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ABSTRACT. We consider the stochastic NLS with linear multiplicative noise in L2(Rd) and
prove the existence and uniqueness of a global solution in the subcritical and a local solution
in the critical case, respectively. In particular, we relax the regularity assumptions on the noise
from Barbu, Röckner and Zhang (Stochastic Nonlinear Schrödinger Equations with Linear
Multiplicative Noise: Rescaling Approach. Journal of Nonlinear Science 24(3):383-409,2014).
The proof is based on deterministic and stochastic Strichartz estimates.
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1. INTRODUCTION

This article studies the following stochastic nonlinear Schrödinger equation du(t) =

(
i∆u(t)− iλ|u(t)|α−1u(t)− 1

2

∞∑
m=1

B∗mBmu(t)

)
dt− i

∞∑
m=1

Bmu(t)dβm(t),

u(0) = u0,

(1.1)

in L2(Rd) with λ ∈ {−1, 1}, α ∈ (1, 1 + 4
d
], (Bm)m∈N ⊂ L(L2(Rd)) and independent Brownian

motions (βm)m∈N . The nonlinear Schrödinger equation can be seen as a model for nonlinear
dispersive equation and enjoys physical significance in the description of nonlinear wave
phenomena. In some situations, there is a random potential in the equation, which can be
modeled by multiplicative Stratonovich noise. In [BCI+94], the equation (1.1) appears with
parameters d = 2 and α = 3, i.e. in the critical setting, in the context of Scheibe aggregates
with thermal fluctuations.

In the literature, wellposedness of the NLS in Rd with multiplicative noise was studied by
de Bouard and Debussche in [dBD99], [dBD03] followed by a series of papers concerning
blow-up behavior and numerical studies (see [dBD02],[dBD+05], [DDM02], [DBD06]) and
by Barbu, Röckner and Zhang in [BRZ14b],[BRZ16] and [BRZ14a]. In [BM13], Brzeźniak and
Millet derived a new estimate for the stochastic convolution associated to the Schrödinger
group. In contrast to [dBD99], where the authors work directly with the dispersive estimate
of the Schrödinger group, the estimate from [BM13] is based on the deterministic Strichartz
estimate. This allowed to prove global wellposedness for the NLS with Stratonovich noise
on compact, two dimensional manifolds, where the dispersive estimate is not valid and has
to be replaced by localized version, see [BGT04].
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2 FABIAN HORNUNG

In this article, we want to use the stochastic Strichartz estimate by Brzeźniak and Millet
in order to solve the stochastic NLS in L2(Rd) by a fixed point argument. We prove the
following results for subcritical and critical nonlinearities, respectively.

Theorem 1.1. Let u0 ∈ L2(Rd), λ ∈ {−1, 1}, (βm)m∈N be a sequence of independent Brownian
motions and (Bm)m∈N ⊂ L(L2(Rd)) with

∞∑
m=1

‖Bm‖2
L(L2(Rd)) <∞. (1.2)

Then, the following assertions hold:
a) Let α ∈ (1, 1 + 4

d
). Then, there is a unique global mild solution of (1.1) in L2(Rd).

b) Let α ∈ (1, 1 + 4
d
]. Then, there is a unique local mild solution of (1.1) in L2(Rd).

We remark that the choice of the correction term is natural in the following sense. For
selfadjoint operators Bm, we have

iBu(t) ◦ dW (t) = iBu(t)dW (t)− 1

2

∞∑
m=1

B2
mu(t)dt

and therefore, (1.1) generalizes the stochastic NLS with Stratonovich noise.

We would like to compare our approach, assumptions and results to the articles [dBD99]
by de Bouard and Debussche and [BRZ14b] by Barbu, Röckner and Zhang. For this purpose,
we consider the special case of multiplication operators

Bmu = emu, u ∈ L2(Rd), m ∈ N,
with real valued functions em, m ∈ N. The assumptions in [dBD99] correspond to the square
function estimate ∥∥∥∥∥∥

(
∞∑
m=1

|em|2
) 1

2

∥∥∥∥∥∥
L2(Rd)∩L2+δ(Rd)

<∞ (1.3)

for some δ > 2(d− 1) and they needed a restriction of the range of admissible exponents to
α ∈ (1, 1 + 2

d−1
) for d ≥ 3. As we see in Theorem 1.1, such a restriction can be avoided if we

replace (1.3) by
∞∑
m=1

‖em‖2
L∞(Rd) <∞. (1.4)

To avoid estimates of the stochastic convolution needed in the fixed point arguments in
the present paper and in [dBD99], Barbu, Röckner and Zhang use a different approach to
problem (1.1) in [BRZ14b]. Via the scaling transformation u = e−Wy, they reduce (1.1) to a
non-autonomous nonlinear Schrödinger equation with random coefficients, but without a
stochastic integral.

Generally speaking, the main advantage of this approach is the fact that the equation
can be solved pathwise, which allows to use known deterministic theory (see for example
[Caz03], [LP14]) effectively. On the other hand, it is restricted to special situations, since the
theory of Strichartz estimates for non-autonomous operators of the form

A(s) := i (∆ + b(s) · ∇+ c(s)) (1.5)
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is less developed than the theory for i∆. On Rd, one can use results [Doi96] and [MMT08].
But a transfer of this method from Rd to a compact riemannian manifold M to proof sim-
ilar results as in [BM13] has not been done so far. Moreover, the deterministic Strichartz
estimates for (1.5) need regular coefficients, which leads to the assumption

∞∑
m=1

‖em‖2
C2
b
<∞, (1.6)

and to the decay condition

lim
|ξ|→∞

η(ξ) (|em(ξ)|+ |∇em(ξ)|+ |∆em(ξ)|) = 0 (1.7)

with

η(ξ) :=

{
1 + |ξ|2, d 6= 2,

(1 + |ξ|2)(log(2 + |ξ|2))2, d = 2.

