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1 Introduction

In a very insightful paper published in 1975, Kato [13] presents a concise
framework for quasi-linear evolution equations in a Banach space, proves local
well-posedness of the initial value problem within this framework and shows
that the framework and results apply to a variety of quasi-linear partial dif-
ferential equations. He lists symmetric hyperbolic systems of the first order,
wave equations, Korteweg–de Vries equation, Navier–Stokes and Euler equa-
tions, equations for compressible fluids, magnetohydrodynamic equations, cou-
pled Maxwell and Dirac equations — and adds “etc.”. Particularly notewor-
thy appears the application to symmetric hyperbolic systems in the sense of
Friedrichs (in arbitrary space dimension), which is a large and fundamental
class of problems.
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E-mail: {Kovacs,Lubich}@na.uni-tuebingen.de
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While Kato’s paper has been influential and highly cited in the analysis
of nonlinear hyperbolic and dispersive partial differential equations, it has ap-
parently gone unnoticed in the numerical literature for such equations. Kato’s
framework has been modified and generalized to further classes of partial dif-
ferential equations, by himself and coauthors in [11,12] shortly after [13], and
by other researchers until recently, e.g., in [7,17]. To our knowledge, the only
numerical paper related to Kato’s framework is the recent work of Hochbruck
& Pažur [10] who study the implicit Euler time discretization in a modified
Kato framework that was developed by Müller [17] for dealing with a class of
quasi-linear Maxwell equations. We acknowledge that it was [10] and [17] that
led us to the present work.

Here we show that Kato’s original framework from [13], when restricted to
Hilbert spaces (which are mostly used in the applications), combines remark-
ably well with the technique of “energy estimates” for time discretizations,
that is, with the use of positive definite and semi-definite bilinear forms for
proving stability and error bounds. We show this first for the implicit midpoint
rule in Section 3, and then (in Section 4) for implicit Runge–Kutta methods
such as the Gauss and Radau IIA methods of arbitrary orders, which have the
properties of algebraic stability and coercivity, notions that are due to Burrage
& Butcher [1] and Crouzeix [4] (for algebraic stability) and to Crouzeix and
Raviart [5] (for coercivity); see also [6,9]. Although these notions were devel-
oped and recognized as important properties in the context of stiff ordinary
differential equations in the same decade in which Kato’s paper appeared, it
seems that no link between these analytical and numerical theories was made.
With a delay of some decades, this is now done in the present paper — in
view of both, the perfectly fitting connection of the analytical framework and
the numerical methods, and the undiminished significance of the considered
evolution equations in applications.

We study only time discretization in this paper. Effects of truncation of an
unbounded spatial domain and of space discretization are not considered here.
Moreover, we work in a regime where a sufficiently regular solution exists. Of
course, we are aware that shocks may develop in finite time in quasi-linear hy-
perbolic equations. Nevertheless, for many cases within the class of evolution
equations considered (in particular, in problems of wave propagation and dis-
persive equations), regular solutions exist for sufficiently long times of interest
(or even for all times), and it is then important to understand the mechanisms
that yield stability and convergence of numerical discretizations.

2 Kato’s framework in a Hilbert space setting

We consider a quasi-linear evolution equation (with ˙ = d/dt)

u̇+A(u)u = f(u) (2.1)

in the following setting, which is a Hilbert space version of the framework in
Kato’s paper [13]. Let X and Y be two real Hilbert spaces such that Y is
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densely and continuously embedded in X. We denote the inner product on X
by (·, ·) and the norms on X and Y by

| · | = ‖ · ‖X , ‖ · ‖ = ‖ · ‖Y .

For convenience we choose the norms such that |y| ≤ ‖y‖ for all y ∈ Y . We
assume throughout this paper that for every R > 0 the following assumptions
are satisfied, with real numbers MA

R , MB
R , LAR, LBR , `XR , `YR depending only

on R:
(K1) (m-accretivity [14, Section V.10]) For every y ∈ Y , the closed linear

operator A(y) on X has the open left complex half-plane in the resolvent set
and satisfies the bound

(w,A(y)w) ≥ 0 for all w ∈ D(A(y)). (2.2)

Moreover, the domain D(A(y)) contains the space Y , and there is the Y -locally
uniform bound, for y ∈ Y with ‖y‖ ≤ R,

|A(y)w| ≤MA
R ‖w‖ for all w ∈ Y. (2.3)

(K2) (Kato’s commutator condition) There exists an isometry S : Y → X,
self-adjoint as a linear operator on X, with the following property: For every
y ∈ Y with ‖y‖ ≤ R,

SA(y)S−1 = A(y) +B(y) (2.4)

(with equality of domains), where B(y) is Y -locally uniformly bounded on X:

|B(y)v| ≤MB
R |v| for all v ∈ X. (2.5)

(K3) (Y -local Lipschitz conditions) For all y, ỹ ∈ Y with ‖y‖ ≤ R, ‖ỹ‖ ≤ R,∣∣(A(y)−A(ỹ))w
∣∣ ≤ LAR |y − ỹ| ‖w‖ for all w ∈ Y, (2.6)∣∣(B(y)−B(ỹ))v
∣∣ ≤ LBR ‖y − ỹ‖ |v| for all v ∈ X. (2.7)

(K4) (Semilinear term) The function f : X → X is Y -locally Lipschitz-
continuous in X and Y : For all y, ỹ ∈ Y with ‖y‖ ≤ R, ‖ỹ‖ ≤ R,

|f(y)− f(ỹ)| ≤ `XR |y − ỹ|, (2.8)

‖f(y)− f(ỹ)‖ ≤ `YR ‖y − ỹ‖. (2.9)

In [13], Kato just assumes Banach spaces instead of Hilbert spaces, and
he requires that −A(y) is the generator of a contraction semigroup on X. On
a Hilbert space, this condition is equivalent to (K1) by the Lumer–Phillips
theorem [18, p. 14].

Under these conditions, Kato [13, Theorem 6] proves local existence and
uniqueness of a solution to (2.1) in C([0, t̄];Y ) ∩C1([0, t̄];X) (for some t̄ > 0)
for initial data in Y .
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He then proceeds to show that (K1)–(K4) are indeed satisfied for a wide va-
riety of quasi-linear partial differential equations, as listed in the introduction.
In these applications, he has typically

X = L2(Rd), Y = Hs(Rd), and the isometry S = (I −∆)s/2 (2.10)

for an exponent s > 0 that is sufficiently large so that the sth-order Sobolev
space Hs is a Banach algebra (s > d/2).

