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We study the problem of planning Pareto-optimal journeys in public transit
networks. Most existing algorithms and speed-up techniques work by computing
subjourneys to intermediary stops until the destination is reached. In contrast, the
trip-based model [26] focuses on trips and transfers between them, constructing
journeys as a sequence of trips. In this paper, we develop a speed-up technique
for this model inspired by principles behind existing state-of-the-art speed-up
techniques, Transfer Patterns [1] and Hub Labelling [9]. The resulting algorithm
allows us to compute Pareto-optimal (with respect to arrival time and number of
transfers) 24-hour profiles on very large real-world networks in less than half
a millisecond. Compared to the current state of the art for bicriteria queries
on public transit networks, this is up to two orders of magnitude faster, while
increasing preprocessing overhead by at most one order of magnitude.

1 Introduction

Finding optimal journeys in public transit networks is a complex problem. Efficient algorithms
are required to allow real-time answering of queries by users in online systems such as Google
Maps Transit1 or those of local providers such as bahn.de or fahrplan.sbb.ch. In these
systems, users enter a source location, a destination, and a rough point in time and expect a
number of journeys that are optimal in some sense.

Precisely what constitutes an optimal journey is non-trivial to define, as it often depends
on individual user preferences. Generally, passengers want to arrive as quickly as possible, so
travel time should usually be minimized. However, some users may prefer a slightly longer

1https://maps.google.com/transit
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journey with fewer transfers between different vehicles, as transfers reduce travel comfort
and introduce additional uncertainty — connecting trains might be missed due to delays.
How much extra travel time someone is willing to accept in exchange for fewer transfers
differs from user to user and might depend on several factors, such as arrival time or even
purpose of the journey.

Since no system can capture all these variables to compute the optimal journey for each
query, we usually compute a set of possible journeys and let the user choose among them,
possibly after applying some filtering [11,18]. A general approach to this is to define a number
of criteria, such as arrival time and number of transfers, and compute a set of Pareto-optimal
journeys, i.e. a set such that no journey is better than any other in all criteria.

1.1 Related Work

In the past, several algorithms based on different principles have been proposed. For an
extensive survey, please refer to Bast et al. [2]. Pyrga et al. [23] reduce the problem of finding
optimal journeys in public transit networks to finding shortest paths in graphs. They propose
the time-extended and time-dependent model along with some speed-up techniques such as
goal directed search, and optimize both travel time and number of transfers in the Pareto
sense. Geisberger [20] applies the concept of contraction hierarchies, which have proved
successful on road networks, to public transit networks. Only travel time is optimized. Berger
et al. [5] introduce SUBITO and k-flags, two speed-up techniques that optimize both travel
time and number of transfers in the Pareto sense.

RAPTOR [14] foregoes modelling the data as a graph and instead operates directly on the
timetable data. In addition to travel time and number of transfers, they also consider price
as a criteria. The Connection Scan Algorithm (CSA) [15] also eschews graphs and instead
works on an ordered array of connections to find Pareto-optimal journeys with respect to
travel time and number of transfers. Accelerated CSA [24] is a speed-up technique for CSA
that works via partitioning of the network. Unlike the original CSA, it was only evaluated as
a single-criterion algorithm, using the number of transfers as a tiebreaker between journeys
with identical arrival time.

Public Transit Labelling (PTL) [12] uses, as the name implies, a hub labelling approach.
It requires extensive preprocessing and produces a very large amount of auxiliary data, but
leads to very low query times, even for multi-criteria queries. Timetable Labelling (TTL) [25]
is another labelling-based approach, which has been extended in the context of databases by
Efentakis [17]. However, TTL only performs single-criterion queries regarding arrival time.

Transfer Patterns (TP) [1,3,4] is a speed-up technique that precomputes the eponymous
transfer patterns between all stops in the network. These transfer patterns are formed by the
sequence of stops where passengers transfer between vehicles. At query time, these patterns
are then used to quickly find all Pareto-optimal journeys.

1.2 Our Contribution

In this work, we present a speed-up technique based on Trip-Based Public Transit Routing
(TB) [26]. Unlike other approaches, TB conceptually works on a graph where nodes represent
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trips, not stops. Edges represent possible transfers between trips, and are qualified using the
indices of the stops where passengers exit or board a trip. These transfers are precomputed
and can be looked up quickly during query processing. This has the advantage that minimum
change times and footpaths do not have to be evaluated at query time, and allows fine-grained
modelling without query-time overhead.

