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Abstract

We study the Cauchy problem for an abstract quasilinear stochastic parabolic evolution equa-
tion on a Banach space driven by a cylindrical Brownian motion. We prove existence and
uniqueness of a local strong solution up to a maximal stopping time, that is characterised by
a blow-up alternative. The key idea is an iterative application of the theory about maximal
L

p- regularity for semilinear stochastic evolution equations by Van Neerven, Veraar and Weis.
We apply our local well-posedness result to a convection-diffusion equation on a bounded do-
main with Dirichlet, Neumann or mixed boudary conditions and to a generalized Navier-Stokes
equation describing non-Newtonian fluids. In the first example, we can even show that the so-
lution exists globally.

Mathematics Subject Classification (2010): 60H15, 60H30, 35K59, 65J08, 58D25, 60H15, 76A05,
35Q35, 35K57

Keywords: quasilinear stochastic equations, stochastic maximal Lp-regularity, stochastic evo-
lution equations in Banach spaces, blow-up alternative, functional calculus, stochastic reaction
diffusion equation, non-Newtonian fluids

1 Introduction

In this article, we develop an abstract framework to deal with quasilinear stochastic evolution
equations driven by a cylindrical Brownian motion, like the convection-diffusion equation

{
du(t) =

[
div(a(u(t))∇u(t))− div(G(u))

]
dt+

∑∞
n=1 Bn(u(t))dβn(t), t ∈ (0, T ]

u(0) = u0,
(1.1)

on a domain D ⊂ Rd with Dirichlet, Neumann or even mixed boundary conditions, a uniformly
positive definite diffusion matrix a and a sequence of independent Brownian motions (βn)n∈N.
(1.1) describes certain phenomena where particles, energy, or other physical quantities are trans-
ferred inside a physical system due to diffusion and convection. Here the stochastic perturbation
represents random external perturbation or a lack of knowledge of certain parameters.

We consider the abstract quasilinear stochastic evolution equations

(QSEE)

{
du(t) =

[
−A(u(t))u(t) + F (u(t))

]
dt+B(u(t))dW (t), t ∈ (0, T ],

u(0) = u0,

on a Banach space E in a setting that covers (1.1) and we aim to establish existence and unique-
ness of local strong solutions of (QSEE) up to a maximal stopping time τ .

∗Institute for Analysis, Karlsruhe Institute of Technology, D-76128 Karlsruhe, Germany (E-mail adress:
luca.hornung@kit.edu)
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In a deterministic setting, these equations have been studied for more than 30 years using strong
linearisation techniques relying on the solvability of non-autonomous equations under certain
Hölder continuity assumptions (see e.g. [42], [59]) or relying on maximal Lp-regularity (see e.g.
[2], [3], [13], [49]). In a stochastic setting, concrete quasilinear equations have been extensively
studied in the literature in case of monotone coefficients (see e.g. [38], [47], [27] and [7] and the
references therein). In the same spirit is [41], where the authors extend the known results to the
case of locally monotone coefficients. Existence and uniqueness of (1.1) on the torus Td with a
globally Lipschitz continuous quasilinearity a was proven in [32] by approximating a and G with
locally monotone coefficients, deriving uniform estimates for the solutions of the approximating
problem and passing to the limit afterwards. However, as far as we know, there are no abstract
results comparable to the state of knowledge in the deterministic case. One reason might be, that
the theory of maximal regularity for the stochastic integral in Banach spaces has not been devel-
oped until 2012. Then, Van Neerven, Veraar and Weis found out (see [57]), that if E = Lq(O, µ)
for some q ≥ 2 (or more general, E is a UMD Banach space of type 2) and the operator B has a
bounded H∞(Σθ)-calculus on a sector Σθ with θ ∈ (0, π/2), one has

∥∥t 7→
∞∑

k=1

∫ t

0

B1/2e−B(t−s)gk(s)dβs

∥∥
Lp(Ω×R≥0;Lq(O))

≤ CMRS‖g‖Lp(Ω×R≥0;Lq(O;l2)).

for p > 2. Together with the well-known deterministic maximal regularity result

∥∥t 7→
∫ t

0

Be−B(t−s)f(s) ds
∥∥
Lp(R≥0;Lq(O))

≤ CMRD‖f‖Lp(R≥0;Lq(O)),

this led to a new theory for semilinear stochastic evolution equations of the form

(SEE)

{
du(t) =

[
−Bu(t) +G(u(t))

]
dt+B(u(t))dW (t), t ∈ (0, T ],

u(0) = u0,

where nonlinearites G : [0, T ]×D(B) → Lq(O) and B : [0, T ]×D(B) → D(B1/2) were allowed,
as long as they were Lipschitz continuous with a small Lipschitz constant (see [56]).

Now, we briefly describe our main assumptions and our strategy. We also work on UMD Banach
spaces E of type 2, e.g. E = Lq(O;µ) for q ≥ 2 and we choose p > 2. We assume, that the domain
of the operators A(z) is constant, i.e. there exists a Banach space E1 such that D(A(z)) = E1 for
every z ∈

(
E,E1

)
1−1/p,p

. and we demand A to be at least locally Lipschitz continuous, i.e. for
every R > 0 there exists L(R) > 0 such that

‖A(z)−A(y)‖B(E1,E) ≤ L(R)‖z − y‖(E,E1)1−1/p,p

for every y, z with ‖y‖(E,E1)1−1/p,p
, ‖z‖(E,E1)1−1/p,p

≤ R. As a first step, we consider

F̃1(u(t)) = θλ
(

sup
s∈[0,t]

‖u(s)− u0‖(E,E1)1−1/p,p
+ ‖u‖Lp(0,t;E1)

)(
A(u(t))u(t)−A(u0)u(t)

)
,

where θλ : R≥0 → [0, 1] is a Lipschitz continuous cut-off function, that equals one on [0, λ] and
vanishes on [2λ,∞). This means, that as long as u(t) is close enough to u0 and ‖u‖Lp(0,t;E1) is
small, we have A(u(t))u(t) = A(u0)u(t) + F̃1(u(t)). We prove that F̃1 has a Lipschitz constant
proportional to λ and thus, choosing λ small enough, satisfies the assumptions needed to solve
(SEE) with B = A(u0) and G(u(t)) = −F̃1(u(t)) + F (u(t)). A solution of (SEE) exists on [0, T ],
but it just solves (QSEE) on the random interval [0, τ1], where τ1 is a stopping time given by

τ1 = inf
{
t ∈ [0, T ] : ‖u(t)− u0‖(E,E1)1−1/p,p

+ ‖u‖Lp(0,t;E1) > λ
}
.

Then, we iterate this procedure with the new initial value u(τ1) and set

F̃2(u(t)) = θλ
(

sup
s∈[τ1,t]

‖u(s)− u(τ1)‖(E,E1)1−1/p,p
+ ‖u‖Lp(τ1,t;E1)

)(
A(u(t))u(t)−A(uτ1)u(t)

)
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for t ∈ [τ1, T ] and get a stopping time τ2 and a solution of (QSEE) on [τ1, τ2]. Inductively, we
construct a sequence of stopping times (τn)n such that u solves (QSEE) on [0, τn] for every n ∈ N.
Finally, we define τ = supn∈N τn and show that the solution of (QSEE) is unique and satisfies

P

{
τ < T, ‖u‖Lp(0,τ ;E1) < ∞, u : [0, τ) → (E,E1)1−1/p,p is uniformly continuous

}
= 0.

This means, that if one wants to prove that a local solution exists in the whole interval [0, T ], it
is sufficient to show uniform continuity with values in (E,E1)1−1/p,p and to control the quantity
‖u‖Lp(0,τ ;E1) pathwise.

All in all, the main advantage of our abstract operator theoretic approach is, that we can cover a
wide range of applications. For example, our assumption on the H∞-calculus is satisfied in many
situations. As a rule of thumb, one might say, that almost all elliptic differential operators of even
order have such a calculus (see e.g. [4], [16], [17], [22], [20], [21], [23], [35], [34], [39] and [43]).

The full power of our setting can be seen in our examples. First, we discuss a quasilinear
elliptic equation on Rd of the form

{
du(t) =

[∑d
i,j=1 aij(·, u(t),∇u(t))∂i∂ju(t) + f(t)

]
dt+B(t, u(t))dW (t),

u(0) = u0.

As far as we know, this equation has not been studied in a stochastic setting, since the usual
monotonicity methods are not available and it is difficult to derive energy estimates.

Next, we give an application to fluid dynamics. The example of a generalized Navier-Stokes
equation for non-Newtonian fluids is inspired by the deterministic work of Bothe and Prüss in
[9]. The stochastic noise perturbation occur in the context of turbulences, for example in the
Kreichnan model.

Last but not least, we discuss the above mentioned convection-diffusion equation (1.1) with
mixed boundary conditions. We prove existence and uniqueness of local weak solutions in the
sense of partial differential equations, i.e. we consider it as an equation in W−1,q(D). In this ap-
plication, we make use of the great progress within the last years concerning mixed boundary
problems in W−1,q(D) for q > 2. Exemplary, we need the square-root-property of operators in
divergence form in Lq(D) (see [6], [25] and the references therein) and the so called isomorphism
property between W 1,q(D) and W−1,q(D) (see [18], [26]). Afterwards, we restrict us to Dirichlet
boundary conditions and show that under a global Lipschitz assumption on the diffusion matrix,
the solution does not explode and exists on the whole interval [0, T ]. This generalises the work
of Hofmanova and Zhang ([32]) from the torus to arbitrary bounded C1-domains. Moreover, our
method does not need initial data in the spaceC1+ε(D), but only u0 ∈ (W−1,q(D),W 1,q

0 (D))1−1/p,p,

which seems to be natural, if one expects solutions that are pathwise in Lp(0, T ;W 1,q
0 (D)).

2 Preliminaries

The purpose of this section is to provide a short overview over the basic tools used in this paper.
For most of the proofs and further details, we give references to the literature.

Throughout this paper, let (Ω,F,F = (Ft)t≥0,P) be a filtered probability space, that satisfies
the usual conditions, i.e. F0 contains all P-null sets and the filtration is right-continuous. More-
over, given normed spaces X and Y , B(X,Y ) denotes the set of all linear and bounded operators
from X to Y .

2.1 Stopping times and the σ-algebra of τ -past

It will be necessary to stop a stochastic process when it leaves certain balls around the initial
value. However, this time will differ from path to path and therefore we introduce stopping times.
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τ : Ω → [0, T ] is called F-stopping time, if {τ ≤ t} ∈ Ft for all t ∈ [0, T ]. By the right-continuity,
this is equivalent to {τ < t} ∈ Ft. The σ-algebra

Fτ =
{
A ∈ F : A ∩ {t ≤ τ} ∈ Ft ∀t ∈ [0, T ]

}

is called σ-algebra of τ -past and can be interpreted as the knowledge of an observer at the random
moment τ.

The following well-known results will be used frequently. The proof can be found e.g. in [37],
Lemma 9.21 and Lemma 9.23.

Proposition 2.1. Fτ is a σ-algebra and satisfies the following properties.

a) If τ = t almost surely for some t ∈ [0, T ], we have Fτ = Ft.

b) Given another F-stopping time σ, we have Fτ∧σ = Fτ ∩ Fσ. In particular, if τ ≤ σ almost surely,
we have the inclusion Fτ ⊂ Fσ.

c) If (X(·, t))t∈[0,T ] is a progressively measurable process with respect to F, then the random variable
Xτ (ω) := X(ω, τ(ω)) is Fτ -measurable.

Throughout this article, we will use the notation

Λ× [τ, µ) :=
{
(ω, t) ∈ Ω× [0, T ] : t ∈ [τ(ω), µ(ω))

}

for some Λ ⊂ Ω and stopping times τ, µ with τ ≤ µ. Closed and open random intervals are
defined similarly. If we call a process u defined on [Ω× [τ, µ] strongly measurable or adapted, we
mean that u1Ω×[τ,µ] is strongly measurable or adapted.

Since we did not find any reference in the literature for the following Lemma, we give a short
proof.

Lemma 2.2. Let Xt : Ω×[0, T ]→ R≥0, t ∈ [0, T ], be an F-adapted process with almost surely continuous
paths, σ an F-stopping time with values in [0, T ] and λ > 0. If we define

σ̃ = inf
{
t ∈ [0, T − σ] : Xt+σ > λ

}
∧ T,

then σ + σ̃ is also an F-stopping time.