Moreover, Kato [13, Theorem 7] also gives a perturbation result. Here we
give another perturbation result together with its simple proof, because its
time-discrete versions will be important later in this paper.

Suppose u(t) ∈ Y solves (2.1) for 0 ≤ t ≤ T and u?(t) ∈ Y solves (2.1) up
to a defect d(t) ∈ Y for 0 ≤ t ≤ T :

u̇? +A(u?)u? = f(u?) + d. (2.11)

Lemma 2.1 In the above situation, suppose that, for 0 ≤ t ≤ T ,

‖u?(t)‖ ≤ R and Su?(t) ∈ Y with ‖Su?(t)‖ ≤ K.

Then, there exists δ > 0, which depends only on K, R and T such that for
perturbations satisfying

‖u(0)− u?(0)‖2 +

∫ T

0

‖d(s)‖2 ds ≤ δ2,

the error u− u? satisfies, for 0 ≤ t ≤ T ,

‖u(t)− u?(t)‖2 ≤ CY
(
‖u(0)− u?(0)‖2 +

∫ t

0

‖d(s)‖2 ds
)
,

|u(t)− u?(t)|2 ≤ CX
(
|u(0)− u?(0)|2 +

∫ t

0

|d(s)|2 ds
)
,

where CY depends only on K, R and T , and CX depends only on R and T .

Remark In the situation (2.10) the condition Su?(t) ∈ Y means u?(t) ∈ H2s.
This higher regularity is again ensured locally in time for initial values in H2s,
using Kato’s theory with 2s in place of s.

Proof The error e = u− u? satisfies the error equation

ė+A(u)e = −
(
A(u)−A(u?)

)
u? +

(
f(u)− f(u?)

)
− d. (2.12)

Using (2.4) as A(y) = S−1A(y)S + S−1B(y)S, this becomes

ė+ S−1A(u)Se+ S−1B(u)Se

= −S−1
(
A(u)−A(u?)

)
Su? − S−1

(
B(u)−B(u?)

)
Su? +

(
f(u)− f(u?)

)
− d.
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On applying the operator S on both sides we thus have

Sė+A(u)Se+B(u)Se

= −
(
A(u)−A(u?)

)
Su? −

(
B(u)−B(u?)

)
Su? +

(
Sf(u)− Sf(u?)

)
− Sd.

Using the accretivity (2.2) and the bounds (2.5)–(2.9) and recalling that S is
an isometry between Y and X, we therefore obtain, as long as ‖u(t)‖ ≤ 2R,

1
2

d
dt‖e‖

2 = 1
2

d
dt |Se|

2 = (Se, Sė)

≤MB
2R‖e‖2 + LA2R‖e‖ |e| ‖Su?‖+ LB2R‖e‖2 |Su?|+ `Y2R‖e‖2 + ‖e‖ ‖d‖

≤ (MB
2R + LA2RK + LB2RR+ `Y2R + 1

2T )‖e‖2 + T
2 ‖d‖

2,

and the error bound in the Y -norm follows with Gronwall’s inequality. Choos-
ing δ so small that CY δ ≤ R, the condition ‖u(t)‖ ≤ 2R then remains satisfied
for 0 ≤ t ≤ T . Taking in (2.12) the inner product with e and using (2.2), (2.6),
(2.8) gives us

1
2

d
dt |e|

2 = (e, ė) ≤ (LA2RR+ `X2R)|e|2 + |e| |d|,

and finally the Gronwall inequality yields the error bound in the X-norm. ut

3 Linearly implicit and fully implicit midpoint rules

For the time discretization of (2.1) we first consider variants of the implicit
midpoint rule. For a positive stepsize τ and integers n = 0, 1, 2, . . . , the solution
u(t) to (2.1) with initial value u0 is approximated at tn = nτ by un, which is
determined by

un+1 − un
τ

+A(ûn+1/2)
un+1 + un

2
= f(ûn+1/2). (3.1)

Here we set either

(FI) ûn+1/2 = un+1+un

2 for the fully implicit midpoint rule, or

(LI) ûn+1/2 = un + 1
2 (un − un−1) for a linearly implicit midpoint rule.

In the latter case, we set û1/2 = u0 in the first step.
For ease of presentation, we just consider constant stepsizes in this paper,

but all our results generalize to variable stepsizes (with a bounded ratio of
subsequent stepsizes) without any additional difficulty.

3.1 Stability of the linearly implicit midpoint rule

We begin with the stability analysis of the linearly implicit method, (3.1) with
(LI) in the setting of Section 2. As is clear from the framework of Section 2, it
is important to control the Y -norm of the numerical solution. This can be done
per se (Lemma 3.1) or in comparison with the exact solution (Lemma 3.2).
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Lemma 3.1 Suppose that for all k ≤ n we have uk ∈ Y with ‖uk‖ ≤ R.
Then there exist τR > 0 and CR, γR ≥ 0, which depend only on R through
the constants in conditions (K1)–(K4), such that for stepsizes τ ≤ τR the
linearly implicit midpoint rule (3.1) with (LI) has a unique solution un+1 ∈ Y .
Moreover, this is bounded by

‖un+1‖ ≤ (1 + CRτ)‖un‖+ τγR.

Proof Let us introduce the abbreviations

un+1/2 =
un+1 + un

2
, u̇n+1/2 =

un+1 − un
τ

, (3.2)

so that the numerical method (3.1) reads more concisely

u̇n+1/2 +A(ûn+1/2)un+1/2 = f(ûn+1/2).

With (2.4), this is written equivalently as

u̇n+1/2 + S−1A(ûn+1/2)Sun+1/2 + S−1B(ûn+1/2)Sun+1/2 = f(ûn+1/2),

where we note that ‖ûn+1/2‖ = ‖ 32un −
1
2un−1‖ ≤ 2R. We apply S to both

sides of the equation and obtain a linear equation in X for Sun+1 with the
operator τ−1I +A(ûn+1/2) +B(ûn+1/2), which by (K1) is invertible if 1/τ >
‖B(ûn+1/2)‖. In view of (2.5) this is satisfied if τMB

2R < 1. Hence, under this
stepsize restriction we have a unique solution un+1 ∈ Y .