Inspired by the principles behind Transfer Patterns [1] and Hub Labelling [9], our speed-up
technique achieves sub-millisecond query times for profile queries on country-sized networks,
while keeping preprocessing overhead low.

2 Preliminaries

A public transit network is defined by an aperiodic timetable, which contains a set of stops,
a set of footpaths, and a set of trips. A stop is a physical location where passengers can
enter or exit a vehicle, such as a bus or train. Depending on the granularity of the model, a
stop may represent an entire train station, a single platform, or some subset of all platforms
within a train station. Transferring from one vehicle to another at the same stop s may
require a certain amount of time, which we call minimum change time ∆τch(s). If the time
between the arrival of the previous vehicle and the departure of the subsequent one is less
than ∆τch(s), no transfer between them is possible at this station. Footpaths connect two
stops and indicate the time required to walk from one to the other. We use the most general
model of directed, non-transitive footpaths. We denote the time required to walk from stop
s1 to s2 as ∆τfp(s1, s2), with ∆τfp(s1, s2) :=∞ if no footpath from s1 to s2 exists.

Trips represent vehicles. Each trip t travels along a sequence of stops ~s(t) = 〈t@1, . . . , t@n〉.
A trip may visit a stop multiple times. For each t@i, the timetable contains the arrival time
time τarr(t@i) and the departure time τdep(t@i) of trip t at that stop index. Trips that travel
along the same sequence of stops are grouped into lines. We require that trips never overtake
another trip of the same line; more specifically, we require that the trips of a line can be
totally ordered with respect to

t1 � t2 ⇐⇒ ∀i ∈ [1, |~s(t1)|] : τarr(t1@i)≤ τarr(t2@i). (1)

Trips that violate this requirement are assigned to different lines. We denote the line of a trip
t as L(t), and define ~s(L(t)) := ~s(t).

Transfers indicate connections between trips. We denote transfers as t1@e→ t2@b, meaning
that passengers can exit trip t1 at stop index e in order to board trip t2 at stop index b. Transfers
may occur at a single stop, in which case

τarr(t1@e) +∆τch(t1@e)≤ τdep(t2@b) (2)

must hold, or they may involve a footpath, in which case the requirement is

τarr(t1@e) +∆τfp(t1@e, t2@b)≤ τdep(t2@b). (3)

A journey describes how and when to get from a source stop ssrc to a destination stop sdest. It
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can be defined by a sequence 〈t1@b1, t2@b2, . . . , tn@bn〉 with the following requirements:

ssrc = t1@b1 ∨∆τfp(ssrc, t1@b1)<∞ (4)

∀i ∈ [1, n) : ∃e > bi : t i@e→ t i+1@bi+1 (5)

∃i : tn@i = sdest ∨∆τfp(tn@i, sdest)<∞. (6)

These requirements ensure that the first trip can be reached (4), that transfers are possible
between subsequent trips (5), and that the final trip arrives at the destination (6).

We consider two well-known bicriteria problems, optimizing arrival time and number of
transfers required. It has been shown [22] that for these criteria, computing the full set of
Pareto-optimal journeys is feasible. A journey is Pareto-optimal if no other journey dominating
it exists. A journey dominates another if it is better or equal in all criteria — if they are equal
in all criteria, we break the tie arbitrarily and keep only one of them in the set.

The input to the earliest arrival query consists of a source stop ssrc, a destination stop sdest,
and a departure time τ. The result is a set of tuples (τdest, n), one for each Pareto-optimal
journey leaving ssrc no earlier than τ and arriving at sdest at time τdest after n transfers. For
the profile query, we are given a source stop ssrc, a destination stop sdest, an earliest departure
time τedt, and a latest departure time τldt. Here, we consider the departure time of journeys
as an additional criterion, with later departures dominating earlier ones. Thus, we compute
all Pareto-optimal journeys departing at ssrc at some time τsrc with τedt ≤ τsrc ≤ τldt and
arriving, after n transfers, at sdest at time τdest. The answer to the query is then the set of
tuples (τsrc,τdest, n) corresponding to these journeys.

3 Trip-Based Public Transit Routing

This section provides a quick explanation of the Trip-Based Public Routing (TB) algorithm [26].
For more details, please refer to the original publication.

