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Abstract 

The prediction of hydroxyl concentration in the near-tip region of surface 
cracks in silica needs knowledge of swelling stresses caused by the silica/water 
reaction in the surface region. They are available for mathematically sharp 
cracks as are necessary for the continuum mechanics theory of Linear-Elastic 
Fracture Mechanics. In a micro-structurally motivated approach, the crack tip 
region is considered as a slender notch with root radius  in the order of the 
average radius of the SiO2 rings. 
In the present report we compile Finite Element results on swelling stress 
components ahead of the root of slender edge notches as functions on the notch 
root distance and the height of the swelling zone. 
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1. Crack-tip models 

Two crack-tip models are commonly used in fracture mechanics for the description of 
stresses ahead of a crack. Whereas continuum mechanics assumes the existence of a 
mathematically sharp crack, in a micro-structurally motivated approach the slender 
notch with a finite radius at the crack end is considered. 
Stresses at a sharp crack tip are described by the crack-tip stress intensity factor Ktip. 
They become singular if the tip is approached,  for r0. However, the K-
description via continuum mechanics must fail for very short distances, when the tip 
distance competes with the microstructure of the material. In the micro-structurally 
motivated approach, the crack tip region, Fig. 1a, can be considered as a slender notch 
with root radius  in the order of the average radius of the SiO2 rings, Figure 1b. 
Wiederhorn et al. [1] suggest a crack-tip radius ρ = 0.5 nm for the silica network.  

 

Fig. 1 a) Crack in silica terminating in a nano-pore, b) equivalent slender notch with a finite notch root 
radius , grey molecules are mechanically inactive. 

Whereas shielding stress intensity factors are well known for sharp cracks [2,3], there 
is a lack in multiaxiality behaviour of swelling stresses for the slender notch model. 
The individual swelling stress components and also the hydrostatic stress terms are 
necessary for computations on stress-enhanced equilibrium of the silica/water reaction. 
In contrast to internal swelling, the stress components by externally applied loading 
are known from Creager and Paris [4]. 
In the present note we carry out Finite Element computations in order to determine 
swelling stresses for the slender notch model as a function of the distance from the 
notch root and differently high swelling zones. 
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2. Finite element model 

A single crack embedded in a swelling zone of height h and constant volume swelling 
is shown in Fig. 2. The crack length, a, is small compared to the specimen dimensions, 
realizing the edge-cracked semi-infinite body. On the other hand, the crack length is at 
least a factor of 10 larger than the notch radius  so that a “slender” notch is suffi-
ciently guaranteed. 
Zones of different heights were modelled in a finite element (FE) study. Solid conti-
nuum elements (8-node bi-quadratic) were chosen and the computations were carried 
out with ABAQUS Version 6.8. The volume strain was replaced by the equivalent 
thermal problem by heating the swelling zone by T keeping T=0 in the rest of the 
structure.  
This results in the strain 

 Tv   3  (1) 

(=thermal expansion coefficient) with isotropic expansion in x-, y-, and z-directions  

 zyxv    (2) 

Requirements for the coordinate were chosen as “plane strain” as is fulfilled at crack 
tips. 

 

Fig. 2 Slender notch at a surface with swelling zone of thickness h. 
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3. Results 
Swelling stresses in x-, y-, and z-directions are plotted in Fig. 3 for zone heights of 
h/=0.2, 0.5 and 1.0. The black data represent the hydrostatic stress, defined by 

 )(3
1

zyxh    (3) 

 

  

 
Fig. 3 Swelling stresses, normalized on the volume expansion strain for 3 different zone heights h. 
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Whereas all stresses are compressive within the swelling zone, they roughly disappear 
outside for the z-direction and for the hydrostatic stress. The x-component remains in 
compression and the y-component becomes tension as a consequence of the 
equilibrium condition. 

The surface stresses (x0) are represented in Fig. 4 as a function of the relative height 
h/ of the swelling zone. The squares indicate theoretically known values for an 
infinitely thin surface layer:  

At a free surface, the stress state is plane stress and, consequently, also stresses caused 
by swelling are equi-biaxial (x=0)  

 
)1(3 





Ev

zy  (4) 

where E is Young’s modulus and  is Poisson’s ratio. For silica it is =0.17, conse-
quently: /vE = 0.4016 for the y- and z-directions. 

The hydrostatic stress reads 

 
)1(9
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
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Ev

zyh  (5) 

i.e. h/(vE)=0.2677. 

 

 
Fig. 4 Effect of zone height h on swelling stresses at the notch root, x=0. 
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thin swelling layers and decreases slightly for h/y and increases for h/z. The 
variation over the swelling zones is negligible as can be concluded from Fig. 5b. 
 

 
Fig. 5 a) Effect of zone height h on multiaxiality at the notch root, x=0, b) variation of the 

multiaxiality ratio h/z over the swelling zones. 

4. Effect of finite notch length 

From Fig. 3c it is visible that the hydrostatic swelling stress shows a small variation 
over the swelling zone. For an understanding of this small effect, we increased for 
b/=1 the notch length to a/=30. Figure 6a shows the effect for h. In this plot the data 
for a/=10 are represented by the black symbols, those for a/=30 by the red ones. It is 
obvious that the variation over the region 0xb clearly decrease. In Fig. 6b the effect 
on the normal swelling stress y is shown. Here the variation remains unaffected over 
the zone size. Only the absolute stress values shift slightly. 

5. Including shielding stress intensity factors 
Stresses at slender notches were given by Creager and Paris [4]. The stress component 
normal to the crack plane (the stress y) is in distance x from the notch root  
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The other stress components are  
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Consequently, the hydrostatic stress term from the applied stresses results as 

 
)2(3

)1(2
,

x

K
happl 





  (9) 

 
Fig. 6 Effect of the notch length on the hydrostatic and the normal swelling stress. 

Equations (6-9) are valid for applied stress intensity factors Kappl, shielding stress 
intensity factors Ksh, and total stress intensity factor Ktip, which are defined as 

 happltip KKK   (10) 

The shielding stress intensity factor for an edge crack of finite length a, embedded in a 
swelling zone of height b, was already computed via FE in [5]. Results shown in Fig. 7 
by the circles can be expressed by the relation 
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and different zone shape [2] 
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This solution is shown in Fig. 7. 

 
Fig. 7 Shielding stress intensity factor as a function of the relative zone height. 

Now we can use this solution for the computation of the shielding stress intensity 
factor in eqs.(6-9), resulting in swelling stresses contributed by Ksh. The resulting 
stresses are then subtracted from the results in Fig. 3. The difference is the contribution 
by local swelling exclusively, i.e. for Ksh=0. 

Two different procedures are now possible for the computation of swelling stresses: 

 Fitting the dependencies of Fig. 8 and adding the swelling stresses caused by 
the shielding stress intensity factor. 

 Use of the data in Fig. 3 directly because these values include already the 
shielding effect.  

Since the resolved data of Fig. 8 vary clearly stronger with the distance x from the 
notch root it is recommended to use results of Fig. 3. 

For the hydrostatic stress term it is suggested for 0<xb: 
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Fig. 8 Swelling stresses for a disappearing shielding stress intensity factor, Ksh=0. 
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