To derive the bound for ‖un+1‖, we take the inner product with Sun+1/2

in the equation. With the accretivity (2.2) and the bound (2.5) we obtain

(Sun+1/2, Su̇n+1/2) ≤MB
2R|Sun+1/2|2 + |Sun+1/2| |Sf(ûn+1/2)|.

The term on the left-hand side is

(Sun+1/2, Su̇n+1/2) =
1

2τ

(
|Sun+1|2 − |Sun|2

)
=

1

2τ

(
‖un+1‖2 − ‖un‖2

)
.

On the right-hand side we note

|Sf(ûn+1/2)| = ‖f(ûn+1/2)‖ ≤ ‖f(ûn+1/2)− f(0)‖+ ‖f(0)‖
≤ `Y2R 2R+ ‖f(0)‖ =: c2R.

Hence we obtain

‖un+1‖2 ≤ ‖un‖2 + τMB
2R‖un+1/2‖2 + τc2R‖un+1/2‖.

Using that ‖un+1/2‖2 ≤ 1
2 (‖un+1‖2 + ‖un‖2), the result follows. ut

Suppose that un ∈ Y solves (3.1) with (LI) for 0 ≤ nτ ≤ T , and u?n ∈ Y
(which will later be taken as the exact solution value u(tn)) solves (3.1) with
(LI) up to a defect dn+1/2 ∈ Y for 0 ≤ nτ ≤ T :

u?n+1 − u?n
τ

+A(û?n+1/2)
u?n+1 + u?n

2
= f(û?n+1/2) + dn+1/2, (3.3)

with û?n+1/2 = u?n + 1
2 (u?n − u?n−1).

We then have the following time-discrete version of Lemma 2.1.
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Lemma 3.2 In the above situation, suppose that, for 0 ≤ nτ ≤ T ,

‖u?n‖ ≤ R and Su?n ∈ Y with ‖Su?n‖ ≤ K.

Then, there exist τ > 0 and δ > 0, which depend only on K, R and T , such
that for stepsizes τ ≤ τ and perturbations satisfying

‖u0 − u?0‖2 + τ
∑

0≤nτ≤T

‖dn+1/2‖2 ≤ δ2,

the error satisfies, for 0 ≤ nτ ≤ T ,

‖un − u?n‖2 ≤ CY
(
‖u0 − u?0‖2 + τ

n−1∑
k=0

‖dk+1/2‖2
)
,

|un − u?n|2 ≤ CX
(
|u0 − u?0|2 + τ

n−1∑
k=0

|dk+1/2|2
)
,

where CY depends only on K, R and T , and CX depends only on R and T .

Proof The proof transfers the arguments of the proof of Lemma 2.1 to the
discrete case. With the error en = un − u?n we associate the abbreviations
(cf. (3.2))

en+1/2 =
en+1 + en

2
, ėn+1/2 =

en+1 − en
τ

, ên+1/2 = en + 1
2 (en − en−1).

We have the error equation

ėn+1/2 +A(ûn+1/2)en+1/2 =−
(
A(ûn+1/2)−A(û?n+1/2)

)
u?n+1/2

+
(
f(ûn+1/2)− f(û?n+1/2)

)
− dn+1/2. (3.4)

Using (2.4) as A(y) = S−1A(y)S+S−1B(y)S and applying the operator S on
both sides we thus have

Sėn+1/2 +A(ûn+1/2)Sen+1/2 +B(ûn+1/2)Sen+1/2

=
(
A(ûn+1/2)−A(û?n+1/2)

)
Su?n+1/2 +

(
B(ûn+1/2)−B(û?n+1/2)

)
Su?n+1/2

+
(
Sf(ûn+1/2)− Sf(û?n+1/2)

)
− Sdn+1/2.

Using the accretivity (2.2) and the bounds (2.5)–(2.9) and recalling that S is
an isometry between Y and X, we therefore obtain, as long as ‖un‖ ≤ 2R,

1
2τ

(
‖en+1‖2 − ‖en‖2

)
= 1

2τ

(
|Sen+1|2 − |Sen|2

)
= (Sen+1/2, Sėn−1/2)

≤MB
2R‖en+1/2‖2

+ LA2R‖en+1/2‖ |ên+1/2| ‖Su?n+1/2‖+ LB2R‖en+1/2‖ ‖ên+1/2‖ |Su?n+1/2|

+ `Y2R‖en+1/2‖ ‖ên+1/2‖+ ‖en+1/2‖ ‖dn+1/2‖.

The right-hand side is bounded by CK,R(‖en+1‖2+‖en‖2+‖en−1‖2)+‖dn+1/2‖2
and the stated error bound in the Y -norm then follows on summing up and
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using a discrete Gronwall inequality. Choosing δ such that CY δ ≤ R, the con-
dition ‖un‖ ≤ 2R then remains satisfied for 0 ≤ nτ ≤ T . Taking in (3.4) the
inner product with en+1/2 and using (2.2), (2.6), (2.8) gives us

1
2τ

(
|en+1|2−|en|2

)
= (en+1/2, ėn+1/2) ≤ CR(|en+1|2+|en|2+|en−1|2)+|dn+1/2|2,

and finally a discrete Gronwall inequality yields the stated error bound in the
X-norm. ut

3.2 Existence and stability for the fully implicit midpoint rule

Lemma 3.3 The statement of Lemma 3.1 is also valid for the fully implicit
midpoint rule, (3.1) with (FI).

Proof The proof transfers the existence proof for (2.1) in [13] to the time dis-

cretization. We consider the fixed-point iteration, with starting iterate u
(0)
n+1/2 =

un,

u
(k+1)
n+1/2 − un
τ/2

+A(u
(k)
n+1/2)u

(k+1)
n+1/2 = f(u

(k)
n+1/2).

If this iteration converges to a limit un+1/2, then un+1 = 2un+1/2 − un solves
(3.1) with (FI). We write the above iteration briefly as

u
(k+1)
n+1/2 = Φ(u

(k)
n+1/2).

