

1

TOPIC 3

Fuel, Clad, Structural and Coolant Materials

Sub topic 3.3: Compatibility of Fast Reactor Structural Materials with Liquid Metal Coolants (Part 2)

Juergen Konys

Karlsruhe Institute of Technology

juergen.konys@kit.edu

September 2nd, 2016

Juergen Konys, Karlsruhe Institute of Technology

FJOH 2016

Outline

FJOH 2016 Heavy Liquid Metals for Energy Applications

Why: Favourable properties of liquid metals

- □ High thermal conductivity and boiling point
- **Reasonably low dynamic viscosity**
- Some show minimum interaction with neutrons (e.g., sodium and lead)
- Heavy liquid metals release neutrons under proton irradiation (e.g., mercury, lead and bismuth)

- Efficient heat transfer medium/ coolant for thermal energy conversion
- ---- Essential for fast neutron reactors
- Allows for sub-critical nuclear fuel in a proton-accelerator driven system (ADS)
- **But:** Compatibility issue between liquid metals and e.g. steels
 - Major steel elements are (very) soluble in liquid metals (Fe, Cr, <u>Ni</u>)
 - □ Formation of intermetallic phases (Sn)
 - Degradation of mechanical properties
 - Prominent issue for lead alloys, especially lead-bismuth eutectic (LBE)

FJOH 2016 Some Specific Properties of Liquid Metals

		UNIT	Pb ⁴⁵ B ⁱ⁵⁵	Pb-16Li	SODIUM	WATER
Melting Point at 0.1 MPa		[°C]	125	235	97.8	0
Boiling Point at 0.1 MPa		[°C]	2516	1600	881	100
			300°C	300°C	300°C	25°C
Density	ρ	[kg/m ³]	10325	9988	880	1000
Heat Capacity	c _p	[J/(kgK)]	146.33	200.22	1298	4180
Kinematic Viscosity	ν	[m2/s] · 10 ⁻⁷	1.754	1.3	4	9.1
Heat Conductivity	λ	[W/(m K)]	12.68	45.2	77.1	0.6
Electric Conductivity	σ_{el}	[A/(V m)] · 10 ⁵	8.428	12.67	55.5	$2 \cdot 10^{-4}$ (tap)
Thermal Expansion Coefficient	α	[K ⁻¹] · 10 ⁻⁶	6.7	41.2	24.2	6
Surface Tension	σ	[N/m] · 10 ⁻³	410	430	175	52 (tap)

FJOH 2016 Heavy Liquid Metal-cooled Nuclear Reactors

Accelerator Driven (Subcritical) System (ADS)

- Transmutation of long-lived radioactive isotopes in nuclear waste
- Power generation (Energy Amplifier)
- Liquid lead (Pb) or lead-bismuth eutectic (LBE) as spallation target and primary coolant
- Maximum temperature, typically
 - 450 500°C for regular operation
 - Periodically 550°C (according to plant design)

Lead-Cooled Fast Reactor (LFR)

- One of the concepts for the 4th generation of nuclear power plants (Gen-IV)
- In the long-term, Pb as primary coolant at maximum ca. 800°C
- Short- to mid-term: Pb- or LBE-cooled at 450 550°C

FJOH 2016 Heavy Liquid Metal-cooled Nuclear Reactors

Reduction of high-level nuclear waste

		No. NPPs	Burned Fuel (t)			
	No.	Electricity gen.	Accumulated	Per year		
Worldwide	438	16%	220 000	7 000		
EU	145	35%	34 500	2 500		
Germany	19	30%	8 400	450		

FJOH 2016

Critical Components of Heavy Liquid Metalcooled Nuclear Reactors/Systems

FJOH 2016 Phase Diagram Lead – Bismuth Eutectic (LBE)

FJOH 2016 Heavy Liquid Metal (HLM) – Steel Interactions

Corrosion

- Solution of steel elements with preferential (Ni, Cr) rather than general removal
- Surface recession and/or development of a near-surface depletion zone
- Infiltration of the depletion zone by the liquid metal
- Formation of intermetallic phases on the steel surface or in a near-surface zone inside the steel

Observed on the µm-scale, accessible by light-optical microscopy (LOM), scanningelectron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) ...