Assuming (1.6) and (1.7) Barbu, Röckner and Zhang prove global wellposedness of (1.1) for
α ∈ (1, 1+ 4

d
) and local wellposedness for α = 1+ 4

d
, see [BRZ14b], Theorem 2.2 and Corollary

5.2. In view of (1.4), we are able to enlarge the class of admissible noises remarkably.

Let us briefly sketch the content of the present article. In the next section, we fix the
notations and assumptions, introduce the solution concept and recall the deterministic and
stochastic Strichartz estimates. In the third paragragh, we prove the local wellposedness of
(1.1). To this end, we solve the problem dun(t) =

[
i∆un(t)− iλFn(u)(t)− 1

2

∞∑
m=1

B∗mBmu(t)

]
dt− i

∞∑
m=1

Bmu(t)dβm(t),

u(0) = u0,

(1.8)

with the truncated nonlinearityFn(u)(t) := θn(‖u‖Lq(0,t;Lα+1))|u(t)|α−1u(t),where θn : [0,∞)→
[0, 1] is a cut-off-function, such that θn(x) = 1 for x ∈ [0, n]. This truncation permits the path-
wise application of the deterministic Strichartz estimates in a fixed point argument in the
natural space

E[0,T ] := Lq(Ω, Lq(0, T ;Lα+1(Rd)) ∩ C([0, T ], L2(Rd))),

where q is chosen such that (α+1, q) is a Strichartz pair. Since the solution of (1.8) also solves
(1.1) up to the stopping time

τn := inf
{
t ≥ 0 : ‖un‖Lq(0,t;Lα+1) ≥ n

}
∧ T,

this yields a local solution u to (1.1) in the case α ∈ (1, 1 + 4
d
) up to time τ∞ := supn∈N τn. In

the critical setting α = 1 + 4
d
, an analogous argument yields a local solution. Note, that in

this case, we use the truncation θν for a small ν ∈ (0, 1) instead of θn for a large n ∈ N.
The final section is concerned with the global existence of the solution in the subcritical

case based on the uniform estimates

sup
n∈N

E
[

sup
t∈[0,T ]

‖un‖2
L2

]
≤ CT , sup

n∈N
E
[
‖un‖Lq(0,T ;Lα+1)

]
≤ CT .
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2. SETTING AND STRICHARTZ ESTIMATES

In this section, we introduce some notations, assumptions and solution concepts and recall
deterministic and stochastic Strichartz estimates, which will be used to construct the local
solution.

Assumption 2.1. We assume the following:
i) We fix the space dimension d ∈ N and T > 0. Moreover, let u0 ∈ L2(Rd), λ ∈ {−1, 1}.

We denote the Schrödinger group, i.e. the C0-group of unitary operators generated
by i∆, by (U(t))t∈R .

ii) Let (Ω,F ,P) be a probability space, Y be a separable Hilbert space with ONB (fm)m∈N
and W a cylindrical Wiener process in Y adapted to a filtration F satisfying the usual
conditions.

iii) Let B : L2(Rd) → HS(Y, L2(Rd)) be a linear operator and set Bmu := B(u)fm for
u ∈ L2(Rd) and m ∈ N. Additionally, we assume that Bm, m ∈ N, are bounded
operators on L2(Rd) with

∞∑
m=1

‖Bm‖2
L(L2) <∞. (2.1)

For presentation purposes, we used in the introduction that the process

W =
∞∑
m=1

fmβm

with a sequence (βm)m∈N of independent Brownian motions is a cylindrical Wiener process
in Y, see [DPZ14], Proposition 4.7. Since we look for mild solutions of (1.1), we reformulate
the equation in the form

u(t) =U(t)u0 +

∫ t

0

U(t− s)
[
−iλ|u(s)|α−1u(s) + µ(u(s))

]
ds− i

∫ t

0

U(t− s)Bu(s)dW (s).

(2.2)

In the following two Propositions, we introduce the main tool to apply a fixed argument to
solve (2.2), namely the Strichartz estimates.

Proposition 2.2 (Deterministic Strichartz Estimates). Let pj, qj ∈ [2,∞], j = 1, 2, with

2

qj
+
d

pj
=
d

2
, (qj, pj, d) 6= (2,∞, 2).

Let x ∈ L2(Rd), J ⊂ R an interval with 0 ∈ J and f ∈ Lq′2(J, Lp′2(Rd)). Then, there is a constant
C > 0 independent of J, k, f and x with

a) ‖U(·)x‖Lq1 (J,Lp1 ) ≤ C‖x‖L2 ,

b) ‖
∫ ·

0
U(· − s)f(s)ds‖Lq1 (J,Lp1 ) ≤ C‖f‖

Lq
′
2 (J,Lp

′
2 )
.

Furthermore, U(·)x and
∫ ·

0
U(· − s)f(s)ds are elements of Cb(J, L2(Rd)) and we have

c) ‖U(·)x‖Cb(J,L2) ≤ C‖x‖L2 ,

d) ‖
∫ ·

0
U(· − s)f(s)ds‖Cb(J,L2) ≤ C‖f‖

Lq
′
2 (J,Lp

′
2 )
.

Proof. These estimates are well known, see for example [Caz03], Theorem 2.3.3. �
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The estimates from Proposition 2.2 can be used to deal with the free evolution and the
deterministic convolution in (2.2). Furthermore, we need an estimate of the stochastic con-
volution. In order to apply Banach’s fixed point Theorem iteratively, we have to deal with
initial times T0 ≥ 0. We denote the shifted filtration (Ft+T0)t≥0 by FT0 . The process given by

W T0(t) := W (T0 + t)−W (T0), t ≥ 0,

is a cylindrical Wiener process w.r.t. FT0 . For T1 > 0 and a FT0-predictable process Φ ∈
Lr(Ω, L2(0, T1; HS(Y, L2(Rd)))), we define

JT0[0,T1]Φ(t) :=

∫ t

0

U(t− s)Φ(s)dW T0(s), t ∈ [0, T1], (2.3)

by the stochastic integration theory in the Hilbert space L2(Rd), see [DPZ14], chapter 4. Note
that for an F-predictable process Φ, we have∫ t

0

U(t− s)Φ(T0 + s)dW T0(s) =

∫ T0+t

T0

U((T0 + t)− s)Φ(s)dW (s) (2.4)

almost surely for all t. Since we are also interested in Strichartz estimates, we need a def-
inition of the right hand side of (2.3) in Lq(0, T ;Lp(Rd))-spaces for q, p > 2. This can be
done by the theory of stochastic integration in martingale type 2 spaces, see [Brz97] and
the references therein or in UMD spaces, see [vNVW07]. The tool to estimate the stochastic
convolution (2.3) is the following result due to Brzeźniak and Millet, [BM13].

Proposition 2.3 (Stochastic Strichartz Estimates). Let T1 > 0, r ∈ (1,∞) and p, q ∈ [2,∞] with
2

q
+
d

p
=
d

2
, (q, p, d) 6= (2,∞, 2).

For all FT0-predictable processes Φ ∈ Lr(Ω, L2(0, T1; HS(Y, L2(Rd)))), JT0[0,T1]Φ is continuous in
L2(Rd) and FT0-adapted with

‖JT0[0,T1]Φ‖Lr(Ω,Lq(0,T1,Lp) . ‖Φ‖Lr(Ω,L2(0,T1;HS(Y,L2)))

and

‖JT0[0,T1]Φ‖Lr(Ω,C([0,T1],L2) . ‖Φ‖Lr(Ω,L2(0,T1;HS(Y,L2)))

hold.