Proof. Since F is right-continuous, it is sufficient to prove {σ+ σ̃ < t} ∈ Ft for given t ∈ [0, T ]. We
start with {

σ + σ̃ < t
}
=

⋃

q1,q2∈Q≥0,q1+q2<t

{σ < q1, σ̃ < q2} (2.1)

and prove that the sets {σ < q1, σ̃ < q2} are contained in Ft. For fixed q1, q2 ∈ Q≥0 with q1+q2 < t,
the definition of σ̃ and the pathwise continuity of t 7→ Xt yield

{σ̃ < q2} =
⋃

s∈[0,q2)

{Xσ+s > λ} =
⋃

q∈[0,q2)∩Q

{Xσ+q > λ}.

Thus, we have

{
σ < q1, σ̃ < q2

}
=

⋃

q∈[0,q2)∩Q

(
{σ < q1} ∩ {Xσ+q > λ}

)
.

Moreover, Proposition 2.1 implies {Xσ+q > λ} ∈ Fσ+q and since {σ < q1} ∈ Fq1 in any case by
definition of stopping times, we conclude

{
σ < q1, σ̃ < q2

}
∈

⋃

q∈[0,q2)∩Q

(
Fq1 ∩ Fτ+q

)
⊂ Fq1+q2 ∩ Fσ+q2 ⊂ Fmin(q1+q2,σ+q2) ⊂ Fq1+q2 .

Hence the claimed result follows by (2.1).
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2.2 γ-radonifying operators and stochastic integration

Let H̃ a separable Hilbert space with orthonormal basis (hn)n∈N, E a Banach space and (γn)n∈N

a sequence of independent standard-Gaussian distributed random variables. The Banach space
γ(H̃;E) of γ-radonifying operators is the closure of {T : H̃ → E linear and of finite rank} with
respect to the norm

‖T ‖γ(H̃;E) =
(
E‖

∞∑

n=1

γnThn‖
2
E

)1/2

Here, the norm is independent of the choice of the orthonormal basis.
In the special case, that E = Lq(O, µ) for some q ∈ (1,∞), γ(H̃;E) is isomorph to Lq(O; H̃)

via the isomorphism Lq(O; H̃) ∋ f 7→ Tf ∈ γ(H̃ ;E), where Tf is defined by

Tf(h)(x) := 〈f(x), h〉H

for h ∈ H̃ and x ∈ O. The equivalence of ‖Tf‖γ(H̃;E) ≃ ‖f‖Lq(O;H̃) can be shown easily by the

Kahane-Khintchine inequality
(
E‖
∑∞

n=1 γnfn‖
q
E

)1/q
≃q E‖

∑∞
n=1 γnfn‖E for q ∈ [1,∞). For fur-

ther details about γ-radonifying operators, we refer to the survey paper of Van Neerven (see [53]).

We now sketch the construction of the stochastic integral with respect to an L2(0, T ;H)-cylin-
drical Brownian motion, that is a bounded linear operator W : L2(0, T ;H) → L2(Ω) with the
following properties.

a) For all f ∈ L2(0, T ;H), the random variable W (f) is centred Gaussian.

b) For all t ∈ [0, T ] and f ∈ L2(0, T ;H) supported in [0, t], W (f) is Ft-measurable.

c) For all t ∈ [0, T ] and f ∈ L2(0, T ;H) supported in (t, T ], W (f) is independent of Ft.

d) We have E(W (f) ·W (g)) = 〈f, g〉L2(0,T ;H) for all f, g ∈ L2(0, T ;H).

An example for an L2(0, T ;H)-cylindrical Brownian motion is a family (βn)n∈N of independent
real valued Brownian motions together with H = l2(N) and W uniquely determined by the for-
mula W (1(0,t]en) = βn(t), n ∈ N, where (en)n is the sequence of the standard unit vectors in
l2(N).

For a stochastic processes G : Ω× R≥0 ×H → E of the form

G = 1(s,t]×B〈·, y〉Hx

for B ∈ Fs, y ∈ H and x ∈ E, we can define the stochastic integral via

I(G) :=

∫ T

0

GdW := 1BW (1(s,t]h)x ∈ E

and we can extend it to F-adapted step processes, that are finite linear combinations of such
processes. Van Nerven, Veraar and Weis proved in [54] the following two sided estimate for this
stochastic integral.

Theorem 2.3. Let E be a UMD Banach space and G be an F-adapted step processes in γ(H ;X). Then,
for all p ∈ (1,∞) one has the Itô-isomorphism

E‖I(G)‖Lp(Ω;E) ≃p ‖G‖Lp(Ω;γ(L2(0,T ;H);E)).

In particular, the stochastic integral can be continued to a linear and bounded operator

I : Lp(Ω; γ(L2(0, T ;H);E)) → Lp(Ω;E).
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In this article, we focus on integrands in Lp(Ω×[0, T ]; γ(H ;E)) for p > 2. Therefore, we restrict
ourselves to UMD Banach spaces of type 2 (details about type and cotype of Banach spaces can
be found in [46]), for which the embeddings

Lp(0, T ; γ(H ;E)) →֒ L2(0, T ; γ(H ;E)) →֒ γ(L2(0, T ;H);E)

are bounded. Consequently, the stochastic integral I(G) is also defined for functions G ∈ Lp(Ω×
[0, T ]; γ(H ;E)). Note, that Hilbert spaces or Banach spaces that are isomorph to closed subspaces
of Lq(O;µ), q > 2, are of type 2 and have the UMD property.

2.3 R-Boundedness and H∞-calculus

Let (rn)n∈N be a sequence of Rademacher random variables on a probability space (Ω̃,A, P̃), i.e.
P̃(rn = 1) = P̃(rn = −1) = 1

2 . Given the Banach spaces X and Y , a family T ⊂ B(X,Y ) is called
R-bounded, if there exists C > 0, such that

‖
N∑

j=1

rjTjxj‖Y ≤ C‖
N∑

j=1

rjxj‖X

for all (Tj)
N
j=1 ⊂ τ and (xj)

N
j=1 ⊂ X. The least possible constant C will be called R-bound of T .

Note, that every R-bounded family is uniformly bounded in B(X,Y ), whereas the converse holds
only if X,Y are Hilbert spaces. For details, we refer to [12], [17] and [39].

An operator (A,D(A)) is called sectorial on a Banach space E of angle θ ∈ (0, π/2), if it is
closed, densely defined, injective and it has a dense range. Moreover, we require, that its spectrum
is contained in the sector Σθ = {z ∈ C : | arg(z)| < θ} and that the set

{
λR(λ,A) : λ /∈ Σφ

}
(2.2)

is for all φ ∈ (θ, π) bounded in B(E) and the bound only depends on φ. In this case, −A generates
a holomorphic semigroup on E. If the set in (2.2) is even R-bounded, one says that A is R-sectorial.

For any holomorphic function f on Σφ, φ > θ, satisfying the growth estimate |f(z)| ≤ C |z|δ

1+|z|2δ

for some δ > 0, the integral

f(A) =
1

2πi

∫

Σφ

f(z)R(z, A) dz

exists. This integral defines a functional calculus for functions with the above growth estimate.
We say that A has a bounded H∞(Σφ)-calculus, if there exists C > 0 such that

‖f(A)‖B(E) ≤ C‖f‖∞ (2.3)

is satisfied for all these functions. The least constant C > 0 will be called bound of the H∞-
calculus. In this case, the functional calculus f 7→ f(A) can be extended to any bounded holomor-
phic function on Σφ and (2.3) remains true. Details on sectorial operators, R-sectorial operators
and the functional calculus can be found in [39], [30] and in the references we mentioned in the
introduction. Note, that the boundedness of the H∞-calculus of A particularly implies that A is
R-sectorial, if E is UMD. A nice list of operators having such a functional calculus can be found
in [56], Example 3.2.

3 Maximal Lp-regularity for stochastic evolution equations

In this section, we present results on semilinear parabolic stochastic evolution equations based on
the work of Van Neerven, Veraar and Weis on maximal Lp-regularity in [57] and [56]. Throughout
this section, τ denotes an F-stopping time with 0 ≤ τ ≤ T almost surely. We give conditions, that
guarantee the existence and uniqueness of strong solutions of

(SEE)

{
du(t) =

[
−Au(t) + F (u(t)) + f(t)

]
dt+

[
B(u(t)) + b(t)

]
dW (t), t ∈ (τ, T ],

u(τ) = uτ .
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Before we specify our assumptions, we point out that they contain slight generalizations of the
above papers. Firstly, as described in the introduction, we will need to start the equation not only
at time zero, but at an F-stopping time τ with an Fτ -measurable initial value uτ . Moreover, in
[56], the authors demanded the following Lipschitz condition on the deterministic nonlinearity.
They assumed the existence of LF , L̃F , CF > 0 such that

‖F (t, ω, x)‖E ≤ CF (1 + ‖x‖E1)

and

‖F (t, ω, x)− F (t, ω, x)‖E ≤ LF ‖x− y‖E1 + L̃F ‖x− y‖E

for all t ∈ [0, T ], x ∈ E1 and almost all ω ∈ Ω and LF was demanded to be small enough. It turns
out, that this assumption is not suitable to deal with quasilinear equation. We need a weaker
analogue that is not pointwise in time, but with respect to ‖ · ‖Lp(0,T ;E). Therefore, we replaced
the above assumption by [S4] and [S5]. However, the maximal Lp-regularity technique allows this
generalization and the proofs are essentially unchanged. We make the following hypothesis.

[S1] Let p ∈ (2,∞) and E,E1 be UMD Banach spaces with type 2 or alternatively p = 2 and E,E1

Hilbert spaces. We assume the embedding E1 →֒ E to be dense and write E1/2 for the com-
plex interpolation space [E,E1]1/2 and Ep for the real interpolation space (E,E1)1−1/p,p.
Moreover, let the family

{Jδ : δ > 0} ⊂ B
(
Lp(Ω× (0,∞); γ(H ;E)), Lp(Ω× (0,∞);E)

)

defined by

Jδg(t) := δ−1/2

∫ t

(t−δ)∨0

g(s)dW (s)

be R-bounded.

[S2] The mapping A : Ω → B(E1, E) is such that ω 7→ A(ω)x is for all x ∈ E1 strongly Fτ -
measurable and such that D(A(ω)) = E1, i.e we have

‖A(ω)x‖E ≃ ‖x‖E1

for almost all ω ∈ Ω and all x ∈ E1 with estimates independent of ω ∈ Ω. Moreover,
we assume 0 ∈ ρ(A(ω)) and that for almost all ω ∈ Ω the operator A(ω) has a bounded
H∞-calculus of angle η ∈ [0, π/2) with

‖Ψ(A(ω))‖B(E) ≤ M‖Ψ‖H∞(Ση)

for all Ψ ∈ H∞(Ση) with constants M, η independent of ω.

[S3] The initial value uτ : Ω → Ep is a strongly Fτ -measurable random variable.

[S4] The mapping F : Ω × [0, T ] × E1 → E is strongly measurable and ω 7→ F (ω, t, x) is for
all t ∈ [0, T ] and x ∈ E1 strongly Ft-measurable. Moreover, there exist L(i)

F , L̃F , C
(i)
F ≥ 0,

i = 1, 2, such that F is for almost all ω ∈ Ω with τ(ω) < T and all [a, b] ⊂ [τ(ω), T ] of linear
growth, i.e.

‖F (·, ω, φ1)‖Lp(a,b;E) ≤ C
(1)
F

(
1 + ‖φ1‖Lp(a,b;E1)

)
+ C

(2)
F

(
1 + ‖φ1‖C(a,b;Ep)

)

and Lipschitz continuous, i.e.

‖F (·, ω, φ1)− F (·, ω, φ2)‖Lp(a,b;E)

≤ L
(1)
F ‖φ1 − φ2‖Lp(a,b;E1) + L̃F‖φ1 − φ2‖Lp(a,b;E)

+ L
(2)
F ‖φ1 − φ2‖C(a,b;Ep)

for all φ1, φ2 ∈ Lp(a, b;E1) ∩C(a, b;Ep) with constants independent of ω and [a, b].
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[S5] The function B : Ω× [0, T ]× E1 → γ(H,E1/2) is strongly measurable and ω 7→ B(ω, t, x) is
for all t ∈ [0, T ] and x ∈ E1 strongly Ft-measurable. Moreover, there exist L(i)

B , L̃B, C
(i)
B ≥ 0,

i = 1, 2, such that B is for almost all ω ∈ Ω with τ(ω) < T and all [a, b] ⊂ [τ(ω), T ] of linear
growth, i.e.