Liquid-metal embrittlement (LME), softening, oxidation..

Degradation of mechanical properties

- Damage accumulation at the surface due to corrosion
- Or arising from phenomena below the µm-scale:
 - Adsorption of liquid-metal elements
 - Subsequent processes affecting near-surface defects (dislocations, grain boundaries, cracks)
- Quantification by tensile, slow-strain rate, creep, fatigue, fracture-toughness tests performed either in or after exposure to the liquid metal

FJOH 2016 Impact of **Oxygen** on Steel Corrosion in HLMs

□ "Absence" of oxygen (Pb-16Li)

- Chemical oxygen potential too low for remarkable interactions with steel elements
- Steel elements dissolve in the liquid metal
- Absorption of liquid metal constituents by the steel
- Formation of intermetallic phases)
- □ Low-oxygen conditions (Pb, LBE)
 - Solid oxides of steel elements are stable
 - But, amount of oxides formed too small for a continuous surface layer
 - Concentration gradients that <u>promote</u> solution of steel elements may develop in the liquid metal
- □ High-oxygen conditions (Pb, LBE)
 - Solid oxides of steel elements form a continuous surface layer
 - Solution of steel elements still possible, but only after diffusion through solid oxide

Transition from solution-based to oxidationbased corrosion with increasing oxygen concentration

Continuous oxide layer is the goal of deliberate oxygen addition (Pb, LBE)

Locally low-oxygen conditions even when

 oxygen concentration in the bulk of the liquid metal is high

FJOH 2016 Oxygen Chemistry: Oxygen Potentials in HLMs

FJOH 2016 Components of an Oxygen Control System

Sensors for on-line monitoring

Electrochemical oxygen monitoring

- Solid electrolyte on the basis of yttria-stabilized zirconia (YSZ)
- Metal/metal-oxide or Pt/gas reference electrode

Issues to be addressed (in general)

- Compatibility with the use in Pb alloys (YSZ/steel joint)
- Accuracy
- Long-term reliability

Licensing for nuclear application

- Structural stability of the YSZ product used
- Risk of contamination in case of electrolyte cracking

Oxygen-transfer device(s)

"Classic" mass transfer across the interface between oxygen source/sink and the liquid metal

Туре	Oxygen source	Oxygen sink
Solid- liquid	PbO	(less noble metals)
Gas-liquid	Ar, H_2O , air	Ar-H ₂

Long-term experience from operating experimental facilities for testing materials (steels) in oxygen-containing Pb alloys exists

FJOH 2016 Most Common Oxygen Sensors

FJOH 2016 Calibration of Pt/air Sensor

Accuracy of measurement resulting from comparison with metal/metal-oxide equilibria adjusted in LBE

Fe oxide equilibria

- Stepwise cooling or heating
- Ar-15% H₂ bubbling continuously through the LBE (5 ml/min) or quasi-stagnant
- Oxygen potentials move from Fe-oxide to Mo/MoO₂ equilibrium with temperature variation (Mo comes from wire submerged in the LBE)

Co/CoO

- Stepwise cooling
- Ar 5.0 bubbling continuously through the LBE (5 ml/min)
- Periodically addition of air (5 ml/min) at 700 and 650°C
- Maximum deviation from theoretical prediction < 6 mV

Pb/PbO

- Stepwise cooling
- Ar 5.0 bubbling continuously through the LBE (5 ml/min)
- Maximum deviation from theoretical prediction < 4 mV

FJOH 2016

Corrosion testing in HLMs

CORRIDA		Locks of the test-sections Sensor 3 Heaters
Testing characteristics	Exposure to flowing LBE, typically 2 m/s. 1000 kg circulating LBE (5.3 kg/s). Several steel samples simultaneously exposed in vertical test-sections. Oxygen control via gas with variable oxygen partial pressure. Large internal steel surface in contact with the liquid metal. Temperature difference along the loop of ~100– 150°C.	Magnetic Test-section 2 Magnetic trap Electromagnetic pump Test-section 1 Tubes for draining Air cooler Flow meter Flow meter
Sample geometry	Typically, cylindrical specimen with 7.5 cm ² exposed to liquid metal.	
Determination of oxygen content	Four potentiometric oxygen sensors distributed along the loop.	