Proof. See [BM13], Theorem 3.10, Proposition 3.12. and Corollary 3.13 for the statement
in the case q = r. The proof is based on the Burkholder-Gundy-Davis inequality in the
martingale type 2 space Lq(0, T1;Lp(Rd)), see [Brz97], Theorem 2.4, which holds for arbitrary
r ∈ (1,∞). Therefore, q = r is not needed. �

Next, we introduce the Banach spaces for the fixed point argument depending on the
power α of the nonlinearity. For α ∈

(
1, 1 + 4

d

]
, we fix q ∈ (2,∞) such that

2

q
+

d

α + 1
=
d

2
(2.5)

in order to apply the Strichartz estimates from Propositions 2.2 and 2.3 with the exponents
(α + 1, q) and set

Y[a,b] := Lq(a, b;Lα+1(Rd)), E[a,b] := Y[a,b] ∩ C([a, b], L2(Rd)), 0 < a < b.
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Furthermore, we abbreviate Yr := Y[0,r] and Er := E[0,r] for r > 0. Let τ be an F-stopping
time. Then, we denote by Mq

F(Ω, E[0,τ ]) the Banach space of continuous F-adapted processes
u : [0, T ]× Ω→ L2(Rd) with

‖u‖qMq
F(Ω,E[0,τ ])

:= E

[
sup
t∈[0,τ ]

‖u(t)‖qL2 +

∫ τ

0

‖u(t)‖qLα+1dt

]
<∞.

Often, we abbreviate u ∈ Mq
F(Ω, Eτ ) := Mq

F(Ω, E[0,τ ]). Moreover, we say u ∈ Mq
F(Ω, E[0,τ)) if

u is a continuous F-adapted process in L2(Rd) and there is a sequence (τn)n∈N of stopping
times with τn ↗ τ almost surely as n→∞, such that u ∈Mq

F(Ω, E[0,τn]) for all n ∈ N.

Definition 2.4. Let α ∈ (1, 1 + 4
d
].

a) A local mild solution of (1.1) is a triple
(
u, (τn)n∈N , τ

)
consisting of

• a stopping time τ and a sequence of stopping times (τn)n∈N with τn ↗ τ almost
surely as n→∞,
• a process u ∈Mq

F(Ω, E[0,τ)),
such that the equation

u(t) =U(t)u0 +

∫ t

0

U(t− s)
[
−iλ|u(s)|α−1u(s) + µ(u(s))

]
ds

− i

∫ t

0

U(t− s)Bu(s)dW (s) (2.6)

holds almost surely on {t ≤ τn} in L2(Rd) for all n ∈ N. Often, we shortly denote the
local mild solution by (u, τ) .

b) Solutions of (1.1) are called unique, if we have

P
(
u1(t) = u2(t) ∀t ∈ [0, σ1 ∧ σ2)

)
= 1

for all local mild solutions (u1, σ1) and (u2, σ2).
c) A local mild solution (u, τ) with τ = T almost surely and u ∈ Mq

F(Ω, E[0,T ]) is called
global mild solution.

3. TRUNCATED EQUATION AND LOCAL WELLPOSEDNESS

This section is devoted to the proof of the local part of Theorem 1.1. In order to transfer
the deterministic fixed point argument, see [LP14], Theorems 5.2 and 5.3, to the stochastic
setting, we would like to use the Strichartz estimates for the nonlinear term pathwise. On
the other hand, Proposition 2.3 only gives us an Lr(Ω)-estimate for the stochastic term at
hand. To overcome this difficulty, we truncate the nonlinearity by a cutoff function θn and
look for a mild solution of the equation{

dun(t) =
(
i∆un(t)− iθn(‖un‖Lq(0,t;Lα+1))|un(t)|α−1un(t)− µ(u(t))

)
dt− iBun(t)dW (t),

u(0) = u0.

(3.1)
with fixed n ∈ N. Here, θn : [0,∞)→ [0, 1] is defined by θn := θ

( ·
n

)
for

θ(x) =


1, x ∈ [0, 1],

2− x, x ∈ [1, 2],

0, x ∈ [2,∞).
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In particular, we have θn(x) = 1 for x ∈ [0, n] and

|θn(x)− θn(y)| ≤ 1

n
|x− y|, x, y ≥ 0. (3.2)

To simplify the presentation, we use the following abbreviations for r > 0 and t ∈ [0, r] :

Kn
detu(t) :=− iλ

∫ t

0

U(t− s)
[
θn(‖u‖Ys)|u(s)|α−1u(s)

]
ds, (3.3)

KStratu(t) :=

∫ t

0

U(t− s)µ(u(s))ds, (3.4)

Kstochu :=− iJ0
[0,r]Bu := −i

∫ t

0

U(t− s)Bu(s)dW (s). (3.5)

Next, we introduce our notion of a solution of (3.1).

Definition 3.1. Let α ∈ (1, 1 + 4
d
].

a) A local mild solution of (3.1) is a pair (un, τn) consisting of a stopping time τn ∈ [0, T ]
and a process un ∈Mq

F(Ω, Eτn), such that the equation

un = U(·)u0 +Kn
detu

n +KStratu
n +Kstochu

n (3.6)

holds almost surely on {t ≤ τn} in L2(Rd).
b) Solutions of (3.1) are called unique, if we have

P (un1 (t) = un2 (t) ∀t ∈ [0, σn ∧ τn)) = 1

for all local mild solutions (un1 , σ
n) and (un2 , τ

n).
c) A local mild solution (un, τn) with τn = T almost surely is called global mild solution.

In the following Proposition, we state existence and uniqueness for (3.1).

Proposition 3.2. Let α ∈ (1, 1 + 4
d
). Then, there is a unique global mild solution (un, T ) of (3.1).

Proof. We fix n ∈ N and construct the solution from the assertion inductively.
Step 1: We look for a fixed point of the operator given by

Knu := U(·)u0 +Kn
detu+KStratu+Kstochu, u ∈Mq

F(Ω, Er),

where r > 0 will be chosen small enough. Let u ∈ Mq
F(Ω, Er). A pathwise application of

Proposition 2.2 and integration over Ω yields

‖U(·)u0‖Mq
F(Ω,Er) . ‖u0‖L2 ;

‖KStratu‖Mq
F(Ω,Er) .‖µ(u)‖Lq(Ω,L1(0,r;L2)) =

1

2

∥∥∥∥∥
∞∑
m=1

B∗mBmu

∥∥∥∥∥
Lq(Ω,L1(0,r;L2))

≤1

2

∞∑
m=1

‖Bm‖2
L(L2) ‖u‖Lq(Ω,L1(0,r;L2)) . ‖u‖Lq(Ω,L1(0,r;L2)) ≤ r‖u‖Mq

F(Ω,Er).