‖B(·, ω, φ1)‖Lp(a,b;γ(H;E1/2)) ≤ C
(1)
B

(
1 + ‖φ1‖Lp(a,b;E1)

)
+ C

(2)
B

(
1 + ‖φ1‖C(a,b;Ep)

)

and Lipschitz, i.e.

‖B(·, ω, φ1)−B(·, ω, φ2)‖Lp(a,b;γ(H;E1/2))

≤ L
(1)
B ‖φ1 − φ2‖Lp(a,b,E1) + L̃B‖φ1 − φ2‖Lp(a,b;E) + L

(2)
B ‖φ1 − φ2‖C(a,b;Ep)

for all φ1, φ2 ∈ Lp(a, b;E1) ∩C(a, b;Ep) with constants independent of ω and [a, b].

[S6] The functions f : Ω × [0, T ] → E and b : Ω × [0, T ] → γ(H ;E1/2) are strongly measurable
and adapted to F. Moreover, we assume f1[τ,T ] ∈ Lp(Ω × [0, T ];E) and b1[τ,T ] ∈ Lp(Ω ×

[0, T ]; γ(H ;E1/2)).

Before we proceed, we want to refer to the very helpful comments on these assumptions by
Van Neerven, Veraar and Weis in [56], Remark 4.1. Additionally, we point out, that every Banach
space E isomorphic to Lq(O, µ) with q > 2 satisfies [S1]. In particular, this is true for all Sobolev
and Besov spaces with integrability index q. Last but not least, we want to mention that the con-
stants L(1)

F , L
(2)
F and L

(1)
B , L

(2)
B in [S4] and [S5] have to be small enough. To be precise, they depend

on the constants appearing in the maximal Lp-regularity estimates

∥∥t 7→
∫ t

0

e−A(t−s)g(s)dW (s)
∥∥
Lp(Ω×R≥0;E1)∩Lp(Ω;C(0,T ;Ep)

≤ CMRS‖g‖Lp(Ω×R≥0;γ(H;E1/2)) (3.1)

∥∥t 7→
∫ t

0

e−A(t−s)f(s) ds
∥∥
Lp(Ω×R≥0;E1)∩Lp(Ω;C(0,T ;Ep))

≤ CMRD‖f‖Lp(Ω×R≥0;E) (3.2)

and have to satisfy the analogue of the condition in Theorem 4.5 in [56].

[S7] Let the constants in [S4] and [S5] be small enough to ensure

CMRD(L
(1)
F + L

(2)
F ) + CMRS(L

(1)
B + L

(2)
B ) < 1.

Before we state the main result about solutions of (SEE), we recall the concept of strong solutions.

Definition 3.1. Let µ be another F-stopping time with τ ≤ µ ≤ T almost surely. A process u : Ω ×
[τ, µ] → E is called a strong solution of (SEE), if it is strongly measurable, adapted and

a) u ∈ L1(τ, µ;E1), F (·, u) ∈ L1(τ, µ;E) almost surely and the stochastic process B(·, u)1[τ,µ] :
Ω× [0, T ] → γ(H ;E) is stochastically integrable.

b) The identity

u(t)− uτ = −

∫ t

τ

Au(s) ds+

∫ t

τ

F (s, u(s)) + f(s) ds+

∫ t

τ

B(s, u(s)) + b(s)dW (s)

holds almost surely for all t ∈ [τ, µ] in E.

Note, that any strong solution is also a mild solution in the sense of evolution equations (see
[56], Proposition 4.4). We now present the main results of this section. The proof is almost the
same as the proof of Theorem 4.5. in [56] and and we just discuss the differences. For sake of
clearness, we split the statements into a Theorem and some Corollaries.
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Theorem 3.2. Additionally to [S1]− [S7], we assume uτ ∈ Lp(Ω, Ep) for some p ∈ (2,∞). Then, there
exists a unique strong solution u of (SEE) on [τ, T ] and u has almost surely continuous paths on [τ, T ] in
Ep. Moreover, we have the estimates

(
E‖u1[τ,T ]‖

p
Lp(0,T ;E1)

)1/p
≤ C

(
1 + ‖uτ‖Lp(Ω,Ep)

)
(3.3)

and (
E sup

t∈[τ,T ]

‖u(t)‖pEp

)1/p

≤ C
(
1 + ‖uτ‖Lp(Ω,Ep)

)
. (3.4)

for some C > 0 independent of uτ .

Proof. The main idea is to apply the contraction mapping theorem to prove existence and unique-
ness on small intervals and to put these solutions together to a solution on [τ, T ]. Let κ > 0. We
consider the operator

Kφ(t) =e−(t−τ)Auτ +

∫ t

τ

(e−(t−s)A(F (s, φ(s)) + f(s)) ds

+

∫ t

0

e−(t−s)A(B(s, φ(s)) + b(s))1(τ,T ](s)dW (s) (3.5)

on the Banach space

Ep(τ, κ) :=
{
u : Ω× [τ, (τ + κ) ∧ T ] → E

∣∣ u is adapted,

u1[τ,(τ+κ)∧T ] ∈ Lp(Ω× [0, T ];E1)), u ∈ C(τ, (τ + κ) ∧ T ;Ep) a.s., and

E sup
t∈[τ,(τ+κ)∧T ]

‖u(t)‖pEp
< ∞

}
,

endowed with the norm

‖u‖Ep(τ,κ),µ :=
∥∥u1[τ,(τ+κ)∧T ]

∥∥
Lp(Ω×[0,T ];E1))

+ µ
∥∥u1[τ,(τ+κ)∧T ]

∥∥
Lp(Ω×[0,T ];E))

+
(
E sup

t∈[τ,(τ+κ)∧T ]

‖u(t)‖pEp

)1/p
,

where µ > 0 will be chosen later on. We have to show that the stochastic integrand in (3.5) is
adapted and thus the integral is well-defined. We have (0,∞) ⊂ ρ(−A(ω)) for almost all ω ∈ Ω
and the identity

e−tA(ω)x = lim
n→∞

(
n
t R(nt ,−A(ω))

)n
x

holds true. Thus, ω → e−tA(ω)x is for all x ∈ E and t ≥ 0 strongly Fτ -measurable as pointwise
limit of strongly measurable functions.

As a consequence, for fixed s ≤ t, the mapping ω 7→ e−(t−s)A(ω)x1s>τ(ω) is strongly Fs-
measurable. Indeed, for every Borel set B ⊂ E and x ∈ E we have

{e−(t−s)Ax1s>τ ∈ B} = {0 ∈ B, s ≤ τ} ∪ {e−(t−s)Ax ∈ B, s > τ}.

Since the filtration F is right-continuous, we both have {s ≤ τ} ∈ Fs and {s > τ} ∈ Fs. Thus we
obtain {0 ∈ B, s ≤ τ} ∈ Fs and

{e−(t−s)Ax ∈ B, s > τ} ∈ Fτ ∩ Fs = Fτ∧s ⊂ Fs

which yields the desired result. We conclude, that

ω 7→ e−(t−s)A(ω)(B(ω, φ(s)) + b(ω, s))1s>τ(ω)

is strongly Fs-measurable as composition of strongly Fs-measurable functions.
In the same way as Van Neerven, Veraar and Weis, we check that K is a contraction if κ is small

enough and µ(κ) large enough. This yields the existence and uniqueness of a strong solution on
[τ, (τ + κ) ∧ T ]. Iterating this procedure yields the claimed result.
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If two different initial values coincide on some subset of Ω of positive measure, the corre-
sponding solutions of (SEE) also coincide on this subset. The proof is a slight variation of step 7
in the proof of Theorem 4.5 in [56].

Lemma 3.3. We assume the conditions [S1] − [S7] to be fulfilled. Let u and v be the strong solutions
of (SEE) corresponding to the strongly Fτ -measurabe initial values uτ , vτ ∈ Lp(Ω, Ep). Then, we have
u(ω, t) = v(ω, t) for almost all ω ∈ {uτ = vτ} and all t ∈ [τ(ω), T ].

As an easy application of this Lemma, one can prove existence and uniqueness of strong solu-
tions of (SEE) with initial data uτ , that is only measurable with respect to Fτ . The strategy of the
proof was already used in [55], Theorem 7.1 and [50], Proposition 5.4, in a nonmaximal regularity
situation. In step 3 and 4 of the proof of Theorem 4.5 in [56], there is a version that fits to our
situation.

Corollary 3.4. We assume the conditions [S1] − [S7] to be fulfilled. If we do not demand anything on
uτ but to be a strongly Fτ -measurable, Ep-valued random variable, then (SEE) still has a unique strong
solution u on [τ, T ] with u ∈ Lp(τ, T ;E1) ∩ C(τ, T ;Ep) almost surely, but u has not necessarily any
integrability properties with respect to ω.

Finally, we give an analogous result to Lemma 3.3 in case that the initial values uτ and vτ are
not in Lp(Ω, Ep), but only Fτ -measurable. The statement is a direct consequence of Lemma 3.3
and Corollary 3.4.

Corollary 3.5. We assume the conditions [S1]− [S7] to be fulfilled. Let u and v be the strong solutions of
(SEE) to the strongly Fτ -measurabe initial random variables uτ , vτ : Ω → Ep. Then we have u(ω, t) =
v(ω, t) for almost all ω ∈ {uτ = vτ} and all t ∈ [τ(ω), T ].

4 Abstract quasilinear evolution equations

In this chapter, we consider a quasilinear stochastic evolution equation of the form

(QSEE)

{
du(t) = [−A(u(t))u(t) + F (t, u(t)) + f(t)] dt+[B(t, u(t)) + b(t)]dW (t),

u(0) = u0

for t ∈ [0, T ]. Our main result will be the existence and uniqueness of strong solutions of this
equation. At first, we assume z 7→ A(z) : (E,E1)1−1/p,p → B(E1, E) to be globally Lipschitz
continuous. This assumption will be dropped later on.

4.1 Globally Lipschitz continuous quasilinearity

Before, we start, present our setting in detail. We assume

[Q1] Let p ∈ (2,∞) and E,E1 be UMD Banach spaces with type 2 or p = 2 and E,E1 Hilbert
spaces. We assume the embedding E1 →֒ E to be dense and write E1/2 for the complex
interpolation space [E,E1]1/2 and Ep for the real interpolation space (E,E1)1−1/p,p. More-
over, let the family

{Jδ : δ > 0} ⊂ B
(
Lp(Ω× (0,∞); γ(H ;E)), Lp(Ω× (0,∞);E)

)

defined by

Jδb(t) := δ−1/2

∫ t

(t−δ)∨0

b(s)dW (s)

be R-bounded.

[Q2] The initial value u0 : Ω → Ep is strongly F0-measurable.
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[Q3] The mapping A : Ω × Ep → B(E1, E) is such that (y, ω) 7→ A(ω, y)x is for every x ∈
E1 strongly measurable and ω 7→ A(ω, y)x is for fixed y ∈ Ep and x ∈ E1 strongly F0-
measurable.

[Q4] For all y ∈ Ep and almost all ω ∈ Ω, the operators A(ω, y) are sectorial with 0 ∈ ρ(A(ω, y))
and have a bounded H∞(Ση)-calculus of angle η ∈ (0, π/2), i.e.

‖φ(A(ω, y))‖B(E) ≤ C‖φ‖H∞(Ση)

with a constant C > 0 independent of ω and y.

[Q5] There exists CQ > 0, such that for all z, y ∈ Ep and almost all ω ∈ Ω, we have

‖A(ω, z)−A(ω, y)‖B(E1,E) ≤ CQ‖z − y‖Ep .

[Q6] F : Ω × [0, T ]× E1 → E is strongly measurable and ω 7→ F (ω, t, x) is for all t ∈ [0, T ] and
x ∈ E1 strongly Ft-measurable. Moreover, there exist L(i)

F , L̃F , C
(i)
F ≥ 0, i = 1, 2, such that

F is for almost all ω ∈ Ω and all [a, b] ⊂ [0, T ] of linear growth, i.e.

‖F (·, ω, φ1)‖Lp(a,b;E) ≤ C
(1)
F

(
1 + ‖φ1‖Lp(a,b;E1)

)
+ C

(2)
F

(
1 + ‖φ1‖C(a,b;Ep)

)

and Lipschitz continuous, i.e.

