same critical angles as in the previous works,
however, are utilized. This geometrical criterion is combined with
the Schmid factors and further considerations regarding the interface
shear strength (Demkowicz and Thilly, 2011; Wang et al., 2011; 2012).

1.4.5 Criteria that consider weighted sums

of geometric transmission factors

Besides (1.8), other summation approaches exist in the literature consid-
ering, additionally, weights for the slip system contributions. Such an
approach is taken in Bieler et al. (2014) since no clear correspondence
to the transmission events could be established using the geometric
factor (1.5) without weighting. Several weighted sum approaches for
a slip transmission factor are proposed in Bieler et al. (2014). These
scalar measures are based on the above described geometric factors.
They are obtained by the summation over all slip system transmission
factors and by weighting each one with plastic slips γA

α or the Schmid
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1.5 Size effects of crystalline materials

factors mA
α , mB

β . Two such criteria are proposed in Bieler et al. (2014) by

m′
m =

∑

α,β

N̂mod
αβ mA

αmB
β

/∑

α,β

mA
αmB

β , (1.10a)

m′
γ =

∑

α,β

N̂mod
αβ γA

α γB
β

/∑

α,β

γA
α γB

β . (1.10b)

Measure (1.10a) connects the geometric mismatch with the RSS due to
the employed weighting using Schmid factors. Two other measures are
also given in Bieler et al. (2014) by

sγ =
∑

α,β

M̂mod
αβ N̂mod

αβ γA
α γB

β

/∑

α,β

γA
α γB

β , (1.11a)

LRBγ =
∑

α,β

M̂αβγA
α γB

β

/∑

α,β

γA
α γB

β . (1.11b)

For the sample investigated in Bieler et al. (2014), all four measures
give similar distributions along the GBs. This raises the question if
the weighting by resolved shear stresses or by plastic slips is applica-
ble. Furthermore, in (1.11a) the slip system normals seem to be double-
accounted for due to the combination of both the geometric factors (1.5)
and (1.7). The slip transmission criteria used in experiments are sum-
marized in Table A.1.

1.5 Size effects of crystalline materials

It is known from experiments that the overall mechanical response of
crystalline materials can be altered by changing the size of the grains,
for example, by using heat treatments. The first observations and ex-
planations of this phenomenon go back to works by Hall (1951b); Petch
(1953). Therefore, this effect is referred to as the Hall-Petch effect. More
recent investigations include the works by Fleck et al. (1994); Yang et al.
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(2012); Chen et al. (2015). One basic observation in all theses works is
that a refinement of the grain size leads to an increase in the material
yield strength, see Fig. 1.10a. Thus, the overall stress that is necessary
to plastically deform the material increases.

σ

ε

decreasing grain size

(a)

σ

ε

decreasing specimen size

(b)

Figure 1.10: (a) Increase in overall yield strength of the stress response σ for specimens
of identical size but decreasing grain size and applied strain ε. (b) Increase in overall
yield strength of the stress response σ for specimens with decreasing specimen size but
for identical grain size and applied strain ε.

The grain-size effect should be distinguished from the specimen size
effect, i.e., a decrease in the size of the specimen that leads to an in-
crease in the yield strength, although the grain size is kept constant (see
Fig. 1.10b). Consequently, the yield strength depends on the ratio of
grain size to specimen size. This has systematically been shown for
gold microwires, e.g., by Chen and Ngan (2011). Both of the above-
mentioned size effects are well established phenomena in the micron
regime. In the nanometer regime, however, it has been observed that
the effect of a grain size refinement is inverted. This leads to a decrease
in the yield strength of the material for decreasing grain size, see, e.g.,
Zhao et al. (2003).
The occurrence of the size effects in the micron regime can be explained
as follows. Microstructural lengths such as the distance to the next GB
restrict the mean free path of the dislocations. These lengths are com-
monly referred to as characteristic lengths or internal lengths. When,
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for example, the grain size is refined for a constant specimen size and
a constant dislocation density, the dislocations have less space to move
through the lattice. Consequently, the tendency of dislocations to build
pile-ups at GBs is increased. Therefore, other dislocations are progres-
sively impeded by these dislocation pile-ups, enhancing the impedi-
ment of the dislocations to move. This can be interpreted as an increase
in the local yield strength of the material. In consequence of this local
increase, the overall yield strength of the material is increased, too.

1.6 The internal length scale of crystalline

materials with dislocations

Associated to the dislocation pile-ups and other microstructural mate-
rial characteristics, an internal length scale for the movement of disloca-
tion exists. This internal length can be described as the effective distance
between dislocations and the obstacles impeding their motion. For ex-
ample, in a single-crystalline material region without the influence by
GBs and defects other than dislocations, this distance is the mean spac-
ing between the dislocations. If, however, the material is composed
such that obstacles such as GBs, precipitates, or dislocation sources af-
fect the motion of the dislocations, then the characteristic length is de-
termined by the smallest distance of dislocations to the next obstacle.
Therefore, this length scale arising also due to the presence of defects
is, in general, not necessarily constant. In fact, it depends on influences
such as the specimen size and the grain size, the dislocation density and
the density distribution, the density of other defects and the dislocation
source lengths (see Zhang et al., 2014).
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1.7 Crystallographic texture influence

on the mechanical response of

crystalline materials

Due to the crystal lattice structure of materials, featuring preferred
planes for plastic slip to take place, the elastic as well as the plastic me-
chanical response of many materials is orientation-dependent. Depend-
ing on the orientation of the loading with respect to the slip systems,
slip systems can be oriented more or less favorable for an activation.
For example, if the slip systems depicted in Fig. 1.5b are considered,
loading along one of the depicted slip directions d leads to a high
likeliness of an activation of plastic slip into this direction. The other
slip directions are less likely to be activated. For the multi-slip case, the
activation of slip systems depends on the orientation of all slip systems.
If the crystal orientation is adjusted such that none of the slip directions
are oriented similarly as the loading direction, plastic slip is impeded
and the mechanical response strengthens. The resulting strengthening
effect achieved by this adjustment is called texture strengthening. This
effect is most pronounced for single-crystalline materials, see Fig. 1.11a
for an exemplary single-crystalline material region, exhibiting only one
crystal lattice orientation.

(a) (b) (c)

Figure 1.11: Schematic: (a) Single-crystalline material. Crystal lattice orientation il-
lustrated in cut-free region. (b) Oligocrystalline material. (c) Polycrystalline material.
Dashed lines in (b) and (c) illustrate grain boundaries.
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1.7 Crystallographic texture influence on the mechanical response

Commonly, texture strengthening is utilized, for example, in appli-
cations such as high-pressure tubing or turbine blades. Metals usually
possess a polycrystalline microstructure, see Fig. 1.11c for an exemplary
polycrystalline material region (the different crystal orientations are
indicated by colors). In this case, the orientation of the crystal lattice
varies among the grains present in the material. Depending on the pro-
duction process, these grains may, for example, be oriented arbitrarily
without a preferred orientation, in which case the material responds
effectively isotropic. Then, the mechanical response is not altered
if the loading direction is changed. Thus, the mechanical material
behavior is orientation-independent. However, in applications such as
sheet metals, the production steps (e.g., cold forming) usually lead to a
textured microstructure. In this case, the mechanical material response
can depend largely on the applied loading direction, i.e., the material
behavior is anisotropic.
The grain aggregates considered in the present work are mostly of
oligocrystalline microstructure. In Fig. 1.11b, such a microstructure is
depicted. It shows characteristics in between single-crystalline and
polycrystalline materials. Several grains are present with different
crystal orientations. However, the grains are often larger, compared
to polycrystalline materials. Due to the presence of only a few grains
with different crystal orientations, this type of microstructure may be
substantially anisotropic. Compared to the polycrystalline case with
random crystal orientations, the orientation spread of the grains may
also be less pronounced. Thus, proper consideration of the influence
of the crystal orientations has to be assured in modeling the material
behavior of such grain aggregates.
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1.8 Continuum representation of

dislocation-induced plasticity

As shown in the previous sections, the motion of dislocations is a dis-
crete process. For a sufficiently large amount of dislocations in the mate-
rial, continuum theories can be used to describe the material behavior.

τ

(a) (b)

γ

γ+
∆γ

(c)

Figure 1.12: (a) Undeformed single-crystalline material region with shear load τ . (b) De-
formed material region due to dislocation movement, elastic deformation not depicted.
(c) Plastic slip γ in continuum representation of the deformation of the material region.

Therefore, a continuum representation of the local, discrete plastic slip
is necessary. The dislocations are then not resolved individually, any-
more. An initially undeformed, single-crystalline material region is
considered, constrained by a fixed bearing at the bottom. On the top, it
is loaded by a constant shear stress τ (see Fig. 1.12a). Dislocations may
enter the material on the surface and move through the lattice, driven
by the shear stress τ . This results in the creation of surface steps, see
Fig. 1.12b for the elastically undeformed structure. On the continuum
scale, however, such surface steps are not resolved. The plastic shearγ
is defined as an average, smoothed quantity, see Fig. 1.12c. The move-
ment of several dislocations of the same sign into the material leads
to a non-constant field distribution of the continuum plastic shear γ.
Therefore, gradients ∇γ occur in the plastic shear distribution. These
can be considered in the free energy formulation of the material model,
as it is shown, subsequently.
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1.8 Continuum representation of dislocation-induced plasticity

The Burgers vector can be defined on the continuum scale, too. There-
fore, the following definition of the plastic distortion is considered

Hp =

N∑

α=1

γαdα ⊗ nα, (1.12)

where α = 1, . . . , N denote the different slip systems and N is the num-
ber of slip systems which depends on the crystal lattice structure. For
the depicted single-slip case, α = 1, and, therefore, Eq. (1.12) reduces to

Hp = γd ⊗ n. (1.13)

The total Burgers vector related to the plastic distortion reads

b
tot =

∮

C

Hp dx. (1.14)

By application of Stoke’s theorem, this can be reformulated as

btot =

∫

A

curl (Hp)T da (1.15)

with the rotation curl (B) = ǫijk∂Bli/∂xkel ⊗ ej , and A, the area
bounded by C, as well as da = nA da. The quantity

α = curl (Hp)
T (1.16)

is usually referred to as a Burgers vector density per unit area, or simply
as a dislocation density tensor (Nye, 1953).
For the single slip case from Fig. 1.12, α is given by α = −d · ∇γd ⊗ l̃.
The scalar quantity −d · ∇γ offers the interpretation of a dislocation
density. In the particular case depicted above, these dislocations are
purely of edge-type since d ⊥ l̃. This density is often denoted by ρ⊢.
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The components of α with d ‖ l̃ are screw dislocation densities ρ⊙.
In many continuum models, the dislocation densities of edge and screw
dislocations are used to describe the plastic deformation, e.g., Gurtin
et al. (2007); Van Beers et al. (2013). For the multi-slip case, the resulting
numerical effort is comparably high.

1.9 Crystal plasticity

1.9.1 Basic assumptions

In the following, the key ingredients of crystal plasticity to describe ge-
ometrically linear dislocation-induced plasticity are outlined. For sim-
plicity, the single slip case is considered. In the subsequent sections,
however, the theory is refined for the multi-slip case.
The displacement gradient, H = grad (u), is assumed to be additively
decomposable into an elastic part He and a plastic part Hp by

H = He + Hp. (1.17)

From the definition of the infinitesimal strain tensor

ε = sym(H) =
1

2
(H + HT) (1.18)

and Eq. (1.17) it follows that

ε = εe + εp. (1.19)

For the single slip case, by Eq. (1.12) and Eq. (1.19), the plastic strain
reads εp = sym(γd ⊗ n). The relation between the elastic part of the
infinitesimal strain tensor εe and the Cauchy stress σ is assumed to be
given by Hooke’s law

σ = C[εe], (1.20)
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1.9 Crystal plasticity

where C denotes the fourth-order elastic stiffness tensor. Then, the
elastic energy density (per volume) can be written as

We =
1

2
σ · εe. (1.21)

The bulk stress power density pvol expended by the Cauchy stress reads

pvol = σ · ε̇ = σ · (ε̇e + ε̇p) = Ẇe + τ γ̇ (1.22)

where the resolved shear stress τ on the considered slip plane is given
by τ = σ · sym(d ⊗ n). Consequently,

pvol = Ẇe + Ẇp (1.23)

with Ẇp = τ γ̇. Obviously, the stress power density pvol is expressible
as the sum of the rate of the elastically stored energy density Ẇe and a
plastic power density contribution Ẇp. This is exploited further, for the
model derivations, in the following chapters.

1.9.2 Incorporation of viscoplasticity

The incorporation of the plastic slip rate γ̇ in pvol motivates the defi-
nition of a constitutive law for the evolution of γ̇. It is known that
metals behave rate-dependent, i.e., depending on the loading-rate of
the applied strain (e.g., Johnston, 1962; Taylor, 1965; Patel and Bieniek,
1979). A common shear rate law considering this type of behavior, for
example, is the overstress-type formulation (see, e.g., Little et al., 1981;
Sung et al., 2010, for an overview on rate-dependent formulations)

γ̇ = γ̇0 sg(τ)

〈 |τ | − τC

τD

〉p

. (1.24)
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The Macauley-brackets ensure positiveness of their argument. For
example, considering a scalar quantity a, 〈a〉 = max(a, 0). The rate-
dependence is realized through the rate-sensitivity parameter p, the
critical resolved shear stress for an activation of the slip system is τC,
and the quantity τD is called drag stress. The reference shear rate is
denoted by γ̇0. All of these four quantities are material parameters that
are usually identified in experiments.
Although metals in general behave rate-dependent, for particular appli-
cations, such as slow deformation processes, rate-independent models
can be used. For such cases, also the viscoplastic models can be applied
in order to regularize the issues that may arise with rate-independent
formulations and implementations (Han and Reddy, 2012).

1.9.3 Hardening due to dislocations

As mentioned in the beginning of this chapter, the plastic mechanical re-
sponse of metals is not necessarily uniform but rather evolves with the
proceeding deformation of the material. Therefore, the critical resolved
shear stress τC is not a constant, but depends on the state of deformation
and the concentration of defects. In general, it is also temperature-
dependent, but these effects are neglected in the present work.
The Taylor-relation (Taylor, 1934) was one of the first formulations con-
necting the critical resolved shear stress to the plastic state of the mate-
rial via the dislocation density ρ

τC = cbG
√

ρ, (1.25)

where G is the shear modulus, b is the Burgers vector magnitude, and
c is a constant of the order of unity, e.g., c ≈ 0.5 . . . 1. The relation
(1.25) is also used in gradient-extended plasticity theories. For example,
the theory by Nix and Gao (1998) considers an additive split of the
dislocation density ρ into a GND-density contribution ρGND and an
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1.9 Crystal plasticity

SSD-density contribution ρSSD. This split results in a critical resolved
shear stress of the following form

τC = cbG
√

ρGND + ρSSD. (1.26)

When the influence of GNDs can be neglected due to, for example,
sufficiently homogeneous deformations, Eq. (1.26) reduces to

τC = cbG
√

ρSSD. (1.27)

On this account, it should also be noted that the influence of GNDs on
the mechanical response can be modeled by other approaches, details
of which are given in the next section.
Continuum models and their employed hardening relations are in-
tended to be calibrated to experiments. Latent hardening models
(e.g., Kocks and Brown, 1966; Lavrentev and Pokhil, 1975; Lavrentev,
1980; Franciosi and Zaoui, 1982) are commonly used (e.g., Asaro and
Needleman, 1985; Anand and Kothari, 1996). They consider hardening
occurring in other (than primary) slip systems due to slip in primary
slip systems. The Mises-Hill framework of Gurtin and Reddy (2014)
considers self-hardening (i.e., slip systems harden due to their own
plastic slip) and latent hardening. A hardening rule is introduced on
the individual slip systems in dependence of accumulated plastic slips.
Other hardening approaches, based on scalar plastic strain measures,
have been developed (see Bouvier et al., 2005, for a brief overview).
Such approaches allow for rapid model parameter calibration with a
manageable number of experiments.
In the following, γ ≥ 0 is assumed, for simplicity. A phenomenological
hardening approach considering the plastic slip can be formulated
using the Voce-type law (Voce, 1948; 1955) with a hardening stress β

τC = τC
0 + β. (1.28)

51



1 Introduction

A typical value for the initial critical resolved shear stress is τC
0 ≈ 1 MPa

for gold (Sachs and Weerts, 1930). This is commonly referred to as
friction stress of the slip system, i.e., the stress necessary to activate
plastic slip in the absence of hardening induced by the presence of other
dislocations. The hardening stress in the Voce-formulation reads

β = (τC
∞ − τC

0 ) − (τC
∞ − τC

0 ) exp

(
− Θγ

(τC
∞ − τC

0 )

)
, (1.29)

where τC
∞ is the saturation stress, and Θ is the initial hardening modulus.

The stress β models dislocation-induced hardening caused by the ran-
dom trapping of dislocations in the bulk material. Thus, the contribu-
tions to hardening by the SSDs are accounted for. For γ → 0, it follows
that β → 0 ⇒ τC = τC

0 , and, for γ → ∞, that β → τC
∞ − τC

0 ⇒ τC = τC
∞

(see Fig. 1.13 for an exemplary plot). This hardening law is based on
the assumption that the hardening behavior saturates for large strains.
Therefore, the hardening stress cannot increase unlimited but reaches
a saturation stress τC

∞. It is noted that, for the multi-slip case, γ in
this formulation may be substituted, for example, by a measure of the
overall plastic deformation such as, e.g., an accumulated plastic slip γac.

τ C(γ)

γ

Θ

1

τ C
∞

τ C
0

β(γ0)

γ0

Figure 1.13: Hardening stress β as a function of plastic shear γ.
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1.9 Crystal plasticity

For monotonic loading processes, it can be shown that a direct formal
connection exists between the Voce-law from Eq. (1.28), Eq. (1.29) and
the dislocation-density-based Taylor formulation of hardening. There-
fore, the following evolution law for the dislocation density is consid-
ered (Kocks, 1976)

ρ̇ = (k1

√
ρ − k2ρ)γ̇, (1.30)

where the first term models storage of dislocations and the second term
accounts for annihilation of dislocations. The parameter k1 is a constant,
and k2 = k2(γ̇) is a rate-dependent annihilation parameter. For the sin-
gle slip case, the dislocation density ρ corresponds to the density of
dislocations of this single slip system. Considering the case of constant
shear rates γ̇ = const., Eq. (1.30) can be reformulated by

dρ

dt
= (k1

√
ρ − k2ρ)

dγ

dt
, (1.31)

or, equivalently, by
dρ = (k1

√
ρ − k2ρ) dγ. (1.32)

The derivative of the critical resolved shear stress, Eq. (1.25), with re-
spect to the dislocation density reads

dτC

dρ
=

cbG

2
√

ρ
. (1.33)

Additional substitution of Eq. (1.32) in Eq. (1.33) and regrouping of the
terms gives

dτC

dγ
=

cbG

2
(k1 − k2

√
ρ). (1.34)

Substitution of the Taylor-relation Eq. (1.25) into Eq. (1.34) yields

dτC

dγ
=

cbG

2

(
k1 − k2

τC

cbG

)
. (1.35)
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Using the abbreviations Θ̃ = cbGk1/2 and τC
∞ = k1cbG/k2 in Eq. (1.35)

leads to the Voce-form of Bouaziz (2012)

dτC

dγ
= Θ̃

(
1 − τC

τC
∞

)
. (1.36)

After separation of variables, the integration of Eq. (1.36) gives

1

Θ̃
ln

(
1 − τC

τC
∞

)
(−τC

∞) = γ + C. (1.37)

The integration constant C is obtained from the initial condition for
τC(γ = 0) = τC

0 , and, thus,

C =
1

Θ̃
ln

(
1 − τC

0

τC
∞

)
(−τC

∞). (1.38)

Combining Eq. (1.37) with Eq. (1.38) and solving for τC gives

τC = τC
∞ − (τC

∞ − τC
0 ) exp

(
− Θ̃γ

τC
∞

)
. (1.39)

Redefining the initial hardening modulus by Θ̃ = ΘτC
∞/(τC

∞ − τC
0 ) in

Eq. (1.39) recovers the Voce-hardening law from Eq. (1.28), Eq. (1.29)

τC = τC
∞ − (τC

∞ − τC
0 ) exp

(
− Θγ

τC
∞ − τC

0

)
. (1.40)

Thus, the phenomenological Voce-hardening relation can be motivated
from the evolution-law of the dislocation density, Eq. (1.30), and the
Taylor-relation for the critical resolved shear stress, Eq. (1.25), for
monotonic loading processes which are considered throughout the
present work.
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1.9 Crystal plasticity

1.9.4 Hardening due to geometrically necessary

dislocations: a gradient plasticity approach

Motivated by the classical plasticity theories failing to model uncon-
ventional phenomena such as size effects, the influence of GNDs on
the mechanical material behavior has been shown in experimental and
theoretical investigations going back to the early works by Ashby (1970).
Nowadays, gradient-extended plasticity theories are commonly used to
model these effects.
Many gradient plasticity theories use Nye’s dislocation density tensor,
Eq. (1.16), in order to consider the influence of non-local deformations,
i.e., the gradient-related contributions (e.g., Shizawa and Zbib, 1999;
Acharya and Bassani, 2000; Menzel and Steinmann, 2000; Arsenlis et al.,
2004; Gurtin et al., 2007). In the following, an exemplary single-slip
simple shear problem is discussed to illustrate the effects of a typical
gradient-related additional defect stress in the hardening model. The
defect energy density can be postulated as a potential from which the
gradient stress can be derived. This free energy contribution is often
taken to be quadratic in the gradients. One form of it reads

Wg(∇γ) = W0

( |∇γ|
g0

)2

. (1.41)

Here, W0 is the initial defect energy density. For the case of a defect
energy being linear (in the dislocation density, instead of the plastic
slip), this value is commonly taken to be W0 = ᾱG, (cf. Hirth and Lothe,
1982; Ohno and Okumura, 2007) with ᾱ ≈ 0.5 . . . 1 usually assumed to
be a constant. The quantity g0 denotes a normalization constant and
can, thus, be related to the internal length scale that is introduced by
the defect energy in the theory. In the case of a linear defect energy, this
constant could be taken to be the inverse of the Burgers vector length,
i.e., g0 = 1/b (see, e.g., Ohno and Okumura, 2007).
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The total free energy density is assumed to be the sum of the classic,
elastic energy Eq. (1.21) and the defect contribution Eq. (1.41) via

W (ε, γ, ∇γ) = We(ε, εp(γ)) + Wg(∇γ). (1.42)

By the principle of virtual power, the connection between a vectorial
gradient-related defect stress ξ and the resolved shear stress may be
derived in form of an additional balance equation. For brevity, this
is not performed here, but in the subsequent sections for the three-
dimensional case. It is noted that the resulting so-called microforce
balance is given by

τd = τ + div (ξ) , (1.43)

where τd is the dissipative shear stress of the slip system, under the
assumption that the dissipation of the bulk is induced by

D = τdγ̇. (1.44)

For the multi-slip case, it is assumed that the dissipation contributions
of all slip system can be superimposed (Cermelli and Gurtin, 2002).
The derivative of Eq. (1.41), w.r.t. the gradient of the plastic slip, reads

ξ =
∂Wg(∇γ)

∂∇γ
= 2

W0

g2
0

|∇γ| ∇γ

|∇γ| = 2
W0

g2
0

∇γ. (1.45)

For single-slip,

ξ · ex = ξx = 2
W0

g0




∣∣∣dγ
dx

∣∣∣
g0


 . (1.46)

Clearly, the gradient stress for this quadratic type of the defect energy is
linear in the plastic slip gradient. A different (non-quadratic) approach
is explored in Chapter 5. The divergence of the gradient stress reads

div (ξ) = dξx/ dx. (1.47)
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Consequently, the gradient stress contribution to the dissipative shear
stress in Eq. (1.43) is given by

dξx

dx
= 2

W0

g2
0

d
∣∣∣dγ

dx

∣∣∣
dx

, (1.48)

where the right-hand side derivative can be expressed by

d
∣∣∣dγ

dx

∣∣∣
dx

= sg

(∣∣∣∣
dγ

dx

∣∣∣∣
)

d2γ

dxdx
. (1.49)

A simple form of the flow rule may, for example, be postulated by

γ̇ = γ̇0

〈
τd − τC

0

τD

〉
. (1.50)

By substituting Eq. (1.43) and Eq. (1.47) into Eq. (1.50), this reads

γ̇ = γ̇0

〈
τ −

(
τC

0 − dξx

dx

)

τD

〉
. (1.51)

Thus, the critical resolved shear stress is given by

τC = τC
0 − dξx

dx
. (1.52)

It can be shown that, for the single-slip case, considering homogeneous
boundary conditions for the plastic slip γ, an average shear γ̄, and a
single-crystalline body of width 2l with passivated surfaces, the follow-
ing is obtained for the average critical shear stress

τ̄C = τ̄C
0 + 6

W0

l3g2
0

γ̄. (1.53)
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In Section 5.3 the general derivation is provided. The hardening term,
stemming from the quadratic defect energy, is linear in the average
plastic shear. In addition, the influence by the specimen size 2l (in
this single-crystalline case also the grain size) and by the internal length
scale lint = 1/g0 are exhibited. The smaller the grain size and / or the
larger the internal length scale, the higher is the hardening stress in
Eq. (1.53), see Fig. 1.14a. Ideal plastic behavior is recovered in the limit
case of lint = 0.
The additional stress contribution can be interpreted as a back-stress
caused by the presence of GNDs, i.e., by the pile-ups of dislocations
at GBs. This can be visualized by means of the spatial distribution of
plastic slip. For the considered case of the quadratic defect energy, the
resulting distribution of plastic slip is

γ(x) =
∆τ̄ g2

0

4W0

(
l2 − |x|2

)
(1.54)

with an average shear stress difference of ∆τ̄ = τ̄C − τ̄C
0 . The distribu-

tion of γ(x) is schematically depicted in Fig. 1.14b, showing the influ-
ence by the specimen size 2l and by the internal length scale lint.

τ̄ C(γ̄)

γ̄

increasing lint

decreasing size 2l

ideal plastic, lint = 0
τ C

0

(a)

γ |∇γ|

x/xmax

lint = 0

increasing 2l/decreasing lint

−1 1

(b)

Figure 1.14: (a) Critical average shear stress τ̄C as a function of average plastic shear γ̄ for
a quadratic defect energy. (b) Corresponding spatial distributions of plastic slip.
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Consistent with increased hardening, less pronounced plastic slip is
obtained. For example, the smaller the internal length scale, the larger is
the maximum plastic slip. The distribution of γ(x) for the ideal-plastic
material behavior is indicated by a dashed line (highlighted in blue).
Higher hardening due to GNDs is associated to larger gradients of plas-
tic slip. These are visualized (highlighted in red) for one of the slip
distributions in Fig. 1.14b. For the ideal plastic response, no gradients
are present (see dashed line in Fig. 1.14b, highlighted in red).
In real structures, the observed distributions of plastic slip are usually
of more complex shape and not necessarily parabolic. Therefore, a non-
quadratic generalization of the defect energy is proposed in Chapter 5.

1.9.5 Incorporation of grain boundary plasticity

In continuum theories, the collective dislocation behavior is modeled.
Consequently, the mechanisms of dislocation interactions at GBs are
also accounted for in an averaged manner. For the modeling of oligocrys-
talline aggregates, the incorporation of GB effects is of increased im-
portance. Compared to polycrystalline aggregates, the mechanical
response can be much more influenced by the characteristics of the GBs.
On the continuum scale, the dislocations are modeled in an averaged
fashion. Therefore, the discrete processes and reactions taking place at
GBs cannot be distinguished anymore (e.g., Zhang et al., 2014). Instead,
the GB dislocation processes are also modeled in an averaged sense.
For example, on the continuum scale the resulting plastic slip field can
be identical for two distinct discrete dislocation interactions. The direct
transmission of a dislocation (see Fig. 1.6g) produces the same strain
profile as the deposition of two dislocations at the GB (see Fig. 1.6d).
The incorporation of higher-order quantities such as the gradient stresses
in gradient plasticity theories necessitate the formulation of additional
boundary conditions. During the early developments of gradient
plasticity (GP) theories, the boundaries and GBs were usually assigned
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two types of idealized additional conditions. They were considered
to either allow dislocation transfer unrestrictedly or not at all. The
unrestricted-flow condition is termed microscopically free or simply
microfree condition. In contrast, the non-passing condition is referred
to as microhard condition (e.g., Gurtin, 2002). In continuum models, the
microhard condition is imposed by, for example, setting the slip rates
to zero near or on the GBs Γ

γ̇ = 0 ∀x ∈ Γ. (1.55)

The microfree case corresponds to a condition for the gradient stress

ξ · n = 0 ∀x ∈ Γ, (1.56)

where n denotes the normal vector of Γ. This condition is formally sim-
ilar to a classic macroscopic boundary condition for the Cauchy stress
on the surface ∂B

σn = 0 ∀x ∈ ∂B, (1.57)

where n denotes the normal vector of ∂B.
However, the two idealized conditions have been relaxed in recent
years to allow for behavior in-between. Exemplary works exploring
this are Van Beers et al. (2013); Wulfinghoff et al. (2013); Gottschalk et al.
(2016). In these theories, an additional yield condition for the GBs is
introduced. In conjunction with an assumed contribution of the GB
plasticity to the free energy, a finite resistance of the GBs against plastic
flow can be modeled. Details of such an approach are given in Chap-
ter 3. In the present section, however, only an introductory overview
on the behavior of these different types of boundary conditions is given.
For example, two grains are considered with a single slip system each
of nearly identical orientation. Initially, no dislocations are present in
both grains. For simplicity, three dislocations in motion are considered,
entering from the left in Fig. 1.15a (top), and highlighted in grey.
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Figure 1.15: Top: Plastic flow of dislocations. Bottom: corresponding discrete and
continuum plastic slip profiles. (a) Unrestricted by the grain boundary, (b) impenetrable
grain boundary prohibiting dislocation movement, (c) intermediate grain boundary
behavior, some dislocations can pass.

In the case of unrestricted plastic flow, all dislocations may pass the GB,
as shown in Fig. 1.15a (top). The discrete slip distribution γd is indicated
in black color, while the continuum slip distribution γ is highlighted in
blue color in Fig. 1.15a (bottom). At the GB, the same value of γ can
be observed as in the bulk material that the dislocations have already
passed through. However, for the non-passing condition, Fig. 1.15b, the
dislocations pile up at the GB and the plastic slip remains zero, there.
For the case that the GB resistance against plastic flow is modeled as a
finite value, some dislocations can pass and, thus, the pile-up at the GB
is decreased (see Fig. 1.15c). The value of the plastic slip, there, is in
between the values for the microfree and the microhard case.
A slightly different interpretation of the boundary/interface conditions
can be given, when considering that dislocations are active on both
sides of the GB. For the microfree condition, a homogeneous distribu-
tion of plastic slip is obtained (see, for example, Fig. 1.16a). In the case
that the GB is microhard, the plastic slip remains zero, there, but plastic
slip can be observed close to the GB in both grains, Fig. 1.16b. If the gra-
dients of plastic slip are large enough, the GB yield condition is fulfilled,
and the pile-ups are decreased. The plastic slip on the GB, then, takes
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non-zero values, see, e.g., Fig. 1.16c. The region over which the gradi-
ent influence is present in the continuum representation (schematically
indicated by “g” in Fig. 1.16c) is determined by the internal length scale
parameter. For this parameter, different interpretations exist to date (see
Zhang and Aifantis, 2015, for an overview). For example, the value of
the internal length scale of the gradient plasticity model by Aifantis and
Willis (2004; 2005) was determined in nanoindentation studies close to a
GB by Aifantis et al. (2006). There, the interpretation was given that this
length was the distance over which 90% of the dislocations piled up.