Let B2R := {y ∈ Y : ‖y‖ ≤ 2R}, which is a closed set in X, as is stated
(without proof) in [13, Lemma 7.3]. [This follows from a duality and density
argument: for y ∈ Y , ‖y‖ = sup0 6=v∈X(y, v)/‖v‖∗, where ‖ · ‖∗ is the norm
on the dual Y ′ and we use the Gelfand triple Y ⊂ X ⊂ Y ′ with dense and
continuous embeddings. With this formula for ‖y‖ it follows that for every
sequence (yn) in B2R that converges to x ∈ X in the X-norm, also x ∈ B2R.]
Therefore, B2R is a complete metric space with the metric d(v, w) = |v − w|.

By the argument of the proof of Lemma 3.1 we find that for all v ∈ B2R,

‖Φ(v)‖ ≤ (1 + CRτ)‖un‖+ τγR ≤ 2R

for sufficiently small stepsize τ ≤ τR. Hence, Φ maps B2R into itself.
We now show that Φ is a contraction on B2R for sufficiently small τ . For

v, ṽ ∈ B2R, let w = Φ(v) and w̃ = Φ(ṽ). Then,

w̃ − w
τ/2

+A(ṽ)(w̃ − w) = −
(
A(ṽ)−A(v)

)
w + f(ṽ)− f(v).

Taking the inner product with w̃ − w and using conditions (K1)–(K4), we
obtain

2

τ
|w̃ − w|2 ≤ |w̃ − w| (LA2R · 2R+ `X2R)|ṽ − v|
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and hence
|Φ(ṽ)− Φ(v)| = |w̃ − w| ≤ cRτ |ṽ − v|.

Therefore, if cRτ < 1, then Φ is a contraction on B2R, and the result follows
with the Banach fixed-point theorem. ut

Lemma 3.4 The statement of Lemma 3.2 is also valid for the fully implicit
midpoint rule, (3.1) with (FI).

Proof With Lemma 3.3 at hand, the result follows with the proof of Lemma 3.2.
ut

3.3 Consistency error

We now choose the exact solution values u?n = u(tn) in (3.3), with û?n+1/2 =

u?n+ 1
2 (u?n−u?n−1) in the case of the linearly implicit midpoint rule (except for

n = 0, where û?1/2 = u(0)), and with û?n+1/2 = u?n+1/2 = 1
2 (u?n+1 + u?n) in the

case of the fully implicit midpoint rule. The defects dn+1/2 in (3.3) are then
the consistency errors and are bounded as follows.

Lemma 3.5 Suppose that the exact solution u of (2.1) has the regularity u ∈
C3([0, T ], Y ) with Su ∈ C2([0, T ], Y ). Then, the consistency errors (3.3) of
the linearly and fully implicit midpoint rule are bounded by

‖dn+1/2‖ ≤ Cτ2,

where C is independent of n and τ with 0 ≤ nτ ≤ T − τ (except for n = 0 for
the linearly implicit method, where ‖d1/2‖ ≤ Cτ).

Proof First we note that Taylor expansion of u at tn+1/2 = (n+ 1/2)τ yields

‖û?n+1/2 − u(tn+1/2)‖ ≤ c max
tn≤t≤tn+1

‖ü(t)‖ · τ2,

‖Su?n+1/2 − Su(tn+1/2)‖ ≤ c max
tn−1≤t≤tn+1

‖Sü(t)‖ · τ2,∥∥∥u(tn+1)− u(tn)

τ
− u̇(tn+1/2)

∥∥∥ ≤ c max
tn≤t≤tn+1

‖...u (t)‖ · τ2.

We denote

rn+1/2 := A(û?n+1/2)u?n+1/2 −A(u(tn+1/2))u(tn+1/2)

= A(û?n+1/2)
(
u?n+1/2 − u(tn+1/2)

)
+
(
A(û?n+1/2)−A(u(tn+1/2))

)
u(tn+1/2).

Using (2.4), this becomes

rn+1/2 = S−1A(û?n+1/2)S
(
u?n+1/2 − u(tn+1/2)

)
+ S−1B(û?n+1/2)S

(
u?n+1/2 − u(tn+1/2)

)
+ S−1

(
A(û?n+1/2)−A(u(tn+1/2))

)
Su(tn+1/2)

+ S−1
(
B(û?n+1/2)−B(u(tn+1/2))

)
Su(tn+1/2).
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By conditions (K1)–(K3) with R = max0≤t≤T ‖u(t)‖, this is bounded by

‖rn+1/2‖ ≤MA
R ‖Su?n+1/2 − Su(tn+1/2)‖+MB

R |Su?n+1/2 − Su(tn+1/2)|

+ LAR|û?n+1/2 − u(tn+1/2)| ‖Su(tn+1/2)‖

+ LBR‖û?n+1/2 − u(tn+1/2)‖ |Su(tn+1/2)|.

Moreover, ‖f(û?n+1/2)− f(u(tn+1/2))‖ ≤ `YR‖û?n+1/2 − u(tn+1/2)‖. Since

dn+1/2 =
(u(tn+1)− u(tn)

τ
− u̇(tn+1/2)

)
− rn+1/2

−
(
f(û?n+1/2)− f(u(tn+1/2))

)
,

the result follows with the above estimates. ut

3.4 Error bounds

Combining the lemmas of this section, we obtain the following error bound.

Theorem 3.1 Let the conditions (K1)–(K4) be satisfied, and suppose that the
solution u of (2.1) has the regularity u ∈ C3([0, T ], Y ) with Su ∈ C2([0, T ], Y ).
Then, there exists τ̄ > 0 such that for stepsizes 0 < τ ≤ τ̄ , the errors of the
fully and linearly implicit midpoint rules (3.1) with (FI) and (LI), respectively,
are bounded by

‖un − u(tn)‖ ≤ Cτ2,

where C is independent of n and τ with 0 ≤ nτ ≤ T .

4 Implicit Runge–Kutta methods

4.1 Method formulation and properties

For a given stepsize τ > 0, anm-stage implicit Runge–Kutta method applied to
the quasi-linear equation (2.1) determines solution approximations un ≈ u(tn)
and internal stages Uni by the equations1

Uni = un + τ

m∑
j=1

aijU̇nj , i = 1, . . . ,m, (4.1)

un+1 = un + τ

m∑
i=1

biU̇ni, (4.2)

where

U̇ni +A(Uni)Uni = f(Uni), i = 1, . . . ,m. (4.3)

1 Here the dot is just a suggestive notation, not a time derivative.
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In the following we consider the equation without a semilinear term (f = 0) for
ease of presentation, since the semilinear term causes no substantial problems
in the analysis but just leads to longer formulas. As in the previous section, all
results are however readily generalized to a semilinear term satisfying (K4).