We define a stopping time by

τ := inf {t ≥ 0 : ‖u‖Yt ≥ 2n} ∧ r
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and estimate

‖Kn
detu‖Er .‖θn(‖u‖Y·)|u|α−1u‖

Lq′ (0,r;L
α+1
α )
≤ ‖|u|α−1u‖

Lq′ (0,τ ;L
α+1
α )

≤‖u‖αLq(0,τ ;Lα+1)τ
δ ≤ (2n)α rδ

using Proposition 2.2 b) and d) and the Hölder inequality with δ := 1 − d
4
(1 − α) > 0.

Integrating over Ω yields

‖Kn
detu‖Mq

F(Ω,Er) . (2n)α rδ.

By Proposition 2.3, we obtain

‖Kstochu‖Mq
F(Ω,Er) .‖Bu‖Lq(Ω,L2(0,r;HS(Y,L2))) =

E

(∫ r

0

∞∑
m=1

‖Bmu‖2
L2dt

) q
2

 1
q

≤

(
∞∑
m=1

‖Bm‖2
L(L2)

) 1
2

‖u‖Lq(Ω,L2(0,r;L2)) . r
1
2‖u‖Lq(Ω,L∞(0,r;L2))

≤r
1
2‖u‖Mq

F(Ω,Er).

Putting the estimates together, we get

‖Knu‖Mq
F(Ω,Er) . ‖u0‖L2(Rd) + (2n)αrδ +

(
r + r

1
2

)
‖u‖Mq

F(Ω,Er)

for u ∈Mq
F(Ω, Er) and therefore the invariance of Mq

F(Ω, Er) under Kn. To show the contrac-
tivity of Kn, we take u1, u2 ∈Mq

F(Ω, Er) and get

Knu1 −Knu2 = Kn
det(u1)−Kn

det(u2) +KStrat(u1 − u2) +Kstoch(u1 − u2).

By the linearity of KStrat and Kstoch, the estimates

‖KStrat(u1 − u2)‖Mq
F(Ω,Er) . r‖u1 − u2‖Mq

F(Ω,Er)

and

‖Kstoch(u1 − u2)‖Mq
F(Ω,Er) .r

1
2‖u1 − u2‖Mq

F(Ω,Er)

can be deduced as above. We define stopping times τ1 and τ2 by

τj := inf {t ≥ 0 : ‖uj‖Yt ≥ 2n} ∧ r, j = 1, 2,

and fix ω ∈ Ω. Without loss of generality, we assume τ1(ω) ≤ τ2(ω). We use the deterministic
Strichartz estimates from Proposition 2.2

‖Kn
det(u1)−Kn

det(u2)‖Er .‖θn(‖u1‖Y·)|u1|α−1u1 − θn(‖u2‖Y·)|u2|α−1u2‖
Lq′ (0,r;L

α+1
α )

≤‖θn(‖u1‖Y·)
(
|u1|α−1u1 − |u2|α−1u2

)
‖
Lq′ (0,r;L

α+1
α )

+ ‖ [θn(‖u1‖Y·)− θn(‖u2‖Y·)] |u2|α−1u2‖
Lq′ (0,r;L

α+1
α )
.

By the properties of θn and the local Lipschitz estimate of the nonlinearity, we derive

‖θn(‖u1‖Y·)
(
|u1|α−1u1 − |u2|α−1u2

)
‖
Lq
′
(0,r;L

α+1
α )
≤ ‖|u1|α−1u1 − |u2|α−1u2‖

Lq′ (0,τ1;L
α+1
α )

≤ τ δ1
(
‖u1‖Lq(0,τ1,Lα+1) + ‖u2‖Lq(0,τ1,Lα+1)

)α−1 ‖u1 − u2‖Lq(0,τ1,Lα+1)

≤ rδ(4n)α−1‖u1 − u2‖Lq(0,τ1,Lα+1) ≤ rδ(4n)α−1‖u1 − u2‖Er
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and

‖ [θn(‖u1‖Y·)− θn(‖u2‖Y·)] |u2|α−1u2‖
Lq′ (0,r;L

α+1
α )
≤ 1

n

∥∥‖u1 − u2‖Y·|u2|α−1u2

∥∥
Lq′ (0,τ2;L

α+1
α )

≤ 1

n
‖u1 − u2‖Yr‖|u2|α−1u2‖

Lq′ (0,τ2;L
α+1
α )

≤ 1

n
‖u1 − u2‖Erτ δ2‖u2‖αLq(0,τ2;Lα+1) ≤

1

n
‖u1 − u2‖Errδ(2n)α.

We obtain

‖Kn
det(u1)−Kn

det(u2)‖Er .
(
2α + 4α−1

)
rδnα−1‖u1 − u2‖Er .

Integrating over Ω and collection of the estimates for the other terms leads to

‖Kn(u1)−Kn(u2)‖Mq
F(Ω,Er) .

[(
2α + 4α−1

)
rδnα−1 + r

1
2 + r

]
‖u1 − u2‖Mq

F(Ω,Er). (3.7)

Hence, there is a small time r = r(n, α) > 0, such that Kn is a strict contraction in Mq
F(Ω, Er)

and Banach’s Fixed Point Theorem yields un,1 ∈Mq
F(Ω, Er) with Kn(un1 ) = un1 .

Step 2: We choose r > 0 as in the first step and assume that we have k ∈ N and unk ∈
Mq

F(Ω, Ekr) with

unk = U(·)u0 +Kn
detu

n
k +KStratu

n
k +Kstochu

n
k

on the interval [0, kr]. We want to extend unk to [kr, (k + 1)r]. Therefore, we define the opera-
tors

Kn
det,ku(t) := −iλ

∫ t

0

U(t− s)
[
θn

((
‖unk‖

q
Ykr

+ ‖u‖qYs
) 1
q

)
|u(s)|α−1u(s)

]
ds,

Kstoch,ku(t) := −iJkr[0,r]Bu(t) := −i

∫ t

0

U(t− s)Bu(s)dW kr(s)

for t ∈ [0, r] and u ∈Mq
Fkr(Ω, Er) and

Kn
k u := U(·)unk(kr) +Kn

det,ku+KStratu+Kstoch,ku, u ∈Mq
Fkr(Ω, Er),

and search for a fixed point vnk+1 of Kn
k . The estimates for KStrat and Kstoch,k are identical to

the initial step. To estimate the deterministic convolution, we take v1, v2 ∈ Mq
Fkr(Ω, Er) and

define the stopping times

τj := inf
{
t ≥ 0 :

(
‖unk‖

q
Ykr

+ ‖vj‖qYt
) 1
q ≥ 2n

}
∧ r (3.8)

for j = 1, 2. We follow the lines of the initial step where we replace uj by vj and θn (‖uj‖Ys)
by θn