‖F (·, ω, φ1)− F (·, ω, φ2)‖Lp(a,b;E) ≤ L
(1)
F ‖φ1 − φ2‖Lp(a,b;E1) + L̃F‖φ1 − φ2‖Lp(a,b;E)

+ L
(2)
F ‖φ1 − φ2‖C(a,b;Ep)

for all φ1, φ2 ∈ Lp(a, b;E1) ∩C(a, b;Ep) with constants independent of ω and [a, b].

[Q7] The function B : Ω× [0, T ]× E1 → γ(H,E1/2) is strongly measurable and ω 7→ B(ω, t, x) is
for all t ∈ [0, T ] and x ∈ E1 strongly Ft-measurable. Moreover, there exist L(i)

B , L̃B, C
(i)
B ≥ 0,

i = 1, 2, such that B is for almost all ω ∈ Ω and all [a, b] ⊂ [0, T ] of linear growth, i.e.

‖B(·, ω, φ1)‖lp(a,b,γ(H;E1/2) ≤ C
(1)
B

(
1 + ‖φ1‖Lp(a,b;E1)

)
+ C

(2)
B

(
1 + ‖φ1‖C(a,b;Ep)

)

and Lipschitz, i.e.

‖B(·,ω, φ1)−B(·, ω, φ2)‖Lp(a,b,γ(H;E1/2))

≤ L
(1)
B ‖φ1 − φ2‖Lp(a,b,E1) + L̃B‖φ1 − φ2‖Lp(a,b,E) + L

(2)
B ‖φ1 − φ2‖C(a,b;Ep)

for all φ1, φ2 ∈ Lp(a, b, E1) ∩C(a, b;Ep) with constants independent of ω and [a, b].

[Q8] Let the constants of [Q6] and [Q7] be small enough to ensure

CMRD(L
(1)
F + L

(2)
F ) + CMRS(L

(1)
B + L

(2)
B ) < 1,

where CMRD and CMRS are the constants we introduced in (3.1) and (3.2).

[Q9] The functions f : Ω× [0, T ] → E and b : Ω× [0, T ] → γ(H ;E1/2) are strongly measurable and
adapted to F. Moreover, we assume f ∈ Lp(Ω× [0, T ];E) and b ∈ Lp(Ω× [0, T ]; γ(H ;E1/2)).

We define strong solutions of (QSEE) in the same way as in the corresponding chapter for the
linear stochastic evolution equation (SEE). The only difference is, that we replace the autonomous
operator by A(ω, u(t)).

Definition 4.1. Let µ be another F-stopping times with τ ≤ µ almost surely. u : Ω× [τ, µ] → E is called
a strong solution of (QSEE), if it is strongly measurable, adapted and we have

a) u ∈ L1(τ, µ;E1), F (·, u) ∈ L1(τ, µ; γ(H ;E)) almost surely and B(·, u)1[τ,µ] is stochastically
integrable.
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b) The identity

u(t)− uτ =−

∫ t

τ

A(u(s))u(s) ds +

∫ t

τ

F (s, u(s)) + f(s) ds

+

∫ t

τ

B(s, u(s)) + b(s)dW (s)

holds almost surely for all t ∈ [τ, µ] in E.

Even in the deterministic case, quasilinear evolution equations do not have global solutions
without further structural assumptions. Therefore, we now explain the concept of local solutions.
The following definition adapts the terms Van Neerven, Veraar and Weis introduced in [55] to our
situation.

Definition 4.2. Let σ, σn, n ∈ N, be F-stopping times with 0 ≤ σ, σn ≤ T almost surely for all n ∈ N

and let u : Ω× [0, σ) → E be a stochastic process.

a) We say that
(
u, (σn)n, σ

)
is a local solution of (QSEE), if (σn)n∈N is an increasing sequence with

limn→∞ σn = σ pointwise almost surely, such that

u(ω, ·) ∈ Lp(0, σn(ω);E
1) ∩ C(0, σn(ω);Ep)

for almost all ω ∈ Ω and u is for all n ∈ N a strong solution of (QSEE) on [0, σn].

b) We call a local solution
(
u, (σn)n, σ

)
of (QSEE) a maximal unique local solution, if for any other

local solution
(
ũ, (σ̃n)n, σ̃

)
, we almost surely have σ̃ ≤ σ and ũ(ω, t) = u(ω, t) for almost all ω ∈ Ω

and all t ∈ [0, σ̃).

If the approximating sequence τn is not important for a result, we shortly write (u, τ). In the
following we establish a well-posedness result for the quasilinear evolution equation (QSEE) up
to a maximal stopping time. The next theorem is the main result of this section and will be proved
step by step with the Lemmatas, we state later on.

Theorem 4.3. If the assumptions [Q1] − [Q9] are satisfied, the quasilinear stochastic evolution equation
(QSEE) has a unique maximal local solution

(
u, (τn)n, τ

)
. Moreover, we have

P

{
τ < T, ‖u‖Lp(0,τ ;E1) < ∞, u : [0, τ) → Ep is uniformly continuous

}
= 0.

If we additionally assume u0 ∈ Lp(Ω;Ep), the estimate

(
E‖u‖pLp(0,τn;E1)

)1/p
≤ C(n)(1 + ‖u0‖Lp(Ω,Ep))

(
E sup

t∈[0,τn]

‖u(t)‖pEp

)1/p

≤ C(n)(1 + ‖u0‖Lp(Ω,Ep))

holds true for all n ∈ N and for some C(n) > 0 independent of u0.

At first, we prove existence of a strong solution in small balls around the initial value up
to a stopping time τ1. Then, iterating this procedure, we construct a local solution

(
u, (τn)n, τ

)

of (QSEE). Afterwards we derive a suitable blow-up alternative, which helps us to prove that(
u, (τn)n, τ

)
is indeed a maximal unique solution.

We begin with the definition of a cut-off function θλ, that helps us to enclose the processes in
a suitable ball around the initial value. Let

Φ(t) =





1 for t ∈ [0, 1]

−t+ 2 for t ∈ [1, 2]

0 for t ∈ [2,∞)
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and define Φλ(t) := Φ( t
λ) which gives us a monotonously decreasing function bounded by 1, that

equals 1 on [0, λ] and that vanishes on [2λ,∞). Moreover, Φλ is Lipschitz continuous with

|Φλ(t)− Φλ(s)| ≤ λ−1|t− s|

for all t, s ≥ 0. Now we can define the desired cut-off function. For given ua ∈ Ep, u ∈ C(a, b;Ep)∩
Lp(a, b;E1) and t ∈ [a, b] let

θλ(a, t, u, ua) := Φλ

(
‖u‖Lp(a,t;E1) + sup

s∈[a,t]

‖u(s)− ua‖Ep

)

Clearly, we have θλ(a, t, u, ua) = 0 if ‖u‖Lp(a,t;E1)+ sup
s∈[a,t]

‖u(s)−ua‖Ep ≥ 2λ and if ‖u‖Lp(a,t;E1)+

sup
s∈[a,t]

‖u(s)− ua‖Ep ≤ λ, we have

A(u(t))u(t) = A(ua)u(t) + θλ(a, t, u, ua)
(
A(u(t))−A(ua)

)
u(t).

With this fact in mind, it is quite natural to start with the stochastic evolution equation

{
du(t) =

[
−A(uσ)u(t) + F̃λ(t, u(t)) + f(t)

]
dt+[B(t, u(t)) + b(t)]dW (t)

u(σ) = uσ

(4.1)

where F̃λ is given by

F̃λ(t, u(t)) = θλ(σ, t, u, uσ)
(
A(uσ)−A(u(t))

)
u(t) + F (t, u(t)).

Since we want to sustain local solutions to a maximal time interval, it will be necessary to consider
not only the initial time zero but also, as in the previous chapter, an initial F-stopping time σ. First
we prove existence and uniqueness of a strong solution of (4.1) using the methods described in
the previous chapter and in a second step, we then restrict the solution to an interval [σ, σ + ν],
on which we have θλ(σ, t, u(t), uσ) = 1. Again ν is not a fixed number, but an F-stopping time,
because stochastic processes behave differently from path to path.

The following Lemma makes sure that the nonlinearity F̃λ satisfies the assumptions of Theo-
rem 3.2, if one chooses λ small enough.

Lemma 4.4. Let σ be a F-stopping time with 0 ≤ σ ≤ T almost surely and let uσ : Ω → Ep be strongly
Fσ-measurable. For t ∈ [0, T ], λ > 0, ω ∈ Ω and y ∈ E1 we define

Qλ,σ(ω, t, y, uσ(ω)) :=

{
θλ(σ(ω), t, y, uσ(ω)) (A(ω, uσ(ω))−A(ω, y)) y , if t ≥ σ(ω),

0 , if t < σ(ω).

If we additionally assume [Q1] − [Q5], Qλ,σ is strongly measurable and ω 7→ Qλ,σ(ω, t, y, uσ(ω)) is
strongly Ft-measurable. Moreover, Qλ,σ is of linear growth, i.e

‖Qλ,σ(ω, ·, u, uσ(ω))‖Lp(a,b;E) ≤ 4CQλ
2

and Lipschitz, i.e

‖Qλ,σ(ω, ·, u, uσ(ω))−Qλ,σ(ω, ·, v, uσ(ω))‖Lp(a,b;E)

≤ 6CQλ
(
‖u− v‖Lp(a,b;E1) + ‖u− v‖C(a,b;Ep)

)

for almost all ω ∈ Ω with σ(ω) < T , for all intervals [a, b] ⊂ [σ(ω), T ] and for all u, v ∈ Lp(a, b;E1) ∩
C(a, b;Ep).
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Proof. The claimed measurability properties of Qλ,σ are immediate, since the random variable
ω 7→ Qλ,σ(ω, t, y, uσ)1t≥σ(ω) is by [Q3] strongly Fσ-measurable.

To prove the Lipschitz and the growth estimate we argue pathwise for fixed ω ∈ Ω with
σ(ω) < T and choose [a, b] ⊂ [σ(ω), T ]. In order to keep the notation simple, we suppress the
explicit dependence on ω. Let u, v ∈ Lp(a, b;E1) ∩ C(a, b;Ep) and define

σu = inf
{
s ∈ [a, b] : ‖u‖Lp(σ,s;E1) + ‖u− uσ‖C(σ,s;Ep) ≥ 2λ

}
∧ b

and similarly

σv = inf
{
s ∈ [a, b] : ‖v‖Lp(σ,s;E1) + ‖v − uσ‖C(σ,s;Ep) ≥ 2λ

}
∧ b.

Note, that the definition of θλ(σ, t, u, uσ) ensuresQλ,σ(t, u(t), uσ) = 0 for t ≥ σu andQλ,σ(t, v(t), uσ) =
0 for t ≥ σv. In the following we assume without restriction that σu ≥ σv . First we prove the
growth estimate. θλ ≤ 1, [Q5] and the definition of σu yield

‖Qλ,σ(·, u, uσ)‖Lp(a,b;E) = ‖Qλ,σ(·, u, uσ)‖Lp(a,σu;E)

≤ CQ sup
t∈[a,σu]

‖u(t)− uσ‖Ep‖u‖Lp(a,σu;E1) ≤ 4CQλ
2.

For the Lipschitz estimate, we start with

‖Qλ,σ(·, u, uσ)−Qλ,σ(·, v, uσ)‖Lp(a,b;E)

≤ ‖
(
θλ(σ, ·, u, uσ)− θλ(σ, ·, v, uσ)

)(
A(u)−A(uσ)

)
u‖Lp(a,σu;E)

+ ‖θλ(σ, ·, v, uσ)
(
A(u)−A(v)

)
u‖Lp(a,σu;E)

+ ‖θλ(σ, ·, v, uσ)
(
A(v)−A(uσ)

)
(u− v)‖Lp(a,σv ;E).

Note that in the last step we used θλ(σ, t, v, uσ) = 0 for t ≥ σv. The assumed Lipschitz continuity
of θλ yields

‖
(
θλ(σ, ·, u, uσ)− θλ(σ, ·, v, uσ)

)(
A(u)−A(uσ)

)
u‖Lp(a,σu;E)

≤ sup
t∈[a,σu]

∣∣θλ(σ, t, u, uσ)− θλ(σ, t, v, uσ)
∣∣ sup
t∈[a,σu]

‖A(u(t))−A(uσ)‖B(E1,E)‖u‖Lp(a,σu;E1)

≤ λ−1 sup
s∈[a,b]

∣∣∣‖u‖Lp(a,s;E1) + ‖u− uσ‖C(a,s;Ep) − ‖v‖Lp(a,s;E1) − ‖v − uσ‖C(a,s;Ep)

∣∣∣

CQ sup
t∈[a,σu]

‖u(t)− uσ‖Ep‖u‖Lp(a,σu;E1)

≤ 4CQλ
(
‖u− v‖Lp(a,b;E1) + ‖u− v‖C(a,b;Ep)

)
.