The method is determined by its coefficient matrix Oι = (aij) and its
vector of weights b = (bi). The method has stage order q if, with the nodes
ci =

∑m
j=1 aij ,

m∑
j=1

aijc
k−1
j =

cki
k

(i = 1, . . . ,m) for k = 1, . . . , q.

We always assume that the quadrature formula with weights bi and nodes ci
has at least the quadrature order q + 1:

m∑
j=1

bjc
k−1
j =

1

k
for k = 1, . . . , q + 1.

In the following we consider Runge–Kutta methods that have the following
important properties:

Algebraic stability. [1,4] The weights bi are positive, and the matrix with
entries biaij + bjaji − bibj is positive semidefinite.

Coercivity. [5] The Runge–Kutta coefficient matrix Oι = (aij) is invertible,
and there exist a positive diagonal matrix D = diag(di) and α > 0 such that

vTDOι−1v ≥ α vTDv for all v ∈ Rm. (4.4)

Important families of methods satisfying these properties are the Gauss and
Radau IIA methods with an arbitrary number of stages m ≥ 1; see, e.g., [6]
and [9, Chapter IV]. The m-stage Gauss and Radau IIA methods have stage
order m, and have quadrature order 2m and 2m− 1, respectively.

4.2 Existence and uniqueness of the numerical solution

Lemma 4.1 Let conditions (K1)–(K3) hold and let the Runge–Kutta method
satisfy the coercivity condition (4.4). For every R > 0, there exists τR > 0
such that the following holds: If un ∈ Y with ‖un‖ ≤ R, then for stepsizes
τ ≤ τR the Runge–Kutta equations (4.1) and (4.3) have a unique solution in
Y m with

|Uni| ≤ C|un|,
‖Uni‖ ≤ C‖un‖,

where C depends only on the Runge–Kutta coefficients.
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Proof We may assume n = 0 and write Ui, U̇i instead of Uni, U̇ni for brevity.
Similar to the proof of Lemma 3.3 the proof is based on constructing a con-
tractive fixed-point iteration. Here we consider the map Φ : (Vi)

m
i=1 7→ (Wi)

m
i=1

defined by the linear Runge–Kutta equations

Wi = u0 + τ

m∑
j=1

aijẆj (i = 1, . . . ,m), (4.5)

Ẇi +A(Vi)Wi = 0. (4.6)

We will show that, for sufficiently small stepsizes τ , the map Φ is well-defined
and a contraction in the Xm-norm on

BcR =
{

(Vi)
m
i=1 ∈ Y m :

m∑
i=1

di‖Vi‖2 ≤ (cR)2
}
,

where c is a constant depending only on the Runge–Kutta coefficients, which
will be specified below. Again by [13, Lemma 7.3], BcR is a closed set in Xm.

(i) We first prove that Φ is a well-defined map from BcR to itself for suffi-
ciently small stepsizes τ . For V = (Vi)

m
i=1, we write A(V ) = diag(A(Vi)). The

equations (4.5)–(4.6) for W = (Wi)
m
i=1 are then written compactly as(

Im ⊗ I + τ(Oι⊗ I)A(V )
)
W = 1l⊗ u0

with 1l = (1, . . . , 1)T ∈ Rm, or equivalently,(
Oι−1 ⊗ I + τA(V )

)
W = (Oι−11l)⊗ u0. (4.7)

By conditions (K1) and (4.4), the linear operator

Oι−1 ⊗ I − αIm ⊗ I + τA(V )

is m-accretive with respect to the inner product on Xm given by (W, W̃ )D =∑m
i=1 di(Wi, W̃i) with the corresponding norm |W |D = (W,W )

1/2
D . Hence,

equation (4.7) has a unique solution W ∈ D(A(V )), and

|W |D ≤ α−1 |(Oι−11l)⊗ u0|D ≤ c0|u0|,

where c0 depends only on the Runge–Kutta coefficients. We now recall condi-
tion (K2), which yields, with B(V ) = diag(B(Vi)) and S = Im ⊗ S,

A(V ) = S−1A(V )S + S−1B(V )S.

Therefore, Z ∈ Xm is a solution of(
(Oι−1 ⊗ I) + τA(V ) + τB(V )

)
Z = (Oι−11l)⊗ (Su0), (4.8)

if and only if W = S−1Z ∈ Y m solves (4.7). In view of (2.5), the Xm operator
norm of τB(V ) is bounded by

|τB(V )| ≤ τMB
CR,
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where C = c/mini
√
di. For sufficiently small τ , the operator norm of τB(V )

is therefore bounded by α/2, and then equation (4.8) has a unique solution
Z ∈ D(A(V )) and

‖W‖D = |Z|D ≤
1

α− τC1MB
CR

|(Oι−11l)⊗ Su0|D ≤
1

α− τMB
CR

c0‖u0‖ ≤ cR,

where ‖W‖2D =
∑m
i=1 di‖Wi‖2 and c = 2c0/α.

(ii) Finally we show that Φ : BcR → BcR is a contraction with respect
to the Xm-norm | · |D for sufficiently small stepsizes τ . Let Wi be defined by

(4.5)–(4.6) and similarly W̃i by the same equations with Vi replaced by Ṽi. We

denote Ei = Wi − W̃i and Ėi = Ẇi −
˙̃
Wi so that

Ei = τ

m∑
j=1

aijĖj

Ėi +A(Vi)Ei = −
(
A(Vi)−A(Ṽi)

)
W̃i.

This is rewritten as

((Oι−1 ⊗ I) + τA(V ))E = G := −τ
((
A(Vi)−A(Ṽi)

)
W̃i

)m
i=1

.

We thus have, in view of the m-accretivity of A(V ), of the Lipschitz bound

(2.6) and the bound ‖W̃‖D ≤ cR,

|E|D ≤ α−1|G|D ≤ α−1τLACR |V − Ṽ |D cR.