((
‖unk‖

q
Ykr

+ ‖vj‖qYs
) 1
q

)
for j = 1, 2. We obtain

‖Kn
det,kv1 −Kn

det,kv2‖Er ≤τ δ1
(
‖v1‖Lq(0,τ1,Lα+1) + ‖v2‖Lq(0,τ1,Lα+1)

)α−1 ‖v1 − v2‖Er

+
1

n
‖v1 − v2‖Erτ δ2‖v2‖αLq(0,τ2;Lα+1)

and by

‖vj‖Lq(0,τ1,Lα+1) = ‖vj‖Yτ1 ≤
(
‖unk‖

q
Ykr

+ ‖vj‖qYτ1
) 1
q

= 2n, j = 1, 2,
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we conclude

‖Kn
det,kv1 −Kn

det,kv2‖Er ≤ τ δ1 (4n)α−1 ‖v1 − v2‖Er +
1

n
‖v1 − v2‖Erτ δ2 (2n)α

≤ rδ
(

(4n)α−1 +
1

n
(2n)α

)
‖v1 − v2‖Er .

Since the constant is the same as in the initial step, the definition of r > 0 yields that Kn
k is a

strict contraction on Mq
Fkr(Ω, Er). We call the unique fixed point vnk+1 and set

unk+1(t) :=

{
unk(t), t ∈ [0, kr],

vnk+1(t− kr), t ∈ [kr, (k + 1)r].

Obviously, unk+1 is a continuous F-adapted process with ‖unk+1‖Lq(Ω,E(k+1)r) <∞ and therefore
unk+1 ∈ Mq

F(Ω, E(k+1)r). Let t ∈ [kr, (k + 1)r] and define t̃ := t− kr. Then, the definition of Kn
k

and the induction assumption yield

unk+1(t) =vnk+1(t̃) = Kn
k v

n
k+1(t̃) = U(t̃)unk(kr) +Kn

det,kv
n
k+1(t̃) +KStratv

n
k+1(t̃) +Kstoch,kv

n
k+1(t̃)

=U(t)u0 +
[
U(t̃)Kn

detu
n
k(kr) +Kn

det,kv
n
k+1(t̃)

]
+
[
U(t̃)KStratu

n
k(kr) +KStratv

n
k+1(t̃)

]
+
[
U(t̃)Kstochu

n
k(r) +Kstoch,kv

n
k+1(t̃)

]
.

We compute

U(t̃)Kn
detu

n
k(kr) +Kn

det,kv
n
k+1(t̃) = −iU(t̃)

∫ kr

0

U(kr − s)
[
θn (‖unk‖Ys) |unk(s)|α−1unk(s)

]
ds

− i

∫ t̃

0

U(t̃− s̃)
[
θn

((
‖unk‖

q
Ykr

+ ‖vnk+1‖
q
Ys̃

) 1
q

)
|vnk+1(s̃)|α−1vnk+1(s̃)

]
ds̃

=− i

∫ kr

0

U(t− s)
[
θn
(
‖unk+1‖Ys

)
|unk+1(s)|α−1unk+1(s)

]
ds

− i

∫ t̃

0

U(t̃− s̃)
[
θn
(
‖unk+1‖Ykr+s̃

)
|unk+1(kr + s̃)|α−1unk+1(kr + s̃)

]
ds̃

=− i

∫ t

0

U(t− s)
[
θn
(
‖unk+1‖Ys

)
|unk+1(s)|α−1unk+1(s)

]
ds

=Kn
detu

n
k+1(t),

where we used the substitution s = kr + s̃ in the second integral for the last step. Analo-
gously,

U(t̃)KStratu
n
k(kr) +KStratv

n
k+1(t̃) = KStratu

n
k+1(t),

U(t̃)Kstochu
n
k(kr) +KStoch,kv

n
k+1(t̃) = Kstochu

n
k+1(t),

where one uses (2.4) for the stochastic convolutions. Hence, we get

unk+1(t) = U(t)u0 +Kn
detu

n
k+1(t) +Kn

Stratu
n
k+1(t) +Kn

stoch,ku
n
k+1(t) = Knunk+1(t)

for t ∈ [kr, (k + 1)r] and therefore, unk+1 is a fixed point of Kn in Mq
F(Ω, E(k+1)r). Let T > 0

and define k := bT
r

+ 1c. Then, un := unk is the process from the assertion.
Step 3: Now, we turn our attention to uniqueness. Let (ũ, τ) be another local mild solution

of (3.1). As in (3.7), we get

‖u− ũ‖Mq
F(Ω,Eτ∧r) =‖Kn(u)−Kn(ũ)‖Mq

F(Ω,Eτ∧r)
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≤C
[(

2α + 4α−1
)
rδnα−1 + r

1
2 + r

]
‖u− ũ‖Mq

F(Ω,Eτ∧r)

≤1

2
‖u− ũ‖Mq

F(Ω,Eτ∧r),

which leads to u(t) = ũ(t) in Mq
F(Ω, Eτ∧r), i.e. u = ũ almost surely on {t ≤ τ ∧ r} . This can

be iterated to see that u(t) = ũ(t) almost surely on {t ≤ σk} with σk := τ ∧ (kr) for k ∈ N.
The assertion follows from σk → τ for k →∞. �

In the following two Propositions, we use the results on the truncated equation (3.1) to
derive existence and uniqueness for the original problem (1.1). The proofs are quite standard
and in the literature, analogous arguments have been used in various contexts for extensions
of wellposedness results from integrable to non-integrable initial values and from globally to
locally Lipschitz nonlinearities, see for example [vNVW08], Theorem 7.1, [Brz97], Theorem
4.10, and [Sei93], Theorem 1.5.

Proposition 3.3. Let α ∈ (1, 1 + 4
d
) and (un)n∈N ⊂ Mq

F(Ω, ET ) be the sequence constructed in
Proposition 3.2. For n ∈ N, we define a stopping time τn by

τn := inf {t ∈ [0, T ] : ‖un‖Yt ≥ n} ∧ T.

Then, the following assertions hold:
a) We have τn ≤ τk almost surely for n ≤ k and un(t) = uk(t) almost surely on {t ≤ τn} .
b) The triple

(
u, , (τn)n∈N , τ∞

)
with u(t) := un(t) for t ∈ [0, τn] and τ∞ := supn∈N τn is a local

mild solution of (1.1).

Proof. ad a): Define

τk,n := inf
{
t ∈ [0, T ] : ‖uk‖Yt ≥ n

}
∧ T.