In the last step we used the definition of σu to estimate the terms not depending on the difference
u− v. Accordingly, we derive

‖θλ(σ, ·, v, uσ)
(
A(u)−A(v

)
u‖Lp(a,σu;E) ≤ 2CQλ‖u− v‖C(a,b;Ep)

and

‖θλ(σ, ·, v, uσ)
(
A(v) −A(uσ

)
(u− v)‖Lp(a,σv ;E) ≤ 2CQλ‖u− v‖Lp(a,b;E1)

respectively. After all we proved

‖Qλ,σ(·, u, uσ)−Qλ,σ(·, v, uσ)‖Lp(a,b;E) ≤ 6CQλ
(
‖u− v‖Lp(a,b;E1) + ‖u− v‖C(a,b;Ep)

)
,

which is the claimed result.

Now we can step by step construct a local solution of (QSEE) by solving (4.1), restricting the
solution to a random interval on which the solution also satisfies (QSEE) and then proceeding
iteratively in the same way.
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Proposition 4.5. If [Q1] − [Q9] are satisfied, there exists a local solution
(
u, (τn)n, τ

)
of (QSEE) and if

we additionally assume u0 ∈ Lp(Ω;Ep), we also have

(
E‖u‖pLp(0,τn;E1)

)1/p
≤ C(n)

(
1 + ‖u0‖Lp(Ω,Ep)

)

(
E sup

t∈[0,τn]

‖u(t)‖pEp

)1/p
≤ C(n)

(
1 + ‖u0‖Lp(Ω,Ep)

)

for all n ∈ N and for some constant C(n) > 0 independent of u0.

Proof. To construct a local solution, we first consider the equation
{
du(t) =

[
−A(u0)u(t) + F (1)(t, u(t)) + f(t)

]
dt+[B(t, u(t)) + b(t)]dW (t),

u(0) = u0,
(4.2)

where F (1) is given by
F (1)(ω, t, y) = Qλ,0(ω, t, y, u0) + F (ω, t, y).

Here we use the mapping Qλ,0 we defined Lemma 4.4. The same Lemma, together with [Q6],
shows that F (1) is of linear growth, adapted and we have

‖F (1)(ω, ·, u)− F (1)(ω, ·, v)‖Lp(a,b;E)

≤ (6CQλ+ L
(1)
F )‖u− v‖Lp(a,b;E1) + (6CQλ+ L

(2)
F )‖u− v‖C(a,b;Ep)

+ L̃F ‖u− v‖Lp(a,b;E)

for all u, v ∈ Lp(a, b;E1) ∩ C(a, b;Ep). If we now choose λ small enough, such that

CMRD(L
(1)
F + L

(2)
F + 12CQλ) + CMRS(L

(1)
B + L

(2)
B ) < 1,

we can apply Corollary 3.4 and obtain a unique strong solution u(1) of (4.2) on [0, T ] with u(1) ∈
Lp(0, T ;E1) ∩ C(0, T ;Ep) almost surely. Define

τ1 = inf
{
t ∈ [0, T ] : ‖u(1)‖Lp(0,t;E1) + ‖u(1) − u0‖C(0,t;Ep) > λ

}
∧ T.

Since both t 7→ ‖u(1)(ω, ·)‖Lp(0,t;E1) and t 7→ ‖u(1)(ω, ·) − u0‖C(0,t;Ep) are adapted and pathwise
almost surely continuous, τ1 is by Lemma 2.2 an F-stopping time. Moreover, for t ≤ τ1(ω) the
identity

Qλ,0(ω, t, u
(1)(t), u0(ω)) =

(
A(ω, u0(ω))−A(ω, u(1)(ω, t))

)
u(1)(ω, t)

holds and thus u(1) is a strong solution of
{
du(1)(t) =

[
A(u(1)(t))u(t) + F (t, u(1)(t)) + f(t)

]
dt+[B(t, u(1)(t)) + b(t)]dW (t)

u(0) = u0

on [0, τ1]. The adaptivity of u(1) implies that u(1)(τ1) is Fτ1-measurable. In case that u0 ∈ Lp(Ω, Ep)
we additionally get (

E‖u(1)‖pLp(0,τ1;E1)

)1/p
≤ C(1)(1 + ‖u0‖Lp(Ω,Ep))

(
E sup

t∈[0,τ1]

‖u(1)(t)‖pEp

)1/p
≤ C(1)

(
1 + ‖u0‖Lp(Ω,Ep)

)

for some C(1) > 0 as an immediate consequence of (3.3) and (3.4). Next, we consider
{
du(t) =

[
A(u(τ1))u(t) + F (2)(t, u(t)) + f(t)

]
dt+[B(t, u(t)) + b(t)]dW (t)

u(τ1) = u(1)(τ1)
(4.3)
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on the [τ1, T ], where F (2) is given by

F (2)(ω, t, y) = Qλ,τ1(ω, t, y, u(τ1)) + F (ω, t, y).

With the very same argumentation as above, we get a strong solution u(2) of (4.3) and accordingly,
we define

τ̃2 = inf
{
t ∈ [0, T − τ1] : ‖u

(2)‖Lp(τ1,τ1+t;E1) + ‖u(2) − u(1)(τ1)‖C(τ1,τ1+t;Ep) > λ
}
∧ (T − τ1).

Clearly, the processes t 7→
(
‖u(2) − u(1)(τ1)‖C(τ1,t;Ep)

)
1t≥τ1 and t 7→ ‖u(2)‖Lp(τ1,t;E1)1t≥τ1 are

adapted and have continuous paths. Thus, by Lemma 2.2, τ2 := τ1 + τ̃2 is an F-stopping time. All
in all, u(2) is a strong solution of (QSEE) on [τ1, τ2], such that u(2)(τ2) is Fτ2-measurable and in
the case u0 ∈ Lp(Ω, Ep), we have

(
E‖u(2)

1[τ1,τ2]‖
p
Lp(0,T ;E1)

)1/p
≤ C(2)

(
1 + ‖u(1)(τ1)‖Lp(Ω,Ep)

)
≤ C̃(2)

(
1 + ‖u0‖Lp(Ω,Ep)

)

(
E sup

t∈[τ1,τ2]

‖u(2)(t)‖pEp

)1/p
≤ C(2)

(
1 + ‖u(1)(τ1)‖Lp(Ω,Ep)

)
≤ C̃(2)

(
1 + ‖u0‖Lp(Ω,Ep)

)

for some C(2), C̃(2) > 0. Proceeding inductively, we get F-stopping times τn and strong solutions
u(n) on [τn−1, τn] for all n ∈ N , if we use the notation τ0 = 0. Moreover, if u0 ∈ Lp(Ω, Ep) we get

(
E‖u(n)

1[τn−1,τn]‖
p
Lp(0,T ;E1)

)1/p
≤ C̃(n)

(
1 + ‖u0‖Lp(Ω,Ep)

)
,

(
E sup

t∈[τn−1,τn]

‖u(n)(t)‖pEp

)1/p
≤ C̃(n)

(
1 + ‖u0‖Lp(Ω,Ep)

)

for some C(n) > 0. Since (τn)n is an increasing sequence of F-stopping times that is bounded by
T , the limit τ = limn→∞ τn exists and is also a F-stopping time. We ultimately define

u(t) = u01{t=0} +

∞∑

n=1

u(n)(t)1(τn−1,τn](t)

for t ∈ [, τ). This process is adapted and we have u(ω, ·) ∈ Lp(0, τn(ω), E
1) ∩ C(0, τn(ω);Ep) for

all n ∈ N and almost all ω ∈ Ω and u is a strong solution of (QSEE) on [0, τn] for every n ∈ N. In
case u0 ∈ Lp(Ω, τ) the above results also imply

(
E‖u1[0,τn]‖

p
Lp(0,T ;E1)

)1/p
≤ C(n)(1 + ‖u0‖Lp(Ω,Ep)),

(
E sup

t∈[0,τn]

‖u(t)‖pEp

)1/p
≤ C(n)(1 + ‖u0‖Lp(Ω,Ep))

for all n ∈ N and for some C(n) > 0 independent of u0. All in all, this proves that
(
u, (τn)n, τ

)
is a

local solution of (QSEE).

We now investigate the long-time behaviour of the local solution. It turns out, that u is a global
solution on [0, T ], if it is pathwise uniformly continuous viewed as a function with values in Ep

and one has ‖u‖Lp(0,τ ;E1) < ∞. More precisely, we have the following blow-up alternative.

Lemma 4.6. Let
(
u, (τn)n, τ

)
be the local solution of (QSEE) we constructed in Proposition 4.5. Then,

there exists a partition Ω = Γ(1) ∪ Γ(2) of the probability space Ω in disjoint sets Γ(i), i = 1, 2, such that

1.) τ = T on Γ(1).

2.) τ < T on Γ(2) and for almost all ω ∈ Γ(2) the function u(ω, ·) : [0, τ) → Ep is not uniformly
continuous or we have lim supt→τ(ω)− ‖u(ω, ·)‖Lp(0,t;E1) = ∞.
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In particular, we have

P
{
τ < T, ‖u‖Lp(0,τ ;E1) < ∞, u : [0, τ) → Ep is uniformly continuous

}
= 0.

Proof. Since one has the natural decomposition of Ω in the disjoint sets

Γ(1) = {τ = T },

Γ̃(2) = {τ < T, lim sup
t→τ−

‖u(·)‖Lp(0,t;E1) = ∞ or u : [0, τ) → Ep not uniformly continuous},

Γ̃(3) = {τ < T, ‖u‖Lp(0,τ ;E1) < ∞, u : [0, τ) → Ep is uniformly continuous},

it remains to check that Γ̃(3) is a set of measure zero. Then defining Γ(2) = Γ̃(2) ∪ Γ̃(3) completes
the proof.

Assume P(Γ̃(3)) > 0. Since u is pathwise uniformly continuous on Γ̃(3), we can extend u on
Γ̃(3) to the closed interval [0, τ ]. Moreover, since we have τn → τ pointwise almost surely, we also
have sups∈[τn,τ) ‖u(τn)− u(s)‖Ep → 0 and ‖u‖Lp(τn,τ ;E1) → 0 pointwise almost surely for n → ∞

on Γ̃(3).
By Egorov’s theorem there exists a subset Λ ⊂ Γ̃(3) of positive measure such that the above

limits are uniformly on Λ. In particular, there exists N ∈ N such that

sup
s∈[τN (ω),t]

‖u(ω, τN(ω))− u(ω, s)‖Ep + ‖u(ω, ·)‖Lp(τN (ω),t;E1) < λ/2

for all ω ∈ Λ and t ∈ [τN (ω), τ(ω)], where λ > 0 is chosen in the same way as in the construction
of our local solution in Proposition 4.5. By construction of (τn)n, the function u is a solution of
(QSEE) on [τN , τN+1], where

τN+1 = inf
{
t ∈ [τN , τ) : sup

s∈[τN ,t]

‖u(τN )− u(s)‖Ep + ‖u‖Lp(τN ,t;E1) > λ
}
∧ T.

But by choice of N , the set
{
t ∈ [τN (ω), τ(ω)) : sup

s∈[τN (ω),t]

‖u(τN (ω))− u(s)‖Ep + ‖u‖Lp(τN (ω),t;E1) > λ
}

is for all ω ∈ Λ empty and we thus have τN+1 = T on Λ. This contradicts τN+1 ≤ τ on Λ, since
we have τ < T on Γ̃(3) ⊃ Λ. Therefore we proved P(Γ̃(3)) = 0 and we established the claimed
result.

So far, we just established existence of a strong solution. Therefore we now turn our attention
to uniqueness. We start with a crucial Lemma, that guarantees that two local solutions of (QSEE)
coincide as long as they both exist.

Lemma 4.7. We assume [Q1] − [Q9]. Moreover, let
(
v, (µn)n, µ

)
be a local solution of (QSEE) and(

u, (τn)n, τ
)

the local solution constructed in the proof of Proposition 4.5. Then we have u(ω, t) = v(ω, t)
for almost all ω ∈ Ω and all t ∈ [0, µ ∧ τ).