3.1 Preprocessing

As mentioned in section 1.2, TB uses trips and transfers between them as its basic building
blocks. During a short preprocessing phase, all possible transfers between trips are computed.
However, it can be shown that many of these transfers can never be part of an optimal journey,
for example transfers that lead to trips that run in the opposite direction, or transfers to
several trips of the same line. Therefore, the second step of preprocessing is discarding these
superfluous transfers, which may constitute up to 90% of total transfers. Since each trip can
be processed separately, preprocessing is trivially parallelized and can be performed within
minutes even for very large networks.

3.2 Queries

Queries are similar to a breadth-first search on the graph formed by trips and the transfers
between them. For an earliest arrival query, we first identify the trips reachable from the
source stop, and insert them into a queue. Then, each trip is processed by scanning its
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outgoing transfers. Newly reached trips are in turn added to the queue. Trips are marked
as reached by, conceptually, assigning labels consisting of trip, stop index, and number of
transfers needed to reach that trip to lines.2 Branches of the search are pruned if they are
dominated by existing labels. The graph is explored until all Pareto-optimal journeys to the
destination stop are found.

For a profile query, we essentially repeat the above multiple times. Observe that the
departure time is an additional criteria for journeys in profile queries, with later journeys
dominating earlier ones. If all other criteria are equal, the journey with the later departure has
less travel time and is therefore preferable. Thus, we start with the latest possible departure
at the source stop, and perform an earliest arrival query. We can add the resulting journeys
to the result set. Then, without resetting labels, we perform an earliest arrival query for the
second-latest departure, and so on. By preserving the labels between runs, we allow later
journeys to dominate earlier ones, avoiding redundant work.

4 Storing One-to-All Search Trees

In this section, we show how some of the principles behind Transfer Patterns [1] can be
applied to the Trip-Based model. The core idea of the Transfers Patterns algorithm is to
precompute, for all pairs of source and destination stop, the transfer patterns for all optimal
journeys. The transfer pattern of a journey is the sequence of stops where a change of vehicle
occurs. In practice, optimal journeys between two given stops share a limited number of
transfer patterns. If all optimal transfer patterns between source and destination are known,
queries can be answered quickly by looking up direct connections between the stops forming
the transfer patterns.

We use the same property as the foundation for our speed-up technique. Since we operate
on trips — or more generally, lines, which are ordered sets of trips — we do not precompute
sequences of stops where transfers occur. Instead, we precompute the sequence of lines that
correspond to an optimal journey, together with the stop indices where each of these lines is
boarded. As we show in the next section, these line sequences form a natural generalization
of one-to-all profile search trees.

4.1 Prefix Trees

We compute one-to-all profiles from each stop to find all potential line sequences. These
one-to-all profiles are at their core identical to the one-to-one profiles described in the original
publication [26] and summarized in section 3.2.

First, all departures at the source stop are ordered by departure time and then processed
backwards. For each distinct departure time, we then perform a breadth-first search as
described in section 3.2. This results in a breadth-first tree, with the source stop as the root
node, the visited trips as internal nodes, and the reached stops as leaves. In contrast to
one-to-one profiles, we also assign labels to all stops, consisting of arrival time and number

2In the implementation, we unroll the “trip” and “number of transfers” dimensions for faster lookup and to
allow the use of SIMD instructions.
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of transfers. We update these using the breadth-first tree, pruning branches that do not lead
to an improved stop label. The remaining tree is generalized by replacing all trips with their
respective line and the index of the stop where the trip was boarded. We then restart the
search using the next (earlier) departure, preserving all labels.

Finally, the trees are merged, resulting in one prefix tree [10] for each source stop, containing
the optimal line sequences to all destination stops. In essence, this prefix tree represents a
condensed, time-independent result of a one-to-all profile search. Note that prefix trees are
functionally equivalent to the transfer pattern graphs used by Transfer Patterns [1], except
that internal nodes represent lines instead of stops.

4.2 Queries

We can use these prefix trees to quickly answer queries. First, we construct the query graph.
To do so, we find the nodes corresponding to the destination stop in the prefix tree of the
source stop. We follow the paths from these nodes to the root, adding edges from parent to
child nodes to the query graph. Multiple occurrences of the same L@b in the prefix tree are
mapped onto the same node in the query graph. Again, note the similarity to the query graph
used by Transfer Patterns [1].