Constructed and operated since mid 2003

Oxygentransfer device

Sensor 1

Counterflow heatexchanger

FJOH 2016Gas Phase Oxygen Transfer

FJOH 2016 Relevant 9% Cr Steels for ADS and LFR

Concentration (in wt%) of alloying elements other than Fe

	Cr	Мо	W	V	Nb	Ta	Y	Mn	Ni	Si	С
Т91-А	9.44	0.850	< 0.003	0.196	0.072	n.a.	n.a.	0.588	0.100	0.272	0.075
Т91-В	8.99	0.89	0.01	0.21	0.06	n.a.	n.a.	0.38	0.11	0.22	0.1025
E911*	8.50– 9.50	0.90– 1.10	0.90– 1.10	0.18– 0.25	0.060– 0.100	-	-	0.30– 0.60	0.10– 0.40	0.10– 0.50	0.09– 0.13
EF-ODS-A	9.40	0.0040	1.10	0.185	n.a.	0.08	0.297^{\dagger}	0.418	0.0670	0.115	0.072
EF-ODS-B	8.92	0.0037	1.11	0.185	n.a.	0.078	0.192†	0.408	0.0544	0.111	0.067
* Nominal compos	sition						11			11	

^{*} Nominal composition

[†] In the form of yttria (Y_2O_3)

Elements besides Cr that are likely to improve oxidation performance

Juergen Konys, Karlsruhe Institute of Technology, Sub-topic 3.3

Protective scaling Steel EF-ODS-B Thin Cr- (Si-) rich oxide scale (thickness ~1 µm or less) Promoted by high Cr content, fine-grained structure, dispersed $Y_2O_3 \dots$ Favourable situation with respect to minimum material loss, e(Fe,Cr,,),O, but generally not of long duration (locally) 10 µm Scale failure at low Scale failure at high local $c_0(?)$ local $c_0(?)$ Solution-based corrosion Accelerated oxidation

 $T = 450 - 550^{\circ}C$, v = 2 m/s, 10^{-6} wt\% O

Typical and, finally, the general corrosion process for 9% Cr steel

 Steel elements first dissolve but may re-precipitate in the form of oxides

550°C

Intermittent solution participates in accelerated

oxidation processes or solution outweighs oxidation

Substantial loss of material!

September 2nd, 2016

550°C

$T = 550^{\circ}C, v = 2 m/s, 1.6x10^{-6} wt\% O$

	LBE
(Fe,Cr)₃O₄	and the second second
Internal oxidation	NP SCH Y DE NAMERON SO
Steel	4015 h

Oxidation

- Oxide scale consists of
 - Magnetite (Fe₃O₄)
 - **Cr-deficient spinel** (Fe(Fe_xCr_{1-x})₂O₄)
 - Internal Oxidation Zone (IOZ)
- Magnetite is mostly missing, i. e., Fe is partially dissolved in the liquid metal (or eroded after Fe₃O₄ formation?)
- Inclusions of Pb and Bi inside the scale, espesially after long exposure times

T = 550°C, v = 2 m/s, 1.6x10⁻⁶ wt% O

- Metal recession (loss of cross-section)
- Compromises the structural integrity of plant components
- Determined from measurements in the LOM (generally six measurements per investigated cross-section)
- Includes internal oxidation
- Local variation significantly increases with increasing exposure time
- Optimistic prediction: 50–70 μm after 100,000 h
- Worst-case: 100 μm after 4 years

T = 550°C, v = 2 m/s, 1.6x10⁻⁶ wt% O

- Thickness of different layers of the oxide scale
- May affect heat transfer in the case of thermally-loaded plant components
- Generally twelve measurements per investigated cross-section
- Thickness of spinel layer significantly varies locally with increasing exposure time
- Average thickness of the spinel layer is in the order of the metal recession
 - Fe flux into the LBE can be estimated from the spinel layer thickness

 $T = 450^{\circ}C, v = 2 \text{ m/s}, 1.6 \times 10^{-6} \text{ wt\% O}$

Parabolic:	$\Delta x^2 = k_2 t$
Parabolic after faster kinetics:	$\Delta x^2 = k_2 t + C_2$
Paralinear model of	of oxide scale growth
Logarithmic:	$\Delta x = k_{log} (t + t_0) + C_{log}$