Then, we have τk,n ≤ τn and θn(‖uk‖Yt) = 1 = θk(‖uk‖Yt) on {t ≤ τk,n} . Hence, (uk, τk,n) is
a solution of (3.1) and by the uniqueness part of Proposition 3.2, we obtain uk(t) = un(t)
almost surely on {t ≤ τk,n} . But this leads to τk,n = τn which implies the assertion.

ad b): By part a), u is welldefined up to a null set, where we define u := 0 and τ∞ = T.
The monotonicity of (τn)n∈N yields τn → τ almost surely. Moreover, u ∈ Mq

F(Ω, Eτn) by
Proposition 3.2 and therefore u ∈Mq

F(Ω, E[0,τ)). From (3.6) and the identity

θn(‖u‖Ys) = θn(‖un‖Ys) = 1 a.s on {t ∧ τn},

we finally obtain

u(t) =U(t)u0 +

∫ t

0

U(t− s)
[
−iλ|u(s)|α−1u(s) + µ(u(s))

]
ds− i

∫ t

0

U(t− s)Bu(s)dW (s)

almost surely on {t ≤ τn} for all n ∈ N. �

Proposition 3.4. Let
(
u1, (σn)n∈N σ

)
,
(
u2, (τn)n∈N , τ

)
be local mild solutions to (1.1). Then,

u1(t) = u2(t) a.s. on {t < σ ∧ τ},

i.e. the solution of (1.1) is unique.



12 FABIAN HORNUNG

Proof. We fix k, n ∈ N and define a stopping time by

νk,n := inf {t ∈ [0, T ] : ‖u1‖Yt ∨ ‖u2‖Yt ≥ n} ∧ σk ∧ τk.
Hence, θn(‖u1‖Yt) = θn(‖u2‖Yt) = 1 on {t ≤ νk,n} and therefore (u1, νk,n) and (u2, νk,n) are
local mild solutions of (3.1). By the uniqueness part of Proposition 3.2, we get

u1(t) = u2(t) a.s. on {t ≤ νk,n},
which yields the assertion, since νk,n → σ ∧ τ almost surely for n, k →∞. �

We continue with the critical case α = 1 + 4
d
.

Proof of Theorem 1.1, b). Step 1. Let ν > 0 and q := 2 + 4
d
. Then, (q, q) is a Strichartz pair. For

r > 0, we define

Yr := Lq(0, r;Lq(Rd)), Er := C([0, r], L2(Rd)) ∩ Yr
and as in the proof of Proposition 3.2, we set

Kν
1u := U(·)u0 +Kν

detu+KStratu+Kstochu

with the convolution operators from (3.3), (3.4) and (3.5) and obtain the estimates

‖Kν
1u‖Lq(Ω,Er) . ‖u0‖L2(Rd) + (2ν)α +

(
r + r

1
2

)
‖u‖Lq(Ω,Er)

and

‖Kν
1 (u1)−Kν

1 (u2)‖Lq(Ω,Er) .
[(

2α + 4α−1
)
να−1 + r

1
2 + r

]
‖u1 − u2‖Lq(Ω,Er).

for u, u1, u2 ∈ Mq
F(Ω, Er). Note that replacing the integer n by ν > 0 in the cutoff function

does not change the estimates at all. In fact, the only adaptation compared to the proof of
Proposition 3.2 is due to δ := 1 − d

4
(1 − α) = 0 in the critical case. Choosing ν and r small

enough, we get a unique fixed point u1 ∈Mq
F(Ω, Er) of Kν

1 .
By the definition of θν , the fixed point u1 from the first step is a solution of the original
equation, as long as ‖u1‖Lq(0,t;Lq) ≤ ν. Hence, the pair (u1, τ1) with

τ1 := inf
{
t ≥ 0 : ‖u1‖Lq(0,t;Lq) ≥ ν

}
∧ r

is a local mild solution of (1.1).

Step 2. Next, we define the operator

Kν
2u := U(·)u1(τ1) +Kν

detu+KStratu+Kstoch,2u

with

Kstoch,2u(t) := −iJτ1[0,r]Bu(t) := −i

∫ t

0

U(t− s)Bu(s)dW τ1(s)

and analogously as above, we derive the estimates

‖Kν
2u‖Lq(Ω,Er) . ‖u1(τ1)‖Lq(Ω,L2(Rd)) + (2ν)α +

(
r + r

1
2

)
‖u‖Lq(Ω,Er)

and

‖Kν
2 (u1)−Kν

2 (u2)‖Lq(Ω,Er) .
[(

2α + 4α−1
)
να−1 + r

1
2 + r

]
‖u1 − u2‖Lq(Ω,Er).

for u, u1, u2 ∈Mq
Fτ1 (Ω, Er). We get a unique fixed point ũ2 ∈Mq

Fτ1 (Ω, Er) of Kν
2 and define

τ̃2 := inf
{
t ≥ 0 : ‖u2‖Lq(0,t;Lq) ≥ ν

}
∧ r
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and τ2 := τ1 + τ̃2. Analogously to the proof of Proposition 3.2, one can show using (2.4), that
the pair (u2, τ2) with

u2(t) :=

{
u1(t), t ∈ [0, τ1],

ũ2(t− τ1), t ∈ [τ1, τ2].

defines a local mild solution of (1.1). Iterating this procedure yields a sequence (un, τn)n∈N
and with τ∞ := supn∈N τn and

u(t) := 1{t=0}u0 +
∞∑
n=1

un(t)1(τn−1,τn](t) on {t ≤ τ∞},

the triple
(
u, (τn)n∈N , τ∞

)
is a local mild solution in the sense of Definition 2.4.

Step 3. To show uniqueness, we take two local mild solutions (u1, (σ1,n)n∈N σ1) and
(u2, (σ2,n)n∈N , σ2) and define a sequence of stopping times by

µ1 := inf
{
t ∈ [0, σ1) : ‖u1‖Y[0,t] ≥ ν

}
∧ inf

{
t ∈ [0, σ2) : ‖u2‖Y[0,t] ≥ ν

}
∧ σ1 ∧ σ2

and

µn+1 := inf
{
t ∈ [µn, σ1) : ‖u1‖Y[µn,t] ≥ ν

}
∧ inf

{
t ∈ [µn, σ2) : ‖u2‖Y[µn,t] ≥ ν

}
∧ σ1 ∧ σ2.

The uniqueness from the first step and θν(‖u1‖Yt) = 1 = θν(‖u2‖Yt) almost surely on
{t ≤ µ1} yield u1(t) = u2(t) almost surely on {t < σ1 ∧ σ2} ∩ {t ≤ µ1}. By an iteration
procedure as above, this can be extended to {t < σ1 ∧ σ2} ∩ {t ≤ µn} for all n ∈ N.