To answer the query, we run a simple multi-criteria label-correction shortest path algo-
rithm [16] on the query graph. Labels consist of a trip, the number of transfers, and, for
profile queries, the departure time at the source stop. Finding the initial trips at the source
stop is straightforward. Given a label (t, n,τdep), we relax an edge between L1@i and L2@ j by
finding a transfer t@k→ s@ j such that k > i and L(s) = L2. We then add a label (s, n+1,τdep)
to the node representing L2@ j. Once the algorithm terminates, we can extract the arrival
times at the destination stop from the labels. Intuitively, the prefix tree tells us which paths
through the networks optimal journeys can take. The query then follows these paths to find
the actual journeys for the given departure time(s).

5 Splitting Trees

Unfortunately, for large networks, prefix trees grow unfeasibly large, and memory usage
becomes an issue. Each tree spans the entire network, and in addition, many subtrees are
duplicates of each other, with slightly different prefixes. Furthermore, subtrees are often
duplicated across different trees, since stops can only be reached through a limited set of
lines.

We can reduce this redundancy by removing branches from the prefix trees and instead
storing them in postfix trees. These postfix trees are essentially reverse prefix trees: They are
rooted at a destination stop and describe optimal line sequences for reaching that stop. Storing
these sequences once for each destination stop instead of once or even multiple times for each
source stop greatly improves space efficiency. Optimal line sequences can be recovered by
concatenating branches of the source’s prefix tree with matching branches of the destination’s
postfix tree.
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5.1 Postfix Trees

We construct the postfix trees from the prefix trees as follows. For each path from the root
(that is, the source stop) to a leaf (a destination stop), we select an internal node Ncut where
we “cut” this path. Section 5.3 explains how this node is chosen. We add the subpath from
Ncut (inclusive) to the leaf — in reverse order — to the postfix tree for the destination node.
Then, we remove the leaf node and, recursively, all internal nodes that no longer have any
children from the prefix tree, until we reach Ncut. Thus, if the prefix tree originally contained
the path 〈S, N1, . . . , Nl , Ncut, Nl+1, . . . , Nn, T 〉, we end up with 〈S, N1 . . . , Nl , Ncut〉 in the prefix
tree and 〈T, Nn, . . . , Nl+1, Ncut〉 in the postfix tree.

However, recall that each internal node represents a line together with the stop index where
the line is boarded, L@b. This breaks the symmetry between prefix and postfix trees. As a
result, we end up with many postfixes that are identical except for the board index at Ncut
— depending on the source stop, there are many ways to reach a line, but only a limited
number of (optimal) ways from that line to the destination stop. We can merge these nodes
by setting the index to the exit of the next transfer, which is identical for all of them. Note
that we only do this for the Ncut in postfix trees, not for any other nodes in either prefix or
postfix trees. Thus, if Ncut

∧
= L@b and the original path was 〈S, N1, . . . , L@b, . . . , Nn, T 〉, we

now have 〈S, N1, . . . , L@b〉 in the prefix tree for S and 〈T, Nn, . . . , L@e〉 in the postfix tree for
T , with b < e. This results in a greatly reduced number of leaves in postfix trees, while still
allowing us to recover the original line sequence.

Since we no longer store destination stops in prefix trees (or source stops in postfix trees),
but still want to preserve directional information, a bit vector is stored with each Ncut. We
partition the stops and set the ith bit if Ncut connects to the postfix tree of a stop in partition
i, and vice versa for the Ncut in postfix trees. In practice, we use 64-bit integers and simply
partition the stops by ID, taking advantage of the pre-existing locality in the data sets.

5.2 Queries

The algorithm for query graph construction follows from the construction of the postfix trees.
First, we take the prefix tree for the source stop and select all Ncut where the bit vector
has the bit corresponding to the destination stop set. Similarly, we select the N ′cut from the
postfix tree for the destination stop where the bit corresponding to the source stop is set.
Then, we find all pairs (Ncut, N ′cut) such that Ncut

∧
= L@b and N ′cut

∧
= L@e with b < e. Each

such pair defines a path 〈S, N1, . . . , Nl , Ncut, Nl+1, . . . , Nn, T 〉, and we need to ensure that the
query graph contains all edges in that path. By ordering the nodes by their corresponding
line, we can find these pairs using an algorithm similar to a coordinated sweep. Due to the
generalizations performed during postfix tree construction, we will find some prefix-postfix
combinations that do not correspond to an optimal line sequence. Thus, the resulting query
graph will usually be larger than in section 4.2, but this only affects performance of the query,
not correctness. The query algorithm itself is the same as before.