Γ

γd γ

(a)

Γ

γd γ

(b)

Γ
gγd γ

(c)

Figure 1.16: Discrete and continuum plastic slip profiles: (a) unrestricted by grain
boundary, (b) impenetrable grain boundary, (c) some dislocations can pass the grain
boundary. Region of gradient influence in the continuum plastic slip profile indicated
by “g”.
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Chapter 2

Crystal plasticity with an
accumulated plastic slip

2.1 Basic assumptions

Before grain boundaries and their influence, leading to inhomogeneous
plastic deformations, are considered in the following chapters, a basic
crystal-plasticity model is discussed, at first. A small-strain framework
is used in which the displacement of a material point x of a body B is
denoted by the vector u(x). The infinitesimal strain tensor is given by

ε = sym(grad (u)), (2.1)

with sym(A) = A + AT. An additive decomposition of the infinitesimal
strain tensor is assumed by

εe = ε − εp, (2.2)

and the plastic part of the strain tensor reads

εp =
∑

α

γαsym(dα ⊗ nα) (2.3)

with the plastic slips γα of α = 1, . . . , N slip systems. The slip directions
are denoted by dα and the slip plane normals by nα.
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2 Crystal plasticity with an accumulated plastic slip

An accumulated plastic slip can be introduced, e.g., by considering the
sum over all plastic slips on the individual slip systems via

γac(γ̂) =
∑

α

∫
|γ̇α| dt =

∑

α

|γα|, (2.4)

For practical reasons, however, plastic slip parameters λα are intro-
duced in this work. The slip parameters are introduced such that
they are non-decreasing by definition, i.e., λ̇α ≥ 0. Therefore, each slip
parameter represents the occurred plastic slip into its corresponding slip
direction. The plastic slip γα of a slip system is given by the difference
of the two (positive) slip parameters λα − λα+12, corresponding to
the positive and negative slip directions on slip system α. For an
FCC-crystal this results in α = 1, . . . , 24 plastic slip parameters. The
plastic strain tensor in terms of the plastic slip parameters is given by

εp =
∑

α

λαMs
α, (2.5)

and the accumulated plastic slip in terms of the plastic slip parameters
reads (Wulfinghoff and Böhlke, 2012; Wulfinghoff et al., 2013)

γac(λ̂) =
∑

α

∫
λ̇α dt =

∑

α

λα. (2.6)

In the following derivations, an additional so-called micromorphic field
variable is used. It is denoted by ζ and is introduced due to numerical
benefits regarding the implementation of the theory. The micromorphic
variable is the (micro) counterpart to the (macro) field γac. Due to the in-
troduction of ζ, an additional stress quantity is present in the equations
that follow. The two formulations, i.e., either solely in terms of γac or
in terms of both γac, ζ, are equivalent. In order to show equivalence, an
illustrative example of such an extension is discussed, at first.
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2.2 Illustrative example for a micromorphic extension

2.2 Illustrative example for a

micromorphic extension

The following example is based on an idea by Wulfinghoff (2011). A
linear spring system is considered, loaded by a single force F (see Fig.
2.1a). This system has one degree of freedom (DOF), the displacement u.

F

u

C

(a)

Ff f

w
v

C

(b)

Figure 2.1: (a) Spring system with an imposed force F and one degree of freedom u.
(b) Spring system with an imposed force F and three degrees of freedom w, v, f . Sketch
based on an idea by Wulfinghoff (2011).

For a conservative force F , the potential energy of the depicted sys-
tem (a) is given by

U(u) =
1

2
Cu2 − Fu, (2.7)

where the first term is the potential of the spring, and the second term is
a potential of the force F . Variation of the potential energy with respect
to the degree of freedom u gives

δU(u, δu) = (Cu − F )δu. (2.8)

By the principle of stationary action, the displacement in the equilib-
rium state can be obtained via

δU(u, δu) = 0 ∀δu ⇒ u =
F

C
. (2.9)

65



2 Crystal plasticity with an accumulated plastic slip

Additionally, a second system is considered with three DOFs: two dis-
placements w, v, and an additional force f (see Fig. 2.1b). The potential
energy of system (b) is given by

Ũ(v, w, f) =
1

2
Cw2 − Fv + f(v − w). (2.10)

The variation of Ũ with respect to its DOFs reads

δŨ(v, w, f, δv, δw, δf) = (Cw − f)δw + (f − F )δv + (v − w)δf. (2.11)

In the equilibrium state,

δŨ(v, w, f, δv, δw, δf) = 0 ∀δw, δv, δf, (2.12)

and, thus, the resulting field equations are given by

Cw − f = 0, (2.13)

f − F = 0, (2.14)

v − w = 0. (2.15)

The equivalence of both system formulations Fig. 2.1a, Fig. 2.1b can
be shown by requiring v = w = u. For Eqs. (2.13–2.15), it follows
that u = F/C.
It should be noted that the difference between the (original) DOF u = v

and the (additional) DOF w enters the potential energy, Eq. (2.10).
However, if equality between both DOFs is required, the potential
Eq. (2.10) reduces to the potential Eq. (2.7). Therefore, a minimization
of the potential energy Eq. (2.10) is equivalent to a minimization of
the potential energy Eq. (2.7), if the additional DOF w is required to
be equal to its counterpart u. In a similar fashion as in this illustrative
example, an additional field variable ζ is introduced as a micromorphic
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2.3 Principle of virtual power, resulting field equations and boundary conditions

counterpart to the accumulated plastic slip γac in the crystal plasticity
framework of this work. Details are given in the next section.

2.3 Principle of virtual power, resulting field

equations and boundary conditions

The field equations are derived using the principle of virtual power
(POVP), see, e.g., Gurtin (2008). It states that the virtual power of the in-
ternal forces δPint equals the virtual power of the external forces δPext,

δPint = δPext. (2.16)

An internal power density of the bulk has been presented, for the single
slip case, in Eq. (1.23). In the following, the internal power density is
formulated for the multi-slip case. Contrary to physically more sophis-
ticated crystal-plasticity theories (e.g., Gurtin, 2008), the plastic slips of
all slip systems are not modeled as individual degrees of freedom. In-
stead, the accumulated plastic slip γac is considered in the formulation,
and a micromorphic variable ζ is introduced as an additional DOF. The
internal power density of the bulk material, pvol, is assumed to be given
by the form

pvol = σ · ε̇ + πζ̇. (2.17)

Formally, this statement is an extension of the classic power of the inter-
nal forces. An additional, generalized stress π is considered, which is
work-conjugate to the rate ζ̇. In the absence of interfaces such as grain
boundaries, the internal power of the bulk, Pint, reads

Pint =

∫

B

pvol dv. (2.18)
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2 Crystal plasticity with an accumulated plastic slip

The external power Pext is assumed to be expanded on the external
boundaries ∂B in the form

Pext =

∫

∂B

t̄ · u̇ da, (2.19)

where t̄ is a prescribed traction vector expending power via the rate u̇

of the displacement. In the following, u̇ = δu̇ and ζ̇ = δζ̇ are virtual
rates, vanishing at Dirichlet boundaries ∂Bu for given {u, ζ}. Using the
virtual rates, and combining Eqs. (2.16–2.19) gives

∫

B

(
σ · δε̇ + πδζ̇

)
dv =

∫

∂Bt

t̄ · δu̇ da. (2.20)

Here, it should be noted that the variables εp and ζ are, a priori, chosen
to be independent, i.e., δε̇p = 0 (cf. Wulfinghoff, 2014).
Considering ε = sym(grad (u)) and applying form (B.1) of the diver-
gence theorem to the first term in Eq. (2.20) leads, after regrouping of
terms, to

−
∫

B

div (σ) · δu̇ dv +

∫

∂Bt

(σn − t̄) · δu̇ da +

∫

B

πδζ̇ dv = 0. (2.21)

Since the principle of virtual power is valid for arbitrary virtual rates δu̇

and δζ̇ , the left-hand side of Eq. (2.21) has to vanish, independently
of the virtual rates. Therefore, the set of field equations and bound-
ary conditions (BCs) in Table 2.1 is obtained. Here, the classic linear
momentum balance is extended by an additional so-called microforce
balance in which the generalized stress π is considered. In the case that
gradient contributions are neglected, no additional terms are present. If,
however, gradient contributions like, for example, ∇ζ are considered,
an additional vectorial microstress is present in the microforce balance
(see also Table 3.1).
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2.4 Constitutive equations

Table 2.1: Field equations and boundary conditions.

Linear momentum balance div (σ) = 0 ∀x ∈ B
Microforce balance π = 0 ∀x ∈ B
Cauchy stress Neumann BCs σn = t̄ on ∂Bt

It should be noted that the term “microforce balance” is used in accor-
dance with the notions of Gurtin (e.g., Gurtin, 2008). The form of the
equation resembles a balance but the equation is not a balance equation
in the classical sense.

2.4 Constitutive equations

A form for the free energy density may be assumed to be given by the
additive relation

W (ε, λ̂) = We(ε, εp(λ̂)) + Wh(γac(λ̂)), (2.22)

where besides the classic, elastic energy density an additional contri-
bution in form of a potential Wh for the hardening stress is assumed.
It should be noted that it is a convenient choice to assume a potential
for the hardening stress, from which the hardening stress can be de-
rived. Instead, one could neglect this contribution, here, and postulate
a hardening stress in the flow rule, subsequently. An extension of the
free energy Eq. (2.22), considering the micromorphic variable ζ, can be
formulated by

W (ε, λ̂, ζ) = We(ε, εp(λ̂)) + Wh(ζ) + Wχ(ζ − γac(λ̂)). (2.23)

The additional contribution Wχ is a so-called penalty energy density
of numerical nature. It ensures that the micromorphic variable ζ is
approximately equal to the accumulated plastic slip γac.
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2 Crystal plasticity with an accumulated plastic slip

In detail, the assumed three contributions to the free energy density are
given by the following forms

We(ε, εp(λ̂)) =
1

2
(ε − εp(λ̂)) · C[ε − εp(λ̂)], (2.24)

Wh(ζ) = (τC
∞ − τC

0 )ζ +
1

Θ
(τC

∞ − τC
0 )2 exp

(
− Θζ

τC
∞ − τC

0

)
,

(2.25)

Wχ(ζ − γac(λ̂)) =
1

2
Hχ(ζ − γac(λ̂))2. (2.26)

The parameter Hχ is a numerical penalty-parameter. For a sufficiently
large choice of Hχ, the micromorphic variable is ζ ≈ γac. In the limit
case of Hχ → ∞ ⇒ ζ = γac.
For a purely mechanical theory, the total dissipation reads

Dtot = Pext −
∫

B

Ẇ dv, (2.27)

with the power of the external forces Pext being equal to the power of
the internal forces Pint (see also Eq. (2.18))

Pext = Pint =

∫

B

σ · ε̇ + πζ̇ dv. (2.28)

Thus, the total dissipation is given by the difference between the power
of the external forces (or the power of the internal forces, respectively)
and the rate of the free energy. Considering the bulk dissipation as a
volume integral over a dissipation density D,

Dtot =

∫

B

D dv, (2.29)
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2.4 Constitutive equations

this dissipation density D can be specified. The combination of Eq. (2.23)
and Eqs. (2.27, 2.28, 2.29) leads to

D =

(
σ − ∂We

∂ε

)
· ε̇ − ∂We

∂εp
· ε̇p +

(
π − ∂Wh

∂ζ
−∂Wχ

∂ζ

)
ζ̇−∂Wχ

∂γac

γ̇ac ≥ 0.

(2.30)

In the following, it is assumed that σ and π are purely energetic stresses,
i.e., they can be derived from a potential. Then, the two equalities

σ =
∂We

∂ε
, (2.31)

π =
∂Wh

∂ζ
+

∂Wχ

∂ζ
(2.32)

can be deduced from Eq. (2.30). Therefore, the reduced dissipation
inequality reads

D = −∂We

∂εp
· ε̇p−∂Wχ

∂γac

γ̇ac ≥ 0. (2.33)

It is noted that −∂We/∂εp = σ, and that ∂Wχ/∂γac = −∂Wχ/∂ζ. The
latter quantity is abbreviated by p̌, in the following. This is, in fact, an
additional stress which arises due to the micromorphic approach. In
detail, it reads

p̌ = −∂Wχ

∂ζ
=

∂Wχ

∂γac

= Hχ

(
γac(λ̂) − ζ

)
. (2.34)

Here, it becomes apparent that for ζ → γac ⇒ p̌ → 0.
The reduced dissipation inequality, considering the above introduced
abbreviation, is given by

D = σ · ε̇p−p̌ γ̇ac ≥ 0. (2.35)
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2 Crystal plasticity with an accumulated plastic slip

Reformulating Eq. (2.35) in terms of the rates of the plastic slip parame-
ters λα by exploiting Eq. (2.3) and Eq. (2.6) leads to

D =
∑

α

(σ · Ms
α − p̌) λ̇α ≥ 0 (2.36)

with the symmetric part of the Schmid tensor Ms
α = sym(dα ⊗ nα).

The scalar product of the Cauchy stress and the symmetric part of
the Schmid tensor gives the resolved shear stresses τα = σ · Ms

α. It is
assumed that the bulk material dissipation is induced by the superpo-
sition of dissipative shear stresses τd

α from the individual slip systems
(e.g., Cermelli and Gurtin, 2002)

D =
∑

α

τd
αλ̇α. (2.37)

From Eq. (2.36) and Eq. (2.37) it can be concluded that

τd
α = τα − p̌. (2.38)

Furthermore, using Eq. (2.34) in Eq. (2.32), the following relation is
obtained for the numerical stress p̌

p̌ = −π +
∂Wh

∂ζ
, (2.39)

where the second term on the right-hand side is a hardening stress that
is abbreviated by β = ∂Wh/∂ζ, in the following. Combining Eq. (2.38)
and Eq. (2.39) leads to dissipative shear stresses in form of

τd
α = τα + π − β. (2.40)

Due to the microforce balance (Table 2.1), π = 0, and the dissipative
shear stresses reduce to

τd
α = τα − β. (2.41)
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2.5 Qualitative assessment of accumulated plastic slip distribution

The flow rule for the bulk material is assumed to be of overstress type,
formulated in the plastic slip parameter rates λ̇α,

λ̇α = γ̇0

〈
τd

α − τC
0

τD

〉p

, (2.42)

and, by means of Eq. (2.41),

λ̇α = γ̇0

〈
τα − (τC

0 + β)

τD

〉p

. (2.43)

The finite element implementation of the presented theory in this chap-
ter is a special case of the more general implementation which considers
gradients of the micromorphic variable as well as GB contributions to
the free energy. For brevity, the implementation of the special case at
hand is not described in detail. The particulars of the more general
implementation are given in Section 3.4.

2.5 Qualitative assessment of accumulated

plastic slip distribution

2.5.1 Motivation

The simplification in the modeling of using the accumulated plastic
slip γac, instead of considering the individual slips γα of all slip sys-
tems as DOFs, raises the question whether this significant reduction in
the DOFs is still reasonable regarding the physicality of the numerical
results. Due to a lack of in-house availability of an implementation of
a more sophisticated crystal-plasticity (CP) model, a direct comparison
with a physically richer model could not be performed within the scope
of the present work. Instead, a qualitative assessment of the model from
Chapter 2 in comparison to experimental results of torsion-deformed
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2 Crystal plasticity with an accumulated plastic slip

pseudo-single-crystalline gold microwires is carried out. Details of the
experimental approach are given in the collaborative publication by
Ziemann et al. (2015). The experimental characterization and evalua-
tion was performed by M. Ziemann, M. Walter and P.A. Gruber from
the Institute of Applied Materials, KIT. Here, a brief summary of the
experiments is given and it is focused on the comparison with CP re-
sults. Large parts of the CP results and discussion are taken from the
modeling contribution to the joint work Ziemann et al. (2015).

2.5.2 Summary of the experimental characterization

and torsion test results

Polycrystalline microwires were produced from high-purity gold by
long-time annealing at high temperatures by Ziemann et al. (2015).
After the annealing process, the cross-sections of the wires are predom-
inantly single-crystalline. Thereby, a so-called bamboo-like structure
of the wires is achieved, i.e., the wires consist of a sequence of single-
crystalline grains along their central axes. Different orientations of the
grains are observed. By electronic backscatter diffraction, grains of
〈100〉-crystal-orientation (with respect to the central axis) are identified.
Grains are chosen which are large enough (in lateral direction) to allow
for an evaluation of their cross-sections unimpeded by GB influences.
By using the focused ion beam technique, cross-sections are extracted
at the center of the grains. Subsequently, the cross-sections are charac-
terized by Laue-microdiffraction experiments. The obtained diffraction
data allows to calculate the misorientation of the cross-sections for each
data point with respect to the central fiber. By this procedure, a measure
of global deformation is obtained. Additionally, the local deformation
is calculated by means of the kernel average misorientation (KAM),
which represents the averaged misorientation of a data point, obtained
by averaging over the misorientations of the eight nearest (neighboring)
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2.5 Qualitative assessment of accumulated plastic slip distribution

data points.Results of the normalized (global) misorientation maps are
depicted for cross-sections obtained from different torsion-deformed
microwires at several maximum plastic shear values γr=R in Fig. 2.2.
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Figure 2.2: Normalized misorientation maps from cross-sections of different twisted
bamboo-structured Au microwires with a diameter of 25µm. The corresponding grains
have orientations close to the [001]-orientation with respect to the experimental (out-of-
plane) rotation axis. In this analysis, the rotation of every data point is referred to the
center element and the misorientation is normalized to the maximum misorientation that
occurred in the particular cross-section. Figure reprinted from Ziemann et al. (2015) with
permission from Elsevier. Images courtesy of M. Ziemann.

It is observable that pronounced differences are present in the global
deformation maps of the cross-sections of different wires. Some of the
cross-sections show roughly a double-fold symmetry of the misorienta-
tion. For the same cross-sections, the misorientation is averaged over
circular line segments and plotted over the distance to the center of the
cross-sections in Fig. 2.3a (averaged for two different samples at each
macroscopic plastic deformation). Considering the averaged misorien-
tation distribution in radial direction, it is observable that an almost
linear increase from the center towards the lateral surface is present for
small overall plastic deformations.
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With increasing overall plastic deformation, the misorientation develop-
ment saturates into a plateau-like distribution.
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Figure 2.3: (a) Averaged misorientation vs. distance to the center, calculated for the
cross-sections shown in Fig. 2.2, averaged for both grains extracted from the same
wire. (b) Averaged accumulated plastic slip vs. distance to center, calculated for the
cross-sections shown in Figs. 2.5–2.7. Figures reprinted from Ziemann et al. (2015) with
permission from Elsevier. Experimental data courtesy of M. Ziemann.

Close to the surface of the microwires, the result, therefore, contradicts
an idealized, solely linear plastic-deformation gradient in radial direc-
tion. It is possible that this is due the annihilation of a substantial part
of the dislocations close to the surface (Ziemann et al., 2015).
Additionally, the KAM-distributions of the cross-sections are depicted
in Fig. 2.4. Comparison of the visible deformation traces in Fig. 2.4 to
the global deformation maps in Fig. 2.2 reveals that the traces are mainly
correlating to the borders of regions that are substantially deformed
(Ziemann et al., 2015). For the case of an 〈100〉-crystal-orientation ide-
ally aligned with the wire axis, one would expect a fourfold symme-
try of the global deformation field due to four slip systems that are
equally favorable for an activation under the imposed torsion loading.
However, the experimental results do not exhibit this type of plastic
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2.5 Qualitative assessment of accumulated plastic slip distribution

behavior. This can be explained by considering deviations from the
ideal orientation that occurred in the preparation of the experimental
samples (Ziemann et al., 2015).
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Figure 2.4: Normalized kernel average misorientation maps from cross-sections of dif-
ferent twisted bamboo-structured Au microwires with a diameter of 25 µm. The arrows
show the in-plane 〈100〉-orientations. Figure reprinted from Ziemann et al. (2015) with
permission from Elsevier. Images courtesy of M. Ziemann.

Exemplary, this is investigated using a finite element implementation of
the preceding crystal plasticity model, in the following.

2.5.3 Crystal plasticity simulation results

In order to qualitatively compare a measure of deformation from the
simulations to the experiments, crystal plasticity simulations with γac

as (plastic) deformation measure are carried out within a micromorphic
implementation. Thereby, field distributions of the accumulated plastic
slip are obtained. It is remarked that the use of the micromorphic
approximation of γac in the simulations is feasible if the penalty parame-
ter Hχ is chosen large enough and a sufficiently fine finite element mesh
is used (see Appendix C.1 for a comparison of both field distributions
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for the single-crystalline case of this section).
A cylindrical simulation volume of diameter 25µm and of height
31.25µm is considered, at first, in the ideally aligned 〈100〉-orientation.
The top surface and the bottom surface are rotated, relatively to each
other, until a relative maximum plastic shear of γr=R = 0.02 is reached.
In lateral direction, the displacement of the top and bottom nodes is
unrestricted, except for one node that is spatially fixed (for uniqueness
of the position in space). The model parameters are listed in Table 2.2.

Table 2.2: Model parameters for simulations of gold single-crystals.

C1111 C1122 C1212 Hχ p

168 GPa 121 GPa 75 GPa 106 MPa 20

γ̇0 Θ τC
0 τC

∞ τD

10−3 1/s 330 MPa 6 MPa 55 MPa 1 MPa

In Fig. 2.5, the resulting distributions of the accumulated plastic slip
are depicted, at the same fixed values of the plastic overall shear as
in the experiments. As it is expected for the ideally with the central
axis aligned 〈100〉-crystal-orientation, a fourfold symmetry of the ac-
cumulated plastic slip distribution is obtained and evolves with the
overall plastic deformation. In addition, simulations are carried out that
consider deviations from the ideal alignment of the crystal orientation
with respect to the rotation axis. As also discussed above, these devia-
tions occur in the experimental setup due to the imperfect production of
ideally with the central axis aligned crystal-orientations as well as small
misalignments in the experimental setup (Ziemann et al., 2015).
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Figure 2.5: CP simulation: Evolution of the spatial distribution of the accumulated plastic
slip with increasing twist within an ideally aligned 〈100〉-oriented single-crystalline
cylinder of Au. Figure reprinted from Ziemann et al. (2015) with permission from Elsevier.

In Fig. 2.6, the accumulated plastic slip distribution is shown for a mis-
alignment of 8◦ around one in-plane axis, and, in Fig. 2.7, for the case
of an additional misalignment of 8◦ around the second in-plane axis.
The corresponding overall mechanical responses are plotted in Fig. 2.9b,
showing a comparably small effect of the misorientations.
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Figure 2.6: CP simulation: Evolution of the spatial distribution of the accumulated plastic
slip with increasing twist within a misaligned 〈100〉-oriented single-crystalline cylinder
of Au. Misalignment of 8◦ related to the y-axis. Figure reprinted from Ziemann et al.
(2015) with permission from Elsevier.
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However, it is observable that significant changes in the distributions of
γac are caused by the misorientations (Figs. 2.6–2.7). In both cases, the
fourfold-symmetry distribution changes to different twofold symmetric
distributions, also clearly visible in the misorientation distribution, see
Fig. 2.2 (γr=R = 0.6%, bottom image).
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Figure 2.7: CP simulation: Evolution of the spatial distribution of the accumulated plastic
slip with increasing twist within a misaligned 〈100〉-oriented single-crystalline cylinder
of Au. Misalignment of 8◦ related to both the x-axis and the y-axis. Figure reprinted from
Ziemann et al. (2015) with permission from Elsevier.

Additionally, in the experimental KAM-maps, high-deformation areas
are observed that could correlate to regions of large gradients of γac. The
in-plane gradient components of γac are depicted for the different cases
in Fig. 2.8. High gradients of γac are observable in between regions
of significantly differing plastic deformations. The symmetry of the
gradient distributions is affected by the misorientation (see Figs. 2.8d–
2.8i). The gradient distributions in Figs. 2.8b–2.8c show similar maxima
as, for example, the KAM-map in Fig. 2.4 (top image for γr=R = 1.6%).
Consequently, results qualitatively, at least partly, similar to the experi-
mental data are obtained by the modeling approach with γac.
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Figure 2.8: (a) Field distribution of γac in the cross-section indicated in Fig. 2.5, (b) cor-
responding field distribution of |∇γac|x, and (c) of |∇γac|z . (d) Field distribution of γac

in the cross-section indicated in Fig. 2.6, (e) corresponding field distribution of |∇γac|x,
and (f) of |∇γac|z . (g) Field distribution of γac in the cross-section indicated in Fig. 2.7,
(h) corresponding field distribution of |∇γac|x, and (i) of |∇γac|z .

81



2 Crystal plasticity with an accumulated plastic slip

It is remarked that only a first comparison has been performed and
a quantitative assessment was not performed. This would require
to calculate the misorientation of the numerical results. For a direct
correlation of simulation and experimental results, also, many more
cross-sections would need to be characterized, than they could be
evaluated within the scope of Ziemann et al. (2015). Otherwise, the
influence by dislocation substructures (Ziemann et al., 2015) on the
experimental results cannot be entirely ruled out as a possible influence.
However, qualitative correspondence of the model results to the ex-
perimental data is demonstrated, at least to some extent, considering
the radial distributions of γac, averaged over circular line segments
(Fig. 2.3b). With evolving plastic deformation, an overall increase in the
gradients of this measure, similar to the increase in the experimental
misorientation-gradients, Fig. 2.3a, is observable. As visible in Fig. 2.3b,
the small misorientations, however, lead only to moderate differences in
the radial distributions of γac. Therefore, these misorientations cannot
explain the substantial differences occurring for different experimental
samples which have been shown in Ziemann et al. (2015). In addition,
the γac-distributions show an almost ideal, linear course. This is the
case because annihilation of dislocations is not accounted for in the
theory, due to the non-decreasing plastic slip parameters.
It is suggested to, additionally, investigate also the interaction mech-
anisms of dislocations across GBs between smaller grains of different
orientations in further experimental works and accompanying crystal
plasticity simulations, in the future. For this, a physically more so-
phisticated model should be used that allows to also reproduce the
annihilation of dislocations close to the surface.
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2.5 Qualitative assessment of accumulated plastic slip distribution

2.5.4 Influence of 〈100〉- and 〈111〉-orientations

on the mechanical response under

tensile and torsion loading

One of the goals of this work is the modeling of size effects under
different loading conditions such as tensile and torsion loading (e.g.,
in the work by Chen et al., 2015). In a collaborative effort, microwires
of different diameters are investigated both with experimental char-
acterization and numerical simulations by Bayerschen et al. (2016b).
In the simulations, gradient contributions are considered. The corre-
sponding results are discussed in Section 3.6. In the investigations, a
non-negligible influence by the crystal orientation of different grains
on the mechanical response is found. For some of the investigated
microwires, mainly two orientations are present in the experimentally
characterized cross-sections. Therefore, in the current section of this
thesis, the influence of these two crystal orientations is investigated,
isolated from the gradient- and GB contributions, at first. The com-
putational implementation of the preceding mathematical framework,
from Chapter 2, is exploited, therefore. Subsequently, in Section 3.6.6,
the discussion is refined taking the gradient and GB contributions
into account.
Simulations of the above-described single-crystalline cylindrical vol-
ume of diameter 25µm are carried out for two crystal-orientations.
Torsion test simulation results are compared to tensile test simulation
results: at first, for the above-investigated 〈100〉-orientation aligned
with the central wire-axis, then, additionally, for the case that the
〈111〉-orientation is aligned with the central wire-axis.
In Fig. 2.9, for both crystal orientations, the tensile stress-strain curves
are compared to the maximum shear stresses τr=R = 2MT /(ΠR3) (MT :
torque , R: max. radius) over the maximum shear for torsion loading. It
is observable that the 〈100〉-orientation is behaving substantially softer
under tensile loading than the 〈111〉-orientation (Fig. 2.9a).
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Figure 2.9: (a) Stress-strain curves of two single-crystals with different orientations under
tensile loading. (b) Maximum shear stress vs. maximum shear of the single-crystals from
(a) under torsion loading. Additionally shown are the torsion-responses of the single-
crystals for misorientations from the ideally aligned orientation, see Figs. 2.6–2.7.

Under torsion loading, this effect is reversed (Fig. 2.9b). Since gradi-
ent and GB contributions are neglected, this effect can only stem from
the employed crystal orientations. The pronounced differences in the
orientations of the slip systems with regard to the loading direction
for the different crystal orientations cause the differences in the overall
mechanical responses. In Fig. 2.10, the plastic slip contributions to γac

are depicted for the employed torsion loading. The used slip system
convention can be found in Appendix E.1. For the considered case, only
three slip systems are active (α = 7 − 9, see Appendix E.2 for their spa-
tial orientation). These slip systems are located on the 〈111〉-slip plane
(see Fig. 1.5b) which is perfectly aligned with the lateral cross-sections
of the simulation volume, here. Therefore, these systems are favorable
for an activation of plastic slip. In contrast, for the 〈100〉-orientation,
mainly four slip systems (α = 1, 4, 7, 10) contribute to γac under torsion
loading (Fig. 2.11). These slip systems are oriented diagonally within
the surface planes of the FCC unit-cell (see Fig. 1.5c).
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2.5 Qualitative assessment of accumulated plastic slip distribution
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Figure 2.10: Accumulated plastic slip contributions γ̃α = λα + λα+12 of the individual
slip systems α = 1, . . . , 12 to the accumulated plastic slip γac for an 〈111〉-oriented crystal
under torsion loading. The slip system convention is listed in Appendix E.1.

Since for the 〈100〉-orientation, these slip planes of the FCC unit-cell
are perfectly aligned with the lateral cross-sections of the simulation
volume, the corresponding slip systems are favorably oriented to be ac-
tivated during the plastic deformation process. The activation of these
slip systems causes the fourfold symmetry of γac (Fig. 2.11).

γ̃10 0.05 γ̃20 0.005 γ̃30 0.005 γ̃40 0.05 γ̃50 0.005 γ̃60 0.005 γac0 0.1

x

y

z
γ̃70 0.05 γ̃80 0.005 γ̃90 0.005 γ̃100 0.05 γ̃110 0.005 γ̃120 0.005

Figure 2.11: Accumulated plastic slip contributions γ̃α = λα + λα+12 of the individual
slip systems α = 1, . . . , 12 to the accumulated plastic slip γac for an 〈100〉-oriented crystal
under torsion loading. The slip system convention is listed in Appendix E.1.