Proof. First we define a new sequence of F-stopping times (σn)n∈N in order to compare u and v
on the intervals [σn, σn+1]. We choose λ > 0 in the same way as in the proof of Proposition 4.5
and define

σ1 := inf
{
t ∈ [0, τ) : ‖u‖Lp(0,t;E1) + ‖u− u0‖C(0,t;Ep) > λ

}
∧ τ ∧ µ

∧ inf
{
t ∈ [0, µ) : ‖v‖Lp(0,t;E1) + ‖v − u0‖C(0,t;Ep) > λ

}

and inductively

σn+1 := inf
{
t ∈ [σn, τ) : ‖u‖Lp(σn,t;E1) + ‖u− u(σn)‖C(σn,t;Ep) > λ

}
∧ τ ∧ µ
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∧ inf
{
t ∈ [σn, µ) : ‖v‖Lp(σn,t;E1) + ‖v − v(σn)‖C(σn,t;Ep) > λ

}

for all n ∈ N. First we check that (σn)n converges to τ ∧ µ pointwise almost surely. Clearly (σn)n
is increasing and bounded by τ ∧ µ and hence pointwise convergent. Since (τm ∧ µm)m is an
increasing sequence of stopping times converging to τ ∧ µ it is sufficient to show that for almost
all ω ∈ Ω and all m ∈ N there is a n ∈ N such that σn(ω) ≥ (τm ∧ µm)(ω).

Let us assume the converse, namely that there exists m ∈ N such that σn < τm ∧ µm for all
n ∈ N on a set of positive measure Γ. Define

σ
(1)
n+1 := inf

{
t ∈ [σn, T ] : ‖u‖Lp(σn,t;E1) + ‖u− u(σn)‖C(σn,t;Ep) > λ

}
,

σ
(2)
n+1 := inf

{
t ∈ [σn, T ] : ‖v‖Lp(σn,t;E1) + ‖v − v(σn)‖C(σn,t;Ep) > λ

}
,

for n ∈ N0. The σ
(i)
n+1, i = 1, 2 are F-stopping times and on Γ, we either have σn+1 = σ

(1)
n+1 or

σn+1 = σ
(2)
n+1. Thus, we either have σ

(1)
n < τm ∧ µm on a set Γ(1) ⊂ Γ of positive measure or

σ
(2)
n < τm ∧ µm on a set Γ(2) ⊂ Γ of positive measure for infinitely many n ∈ N.

In the following we just deduce a contradiction from the first of these possibilities. The other
one can be treated in the same way. In case, that there is (nk)k∈N such that σ(1)

nk < τm ∧ µm on Γ(1)

for all k ∈ N, we have

‖u‖
Lp(σnk−1,σ

(1)
nk

;E1)
+ ‖u− u(σnk−1)‖C(σnk−1,σ

(1)
nk

;Ep)
≥ λ

pathwise on Γ(1) for all k ∈ N by definition of (σ
(1)
n )n. As a consequence, there exists an-

other subsequence still denoted with (nk)k∈N such that either ‖u‖
Lp(σnk−1,σ

(1)
nk

;E1)
≥ λ/2 or ‖u −

u(σnk−1)‖C(σnk−1,σ
(1)
nk

;Ep)
≥ λ/2 for all k ∈ N on Γ(1). But both of these statements are a con-

tradiction to the fact that u : [0, τm] → Ep is almost surely uniformly continuous and satisfies
‖u‖Lp(0,τm;E1) < ∞ almost surely. Otherwise, we could pathwise estimate

‖u‖pLp(0,τm;E1) ≥
∞∑

k=1

‖u‖p
Lp(σnk−1,σ

(1)
nk

;E1)
= ∞,

whereas in the second case, we had pathwise

‖u(σ(1)
nk

)− u(σnk−1)‖Ep > λ/2

although σ
(1)
nk − σnk−1 → 0 for k → ∞. This finally proves the assertion σn → τ ∧ µ pointwise

almost surely for n → ∞.
Now we can show the result claimed in the Lemma. Clearly by the first step in the proof of

Proposition 4.5 we have a unique solution on [0, σ1], since σ1 cannot be larger than the stopping
time τ1. Therefore u = v almost surely on [0, σ1].

Now we assume, that we already proved u = v on [0, σn] for some n ∈ N. By construction of
σn+1 we have θλ(σn, t, u(t), u(σn)) = θλ(σn, t, v(t), u(σn)) = 1 almost surely for all t ∈ [σn, σn+1].
Therefore, both u and v are strong solutions of

{
dw(t) =

[
−A(u(σn))w(t) + F̃ (t, w(t)) + f(t)

]
dt+ [B(u(t)) + b(t)]dW (t),

w(σn) = u(σn)

with F̃ (t, w(t)) = Qλ,σn(t, w(t), u(σn)) + F (t, w(t)) on [σn, σn+1]. But as we have seen before in
the proof of Proposition 4.5, by choice of λ, this equation has a unique strong solution on [σn, T ].
In particular, we have u = v on [σn, σn+1].

Proceeding inductively, we obtain uniqueness of (QSEE) on [0, σn] for every n ∈ N and since
we have σn → τ ∧ µ pointwise almost surely, we obtain u = v on [0, τ ∧ µ).

As an easy consequence of the above results, we get that our solution is not only unique, but
also maximal in the sense of Definition 4.2.
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Lemma 4.8. We assume that [Q1]− [Q9] are satisfied. Then, the in Proposition 4.5 constructed stopping
time τ is maximal, i.e. if (u, (µn)n, µ) is a local solution of (QSEE) then we have µ ≤ τ almost surely.

Proof. Assume, that there is a set of positive measure Λ ⊂ Ω with µ > τ on Λ. Then for almost all
ω ∈ Λ there exists n = n(ω) ∈ N with µn(ω) > τ(ω). In particular, by definition of a local solution,
u : Λ×[0, τ ] → Ep is pathwise almost surely uniformly continuous and we have ‖u‖Lp(0,τ ;E1) < ∞
on Λ. Thus the blow-up alternative from Lemma 4.6 implies τ = T almost surely on Λ. But this
contradicts µ > τ on Λ, since µ is also bounded by T.

Our main result, Theorem 4.3, is just a summary of the above Propositions and Lemmata and
thus there is nothing left to prove. Last but not least, we state a corollary that shows, that (QSEE)
has not only a unique solution for a fixed initial value. We prove, that if two different initial values
coincide on a set of positive measure, the corresponding solutions also coincide on this set.

Corollary 4.9. We assume that [Q1]− [Q9] are satisfied. Moreover, let
(
u, τ
)

and
(
v, µ
)

be the maximal
unique strong solutions of (QSEE) to the initial values u0 ∈ Ep and v0 ∈ Ep respectively. Then we have
τ(ω) = µ(ω) and u(ω, t) = v(ω, t) for almost all ω ∈ {u0 = v0} and all t ∈ [0, τ(ω)).

Proof. From the construction of the solutions of (QSEE) in Proposition 4.5 we know, that τ and µ
are pointwise limits of the F-stopping times (τn)n and (µn)n inductively defined by τ0 = µ0 = 0
and

τn+1 = inf
{
t ∈ [τn, τ) : ‖u‖Lp(τn,t;E1) + ‖u− u(τn)‖C(τn,t;Ep) > λ

}

µn+1 = inf
{
t ∈ [µn, µ) : ‖v‖Lp(µn,t;E1) + ‖v − v(µn)‖C(µn,t;Ep) > λ

}

for some λ > 0. Moreover, u and v solve the equations

du(t) =
[
−A(u(τn))u(t) + F (n)(t, u(t)) + f(t)

]
dt+[B(t, u(t)) + b(t)]dW (t)

dv(t) =
[
−A(v(µn))v(t) + F̃ (n)(t, v(t)) + f(t)

]
dt+[B(t, v(t)) + b(t)]dW (t)

with initial values u(τn) and v(µn) in the strong sense on [τn, τn+1] and [µn, µn+1] respectively,
where the nonlinearities F and F̃ are given by

F (n)(ω, t, y) = Qλ,τn(ω, t, y, u(τn)) + F (ω, t, y)

F̃ (n)(ω, t, y) = Qλ,µn(ω, t, y, v(µn)) + F (ω, t, y).

To verify the claimed result, it suffices to check that τn = µn on {u0 = v0} and that u and v
coincide on {u0 = v0} × [0, τn] for every n ∈ N. We do this inductively. By Corollary 3.3, u and v
coincide almost surely on {u0 = v0} up to τ1 ∧ µ1. But τ1 and µ1 only depend on the initial values
and the pathwise behaviour of u and v and therefore we have τ1 = µ1 almost surely on {u0 = v0}.
With the very same argument, one checks that if τn = µn and u coincide v almost surely up to
τn = µn on {u0 = v0}, then one also has τn+1 = µn+1 almost surely and u and v coincide on
{u0 = v0} × [τn, τn+1].

4.2 Local Lipschitz continuous quasilinearity

In [Q4] and [Q5], we assumed a uniform boundedness of the H∞-calculus of A(ω, u(t)) and a
global Lipschitz condition on A. However, we established a local well-posedness theorie only
using local methods. Therefore we can generalize our result in the next section and allow local
Lipschitz continuous nonlinearities and local boundedness of the H∞-calculus. We replace [Q4]−
[Q7] by the following assumptions.

[Q4*] For all n ∈ N, there exists µ(n), C(n) > 0 such that the operators µ(n) + A(ω, y) have a
bounded H∞(Ση(n))-calculus of angle η(n) ∈ (0, π/2) with

‖φ(µ(n) +A(ω, y))‖B(E) ≤ C(n)‖φ‖H∞(Ση)

for all φ ∈ H∞(Ση(n)), y ∈ Ep with ‖y‖Ep ≤ n and almost all ω ∈ Ω.
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[Q5*] For all n ∈ N there exist CQ(n) > 0 such that

‖A(ω, z)−A(ω, y)‖B(E1,E) ≤ CQ(n)‖z − y‖Ep

for all y, z ∈ Ep with ‖y‖Ep, ‖z‖Ep ≤ n and almost all ω ∈ Ω.

[Q6*] F = F1 + F2 : Ω × [0, T ] × E1 → E is strongly measurable and ω 7→ F (ω, t, x) is for all
t ∈ [0, T ] and x ∈ E1 strongly Ft-measurable. F2 satisfies the estimates of [Q7]. Moreover,
given n ∈ N, there exist LF1(n), CF1(n) ≥ 0, such that F1 is locally of linear growth, i.e.

‖F1(ω, t, φ1)‖E ≤ CF1(n)
(
1 + ‖φ1‖Ep

)

and locally Lipschitz continuous, i.e.

‖F1(ω, t, φ1)− F1(ω, t, φ2)‖E ≤ LF1(n)‖φ1 − φ2‖Ep

for all φ1, φ2 ∈ Ep with ‖φ1‖Ep , ‖φ2‖Ep ≤ n, for all t ∈ [0, T ] and for almost all ω ∈ Ω.

[Q7*] The function B = B1 + B2 : Ω × [0, T ] × E1 → γ(H,E1/2) is strongly measurable and
ω 7→ B(ω, t, x) is for all t ∈ [0, T ] and x ∈ E1 strongly Ft-measurable. B2 satisfies the
estimates of [Q7]. Moreover, there exist LB1(n), CB1(n) ≥ 0 such that B1 is locally of linear
growth, i.e.

‖B1(ω, t, φ1)‖γ(H;E1/2) ≤ CB1(n)
(
1 + ‖φ1‖Ep

)

and locally Lipschitz, i.e.

‖B1(ω, t, φ1)−B1(ω, t, φ2)‖γ(H;E1/2) ≤ LB1(n)‖φ1 − φ2‖Ep

for all φ1, φ2 ∈ Ep with ‖φ1‖Ep , ‖φ2‖Ep ≤ n, for all t ∈ [0, T ] and for almost all ω ∈ Ω.

To construct a solution of (QSEE) for given F0-measurable u0 : Ω → Ep, we first investigate the
truncated equation

{
du(t) = [−An(u(t))u(t) + Fn(t, u(t)) + f(t)] dt+[Bn(t, u(t)) + b(t)]dW (t),

u(0) = u01Γn ,
(4.4)

whereAn(ω, y) := A(ω,Rny), Fn(ω, t, y) := F1(ω, t, Rny)+F2(ω, t, y), Bn(ω, t, y) := B1(ω, t, Rny)+
B2(ω, t, y) and Γn := {‖u0‖Ep ≤ n

2 }. The cut-off mapping Rn : Ep → Ep is defined by

Rny =

{
y, if ‖y‖Ep ≤ n

ny
‖y‖Ep

, if ‖y‖Ep > n.
(4.5)

The idea to use such a truncation to extend global Lipschitz nonlinearities to local ones was used
several time in case of semilinear equations (see e.g. [10], Theorem 4.10, [50], Proposition 5.4, [55],
Theorem 8.1). The following Lemma can be checked easily.

