KIT | KIT-Bibliothek | Impressum
Open Access Logo
§
Volltext
URN: urn:nbn:de:swb:90-624744

Genetically Blocking the Zebrafish Pineal Clock Affects Circadian Behavior

Ben-Moshe Livne, Zohar; Alon, Shahar; Vallone, Daniela; Bayleyen, Yared; Tovin, Adi; Shainer, Inbal; Nisembaum, Laura G.; Aviram, Idit; Smadja-Storz, Sima; Fuentes, Michael; Falcón, Jack; Eisenberg, Eli; Klein, David C.; Burgess, Harold A.; Foulkes, Nicholas S.; Gothilf, Yoav

Abstract:
The master circadian clock in fish has been considered to reside in the pineal gland. This dogma is challenged, however, by the finding that most zebrafish tissues contain molecular clocks that are directly reset by light. To further examine the role of the pineal gland oscillator in the zebrafish circadian system, we generated a transgenic line in which the molecular clock is selectively blocked in the melatonin-producing cells of the pineal gland by a dominant-negative strategy. As a result, clock-controlled rhythms of melatonin production in the adult pineal gland were disrupted. Moreover, transcriptome analysis revealed that the circadian expression pattern of the majority of clock-controlled genes in the adult pineal gland is abolished. Importantly, circadian rhythms of behavior in zebrafish larvae were affected: rhythms of place preference under constant darkness were eliminated, and rhythms of locomotor activity under constant dark and constant dim light conditions were markedly attenuated. On the other hand, global peripheral molecular oscillators, as measured in whole larvae, were unaffected in this model. In conclusion, ch ... mehr


Zugehörige Institution(en) am KIT Institut für Toxikologie und Genetik (ITG)
Publikationstyp Zeitschriftenaufsatz
Jahr 2016
Sprache Englisch
Identifikator ISSN: 1553-7404, 1553-7390
KITopen ID: 1000062474
HGF-Programm 47.01.01; LK 01
Erschienen in PLoS Genetics
Band 12
Heft 11
Seiten e1006445
Bemerkung zur Veröffentlichung CC0 1.0 Universal (CC0 1.0) Public Domain Dedication
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page