Exposure time (years)	1	5	10							
T91-A \rightarrow Upper limit of Cr content specified for T9										
$\Delta x_{M}(\mu m)$	10	13 – 22	13 – 31							
$\Delta x_{SP}^{}\left(\mu m\right)$	7	8-14	8-20							
$\Delta x_{ST}^{}(\mu m)$	9	20	28							
$T91-B \rightarrow Lowe$	r limit of Cr	content specified	l for T91							
$\Delta x_{M}(\mu m)$	12	15 – 26	15 – 36							
$\Delta x_{SP}^{}(\mu m)$	8	10 – 16	10 – 23							
$\Delta x_{ST}^{}(\mu m)$	12	26	37							

$T = 550^{\circ}C, v = 2 \text{ m/s}, 10^{-7} \text{ wt\% O}$

Accelerated oxidation

- Starts with internal oxidation
- Spinel formation follows internal oxidation
- Consumes outer part of the internal oxidation zone (IOZ) that may still grow at the IOZ/steel interface
- General aspect of accelerated oxidation at 550°C, not only at low oxygen concentration of the LBE

- Outer magnetite layer is missing
- Some magnetite protrusions after excursion to higher c_0
- Corresponds to previous observations at 550°C/10⁻⁶ mass% O
- Fe dissolves at the spinel surface rather than forming magnetite

 $T = 450^{\circ}C, v = 2 \text{ m/s}, 10^{-7} \text{ wt\% O}$

□ Accelerated oxidation

- Internal oxidation less pronounced than at 550°C
- In general, only spinel layer observed
- Pores in the outer part due to Fe diffusion towards

the spinel surface

- No magnetite at constantly 10⁻⁷ mass% O
- Threshold oxygen concentration for magnetite formation between 10⁻⁷ and 10⁻⁶ mass% O at 450°C

FJOH 2016 Relevant Austenitic Steels for ADS and LFR

Concentration (in wt%) of alloying elements other than Fe

Austenitic steels	Cr	Ni	Мо	Mn	Si	Cu	V	W	Al	Ti	С	Ν	Р	S	В
316L	16.73	9.97	2.05	1.81	0.67	0.23	0.07	0.02	0.018	-	0.019	0.029	0.032	0.0035	-
1.4970	15.95	15.4	1.2	1.49	0.52	0.026	0.036	< 0.005	0.023	0.44	0.1	0.009	< 0.01	0.0036	< 0.01
1.4571 (316-Ti)	17.50	12	2.0	2.0	1.0	-	-	-	-	0.70	0.08	-	0.045	0.015	-

1.4970 (15-15 Cr Ni)

- HV₃₀ = 253;
- Grain size ranged from 20 to 65 μm;
- Intersecting deformation twins.

316L

• HV₃₀ = 132;

• Grain size averaged 50 µm (G 5.5);

Annealing twins.

1.4571 (316-Ti)

HV₃₀ = 245;
Grain size averaged 15 μm (G 9.5).

 $T = 550^{\circ}C, v = 2 \text{ m/s}, 10^{-6} \text{ wt\% O}$

Protective scaling

- Thin oxide scale (< 1 μ m) consisting of Cr- or Si-rich oxide layers
- Might have evolved from thin films already existing on the steel surface before exposure
- Similar to the scale formed by pre-oxidation in dry gas (Ar)
- Locally long-lasting phenomenon on specimens exposed at 450/550°C,

10⁻⁶ wt% O in

the test-sections of the loop

Not observed on tube samples taken from the hot leg of the loop; effect of long exposure time and variying c_o (?)