However, all other slip systems are also activated, leading to non-zero
γac values in the regions between the maximum γac values. For the
same applied maximum shear, the single crystal with 〈111〉-orientation
shows a substantially smaller magnitude of γac, compared to the one
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2 Crystal plasticity with an accumulated plastic slip

with 〈100〉-orientation. Thus, the 〈100〉-orientation responds stiffer for
this loading type (see Fig. 2.9b).
Concluding from the single-crystal results of this section, the influence
of the crystal-orientations cannot a priori be neglected when investi-
gating and simulating the mechanical response of oligocrystalline mi-
crowires with several grains in 〈111〉- and 〈100〉-orientation.
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Chapter 3

Gradient crystal plasticity with
an accumulated plastic slip and
grain boundary yielding

3.1 Motivation

In microstructured non-single-crystalline materials, the presence of GBs
leads to different mechanical responses, compared to single-crystalline
materials. Therefore, this influence needs to be considered when mod-
eling such materials on the continuum scale. The micromorphic accu-
mulated plastic slip framework from the preceding chapter is extended
to account for the influence of GBs that impede dislocation movement.
Therefore, a GB yield condition is introduced. This condition provides
a mechanism of “adjusting” the yield strength of the GBs, which then,
in turn, phenomenologically models mechanisms such as transfer of
dislocations and deposition of dislocations at the GBs. In addition, the
principle of virtual power is enhanced to consider the arising contribu-
tions from the occurring gradients of the micromorphic variable ζ at the
GBs and at the boundaries. Large parts of this chapter are based on the
works Wulfinghoff et al. (2013) and Bayerschen et al. (2015).
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3 Gradient crystal plasticity with an accumulated plastic slip and GB yielding

3.2 Gradient-extended principle of virtual

power, resulting field equations

and boundary conditions

The basic assumptions from Section 2.1 are assumed to hold in the
present chapter, too. By extending the internal power density of the
bulk, Eq. (2.17), with a ∇ζ-contribution, the following is obtained

pvol = σ · ε̇ + πζ̇ + ξ · ∇ζ̇ . (3.1)

Here, ξ is a generalized or gradient-related vectorial stress, work-
conjugate to ∇ζ̇. In addition, it is assumed that the internal power
of the bulk can be decomposed into a volumetric contribution and a
GB contribution

Pint =

∫

B

pvol dv +

∫

Γ

ΞΓζ̇ da, (3.2)

where ΞΓ is a GB microtraction. This microtraction is imposed in form
of a jump-condition for the generalized stress ξ, as it is shown below.
Possible jump contributions of ζ (at the GBs) are neglected, to keep the
number of constitutive equations and necessary new material param-
eters low. Considering an extension of the external power Pext from
Eq. (2.19), the following is postulated

Pext =

∫

∂B

(
t̄ · u̇ + Ξ̄ζ̇

)
da. (3.3)

Here, the quantity Ξ̄ is a prescribed microtraction, expending power
via the rate ζ̇ of the micromorphic variable. The boundary ∂B can be
divided into ∂B = ∂Bt ∪ ∂BΞ ∪ ∂Bu with ∂Bt ∪ ∂BΞ ∩ ∂Bu = ∅.
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3.2 Gradient-extended principle of virtual power, resulting field equations and BCs

Furthermore, the gradient-extension of the POVP (Eq. (2.16)) reads

∫

B

(
σ · δε̇ + πδζ̇ + ξ · ∇δζ̇

)
dv +

∫

Γ

ΞΓδζ̇ da =

∫

∂Bt

t̄ · δu̇ da +

∫

∂BΞ

Ξ̄ δζ̇ da.

(3.4)

Then, by substituting ε = sym(∇u) in Eq. (3.4), taking into account the
chain rule as well as σ = σT, and by applying the divergence theorem
in the form (B.1) to the first term of the volume integral in Eq. (3.4), the
following form is obtained

∫

B

σ · δε̇ dv =

∫

B

−div (σ) · δu̇ dv +

∫

∂Bt

σn · δu̇ da. (3.5)

In (B.1), the continuity of t = σn has been considered, already. Conse-
quently, jump terms at the GB Γ are neglected. The application of the
divergence theorem of the form (B.3) to the third term of the volume
integral in Eq. (3.4) gives

∫

B

ξ · ∇δζ̇ dv =

∫

B

−div (ξ) δζ̇ dv +

∫

∂BΞ

ξ · n δζ̇ da −
∫

Γ

JξK · n δζ̇ da. (3.6)

After substitution of Eqs. (3.5) and (3.6) into Eq. (3.4) and regrouping of
terms, the following is obtained

−
∫

B

div (σ) · δu̇ dv +

∫

B

(π − div (ξ)) δζ̇ dv +

∫

∂Bt

(σn − t̄) · δu̇ da

+

∫

∂BΞ

(ξ · n − Ξ̄)δζ̇ da +

∫

Γ

(ΞΓ − JξK · n) δζ̇ da = 0. (3.7)

Requiring the left-hand side of Eq. (3.7) to vanish for arbitrary δu̇, δζ̇

yields the field equations and GB conditions / BCs in Table 3.1.
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3 Gradient crystal plasticity with an accumulated plastic slip and GB yielding

Table 3.1: Field equations and boundary conditions with gradient extension. The jump
of ξ is denoted by JξK = ξ+ − ξ− . The GB normal points from “-” to “+”. Table reprinted
from Wulfinghoff et al. (2013) with permission from Elsevier.

Linear momentum balance 0 = div (σ) ∀x ∈ B
Microforce balance π = div (ξ) ∀x ∈ B \ Γ

GB microtraction ΞΓ = JξK · n ∀x ∈ Γ

Neumann BCs for: Cauchy stress σn = t̄ on ∂Bt

Grad. stress ξ · n = Ξ̄ on ∂B Ξ

The classic balance of linear momentum is supplemented by an addi-
tional microforce balance. This takes into account the microstresses oc-
curring due to the introduction of the additional gradient-contribution
in the internal power density. Consequently, additional microtraction
conditions for the gradient stress ξ at the GBs and at the external bound-
aries need to be prescribed (see also Table 3.1).

3.3 Constitutive equations with an additional

grain boundary yield condition

The free energy density of the bulk, Eq. (2.22), is extended by a gradient-
related defect energy Wg(∇ζ) and, therefore, reads

W (ε, λ̂, ζ, ∇ζ) = We(ε, εp(λ̂))+Wh(ζ)+Wχ(ζ − γac(λ̂))+Wg(∇ζ) (3.8)

with

Wg(∇ζ) = W0

( |∇ζ|
g0

)2

. (3.9)

All remaining energy contributions are identical to Eqs. (2.24–2.26).
The need for additional contributions to the free energy arises from
the coarsening error made in the continuum modeling of the elastic
energy. Distinct dislocation phenomena are modeled, here, with the
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3.3 Constitutive equations with an additional grain boundary yield condition

two contributions Wh(ζ) and Wg(∇ζ): on the one hand, the isotropic
hardening resulting from SSDs, and, on the other hand, the influence of
GNDs. Furthermore, Wg(∇ζ) introduces a length scale into the model
by means of the normalization constant g0 (which is assumed to be a
constant, here). This quadratic formulation of the defect energy results
in a linear dependence of the microstress ξ on the gradient ∇ζ . The use
of such a quadratic form is a convenient choice that is made in many
works in the literature (e.g., Gurtin, 2000; Cermelli and Gurtin, 2002).
In Eq. (3.9), the constant W0 is the initial defect energy. For the case
of the defect energy being linear in the dislocation density, this value
is often taken to be W0 = ᾱG (cf. Hirth and Lothe, 1982; Ohno and
Okumura, 2007). The shear modulus of the material is denoted by G,
and ᾱ ≈ 0.5 . . . 1 is commonly assumed to be a constant.
In addition to the free energy density W of the bulk material, an
additional energy density per unit surface is introduced on the GBs
(Wulfinghoff et al., 2013)

WΓ(ζ) = ΞC
0 ζ. (3.10)

In combination with a GB yield criterion, this additional energy leads
to an explicit consideration of the plastic deformation at the GBs in
the continuum model. As it is shown in the following, the GB yield
strength is given by ΞC

0 which is assumed, here, to be constant. In a
more generalized theory, this parameter would be expected to depend
on the orientation of slip systems in adjacent grains as well as on the
GB orientation (see, for example, the GB theory by Gurtin, 2008, which
considers inter-action factors for the slip systems).
Upon neglecting thermal effects, the total dissipation, extended by the
GB-contribution, reads

Dtot = Pext −
∫

B

Ẇ dv −
∫

Γ

ẆΓ da ≥ 0. (3.11)
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3 Gradient crystal plasticity with an accumulated plastic slip and GB yielding

After exploiting Pext = Pint, the total dissipation Dtot can be summa-
rized in the form

Dtot =

∫

B

D dv +

∫

Γ

DΓ da ≥ 0. (3.12)

In the following, the dissipation density of the bulk from Eq. (2.30) is
abbreviated by D =: Dζ . Substitution of Eq. (3.8) in Eq. (3.11) gives a
bulk dissipation, in Eq. (3.12), that reads

D = Dζ +

(
ξ − ∂Wg

∂∇ζ

)
· ∇ζ̇ ≥ 0. (3.13)

This inequality reduces to the dissipation inequality from Eq. (2.33) after
assuming energetic stresses (ξ = ∂Wg/∂∇ζ, consequently). If the bulk
dissipation is induced by the dissipative shear stresses of the individual
slip systems, see Eq. (2.37), the dissipative shear stresses are given by
Eq. (2.40). Exploiting the microforce balance (i.e., div (ξ) = π) yields
dissipative shear stresses of the form

τd
α = τα + div (ξ) − β. (3.14)

It should be noted that an additional term, div (ξ), is present in Eq. (3.14),
as a consequence of the consideration of the gradient ∇ζ in the POVP.
Using Eq. (3.14) in the flow rule of the bulk, Eq. (2.42), the following is
obtained for the plastic slip parameters λ̇α

λ̇α = γ̇0

〈
τd

α − τC
0

τD

〉p

= γ̇0

〈
τα + div (ξ) − (τC

0 + β)

τD

〉p

. (3.15)

Furthermore, the GB dissipation from Eq. (3.11) and from Eq. (3.12),
respectively, reads

DΓ = (ΞΓ − Ξe
Γ) ζ̇ = Ξd

Γ ζ̇ ≥ 0, (3.16)
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3.4 Finite element implementation

where Ξd
Γ is the dissipative GB microtraction. The energetic GB micro-

traction Ξe
Γ is given by

Ξe
Γ = ∂ζWΓ = ΞC

0 , (3.17)

and constitutes the GB yield strength, if GB dissipation is neglected. The
GB yield function is introduced as

fΓ = Ξd
Γ − ΞC

D = [[ξ]] · n − (Ξe
Γ + ΞC

D), (3.18)

where ΞC
D is the dissipative contribution to the GB yield strength. How-

ever, in the numerical simulations, this dissipative contribution is ne-
glected, and, therefore,

fΓ = [[ξ]] · n − Ξe
Γ = [[ξ]] · n − ΞC

0 . (3.19)

For the GBs, the Kuhn-Tucker conditions read

fΓ ≤ 0, ζ̇ ≥ 0, ζ̇fΓ = 0, (3.20)

assuming that the GBs behave rate-independent.

3.4 Finite element implementation

3.4.1 Linearization of the principle of virtual power

The theory at hand is implemented using the finite element method
(FEM). An in-house FE-code is used for this purpose. A global Newton
algorithm is used to solve for the field variables {u, ζ}. Thus, each
FE-node has four degrees of freedom. The principle of virtual power,
Eq. (3.4), is linearized for the implementation. For brevity, the subscript
”n+1“ of quantities of a subsequent time step is dropped.
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3 Gradient crystal plasticity with an accumulated plastic slip and GB yielding

Accordingly, the linearization of Eq. (3.4) in the virtual velocities δu̇ is
given by the following form

∫

B

(
∂σ

∂ε
[∆ε] +

∂σ

∂ζ
∆ζ

)
· δε̇ dv = −

∫

B

σ · δε̇ dv +

∫

∂Bt

t̄ · δu̇ da ∀δu̇,

(3.21)

and the linearization of Eq. (3.4) in δζ̇ is

∫

B

(
δζ̇
(∂β

∂ζ
− ∂p̌

∂ζ

)
∆ζ − δζ̇

∂p̌

∂ε
· ∆ε +

∂ξ

∂∇ζ
[∇(∆ζ)] · ∇(δζ̇)

)
dv

+

∫

Γact

δζ̇
∂Ξe

Γ

∂ζ
∆ζ da = −

∫

B

((
β − p̌

)
δζ̇ + ξ · ∇(δζ̇)

)
dv

+

∫

∂BΞ

Ξ̄ δζ̇ da −
∫

Γ\Γact

(Ξd
Γ + Ξe

Γ) δζ̇ da

︸ ︷︷ ︸
I

−
∫

Γact

(ΞC
D + Ξe

Γ) δζ̇ da

︸ ︷︷ ︸
J

. (3.22)

Here, the algorithmic tangent is denoted by the partial derivatives. In
Eq. (3.22), it has been exploited, already, that the yield condition is
fulfilled on the set of plastically active GB-nodes, i.e., on Γact = {x ∈
Γ : ζ̇ > 0}. It is remarked that the integral I is not relevant for the
computations if δζ̇ is set to vanish on Γ\Γact. For the same reason, the
linearization of I can be neglected.
The linearized form, Eqs. (3.21, 3.22), is discretized in space with the
FEM. An integration point routine is used to compute the stresses and
the tangent during each Newton iteration. Therefore, an implicit Euler-
scheme is applied to Eq. (3.15) which yields

λα = λα,n + γ̇0∆t

〈
σ · MS

α − p̌ − τC
0

τD

〉p

. (3.23)

For the local Newton scheme, the residual is given by

rσ = −C
−1[σ] + ε − εp

n − ∆εp = 0 (3.24)
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3.4 Finite element implementation

with the increment ∆εp =
∑

α ∆tγ̇0

〈
(τα − p̌ − τC

0 )/τD
〉p

MS
α, and by

the additional contribution

rp = γac,n + ∆γac − ζ − p̌

Hχ
= 0 (3.25)

with ∆γac =
∑

α ∆tγ̇0

〈
(τα − p̌ − τC

0 )/τD
〉p

. Both Eqs. (3.24, 3.25) are
solved for the stresses σ and p̌ using the enhanced Newton algorithm by
Wulfinghoff and Böhlke (2013). For the global problem, the algorithmic
tangent needs to be computed (see Eqs. (3.21, 3.22)) at each integration
point during each (global) iteration. In order to determine the algorith-
mic tangent, the total derivatives of the residuals are set to vanish, in
the following. In detail, this gives

drσ =
∂rσ

∂σ
[ dσ] + I

s[ dε] +
∂rσ

∂p̌
dp̌ = 0, (3.26)

drp =
∂rp

∂σ
· dσ +

∂rp

∂p̌
dp̌ +

∂rp

∂ζ
dζ = 0. (3.27)

Accordingly, in matrix-vector notation, this reads




−∂r̂σ

∂σ̂
−∂r̂σ

∂p̌

−∂rp

∂σ̂
−∂rp

∂p̌




︸ ︷︷ ︸
Â

(
dσ̂

dp̌

)
=

(
Î 0

0 −1

)

︸ ︷︷ ︸
B̂

(
dε̂

dζ

)
, (3.28)

and, thus, (
dσ̂

dp̌

)
= Â−1B̂︸ ︷︷ ︸

D̂

(
dε̂

dζ

)
, (3.29)

D̂ =




∂σ̂

∂ε̂

∂σ̂

∂ζ

∂p̌

∂ε̂

∂p̌

∂ζ


 . (3.30)
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It is noted that the matrix D̂ ∈ Sym due to the symmetry of the compo-
nents ∂rσ/∂σ ∈ Sym and ∂rσ/∂p̌ = ∂rp/∂σ.

3.4.2 Grain boundary discretization

The GB integral J over Γact in Eq. (3.22) is approximated by

−
∫

Γact

(ΞC
D + Ξe

Γ)δζ̇ da ∼= −
∑

i ∈ Γact

(ΞC
D + Ξe

Γ)iwiδζ̇i, (3.31)

where the integration points are identified by i and the quadrature
weights by wi. The integration points are chosen to coincide with the
nodes of the FE mesh. This approach is motivated by the work of Liebe
and Steinmann (2001) and eases the determination of the plastically
active part Γact of the GBs. It is remarked that this is a well-established
strategy for linear FE-elements which are used throughout the present
work. The discretized counterpart of Γact is given by the active set A
of GB nodes where fΓ = 0 and ∆ζ ≥ 0. Plastically inactive GB nodes
are treated as microhard nodes using a Dirichlet condition, i.e., ∆ζ = 0

and δζ̇ = 0. Therefore, the computation of the integral

−
∫

Γ\Γact

(Ξd + Ξe
Γ) δζ̇ da ∼= −

∑

i ∈ Γ\Γact

(Ξd + Ξe
Γ)iwiδζ̇i, (3.32)

in Eq. (3.22), is neither necessary nor possible. The associated rows
and columns are eliminated both from the global stiffness matrix and
from the residual. Since Eq. (3.32) is neglected during the assembly, the
corresponding components of the force residual do not vanish when
convergence is reached but take the values (Ξd + Ξe

Γ)iwi, instead. This
result is exploited in order to evaluate the yield criterion at the inactive
nodes and update the active set A. The algorithm to determine A, and
the contribution of the GB term in Eq. (3.31) to the global stiffness matrix
as well as to the force residual is summarized in Table 3.2.
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3.4 Finite element implementation

Table 3.2: Algorithm for determination of plastic activity of grain boundary nodes. Table
reprinted from Wulfinghoff et al. (2013) with permission from Elsevier.

1. Grain boundary contribution to the residual and the stiffness matrix:
For all GB nodes in active setA:

a) Add −(Ξe
Γ + ΞC

D)iwi to the right-hand side of the global force
residual (cf. Equations (3.22) and (3.31))

b) Add (∂(∂WΓ/∂ζ)/∂ζ)iwi to the diagonal of the global stiffness
matrix (If WΓ is assumed to be linear in ζ, the stiffness matrix,
consequently, does not need to be updated)

2. Update of active setA:
If res∗

<tolA (i.e., update A only if close to convergence)
a) For all GB nodes i:

If i ∈ A

If ∆ζi = ζi − ζi,n < 0

• A ← A\{i}

• ζi = ζi,n

Else if i 6∈ A

If fΓ = Ξd − ΞC
D > 0

• A ← A∪ {i}

b) If active setA has changed:
Recompute the stiffness matrix and the residuals (including
step ”1.“)

3. If res∗
<tolforce and A has not changed the time step is considered

converged

∗: res is the maximum norm of the force residual
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3.5 Gradient plasticity simulations

3.5.1 Simulation setup, boundary conditions,

and discretization details

Tensile test simulations are carried out using grain aggregates of sim-
plified shape. For the average grain sizes, values are chosen based on
the experimental data of copper microwires by Yang et al. (2012). The
crystal orientations of the grains are assigned randomly, approximately
uniform due to lack of availability of orientation data in the experimen-
tal reference. In Table 3.3, the microstructural features of the microwires
are shown. The grain aggregate dimensions and the chosen average
grain sizes for the simulations are listed, additionally. In Fig. 3.1a, the
corresponding discretizations of the simulation volumes are depicted
and the boundary conditions for the simulation setup are shown in
Fig. 3.1b. Lateral contraction is allowed for and the displacements in
the loading direction are prescribed. Initially, the simulation volume is
undeformed, i.e., all values of γac and ζ are set to zero.

Table 3.3: Microstructural features of copper microwires, coarse-grained at different
annealing temperatures (AT) (1: data from Yang et al., 2012), and dimensions of simplified
grain aggregates used in FE simulations. Average grain sizes (GS) determined by half of
the summed mean values of the longitudinal and transversal average grain sizes.

Experiments1 Simulations

Wire diameter1 Avg. GS1 AT1 Width L Avg. GS

Dexp in µm davg,exp in µm in ◦C in µm in µm

25 5.2 ± 1.0 400 25 6.25

25 11.5 ± 2.3 600 25 12.5

25 22 ± 3 900 25 18.75
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(a)

ux = 0

ux, uz = 0

u = 0

ux = ū

L

L

L
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y

z
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(b)

Figure 3.1: (a) Discretizations of simplified grain aggregates used for simulating the
mechanical response of annealed copper microwire tensile tests from Yang et al. (2012).
From left to right: Simplified grain aggregates used for microwires with different grain
sizes. Grain boundaries are highlighted by dashed lines. (b) Boundary conditions for
tensile test simulations. LD: loading direction. Fig. (a) reprinted from Wulfinghoff et al.
(2013) with permission from Elsevier, and Fig. (b) similar to Wulfinghoff et al. (2013).

The boundary ∂B is treated as a Neumann boundary using Ξ̄ = 0. For
all discretizations, standard trilinear hexahedrons are utilized. The
number of finite elements used is 64000 (cf. Fig. 3.1) giving a total of
275684 DOFs for the simulations. This discretization is chosen based
on a convergence study for all three grain aggregates as a compromise
between accuracy and manageable computational times (see Fig. F.1.1
for details). Adaptive time step-control is used during the simulation
time of 1 s. The global Newton scheme is considered to be converged if
the set of active GB nodes A has not been changed during an iteration
and if the initial residual has been reduced at least by a factor of 10−8

(i.e., tolforce = 10−8 res0, see Table 3.2). For the active set search, the
chosen tolerance value is tolA = 10 tolforce (see also Table 3.2), and for
the integration point subroutine the tolerance 10−8 is used (associated
to the maximum norm of the local residual, Eqs. (3.24, 3.25)). Residual
values of two characteristic time steps are shown in Table 3.4. The
active-set search on the GBs leads to additional iterations which mainly
occur in the elastic-plastic transition regime of the simulations (see the
highlighted residuals in Table 3.4).
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3 Gradient crystal plasticity with an accumulated plastic slip and GB yielding

Table 3.4: Residuals for two typical time steps: one with active set search (in the elastic-
plastic transition regime), and one without active set search (in the plastic regime) for 64
grains. Table reprinted from Wulfinghoff et al. (2013) with permission from Elsevier.

∆t
Maximum norm of residual

res0

Iteration 1 2 3 4 5 6 7 8 9
0.01s 5.67 6.70 7.96e-01 9.90e-02 1.75e-02 4.62e-04 5.93e-07 6.69 1.15

1.84e+03 10 11 12 13 14 15 16 17
1.20e-01 3.09e-03 5.11e-06 1.34 1.25e-02 2.99e-06 1.14e-03 2.24e-09

0.32s Iteration 1 2 3 4 5 6 7
5.88e+04 1.52e+01 9.92 2.83 4.92e-01 3.60e-02 1.21e-03 5.29e-06

Once all GB nodes are plastically active, however, additional iterations
do not occur further. An overview on the computational times of the
simulations in this thesis, with and without GB contributions, is given
in Table D.1.

3.5.2 Influence of the model parameters

on the mechanical response

The influence of the model parameters is discussed in this section, con-
sidering the basic parameters that have already been presented in Ta-
ble 2.2. For the anisotropic elastic constants of copper, values are taken
from Rösler et al. (2006). At first, size-independent (classic) plasticity
is considered, i.e., the GB and gradient influences on the mechanical
response are neglected. In Fig. 3.2, it is shown that, then, a decrease in
the edge length L of the cubic oligocrystal does not alter the mechanical
response and the model behaves size-independent. It is noted that,
for sufficiently large values of the strain rate sensitivity p, the material
model approximates rate-independent behavior. A moderate variation
of the reference strain rate γ̇0 has no noticeable effect, in this case. In the
rate-independent limit, the offset stress (i.e., the yield stress of the lower
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3.5 Gradient plasticity simulations

three (coinciding) curves in Fig. 3.2) is mainly controlled by τC
0 + τD.

The hardening parameters Θ and τC
∞ of the used Voce-approach can be

used to control the evolution of the hardening slope. If, however, the
GB yield strength ΞC

0 and the ratio of W0/g2
0 are non-zero, the model

behaves size-dependent. A decrease in L leads to a stiffer overall me-
chanical response see (Fig. 3.2).
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Figure 3.2: Influence of the structure size on the mechanical tensile response of an 8-grain
aggregate in the presence and absence of grain boundary and gradient influences. Basic
figure reprinted from Wulfinghoff et al. (2013) with permission from Elsevier.

It is noted that the model formulation in Wulfinghoff et al. (2013) is
slightly different, using only one parameter KG instead of the two pa-
rameters W0 and g0 in the present work. Therefore, the values of the
normalization constant g0 shown in this section are obtained by con-
verting the values of KG through the correspondence of

g0 =
√

2W0/KG (3.33)

with W0 = 0.5G and G = E/(2 + 2ν) with an exemplary isotropic Young’s
modulus of E = 100 GPa for copper. The influence of the GB yield
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strength ΞC
0 and the normalization constant g0 are contrasted in Fig. 3.3.

Varying g0 (and, thus, the internal length scale) over three orders of
magnitude, for a constant value of ΞC

0 , only slightly changes the overall
mechanical response.However, the elastic plastic-transition regime
is affected, as smaller values of g0 lead to a more abrupt transition
behavior, compared to larger values (see zoomed-in image in Fig. 3.3).
It should be noted that the simulation results for g0 = 19.2/µm in
this section are only regarded as a trend, due to a need for more
refined meshes for this value of g0 in combination with the value of W0.
Varying the GB yield strength over three orders of magnitude, however,
leads to a pronounced increase in the overall yield strength (Fig. 3.3).
Thus, mainly the GB yield strength ΞC

0 controls the overall yield stress.
Consequently, ΞC

0 needs to be fitted to stress-strain curves obtained
in the elastic-plastic regime for specimen with different diameters
and constant grain size or constant diameter and different grain sizes,
respectively. Possible data sources are experimental investigations as
well as discrete dislocation dynamics simulations.
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Figure 3.3: Influence of ΞC
0 and g0, respectively, on the mechanical tensile response of an

8-grain aggregate. Basic figure reprinted from Wulfinghoff et al. (2013) with permission
from Elsevier. Zoom image: influence of g0 on the elastic-plastic transition regime.
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3.5.3 Comparison of simulation

results to experimental data

One of the aims of the present thesis is the prediction of size effects
on microspecimen. Therefore, an experimental study on copper mi-
crowires by Yang et al. (2012) is considered as a reference to test the GP
model. The model parameters τC

0 , Θ, τC
∞ as well as the GB and gradient-

related parameters ΞC
0 , g0 are fitted by comparison of simulation results

to the experimental stress-strain data. Thereby, the set of parameters,
which has already been presented in Table 2.2, is obtained. The GB
yield strength is ΞC

0 = 55 N/m and the value used for the normaliza-
tion constant is g0 = 1.92/µm. Both the experimental reference and the
model response are contrasted in Fig. 3.4. Smaller deviations from the
hardening behavior of the microwires occur for different grain sizes
in the model response. Overall, however, the experimental reference
is reproduced comparably well. Notably, the overall size-effect that is
observed in the experimental data is accounted for by the simulations.
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Figure 3.4: Comparison of simulation results of simplified grain aggregates to experimen-
tal data of copper microwire tensile tests by Yang et al. (2012). The average grain size of
the specimens is indicated by davg . Simulation data from Wulfinghoff et al. (2013).
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3 Gradient crystal plasticity with an accumulated plastic slip and GB yielding

In addition, the distributions of the micromorphic approximation of
the accumulated plastic slip at an engineering strain of ε = 0.05 are
depicted for all three simulated grain-aggregates in Fig. 3.5. It is recalled
that the use of the micromorphic approximation of γac in the simula-
tions is feasible if the penalty parameter Hχ is chosen large enough
and a sufficiently fine FE-mesh is used. The used value of the penalty
parameter throughout this work is Hχ = 108 MPa. A comparison of
both field distributions for the oligocrystalline case of this section is
shown in Appendix C.2.
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Figure 3.5: Resulting distributions of the micromorphic variable ζ for tensile test simu-
lations of simplified grain aggregates, displacement scaled by a factor of three. Figure
reprinted from Wulfinghoff et al. (2013) with permission from Elsevier.

At large parts of the GBs, in Fig. 3.5, the micromorphic variable shows
smaller values than in the adjacent grains (see also Fig. 3.1a for the
location of the GBs). The GB yield strength acts as additional resistance
to plastic flow, there, compared to the grain interior. This mechanism is
shown in more detail in Fig. 3.6 for the 8-grain-aggregate. During the
early stages of plastic deformation, the bulk nodes become plastically
active but at the GB nodes plasticity is still prevented (see time step t1

in Fig. 3.6). Once the GB yield condition is fulfilled at these nodes, the
GB nodes also become plastically active (see time steps t2–t4 in Fig. 3.6).
Additionally, the evolution of the gradient hardening stress −div (ξ) is
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shown in Fig. 3.6. This quantity increases close to the GBs during the
evolution of the plastic deformation. In the beginning of the plastic
deformation, the rate of increase of −div (ξ) is higher than at the end
(see time steps t1–t2 in Fig. 3.6). Once the GBs start yielding, however,
the increase of −div (ξ) saturates (see time steps t3–t4 in Fig. 3.6).
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Figure 3.6: Distributions of the micromorphic variable ζ and the gradient hardening
stress −div (ξ) for tensile test simulations of a simplified grain aggregate with 8 grains.
Depicted are the distributions at the end of each of the first four time steps. The color scale
of the upper image sequence is limited in order to visualize the grain boundary yielding.
Basic figure from Wulfinghoff et al. (2013), reprinted with permission from Elsevier.
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3.6 Gradient plasticity simulations considering

the crystal orientations of the grains in a

simplified manner

3.6.1 Motivation

In the recent experimental work by Chen et al. (2015), the deformation
behavior of oligocrystalline gold microwires with varying diameters
was investigated for both uniaxial tension and torsion loading. Con-
trary size effects were observed for the two different loading cases.
In the microstructural studies of this work it was found that the mi-
crowires of different thickness exhibit also different average grain sizes
and textures, respectively. Consequently, it was assumed that both
microstructural characteristics influence the resulting size effects of
the overall mechanical response. However, a confirmation of these
assumed influences was only established for the influence of the aver-
age grain size. In the present section of this thesis, the size-dependent
mechanical response of the microwires is modeled with the GP theory
from Sections 3.2–3.4. By FE simulations of oligocrystalline grain
aggregates, the influence of the texture on the size effects is investigated
under both loading conditions in a simplified manner. It is shown
that the, experimentally observed, contrary size effects can only be
reproduced if the individual textures of the microwires of different
thickness are considered in the modeling. The content of this section is
largely taken from Bayerschen et al. (2016b).

3.6.2 Summary of the experimental characterization

of the microwires

The experimental part of this work was performed by M. Ziemann,
M. Walter and P.A. Gruber (Institute of Applied Materials, KIT). In the
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following, a brief summary of the experimental evaluation is given.
A quantitative examination of the grain orientation distribution in the
cross-sections of the microwires was performed for four selected mi-
crowire diameters in the range of 15 µm – 60 µm. Therefore, up to four
cross-sections of the respective microwires from Chen et al. (2015) were
reanalyzed. The original electron backscatter diffraction (EBSD) maps
from the investigated wires (see, for example, Fig. 3.7a and Figs. 3.7d–
3.7f) were evaluated with MATLAB R2014a and MTEX toolbox 4.1.1
(see Hielscher and Schaeben, 2008; Bachmann et al., 2010).
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Figure 3.7: Top row: approach to simplify textural features using the example of an
Au-wire with a diameter of 40µm: (a) original EBSD map, (b) data points revealing a mis-
orientation of ≤ 27.37◦ related to either the 〈100〉-axis or to the 〈111〉-axis, respectively,
are defined as 〈100〉∗- or 〈111〉∗-oriented spots (data points located outside the defined
areas are ignored), (c) simplified microstructure. Bottom row: original EBSD maps from
wires with a diameter of (d) 15µm, (e) 25 µm, and (f) 60 µm. (OL: original legend, SL:
simplified legend). Figures reprinted from Bayerschen et al. (2016b) with permission from
Springer. Images courtesy of M. Ziemann.
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For a simplification of the GP simulation approach, the wires are as-
sumed to only consist of ideally 〈100〉- and 〈111〉-oriented grains. There-
fore, the experimental data were prepared such that the orientation of
each spot within a cross section was counted either as a 〈100〉∗- or as a
〈111〉∗-oriented normal to the cross-section surface when its misorienta-
tion is located within a radius of 27.37◦, related to either one of the both
main directions (see Figs. 3.7b–3.7c). The cut-off value of 27.37◦ was
chosen based on the fact that it is half the angle between the 〈100〉- and
the 〈111〉-axis. Data points with orientations outside of the two resulting
circles are rare for the investigated samples and, thus, negligible for
the present work. Then, by counting the number of spots for both
orientations, the area shares of the 〈100〉∗- as well as the 〈111〉∗-oriented
areas were determined. Finally, the average area shares were calculated
for every microwire diameter. These area shares are listed in Table 3.5,
in addition to the average grain sizes (determined by using a modified
line-interception method and already published in Chen et al., 2015).