Essentially, we find optimal paths during preprocessing, split them at some intermediary
node for more efficient storage, and then reassemble them at query time. Note the similarity
to the concept of hub labelling [9]. In hub labelling, optimal journeys are split at some
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intermediary hub, then stored in compressed form at the source and destination. We do the
same, except we only store the more general line sequences instead of the journeys, which
we can then reconstruct at query time. Indeed, as we show in section 6, our approach shares
some properties with existing labelling approaches.

The flags we use to filter possible connections are reminiscent of arc flags [21]. Without
them, many long prefixes would connect to long postfixes for stops that are close together on
the network, without a corresponding optimal journey. Exploring these unnecessary nodes
during the query would be costly and is avoided by this pre-filtering.

5.3 Cut Selection

It is clear that the choice of Ncut has a large effect on the resulting trees. In general, we want
smaller trees, which are more space efficient. We examined two fundamentally different
strategies.

The first is to simply cut paths in half. Unsurprisingly, this results in rather large trees,
since paths are cut at more or less arbitrary lines. This results in many different prefixes and
postfixes for each stop, which translates to large trees.

The second strategy exploits the underlying network’s structure by selecting the most
“important” lines. To find these lines, we construct the line graph [6] of the network. In
the (undirected) line graph, nodes correspond to lines, and two nodes share an edge if and
only if a transfer between these lines is possible. We then use this line graph to compute
the betweenness centrality [19] of each line using Brandes’ algorithm [7].3 This gives us
an ordering of the lines, and when choosing Ncut, we select the node which corresponds to
the most central line on the path. This ensures that the choice is consistent across different
paths, which allows better merging of prefixes and postfixes. As we show in section 6, this
strategy gives good results on country-sized networks, which typically exhibit good structure.
Unfortunately, it is less successful on the less structured metropolitan networks. On these,
using the simpler strategy of cutting paths into two equal halves leads to better results.
Exploration of further criteria for selecting cut nodes is a subject of future research.

6 Experiments

We performed experiments using a quad 8-core Intel Xeon E5-4640 clocked at 2.4 GHz with
512 GB of DDR3-1600 RAM, using 64 threads for parallel preprocessing. Except where
otherwise noted, computations are sequential. Code was written in C++ and compiled
using g++ 5.2.0 with optimizations enabled. We consider five real-world data sets, three
covering countries of varying size and two metropolitan networks: Germany, provided to
us by Deutsche Bahn, Switzerland, available at gtfs.geops.ch, and Sweden, available at
trafiklab.se, contain both long-distance and local transit, and cover two consecutive days
to allow for overnight journeys. London, available at data.london.gov.uk, and Madrid,
available at emtmadrid.es, cover a single day only. For Madrid, we computed footpaths using

3We chose this algorithm for simplicity; since the exact centrality is not required, one could also use an
approximate algorithm [8] instead.
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Table 1: Instances used for experiments.
Instance Stops Conn. Trips Lines Footp. Transfers
Germany 247.9 k 27061 k 1432 k 192.8 k 98.8 k 84950 k
Sweden 50.7 k 6054 k 261 k 17.6 k 0.8 k 16455 k
Switzerland 27.8 k 4650 k 611 k 14.4 k 34.3 k 12626 k
London 20.8 k 4991 k 129 k 2.2 k 27.6 k 15883 k
Madrid 4.6 k 5280 k 190 k 1.4 k 1.4 k 9256 k

Table 2: Preprocessing figures. Listed are the average time required to compute the full
prefix tree for a stop, the total time required to compute the split trees for all stops
(sequential and parallel), the average number of nodes in those trees (per stop,
i.e. the sum of prefix and postfix), and the total space consumption. Sequential
preprocessing for the Germany instance was performed on a different machine.

p. prefix seq. par. speed avg. # mem.
Instance tree [ms] [h:m] [h:m] up of nodes [GB]
Germany 2 143.6 (231:16) 13:48 (16.8 x) 7 305 23.2
Sweden 166.7 4:33 0:18 15.2 x 2433 1.6
Switzerland 209.3 3:18 0:12 16.5 x 4315 1.6
London 1 368.1 15:19 0:42 21.9 x 20390 6.0
Madrid 497.3 1:22 0:04 17.0 x 32293 2.0

a known heuristic [13], for all other instances, they are part of the input. These data sets are
summarized in Table 1.