In order to show, that µn → σ1 ∧ σ2 as n→∞, it is sufficient that for all m ∈ N and almost
all ω ∈ Ω there is n = n(ω) with µn(ω)(ω) ≥ σ1,m(ω)∧ σ2,m(ω). Assume the opposite, i.e. there
is m ∈ N with

P (µn < σ1,m ∧ σ2,m ∀n ∈ N) > 0.

By the definition of µn+1, we get on each interval [µn, µn+1] either ‖u1‖Y[µn,µn+1]
≥ ν or

‖u2‖Y[µn,µn+1]
≥ ν with positive probability. Without loss of generality, we assume that there

is a subsequence (µnk)k∈N with

P
(
‖u1‖Y[µnk ,µnk+1]

≥ ν ∀k ∈ N
)
> 0

and therefore

‖u1‖Yσ1,m ≥

(
∞∑
k=1

‖u1‖qY[µnk ,µnk+1]

) 1
q

=∞

which contradicts ‖u1‖Yσ1,m <∞ almost surely by u1 ∈Mq
F(Ω, E[0,σ1)).

�

We close this section with a remark on possible slight generalizations of Theorem 1.1 and
a comment on the transfer of our method to the energy space H1(Rd).

Remark 3.5. In the proof of local wellposedness, we did not use the special structure of the
term

µ := −1

2

∞∑
m=1

B∗mBm. (3.9)
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In fact, we only used µ ∈ L(L2(Rd)). But since (3.9) is motivated by the Stratonovich noise
and will be important for the global existence in the following section, we decided to start
with it from the beginning.

A generalization of the result from Theorem 1.1 from determistic initial values u0 ∈ L2(Rd)
to u0 ∈ Lq(Ω,F0;L2(Rd)) is straightforward. By the standard localization technique (see e.g.
[vNVW08]), a further generalization to F0-measurable u0 : Ω → L2(Rd) can be done if one
relaxes the condition u ∈ Mq

F(Ω, E[0,τ)) from definition 2.4 to u ∈ M0
F(Ω, E[0,τ)), i.e. u is a

continuous F-adapted process in L2(Rd) with

sup
t∈[0,τ ]

‖u(t)‖L2 +

(∫ τ

0

‖u(t)‖qLα+1dt

) 1
q

<∞ a.s.

For the sake of simplicity, we decided to restrict to deterministic initial values.

Remark 3.6. Barbu, Röckner and Zhang, [BRZ16], and de Bouard and Debussche, [dBD03],
also applied their strategy to construct solutions also inH1(Rd). In contrast to theL2-case, the
pathwise approach has a true advantage here, since it allows to adapt the deterministic fixed
point argument in a ball of L∞H1∩LqW 1,α+1 equipped with the metric from L∞L2∩LqLα+1.
Therefore, [BRZ16] gets wellposedness for all H1-subcritical exponents α ∈ (1, 1 + 4

(d−2)+
).

Of course, it is also possible to deal with theH1-problem with the method from the present
paper, since the deterministic and stochastic Strichartz estimates are also true in H1(Rd). In
this way, one can weaken the assumptions on the noise from [BRZ16] significantly to

∞∑
m=1

‖em‖2
W 1,∞ <∞. (3.10)

But unfortunately, the use of the truncated equation cannot be combined with two differ-
ent norms for the invariance and the contraction estimate. On the other hand, proving the
contraction in the full norm of L∞H1 ∩ LqW 1,α+1 requires a restriction to α ∈ (2, 1 + 4

(d−2)+
).

4. GLOBAL WELLPOSEDNESS IN THE SUBCRITICAL CASE

Having established local results, the next goal is to get global wellposedness. The first
ingredient is an estimate of the L2-norm of solutions.

Proposition 4.1. Let α ∈ (1, 1 + 4
d
), n ∈ N and un be the global mild solution of (3.1) from

Proposition 3.2. Then, we have

‖un(t)‖2
L2(Rd) = ‖u0‖2

L2(Rd) − 2

∫ t

0

Re
(
un(s), iBun(s)dW (s)

)
L2 , t ∈ [0, T ].

almost surely. Moreover, for all p ∈ [1,∞), there is a constantDp = Dp(T, ‖u0‖L2) > 0 independent
of n with

E
[

sup
t∈[0,T ]

‖un(t)‖pL2

]
≤ Dp. (4.1)

Note that the estimate (4.1) for p = 2 previously occured in [BRZ14b] and in the spe-
cial case of Stratonovich noise with selfadjoint operators Bm, m ∈ N, (4.1) simplifies to
‖un(t)‖L2 = ‖u0‖L2 almost surely for all t ∈ [0, T ]. This generalizes the L2-conservation of
the NLS, see [LP14], equation (6.2), to the stochastic setting.
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Proof. Step 1. It is well known that the mild equation is equivalent to

un(t) =u0 +

∫ t

0

[
i∆un(s)− iλθn(‖un‖Ys)|un(s)|α−1un(s) + µ(un(s))

]
ds− i

∫ t

0

Bun(s)dW (s)

(4.2)

almost surely as an equation in H−2(Rd). We formally apply Ito’s formula to the Itô process
from (4.2) and the function M : L2(Rd) → R defined by M(v) := ‖v‖2

L2 , which is twice
continuously Fréchet-differentiable with

M′[v]h1 = 2 Re
(
v, h1

)
L2 , M′′[v] [h1, h2] = 2 Re

(
h1, h2

)
L2

for v, h1, h2 ∈ L2(Rd). This yields

‖un(t)‖2
L2 =‖u0‖2

L2 + 2

∫ t

0

Re
(
un(s), i∆un(s)− iθn(‖un‖Ys)λ|un(s)|α−1un(s) + µ(un(s))

)
L2ds

− 2

∫ t

0

Re
(
un(s), iBun(s)dW (s)

)
L2 +

∞∑
m=1

∫ t

0

‖Bmun(s)‖2
L2ds (4.3)

almost surely in [0, T ] and using the formal identities(
un, i∆un

)
L2 = 0, Re

(
un, iθn(‖un‖Y·)|un|α−1un

)
L2 = 0,

and

2 Re
(
un, µ(un)

)
L2 = −

∞∑
m=1

(
un, B

∗
mBmun

)
L2 = −

∞∑
m=1

‖Bmun‖2
L2 ,

we obtain the first assertion.

The calculation from above can be made rigorous by a regularization procedure via Yosida
approximations Rν := λ (ν −∆)−1 for ν > 0 and a limit process ν →∞ using the properties
Rν ∈ L(Hs(Rd), Hs+2(Rd)) for s ∈ R and

Rνf → f in E, ν →∞, f ∈ E
‖Rν‖L(E) ≤ 1 (4.4)

for E = Hs(Rd), s ∈ R, and E = Lp(Rd), 1 < p <∞.