Table 3.5: Microstructural features of coarse-grained Au microwires with different diam-
eter (1: values from Chen et al., 2015). Data and table reprinted from Bayerschen et al.
(2016b) with permission from Springer.

Nom. wire Real wire Avg. grain Area share Area share
diameter diameter1 size1 davg,exp

D (µm) Dexp (µm) (µm) 〈111〉∗ (%) 〈100〉∗ (%)
15 14.78 2.96 33 67
25 24.46 3.49 45 55
40 37.38 8.63 67 33
60 59.53 6.38 75 25

Considering the individual area shares of the simplified microstructures
from Table 3.5 in comparison to the color maps of the related original
EBSD maps, one can suppose that the calculated values are matching
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comparably well for the two wires of smaller diameter (e.g., Fig. 3.7d).
In contrast, the simplified grain orientation distributions of the two
wires with bigger diameter do not seem to represent the given orienta-
tions precisely enough (e.g., Fig. 3.7f). Instead, larger fractions of grains
with stronger misorientations related to the ideal 〈100〉-axis or the ideal
〈111〉-axis are present. Both findings have also been confirmed for the
other cross-sections of the corresponding microwires (see Bayerschen
et al., 2016b). The microwires of smaller diameters, however, mainly
consist of almost ideally 〈100〉- and 〈111〉-oriented grains (comparing,
for example, Fig. 3.7a to Fig. 3.7f). Therefore, additional gradient plas-
ticity simulations are carried out for the two thicker microstructures
using equal fractions of 〈100〉- and 〈111〉-oriented grains. Thereby, the
influence of the not adequately enough described microstructure on the
size effect can be investigated.

3.6.3 Finite element simulation setups and discretizations

Finite element simulations are performed and the overall mechanical
responses are compared to the experimentally determined mechanical
responses of the microwires in Chen et al. (2015). The used BCs for the
tensile loading are identical to the BCs described in Section 3.5.1, and
the used BCs for the torsion loading are identical to the BCs described in
Section 2.5.3. For the tensile loading, a displacement is imposed on the
top surface, until a nominal strain of ε = 0.05 is reached. It is recalled
that lateral contraction is allowed for by the BCs in the transversal di-
rections. For the torsion loading, the top and bottom surfaces (located
in direction of the central specimen axis) are twisted in opposing direc-
tions until a maximum shear of γr=R = 0.02 is reached. On this account,
it is noted that the displacement in the direction of the central specimen
axis is free, except at one FE node.
In the beginning of the simulation, the accumulated plastic slip and the
micromorphic variable are set to vanish in the whole simulation volume.
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The GB yield strength is then assigned to the respective nodes of the
element surfaces coinciding with the GB planes. On the surface of the
simulation volume, microfree conditions are imposed for the accumu-
lated plastic slip, i.e., the accumulated plastic slip is not restricted by
the BCs, there. In the beginning of the deformation, all nodes on the
GBs are set to behave microhard. Thus, the GBs are plastically inac-
tive until the GB yield condition is fulfilled and the GB nodes become
plastically active. The volume length L0 for each diameter is chosen
such that L0/D = 1.25 = const., in order to allow for a comparison of
the results obtained for different diameters at the same values of the
overall maximum shear (see Table 3.6 for the diameters D).

Table 3.6: Discretizations of oligocrystalline gold microwires. Abbreviations used are:
DOFs - degrees of freedom, ECD - equivalent circle diameter, FEs - finite elements. Table
reprinted from Bayerschen et al. (2016b) with permission from Springer.

Diameter Average grain size FEs DOFs
Dsim ECD: davg,sim

(µm) (µm)
15 3.67 54720 235396
25 6.12 54864 236180
40 9.80 54720 235396
60 14.69 54864 236180

Exemplary, the grain aggregate with smallest diameter is investigated
in a convergence study under tensile as well as under torsion loading.
Based on these results, the discretizations of the simplified grain ag-
gregates are chosen such that an approximate doubling of the DOFs
of the FE mesh leads to a reduction of less than 1.5% in the relative
error of the overall mechanical responses after the final time step of the
grain aggregate simulations. The computational times remain within
the order of several hours for the employed discretizations, listed in

110



3.6 Gradient plasticity simulations considering the crystal orientations of the grains

Table 3.6. Due to the FE-discretization algorithm in the used mesh-
generator (in ABAQUS), slightly different FE numbers are present in
the individual discretizations. However, no substantial influence on
the overall mechanical response is observable by the resulting small
differences in the DOFs of the grain aggregates.

3.6.4 Modeling of the microstructure

For modeling the microstructure of the wires, grains of simplified shape
are considered (see Fig. 3.8a). The GBs are discretized by partitioning
the simulation volume such that the GBs are composed of the planar
surfaces of the elements in the FE mesh. Therefore, equidistant posi-
tioning of three GB planes is performed in each spatial direction.

〈111〉
〈100〉

Orientation:x

y
z

(a) (b) (c) (d) (e)

Figure 3.8: Textures of oligocrystalline grain aggregates used in finite element simulations:
(a) equally distributed (alternating) 〈100〉- and 〈111〉-orientations, depicted are the Gauss-
point volumes of the employed finite element mesh, (b) 15µm-aggregate with 20 〈111〉-
grains and 44 〈100〉-grains, (c) 25µm-aggregate with 24 〈111〉-grains and 40 〈100〉-grains,
(d) 40µm-aggregate with 44 〈111〉-grains and 20 〈100〉-grains, and (e) 60µm-aggregate
with 48 〈111〉-grains and 16 〈100〉-grains. The size of all grain-aggregate images has been
rescaled for the visualization. The specific number of 〈100〉- and 〈111〉-oriented grains
for (b) to (e) are adapted to the experimental data in Table 3.5. Figure reprinted from
Bayerschen et al. (2016b) with permission from Springer.
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Motivated by the observed average grain sizes of the oligocrystalline
microwire specimens (see Table 3.5), 16 grains are modeled within each
of four grain layers per aggregate, i.e., the whole simulation volume is
composed of 64 grains. The resulting average grain sizes in terms of the
equivalent circle diameter (ECD) are listed in Table 3.6.
Each grain is assigned either a 〈100〉- or a 〈111〉-orientation with regard
to the specimen coordinate system (see also Fig. 3.8). It is recalled
that this means that, for 〈100〉-grains, the 〈100〉-crystal directions are
aligned with the Cartesian coordinate system while, for 〈111〉-grains,
the 〈111〉-crystal direction is aligned with the central specimen axis. At
first, it is assumed that equal area shares of both orientations are present
in the cross-sections and the orientations are assigned to the grains such
that 〈100〉- and 〈111〉-orientations are alternating (see Fig. 3.8a).
However, based on the reevaluation of the orientation distribution
of several cross-sections from the experiments, a trend towards more
〈100〉-grains in the investigated cross-sections is observable for smaller
wire diameters. Therefore, the texture of the microwires is accounted
for in the simulations, subsequently. For each wire diameter, the crystal
orientations of several grains within each cross section are switched, for
example, from the 〈111〉- to the 〈100〉-orientation, until the area shares
of the 〈100〉- and the 〈111〉-orientation are approximately equal to the
experimentally determined simplified area shares (Figs. 3.8b–3.8e).
As it can be seen, e.g., in Fig. 3.7d, grains of very similar but not
necessarily identical orientations are present in the cross-sections of
the microspecimens. Therefore, the interfaces between, e.g., two 〈111〉-
grains of the texture are treated as GBs, nevertheless, in the simulations.
The small variations in, e.g., the 〈111〉-orientation of such grains in the
experiments are, however, not explicitly accounted for in the modeling
approach. This strict classification into 〈111〉- and 〈100〉-orientations
seems justifiable for the two microwires with smaller diameters (see
Section 3.6.2). For the two larger microwires, however, several crystal
orientations in between these two orientations are present (see also
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Section 3.6.2). Therefore, two distinct texture-cases are investigated for
each of the two microwires with bigger diameter: the case of equal
area shares for both orientations (Fig. 3.8a), and the case of considering
non-equally distributed orientations in a simplified manner (Fig. 3.8d
and Fig. 3.8e, respectively).

3.6.5 Material and model parameters

Regarding the material parameters, literature values are used for the
anisotropic elastic constants of gold (C1111 = 186 GPa, C1122 = 157 GPa,
C1212 = 42 GPa, see Rösler et al., 2006). In all simulations, the refer-
ence shear rate is γ̇0 = 10−3/s, the rate sensitivity exponent is p = 20,
and the drag stress is τD = 1 MPa. An internal length scale, result-
ing from a first estimate of the observed dislocation density of the
microwires, is lint = 1/

√
ρ0 ≈ 3µm with ρ0 ≈ 1011/m2. The corre-

sponding value for the normalization constant (see also Eq. (3.33)) is
g0 =

√
2W0/KG =

√
2W0/(l2

intEavg) = 0.2/µm with the average
Young’s Modulus Eavg ≈ 65 GPa of all gold microwires (from Chen
et al., 2015), the average shear modulus Gavg ≈ 24 GPa for a Poisson’s
ratio of ν = 0.35, and an initial defect energy density of W0 = ᾱGavg

= 12 GPa. Using this, resulting, value of g0, however, leads to results
substantially overestimating the experimental data in the elastic-plastic
transition regime. Instead, the parameter g0 is fitted to the experimental
tensile curves by comparison of the slope in the elastic-plastic transition
regime, resulting in g0 = 6.94/µm. The internal length scale for this
value is much smaller, lint,avg =

√
2W0/(g2

0Eavg) ≈ 0.09µm.
The remaining parameters are listed in the respective results sections. It
is remarked that, at first, the same initial yield stress τC

0 = 1 MPa (e.g.,
Sachs and Weerts, 1930) is used for all slip systems in the investigated
cases. This value also can be motivated by using the Taylor-hardening
relation τC

0 = ᾱbG
√

ρ0 with Burgers vector magnitude b = 0.224 ×
10−9m, and ᾱ = 0.5. Due to the additional yield criterion for the
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GBs, the overall yield strength in the model results from the combined
behavior of the bulk material and the GBs. Later on, the initial yield
stress for the slip systems and the GB yield strength are scaled for the
case of torsion loading (Section 3.6.6).
As it will be discussed in detail, in the next sections, the GB yield
strength of the model cannot be used as a material constant anymore
when modeling the mechanical response of the different microwires.

3.6.6 Simulation results

Influence of the two pre-dominant crystal-orientations on

the size effects of the gradient plasticity simulations

Before the GP simulations are compared to experimental data, the ba-
sic influence by the 〈100〉-orientation and the 〈111〉-orientation on the
overall mechanical response is discussed. The same material parame-
ters from the preceding Section 3.6.5 are used, and an exemplary set of
values is used for all remaining model parameters (see Table 3.7). Three
different, simplified texture cases are investigated, in the following sim-
ulations. At first, all grains are assigned either the 〈100〉-orientation, or
the 〈111〉-orientation. Then, equal numbers of grains are assigned the
〈100〉-orientation and the 〈111〉-orientation, respectively.

Table 3.7: Model parameters used for tensile test and torsion test simulations for different
texture cases with 〈111〉- and 〈100〉-orientations.

Dsim τC
0 ΞC

0 Θ τC
∞

(µm) (MPa) (Nm−1) (MPa) (MPa)
15 1 11 120 19
25 1 11 120 19
40 1 11 120 19
60 1 11 120 19
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3.6 Gradient plasticity simulations considering the crystal orientations of the grains

In all cases, the discretization of the GBs is ”maintained“ and a GB yield
strength is assigned to the respective FE nodes. Thus, this approach
allows to investigate the texture influence for identical GB properties
within the model. Variations of the crystal orientations within the
cross-sections, e.g., by a rotation around the loading axis, are not con-
sidered in this simplistic approach. In order to facilitate a comparison
to the subsequent simulation results and the experimental data, the
engineering stress is evaluated for tensile loading and the maximum
shear stress is evaluated for torsion loading.
Considering grains to be exclusively either in the 〈100〉-orientation
or the 〈111〉-orientation, the mechanical tensile responses depicted in
Fig. 3.9a are obtained. A size effect is observable for both orientations.
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Figure 3.9: (a) Stress-strain curves of tensile-loaded simplified grain aggregates in com-
parison to (b) Maximum shear stress vs. maximum shear of the same aggregates under
torsion loading for identical parameters. Either 〈111〉- or 〈100〉-orientations assigned to
all grains of the individual aggregates.

The magnitude of the size effect is slightly more pronounced for the
〈111〉-orientation. For torsion loading, this effect is reversed (see Fig.
3.9b). In addition, it is noticeable that the 〈111〉-orientation responds
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significantly stiffer for tensile loading than the 〈100〉-orientation (com-
pare both cases in Fig. 3.9a). For torsion loading, this effect is reversed,
too (see Fig. 3.9b).
Considering, however, an equal number of grains from both crystal-
orientations, different mechanical responses under tensile loading and
torsion loading are still obtained, which are depicted in Fig. 3.10.

0

15

30

45

60

75

90

0 0.01 0.02 0.03 0.04 0.05

N
om

in
al

st
re

ss
σ

in
M

P
a

Nominal strain ε

64 grains

15 µm, 50%/50%
25 µm, 50%/50%
40 µm, 50%/50%
60 µm, 50%/50%

D, 〈111〉/〈100〉:

0

15

30

45

60

75

90

0 0.005 0.01 0.015 0.02

M
ax

.s
he

ar
st

re
ss

τ r
=

R
in

M
P

a

Maximum shear γr=R

64 grains

15 µm, 50%/50%
25 µm, 50%/50%
40 µm, 50%/50%
60 µm, 50%/50%

D, 〈111〉/〈100〉:

(a) (b)

Figure 3.10: (a) Stress-strain curves of tensile-loaded simplified grain aggregates in
comparison to (b) Maximum shear stress vs. maximum shear of the same aggregates
under torsion loading with identical parameters. Approximately equal area shares of
〈111〉- and 〈100〉-orientations are used.

In comparison to Figs. 3.9a–3.9b, it is observable that the size-effect
magnitudes as well as the overall yield strengths in the mechanical
responses for the different load cases are still significantly affected by
both crystal-orientations, although an equal number of grains from both
orientations is assigned. In the following, this is investigated, in more
detail, in comparison to experimental data.
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3.6 Gradient plasticity simulations considering the crystal orientations of the grains

Gradient plasticity simulations using an equal

number of 〈100〉- and 〈111〉-oriented grains

In the following, the simulations results of the grain aggregates used to
model the mechanical response of gold microwires under tensile and
torsion loading are presented. At first, an equal number of 〈111〉- and
〈100〉-orientated grains is used, i.e., the diameter-dependent texture of
the investigated specimens is not considered. The model parameters τC

∞

(saturation stress of slip systems), Θ (initial hardening modulus), and
ΞC

0 (yield strength of the GBs) are fitted to the experimentally deter-
mined stress-strain curves (see Fig. 3.11a for experimental data and
tensile simulations with the fitted parameters).
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Figure 3.11: (a) Stress-strain curves of tensile-loaded simplified grain aggregates in
comparison to experimentally observed oligocrystalline microwire responses by Chen
et al. (2015), model parameters calibrated to the tensile experiment. (b) Maximum shear
stress vs. maximum shear of the same aggregates under torsion loading compared to
results by Chen et al. (2015), model parameters identical to (a). Equal cross-section area
shares of 〈111〉- and 〈100〉-orientations used in the FE simulations. Figure reprinted from
Bayerschen et al. (2016b) with permission from Springer.
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Thereby, the parameter values, listed in Table 3.8, are obtained. Subse-
quently, using the same values, torsion test simulations are performed.

Table 3.8: Model parameters calibrated to tensile data for identical 〈111〉 and 〈100〉 area
shares. Table reprinted from Bayerschen et al. (2016b) with permission from Springer.

Dsim τC
0 ΞC

0 Θ τC
∞

(µm) (MPa) (Nm−1) (MPa) (MPa)
15 1 11 120 19
25 1 18 130 26
40 1 29 144 40
60 1 43 155 39

The maximum shear stress τr=R = 2MT /(ΠR3) is plotted over the max-
imum shear γr=R in Fig. 3.11b. No pronounced size effect is obtained
in the simulations of the torsion loading with equal area shares of both
orientations and this set of parameters. All grain aggregates exhibit
similar overall mechanical responses for torsion loading.

Gradient plasticity simulations considering

the simplified texture of the microwires

In order to investigate the influence of the microwire-specific texture,
simulations considering the trend towards higher 〈100〉-oriented area
shares for smaller wire diameters are carried out. Therefore, the exper-
imental results of the individual textures obtained from the approach
in Fig. 3.7 are used (see Table 3.5 for experimental data and Figs. 3.8b–
3.8e for the grain aggregates). The model parameters are fitted to the
experimental tensile response, again (see Fig. 3.12a). The resulting set of
parameters is listed in Table 3.9. Using these parameters in the torsion
test simulations, the results in Fig. 3.12b are obtained.
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Exp. Chen et al. (2015): D 15µm 25µm 40µm 60µm

FE simulations:
〈111〉/〈100〉
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Figure 3.12: (a) Stress-strain curves of tensile-loaded simplified grain aggregates in
comparison to oligocrystalline microwire experiments by Chen et al. (2015), model
parameters calibrated to tensile experiment. (b) Maximum shear stress vs. maximum
shear of the same aggregates and parameters for torsion loading compared to experiments
by Chen et al. (2015). The experimentally determined, simplified cross-section area shares
of 〈111〉- and 〈100〉-orientations are used in the FE simulations.

Table 3.9: Model parameters calibrated to tensile data using the experimentally de-
termined, simplified cross-section area shares of 〈111〉- and 〈100〉-orientations. Table
reprinted from Bayerschen et al. (2016b) with permission from Springer.

Dsim τC
0 ΞC

0 Θ τC
∞

(µm) (MPa) (Nm−1) (MPa) (MPa)
15 1 13 143 21
25 1 19 135 28
40 1 25 143 37
60 1 37 145 35
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3 Gradient crystal plasticity with an accumulated plastic slip and GB yielding

A pronounced size effect is observable in the torsion test simulation
results, although the experimental tensile responses, showing a small,
inverse size effect, have been used to obtain the model parameters.
The magnitude of the size-effect under torsion loading, however, is
underestimated. It should be noted that the magnitude of the modeled
size effect under torsion becomes smaller for increasing deviations of
the texture of the two thicker microwires from the simplified approach
taken for the grain aggregates (comparing the two curves of the thicker
grain aggregates in Fig. 3.12 to the respective curves in Fig. 3.11).
The distributions of the accumulated plastic slip γac for tensile and
torsion loading, with and without consideration of the simplified mi-
crowire textures, are depicted in Figs. 3.13a–3.13b. Under both loading
conditions, the plastic field distributions of the grain aggregates are
very similar if the grain orientations are equally assigned.
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Figure 3.13: Field distributions of accumulated plastic slip for simplified grain aggregates
using equal cross-section area shares of 〈111〉- and 〈100〉-orientations (top) and using
experimentally determined, simplified cross-section area shares of 〈111〉- and 〈100〉-
orientations (bottom): (a) tensile test simulations, (b) torsion test simulations. The
deformation of all results has been geometrically scaled by a factor of five with regard
to the displacement. Figure reprinted from Bayerschen et al. (2016b) with permission
from Springer.
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3.6 Gradient plasticity simulations considering the crystal orientations of the grains

If the simplified microwire textures are considered, however, different
field distributions of the accumulated plastic slip are obtained for the
investigated aggregates of different diameters. It is remarked that the
locally developing high values of γac at the corners of the grains close to
the GBs (see, for example, the top surface of the largest grain aggregate
in Fig. 3.13b, bottom) result from the activation of favorably oriented
slip systems in combination with the impediment of plasticity at the
GB nodes due to the GB yield strength. In the ideally aligned 〈100〉-
orientation case, the slip systems are activated such that a fourfold-
symmetry of γac is obtained for a single-crystalline torsion test simu-
lation (see, e.g., Fig. 2.5). The spatial position of the maxima of γac due
to the activation of the slip systems coincides with the position of the
observed localizations of γac. Therefore, the observable higher values
of γac develop close to the corners of these grains. A similar localization
would also occur if the GB, there, was modeled using a curved shape.

Gradient plasticity simulations considering the simplified

texture of the microwires and scaling of parameters

In the experiments, an increase in the overall yield strength is observ-
able, comparing the torsion test results to the tensile test results of
the microwires. Therefore, the parameters used for torsion loading
are scaled accordingly. It is investigated how this affects the size-effect
prediction of the model. It appears that the initial overall yield strengths
are significantly underestimated by keeping the initial yield stress of
the slip systems as well as the GB yield strength identical under torsion
loading (see Fig. 3.12b). Thus, these two model parameters (which
constitute the overall yield strength, e.g., Rp0.2 in the model response)
are altered. Therefore, the overall initial shear stresses are estimated
based on the experimentally determined individual proof stresses τ te

0.2

and τ to
0.2, respectively (see Table 3.10).
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Table 3.10: Yield strength scaling: maximum shear stresses at the onset of yielding in the
experiments (1: from Chen et al., 2015) are used to determine scaling factors for the model
parameters under torsion loading. τ te

0.2 obtained by τ te
0.2 = 0.5σeng,0.2. Table reprinted

from Bayerschen et al. (2016b) with permission from Springer.

Wire Tensile shear Torsion shear Shear stress
Dsim stress1 τ te

0.2 stress1 τ to
r=R,0.2 ratio s =

(µm) (MPa) (MPa) τ to
r=R,0.2/τ te

0.2

15 15.8 54.3 3.4
25 16.4 39.5 2.4
40 14.4 31.7 2.2
60 13.9 22.7 1.6

The scaling factors from the initial overall yield strengths in the ex-
periments under both loading conditions are used to scale the model
parameters from the tensile loading to model parameters for the torsion
loading. By this procedure the parameters in Table 3.11 are obtained.

Table 3.11: Torsion test simulation parameters, τC
0 , ΞC

0 from the indicated Tables scaled
by s from Table 3.10, τC

∞,s obtained by keeping ∆τC = τC
∞ − τC

0 identical to the tensile
test. Table reprinted from Bayerschen et al. (2016b) with permission from Springer.

Dsim sτC
0 sΞC

0 Θ τC
∞,s = sτC

0 + ∆τC Table
(µm) (MPa) (Nm−1) (MPa) (MPa)

15 3.4 44 143 23.4 3.9
25 2.4 46 135 29.4 3.9
40 2.2 55 143 38.2 3.9
60 1.6 59 145 35.6 3.9

40 2.2 64 144 41.2 3.8
60 1.6 69 155 39.6 3.8

It is remarked that the saturation stresses τC
∞ of the slip systems are

adjusted such that the hardening behavior of the microwires is kept the
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3.6 Gradient plasticity simulations considering the crystal orientations of the grains

same, compared to the cases without scaling the initial yield stresses τC
0 .

At first, only the initial yield stress of the slip systems is scaled (see
Table 3.11, second column) but the yield strength of the GBs is kept
identical to the parameters obtained from the tensile loading (see Ta-
ble 3.8 and Table 3.9). The torsion test simulation results obtained by
this approach are depicted in Fig. 3.14a.
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Figure 3.14: Maximum shear stress vs. maximum shear of torsion-loaded simplified
grain aggregates in comparison to experimentally observed oligocrystalline microwire
responses by Chen et al. (2015). (a) using scaled initial yield stress sτC

0 of the slip systems,
(b) using scaled initial yield stress sτC

0 of the slip systems and scaled yield strength sΞC
0

of the GBs. For each microwire diameter, the experimentally determined, simplified
cross-section area shares of 〈111〉- and 〈100〉-orientations are used in the FE simulations.
For the two thicker microwires, additional FE simulations using scaled model parameters
and equal cross-section area shares of 〈111〉- and 〈100〉-orientations are depicted. Figure
reprinted from Bayerschen et al. (2016b) with permission from Springer.

Although the observed size effect magnitude in the simulations is
slightly larger than the magnitude when using the previous initial
yield stresses, the employed scaling of the slip system yield stresses
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is not sufficient to account for the size effect. For the two thicker
microwires, the grain aggregates, using equal cross-section area shares
of both orientations, show stiffer responses than the ones using the
experimentally determined, simplified area shares of the orientations.
The mechanical response of the microwire with D = 60µm is captured
better by using equal cross-section area shares of both orientations.
However, for the microwire with D = 40µm, the mechanical response
is still underestimated using equal area shares.
Since the yield strength of the GBs contributes to the overall yield
strength of the grain aggregates in the simulations, this parameter is
also scaled, subsequently (see Table 3.11, third column). The results are
depicted in Fig. 3.14b. It is observable that the magnitude of the size
effect is captured much better by scaling both the initial slip system
yield stress and the GB yield strength. In addition, the mechanical
responses of the simulations are much closer to the experimental results
for all microwires. It is also notable that the experimental results of the
thicker microwires are both in between the two respective simulated
cases of the orientation distributions in the cross sections.
The field distributions of the accumulated plastic slip γac of the re-
sults with scaled initial yield stress of the slip systems are depicted
in Fig. 3.15a, and the distributions with additionally scaled GB yield
strength are depicted in Fig. 3.15b. If only the initial slip system yield
stress is scaled, the magnitude of the field distributions is only slightly
reduced (see Fig. 3.15a compared to Fig. 3.13b). However, if the GB
yield strength is additionally scaled, the GBs respond significantly
stiffer and smaller values of γac are observed, there (see arrows in
Fig. 3.15b). This can be inspected more closely by evaluating the
average γac over circular line segments on the top surface (i.e., the
surface at max. x-coordinate, see Fig. 3.15c). Comparing these averaged
distributions for the first five time steps of the simulations shows that
the scaling of the initial slip system yield stress slightly reduces the
plastification in radial direction (Fig. 3.15d, see II compared to I).
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Figure 3.15: (a–b) Torsion test simulations (deformation geometrically scaled by a factor
of five w.r.t. displacement): field distributions of accumulated plastic slip for simplified
grain aggregates using equal cross-section area shares of 〈111〉- and 〈100〉-orientations
(top) and using experimentally determined, simplified cross-section area shares of 〈111〉-
and 〈100〉-orientations (bottom). (a) The initial yield strength of the slip systems has been
scaled, (b) the initial yield strength of the slip systems and the grain boundary yield
strength have been scaled. (c) Top surface of 15 µm-grain-aggregate at the end of the
fifth time step for the cases of unscaled (I) and scaled parameters (II/III). The used line
segments for obtaining the plots in (d) are visualized. (d) Average accumulated plastic
slip evolution during the first five time steps on the corresponding circular line segments
for the cases of unscaled (I), and scaled model parameters (II/III). Figures reprinted from
Bayerschen et al. (2016b) with permission from Springer.
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The scaling of the GB yield strength, however, leads to pronounced
gradients in the γac-distribution close to the GBs (see III in Fig. 3.15d
and the arrow-indicator at r = 4µm, near the GB).