This shows that Φ is a contraction for sufficiently small τ . The stated result
then follows from the Banach fixed-point theorem. ut

4.3 Stability

Lemma 4.2 In addition to the conditions of Lemma 4.1, let the Runge–Kutta
method be algebraically stable. For every R > 0, there exist τR > 0 and CR > 0
such that the following holds: If un ∈ Y with ‖un‖ ≤ R, then for stepsizes τ ≤
τR the Runge–Kutta equations (4.1)–(4.3) have a unique numerical solution
un+1 ∈ Y with

|un+1| ≤ |un|,
‖un+1‖ ≤ (1 + CRτ)‖un‖.

Proof The proof follows closely the standard use of algebraic stability for con-
tractive differential equations; see [1,4] and, e.g., [9, Section IV.12]. We take
again n = 0 and write Ui for Uni. By (4.2) we have

|u1|2 = |u0|2 + 2τ

m∑
i=1

bi(u0, U̇i) + τ2
m∑

i,j=1

bibj(U̇i, U̇j).
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Expressing u0 in the second term on the right-hand side by (4.1), we obtain

|u1|2 = |u0|2 + 2τ

m∑
i=1

bi(Ui, U̇i)− τ2
m∑

i,j=1

(biaij + bjaji − bibj)(U̇i, U̇j).

By algebraic stability, we thus have

|u1|2 ≤ |u0|2 + 2τ

m∑
i=1

bi(Ui, U̇i).

Since bi > 0 and (Ui, U̇i) = −(Ui, A(Ui)Ui) ≤ 0 by (K1), we obtain the bound
|u1|2 ≤ |u0|2.

For the bound in the Y -norm we obtain in the same way

|Su1|2 ≤ |Su0|2 + 2τ

m∑
i=1

bi(SUi, SU̇i).

Here we note, using subsequently (4.3), (K2), (K1) and Lemma 4.1,

(SUi, SU̇i) = −(SUi, SA(Ui)S
−1SUi) = −(SUi, A(Ui)SUi)− (SUi, B(Ui)SUi)

≤MB
CR|SUi|2 = MB

CR‖Ui‖2 ≤MB
CR (CR)2‖u0‖2,

and the result follows. ut

Suppose that u?n ∈ Y and U?ni ∈ Y (which will later be taken as the
exact solution values u(tn) and u(tn + ciτ)) solve (4.1)–(4.2) up to the defects
dn+1 ∈ Y and Dni ∈ Y , for 0 ≤ nτ ≤ T :

U?ni = u?n + τ

m∑
j=1

aijU̇
?
nj +Dni, i = 1, . . . ,m, (4.9)

u?n+1 = u?n + τ

m∑
i=1

biU̇
?
ni + dn+1, (4.10)

where
U̇?ni +A(U?ni)U

?
ni = 0, i = 1, . . . ,m.

Lemma 4.3 In the above situation, suppose that for 0 ≤ nτ ≤ T and for
i = 1, . . . ,m,

‖u?n‖ ≤ R, ‖U?ni‖ ≤ R and SU?ni ∈ Y with ‖SU?ni‖ ≤ K.

Then, there exist τ > 0 and δ > 0, which depend only on K, R, T and the
coefficients of the Runge–Kutta method, such that for stepsizes τ ≤ τ and
perturbations satisfying

‖u0 − u?0‖2 + τ
∑

0≤nτ≤T

( m∑
i=1

‖SDni‖2 +
∥∥∥dn+1

τ

∥∥∥2 + ‖Sdn+1‖2
)
≤ δ2,
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the error satisfies, for 0 ≤ nτ ≤ T ,

‖un − u?n‖2 ≤ CY
(
‖u0 − u?0‖2 + τ

n−1∑
k=0

( m∑
i=1

‖SDki‖2 +
∥∥∥dk+1

τ

∥∥∥2 + ‖Sdk+1‖2
))
,

|un − u?n|2 ≤ CX
(
|u0 − u?0|2 + τ

n−1∑
k=0

( m∑
i=1

‖Dki‖2 +
∣∣∣dk+1

τ

∣∣∣2 + ‖dk+1‖2
))
,

where CY depends only on K, R and T , and CX depends only on R and T .

Proof The proof is similar to those of Lemmas 2.1 and 3.2. We denote the
errors by

en = un − u?n, Eni = Uni − U?ni, Ėni = U̇ni − U̇?ni.

We begin with n = 0, and we write Ei, Ui, U
?
i instead of E0i, U0i, U

?
0i and

analogously for the corresponding quantities carrying a dot. By subtracting
the original and perturbed Runge–Kutta equations we obtain

Ei = e0 + τ

m∑
j=1

aijĖj −Di, i = 1, . . . ,m, (4.11)

e1 = e0 + τ

m∑
i=1

biĖi − d1, (4.12)

where

Ėi +A(Ui)Ei = −
(
A(Ui)−A(U?i )

)
U?i , i = 1, . . . ,m. (4.13)

By condition (K2), the latter equation is equivalent to

SĖi +A(Ui)SEi +B(Ui)SEi = −
(
A(Ui)−A(U?i )

)
SU?i

−
(
B(Ui)−B(U?i )

)
SU?i .

(4.14)

As in the proof of Lemma 4.2, using (4.11)–(4.12) and algebraic stability we
obtain

‖e1‖2 − ‖e0‖2 ≤ 2τ

m∑
i=1

(SEi + SDi, SĖi)− 2(Se0 + τ

m∑
i=1

biSĖi, Sd1) + ‖d1‖2.

We estimate the first two terms on the right-hand side separately. We write

(SEi + SDi, SĖi)

= −(SEi, A(Ui)SEi)− (A(Ui)
∗SDi, SEi)− (SEi + SDi, B(Ui)SEi)

− (SEi + SDi, (A(Ui)−A(U?i ))SU?i )− (SEi + SDi, (B(Ui)−B(U?i ))SU?i ),
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and note that the adjoint operator A(y)∗ is bounded like A(y) for ‖y‖ ≤ CR:
using that Y is dense in X, and condition (K2) and recalling that S is an
isometry between Y and X,

|A(y)∗w| = sup
06=v∈Y

(A(y)∗w, v)

|v|
= sup

06=v∈Y

(w,A(y)v)

|v|

= sup
06=v∈Y

(Sw, S−1A(y)SS−1v)

|v|
= sup

0 6=v∈Y

(Sw,A(y)S−1v +B(y)S−1v)

|v|

≤ sup
06=v∈Y

|Sw| · (MA
CR +MB

CR)‖S−1v‖
|v|

= ‖w‖ · (MA
CR +MB

CR).