Preprocessing figures can be found in Table 2. Due to scheduling conflicts, sequential
preprocessing of the Germany instance was performed on a different machine4. We report
the total time required to perform the computation of prefix and postfix trees, as described
in section 5. This includes the time required to compute the betweenness centrality, which
is negligible in most cases. For Germany, Switzerland and Sweden we use the betweenness
centrality to select cut nodes; for London and Madrid we use the simpler method of cutting
paths in half. The reverse generally leads to larger trees and therefore higher memory
consumption. For most instances, the difference is about 1–2 GB; for Germany, the difference
is almost 50 GB. It is interesting to note that the metropolitan networks require more space
than the two small country-sized networks. This indicates that the topology of the network is
more important than the raw size in terms of stops or connections. A similar effect can be
seen in the labelling approaches, Public Transit Labelling (PTL) [12] and Timetable Labelling
(TTL) [25].

We evaluate query times in Table 3. We measured the average times for 10000 queries
with source and destination stop chosen uniformly at random. For earliest arrival queries,
the departure time was chosen uniformly at random on the first day; for profile queries, the
departure time range is the entire first day. We evaluated queries for three different variants:

4Dual 8-core Intel Xeon E5-2650s v2, 2.6 GHz, 128 GB DDR3-1600 RAM, 20 MB L3 cache
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Table 3: Query figures. Listed are the query graph size (nodes + edges), the time required to
construct the query graph, and the time required to perform an earliest arrival and a
24h profile query. The first block refers to the basic trip-based algorithm, where no
query graph is used. The second block uses a prefix tree for each source stop, as in
section 4. The third block uses the split trees for source and destination stop, as in
section 5.

Query graph Query graph EA profile
Instance Var. size [N+E] time [µs] [µs] [µs]
Germany TB — — 30 856 192 952
Sweden TB — — 2 760 16 532
Switzerland TB — — 1 780 18 104
London TB — — 1 374 96 114
Madrid TB — — 711 54 118
Germany PT 41+ 58 994.4 63.3 155.0
Sweden PT 23+ 32 24.6 40.4 88.6
Switzerland PT 38+ 59 34.0 45.8 155.9
London PT 91+ 196 138.2 101.1 2 786.6
Madrid PT 150+ 407 306.9 81.7 6 913.8
Germany ST 124+ 232 81.1 75.0 430.5
Sweden ST 66+ 122 32.5 27.2 207.1
Switzerland ST 118+ 233 76.1 32.7 327.6
London ST 331+ 1242 1 583.3 141.4 14 545.4
Madrid ST 456+ 2073 11 822.9 165.8 28 919.0

The basic trip-based algorithm (TB), using prefix trees as described in section 4 (PT), and
using both prefix and postfix trees as described in section 5 (ST). The ST variant leads to
larger query graphs than the PT variant. This is to be expected, as some information gets
lost in the transformation, and some prefixes may connect to more postfixes than required.
This does not affect correctness, because all optimal line sequences are still contained in
the query graph. It does, however, lead to increased query times for ST in comparison to
PT. Nevertheless, the time required to construct the query graph on the Germany instance is
lower for ST, since the split trees contain fewer nodes in total than the original prefix tree.
Profile query times are much higher on the metropolitan networks than on the generally
larger country-sized networks. In part, this is because they are less structured than the larger
networks, which leads to larger query graphs. However, on the metropolitan networks, the
set of optimal journeys is also much larger than on the others, which slows down the query
algorithm.

We compare variant ST, using prefix and postfix trees, to other state of the art algorithms in
Table 4. Algorithms based on labelling approaches are generally the fastest. In particular, for
single criterion queries, they dominate other preprocessing-based approaches with regard to
query times, preprocessing time and memory consumption. PTL [12] supports multi-criteria
queries, at the cost of massive increases in both preprocessing time and memory consumption,
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Table 4: Comparison with the state of the art. Results taken from [2–4,12,24,25]. Algorithms
computing Pareto-optimal journeys with respect to the number of transfers in addition
to arrival time are marked in column “tr.” Profile queries are marked in column “pr.”

algorithm instance stops conn. tr. pr. mem. pre. query
[103] [106] [GB] [h] [µs]