3.7 Discussion of the simulation results

with focus on the size effects

Aggregates of grains with simplified shape and orientation distribu-
tions have been used in GP simulations to model the mechanical
response of oligocrystalline microwires. While in the preceding compar-
ison to experimental data from the literature (Section 3.5.3) the GB yield
strength could be taken as a constant to reproduce the overall size-effect,
this is not the case anymore in the second investigation presented
(Section 3.6.6). The average grain size of the microwires is considered
in the simulations but the variations of grain size for different grains
within the cross-sections are not (Tables 3.5–3.6). Due to computational
limitations, only aggregates up to 64 grains could be used. Therefore,
in terms of the average grain sizes used in the modeling, smaller
deviations remain for the microwires of two diameters, and larger
deviations for the microwires of the other two diameters. Considering
that the (non-destructive) experimental 3D-characterization of grain
morphologies has made significant progress during recent years (see,
e.g., Cabus et al., 2014; Hounkpati et al., 2014; Toda et al., 2016, and the
review by Maire and Withers (2014)), it would be desirable to perform
simulations using the actual morphology of all grains of the microwires,
in order to have an advanced, more accurate representation of the
microstructure in the simulations. For such an approach, the FE-meshes
need to be substantially refined, for example, when modeling smaller
grains of non-spheroidal or non-cuboid shape. This would require
also further numerical improvement of the taken approach for the
computational implementation.
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Using equally distributed, ideally oriented, 〈100〉- and 〈111〉-grains,
the experimentally observed tensile response of microwires by Chen
et al. (2015) could be fitted using the GP model (Fig. 3.11a). The
torsion response obtained in simulations with identical parameters
and orientations as in the tensile response, however, shows a similar
effect as the tensile response and does not match the classic size effect
observed in the experiments for the torsion loading (Fig. 3.11b).
If the (simplified) texture of the microwires is considered in the grain
aggregate simulations, the tensile response can be fitted, too (Fig. 3.12a).
Then, however, a pronounced size effect is observable under torsion
loading (Fig. 3.12b). The arising differences in the torsion responses
regarding the texture can be attributed to the different orientations of
slip systems. For the ideal 〈100〉-orientation, more slip systems are
favorably oriented for an activation under the investigated tensile
loading compared to the ideal 〈111〉-orientation. This behavior is
reversed under torsion loading. Therefore, grain aggregates with a
higher cross-section share of 〈100〉-orientation respond significantly
stiffer under torsion loading than grain aggregates with a higher 〈111〉-
orientation cross-section share (see also the discussion of the single-
crystalline case in Section 2.5.4). It should be noted that the magnitude
of the size effect in the model varies, depending on the chosen texture
of the two larger aggregates (comparing, for example, the two curves of
the thickest grain aggregate in Fig. 3.14a). Considering that, for instance,
the largest microwire (see, e.g., Fig. 3.7f) shows larger area shares with
higher misorientations from the two modeled ideal orientations, one
would expect the texture-contribution to the size effect to be smaller
than it is obtained by using the idealized texture from Fig. 3.8e.
The fitted model parameters are not unique for both cases. However, in
parts, they show similar values and, overall, the same trends such as the
increase in slip system saturation stress with increasing wire diameter
(Tables 3.8–3.9). This increase saturates for the two largest microwires.
In the initial development of the present model, the GB yield strength
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3 Gradient crystal plasticity with an accumulated plastic slip and GB yielding

has been intended to be a material constant. However, using a unique
value of the GB yield strength for all investigated microwire diameters
is not applicable. On this account, it is also noted that the ratio of
average grain size to wire diameter, in the experiments, is not unique for
different wire diameters. For the simulated grain aggregates, however,
the same ratio has been used for all discretizations. Additionally, in the
experiments, the microstructure of the microwires has been annealed
by different heat treatments for different wire diameters. More refined
grain aggregates would be desirable to be used in the simulations but
the arising computational costs appear to be prohibitive at the current
time. From Tables 3.8–3.9 it is evident that different values of the GB
yield strength ΞC

0 have to be used in order to fit the experimental
results. This is also due to the computational limitation regarding
the simulated average grain sizes. If all experimental average grain
sizes could be matched exactly in the simulations, a wire-diameter-
independent value of the GB yield strength would be expected. The
different values of ΞC

0 , therefore, compensate also for the deviations
in the modeling of the grain size. In order to visualize this influence,
the values of ΞC

0 are plotted in Fig. 3.16 over the difference in the ratio
of average grain size davg to wire diameter D between the simulations
and the experiments. Ideally, for the simulations, the ratio should be
used that was determined in the experiments. If this was the case,
all points in the plot should be on the dashed vertical line, and a
wire-diameter-independent value of the GB yield strength is expected.
Summarizing, it appears to be necessary to adapt the values of the GB
parameter in the model to the specific microwires when the grain size
cannot be modeled exactly.
Due to the fact that all considered microwires in this work exhibit
comparably low shares of low-angle GBs (on average < 10% for angles
< 10◦), and that a model with a non-orientation dependent GB yield
strength is used, effects of varying in-plane GB misorientations are not
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3.7 Discussion of the simulation results with focus on the size effects

investigated (Bayerschen et al., 2016b). Instead, it has been focused on
the effects stemming from the crystal-orientations.
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The activation of slip systems depends significantly on these, as it is
shown by way of an example for the two distinct orientations consid-
ered in the modeling approach. The consideration of the simplified
microwire textures enables to capture both the inverse size effect un-
der tensile loading and the classic size effect under torsion loading.
However, the magnitude of the size effect under torsion loading is
underestimated (Fig. 3.12b). Scaling the initial yield stress of the slip
systems by taking into account the experimentally determined 0.2-
proof-stresses improves the simulation results, but not enough to obtain
a good estimate of the size effect magnitude (Fig. 3.14a). If, additionally,
the GB yield strength is scaled, a better approximation of the size
effect magnitude is obtained (Fig. 3.14b). In parallel, the simulated
accumulated plastic slip gradients close to the GBs are increased by
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this procedure (Fig. 3.15d). Such gradients in the model serve as an
approximation of the inhomogeneity of the plastic deformation. The
GND-densities calculated from the experiments show pronounced
variations due to the microstructural characteristics (see, e.g., Fig. 4.30
in Chen (2013), however, for larger deformations than in the present
work). Thus, the simulation results with larger gradients seem to be
closer to the experimental observations. A more detailed assessment
requires the determination of GND-densities in many cross-sections of
the microwires for smaller overall deformations (than in Chen, 2013).
From a materials science point of view, it appears questionable that
a different GB yield strength in the torsion test simulations results
gives better agreement with the experiments than using the values as
obtained from the tensile test fits. However, the initial distribution of
dislocations has also not been considered in the simulations. Therefore,
possibly differing activation stresses within the dislocation distribu-
tions of the same wires under different loading conditions are not
modeled. These might be caused by the activation of dislocations close
to the surface of the microwires of different thickness under torsion
loading. Furthermore, the scaling of initial slip system stress and GB
yield strength for the torsion loading simulations can only give an
estimate of the mechanical response. The used model for GB yielding
does not take into account the different orientations of the grains. In
general, however, one would expect the GB yield strength to depend
on the crystallographic orientations of the adjacent grains and of the
GB itself, i.e., on the specific type of the GB. Several approaches to
consider the crystallographic misorientation have been proposed in the
literature, see Bayerschen et al. (2016a) for a recent review as well as
Section 6.2.2 of the present work.
In the overall torsion response of simulations and experiments, devi-
ations remain for the microwire with D = 25µm (Fig. 3.14b). These
deviations could be reduced by employing a smaller grain size in the
simulations that is closer to the experimentally determined average
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3.7 Discussion of the simulation results with focus on the size effects

grain size. For the largest microwire, it would also be desirable to
perform simulations with a refined grain size, although the influence of
the grain size for the larger microwires is not expected to be as crucial
as it is for smaller microwires.
The texture of the microwires has been considered in the simulations by
a simplified approach (Fig. 3.7b). A refined approach would require
the experimental characterization of many cross sections to obtain
detailed results of the variations of texture with regard to the devia-
tions from the ideal 〈100〉- and 〈111〉-orientations. The approach of
a simplified texture characterization appears justifiable for the two
smaller microwires (Fig. 3.7a and Fig. 3.7d) that show less cross-section
shares with orientations deviating from the two considered ideal ori-
entations. For the two thicker microwires (Figs. 3.7e–3.7f), however,
the examined cross-sections show higher area shares with orientations
deviating from the ideal orientations investigated. Therefore, two
texture cases (for D = 40µm with the aggregates from Fig. 3.8a and
Fig. 3.8d, for D = 60µm with the aggregates from Fig. 3.8a and Fig. 3.8e,
respectively) have been used in the simulations to obtain an estimate of
the mechanical responses. The mechanical response of the microwires
in the experiment is in between the responses of the two simulated
texture cases (Figs. 3.14a–3.14b) for both diameters. Thus, the actual
texture of the microwires could also be in between the two idealized
cases simulated.
Regarding the employed gradient plasticity model, several simplifi-
cations are addressed, in the following. First of all, an accumulated
plastic slip and its gradient are used instead of considering all plastic
slips and their gradients. Physically richer models incorporate all
plastic slips or dislocation densities, e.g., Gurtin et al. (2007); Bardella
et al. (2013), as additional DOFs. Using the accumulated plastic slip
and its gradient leads to a reduction of the defect stress modeling
since only one higher-order stress, work-conjugate to the gradient of
γac, is modeled. Considering all gradients, instead, would allow to
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include backstresses related to the individual slip systems but the
model merit of manageable computational times would possibly be
lost. In addition, it has been assumed that the accumulated plastic
slip measure is continuous across GBs. The plastic slips of individual
slip systems are, however, not necessarily continuous. Although this
simplification could be justifiable in certain cases, it is not expected to
be of general validity (see also Bayerschen et al., 2015).
Furthermore, the accumulated plastic slip has been set to vanish through-
out the simulation volume, in the beginning of the simulation. This ap-
pears to be reasonable since the annealing process produces oligocrys-
talline microwires with comparably low initial dislocation density con-
tent. It would, however, be desirable to consider the initial dislocation
density distribution. Detailed experimental data of the dislocation
density distributions within all grains and in many cross sections
would need to be obtained for meaningful non-zero choices of the
initial accumulated plastic slip distribution. The effort for this appears
to be prohibitive at the current time.
As it is also commonly done in the literature, the defect energy, related
to the gradients in the accumulated plastic slip, has been taken to be
of quadratic form. However, other approaches (e.g., linear) have been
proposed in the literature as well. Different accumulated plastic slip
distributions would be obtained with a non-quadratic defect energy.
This includes steeper gradients close to GBs for, e.g., a linear defect
energy compared to a quadratic one. The defect energy also influences
the magnitude of size effects (see Chapter 5). Therefore, it could be
interesting to additionally consider the influence of the defect energy
formulation in future works on size effects. A non-quadratic gener-
alization of the defect energy formulation is, therefore, discussed in
Chapter 5 including first simulations.
The parameter g0 of the defect energy has been fitted to the experimen-
tal tensile responses. Since a simplistic quadratic defect energy is used
in the current model, a direct connection to the microstructural internal
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length is not necessarily given. Recent works suggest that the free
energy of dislocations should in fact be non-quadratic, e.g., Kooiman
et al. (2015; 2016). Although the internal length scale is, in general, not
expected to be constant, the accordance with the experimental tensile
test results is given when using the same value of the defect energy
parameter for all grain aggregates in the present approach. From
a physical point of view, the internal length scale is determined by
the microstructural characteristics of the specimen such as grain size,
specimen size, dislocation spacing and dislocation source length (see,
e.g., Zhang et al., 2014). The obtained value for the internal length
scale of lint,avg = 0.1µm is, however, at least of the same order as, for
example, the value of the internal length scale of the gradient plasticity
model by Aifantis and Willis (2004; 2005) which was determined in
nanoindentation studies close to a GB (Aifantis et al., 2006). There, the
interpretation was given that this length was the distance over which
90% of the dislocations are piled up.
The used model allows only to reproduce a limited size-effect mag-
nitude of the torsional response of the gold microwires of different
thicknesses based on the parameters from the related tensile tests.
However, it is evident that, besides grain size, also textural features
have to be taken into account when modeling the mechanical behavior
of small structures under different loading conditions. In the present
case it is demonstrated, that the size effect in torsion, determined
in Chen et al. (2015), is significantly affected by the textural differ-
ences. If all the wires would possess similar textures, the differences
in strength of the microwires with smaller diameter, compared to the
ones with bigger diameter, would be less pronounced under torsion
loading. In fact, the response would be expected to be similar for
both loading cases. However, in many experimental works on size
effects of microspecimens, the influence of the texture is often neglected
(e.g., Fleck et al., 1994; Liu et al., 2012; 2013). As it is shown in the
preceding chapter, the texture can have a significant influence on the
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differences in the overall mechanical responses and, therefore, it should
be considered explicitly in future experimental characterizations as well
as in simulation studies.
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Chapter 4

Extension of the gradient crystal
plasticity theory with grain
boundary yielding by grain
boundary hardening

4.1 Motivation

As it is shown in the preceding Chapter 3, the consideration of the
resistance of GBs against plastic flow in the GP approach allows to
model phenomena such as the overall size-effects on oligocrystalline
microspecimen observed in experiments. However, a direct comparison
of the numerical GP results obtained for local quantities, such as the
distribution of plastic strain, to experimental data is not performed due
to a lack of availability of such data in the used experimental reference
works. Nevertheless, the prediction of plastic strain distributions with
the GP model is of central interest, especially close to the GBs due to the
arising gradients in the plastic field distributions, there. Therefore, an
additional comparison of GP results to discrete dislocation dynamics
(DDD) results is performed. The physically detailed modeling of dis-
locations and their interactions in, e.g., (the here used) DDD-codes by
Weygand et al. (2002; 2009); Šiška et al. (2009), and others, allows to use
such results as a data basis for comparison of GP results.
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4 Extension of the gradient crystal plasticity theory with GB yielding by GB hardening

Due to the discrete character of DDD simulations, the results have to
be averaged. This averaging is performed over many simulations. The
DDD simulations presented in this chapter were carried out and post-
processed by M. Stricker and D. Weygand (Institute of Applied Mate-
rials, KIT). The GP and DDD results shown in this chapter are pub-
lished in Bayerschen et al. (2015), and the content of this chapter is
largely taken from this work. At first, however, the DDD simulations
are briefly summarized.

4.2 Summary of discrete dislocation

dynamics simulations

4.2.1 Simulation setup, geometry and

boundary conditions

A tricrystal composed of three cubic grains with edge length 0.75 µm is
modeled under tensile loading (Fig. 4.1b). The GBs in the DDD model
are impenetrable to dislocation movement, i.e., dislocations cannot pass
the interfaces between the grains. Dislocations on the adjacent sides of
the GBs can interact, nevertheless. This means that the elastic interac-
tions of dislocations across GBs is preserved. Therefore, when the dis-
location density is sufficiently large enough (like in the present study),
this interaction of dislocations can be interpreted as an effective trans-
mission of dislocations (Quek et al., 2014; Stricker et al., 2016). To each
grain, an individual crystallographic orientation is assigned. Initially,
all three grains are in 〈100〉-crystal-orientation with respect to the de-
picted coordinate system of Fig. 4.1a. In order to investigate different
dislocation interaction behavior across the GBs in the model a misori-
entation angle ϕ around the tensile axis is imposed on the central grain
(Fig. 4.1a). Strain-rate controlled tensile test simulations are carried out
along the x-axis of the tricrystal geometry (cf. Fig. 4.1) with a strain
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Figure 4.1: (a) Accumulated plastic slip field distribution obtained in a gradient plasticity
FEM simulation without lateral contraction at the boundaries and finite values of the
GB yield strength (depicted are the Gauss-point subvolumes). (b) DDD simulation with
impenetrable GBs (dashed lines indicate the GB planes). LD: loading direction. Basic
figure from Bayerschen et al. (2015).

rate of ε̇ = 5000 s−1 during the simulation time t. This value is chosen
due to the small time scale at which DDD operates and it is assumed
that the plastic behavior is independent of the strain rate (Senger et al.,
2008). On the two boundary planes (in x-direction) the displacements
ux(x = 0) = 0 and ux(x = xmax) = xmaxε̇t, respectively, are prescribed.
The displacements orthogonal to the loading axis are set to zero (except
for one special case, cf. Section 4.3.4). All other boundaries are set to be
traction-free and dislocations are allowed to leave the volume, there.

4.2.2 Material model

Isotropic linear elasticity is used for the FCC crystal-system. The elastic
constants of aluminum are used (shear modulus G = 27 GPa, Poisson’s
ratio ν = 0.347). Frank-Read sources are distributed randomly with
respect to their positions and orientations in the grains. This assignment
is performed under the restriction that each slip system in each grain
is containing the same number of sources. The initial source length is
chosen to vary between 0.16−0.27µm. These choices reduce artificiality
which would be introduced into the model by a uniform source length.
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4 Extension of the gradient crystal plasticity theory with GB yielding by GB hardening

The resulting initial dislocation density is about ρ ≈ 7.5 × 1013 m−2. All
sources are approximately two times larger than the mean dislocation
spacing ℓ = 1/

√
ρ ≈ 0.12 µm. This places the behavior of the dislocation

system in the multiplication controlled plasticity regime (e.g., Kraft
et al., 2010; Zhang et al., 2014). As a consequence, the hardening of the
dislocation system is mainly influenced by dislocation reactions, and
not by single-source controlled plasticity. Therefore, a comparison of
results from the continuum GP model to the discrete DDD results can
be performed.

4.2.3 Averaging procedure

Due to the discrete nature of DDD simulations, scatter occurs in the
results. These depend on the dislocation structure and on the disloca-
tion density. The higher the dislocation density, the closer are DDD
results from individual simulations to a continuum-like result. The size
of the setups considered in the present work, however, is within the size-
effect regime. In this regime, individual dislocations control plasticity.
Therefore, a suitable averaging procedure is necessary in order to obtain
results comparable to continuum results. Therefore, an averaging over
several simulations is performed for all investigated cases. Once all
DDD simulations are carried out, the plastic strain of each realization
is evaluated from the swept areas of all discrete dislocations. In this
postprocessing procedure, slices perpendicular to the tensile axis are
considered. Finally, the DDD results are averaged, for one set of BCs
and crystal orientations over M simulations. The averaging procedure
is described in Table 4.1. For the evaluation of plastic strain along the
tensile axis, the number of slices is chosen to be 150, resulting in a
slice thickness of 15 nm. This choice is based on the evaluation of the
mean dislocation spacing in the developing pile-ups close to the GBs
which is approximately 1/

√
ρ ≈ 25 nm. Using 150 slices, the evaluation
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4.2 Summary of discrete dislocation dynamics simulations

resolution is nearly two times higher than the mean dislocation spac-
ing in the pile-ups. This resolution is sufficiently high to capture the
strain gradients. The GBs, themselves, do not exhibit plastic strain but
the slices adjacent to them do. Due to the performed averaging, the
spatial distribution of plastic strain is rendered to be one-dimensional.
All dislocations add to the produced plastic strain, regardless of their
individual positions within the cross-sections. The averaged DDD re-
sults are used to calibrate the GP model parameters. Subsequently, the
simulation results in terms of the plastic strain profiles can be compared
for both models.

Table 4.1: Averaging procedure for the discrete dislocation dynamics simulations, devel-
oped and evaluated by M. Stricker and D. Weygand (Institute of Applied Materials, KIT).
Procedure reprinted from Bayerschen et al. (2015).

1. The contribution of a slip system α to the plastic strain ten-
sor is evaluated in each slice of the volume V via εp

α =
bAα/(2V ) (dα ⊗ nα + nα ⊗ dα), where b is the length of the Burgers
vector, and Aα is the swept area of dislocations from a slip system α.

2. The slip system contributions εp
α to the plastic strain tensor εp are

superposed within each slice.

3. In each slice, the mean plastic strain is obtained by averaging the
simulation results twice:

a) Averaging the plastic strain arithmetically over ∼ 5 DDD
simulations.

b) Averaging the plastic strain over equivalent volumes with re-
spect to the crystallographic mirror-symmetry in x-direction at
x = 0.5 xmax. Thus, the data from DDD is effectively doubled
and, therefore, further smoothed. This procedure is formally
similar to the averaging procedure in Aifantis et al. (2009).
There, however, it is averaged over all symmetry-equivalent
components of the dislocation density tensor –instead of the
plastic strain– and over all symmetry-equivalent positions
along the x-axis.
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4.3 Gradient plasticity simulations

4.3.1 Geometry, boundary conditions

and crystal orientations

In this section, the setup of the FE simulations for the GP model is dis-
cussed (for details on the FE implementation see Wulfinghoff et al., 2013;
Wulfinghoff and Böhlke, 2013, and Section 3.4). The tricrystal composed
of 0.75 µm-wide cubic grains is loaded by Dirichlet conditions (∆ux =

0.005L0, L0 = 2.25 µm, cf. Fig. 4.1). Lateral contraction on the boundary
planes at x = 0 and at x = xmax, respectively, is prohibited (except for
one special case, cf. Section 4.3.4). The restriction of lateral contraction
(see also Fig. 4.1) is abbreviated by NLC (“no lateral contraction“), in the
following. At the beginning of the simulation, the accumulated plastic
slip γac (and its micromorphic counterpart ζ) are set to zero throughout
the simulation volume. Finite element nodes on the GB planes as well
as on the boundary planes are assigned a GB yield strength and are set
to microhard behavior, at the beginning. Once the (GB) yield condition
at these nodes is fulfilled, plastic activity is allowed for, there. The
motivation for assigning a GB yield strength to the boundary planes,
too, is drawn from the BCs in the DDD simulations that lead to pile-
ups of dislocations at the boundaries as well (cf. Section 4.2.2). For
details on the active-set search for the (grain) boundary nodes in the GP
simulations it is referred to Wulfinghoff et al. (2013) and Section 3.4.2.
An elastically isotropic, but plastically anisotropic aluminum-like ma-
terial is considered throughout the following GP simulations. As a
first approach to investigate the interaction behavior across GBs with
both models, three representative cases for the misorientation of the
central grain, ϕ ∈ {0◦, 5◦, 35◦}, are selected. Thus, the ideal case of
vanishing mismatch between the slip systems of adjacent grains (and,
consequently, unrestricted interaction of dislocations across the GBs in
the DDD setting) is supplemented by a case of small mismatch (yet
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still strong dislocation interaction) and a case of large mismatch (weak
dislocation interaction) between adjacent grains.
The chosen FE mesh for the GP simulations consists of 12 × 12 × 12

elements for each grain, i.e., it features 25012 DOFs in total. This mesh
is chosen as a compromise between computational time and accuracy.
Compared to the chosen discretization, a refinement of the mesh, using
approximately twice the number of DOFs, yields a relative error in the
stress-strain response at the final time-step of less than 0.01.

4.3.2 Gradient plasticity model with Voce-hardening

Model parameters

The GP model parameters are calibrated such that the overall mechani-
cal response matches the averaged stress-strain curves of the DDD sim-
ulations. This calibration is, in general, not sufficient by its own since
distributions of the plastic strain, e.g., along a line segment of the whole
volume, are not necessarily predicted correctly. Therefore, the local dis-
tribution of plastic strain has to be taken into account in the calibration,
too. While, in principle, the determination of the GP model parameters
in the fitting procedure is not unique, some guidelines, therefore, are
shown in Table 4.2 which should help in the calibration. Regarding
the elastic constants, the calibration yields a uniform Young’s modu-
lus of E = 65 GPa for all GP simulations (except for one special case,
cf. Section 4.3.4). The value of the Young’s modulus is slightly lower,
compared to the value of 72.7 GPa used in the DDD model. This is due
to the bow-out of dislocations from the very beginning of the loading
(Bayerschen et al., 2015). The Poisson’s ratio is kept identical to the DDD
simulations (ν = 0.347) and the resulting initial defect energy density
is W0 = 0.5G = 12.06 GPa.
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Table 4.2: Fitting procedure for gradient plasticity model with Voce-hardening, reprinted
from Bayerschen et al. (2015).

1. A least-squares fit (LSF) of the DDD stress-strain curves is obtained.

2. The cross-section averaged plastic strain profiles along the loading
axis are obtained. This is performed in order to ensure comparability
with the (averaged) plastic strain profiles from the DDD simulations.
The occurring differences within the cross-section distributions of GP
results are relatively small and not as pronounced as they are in the
DDD simulations.

3. The Young’s modulus of the GP model is calibrated in order to match
the elastic stiffness obtained from the LSF of the DDD data.

4. The initial yield stress τ C
0 of the GP bulk model and the initial yield

strength ΞC
0 of the GBs as well as the initial yield strength ΞC

0,∂B of
the boundary (planes at x = 0 and x = xmax) are calibrated using
the DDD-LSF and the averaged plastic strain profiles. Therefore,
the plastic strain profiles along the loading axis of GP results and
DDD results are compared. On that account, plastic strain profiles
are obtained at three, representatively chosen, fixed overall plastic
strain values in the well established plastic regime. The values used
are εp ∈ {0.001, 0.002, 0.003}.

5. In case of Voce hardening: The initial hardening modulus Θ and the
saturation stress τ C

∞ are adjusted to the hardening behavior of the
DDD-LSF.
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It is remarked that the defect energy normalization constant g0, al-
though in principle introducing an internal length scale into the model,
mainly controls the elastic-plastic transition behavior if the GP model
with GB yielding is used (see Section 3.5.1). Consequently, a value
of g0 = 16.95/µm is chosen such that the GP simulations show similar
stress-strain results as the DDD simulations in the elastic-plastic transi-
tion regime. Hardening resulting from the defect energy is negligible
compared to the hardening relations investigated in the following (cf.
also the parameter study in Fig. G.1). The internal length scale in
the GP model can be obtained from the normalization constant g0

by lint =
√

2W0/(g2
0E) ≈ 36 nm, considering a Young’s modulus of

E = 65 GPa. This result is, remarkably, of the same order of magnitude
as the mean dislocation spacing in the pile-ups at the GBs of the DDD
simulations (cf. Section 4.2.3). However, it is not expected that g0

(and thus, the internal length scale) is a constant, in general. For all
simulations, a reference shear rate of γ̇0 = 10−3/s, a rate sensitivity
exponent of p = 20, and a drag stress of τD = 1 MPa are considered. The
used penalty parameter is Hχ = 108 MPa. At first, two cases of different
misorientation are investigated. They are summarized in Table 4.3. In
the case NLC35V, the misorientation of the central grain is 35◦ and, in
the case NLC5V, the misorientation is 5°. The listed model parameters
are obtained by the fitting procedure outlined in Table 4.2.

Table 4.3: Setup and model parameters of GP simulations for comparison to DDD results.
The abbreviation NLC indicates that lateral contraction is prevented on the boundary
planes at x = 0 and x = xmax. The gradient hardening contribution is negligible in the
investigated NLC cases, see Fig. G.1 in the appendix. Data reprinted from Bayerschen
et al. (2015).

Name Ang- Harde- ΞC
0,Γ ΞC

0,∂B τ C
0 τ C

∞ Θ

le ϕ ning (N/m) (N/m) (MPa) (MPa) (MPa)
NLC5V 5◦ Voce 3.5 25 30.0 108.51 1075

NLC35V 35◦ Voce 3.5 25 30.0 108.51 1075
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Numerical results

At first, the framework presented in Chapter 3 is used taking into ac-
count the parameter calibration guidelines described above. A misori-
entation of 35° of the central grain is considered. This case exhibits weak
interaction of dislocations across the GBs in the discrete simulations due
to the substantially differing slip system orientations of the adjacent
grains. The plastic strain profiles of the DDD simulations are evalu-
ated and averaged at three constant overall plastic strains (cf. Fig. 4.2a).
Subsequently, the cross-section averaged plastic strain profiles of the GP
simulations are compared to the DDD profiles, see Fig. 4.2b. The model
parameters for this case can be found in Table 4.3. When calibrating the
GP parameters, it can be seen, e.g., in Fig. 4.2b, that the plastic strain
profiles for εp = 0.001 are in good agreement. The subsequent evolution
of plastic strain close to the GBs, however, cannot be accounted for by
the GP simulations using Voce hardening. Significant deviations occur
(see exemplary red arrow indicators in Fig. 4.2b) which are caused by
an obvious limitation of this approach to account for the accumulation
of dislocations at the GBs observed in the discrete simulations. Next,
for the case of a small misorientation of the central grain (5°), the stress-
strain response of the GP model is fitted to the DDD results (Fig. 4.2c).
The corresponding GP plastic strain profiles are in better agreement
with the DDD simulation results within the grains (Fig. 4.2d), compared
to the case of 35° misorientation (Fig. 4.2b). For small misorientations,
the interaction of dislocations in the discrete simulations is higher, lead-
ing to a more homogeneous distribution of plastic strain over all three
grains. However, similar deviations occur between GP and DDD results
close to the GBs (Fig. 4.2d) as the evolution of the plastic strain and
its gradients cannot be accounted for sufficiently by the used model.
Therefore, an additional hardening relation for the GBs is investigated
in the following and, after a calibration of the new hardening parameter,
the GP results are compared to the DDD results, again.
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Figure 4.2: (a) Stress-strain curves of DDD and GP simulations for 35° misorientation.
Blue error bars indicate that the DDD results are averaged at the corresponding overall
plastic strains. (b) Distribution of cross-section averaged plastic strain along loading
direction of DDD and GP simulations for 35° misorientation, obtained at the fixed overall
plastic strain values from (a). (c,d) GP and DDD simulation results for 5° misorientation.
Red arrows indicate deviations at the GBs. GP simulations obtained with quadratic defect
energy. Central grain rotated by misorientation angle around loading axis. DDD data
(a-d) and GP data (a,b) from Bayerschen et al. (2015).
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4 Extension of the gradient crystal plasticity theory with GB yielding by GB hardening

4.3.3 Gradient plasticity model with

grain boundary hardening

Motivation

The presence of GBs in micro-structured materials leads to dislocation
pile-ups which influence the overall hardening behavior. In many
continuum models, the dislocation-induced hardening mechanisms
are modeled by, e.g., isotropic hardening relations for the bulk material
such as the Voce-relation from the preceding chapter. When the overall
mechanical properties are focused on, this type of modeling can be
sufficient (see, e.g., Wulfinghoff et al., 2013). As it has been shown in
Section 4.3.2, however, the evolution of the distribution of plastic strain
is not captured by this approach. Therefore, it is investigated in the
following, if the localization of plastic strain, resulting from pile-ups of
dislocations observed at the impenetrable GBs in DDD simulations, can
be accounted for by a GP model with GB yielding and GB hardening.
A direct translation of the DDD grain-boundary conditions to the
GP model is not possible due to the coarsening in the continuum
approach. In order to account for hardening, as an alternative to the
preceding bulk-hardening model, GB hardening is introduced. The GB
hardening relation takes into account the accumulated plastic slip at the
GBs. This explicit association of hardening to the GBs is motivated by
observations from the DDD simulations. There, dislocations entangle
localized as pile-ups close to the GBs. Within the context of GB yielding,
it is also noteworthy that, in Aifantis et al. (2006), GB yield stresses
are estimated based on indentation studies. The authors attribute the
observed increase in hardness near the GB (and, thus, an increase in
resolved shear stress) to dislocation pile-ups (Soer et al., 2005). Keeping
this in mind, the explicit consideration of the GBs in the hardening
relation of the GP model seems justifiable.

146



4.3 Gradient plasticity simulations

Extension of the grain boundary yield

condition by grain boundary hardening

The basic GP framework from Chapter 3 is considered but the Voce-
hardening relation of the bulk is neglected, in the following. Thus,
β = 0, and the flow rule of the bulk is given by

λ̇α = γ̇0

〈
τd

α − τC
0

τD

〉p

= γ̇0

〈
τα + div (ξ) − τC

0

τD

〉p

. (4.1)

Consequently, hardening of the bulk is only induced by the gradient
stress ξ. For the following investigations, the gradient hardening contri-
bution, however, is negligible as the hardening contribution of the GBs
is much more pronounced.
In order to model the hardening of the GBs, the energy density (3.10) is
extended by an additional quadratic term and, therefore, reads

WΓ(ζ) = ΞC
0 ζ +

1

2
KHζ2. (4.2)

It is remarked that this energy approach requires an update of the stiff-
ness matrix, see 1.b) in Table 3.2 for details.
Here, KH is a parameter that describes the intensity of hardening of
the GBs. The simple quadratic form of the additional energy density
contribution is chosen as a first approach. Thereby, a hardening rela-
tion is obtained for the GBs that is linear in the micromorphic variable.
However, other approaches could be feasible, too. The combination of
(4.2) with the GB yield condition (3.19) yields

fΓ = [[ξ]] · n − Ξe
Γ= [[ξ]] · n − (ΞC

0 + KHζ). (4.3)

Here, it is clearly exhibited that the energetic GB traction Ξe
Γ is the sum

of a constant initial value ΞC
0 of the GB yield strength and a hardening

term linearly dependent on the micromorphic variable ζ.
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4 Extension of the gradient crystal plasticity theory with GB yielding by GB hardening

Model parameters

When GB hardening is used instead of Voce-hardening, the fitting pro-
cedure for the model parameters is slightly different, see Table 4.4. The
steps 1.-4. are identical to the steps in Table 4.2. However, step 5. from
Table 4.2 is substituted by fitting the new hardening parameter KH of
the GBs in the GP model to the DDD results (see Table 4.4).

Table 4.4: Fitting procedure for gradient plasticity model with grain boundary hardening,
reprinted from Bayerschen et al. (2015).

1.-4. See Table 4.2

5. In case of GB hardening: The GB hardening parameter KH is adjusted
to give good agreement with the hardening behavior of the DDD-LSF.
Additionally, the evolution of the plastic strain at the GBs is taken
into account, i.e., the GP plastic strain profiles are compared to the
(averaged) DDD plastic strain profiles at all three overall plastic strain
values εp.

Considering the same tricrystals and crystal orientations from Sec-
tion 4.3.2, the procedure leads to slightly different initial yield stresses
of the slip systems and a slightly different GB yield strength (cf. values
in Table 4.5 to Table 4.3).

Table 4.5: Setups and model parameters of GP simulations for comparison to DDD results.
The abbreviation NLC indicates that lateral contraction is prevented on the boundary
planes at x = 0 and x = xmax. The gradient hardening contribution is negligible in the
investigated NLC cases, see Fig. G.1. Data reprinted from Bayerschen et al. (2015).