Lemma 4.10. Given n ∈ N, the mapping Rn : Ep → Ep defined in (4.5) is Lipschitz, i.e.

‖Rnx−Rny‖Ep ≤ 2‖x− y‖Ep.

In particular, An satisfies [Q4], [Q5] and Fn and Bn satisfy [Q6] and [Q7] respectively.

We can apply Theorem 4.3 to the truncated equation (4.4) and obtain for every n ∈ N a unique
maximal local solution

(
un, (τnk)k, τn

)
. To do this, note that one can infix the spectral shift from

[Q4*], i.e. we solve actually solve
{
du(t) =

[
−Ãn(u(t))u(t) + F̃n(t, u(t)) + f(t)

]
dt+[Bn(t, u(t)) + b(t)]dW (t),

u(0) = u01Γn ,
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with Ãn(u(t))u(t) = µ(n) + An(u(t))u(t) and F̃n(t, u(t)) = Fn(t, u(t)) + µ(n). In each case, un

satisfies (QSEE) on Γn × [0, σn), where σn is defined by

σn := τn ∧ inf
{
t ∈ [0, τn) : ‖un(t)‖Ep > n

}
. (4.6)

Note, that σn is indeed an F-stopping time, since τn is one and entrance times of F-adapted pro-
cesses into open sets are also stopping times. In the following Lemma, we show that the sequence
(σn)n increases pathwise starting from a large enough n ∈ N.

Lemma 4.11. There is a set N ⊂ Ω with P(N) = 0 such that the sequence
(
σn(ω)

)
n∈N

is for all ω ∈ Ω\N

monotonously increasing beginning from some n = n(ω) ∈ N. Moreover, we have uk(ω, t) = ul(ω, t) for
all l > k ≥ n(ω) and t ∈ [0, σk(ω)).

Proof. Given ω ∈ Ω, choose n = n(ω) such that ω ∈ Γn. Since ‖u0‖Ep is almost surely finite, this
can be done for almost all ω ∈ Ω. We first prove, that we have uk(ω, t) = ul(ω, t) for almost all
ω ∈ Γn and all t ∈ [0, σk(ω) ∧ σl(ω)). Clearly, both uk and ul solve

{
du(t) = [−Al(u(t))u(t) + Fl(t, u(t)) + f(t)] dt+[Bl(t, u(t)) + b(t)]dW (t),

u(0) = u01Γn

(4.7)

in the strong sense on [0, σk) and [0, σl) respectively and therefore the uniqueness result from
Lemma 4.9 directly yields the almost sure coincidence of ul and uk on Γn × [0, σl ∧ σk).

To prove the pathwise monotonicity of the stopping times on Γn, we distinguish the cases
Γn = Λn ∪̇ Λ̃n ∪̇ N̂ with a null-set Ñ ,

Λn = Γn ∩ { sup
s∈[0,τl)

‖ul(s)‖Ep ≤ l}

and
Λ̃n = Γn ∩ { sup

s∈[0,τl)

‖ul(s)‖Ep > l}.

In particular, we have σl = τl on Λn and σl = inf{t ∈ [0, τl) : ‖ul(t)‖Ep > l} on Λ̃n. As an
immediate consequence, we get σk ≤ τl = σl almost surely on Λn, since τl was chosen as the
maximal stopping time of a solution of (4.4) which coincides with the maximal time of existence of
(4.7) on Γn. On Λ̃n, we argue differently. Here, it suffices to note, that by almost sure coincidence
of ul and uk on Γn × [0, σl ∧ σk), we have

sup
s∈[0,σk∧σl)

‖ul(s)‖Ep = sup
s∈[0,σk∧σl)

‖uk(s)‖Ep ≤ k,

whereas
sup

s∈[0,σl)

‖ul(s)‖Ep = l.

Thus, we must have σk < σl on Λ̃n. Putting these cases together, we finally proved the claimed
result, namely σk ≤ σl almost surely on Γn. Last but not least, we choose N as the union of all
sets of measure zero, we excluded in this proof.

We proved, that (σn)n is, at least for large natural numbers, pathwise almost surely monoton-
ously increasing and we know from the definition of (σn)n that the sequence is bounded by T.
Therefore we can define the F-stopping time

µ = lim
n→∞

σn. (4.8)

Now let ω ∈ Ω \N and t ∈ [0, µ). Choose n = n(ω, t) large enough such that both ω ∈ Γn and
σn(ω) > t and define

u(ω, t) := un(ω, t). (4.9)
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Note, that u is well-defined. Indeed, let ω ∈ Ω \ N , t ∈ [0, µ(ω)) and k another natural number
with (ω, t) ∈ Γk× [0, σk). Then, Lemma 4.11 implies un(ω, t) = uk(ω, t). To complete the definition
of u, we set u ≡ 0 on N × [0, µ).

Since the un are strong solutions of (QSEE) on Γn × [0, σn), u is a good candidate for a local
solution of (QSEE) on Ω × [0, µ). We just have to find a sequence of stopping times (µn)n, that
approximates µ, such that u ∈ C(0, µn;Ep) ∩ Lp(0, µn;E

1) almost surely for all n ∈ N and such
that u is a strong solution of (QSEE) on [0, µn]. Note, that σn does not need to have this property,
since we used the maximal stopping times τn in the definition of σn and therefore, we cannot
preclude that σn is a blow-up time on some paths.

Theorem 4.12. We assume that [Q1] − [Q3], [Q4*], [Q5*], [Q6] − [Q9] are satisfied. Then, there is an
increasing sequence of F-stopping times (µn)n, such that

(
u, (µn)n, µ

)
is a maximal unique local solution

of

(QSEE)

{
du(t) = [−A(u(t))u(t) + F (t, u(t)) + f(t)] dt+[B(t, u(t)) + b(t)]dW (t)

u(0) = u0

Moreover, we have the following blow-up alternative. There exist a partition Ω = Γ(1) ∪ Γ(2) of the
probability space Ω in disjoint sets Γ(i), i = 1, 2, such that

1.) µ = T on Γ(1).

2.) µ < T on Γ(2) and for almost all ω ∈ Γ(2) the function u(ω, ·) : [0, µ(ω)) → Ep is not uniformly
continuous or we have lim supt→µ(ω)− ‖u(ω, ·)‖Lp(0,t;E1) = ∞.

In particular, we have

P
{
µ < T, ‖u‖Lp(0,µ;E1) < ∞, u : [0, µ) → Ep is uniformly continuous

}
= 0.

Proof. First we construct the sequence of stopping times (µn)n∈N. Recall the definition of σn in
(4.6) and of µ in (4.8). If we additionally set

σnk := τnk ∧ inf
{
t ∈ [0, τn) : ‖un‖Ep > n

}
,

we have the pointwise almost sure convergences µ = limn→∞ σn and σn = limk→∞ σnk. Since the
stopping times σn, σnk are all bounded by T, the dominated convergence theorem yields σn → µ
for n → ∞ and σnk → σn in L1(Ω) for k → ∞. If we now choose for given n ∈ N the natural
number k(n) such that ‖σn − σnk(n)‖L1(Ω) ≤ 1/n, we obtain σnk(n) → σ in L1(Ω) for n → ∞.
Choosing a suitable subsequence still denoted by (σnk(n))n∈N yields σnk(n) → σ pointwise almost
surely for n → ∞. Moreover, since (Γn)n is an increasing sequence with Ω = ∪n∈NΓn, we also
have σnk(n)1Γn → σ pointwise almost surely for n → ∞. Unfortunately this sequence is not
necessarily increasing anymore. Therefore we define

µn := max
i∈{1,...,n}

σik(i)1Γi

and prove that (µn)n is the sequence, we wanted to construct. Clearly, since σnk(n) is for all n ∈ N

an F-stopping time and Γn ∈ F0, µn is also an F-stopping time. Furthermore the trivial bounds
σnk(n) ≤ µn ≤ µ for every n ∈ N yield µn → µ pointwise almost surely.

It remains to check that u is strong solution of (QSEE) on [0, µn]. Obviously, it is sufficient to
show that u is a strong solution of (QSEE) on Γn × [0, σnk] for all n, k ∈ N. We have u(ω, t) =
un(ω, t) for almost all ω ∈ Γn and all t ∈ [0, σn(ω)) ⊃ [0, σnk(ω)] by definition of u. Since un is
a strong solution of the truncated equation (4.5) on [0, τnk] and in particular a strong solution of
(QSEE) on Γn × [0, σnk], we conclude that u itself is a strong solution of (QSEE) on Γn × [0, σnk].

Next, we prove the blow-up alternative for u. As in the proof of Lemma 4.6, it is sufficient to
show

P
{
µ < T, ‖u‖Lp(0,µ;E1) < ∞, u : [0, µ) → Ep is uniformly continuous

}
= 0.
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Since uniformly continuous functions on a bounded interval are always bounded, we only need
to prove P(Ωn) = 0 for every n ∈ N, where Ωn is given by

Ωn :=
{
µ < T, ‖u‖Lp(0,µ;E1) < ∞, u : [0, µ) → Ep is uniformly continuous,

‖u‖C(0,µ;Ep) ∈ [n−1
2 , n

2 )
}
.

We first show, that for almost all ω ∈ {‖u‖C(0,µ;Ep) ∈ [n−1
2 , n

2 )}, we have µ(ω) = τn(ω).
Clearly τn = σn on {‖u‖C(0,µ;Ep) ∈ [n−1

2 , n
2 )}. Furthermore the sequence (σk)k≥n increases on

the even larger set Γn by Lemma 4.11 and converges to µ. Thus we have τn ≤ µ on {‖u‖C(0,µ;Ep) ∈

[n−1
2 , n

2 )}.
On the other hand, we have τn ≥ µ on {‖u‖C(0,µ;Ep) ∈ [n−1

2 , n
2 )}, since on this subset of Ω, u

solves the truncated equation
{
dw(t) = [−An(w(t))u(t) + Fn(t, w(t)) + f(t)] dt+[Bn(t, w(t)) + b(t)]dW (t),

w(0) = u01Γn ,
(4.10)

where Γn was given by {‖u0‖Ep ≤ n/2}, and (un, τn) was defined as the the maximal unique
solution of this equation. This finally proves τ = µ on {‖u‖C(0,µ;Ep) ∈ [n−1

2 , n
2 )} and the above

argument also shows u(ω, t) = un(ω, t) for almost all ω ∈ {‖u‖C(0,µ;Ep) ∈ [n−1
2 , n2 )} and all

t ∈ [0, µ(ω). In conclusion, we have

P
{
µ < T, ‖u‖Lp(0,µ;E1) < ∞, u : [0, µ) → Ep is uniformly continuous,

‖u‖C(0,µ;Ep) ∈ [n−1
2 , n

2 )
}

=P
{
τn < T, ‖un‖Lp(0,τn;E1) < ∞, un : [0, τn) → Ep is uniformly continuous,

‖un‖C(0,τn;Ep) ∈ [n−1
2 , n

2 )
}

and by the blow-up Lemma 4.6 this quantity equals zero.
It remains to check, that

(
u, (µn)n, µ

)
is a maximal unique solution. Let

(
v, (κn)n, κ

)
be another

local solution of (QSEE). We first prove that u and v coincide on Ω× [0, µ∧κ). Define the sequence
(ρn)n of F-stopping times by

ρn := inf
{
t ∈ [0, µ) : ‖u‖Ep > n

}
∧ inf

{
t ∈ [0, κ) : ‖v‖Ep > n

}
∧ µ ∧ κ

for n ∈ N. Then both u and v solve the truncated equation (4.10) on Γ× [0, ρn) and this equation
is uniquely solvable up to a maximal stopping time, which implies u(ω, t) = v(ω, t) for almost all
ω ∈ Γn and all t ∈ [0, ρn). Since ρn → µ ∧ κ almost surely for n → ∞ and ∪∞

n=1Γn = Ω \ Ñ for
some set of measure zero Ñ, we conclude that u and v coincide on Ω × [0, µ ∧ κ). Maximality is
then a consequence of the blow-up alternative we derived above. Indeed, if we had κ > µ on a set
of postive measure Λ, then u : Λ× [0, µ) → Ep would be pathwise uniformly continuous and we
had ‖u‖Lp(0,µ;E1) < ∞ almost surely on Λ. But this would imply µ = T on Λ, which contradicts
κ > µ on Λ, since κ is also bounded by T.