Using the relation (4.14) and the accretivity (2.2), the bounds (2.5)–(2.9), we
therefore obtain, as long as ‖Ui‖ ≤ CR (i = 1, . . . ,m),

(SEi + SDi, SĖi) ≤ (MA
CR +MB

CR)‖SDi‖‖Ei‖
+
(
MB
CR + LACRK + LBCRR

)
‖Ei +Di‖‖Ei‖

≤ CK,R‖Ei‖2 + CK,R‖SDi‖2,

where we also used the norm relation ‖Di‖ = |SDi| ≤ ‖SDi‖.
The other term is estimated similarly:

(Se0 + τ

m∑
i=1

biSĖi, Sd1) ≤ ‖e0‖‖d1‖+ τ

m∑
i=1

bi(SĖi, Sd1),

where the terms in the sum are bounded by

(SĖi, Sd1) ≤ (MA
CR +MB

CR)‖Ei‖‖Sd1‖+
(
LACRK + LBCRR

)
‖Ei‖‖d1‖

≤ ‖Ei‖2 + CK,R‖Sd1‖2.

By combining these estimates we obtain

(Se0 + τ

m∑
i=1

biSĖi, Sd1) ≤ τ‖e0‖2 + τc0

m∑
i=1

‖Ei‖2

+ τCK,R‖Sd1‖2 + τCK,R

∥∥∥d1
τ

∥∥∥2.
Altogether, we have

‖e1‖2 − ‖e0‖2 ≤ τ‖e0‖2 + τCK,R

m∑
i=1

‖Ei‖2

+ τCK,R

m∑
i=1

‖SDi‖2 + τCK,R

∥∥∥d1
τ

∥∥∥2 + τCK,R‖Sd1‖2.

To estimate the terms ‖Ei‖2, we use the coercivity property (4.4) of the Runge–
Kutta method. We use the notations of the proof of Lemma 4.1 and E =
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(E1, . . . , Em)T , Ė = (Ė1, . . . , Ėm)T and D = (D1, . . . , Dm)T . We thus rewrite
(4.1) as

E = 1l⊗ e0 + τ(Oι⊗ I)Ė −D.
We multiply both sides by DOι−1⊗S, use (4.14) and (K2), and then take the
inner product with SE, where again S = Im ⊗ S. Using similar estimates as
above we obtain

(SE, (DOι−1 ⊗ I)SE) = τ(SE,SĖ)D + (SE, (DOι−1 ⊗ I)(1l⊗ Se0 − SD))

≤ τ
(
MB
CR + LACRmK + LBCRmR

)
‖E‖2D

+ c0‖E‖D(‖e0‖+ ‖D‖)
≤ τCK,R‖E‖2D + c0‖E‖D(‖e0‖+ ‖D‖),

where the constant c0 only depends on the method. Using the coercivity of the
Runge–Kutta method on the left-hand side, an absorption (by choosing the
stepsize to satisfy τCK,R ≤ α/2) and Young’s inequality for the right-hand
side yields the bound

m∑
i=1

‖Ei‖2 ≤ c
(
‖e0‖2 +

m∑
i=1

‖Di‖2
)
.

Finally, combining all estimates we obtain

‖e1‖2 − ‖e0‖2 ≤ τ(1 + CK,Rc)‖e0‖2

+ τCK,R

m∑
i=1

‖SDi‖2 + τCK,R

∥∥∥d1
τ

∥∥∥2 + τCR‖Sd1‖2.

The analogous estimate for ‖en+1‖2−‖en‖2 holds for all n as long as ‖Uni‖ ≤
CR. Summing over n and applying the discrete Gronwall inequality, we obtain
the stated error bound in the Y -norm. Choosing δ so small that CY δ ≤ R, the
condition ‖Uni‖ ≤ CR then remains satisfied for 0 ≤ nτ ≤ T . The X-norm
error bound is obtained analogously, using (2.2) and (2.6). ut

4.4 Convergence with the stage order plus 1

Using u?n = u(tn) and U?ni = u(tn+ciτ) in Lemma 4.3, we obtain the following
error bound.

Theorem 4.1 Let the conditions (K1)–(K4) be satisfied, and suppose that
the solution u of (2.1) has the regularity u ∈ Cq+2([0, T ], Y ) with Su ∈
Cq+1([0, T ], Y ). Then, there exists τ̄ > 0 such that for stepsizes 0 < τ ≤ τ̄ , the
errors of an algebraically stable and coercive Runge–Kutta method with stage
order q and quadrature order at least q + 1 are bounded by

‖un − u(tn)‖ ≤ Cτ q+1,

where C is independent of n and τ with 0 ≤ nτ ≤ T .
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Proof With the choice u?n = u(tn) and U?ni = u(tn + ciτ) in Lemma 4.3, the
defects Dni and dn+1 in (4.9) and (4.10) are just quadrature errors:

Dni = τ q
∫ tn+1

tn

κi

( t− tn
τ

)
u(q+1)(t) dt,

dn+1 = τ q+1

∫ tn+1

tn

κ
( t− tn

τ

)
u(q+2)(t) dt = −τ q

∫ tn+1

tn

κ′
( t− tn

τ

)
u(q+1)(t) dt

with real-valued, bounded Peano kernels κi and κ. The result then follows
from Lemma 4.3. ut

4.5 Convergence with the classical order

A Runge–Kutta method has classical order p if the local error (i.e., the error
after one step starting from the exact solution) is of size O(τp+1) whenever
the method is applied to an ordinary differential equation ẏ = f(y) in Rn with
an arbitrarily differentiable function f . We recall that the classical order of
the m-stage Gauss and Radau IIA methods is 2m and 2m − 1, respectively,
whereas the stage order of these methods is m; see [9, Chapter IV].