Name Angle Harde- ΞC
0,Γ ΞC

0,∂B KH τ C
0

ϕ ning (N/m) (N/m) (N/m) (MPa)
NLC5G 5◦ GB 1.5 25 1.8×103 33.5
NLC35G 35◦ GB 1.5 25 1.8×103 33.5
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4.3 Gradient plasticity simulations

Results with grain boundary hardening

Using the calibrated parameters from Table 4.5, the stress-strain re-
sponses depicted in Fig. 4.3a and Fig. 4.3c are obtained. The evaluation
of the corresponding strain profiles (Fig. 4.3b and Fig. 4.3d) shows that,
by using the GB hardening relation, much better agreement of the GP
results with the DDD results is achieved. It can be seen (Fig. 4.3b and
Fig. 4.3d), however, that, depending on the chosen rotation angle ϕ

of the central grain, the strain profiles of the GP simulations are in
better agreement with the DDD profiles either in the central grain or
in the two boundary grains. Nevertheless, in the vicinity of the GBs,
the plastic strain evolution is captured significantly better, compared to
the previous results with Voce hardening. It is notable that for both GP
simulations with GB hardening, identical parameter values are used
(see Table 4.5). Although the evolution of the plastic strain values near
the GBs is captured comparably well, the gradients of the plastic strain
near the GBs are underestimated. In some of the grains, however, the
GP results overestimate the values from the DDD results (see Fig. 4.3b
and Fig. 4.3d).
From a discrete dislocation dynamics point of view, the gradients are
–similarly to the plastic strain values within the grains– dependent
on the interactions of the dislocations. Therefore, what appears to be
missing in the GP model is an appropriate mechanism to consider the
elastic interactions of the dislocations across the GBs. These influence
the resulting plastic strain profiles (Stricker et al., 2016) and lead to
the different distributions in the three grains. It can be shown, using
DDD simulations, that the stress-interaction of dislocations is the main
contributor to the observed inhomogeneities of the plastic strain pro-
files (Stricker, 2016). In the current GP model, however, the spatial
distributions of plastic strain are mainly influenced by the chosen form
of the defect energy and by the GB energy.
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Figure 4.3: (a) Stress-strain curves of DDD and GP simulations for 35° misorientation. (b)
Distribution of cross-section averaged plastic strain along loading direction of DDD and
GP simulations for 35° misorientation, obtained at fixed overall plastic strain values (a).
(c,d) GP and DDD simulation results for 5° misorientation. GP simulations obtained with
quadratic defect energy. Central grain rotated by misorientation angle around loading
axis. Figures reprinted from Bayerschen et al. (2015).
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4.3 Gradient plasticity simulations

Therefore, in the following section, an additional case is investigated
which allows to isolate the resulting DDD strain profiles from the in-
teractions of dislocations across GBs. Thereby, in the GP model, the
influence of the defect energy can be investigated isolated from the
influence of the GB energy form. Thus, it can be evaluated if the chosen
defect energy of the GP model is sufficient to model the gradients and
plastic strain distributions of the DDD results reasonably.

4.3.4 Special case: elastic boundary grains

using solely gradient hardening

The material parameters of the two boundary grains of the considered
tricrystal are adjusted to represent a purely elastic behavior. Only the
central grain is elastic-plastic and is assigned the 〈100〉-orientation with
respect to the x-axis (cf. Table 4.6). The GB contributions and the Voce-
hardening relation are neglected, and lateral contraction of the bound-
ary planes is not restricted (see Fig. 3.1b for the respective BCs).

Table 4.6: Setup and model parameters of GP simulation for comparison to DDD results.
The abbreviation LC indicates that lateral contraction is allowed for on the boundary
planes at x = 0 and x = xmax. In the special case LC0E, the two boundary grains are
purely elastic. Only gradient (grad.) hardening is considered. Data reprinted from
Bayerschen et al. (2015).

Name Angle Harde- ΞC
0,Γ ΞC

0,∂B τ C
0 τ C

∞ Θ

ϕ ning (N/m) (N/m) (MPa) (MPa) (MPa)
LC0E 0◦ Grad. - - 44.0 - -

Compared to the previously investigated tricrystal-settings, the overall
elastic response of the DDD simulations is slightly harder. This is due
the confinement of the plastic activity to the central grain. Consequently,
for this special case, the Young’s modulus, used in the GP model, has
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4 Extension of the gradient crystal plasticity theory with GB yielding by GB hardening

to be adjusted (to a value of 69.4 GPa). The resulting initial defect en-
ergy density is W0 = 0.5G = 12.88 GPa. In all other cases, however, the
microplasticity-effect (a seemingly smaller Young’s modulus) is more
pronounced because a small bow-out of a favorably oriented Frank-
Read source at the beginning of the simulations is more likely to occur.
When GB effects and hardening of the bulk material are neglected in
the GP model, the defect energy exclusively controls the overall rate of
hardening. The associated normalization constant is fitted to a value
of g0 = 17.51/µm. In Fig. 4.4a, the stress-strain results are contrasted,
and in Fig. 4.4b a comparison of the strain profiles is shown. The used
quadratic form of the defect energy in the GP model leads to an over-
estimation of plastic strain in the center of the grain. Near the GBs, the
gradients are underestimated by the GP results.
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Figure 4.4: (a) Stress-strain curves of DDD and GP simulations for 0° misorientation.
Boundary conditions with free lateral contraction. The boundary grains behave elastic
(i.e., τC

0 → ∞ in the GP model of these). (b) Distribution of cross-section averaged plastic
strain along loading direction of DDD and GP simulations, obtained at fixed overall
plastic strain values (a). GP simulations obtained with quadratic defect energy. Figures
reprinted from Bayerschen et al. (2015).
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4.3 Gradient plasticity simulations

The DDD profiles, however, show more plateau-like distributions of
plastic strain with larger gradients near the GBs. At the same time,
the overall shapes of the plastic strain profiles from both simulation
approaches differ more pronounced from each other, compared to the
other cases above.
It is recalled that in the GP model, the gradients enter the theoretical
framework in the free energy via the defect energy contribution, see
Eq. (3.8). In order to improve the GP results regarding their prediction
of the plastic strain gradients near the GBs and the distributions of
plastic strain within the grains, a more general type of defect energy
is discussed and tested in the following chapter.
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Chapter 5

Extension of the gradient crystal
plasticity theory by a power-law
defect energy

5.1 Motivation

Gradient plasticity modeling of size-effect related phenomena is influ-
enced by the choice of the mathematical form of the defect energy. It
is known that depending on, e.g., the exponent of the defect energy
(Bardella, 2010), for example, the magnitude of the modeled size effects
can be varied. On the path towards refining the single-crystal gradient
plasticity model by Wulfinghoff et al. (2013) and by Bayerschen et al.
(2015), a power-law defect energy is realized in this chapter. This (in
general) non-linear defect energy is formulated using the gradient ∇ζ of
the micromorphic counterpart ζ to the accumulated plastic slip γac. The
approach allows to investigate different exponents of the defect energy
in numerical simulation studies. Therefore, also different plastic strain
distributions can be modeled which deviate from the strictly parabolic
distributions obtained with a quadratic defect energy (see, for example,
Section 4.3.4). The content of the following chapter is largely taken from
Bayerschen and Böhlke (2016) and Bayerschen et al. (2016c).
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5 Extension of the gradient crystal plasticity theory by a power-law defect energy

5.2 Mathematical model

5.2.1 Preliminaries

In the following, the basic gradient-plasticity framework from Chap-
ter 3 is considered but Voce-hardening is neglected. Therefore, the field
equations of the theory used for the bulk material in this chapter are
identical to the field equations already presented in Table 3.1. The GB
conditions and the BCs, however, are different. For brevity of the follow-
ing derivations and the basic model studies, the GB contributions are ne-
glected, at first (i.e., WΓ = 0). Instead, micro-hard boundary conditions
and GB conditions are used. Subsequent to the derivations and the basic
model studies, however, the GB contributions are considered using the
GB-hardening extended formulation from Chapter 4. Additionally, a
comparison of GP results obtained with different defect energy expo-
nent choices to DDD results is presented.

5.2.2 Principle of virtual power and field equations

The virtual internal power is assumed to be given by

δPint =

∫

B

(
σ · δε̇ + πδζ̇ + ξ · ∇δζ̇

)
dv, (5.1)

with the virtual strain rates δε̇(δu̇), and the virtual rate of the micromor-
phic variable δζ̇. It is assumed that ζ is a continuous quantity. Conse-
quently, possible jumps of ζ, e.g., at grain boundaries in the body B, are
neglected. This assumption is not expected to be transferable to plastic
slips of individual slip systems, in general. In the context of an overall
description of plastic slip, however, it is noted that the calculations of an
effective plastic strain in the experimental work of Abuzaid et al. (2012)
resulted in continuous distributions of this overall quantity across many
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5.2 Mathematical model

grain boundaries. Thus, it appears to be reasonable to consider ζ as
a continuous quantity, for a first approach. Furthermore, the virtual
power of the external forces is assumed to have the two contributions

δPext =

∫

∂Bt

t̄ · δu̇ da +

∫

∂BΞ

Ξ̄ δζ̇ da, (5.2)

where power is expended at the external boundaries ∂Bt ∪ ∂BΞ = ∂B
by the tractions t̄, and by the microtractions Ξ̄, respectively. In Eq. (5.2),
it has been exploited, already, that the virtual rates {δu̇, δζ̇} vanish for
given {u, ζ} at the Dirichlet boundaries ∂Bu. By using the principle of
virtual power, i.e., by letting the virtual power of the internal forces be
equal to the virtual power of the external forces, δPint = δPext, and ap-
plying Gauss’ theorem, the field equations and the Neumann boundary
conditions, listed in Table 5.1, can be derived (cf. Appendix H).

Table 5.1: Field equations and boundary conditions with gradient extension neglecting
grain boundary contributions. Table reprinted from Bayerschen and Böhlke (2016) with
permission from Springer.

Linear momentum balance 0 = div (σ) ∀x ∈ B
Microforce balance π = div (ξ) ∀x ∈ B
Neumann BCs for: Cauchy stress σn = t̄ on ∂Bt

Gradient stress ξ · n = Ξ̄ on ∂B Ξ

5.2.3 Constitutive equations with a

power-law defect energy

The free energy of the bulk is assumed to be given by

W (ε, λ̂, ζ, ∇ζ) = We(ε, εp(λ̂)) + Wg(∇ζ) + Wχ(ζ − γac(λ̂)), (5.3)
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5 Extension of the gradient crystal plasticity theory by a power-law defect energy

where the defect contribution Wg to the free energy, Eq. (3.9), is substi-
tuted by a defect energy of power-law form,

Wg(∇ζ) = W0

( |∇ζ|
g0

)m

, (5.4)

with the defect-energy exponent m. In the present work, the range
1 ≤ m ≤ 2 is considered. It is referred to Forest (2016) for a recent
overview of different types of defect-energy formulations with a focus
on micromorphic theories.
The total dissipation, neglecting GB contributions, reads

Dtot =

∫

B

D dv = Pext −
∫

B

Ẇ dv ≥ 0, (5.5)

if thermal effects are disregarded, too. By setting the external power to
be equal to the internal power,

Pext = Pint =

∫

B

(
σ · ε̇ + πζ̇ + ξ · ∇ζ̇

)
dv, (5.6)

and substituting Eq. (5.3) in Eq. (5.5), the dissipation D can be reformu-
lated by the form

D =

(
σ − ∂We

∂ε

)
· ε̇ − ∂We

∂εp
· ε̇p − ∂Wχ

∂γac

γ̇ac +

(
π − ∂Wχ

∂ζ

)
ζ̇

+

(
ξ − ∂Wg

∂∇ζ

)
· ∇ζ̇ ≥ 0. (5.7)

Using the abbreviation p̌ = ∂Wχ/∂γac = −∂Wχ/∂ζ, assuming the
stresses σ, π, and ξ to be purely energetic, and substituting ∂We/∂εp =

−σ in Eq. (5.7), leads to the reduced dissipation inequality in the form

D = σ · ε̇p − p̌ γ̇ac ≥ 0. (5.8)
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5.3 Exact solution of a laminate for single slip

Substituting both the plastic strain tensor from Eq. (2.5) and the accu-
mulated plastic slip, Eq. (2.6), in Eq. (5.8) gives

D =
∑

α

(τα − p̌) λ̇α ≥ 0, (5.9)

with the resolved shear stresses τα = σ · Ms
α. Requiring equality of

the right-hand side of Eq. (5.9) to the right-hand side of Eq. (2.37), the
dissipative shear stresses can be expressed by

τd
α = τα − p̌. (5.10)

Finally, using p̌ = −π from Eq. (5.7) and the microforce balance (π =

div (ξ), see Table 5.1), gives

τd
α = τα + div (ξ) . (5.11)

The flow rule of the bulk material is assumed to be of the same form as
in Eq. (4.1), i.e.,

λ̇α = γ̇0

〈
τd

α − τC
0

τD

〉p

= γ̇0

〈
τα − (τC

0 − div (ξ))

τD

〉p

.

Since solely the gradient-stress hardening contribution is present in the
flow rule, due to the neglect of other bulk-material hardening and GB-
hardening contributions, the overall hardening is only influenced by
this gradient-hardening term −div (ξ).

5.3 Exact solution of a laminate for single slip

In order to investigate the distributions of the micromorphic variable ζ

that can be obtained with the power-law defect energy for different
choices of the exponent m, an exact solution is briefly presented, at
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5 Extension of the gradient crystal plasticity theory by a power-law defect energy

first. Subsequently, results of this solution are discussed. By combining
Eqs. (3.13) and (5.4), the gradient stress is given as

ξ =
∂Wg(∇ζ)

∂∇ζ
= m

W0

g0

( |∇ζ|
g0

)m−1 ∇ζ

|∇ζ| . (5.12)

Single slip is considered for a simple shear deformation. Then, in the
limit case of identical values of the micromorphic variable and the accu-
mulated plastic slip, ζ = γac = γ with γ = γ(x). Consequently, ∇γ ∼ ex,
and the x-component of ξ reads

ξ · ex = ξx = m
W0

g0




∣∣∣dγ
dx

∣∣∣
g0




m−1

. (5.13)

The term div (ξ) in Eq. (5.11) reduces to

div (ξ) =
dξx

dx
, (5.14)

which, in combination with Eq. (5.13) gives

dξx

dx
= (m − 1)m

W0

g2
0




∣∣∣dγ
dx

∣∣∣
g0




m−2

d
∣∣∣dγ

dx

∣∣∣
dx

, (5.15)

where the second derivative can be expressed by

d
∣∣∣dγ

dx

∣∣∣
dx

= sg

(
dγ

dx

)
d2γ

dxdx
. (5.16)

For the stationary single slip case, τd
α = τd = τC

0 and τα = τ . Thus,
Eq. (5.11) yields

dξx

dx
= τC

0 − τ = −∆τ, (5.17)
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5.3 Exact solution of a laminate for single slip

where ∆τ denotes the difference between the resolved shear stress τ

and the critical shear stress τC
0 . Combining Eqs. (5.15) and (5.17) results

in the following form

− ∆τ = (m − 1)m
W0

g2
0




∣∣∣dγ
dx

∣∣∣
g0




m−2

d
∣∣∣dγ

dx

∣∣∣
dx

(5.18)

with xmin ≤ 0 ≤ xmax and xmin = −xmax.
A solution for γ(x) is obtained, for example, by considering sg (dγ/dx) =

+1 for −xmax ≤ x ≤ 0, using the boundary conditions dγ/ dx(x = 0) = 0

as well as γ(x = −xmax) = 0. The corresponding solution reads

γ(x) =
W0(m − 1)

∆τ

(
∆τg0

W0m

) m

m−1 (
− |x|

m

m−1 +x
m

m−1
max

)
. (5.19)

Analogously, the solution for 0 ≤ x ≤ xmax can be obtained by consid-
ering sg (dγ/dx) = −1 and the two BCs dγ/ dx(x = 0) = 0 and γ(x =

xmax) = 0, respectively.
In addition to the γ(x)-distributions, the shear-stress evolution is de-
rived, in dependence of the average plastic slip γ̄. Therefore, the follow-
ing integral average is considered

γ̄ =
1

∆x

0∫

xmin

γ(x)dx (5.20)

on the interval x ∈ [xmin, 0] with xmin = −xmax and ∆x = −xmin. The
evaluation of Eq. (5.20), considering an average shear stress difference
of ∆τ = ∆τ̄ , yields

γ̄ =
W0(m − 1)

∆τ̄

(
∆τ̄ g0

W0m

) m

m−1 m

2m − 1
x

2m−1
m−1

max . (5.21)

161



5 Extension of the gradient crystal plasticity theory by a power-law defect energy

Solving Eq. (5.21) for ∆τ̄ and letting the maximal coordinate xmax = l

leads to

∆τ̄ (γ̄) = τ̄ − τC
0 =

W0m

l2m−1g0
m

(
2m − 1

m − 1
γ̄

)m−1

. (5.22)

In order to compare shear distributions for different defect energy ex-
ponents, it is assumed that the same average shear γ̄ = 0.01 is present
for the different defect energy exponents m. Then, the corresponding
values of the dimensionality constants g0 for different m can be obtained
from Eq. (5.21). This gives the values indicated in Table 5.2.

Table 5.2: Different defect energy exponents m and corresponding normalization con-
stants g0 with respective internal length scales 1/g0, values of g0 obtained from Eq. (5.21)
under the assumption that γ̄ = 0.01 for the chosen values of m. Table reprinted from
Bayerschen and Böhlke (2016) with permission from Springer.

m 2.0 1.5 1.1

g0 in 1/µm 0.39 0.83 2.07

1/g0 in µm 2.56 1.2 0.48

For the initial defect energy density, W0 = ᾱG is used with ᾱ = 0.5 and
the shear modulus G = 25 GPa. In Fig. 5.1a, the normalized distri-
butions of γ(x) are depicted for different defect energy exponents m,
assuming a shear stress difference of ∆τ = 5 MPa. It can be observed
that the smaller the defect energy exponent m and the internal length
scale 1/g0, the larger are the developing gradients of γ(x) close to the
boundaries. A quadratic defect energy leads to a parabolic distribution
of γ(x). For choices of m closer to one, however, more plateau-like dis-
tributions of γ(x) are obtained. The resulting evolution of the average
shear stress difference ∆τ̄ is plotted for the plastic range in Fig. 5.1b.
The quadratic defect energy leads to uniform, linear hardening, while
choices of m closer to one give highly non-linear, at the onset of plastic-
ity more pronounced, but subsequently less pronounced, hardening.
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5.3 Exact solution of a laminate for single slip
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Figure 5.1: (a) Normalized γ-distribution of analytical solution for single-slip simple
shear, plotted along the normalized coordinate. Identical γ̄ for all three values of m.
(b) Normalized average shear stress difference, plotted in the plastic range over nor-
malized average plastic slip. Figure reprinted from Bayerschen and Böhlke (2016) with
permission from Springer.

If Eq. (5.22) is evaluated for the case m = 1,

τ̄ (γ̄) − τC
0 =

W0

lg0

⇒ τ̄ (γ̄) =
W0

lg0

+ τC
0 . (5.23)

For this case, the influence of the grain size l and of the dimension-
ality constant g0 on the average shear stress can be interpreted in an
appealing manner. The average shear stress τ̄ scales inversely linear
with both, l and g0. For exponents m > 1, however, these dependencies
are non-linear, see Eq. (5.22). This explains the increase in yield stress
occurring for smaller values of m in conjunction with smaller grain
sizes l that can be observed in the numerical results, e.g., in Fig. 5.4a.
In the following, the influence of the defect energy exponent m is sep-
arated from the influence of the internal length scale 1/g0 for the illus-
trative example above. A variation of the values of the dimensionality
constant g0 from Table 5.2 by ±5% is performed. In Fig. 5.2, the resulting
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5 Extension of the gradient crystal plasticity theory by a power-law defect energy

normalized average shear distributions (Fig. 5.2a) and the resulting nor-
malized average shear stress difference courses (Fig. 5.2b) are depicted.
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Figure 5.2: (a) Normalized γ-distribution of analytical solution for single slip simple shear,
plotted along the normalized coordinate. The normalization constant g0 is varied as
indicated. (b) Normalized average shear stress difference, plotted in the plastic range
over normalized average plastic slip. The depicted keys in (a,b) apply to both figures.
Figure reprinted from Bayerschen and Böhlke (2016) with permission from Springer.

The courses from Fig. 5.1 are indicated by solid lines, as a reference.
From Fig. 5.2a, it becomes evident that the resulting shear is highly
non-linear in the variations of m and g0, respectively. Changes in the
defect energy exponent m further amplify variations in the gradients
of γ, when changing the internal length scale 1/g0. For constant m,
an increase in 1/g0 leads to more pronounced hardening behavior (see
Fig. 5.2b), consistent with less plastic shear (see Fig. 5.2a). Changing the
defect exponent m, however, gives rise to substantially different shapes
of the respective hardening courses (see Fig. 5.2b).
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5.4 Finite element implementation

5.4 Finite element implementation

5.4.1 Linearization of the principle of virtual power

The theory from Section 5.2 is implemented in the in-house FE-code
to perform a first numerical investigation with the power-law defect
energy. In the following, the key concepts for the implementation of
the power-law defect energy approach, Eq. (5.4), and the linearization
of the principle of virtual power are discussed, briefly.
The linearization of Eqs. (5.1) and (5.2) in δu̇ reads

∫

B

(
∂σ

∂ε
[∆ε] +

∂σ

∂ζ
∆ζ

)
· δε̇ dv = −

∫

B

σ · δε̇ dv +

∫

∂Bt

t̄ · δu̇ da ∀δu̇.

(5.24)

Furthermore, the linearization of Eq. (5.1) and Eq. (5.2) in δζ̇, with con-
sideration of π = −p̌, gives

∫

B

(
δζ̇
(

− ∂p̌

∂ζ

)
∆ζ − δζ̇

∂p̌

∂ε
· ∆ε +

∂ξ

∂∇ζ
[∇(∆ζ)] · ∇(δζ̇)

)
dv =

−
∫

B

(
− p̌ δζ̇ + ξ · ∇(δζ̇)

)
dv +

∫

∂BΞ

Ξ̄ δζ̇ da. (5.25)

The numerical integration of Eq. (5.24) and Eq. (5.25) is outlined in
Wulfinghoff et al. (2013) in a more general formulation, including
GB contributions (see also Section 3.4). Clearly, the FE implemen-
tation of Eq. (5.24) and Eq. (5.25) requires to compute the gradient
stress ξ = ∂Wg(∇ζ)/∂∇ζ and its derivative ∂ξ/∂∇ζ. Using the power-
law defect energy formulation from Eq. (5.4), the gradient-stress can be
rewritten by

ξ =
∂Wg(∇ζ)

∂∇ζ
= m

W0

gm
0

|∇ζ|m−2∇ζ. (5.26)

165



5 Extension of the gradient crystal plasticity theory by a power-law defect energy

The derivative of the gradient stress with respect to the gradient of the
micromorphic variable reads

∂ξ

∂∇ζ
= m

W0

gm
0

|∇ζ|m−2I + m(m − 2)
W0

gm
0

|∇ζ|m−4∇ζ ⊗ ∇ζ. (5.27)

From Eq. (5.26) and Eq. (5.27) it is apparent that for the choice of an
arbitrary power exponent m, the gradient stress in this formulation is
neither necessarily defined nor differentiable for the case of vanishing
gradients ∇ζ (i.e., for |∇ζ| → 0). However, for the special case of a
quadratic defect energy (m = 2), the gradient stress reduces to the form

ξ = 2
W0

g2
0

∇ζ, (5.28)

and its derivative with respect to ∇ζ is given by

∂ξ

∂∇ζ
= 2

W0

g2
0

I. (5.29)

Consequently, for this special case, the gradient stress is defined and
differentiable, even for vanishing gradients ∇ζ, making it a numerically
convenient choice. It is remarked that a quadratic defect energy leads
to a gradient stress ξ that is linear in the gradient ∇ζ . Choosing m = 1,
however, gives a constant gradient stress ξ (see also Eq. (5.26)).
In order to use the power-law defect energy with exponents different
from m = 2, a numerical regularization of the power-law defect energy,
Eq. (5.4), for vanishing gradients ∇ζ , is outlined in the following.

5.4.2 Regularization of the power-law

defect energy approach

A standard numerical regularization approach (e.g., Trémolières et al.,
1981) is used, here, by adding a small constant to the absolute value
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5.4 Finite element implementation

of the gradient ∇ζ . Regularized defect energy associated quantities are
denoted by a (̃·), in the following.
The regularized form of the defect energy is introduced as

W̃g(∇ζ) = W0



(
|∇ζ|2 + ǫ2

) 1
2

g0




m

=
W0

gm
0

(
|∇ζ|2 + ǫ2

)m

2 , (5.30)

and the numerical parameter ǫ is chosen sufficiently small but non-zero
(see Appendix F.2 for a parameter study). This choice leads to finite
values of the derivatives of Eq. (5.30), also for vanishing gradients ∇ζ .
The gradient stress for the employed regularization is given by

ξ̃ =
∂W̃g(∇ζ)

∂∇ζ
= m

W0

gm
0

(
|∇ζ|2 + ǫ2

)m

2 −1∇ζ, (5.31)

and its derivative with respect to the gradient reads

∂ξ̃

∂∇ζ
= m

W0

gm
0

((
|∇ζ|2 + ǫ2

)m

2 −1
I + (m − 2)

(
|∇ζ|2 + ǫ2

)m

2 −2∇ζ ⊗ ∇ζ
)

.

(5.32)

For the special case m = 2, this regularized defect energy form recovers
the non-regularized formulation, i.e., ξ̃ = 2W0∇ζ/g2

0 , and ∂ξ̃/∂∇ζ =

2W0I/g2
0 , respectively. If the regularization parameter ǫ is set to zero,

the original power-law formulation, Eq. (5.4), of the defect energy is
recovered, i.e., ξ̃ = ξ, and ∂ξ̃/∂∇ζ = ∂ξ/∂∇ζ, respectively.

5.4.3 Numerical time integration and algorithmic tangent

The numerical time integration requires the determination of the stresses
in Eqs. (5.24–5.25) and the computation of the algorithmic tangent.
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5 Extension of the gradient crystal plasticity theory by a power-law defect energy

These computations follow along the approach discussed in Wulfin-
ghoff et al. (2013). An implicit Euler scheme is applied to Eq. (3.15).
For details on this see also Wulfinghoff et al. (2013).

5.5 Numerical results using the defect

energy with different exponents m

5.5.1 Tricrystal with elastic boundary grains:

m-influence

In order to investigate the model behavior for different exponents m in
the defect energy approach, Eq. (5.30), in a fully three-dimensional set-
ting, numerical results are obtained using the parameters from Table 5.3.

Table 5.3: Model parameters for tensile test simulations of aluminum-like tricrystals.
Table reprinted from Bayerschen and Böhlke (2016) with permission from Springer.

G ν W0 ᾱ p

25 GPa 0.3 ᾱG 0.5 20

γ̇0 τC
0 τD ǫ Hχ

10−3 1/s 33.5 MPa 1 MPa 10−6 108 MPa

In a first investigation, three choices of the exponent m are considered.
For each choice, the normalization constant g0 is determined by simula-
tions such that the final nominal-stress value at the final nominal strain
is identical for all m. Consequently, for all considered exponents, the
plasticity carried by the simulation volume is identical after the final
time step. The chosen values of m and the corresponding normaliza-
tion constants are shown in Table 5.4. Using these, the behavior of the
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5.5 Numerical results using the defect energy with different exponents m

model can be compared for the cases of a quadratic defect energy, a
defect energy that is closer to being linear, and a defect energy with an
exponent that is in the range between these two cases. It is noted that us-
ing a defect energy with an exponent of exactly m = 1.0 would require
further regularization due to an initial jump in the gradient stress at the
beginning of plastic deformation (see, e.g., Ohno and Okumura, 2007).

Table 5.4: Used defect energy exponents m and corresponding normalization constants g0

with respective internal length scales 1/g0. Table reprinted from Bayerschen and Böhlke
(2016) with permission from Springer.

m 2.0 1.5 1.1

g0 in 1/µm 8.25 43.5 450.21

1/g0 in µm 1.2 × 10−1 2.3 × 10−2 2.2 × 10−3

Instead, a value of m is investigated that is sufficiently higher to not
necessitate additional regularization. The stress-strain curves that are
obtained for all three exponents are depicted in Fig. 5.3a. While the
quadratic defect energy leads to a linear hardening behavior, choices
of lower exponents m, however, reduce the slope of the (in general non-
linear) hardening observed. The field distributions of the micromorphic
variable ζ along the central line segment in the elastic-plastic grain are
depicted for the three choices of m in Fig. 5.3b. It can be seen, there, that
the common choice of m = 2 for the exponent yields a parabolic profile
for ζ in the central grain. A choice closer to m = 1, however, leads to a
more plateau-like ζ-distribution in the central grain. The gradients close
to the grain boundary rise with decreasing m. For the quadratic defect
energy, a parabolic distribution of ζ develops. In contrast, the smaller
choices of m lead to the initiation of a region with a constant value of ζ

where, in large parts, ζ increases uniformly throughout the evolution.
The lower the choice of m, the more pronounced is this region.
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Figure 5.3: (a) Stress-strain curves for tricrystal with elastic boundary grains and different
defect energy exponents m. (b) ζ-distributions in the central grain along the x-axis for
three time steps. Figure reprinted from Bayerschen and Böhlke (2016) with permission
from Springer.

Due to the steeper gradients developing for these values of m, the max-
imum value that ζ achieves is significantly less than for m = 2. The
same “amount” of plasticity is carried by the central grain, however, at
the end of the last time step of each case.

5.5.2 Tricrystal with elastic boundary grains: size effects

In addition, the size effects occurring for the different defect energy
exponents are investigated with the aforementioned tricrystal, consider-
ing the same model parameters as in the previous example. The length l

of the cubic grains, however, is varied. In Fig. 5.4a, the different size
effect behavior is shown for three grain sizes l. Smaller grains respond
stiffer for all three values of m, and the magnitude of the size effects
is clearly influenced by the choice of the defect energy exponent and
the corresponding internal length scales, which are also indicated in
Fig. 5.4a. It is remarked that the model behavior is influenced both by
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5.5 Numerical results using the defect energy with different exponents m

the choice of the defect energy exponent and the internal length scale.
An increase in the overall yield strength becomes more pronounced for
smaller m-values (see also Section 5.3). For constant defect energy ex-
ponent and length scale, the tricrystal responds stiffer with decreasing
grain size l. A larger magnitude of the size effect is observed for the
quadratic choice, compared to the smaller choices of the exponent. The
smaller choices of m, however, lead to a less pronounced size effect.
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Figure 5.4: (a) Stress-strain curves for tricrystal with elastic boundary grains for different
grain sizes l and defect energy exponents m. (b) ζ-distributions in the central grain along
the x-axis plotted over normalized coordinate x/xmax at the final time step for different
grain sizes l and defect energy exponents m. Figure reprinted from Bayerschen and
Böhlke (2016) with permission from Springer.

In addition, the corresponding distributions of the micromorphic vari-
able ζ are plotted at each final time step in Fig. 5.4b. It can be observed,
there, that the size of the grains affects the distribution of ζ, significantly.
Larger grains tend to show smaller plateau-like distributions and, in
turn, larger values of ζ in the center of the grain. The classic size effect
of “smaller responding stronger” can be observed in both Fig. 5.4a and
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5 Extension of the gradient crystal plasticity theory by a power-law defect energy

Fig. 5.4b. In detail this means that the smaller the grain size, the smaller
is the ”amount“ of plasticity carried by the central grain, see Fig. 5.4b.

5.5.3 Tricrystal with elastic-plastic grains

As an additional numerical example, a crystal composed of three cubic
grains that all behave elastic-plastic is investigated. This shall demon-
strate the capability of the employed defect energy approach to be used
in elastic-plastic three-dimensional multicrystalline simulations. The
material parameters are chosen to be the same as in the previous numer-
ical examples. However, the crystal orientation of the central grain is al-
tered by a rotation of 6◦ around the z-axis (see the coordinate-system in
Fig. 5.5a). The resulting field distributions of ζ are shown in Fig. 5.5a for
all three choices of m. Clearly, the width of the gradient-affected zone
close to the grain boundaries at x = 3µm, and at x = 6µm, respectively,
is influenced by the defect energy exponent m.
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Figure 5.5: (a) Field distributions of ζ for tricrystal with elastic-plastic grains, (b) ζ-distri-
butions along a line segment on the central x-axis for different defect energy exponents m.
Figures reprinted from Bayerschen and Böhlke (2016) with permission from Springer.
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5.6 Comparison of gradient plasticity model results to DDD results

Lower choices of m lead to steeper gradients of ζ that are distributed
over smaller regions. This can also be seen in Fig. 5.5b, where it can be
observed, as well, that the differing orientations of the grains lead to
different gradients of ζ . For m = 1.1, this becomes especially apparent
with a very sharp transition in the ζ-distribution, from the plateau in
the middle of each boundary grain towards the grain boundaries.