1.4571 specimen exposed in the test sections after 3,495 h at 550°C and $c_{O}\approx 10^{-6}~wt\%$

 $T = 550^{\circ}C, v = 2 \text{ m/s}, 10^{-6} \text{ wt\% O}$

Accelerated oxidation

- Starts locally where the thin oxide scale lost integrity or did not form
- Formation of Fe(Fe_xCr_{1-x})₂O₄, Fe₃O₄ and an internal oxidation zone; the latter two depending on oxygen content, temperature

(or flow velocity)

- The thicker scale spreads on the steel surface with time and becomes partially continuous
- Varying c₀ (mostly lower than 10⁻⁶ mass%) seems to promote accelerated oxidation

1.4571 specimens in the test sections of the loop:

After exposure for 3,495 h at 550°C and $c_{\rm O} \approx 10^{-6}$ wt%

After exposure for 10,006 h at 550°C and variying c_0

1.4571 after exposure for 5,012 h at 550°C and $c_{O}\approx 10^{-6}$ wt%

 $T = 550^{\circ}C, v = 2 \text{ m/s}, 10^{-6} \text{ wt\% O}$

550°C

Non-selective leaching (Ni, Cr)

- Starts locally with preferential dissolution of Ni and penetration of Pb and Bi into the depletion zone
- Phase transition from austenite into ferrite resulting from Ni depletion
- Dissolution of Cr after oxygen depletion in the liquid metal penetrating the steel (critical penetration depth)
- In general, insignificant amounts of Cr oxide inside or on the surface of the depletion zone
- Removal of loosened steel grains bythe liquid-metal flow in a later stage of severe selective leaching

Corrosion Phenomena of Austenitic Steels in LBE FJOH 2016

General Corrosion Appearance of Austenitic Steel Fe-17Cr-10Ni (316L) at 550°C

Ferrite - corrosion layer depleted in Cr and Ni and penetrated by Pb and Bi.

September 2nd, 2016

Qualitative Corrosion Appearance of 316L at 450°C depending on Oxygen Concentration

10-7 mass%O

- □ Protective scaling: Cr-based oxide film $\leq 1 \mu m$;
- \Box Incubation time ~3000h;
- ❑ Solution-based attack resulted in formation of ferrite layer with general material loss of ~8µm (±6) after 8766h;
- □ Local corrosion attack with maximum depth of 210µm after 8766h.

10-6 mass%O

- □ Oxidation: Cr-based oxide and Fe-Cr spinel;
- □ Local deep corrosion attack with maximum depth of 67µm after 8039h.
- □ Incubation time for local attack is >5000h.

Juergen Konys, Karlsruhe Institute of Technology, Sub-topic 3.3

Corrosion Appearance of Austenitic steels at 400°C after 13194 h in Pb-Bi with 10-7 mass%O

Cr-base oxide film is formed.

- □ Steels show generally good corrosion resistance in Pb-Bi with 10⁻⁷ mass%O for up to 13194 h;
- □ Slight general oxidation (Cr-based oxide film) along with very rare local pit-type solution-based corrosion attack are observed;
- \Box The incubation time for pit-type attack is ~4500 h;
- □ After ~13194 h, the maximum pit depth observed was ~ 14, 23 and 57 μ m for 1.4970, 316L and 1.4571, respectively;
- \Box Local corrosion rate ~ 6-26 μ m/year.

$T = 550^{\circ}C, v = 2 \text{ m/s}, 10^{-6} \text{ wt\% O}$

Corrosion scales formed in the hot leg (550°C)

- T3 (6000 h) and T4 (40,000 h) mainly show oxidation; T3 was not pre-oxidised
- T1 (23,000 h) and T2 (29,000 h) show significant selective leaching

Juergen Konys, Karlsruhe Institute of Technology, Sub-topic 3.3

Maximum depth of solution-based corrosion attack observed ($\Delta X_{SBA(max)}$)

Observed corrosion phenomena at:

450 and 550°C:

- ✓ Oxidation thin Cr-based oxide film;
- ✓ Solution-based corrosion attack ferrite layer;

In-situ formed oxide film is not a sufficient protective barrier against solution-based corrosion attack at 450 and 550°C.

400°C:

- \checkmark Oxidation thin Cr-based oxide film;
- ✓ Rare local pit-type solution-based corrosion attack;
- ✓ In-situ formed oxide film protects steels against solutionbased attack at 400°C.

Maximum corrosion loss:

- 400°C: 15-60 µm after ~13000 h;
- ✓ 450°C: 120-220 µm after ~9000 h;
- ✓ 550°C: 150-600 µm after ~2000 h.

Incubation time required for initiation of solution-based attack decreases with increasing temperature from about 4500 h at 400° C to $\sim 500 - 4000$ h at 450° C and to ≤ 200 h at 550° C.

Thank you for your attention