Step 2. The estimate (4.1) follows from Step 1 by an application of the Burkholder-Gundy-
Davis inequality to the stochastic integral and a Gronwall type argument. For more details,
we refer the reader to [BRZ14b], Lemma 4.3. Note that they prove (4.1) only for p = 2, but
one can generalize this by using higher moments in the Burkholder-Gundy-Davis inequality.

�

In order to get global existence, we adapt an argument by de Bouard and Debussche , see
[dBD99], Proposition 4.1, to our setting.

Proposition 4.2. Let α ∈ (1, 1+ 4
d
) and (un)n∈N be the sequence of solutions to (3.1) from Proposition

3.2 and

τn := inf {t ≥ 0 : ‖un‖Yt ≥ n} ∧ T, n ∈ N.
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Then, we have

P

(⋃
n∈N

{τn = T}

)
= 1.

In particular, the pair (u, τ∞) from Proposition 3.3 is a global mild solution of (1.1).

Proof. First, we recall some notions from the previous section. The exponent q ∈ (2,∞) is
fixed according to

2

q
+

d

α + 1
=
d

2
(4.5)

and we set

Yr := Lq(0, r;Lα+1(Rd)), Er := Yr ∩ C([0, r], L2(Rd)), r > 0.

Step 1. Let T > 0.As a first step, we want to prove, that there is a constantC = C(‖u0‖L2 , T ) >
0 such that

sup
n∈N

E‖un‖YT ≤ C.

We fix n ∈ N and recall that un has the representation

un = U(·)u0 +Kdetun +KStratun +KStochun in LqF(Ω, C([0, T ], L2(Rd)) ∩ Lq(0, T ;Lα+1(Rd)).

We fix a path ω ∈ Ω and σn(ω) ∈ [0, T ] to be chosen later. Let δ := 1 − d
4
(1 − α). Then,

we apply the deterministic Strichartz inequalities from Proposition 2.2 to estimate Kdet and
KStrat (compare the proof of Proposition 3.2) and obtain

‖un‖Yσn ≤ C‖u0‖L2 + Cσδn‖un‖αYσn + C‖un‖L1(0,σn,L2)

∞∑
m=1

‖Bm‖2
L(L2) + ‖KStochun‖Yσn

≤ Kn + Cσδn‖un‖αYσn (4.6)

where Kn is defined by

Kn := C‖un‖L∞(0,T ;L2)

(
1 + T

∞∑
m=1

‖Bm‖2
L(L2)

)
+ ‖KStochun‖YT .

We conclude
‖un‖Yσn
Kn

≤ 1 + CσδnK
α−1
n

(
‖un‖Yσn
Kn

)α
Now, the following fact

∀x ≥ 0∃c1 ≤ 2, c2 > c1 : x ≤ 1 +
xα

2α+1
⇒ x ≤ c1 or x ≥ c2. (4.7)

from elementary calculus yields

‖un‖Yσn ≤ 2c1 ≤ 2Kn,

if we choose σn according to CσδnKα−1
n ≤ 1

2α+1 , which is fulfilled by

σn = C−
1
δ

(
2α+1Kα−1

n

)− 1
δ ∧ T.
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Note that the second alternative in (4.7) can be excluded because of ‖un‖Y0 = 0 and the
continuity of the map t 7→ ‖un‖Yt . Next, we decompose Ω = Ω1 ∪ Ω2 with

Ω1 :=
{
C−

1
δ

(
2α+1Kα−1

n

)− 1
δ < T

}
, Ω2 :=

{
C−

1
δ

(
2α+1Kα−1

n

)− 1
δ ≥ T

}
.

Fix ω ∈ Ω1 and define N := b T
σn
c. Using the abbreviation

Yj := Lq(jσn, (j + 1)σn;Lα+1(Rd)), j = 0, . . . , N,

we get

‖un‖Yj ≤ C‖un(jσn)‖L2 + Cσδn‖un‖αYj + CT‖un‖L∞(jσn,(j+1)σn;L2)

∞∑
m=1

‖Bm‖2
L(L2) + ‖KStochun‖Yj

≤ Kn + Cσδn‖un‖αYj
for all j = 0, . . . , N by analogous estimates as in (4.6) and thus again ‖un‖Yj ≤ 2Kn. We
conclude

‖un‖YT ≤
N∑
j=0

‖un‖Yj ≤ 2 (N + 1)Kn ≤ 2

(
T

σn
+ 1

)
Kn . 2Kn + 2TK

α−1
δ

+1
n . (4.8)

Since we have ‖un‖YT ≤ 2Kn on Ω2, the estimate (4.8) holds almost surely. Then, we integrate
over Ω to obtain

‖un‖L1(Ω,YT ) . 2E
[
Kn

]
+ 2TE

[
K

α−1
δ

+1
n

]
.

For the first term, we get

E [Kn] ≤ CE‖un‖L∞(0,T,L2)

(
1 + T

∞∑
m=1

‖Bm‖2
L(L2)

)
+
(
E‖KStochun‖2

YT

) 1
2

≤ CD2

(
1 + T

∞∑
m=1

‖Bm‖2
L(L2)

)
+ T

1
2D2

(
∞∑
m=1

‖Bm‖2
L(L2)

) 1
2

, (4.9)

whereas for the second one, we write

E
[
K

α−1
δ

+1
n

]
. E

[
‖un‖

α−1
δ

+1

L∞(0,T ;L2)

]
+ E

[
‖KStochun‖

α−1
δ

+1

YT

]
and apply Proposition 2.3 and Hölder’s inequality in time as well as Proposition 4.1 for

E
[
‖KStochun‖

α−1
δ

+1

YT

]
. E

[
‖un‖

α−1
δ

+1

L2(0,T ;L2)

]
≤ T

α−1
2δ

+ 1
2E
[
‖un‖

α−1
δ

+1

L∞(0,T ;L2)

]
≤ T

α−1
2δ

+ 1
2Dα−1

δ
+1.

Hence, we have proved

sup
n∈N

E‖un‖YT ≤ C(‖u0‖L2 , T, α). (4.10)

Step 2. Recall τ∞ := supn∈N τn. By the definition of τn and (4.10), we obtain

P (τn = T ) = P
(
‖un‖Yσn ≤ n

)
≥ 1− C

n
and using the continuity of the measure, we conclude

P (τ∞ = T ) ≥ P

(⋃
n∈N

{τn = T}

)
= 1.
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�

We remark that the proof of the last Proposition heavily relies on δ > 0. Therefore, this
strategy cannot be applied to the critical case α = 1 + 4

d
, where we have δ = 0. But global

existence cannot be expected in this case, anyway, since there are blow-up examples in the
deterministic setting for the focusing nonlinearity, see [Mer93].

Acknowledgement: The author gratefully acknowledges financial support by the Deutsche
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