5.6 Comparison of gradient plasticity

model results to discrete dislocation

dynamics results

5.6.1 Tricrystal with elastic boundary grains

In this section, the GP models of Bayerschen et al. (2015) and Bayerschen
and Böhlke (2016) are combined. Specifically, GB contributions are ac-
counted for and GB hardening is considered. Therefore, the field equa-
tions are given by the formulation in Table 3.1. The GB yield strength
is given by the form Eq. (4.3). For the defect energy, the power-law
approach, presented in Section 5.2, is used including the discussed nu-
merical regularization.
At first, the tricrystal with elastic boundary grains is considered in or-
der to compare GP results, obtained with different defect energy ex-
ponents m, to the DDD results from Chapter 4. It is recalled that the
choice of both the defect energy exponent m and the normalization
constant g0 affect the overall stress-strain response and the plastic strain
profiles (see Section 5.3). Therefore, for each choice of the exponent m,
the corresponding normalization constant g0 is adjusted such that the
nominal stress at the end of the simulation is approximately the same
as the nominal-stress value obtained for m = 2 (see Fig. 5.6a).
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Figure 5.6: (a) Stress-strain curves of DDD and GP simulations for 0° misorientation.
Boundary conditions with free lateral contraction. The boundary grains behave elastic
(i.e., τC

0 → ∞ in the GP model of these). (b) Distribution of cross-section averaged
plastic strain along loading direction of DDD and GP simulations, obtained at the fixed
overall plastic strain values from (a). GP simulations obtained with different defect energy
exponents m. DDD data and GP data for m = 2.0 from Bayerschen et al. (2015), GP Data
for m = 1.3 and basic figures reprinted from Bayerschen et al. (2016c).

Thereby, the set of parameters in Table 5.5 is obtained. The used elastic
constants are identical to the elastic constants from Chapter 4. By using
defect-energy exponents closer to m = 1 a better prediction of the plas-
tic strains and the gradients is achieved for the tricrystal with elastic
boundary grains (see Fig. 5.6b). With increasing plastic deformation,
however, the deviations between the GP and the DDD results increase.

Table 5.5: Parameters for gradient plasticity simulations of tricrystals with elastic bound-
ary grains (LC0E) and different defect-energy exponents m. Data for m = 1.3 from
Bayerschen et al. (2016c).

m W0 = G/2 g0 τ C
0

(GPa) (1/µm) (MPa)

1.5 12.88 133.5 32.5
1.3 12.88 200 24.5
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5.6 Comparison of gradient plasticity model results to DDD results

5.6.2 Tricrystal with elastic-plastic grains

For the case of a fully elastic-plastic tricrystal, the stress-strain responses
are contrasted for different defect energy exponents and different mis-
orientations of the central grain in Fig. 5.7a and Fig. 5.7c. The used
parameter values of the GP model are listed in Table 5.6.

Table 5.6: Parameters for gradient plasticity simulations of tricrystals with elastic-plastic
grains (NLC35G/NLC5G) and different defect-energy exponents m. Data for m = 1.3
from Bayerschen et al. (2016c).

m W0 = G/2 g0 τ C
0 ΞC

0,GB ΞC
0,∂B KH

(GPa) (1/µm) (MPa) (N/m) (N/m) (N/m)

1.5 12.06 93.5 27.5 4 25 2.0×103

1.3 12.06 240 29.5 5.5 25 1.8×103

A better prediction of the gradients of the plastic strain is obtained in
the central grain for both misorientation cases using a defect energy
exponent of m = 1.3 (see Fig. 5.7b and Fig. 5.7d). In the two adjacent
grains, however, it is observable that the gradients are underestimated,
nevertheless (see also Fig. 5.7b and Fig. 5.7d). This behavior can be
attributed to the simplification in the GP model, considering only one
gradient stress ξ. The jump of the gradient stress is balanced at the GB
against the GB yield strength ΞC

0 , thereby limiting the gradients that
can develop in the GB vicinity. This model restriction could be relaxed
by consideration of all gradients ∇γα, and the associated higher-order
(back)stresses. In that case, the jumps of the gradient-stresses would be
balanced against GB microtractions for the individual slip systems. As a
consequence, the resulting overall jump of the plastic strain at the GBs
would be significantly less restricted. In addition, the misorientation-
dependent elastic interactions of dislocations across the GBs (Stricker
et al., 2016) are not considered in the GP model.
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Figure 5.7: (a) Stress-strain curves of DDD and GP simulations for 35° misorientation.
(b) Distribution of cross-section averaged plastic strain along loading direction of DDD
and GP simulations for 35° misorientation, obtained at the fixed overall plastic strain
values from (a). (c,d) GP and DDD simulation results for 5° misorientation. GP
simulations obtained with different defect energy exponents m. Central grain rotated
by misorientation angle around loading axis. DDD data and GP data for m = 2.0
from Bayerschen et al. (2015), GP Data for m = 1.3 and basic figures rerprinted from
Bayerschen et al. (2016c).
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Thus, the strain profile results do not reflect the influence by such in-
teractions (compare Fig. 5.7b to Fig. 5.7d), indicating that the GP model
could be further enhanced by an additional mechanism to account for
these. In this context, the consideration of dislocation transport (Wulfin-
ghoff and Böhlke, 2015) could also be a remedy in order to model such
interactions across GBs appropriately on the continuum scale.
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Chapter 6

Towards orientation-dependent
modeling of grain boundary
slip mechanisms in crystal
plasticity models

6.1 Motivation

One of the aims of the present thesis is the consideration of GB plasticity
within the used continuum crystal-plasticity framework. A simplified
modeling approach has been taken due to the usage of an accumulated
plastic slip as additional degree of freedom. This approach does not
consider the influence by the orientations of the grains or of the GBs on
the transfer of plastic slip across the GBs. As it has been discussed in
Section 1.3, however, such mechanisms are an important ingredient that
would need to be considered in a refined theory. On the path towards
this, some insight is given into this topic, in the following. At first, a
brief overview of computational investigations in the context of slip
transmission criteria is given. Subsequently, the use of these criteria
in crystal-plasticity models is discussed. A model from the literature
accounting for the orientation influence on the plastic slip near the GBs
(Gurtin, 2008) is connected to some of the slip transmission criteria used
in experimental works. The model has recently been implemented
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(Gottschalk et al., 2016; McBride et al., 2016) and it is shown, here, how
the slip transmission criteria are accounted for within the modeling
approach. Additionally, a comparison of the geometrical slip transmis-
sion criteria is provided for the single-slip case of two adjacent grains.
Thereby, the geometrical criteria from the literature, that have also been
used in continuum models, are reviewed. Finally, it is discussed in
this chapter why the current model does not appear to be suitable to
directly consider the orientation-dependence in the GB approach and
suggestions are given for a refinement. The content of Sections 6.2–6.5
is taken from Bayerschen et al. (2016a) and the data for the plots has
been prepared by Ramani (2016).

6.2 Computational modeling of

orientation-dependent slip

transmission at grain boundaries

6.2.1 Computational investigation

of slip transmission criteria

The modeling of the dislocation behavior in theories resolving individ-
ual dislocations is usually of sophisticated nature regarding the under-
lying physics. In simulations based on approaches such as atomistics
(e.g., Brandl et al., 2007; Bitzek et al., 2009; Bachurin et al., 2010) or
discrete dislocation dynamics (e.g., Weygand et al., 2002; Li et al., 2009),
for example, mechanisms such as dislocation reactions or the elastic in-
teraction of dislocations across GBs (Stricker et al., 2016) are considered.
The slip transmission criteria of combining a geometric transmission
factor (GTF) with consideration of the RSS and the RBV (see also Sec-
tion 1.4) were investigated in atomistic simulations (see Spearot and
Sangid (2014), and Bieler et al. (2009) for an overview) and molecular

180



6.2 Computational modeling of orientation-dependent slip transmission at GBs

dynamics simulations (Koning et al., 2002). However, it has also been
found that the local energetic structure and the local stress state of the
GB cannot be neglected, in general, within the context of resolving dislo-
cation interactions near GBs (Spearot and Sangid, 2014). Additional con-
siderations include, e.g., the shear strength of the interface (Demkowicz
and Thilly, 2011; Wang et al., 2011; 2012). In the atomistic simulations
by Sangid et al. (2012) and in the combined computational / experimen-
tal approach by Abuzaid et al. (2012), the importance of the RBV for
the slip transmission has been demonstrated. The barrier provided for
dislocation motion by two twist and tilt GBs, respectively, was found to
be proportional to the RBV magnitude. This was also the case for an in-
vestigated twin boundary. The coupled atomistic / discrete dislocation
framework Dewald and Curtin (2007a) also confirms the three basic slip
transmission criteria (GTF, RSS, RBV) for a tilt GB impinged by edge
dislocations. It is proposed there, however, that additional criteria are
necessary for the case of GB dislocation nucleation.
For the case of screw dislocations impinging on the same GB type (and
other symmetric tilt boundaries), no transmission of dislocations but
only nucleation was observed by Dewald and Curtin (2007b). In De-
wald and Curtin (2011), dislocations of mixed character are investigated
for the same types of boundaries. The set of criteria outlined in Dewald
and Curtin (2007b) are extended since the effects of the local GB struc-
ture are not accounted for by the classic criteria. They are incorporated,
additionally, by quantitative criteria (Dewald and Curtin, 2011).
By such physically detailed simulation approaches such as atomistics,
the interaction of dislocations, e.g., with twin boundaries (Ezaz et al.,
2011), can be investigated very thoroughly. However, contrary to many
continuum models, immense computational costs arise due to the de-
tailed modeling of interactions and the discreteness inherent to the mod-
els. This limits using discrete models for larger structures and necessi-
tates the development of, e.g., mesoscale approaches such as gradient-
extended crystal plasticity models.
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6.2.2 Crystal plasticity models taking into account

geometrical slip transmission criteria

The previously described criteria allow for the evaluation of slip trans-
mission prediction by dislocation based crystal plasticity models (Zikry
and Kao, 1996). They can also be explicitly incorporated in continuum
models to account for the transmission mechanisms. Continuum mod-
els, however, lack the discreteness inherent to simulation approaches
such as DDD or molecular dynamics. Therefore, the incorporation of
dislocation transmission and activation processes near GBs can only be
performed in an averaged sense. In the model of Ekh et al. (2011), for
example, a functional relationship is proposed for the GB (slip transmis-
sion) strength. The strength depends on the minimum angle between
the slip directions of slip systems in adjacent grains via

tan (ϕAB
α ) = tan (min

β
(arcos

(
|dA

α · dB
β |
)

)), (6.1)

where the slip system convention from Fig. 1.8 is used,here. The higher
the minimum angle ϕAB

α , the higher is the GB strength. This criterion,
however, does not consider the orientations of the GB normal and of the
slip plane normals. The RSSes are accounted for in the flow rule for the
slip systems. Thereby, it is ensured that slip systems with large RSSes
are activated while others with lower RSSes are not.
In Shi and Zikry (2009; 2011), criterion (1.6) is utilized in combination
with a RSS criterion. In case the geometric transmission factor is greater
than a critical threshold, and if the ratio of the RSS of an outgoing
system with respect to a (with dislocation density evolving) reference
shear stress is larger than one, dislocation density can pass the GB in
this model and increase the density in the adjacent grain. The thermally
activated transmission approach of Ma et al. (2006) assumes that the
slip lines of dislocations align with the GB during transmission. There,
a criterion is proposed that is based on the minimization of the energy
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6.2 Computational modeling of orientation-dependent slip transmission at GBs

for a transmission event. This incorporates the RBV in the GB as well as
the slip system and the GB orientations. In the employed flow rule, the
RSSes are considered and a cutting stress is calculated which models
forest dislocations as well as the GB activation energy barrier. Thus, the
flow rule connects a minimization of the RBV upon transmission with
a maximization of the RSSes, for an activation of plastic slip.
The GB model by Gurtin (2008) has been implemented within a two-
dimensional setting in Özdemir and Yalçinkaya (2014) and, recently,
also within three dimensions by Gottschalk et al. (2016). In this model,
so-called inter-action coefficients describe the interactions of slip sys-
tems in adjacent grains,

ĈAB
αβ = (dA

α · d
B
β )(lA

α · l
B
β ). (6.2)

In fact, the inter-action coefficients in (6.2) are formally identical to the
geometric slip transmission factor (1.6). The model in Gurtin (2008),
furthermore, accounts for the RBV criterion and the RSS criterion, as
well (see Section 6.3). The superscripts {A,B} distinguish the inter-action
coefficients from the so-called intra-action coefficients. The latter, intra-
action, coefficients determine the interaction of slip systems within each
grain by (6.2), applied to each grain {A,B}, individually, i.e., ĈAA

αβ , ĈBB
αβ .

6.2.3 Criteria that consider threshold values for

the slip system and grain boundary angles

In Ashmawi and Zikry (2002), criterion (1.7) is extended to account for
the slip plane normals intersection angle via an additional term

ζ̂αβ = (lA
α · lB

β )(nA
α · nB

β ). (6.3)

Critical angles (motivated by Davis et al., 1966; Werner and Prantl, 1990)
are used with ωc = 35° and δ̃c = 15° (see also Fig. 1.8). The employed
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slip transmission factor is purely geometric, but it is combined with the
dislocation densities and their evolution on the adjacent sides of GBs.
The RSSes are considered in the flow rule. For determining a possible
transmission of dislocation density across the GB, the signs of the slip
rates are checked, i.e., it is determined whether dislocations in a pile-up
move towards the GB or away from it. Thereby, the geometric criterion
is connected to the RSSes.
In the work of Mayeur et al. (2015), criterion (1.9) is used to penalize slip
transfer on geometrically unfavorable slip system combinations across
bimetallic interfaces by increasing the corresponding slip resistances in
dependence of the mismatch. The modified slip resistance enters the
flow rule and, thus, connects the geometrical factors to the RSSes in the
flow rule. The slip transmission criteria used in continuum models are
summarized in Table A.2.

6.3 A connection between Gurtin’s grain

boundary theory and slip transmission

criteria used in experiments

The single-crystal plasticity framework of Gurtin (2002) uses the mea-
sure of a Burgers tensor field to characterize the Burgers vectors of
geometrically necessary dislocations. This measure is defined by

G = curl(Hp) (6.4)

for the geometrically linear case, where Hp =
∑

α γαdα ⊗ nα is the plas-
tic distortion. Precisely, the defect contribution to the free energy is
formulated in dependence of this quantity. As it has been previously
mentioned, the need for a defect contribution in the free energy of con-
tinuum models results from the coarsening error made by the contin-
uum modeling of the elastic energy (Mesarovic, 2010). By considering
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6.3 A connection between Gurtin’s theory and slip transmission criteria

the Burgers tensor in the free energy, dependencies of the related higher-
order stresses on this measure can be introduced on the individual slip
systems, subsequently. These stresses are considered in the flow rule for
the slip systems and, thus, influence the mechanical model response.
In Gurtin and Needleman (2005), the theory has been extended by con-
sideration of interfaces such as GBs. The associated boundary condi-
tions are prescribed by the limits of microfree and microhard conditions.
Subsequently, the framework by Gurtin (2008) has been developed in-
corporating the misorientation of adjacent grains and its influence on
the slip transfer behavior at the GBs. This is accomplished by consider-
ing the Burgers tensor field on the GB. The magnitude |G| is used as a
measure of defect in the GB free energy. From the GB energy, internal
(energetic) microforces can be derived. These, in turn, are balanced on
the GBs with the projections of the vectors of gradient stresses from the
adjacent grains. Furthermore, these gradient stresses enter a microforce
balance for each slip system α in which the RSSes enter as well.
Although one might expect Gurtin’s theory of GBs (Gurtin, 2008) to be
connected to criteria of slip system interaction that have been used in ex-
periments, the framework used in the mentioned work is not discussed
from this point of view. Therefore, a single slip case is considered, in
the work at hand, to show the connections between Gurtin (2008) and
the criteria of GTF / RSS / RBV. For convenience, in the following,
the single slip systems in grain A and B are labeled by superscripts A
and B, respectively. For brevity, the slip plane normals of the two slip
systems on adjacent sides of the GB are considered to be coinciding, i.e.,
nA = nB = n, and to be perpendicular to the GB normal nΓ. Thus, the
angles δ̃ = ω = 0, while κ 6= 0 (see Fig. 1.8). The RBV can be defined
as the difference between the Burgers vectors of interacting, i.e., trans-
mitting slip systems (see Lim and Raj, 1985c, and, also, Eq. (1.3)). Its
magnitude can be approximated by

|br| = |dA − dB|, (6.5)
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the magnitude of the difference between the two slip directions dA, dB

(Abuzaid et al., 2012). Furthermore, the definition of the jump of the
plastic distortion Hp across the GB is considered (Gurtin, 2008). For the
single slip transmission case at hand, this jump reads

JHpK = γBdB ⊗ n − γAdA ⊗ n = (γBdB − γAdA) ⊗ n, (6.6)

which gives a GB Burgers tensor G (Gurtin, 2008) of

G = (γBdB − γAdA) ⊗ (n × nΓ) = (γBdB − γAdA) ⊗ l. (6.7)

Assuming, for simplicity, the same plastic slip on both slip systems, i.e.,
γA = γB = γ, gives a squared magnitude of

|G|2 = γ2(dB − dA) · (dB − dA)l · l = γ2|br|2. (6.8)

It is noted that the GB free energy with respect to |G| can, thus, be
expressed in dependence of |br|, the magnitude of the RBV br, for the
special case under consideration. Consequently, Gurtin’s GB theory
takes into account the residual dislocation content of the GB.
The quantity |G|2 can most generally be expressed by (cf. Gurtin, 2008)

|G|2 =
∑

α,β

(
CAA

αβ γA
α γA

β + CBB
αβ γB

α γB
β − 2CAB

αβ γA
α γB

β

)
, (6.9)

which depends on the intra-action coefficients CAA
αβ , CBB

αβ and on the
inter-action coefficients CAB

αβ . Following from Eq. (6.9), and from the
discussion below Eq. (6.2), it can be concluded that Gurtin’s theory of
GBs accounts for the geometric slip transmission criterion (1.6).
For the considered case, the intra-action coefficients are CAA = CBB

= 1 while all other intra-action coefficients vanish. The inter-action
coefficients vanish, as well, except for CAB = CBA = dA · dB.
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Thus, the squared magnitude of the grain boundary Burgers tensor,
Eq. (6.9), reads

|G|2 = 2γ2
(

1 − (dA · dB)
)

. (6.10)

Combining (6.10) with (6.8) yields

|br|2 = 2
(

1 − (dA · dB)
)

(6.11)

For the special case of coinciding slip directions, dA = dB, this gives
|br|2 = 0, and for the case of perpendicular slip directions, |br|2 = 2 is
obtained. Thus, the GB RBV magnitude is a function of the mismatch
between slip systems in adjacent grains. The GB Burgers tensor magni-
tude |G| is a function of the mismatch as well, as is the GB free energy
of Gurtin (2008) formulated with respect to this quantity.
Concluding, Gurtin’s GB theory considers the geometrical slip trans-
mission factor (1.6) in the formulation of the GB free energy (via inter-
action coefficients). They are also incorporated in the formulation of the
flow rule by Gurtin (2008). In addition, the RSSes on the outgoing slip
systems are considered in the theory (microforce balance / flow rule),
as is the RBV left in the GB upon a transmission event (GB free energy).

6.4 Comparison of geometric criteria

for single slip

The GTFs from Section 1.4 and from Section 6.2.2 are compared for
the single slip case in order to discuss their differences and limitations
in more detail with regard to the crystallographic orientation of the
grains and of the GB. In the following, it is assumed that plastic slip is
occurring on the incoming slip system of grain A and that, subsequently,
plastic slip is activated on the outgoing slip system in grain B. Four cases
are considered which are depicted in Figs. 6.1a–6.1d.
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Figure 6.1: (a-d): Rotations employed on a single slip system in grain B and on the grain
boundary, respectively, in order to compare the geometric transmission factors. The vec-

tors ñB and d̃
B

are obtained by rotating nB, dB by 15◦ about the axis a = e1 + e2 + e3.
Figure reprinted from Bayerschen et al. (2016a) with permission from Springer.

In the cases of Figs. 6.1a–6.1c, the slip system in grain B is rotated by
the angle ϕ about the depicted r-axes. In a separate case, the GB is
rotated by angle ϕ about the r-axis, depicted in Fig. 6.1d. For this
case, at first, the slip system in grain B is left unaltered. Thereby, the
influence of the GB inclination can be isolated. Then, the slip system in
grain B is pre-rotated by an angle of 15◦ about an arbitrarily chosen
axis a = e1 + e2 + e3, and the influence of the rotation of the GB is
investigated, again. By this approach, a more general case, than the
one with ideal alignment of the two slip systems, is considered.
Plots of the geometric transmission factors are depicted in Fig. 6.2. Each
column shows results of all geometric factors for the respective cases
in Fig. 6.1. Since single slip is investigated, the sums in some of the
geometric factors contain only one component. Thus, the weighting
with, e.g., Schmid factors is not applicable, there. In the same spirit, for
each geometric factor matrix, only the single occurring component is
investigated. For a rotation of the slip system B about the slip direction
(Fig. 6.1a), the geometric factors (1.4)-(1.7) predict the same behavior.
At ϕ = 90◦, all these factors vanish due to the slip plane normals being
perpendicular to each other. Factor (1.11a) also shows essentially the
same behavior but its values remain positive due to the multiplication
of two (negative) factors.
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Figure 6.2: (a-d): Plots of geometric transmission factors (1.4)-(1.9), (1.11a), (6.3), and (6.1)
(order top-down) for the rotations from Figs. 6.1a–6.1d. Dashed lines correspond to a
rotation of the grain boundary for identical slip systems (d), and solid lines to a rotation
of the grain boundary for the pre-rotated slip system B, see Fig. 6.1d. Figure reprinted
from Bayerschen et al. (2016a) with permission from Springer.
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For ϕ = 180◦, all the preceding factors predict ideal alignment, tak-
ing into account opposing slip plane normals. The factors (1.8), (1.9)
and (6.3) also vanish at ϕ = 90◦. The angular region, however, where
slip transmission can occur, is far less pronounced than for the previous
factors. This is due to the inherent limits, imposed by the critical angles
for slip transmission, see, e.g., the plot of factor (1.8) in Fig. 6.2a. In
addition, the factors (1.8), (1.9), and (6.3) are different in their transition
behavior: while (1.8), (1.9) predict a steep but smooth transition from
possible slip transfer to no slip transfer, (6.3) shows a less steep transi-
tion at first, then a jump to “no transmission“. This is caused by the
scaling that is included in (1.8), (1.9) but not in (6.3). The factor (6.1)
vanishes for this case. This corresponds to fully possible transmission
since (6.1) is used in the resistance of the GB against transmission of
plastic slip. However, the applicability of this factor is limited due to
the neglect of the slip plane orientations.
Rotating the slip direction by angle ϕ about the slip plane normal
(Fig. 6.1b) gives identical results for factors (1.4)-(1.6) as in the previous
case. However, (1.7) is not affected by this rotation since it only con-
siders the lines of intersection with the GB, and not the slip directions.
One should, nevertheless, keep in mind that (1.7) is combined with ad-
ditional considerations regarding the slip directions (see Fig. 1.9). The
product (1.11a) of (1.7) and (1.5) is identical to (1.7), as a consequence
of (1.5) being constant for the investigated case. The factors (1.8), (1.9),
again, show a transition behavior that is, however, less steep due to
the higher critical angle employed for the slip directions (b). Contrary
to the case of rotation (a), (6.3) is not affected by the rotation and is,
therefore, constant. This appears to be unphysical and is caused by the
neglect of the slip directions in this factor. For the employed rotation of
the slip direction, (6.1) approaches infinite resistance of the GB against
transmission of plastic slip at ϕ = 90◦.
For a rotation of both slip direction and slip plane normal about an axis
perpendicular to them (Fig. 6.1c), (1.4) predicts optimal transmission at
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ϕ = 90◦. This appears to be unphysical since both slip direction and
slip plane normal in grain B are perpendicular to their counterparts
in grain A which would severely restrict transmission. The factors
(1.5)–(1.6), however, predict no transmission at this angle. Factor (1.7)
is constant for this case since the lines of intersection do not change
for the employed rotation. The depicted jump is of numerical nature
and does not alter the qualitative behavior. Factor (1.8) considers
two critical angles, and thus, in this case, the smaller one of both
angles limits the transmission regime. Although (1.9) also takes into
account two critical angles, the larger one limits the transmission in
the investigated case. This is due to the consideration of the angle
between the lines of intersection (which does not change in this case)
and the neglect of slip directions. The product (1.11a) shows a slightly
larger regime of no transmission, compared to the previous two criteria.
For (6.3), the critical angle to be considered is the angle between the
slip directions since the lines of intersection are unaltered. This gives
a slightly larger regime of possible plastic slip transmission than for
rotation (a). In this context, it is also questionable why limit values
should be employed for both the lines of intersection and the slip plane
normals. The angle between slip plane normals is always larger than
the angle between the lines of intersection (see Werner and Prantl, 1990).
The criterion (6.1) shows identical behavior as in the previous case. This
is also questionable since the alignment of slip planes has been found to
be more substantial in predicting transmission of plastic slip and, thus,
would be expected to limit transmissibility upon applying an identical
rotation to the slip direction and the slip plane normal.
In the last case, the GB is rotated about an axis perpendicular to the slip
directions and the slip plane normals of both grains (Fig. 6.1d). The slip
systems, however, are not altered, at first. This case, thus, isolates the
influence of the GB when comparing the different GTFs. Interestingly,
the orientation of the GB does not influence any of the investigated
factors for this case (see dashed lines in Fig. 6.2d).
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Then, the slip system in grain B is pre-rotated by 15◦ about an axis a

(Fig. 6.1d). The GB is rotated again about the depicted axis r (Fig. 6.1d).
Both factors (1.4) and (1.5) are not affected by this rotation since they
do not account for the GB orientation. Instead, constant results are
obtained for this case (and slightly smaller than ”one“ since the slip di-
rections are changed, initially). The factor (1.8) does also not account for
the GB orientation and shows a constant result. Factors (1.6) and (1.7),
however, both account for the GB orientation. The product (1.11a) also
considers the orientation of the GB. Factor (1.9) is clearly affected by
the GB orientation, and factor (6.3) also shows slight changes upon
the employed rotation of the GB. An effective cut-off angle of ϕ ≈ 61◦

is obtained for both (1.9) and (6.3) (see Fig. 6.2d) due to the inherent
limiting angle for the lines of intersection alignment. Furthermore, the
GB orientation is not considered by (6.1) at all. The slightly higher value
than in the previous case is a result of the employed initial rotation for
the slip direction in grain B.

6.5 Discussion of the transmission factors

in terms of physicality

The comparison of the geometric criteria in this work results in various
findings. First of all, the geometric criterion (1.4) contradicts the com-
mon understanding of slip transmission since it predicts fully possible
transmission for two slip systems with slip directions being perpendic-
ular to each other. The factor (1.5), however, predicts no transmission
for this case but neglects the orientation of the GB. Factors (1.6) and (1.7)
account for the orientation of the GB and have shown better agreement
with experiments if combined with additional considerations regard-
ing the RBV and the RSSes (Lee et al., 1989b; 1990; Clark et al., 1992).
Whether the inclination of the GB needs to be considered in such criteria
is debatable. In Bachurin et al. (2010), for example, no influence of the
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GB inclination on the slip transmission process was found. Indications
in this direction are also present in Liu et al. (1995), where the influence
of the GB orientation with regard to the loading direction was found to
be of minor importance for the dislocation nucleation processes investi-
gated on ice crystals.
Another open question is whether critical angles should be used, e.g.,
employed in (1.8), (1.9), and (6.3). These criteria predict a far less pro-
nounced regime for possible plastic slip transmission than criteria with-
out such angles. In addition, the experimental foundation for the critical
angles is not exhaustive. In fact, some of them (e.g., Werner and Prantl,
1990) have been determined based on an observed range of possible
transmission of plastic slip (Davis et al., 1966). Criterion (6.3) does not
seem to be applicable for general plastic slip transmission processes
since the orientation of the slip directions is not considered which con-
tradicts experimental findings. In the same spirit, (6.1) neglects the
slip plane orientations and thus is not applicable when the slip planes
for a transmission process are distinct. The use of (weighted) sums of
geometric slip transmission factors necessitates further investigations.
In Bieler et al. (2014), similar distributions of such weighted approaches
were found, although different geometric factors and weights were em-
ployed. Furthermore, there are apparent contradictions between the
use of (1.8) and experimental findings (Kumar, 2010), also questioning
the use of this factor. It would be desirable to compare the geometric
transmission criteria including additional criteria (RSS, RBV) for multi-
ple slip systems, preferably also for different crystal structures to gain a
deeper understanding of their limitations.
In a recent contribution (Mercier et al., 2015), a Matlab toolbox has been
presented that allows to determine the activation of plastic slip based
on several of the presented criteria for a bicrystal. This could be used in
comparison to experimental results and for the development of phys-
ically based continuum approaches for the transfer of plastic slip at
GBs. Similarly, the ”slip transfer resistance of neighbouring grains“
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(STRONG) method by Knorr (2014) can be used for the determination
of the possible activity of plastic slip systems near GBs (see, for example,
the investigation by Kheradmand et al., 2016).