We now show that for the quasi-linear problem (2.1) we can retain the
classical order under additional regularity conditions. The first such condition
is a generalization of condition (K2):

For k = 1, . . . , p− q and for every y ∈ Y with ‖y‖ ≤ R,

SkA(y)S−k = A(y) +Bk(y), (4.15)

where Bk(y) is Y -locally uniformly bounded on X:

|Bk(y)v| ≤Mk,R |v| for all v ∈ X. (4.16)

With L(Y,X) denoting the Banach space of bounded linear operators from
Y to X (and analogously L(X,X)), we further suppose that the operators A
and B of (2.4) satisfy the following:

A(·) : y ∈ Y 7→ A(y) ∈ L(Y,X) and Bk(·) : y ∈ Y 7→ B(y) ∈ L(X,X) are
arbitrarily differentiable, and for any R > 0, their derivatives up to any fixed
order are uniformly bounded for ‖y‖ ≤ R.

In the presence of a semilinear term f(y) in (2.1) (which we have dis-
carded in this section), a similar Y -locally uniform differentiability condition
is required for f . We note that the above conditions are satisfied in all the
examples of [13].

The following theorem can be viewed as an extension of the full-order
error bounds for linear evolution equations in [3,15,16] to the quasi-linear
case studied here.
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Theorem 4.2 Let (K1)–(K4) and the above conditions be satisfied, and sup-
pose that the solution u of (2.1) has the regularity u ∈ Cp+1([0, T ], Y ) with
Sku ∈ Cp+1−k([0, T ], Y ) for k = 1, . . . , p − q. Then, there exists τ̄ > 0 such
that for stepsizes 0 < τ ≤ τ̄ , the errors of an algebraically stable and coercive
Runge–Kutta method with stage order q and classical order p (with 2q ≥ p)
are bounded by

‖un − u(tn)‖ ≤ Cτp,
where C is independent of n and τ with 0 ≤ nτ ≤ T .

Remark The condition 2q ≥ p simplifies the proof and is satisfied for the Gauss
and Radau IIA methods, which are arguably the most interesting classes of
implicit Runge–Kutta methods. We expect, however, that this condition can
be dropped.

Proof (a) Let us first show how we get from order of convergence q+1 to order
q + 2. We start by taking as U?ni in (4.9) the exact solution value at tn + ciτ .
In the following we can again take n = 0 and drop the dependence on n in the
notation. We then modify the reference internal stages by setting

U
[q+2]
i = U?i −Di

and U̇
[q+2]
i = −A(U

[q+2]
i )U

[q+2]
i . The modified defect D

[q+2]
i in the Runge–

Kutta equations,

U
[q+2]
i = u(t0) + τ

m∑
j=1

aijU̇
[q+2]
j +D

[q+2]
i ,

is then

D
[q+2]
i = τ

m∑
j=1

aij
(
A(U?j )U?j −A(U?j −Dj)(U

?
j −Dj)

)
,

which by (K1)–(K3), by the Peano kernel formula for Di in the proof of The-
orem 4.1 and the regularity assumption for the exact solution is bounded by

‖D[q+2]
i ‖ = |SD[q+2]

i |

≤ τ
m∑
j=1

|aij |
∣∣S(A(U?j )Dj + (A(U?j )−A(U?j −Dj))(U

?
j −Dj)

)∣∣
≤ τ

m∑
j=1

|aij |
∣∣A(U?j )SDj +B(U?j )SDj + (A(U?j )−A(U?j −Dj))(SU

?
j − SDj)

+ (B(U?j )−B(U?j −Dj))(SU
?
j − SDj)

∣∣
≤ c τ max

1≤j≤m
‖SDj‖ ≤ Cτ q+2.

The defect in

u(t1) = u(t0) + τ

m∑
i=1

biU̇
[q+2]
i + d

[q+2]
1
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is then

d
[q+2]
1 = d1 + τ

m∑
i=1

bi
(
A(U?i )U?i −A(U?i −Di)(U

?
i −Di)

)
,

where we know already that

‖d1‖ ≤ Cτp+1 ≤ Cτ q+3

in the case of interest where p ≥ q + 2. The more challenging term is

τ

m∑
i=1

bi

(
A(U?i )U?i −A(U?i −Di)(U

?
i −Di)

)
= τ

m∑
i=1

bi

(
A(U?i )Di −

∫ 1

0

A′(U?i − θDi)[Di](U
?
i −Di) dθ

)
.

This differs by O(τ q+3) in the Y -norm from

τ

m∑
i=1

bi
(
A(u(t0))Di −A′(u(t0))[Di]u(t0)

)
= 0,

because we have the quadrature error

Di = τ q+1
(∑
i=1

aijc
q
j −

cq+1
i

q + 1

)
u(q+1)(t0) +O(τ q+2),

and the order conditions for the pth-order Runge–Kutta method (see [2,8])
yield

m∑
i=1

bi

( m∑
i=1

aijc
q
j −

cq+1
i

q + 1

)
= 0.

Hence,

‖d[q+2]
1 ‖ ≤ Cτ q+3.

Lemma 4.3 used with U
[q+2]
i in the role of U?i then yields the result for p = q+2.

(b) The above procedure for modifying the reference internal stages can be
repeated. In the next step we set

U
[q+3]
i = U

[q+2]
i −D[q+2]

i

and so on we iterate up to U
[p]
i . Under the given regularity conditions we then

obtain defects

U
[p]
i = u(t0) + τ

m∑
j=1

aijU̇
[p]
j +D

[p]
i

with

‖D[p]
i ‖ ≤ Cτ

p,
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gaining a factor τ at the expense of an application of S to the previous defect

in every iteration. The defect d
[p]
1 in

u(t1) = u(t0) + τ

m∑
i=1

biU̇
[p]
i + d

[p]
1

then becomes a more complicated expression than before, but the key obser-
vation is that it can be Taylor-expanded into terms of the form

τk
m∑

i,j1,...,jr=1

bic
`0
i aij1c

`1
j1
. . . ajr−1jrc

`r
jr

( m∑
j=1

ajrjc
s−1
j −

csjr
s

)
multiplied with an expression depending on the solution u and its derivatives
evaluated at t0. We omit the details. For k ≤ p these terms all vanish by the
order conditions of the Runge–Kutta method [2,8]. In this way we obtain

‖d[p]1 ‖ ≤ Cτp+1 and ‖Sd[p]1 ‖ ≤ Cτp,

and the result then follows again by Lemma 4.3 with U
[p]
i in the role of U?i . ut
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