CSA [24] Germany 252.4 46.2 ◦ ◦ — — 298.6 k
ACSA [24] Germany 252.4 46.2 ◦ ◦ n/a 0.2 8.7 k
TP [4] Germany 248.4 13.9 • ◦ 140.0 372.0 300.0
Sc-TP [3] Germany 250.0 15.0 • ◦ 1.2 16.5 32.0 k
TB Germany 247.9 27.1 • ◦ 23.2 231.3 156.1

TTL [25] Sweden 51.4 n/a ◦ ◦ ≈ 0.5 0.2 ≈ 10.0
PTL [12] Sweden 51.1 12.7 • ◦ 12.3 36.2 27.6
TB Sweden 50.7 6.1 • ◦ 1.6 3.8 59.7

PTL [12] Switzerland 27.1 23.7 • ◦ 12.7 61.6 21.7
TB Switzerland 27.8 4.7 • ◦ 1.6 2.7 108.8

CSA [15] London 20.8 4.9 ◦ ◦ — — 1.8 k
PTL [12] London 20.8 5.1 • ◦ 26.2 49.3 30.0
TB London 20.8 5.0 • ◦ 6.0 11.6 1.7 k

TTL [25] Madrid 4.6 n/a ◦ ◦ ≈ 0.4 0.1 ≈ 30.0
PTL [12] Madrid 4.7 4.5 • ◦ 9.9 10.9 64.3
TP [2] Madrid 4.6 4.8 • ◦ n/a 185.0 3.1 k
TB Madrid 4.6 5.3 • ◦ 2.0 1.1 12.0 k

ACSA [24] Germany 252.4 46.2 ◦ • n/a 0.2 171.0 k
TP [4] Germany 248.4 13.9 • • 140.0 372.0 5.0 k
TB Germany 247.9 27.1 • • 23.2 231.3 511.6

PTL [12] Sweden 51.1 12.7 ◦ • 0.7 0.5 12.1
TB Sweden 50.7 6.1 • • 1.6 3.8 239.6

PTL [12] Switzerland 27.1 23.7 ◦ • 0.7 0.7 24.5
TB Switzerland 27.8 4.7 • • 1.6 2.7 403.7

PTL [12] London 20.8 5.1 ◦ • 1.3 0.9 74.3
CSA [15] London 20.8 4.9 • • — — 466.0 k
TB London 20.8 5.0 • • 6.0 11.6 16.1 k

PTL [12] Madrid 4.7 4.5 ◦ • 0.4 0.4 111.9
TB Madrid 4.6 5.3 • • 2.0 1.1 40.7 k
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while TTL [25] only performs single-criterion queries. TP [1,3,4] can answer bicriteria profile
queries in a few milliseconds, even on large networks. The original TP had the drawbacks
of very long preprocessing times and a large memory consumption. More recently, Scalable
Transfer Pattern [3] has made impressive improvements on this front, at the cost of increased
query times.

On the metropolitan networks, our algorithm performs notably worse than could be ex-
pected, although query times are still in the low milliseconds. As previously mentioned, this is
mostly due to the much higher number of journeys compared to the country-sized networks.
For bicriteria queries on the country-sized networks, our algorithm has preprocessing costs
one order of magnitude less than PTL, while query times are similar. Note, however, that
PTL has not been evaluated for bicriteria profile queries, making direct comparison difficult.
In comparison to Scalable TP, our query times are two orders of magnitude lower, at the
cost of one order of magnitude for preprocessing costs. As such, our algorithm enables the
currently fastest bicriteria profile queries on large realistic instances, with reasonable prepro-
cessing overhead. On very large instances, such as Germany, preprocessing time and memory
consumption may be prohibitive for some use cases. This is a subject of future research.

7 Conclusion

We introduced a speed-up technique for the basic trip-based public transit routing algo-
rithm [26]. This technique applies principles sharing some similarities to those behind
Transfer Patterns [1,4] and Hub Labelling [9] to the trip-based model and expands on them.
The resulting algorithm enables query times on the microsecond scale on large realistic public
transit networks with moderate preprocessing cost, occupying a Pareto-optimal spot among
current state of the art algorithms.

Future work includes the study of different methods for cut node selection, with the goal
of further reducing memory consumption and query graph size, developing tailored query
algorithms to speed up queries on metropolitan networks, and making preprocessing more
scalable by avoiding the computation of full one-to-all queries for all stops. We are also
interested in adapting this speed-up technique to different scenarios, such as other and/or
more criteria, and stop-based routing.
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