6.6 Limitations of the gradient crystal

plasticity framework with an

accumulated plastic slip to consider

orientation-dependent grain

boundary mechanisms

The presented theory in this thesis is based on the central simplification
that an accumulated plastic slip, Eq. (2.6), and its gradient can be
used instead of accounting for all plastic slips of the slip systems
as DOFs and for their gradients, respectively. Thus, the resulting
consideration of only one higher-order stress ξ limits the model ability
to account for effects by slip system interactions. While this choice
is of substantial benefit for the numerical implementation due to the
significant reduction of DOFs in the model, it also leads to some
limitations with regard to the modeling of GB plasticity. Furthermore,
it has been assumed that the micromorphic counterpart ζ of γac does
not feature discontinuities across GBs (see Section 3.2). Therefore,
effects stemming from discontinuities of plastic slip across GBs are
not expected to be reproducible by the theory at hand.
One possibility to include a crystal-orientation dependent GB yield
mechanism would be to postulate the energetic contribution to the GB
yield strength as a function of the GB / slip system orientations

Ξe
Γ = ΞC

0 (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) , (6.12)
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6.6 Limitations of the gradient crystal plasticity framework

where the five angles correspond to the macroscopic DOFs (rotations) of
a general GB (Wolf, 1990), and the three microscopic DOFs (translations)
have been neglected due to the use of a continuum theory. However,
the specific form of the right-hand side of Eq. (6.12) is unknown and the
parameter-space of this function is comparably vast. This dependence
on the GB (mis)orientation and the slip system orientations of both
grains would also have to be identified for the GB hardening-relation
proposed in Eq. (4.3), i.e., additionally,

KH = KH (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) . (6.13)

A reduction of the complexity of the corresponding identification could
be achieved by, for example, limiting the model to consider only the
misorientation of the crystal lattices and neglect the orientation of the
GB. In this case the GB resistance could be formulated, for instance, as

Ξe
Γ = ΞC

0 (ϕmis) , (6.14)

and the GB hardening parameter as

KH = KH (ϕmis) , (6.15)

with the minimum misorientation angle ϕmis, necessary to rotate one
crystal-lattice orientation into the other crystal-lattice orientation around
a corresponding axis. From experiments, however, it is well known that
the local orientation of the GBs can strongly influence the slip transfer
and activation processes (see Section 1.3). Furthermore, at the GBs,
effects resulting from residual defects should be accounted for. These
are caused, for example, by dislocations leaving residual dislocations
within the GBs upon a transmission. Such effects can only be considered
if the jumps of plastic slips are evaluated at the GBs.
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6 Towards orientation-dependent modeling of grain boundary slip mechanisms

In the theory of Gurtin (2008), the plastic slips γα and the corresponding
rates γ̇α are considered. The use of the GB Burgers tensor in combina-
tion with a quadratic energy formulation leads to the consideration of
all plastic slips and of interactions of all slip systems, as it has been
outlined in Section 6.3. For the net-power expended on, for example, a
GB by the microtractions, the theory of Gurtin gives

Pα
Γ =

∫

Γ

J(ξα · n) γ̇αK da, (6.16)

for a slip system α. In comparison, within the accumulated plastic slip
framework of the present thesis, the following net-power expended on
a GB is obtained, assuming ζ = γac,

PΓ =

∫

Γ

Jξ · nK γ̇ac da, γac =
∑

α

γα (6.17)

(see also the second term of the right-hand side in Eq. (3.2) and the
GB microtraction in Box 3.1). Although the net-power in Eq. (6.17) is
formally similar to Eq. (6.16), a direct connection between both relations
does not appear to be drawable. Therefore, it does also not appear to
be possible to connect the GB microtraction of the employed model,
ΞΓ = Jξ · nK, to the microtractions used in the model by Gurtin. In
fact, the introduction of the accumulated plastic slip at the onset of
the theory development (Section 3.2), and the consideration of only the
gradient of the micromorphic variable, limit the modeling to the con-
sideration of one higher-order stress ξ. This approach, unfortunately,
rules out a physically sound refinement of the theory to incorporate
effects from the interaction of slip systems and their gradient-induced
backstresses ξα.
Concluding, a refinement of the present theory would require to con-
sider both the individual plastic slips as degrees of freedom and the
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6.6 Limitations of the gradient crystal plasticity framework

jumps of these quantities at the GBs in conjunction with the jumps of the
stresses ξα at the GBs. Within such a framework, the orientations of slip
systems can naturally be incorporated in the plastic slip mechanisms, as
it has been discussed, for example, in Section 6.3.
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Chapter 7

Summary and outlook

In this thesis, several questions of continuum modeling of dislocation-
based plasticity are addressed with the focus on gradient plasticity mod-
eling. Therefore, the gradient plasticity framework by Wulfinghoff et al.
(2013) is taken as the starting point for comparison of finite element
simulation results to experimental data of oligocrystalline specimens
for different loading conditions. Further development of the gradient
plasticity theory is motivated both by the comparison to experiments
and to discrete dislocation dynamics simulations, a modeling approach
which resolves individual dislocations and their interactions.
An accumulated plastic slip is used within a micromorphic implemen-
tation of the theory to keep the arising computational costs (due to
the consideration of gradients) comparably low. Using the principle of
virtual power, field equations are derived and the boundary conditions
are formulated including higher-order boundary conditions which are
necessary since the gradient of the micromorphic variable is considered
in the theory.
Using the dissipation inequality, the stresses on the slip systems are
derived with different contributions from the postulated free energy
terms. Work-hardening is considered using a phenomenological Voce-
hardening formulation, at first, and a power-law flow rule is used for
the bulk material. It is discussed, in detail, that the Voce-hardening
formulation in terms of the accumulated plastic slip can be motivated
from the evolution law of the dislocation-density in conjunction with
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the Taylor-relation assuming constant shear rates and considering only
monotonic loading processes.
Using the gradient of the micromorphic variable, instead of all plastic
slip gradients, allows to perform fully three-dimensional finite element
simulations of different micron-sized grain aggregates. Numerical effi-
ciency of the micromorphic implementation is shown by finite element
simulations for several hundreds of thousands degrees of freedom. The
following comparisons of simulation results to experiments and dis-
crete simulation results are carried out:

• comparison of simulation results from the basic crystal plasticity
framework using an accumulated plastic slip to torsion experi-
ments on bamboo-structured gold microwires

• investigation of the influence of misorientation on the resulting
accumulated plastic slip field distributions in comparison to the
experimental results

• simulation of size effects which were observed on oligocrystalline
copper microwires in tensile test experiments

• simulation of contrary size effects, which were experimentally ob-
served on oligocrystalline gold microwires under both tensile and
torsion loading, with consideration of the influence of two distinct
crystal-orientations

• comparison of gradient plasticity simulation results to data from
discrete dislocation dynamics simulations for an aggregate com-
posed of three grains

In the comparison to experimental results on bamboo-structured gold
microwires, it is shown that the overall strain gradient imposed by the
torsion loading can be qualitatively reproduced. The experimentally
observed variations of the kernel average misorientation are explained
by the investigation of small misorientations from the ideal crystal-
orientation using the crystal plasticity simulations. Thereby, the feasi-
bility of the used framework to effectively carry out three-dimensional
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simulations, which aid in the understanding of experimental obser-
vations, is demonstrated. However, the experimentally observed an-
nealing of dislocations close to the surface of the bamboo-structured
microwires cannot be accounted for within the present theory. A
physically refined theory would be required to relax the restriction
of using a (non-decreasing) accumulated plastic slip to model the
plastic response.
The overall size effect on copper microwires under tensile loading
with different grain sizes is reproduced using the gradient plasticity
framework with a constant value of the grain boundary yield strength.
In a subsequent comparison to experiments on gold microwires of
different diameters and grain sizes, the observed inverse size effect
under tensile loading and the “classic” size effect under torsion loading
is explained, considering the influence of the texture of the specimens
in a simplified fashion. The grain boundary yield strength, however,
is adjusted to the individual microwires due to discrepancies in the
average grain sizes limited by the computational modeling. In addi-
tion, the magnitude of the overall size effect under torsion loading is
substantially underestimated when using the model parameters iden-
tified from the tensile loading case. This might be indicating that the
used framework could be limited when comparably inhomogeneous
deformations (like torsion loading) are applied. In the comparison to
discrete dislocation dynamics simulations, it is shown that the sole use
of the Voce-hardening relation in the gradient plasticity model leads
to an overestimation of the plastic strain near grain boundaries, as the
evolution of plastic strain, there, cannot be modeled appropriately.
Motivated by this comparison, enhancements of the theoretical frame-
work and the numerical implementation as well as the following com-
parisons are performed:

• extension of the grain boundary yield condition by an additional
grain boundary hardening relation
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• comparison of the gradient plasticity simulation results with grain
boundary hardening to results from discrete dislocation dynam-
ics simulations

• replacement of the quadratic defect energy formulation by a gen-
eralized form of power-law type

• numerical regularization of the higher-order stress for vanishing
gradients of the micromorphic variable

• exact solution for single slip of a laminate using the power-law
defect energy

• investigation of gradient plasticity simulation results in depen-
dence of the power-law defect energy exponent and the associated
internal length scale, accompanied by results of an exact solution

• comparison of gradient plasticity simulation results using differ-
ent defect energy power-law exponents to discrete dislocation dy-
namics results

Using grain boundary hardening, the evolution of plastic strain near the
grain boundaries is modeled substantially better, compared to using a
constant grain boundary yield strength and Voce-hardening for the bulk
material. The differences in the plastic strain distributions of the grains
due to different grain misorientations, however, could not be modeled.
Gradient plasticity simulations using either Voce-hardening or grain
boundary hardening are considered but a combination of both is not
investigated due to the lack of a suitable benchmark problem for cali-
bration. With the, additionally, considered defect energy of power-law
type, different distributions of plastic strain can be modeled since the
choice of the exponent alters the shape of the distributions. Therefore,
the observable differences in the gradients of plastic strain near the
grain boundaries are reduced by the employment of the power-law
defect energy. It is discussed, however, that the current model restricts
the development of the gradients near the grain boundaries due to the
limitation to one higher-order vectorial gradient-stress. This prevents
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7 Summary and outlook

an even better agreement of gradient plasticity simulation results with
the discrete dislocation dynamics simulations results.
The influence of the misorientation of the crystal-orientations from ad-
jacent grains as well as of the grain boundary orientation is not con-
sidered in the present grain boundary yield condition. Therefore, the
following points are addressed in the present work as a contribution
towards further refinement of the model:

• an overview is given on the dislocation mechanisms and interac-
tions at grain boundaries

• an overview is given on the literature on slip transmission criteria
that are used both in experiments and in continuum simulations

• a connection is drawn between these criteria and a model that
naturally incorporates effects from the orientation-dependent in-
teraction of slip systems (Gurtin, 2008)

• the geometrical criteria for slip transmission are compared for the
single slip case in order to gain a basic understanding of the phys-
ical limitations of the geometric criteria from the literature

• the limitations of the employed grain boundary model are dis-
cussed with regard to a possible consideration of the orientation-
dependency in the GB yield condition

Additionally, in the comparison to discrete dislocation dynamics simu-
lations, it is shown that the orientation-dependent interactions of dis-
locations across grain boundaries are not resolved in the current con-
tinuum model. At the same time, the overall size effect of the consid-
ered gold microwire torsion experiments could not be modeled quan-
titatively. Therefore, several questions remain open that should be ad-
dressed in future works. In detail, these are:

• consideration of a suitable benchmark problem for an investiga-
tion of the model using both Voce-hardening of the bulk and ad-
ditional grain boundary hardening
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• resolving the limitation that the development of gradients of plas-
tic strain near the grain boundaries is restricted due to the consid-
eration of only one higher-order vectorial gradient-stress

• the consideration of orientation-dependency in the grain bound-
ary yield condition or using a model considering all plastic slips
and their gradients

• repetition of the modeling-attempt to reproduce the overall size
effect of gold microwires under torsion loading with a physically
more advanced model

• modeling of the elastic interactions of dislocations across grain
boundaries that result in crystal-orientation dependent field dis-
tributions of plastic strain

• comparison of simulation results from the employed gradient
plasticity model to results from physically more sophisticated
theories (e.g., Gurtin, 2008)

• extended comparison of gradient plasticity simulation results to
experimental results featuring inhomogeneous deformations

• a generalization of the theory to finite deformations
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Appendix A

Overview of slip transmission
criteria from the literature

Table A.1: Slip transmission criteria in the experimental literature. Abbreviations used are
AC: Additional criteria, REF: Reference, RSS: Resolved shear stress / Schmid factors, RBV:
Residual Burgers vector, PKF: Peach-Koehler force, IBS: Interface barrier strength, SIF:
Stress intensity factor, SW: Slip weights, SFW: Schmid factor weights, GTF: Geometrical
transmission factor. Table reprinted from Bayerschen et al. (2016a) with permission
from Springer.

GTF AC GTF AC

REF REF

N̂αβ

-
N̂mod

αβ

- RSS / RBV / SIF RSS

[1], [2] [3], [4] [5] [6]

M̂mod
αβ

RSS / RBV
M̂αβ

- PKF RBV

[7]-[11] [12] [13], [14] [15]

χ̂αβ

RSS / IBS
λ̄

- RSS

[16] [17] [18]

m′
γ , m′

m

SW, SFW
LRBγ , sγ

SW, SW

[6] [6]

[1] Livingston and Chalmers (1957)
[2] Davis et al. (1966)
[3] Luster and Morris (1995)
[4] Wo and Ngan (2004)
[5] Guo et al. (2014)
[6] Bieler et al. (2014)
[7] Clark et al. (1992)
[8] Lee et al. (1989b)
[9] Lee et al. (1990)

[10] Misra and Gibala (1999)
[11] Abuzaid et al. (2012)
[12] Soer and De Hosson (2005)
[13] Shen et al. (1986)
[14] Shen et al. (1988)
[15] Tiba et al. (2015)
[16] Beyerlein et al. (2012)
[17] Werner and Prantl (1990)
[18] Kumar (2010)
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Table A.2: Slip transmission / interaction criteria in crystal plasticity models. Ab-
breviations are AC: Additional criteria, REF: Reference, RSS: Resolved shear stress /
Schmid factors, RBV: Residual Burgers vector, GTF: Geometrical transmission factor.
The approaches by Gurtin (2008); Özdemir and Yalçinkaya (2014) utilize M̂αβ rather
as an inter-action coefficient than as a classic transmission factor. Table reprinted from
Bayerschen et al. (2016a) with permission from Springer.

GTF tan (ϕAB
α ) M̂αβ M̂αβ - ζ̂αβ χ̂αβ

AC RSS RSS RBV / RSS RBV / RSS RSS RSS

REF [19] [20], [21] [22], [23] [24] [25] [26]

[19] Ekh et al. (2011)
[20] Shi and Zikry (2009)
[21] Shi and Zikry (2011)
[22] Gurtin (2008)

[23] Özdemir and Yalçinkaya (2014)
[24] Ma et al. (2006)
[25] Ashmawi and Zikry (2002)
[26] Mayeur et al. (2015)
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Theorems

In the three-dimensional space, with position-dependent quantities
A, b, c, the divergence theorem can be expressed by the following forms

∫

V

A · grad (b) dv = −
∫

V

div (A) · b dv +

∫

∂V

An · b da, (B.1)

∫

V

a · grad (c) dv = −
∫

V

div (a) c dv +

∫

∂V

(a · n) c da, (B.2)

∫

V

a·grad (c) dv = −
∫

V

div (a) c dv+

∫

∂V

(a · n) c da−
∫

Γ

JaK·nc da, (B.3)

where a material volume V with outer surface ∂V and interface Γ has
been considered. Jump contributions are neglected in (B.1) and (B.2).
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Appendix C

Micromorphic approximation of
the accumulated plastic slip

C.1 Single-crystalline case

Exemplary, the two field distributions γac (Fig. C.1.1a) and ζ (Fig. C.1.1b)
are compared for the top cross-section of the single-crystalline simula-
tions from Fig. 2.7 at the final time step. No pronounced differences
between both distributions are observable. If a sufficiently fine mesh
and a large enough penalty-parameter Hχ are used both distributions
can be regarded as approximately the same. Therefore, the micromor-
phic concept can be used and the approximation of the accumulated
plastic slip γac is obtained by ζ.

C.2 Oligocrystalline case

For the case of considering grain boundaries in the model, a compari-
son of both quantities (ζ, γac) has been performed in Wulfinghoff et al.
(2013). The distributions of ζ and γac are depicted in Figure C.2.1 for a
64-grain-aggregate. Small local deviations occur for the selected value
of the penalty parameter. However, the overall field solutions of both
quantities are still in fair agreement and the approximation of γac by ζ

can be used.
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0.0
γac/γac,max 1.0

x
y

z

(a)

0.0
ζ/ζmax 1.0

x
y

z

(b)

Figure C.1.1: (a) Normalized field distribution of γac in top cross-section at final time step
of simulation. (b) Normalized field distribution of ζ in top cross-section at final time step
of simulation for ζmax = γac,max .

ζ

x
y

z

0.171879
0.16

0.14

0.12
0.1

0.0981

γac

0.171448
0.16

0.14

0.12
0.1

0.09849

Figure C.2.1: Resulting distributions of the accumulated plastic slip γac and its micro-
morphic counterpart ζ for a tensile test simulation with 64 grains. Figure reprinted from
Wulfinghoff et al. (2013) with permission from Elsevier.
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Appendix D

Computational times of the finite
element implementation

Table D.1: Exemplary computational times of finite element simulations for different
values of the parameter ΞC

0 , where “0” corresponds to a simulation without grain
boundary resistance. Calculations are performed on an Intel Xeon CPU E5540 2.53GHz.
The references to the corresponding overall mechanical responses are given in the last
column of the table.

Loading Grains ΞC
0 Number Comp. DOFs Fig.

case in N/m time steps time in s

Tensile 1 0 11 3239 160992 2.9a

Torsion 1 0 11 8343 160992 2.9b

Tensile 3 ∞ 15 19541 349804 5.3a

Tensile 64 0 12 18042 275684 3.3

Tensile 64 50 10 17112 275684 3.3

Tensile 64 100 15 28786 275684 3.3

Tensile 64 11 21 74118 235396 3.10a

Torsion 64 11 13 37780 235396 3.10b
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Appendix E

Convention for slip systems
of face-centered cubic unit cell

E.1 Slip systems in the 〈100〉-orientation

The slip system convention used for the implementation of the FCC ma-
terials is listed below. Slip directions are clustered by the corresponding
slip plane normals and are listed in the unrotated initial orientation. In
this orientation, the edges of the unit cell are aligned with the axes of the
Cartesian coordinate system such that the 〈100〉-crystal-direction is par-
allel to the tensile axis or the axis of rotation in the case of torsion load-
ing, respectively. The net-plastic-slip of a slip system α is obtained by
γα = λα − λα+12 and the accumulated plastic slip by γ̃α = λα + λα+12.

α = 1 : d1 =
1√
2




0

1

−1


 , d̄1 =

1√
2




0

−1

1


 , n1,2,3 =

1√
3




1

1

1




α = 2 : d2 =
1√
2




−1

0

1


 , d̄2 =

1√
2




1

0

−1


 , n1,2,3 =

1√
3




1

1

1




α = 3 : d2 =
1√
2




1

−1

0


 , d̄3 =

1√
2




−1

1

0


 , n1,2,3 =

1√
3




1

1

1



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α = 4 : d4 =
1√
2
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0

1

−1
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 , d̄4 =

1√
2
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0

−1

1


 , n4,5,6 =

1√
3




−1

1

1




α = 5 : d5 =
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0

1
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2
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0

−1
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−1

1

1




α = 6 : d6 =
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0
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1√
2
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0
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3
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−1

1

1




α = 7 : d7 =
1√
2




0
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1


 , d̄7 =

1√
2
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0
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
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−1
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α = 8 : d8 =
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0
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−1
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α = 9 : d9 =
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0
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−1
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α = 12 : d12 =
1√
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E.2 Slip systems in the 〈111〉-orientation

In order to rotate the crystal-orientations of the grains and, thus, their
slip directions and normals into the 〈111〉-orientation, a rotation-matrix
in z-x-z-convention (Bunge, 2013) is used. The rotation of an exemplary
vector a is given by

ā = Qa, (E.1)

with the orthogonal rotation matrix

Q = Q1Q2Q3, (E.2)

where the three rotation matrices are

Q1 =̂




cos ϑ1 − sin ϑ1 0

sin ϑ1 cos ϑ1 0

0 0 1


 , (E.3)

Q2 =̂




1 0 0

0 cos ϑ2 − sin ϑ2

0 sin ϑ2 cos ϑ2


 , (E.4)

Q3 =̂




cos ϑ3 − sin ϑ3 0

sin ϑ3 cos ϑ3 0

0 0 1


 . (E.5)

The necessary Euler angles to transform the 〈100〉-crystal-orientation
into the 〈111〉-crystal-orientation are listed in Table E.2.1 (Jöchen, 2011).
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To obtain the 〈111〉-orientation, for example, to be aligned parallel with
the loading direction of a tensile test simulation, the transposed rotation
matrix is used to transform the slip directions and normals via

QTā = a, (E.6)
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where the identity QT = Q−1 holds since Q ∈ Orth.

Table E.2.1: Euler angles for rotation of two crystal-orientations of FCC-crystals in used
convention to be aligned with the loading axis.

Crystal orientation
Euler angles

ϑ1 ϑ2 ϑ3

〈100〉 0 0 0
〈111〉 0.6317823 1.357809 0.6322054

Using Eq. (E.6) with the Euler angles from Table E.2.1, for the slip sys-
tems α = 7 − 9 from Appendix E.1 yields
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Appendix F

Convergence studies

F.1 Oligocrystal tensile test simulation

using quadratic defect energy
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Figure F.1.1: Final nominal stress at the end of the last time step versus degrees of freedom
for oligocrystals under tensile loading with 64, 8 and 2 grains, respectively, using different
discretizations. The diminution of DOFs due to the Dirichlet boundary conditions is
neglected. The chosen discretizations for the simulations are highlighted by a rectangle.
Basic figure reprinted from Wulfinghoff and Böhlke (2013) with permission from Elsevier.

217



F Appendix

F.2 Tricrystal tensile test simulation

using power-law defect energy

The convergence of the numerical results for a tricrystal is discussed
twofold, here. Besides convergence with regard to the spatial discretiza-
tion of the finite element mesh, the convergence with respect to the
regularization parameter ǫ is investigated. The defect energy exponent
used in this section is m = 1.1, and the normalization constant is g0 =

450.21/µm. As it can be seen in Fig. F.2.1a, the regularization parame-
ter ǫ is of negligible influence on the final nominal stress at the end of the
loading. It also does not influence the convergence behavior regarding
the spatial discretization. In Fig. F.2.1b, it is shown that a sufficiently
small choice of the regularization parameter leads to coinciding distri-
butions of ζ along the x-axis of the central grain.
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Figure F.2.1: (a) Convergence study: power-law defect energy with m = 1.1,
g0 = 450.21/µm. Final nominal stress at t = 1.0 s vs. DOFs for tricrystal with elastic
boundary grains, different spatial discretizations, and different numerical regularization
parameter values ǫ. The chosen discretization (349804 DOF) for the simulations is
indicated by a rectangle. (b) Distribution of micromorphic variable ζ in central grain
for this discretization and different numerical regularization parameter values ǫ. Figures
reprinted from Bayerschen and Böhlke (2016) with permission from Springer.
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Appendix G

Parameter study of grain
boundary hardening
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Figure G.1: Parameter study of grain boundary hardening parameter KH. Case NLC35G,
only KH is varied as shown above. All other parameters can be found in Table 4.5 and
Section 4.3.3, respectively. Figure reprinted from Bayerschen et al. (2015).
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Appendix H

Derivation of the gradient
plasticity field equations without
grain boundary contributions

Application of the principle of virtual power δPint = δPext, i.e., letting
the right-hand side of Eq. (5.1) being equal to the right-hand side
of Eq. (5.2), yields

∫

B

(
σ · δε̇ + πδζ̇ + ξ · ∇δζ̇

)
dv =

∫

∂Bt

t̄ · δu̇ da +

∫

∂BΞ

Ξ̄ δζ̇ da. (H.1)

Then, by substituting ε = sym(grad (u)) in Eq. (H.1) and applying two
forms of the divergence theorem, Eq. (B.1) and Eq. (B.3), neglecting
any jump contributions, the following is obtained, after regrouping of
the terms,

−
∫

B

div (σ) · δu̇ dv +

∫

∂Bt

(σn − t̄) · δu̇ da +

∫

B

(π − div (ξ)) δζ̇ dv

+

∫

∂BΞ

(ξ · n − Ξ̄)δζ̇ da = 0. (H.2)

Requiring the left-hand side of Eq. (H.2) to vanish for arbitrary virtual
rates δu̇, δζ̇ yields the field equations in Table 5.1.
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Frequently used acronyms,
symbols, and operators

Acronyms

AC Additional criteria
AT Annealing temperature
BC Boundary condition
CP Crystal plasticity
DDD Discrete dislocation dynamics
DOF Degree of freedom
EBSD Electron backscatter diffraction
ECD Equivalent circle diameter
FCC Face-centered cubic
FE Finite element
FEM Finite element method
GB Grain boundary
GND Geometrically necessary dislocation
GP Gradient plasticity
GS Grain size
GTF Geometric transmission factor
KAM Kernel average misorientation
KIT Karlsruhe Institute of Technology
LC Lateral contraction
LD Loading direction
NLC No lateral contraction
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Frequently used acronyms, symbols, and operators

OL Original legend
PKF Peach-Koehler force
POVP Principle of virtual power
RBV Residual burgers vector
REF Reference
RSS Resolved shear stress
SFW Schmid factor weights
SIF Stress intensity factor
SL Simplified legend
SSD Statistically stored dislocation
SW Slip weights

Latin letters

a, b, A, B, D, . . . Scalar quantities
a, b, c, . . . First-order tensors
A, B, C, . . . Second-order tensors
A,B,C, . . . Fourth-order tensors
Â, B̂ Matrices
A Set of plastically active grain boundary nodes
Aα Swept area of dislocations of slip system α

b Burgers vector magnitude
b Burgers vector
br Residual Burgers vector
B Body / material region B
CAA

αβ Intra-action factors of slip systems
in grain A (Gurtin, 2008)

CAB
αβ Inter-action factors of slip systems

in grain A and grain B (Gurtin, 2008)
C1111, C1122, C1212 Elastic constants
C Fourth-order elastic stiffness tensor
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Latin letters

davg Average grain size
dA

α Slip direction of system α in grain A
∂B Boundary of a region B
∂Bt, ∂BΞ Neumann boundary
∂Bu Dirichlet boundary
D Nominal diameter of microwire
Dexp Real diameter of microwire
Dsim Diameter of cylindrical simulation volume
Dtot Total dissipation
D Dissipation density
DΓ Grain boundary dissipation density
ex Unit vector, e.g., in x-direction of a

Cartesian coordinate system
E Young’s modulus
fΓ Grain boundary yield function
g0 Normalization constant of defect energy density
G Shear modulus
G Grain boundary Burgers tensor (Gurtin, 2008)
H Displacement gradient
He Elastic distortion
Hp Plastic distortion
Hχ Numerical penalty parameter
I
s Fourth-order symmetric identity tensor

I Second-order identity tensor
k1, k2 Parameters of dislocation density evolution law
KG Defect energy parameter

(alternative formulation)
KH Grain boundary hardening parameter
lA
α Line of intersection vector of system α

in grain A with grain boundary
l, L Edge length of grain discretization
LRBγ , m′

m, m′
γ , sγ Weighted sum criteria (Bieler et al., 2014)
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Frequently used acronyms, symbols, and operators

lint Internal length scale
l̃ Dislocation line direction
L0 Length of simulation volume
M̂mod

αβ Geometric slip transmission matrix
(Lee et al., 1989b)

M̂αβ Geometric slip transmission matrix
(Shen et al., 1986)

m Exponent of power-law defect energy
mA

α Schmid factor of system α in grain A
MT Torque
n Time step number
nΓ Grain boundary normal
nA

α Slip plane normal of system α in grain A
N̂αβ Geometric slip transmission matrix

(Livingston and Chalmers, 1957)
N̂mod

αβ Geometric slip transmission matrix
(Luster and Morris, 1995)

Orth Set of orthogonal tensors / matrices
p Rate sensitivity parameter
pvol Power density of bulk material
p̌ Numerical penalty stress
Pext External power
Pint Internal power
PΓ Net power expended on grain boundary
Q, Q1, Q2, Q3 Orthogonal rotation matrices
r Radius to central axis of a cylindrical volume
rp, rσ Residuals
res Maximum norm of force residual
res0 Initial residual
R Maximum radius of a cylindrical volume
s Scaling factor
s̃ Parametrization variable
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Greek letters

Sym Set of symmetric tensors / matrices
t Time
tolA Tolerance for active-set search
tolforce Tolerance for force residual
t Traction / stress vector
u Displacement vector
ue Elastic displacement vector
V Volume
wi Integration point weights
W Free energy density
We Elastic contribution to the free energy density
WΓ Free energy density of the grain boundaries
W̃g Numerically regularized gradient contribution

to the free energy density
Wg Gradient contribution to the free energy density
Wh Isotropic hardening contribution

to the free energy density
Wp Plastic contribution to the free energy density
W0 Initial defect energy density
x Cartesian coordinates

Greek letters

α Slip system index
ᾱ A constant in the defect energy density
α Dislocation density tensor
β Hardening stress
γ̃α Accumulated plastic slip on system α

γ̄ Average plastic shear
γd Discrete plastic slip
γac Accumulated plastic slip
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Frequently used acronyms, symbols, and operators

γr=R Maximum plastic shear under torsion loading
γ̇α Plastic shear rate of system α

γα Plastic slip of system α

γ̇0 Reference plastic shear rate
δ̃ Angle between lines of intersection

at grain boundary
δζ̇, δu̇ Virtual rates
∆τ Difference between resolved

and critical shear stress
∆τC Critical resolved shear stress difference
∆τ̄C Average difference between resolved

and critical shear stress
ǫ Numerical regularization constant

for the defect energy
ε Nominal strain
εp Scalar overall plastic strain
ε̂, λ̂ Matrices
ε Infinitesimal strain tensor
εe Elastic part of infinitesimal strain tensor
εp Plastic part of infinitesimal strain tensor
ζ̂αβ Geometrical slip system transmission matrix

(Ashmawi and Zikry, 2002)
ζ Micromorphic variable
ϑ1, ϑ2, ϑ3 Euler orientation-angles
Γ Grain boundary plane
Γact Part of grain boundary with plastically

active integration points
Θ̃ Initial hardening modulus
Θ Initial hardening modulus
κ Angle between direction vectors

of two slip systems
κc, ωc Critical angles between two vectors
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Greek letters

λα Plastic slip parameter of system α

λ̃ Weighted sum criterion
(Werner and Prantl, 1990)

ν Poisson’s ratio
ξ Vectorial gradient stress
ξ̃ Numerically regularized, vectorial

gradient stress
Ξ Microtraction
ΞC

0 Initial grain boundary yield strength
ΞC

D Dissipative contribution to the
grain boundary yield strength

ΞΓ Grain boundary microtraction
Ξe

Γ Energetic grain boundary microtraction
Ξd

Γ Dissipative grain boundary microtraction
Π Mathematical constant
π Generalized, scalar stress, work-conjugate

to the micromorphic variable
ρ Dislocation density
ρGND Dislocation density of geometrically

necessary dislocations
ρSSD Dislocation density of statistically

stored dislocations
σ Nominal stress
τ, τα Resolved shear stress
τ̄ Average resolved shear stress
τC Critical resolved shear stress
τC

0 Initial critical resolved shear stress
τC

∞ Saturation stress
τd

α Dissipative shear stress of system α

τD Drag stress
τr=R Maximum shear stress under torsion loading
τ te, τ to

r=R,0.2 Tensile / torsion shear (0.2–proof) stress
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Frequently used acronyms, symbols, and operators

ϕ Misorientation angle
ϕAB

α Minimum angle between two slip
directions (Ekh et al., 2011)

ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, Orientation parameters of a grain
boundary (rotations only)

ϕmis Minimum misorientation angle between
two crystal orientations

ω Angle between normal vectors of
two slip systems

χ̂αβ Geometrical slip system transmission matrix
(Mayeur et al., 2015)

Operators

|∇ · |x Absolute value of gradient of (·) in x-direction
| · | Absolute value of (·)
J·K Jump of (·) across an interface
∆(·) Algorithmic tangent of (·) / difference

between two quantities
〈·〉 Macaulay brackets: ramp function of (·)
˙(·) Rate of (·)

a × b Cross product of two vectors a, b

A · B Dot product of two tensors A, B

A ⊗ B Dyadic product of two tensors A, B

A−1 Inverse of a tensor A

A = C [B] Linear mapping of a second-order tensor
by a fourth-order tensor

AB Linear mapping of a second-order tensor
AT Transpose of a tensor A

cos(·) Cosine of (·)
curl (·) Rotation of (·)
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Operators

div (·) Divergence of a tensor (·)
d(·)/ dx Total derivative of (·) w.r.t., e.g., x

δ(·) Variation of (·)
∂(·)/∂x Partial derivative of (·) w.r.t., e.g., x

grad (·) , ∇(·) Gradient of (·)
sg(·) Sign of (·)
sin(·) Sine of (·)
sym(A) Symmetric part of a second-order tensor A

tan(·) Tangent of (·)
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