5 Examples

5.1 A quasilinear parabolic equation on Rd

In this section, we give a straightforward example, namely
{
du(t) =

[∑d
i,j=1 aij(·, u(t),∇u(t))∂i∂ju(t) + f(t)

]
dt+B(t, u(t))dW (t),

u(0) = u0

on Rd and we prove existence and uniqueness of a local strong solution in Lp(Rd) under the
following hypothesis.
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[E1] The coefficient matrix a = (aij)i,j=1,...,d : Rd × C× Cd → Cd×d is uniformly elliptic, i.e.

ess inf
y∈C,z∈Cd,x∈Rd

inf
|ξ|=1

Re ξTa(x, y, z)ξ = δ0 > 0.

Moreover, a is bounded and β-Hölder continuous in the first and locally Lipschitz contin-
uous in the second and the third component, i.e. for every n ∈ N, there exists C,L(n) > 0,
L̃(n) > 0 such that

|a(x, y, ỹ)− a(x̃, z, z̃)| ≤ C|x− x̃|β + L(n)|y − z|+ L̃(n)|ỹ − z̃|

for all x, x̃ ∈ Rd and all |y|, |z|, |ỹ|, |z̃| < n.

[E2] We choose p, q ∈ (2,∞), such that 1− 2/p > d/q.

[E3] The initial value u0 : Ω → B
2−2/p
q,p (Rd) is a strongly F0- measurable random variable.

[E4] The driving noise W is an l2- cylindrical Brownian motion of the form

W (t) =
∞∑

k=1

ekβk(t),

where (ek)k is the standard orthonormal basis of l2 and (βk)k is a sequence of independent
real-valued Brownian motions relative to the filtration (Ft)t∈[0,T ].

[E5] B = (B
(1)
k )k∈N + (B

(2)
k )k∈N : Ω × [0, T ]× Rd × C × Cd → l2(N) is strongly measurable and

ω 7→ B(ω, t, x, y, z) is for all t ∈ [0, T ], x ∈ Rd, y ∈ C and z ∈ Cd strongly Ft-measurable.
Furthermore, (B(1)

k )k is locally of linear growth, i.e.

‖(B
(1)
k )k(ω, t, ·, y,∇y)‖γ(l2;W 1,q(Rd)) ≤ C(n)(1 + ‖y‖

B
2−2/p
q,p (Rd)

)

and Lipschitz continuous, i.e. there is L(n) > 0 such that

‖(B
(1)
k )k(ω, t, ·, y,∇y)− (B

(1)
k )k(ω, t, ·, z,∇z)‖γ(l2;W 1,q(Rd)) ≤ L(n)‖y − z‖

B
2−2/p
q,p (Rd)

for all y, z ∈ B
2−2/p
q,p (Rd) with norm at most n, all t ∈ [0, T ] and almost all ω ∈ Ω. Further-

more (B
(2)
k )k is also of linear growth, i.e.

‖(B
(2)
k )k(ω, t, ·, y,∇y)‖γ(l2;W 1,q(Rd)) ≤ C(1 + ‖y‖W 2,q(Rd))

and Lipschitz continuous, i.e. there is LB, L̃B > 0 such that

‖(B
(2)
k )k(ω, t, ·, y,∇y)− (B

(2)
k )k(ω, t, ·, z,∇z)‖γ(l2;W 1,q(Rd))

≤ LB‖y − z‖W 2,q(Rd) + L̃B‖y − z‖Lq(Rd)

for all y, z ∈ W 2,q(Rd) with norm at most n, all t ∈ [0, T ] and almost all ω ∈ Ω. Here, LB

must be small enough in the sense of assumption [Q8] in the previous section.

[E5] f ∈ Lp(Ω× [0, T ];Lq(Rd)) is strongly measurable and F-adapted.

We want to apply Theorem 4.12 with A(z) = −
∑d

i,j=1 aij(·, z,∇z)∂i∂j and choose the spaces E =

Lq(Rd), E1 = W 2,q(Rd) and (E,E1)1−1/p,p = B
2−2/p
q,p (Rd). Due to our assumptions, [Q1] − [Q3],

[Q6*], [Q7*] and [Q8], [Q9] are directly fulfilled.
It remains to discuss [Q4∗], [Q5∗]. By [5], Theorem 9.1, elliptic operators of the form B =

µ−
∑

i,j=1 bij(x)∂i∂j with Hölder continuous coefficients have a bounded H∞(Σθ)-calculus with
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angle 0 < θ < π/2 if µ > 0 is large enough. Following the proof step by step, one sees that µ, θ
and C > 0 in

‖f(B)‖B(Lq(Rd)) ≤ C‖f‖H∞(Σθ)

only depend on the supremum, the ellipticity and the modulus of continuity of (bij)i,j .
Since, we choose 1−2/p−d/q > 0, the Sobolev embedding B

2−2/p
q,p (Rd) →֒ C1,α(Rd) holds true

for some α > 0. In particular, the modulus of continuity of z,∇z and the quantities ‖z‖∞, ‖∇z‖∞
are controlled by ‖z‖

B
2−2/p
q,p (Rd)

. Consequently, both the modulus of continuity of a(·, z,∇z) and
‖a(·, z,∇z)‖∞ depend on ‖z‖

B
2−2/p
q,p (Rd)

. Thus, given n ∈ N, there exists C(n), µ(n) > 0, θ(n) ∈

(0, π/2) such that the operators µ(n) +A(z) all have a bounded H∞(Σθ(n))-calculus with

‖f(µ(n) +A(z))‖B(Lq(Rd)) ≤ C(n)‖f‖H∞(Σθ(n))

for all ‖z‖
B

2−2/p
q,p (Rd)

≤ n. This shows [Q4∗].

For given y, z ∈ B
2−2/p
q,p (Rd) with norm at most n, we estimate

‖A(y)v −A(z)v‖Lq(Rd) ≤
d∑

i,j=1

‖(aij(·, y,∇y)− aij(·, z,∇z))∂i∂jv‖Lq(Rd)

≤
d∑

i,j=1

‖(aij(·, y,∇y)− aij(·, z,∇z))‖∞‖v‖W 2,q(Rd)

≤
d∑

i,j=1

(
L(n)‖y − z‖∞ + L̃(n)‖∇y −∇z‖∞

)
‖v‖W 2,q(Rd)

. (L(n) + L̃(n))‖y − z‖
B

2−2/p
q,p (Rd)

‖v‖W 2,q(Rd)

almost surely for all v ∈ W 2,q(Rd), which is the in [Q5∗] demanded Lipschitz estimate.
All in all, Theorem 4.12 yields a maximal unique local strong solution (u, (τn)n, τ) with

u ∈ Lp(0, τn;W
2,q(Rd)) ∩ C(0, τn;B

2−2/p
q,p (Rd))

pathwise almost surely for every n ∈ N and τ satisfies

P
{
τ < T, ‖u‖Lp(0,τ ;W 2,q(Rd)) < ∞, u : [0, τ) → B2−2/p

q,p (Rd) is uniformly continuous
}
= 0.

5.2 The incompressible Navier-Stokes system for generalized-Newtonian flu-
ids

We now deal with a stochastic model in fluid dynamics. This example is inspired by Bothe and
Prüss, who treated the same model in a deterministic setting (see [9]).

Throughout this section the divergence of a d×d-matrix T is a vector field defined by (div T )i =∑d
k=1 ∂kTik and ∇f is the Jacobian of the vector field f. We start with a universal model for fluids,

namely

(FM)





du(t) = [−(u(t) · ∇)u(t) + divS(t) + f(t)] dt+[g(u(t),∇u(t))−∇p̃]dW (t),

S(t) = µ̃(t)− p(t)I,

div u(t) = 0,

u(0) = u0.

Here, u : [0, T ] × Rd → Cd is the macroscopic velocity. Since the density of a perfect fluid is as-
sumed to be constant and can therefore be chosen identically one, the continuity equation implies
div(u) = 0. Moreover, as in every perfect fluid, the total stress tensor S : [0, T ] × Rd → Cd×d is
a sum of the viscous stress µ̃ : [0, T ] × Rd → Cd×d and the hydrostatic pressure pI , where p is
scalar-valued.
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In the following, we discuss generalized Newtonian fluids, that are characterised by the as-
sumption µ̃ = 2µ(|E|22)E , where E = 1

2 (∇u + ∇uT ) is the symmetrized derivative of the ve-
locity, the so called rate-of-strain tensor and | · |2 is the Hilbert-Schmidt norm on Cd×d. There
are many examples for this model, e.g. the Ostwald-de-Waele power-law µ(s) = µ0s

m/2−1 for
m ≥ 1 and µ0 > 0, the Carreau model µ(s) = µ0(1 + s)m/2−1 or the truncated Spriggs law
µ(s) = µ0s

m/2−1
1[s0,∞)(s) for some s0 > 0. For details about generalized Newtonian fluids, we

refer to chapter 5 in the monograph of Armstrong, Bird and Hassager ([8]). Last but not least, we
would like to mention, that the stochastic perturbation of the classical equation covers a model
for turbulent flows introduced by Kraichnan, namely noise of the form g(u,∇u) = (σ ·∇)u+ b(u).
In the mathematical literature, such a noise perturbation was discussed several times in case of
Newtonian fluids with µ̃ = µ0E (see e.g. [11], [44] and [56]).

As a first step, we derive a quasilinear evolution equation from (FM). Using the product rule
and div(u) = 0, we calculate

( divS)i = div
(
µ(|E|22)2E − pI

)
i
=
(
µ(|E|22) div(2E) + µ′(|E|22)∇(|E|22) · 2E

)
i
− ∂ip

= µ(|E|22)
d∑

k=1

(
∂k∂iuk + ∂2

kui

)
+ µ′(|E|22)

d∑

j,k,l=1

(∂lui + ∂iul)(∂kuj + ∂juk)∂k∂luj − ∂ip

= µ(|E|22)
d∑

k=1

∂2
kui + µ′(|E|22)

d∑

j,k,l=1

(∂lui + ∂iul)(∂kuj + ∂juk)∂k∂luj − ∂ip.

All in all, we get the quasilinear system




du(t) = [−A(u(t))u(t)−∇p(t)− (u(t) · ∇)u(t) + f(t)] dt+[g(u(t),∇u(t))−∇p̃]dW (t),

div u(t) = 0,

u(0) = u0,

with

(A(z)u)i = −µ(|∇z+∇zT

2 |22)
d∑

k=1

∂2
kui − µ′(|∇z+∇zT

2 |22)
d∑

j,k,l=1

(∂lzi + ∂izl)(∂kzj + ∂jzk)∂k∂luj.

We consider this equation on Lp(Rd)d, 2 < p < ∞, and as usual in the context of fluid dynamics,
we use the Helmholtz decomposition

Lp(Rd)d = Lp
σ(R

d)⊕∇H1(Rd),

where Lp
σ(R

d) = {f ∈ Lp(Rd)d : div(f) = 0}. Note that this decomposition exists for all p ∈ (1,∞)
and induces the bounded Helmholtz projection P : Lp(Rd)d → Lp

σ(R
d). Applying P yields the

evolution equation

(QNS)

{
du(t) = [−PA(u(t))u(t)− P (u(t) · ∇)u(t) + Pf(t)] dt+Pg(u(t),∇u(t))dW (t),

u(0) = u0

in Lq
σ(R

d) for the velocity u.
In the following, we use the abbreviations Bs

q,p,σ(R
d) := {f ∈ Bs

q,p(R
d)d : div(f) = 0} and

W s,q
σ (Rd)d := {f ∈ W s,k(Rd) : div(f) = 0}. We thread (QNS) under the following assumptions.

[QN1] Let µ : R≥0 → R>0 be continuously differentiable, such that µ′ is still locally Lipschitz
continuous, i.e. for every n ∈ N there exists C(n) > 1 such that

|µ′(x)− µ′(y)|+ |µ(x)− µ(y)| ≤ C(n)|x − y|

for all 0 ≤ x, y ≤ n. Moreover, we assume µ(s) + 2sµ′(s) > 0 for all s ≥ 0.
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[QN2] We choose p, q ∈ (2,∞), such that 1− 2/p > d/q.

[QN3] The initial value u0 : Ω → B
2−2/p
q,p,σ (Rd) is a strongly F0- measurable random variable.

[QN3] The driving noise W is an l2- cylindrical Brownian motion of the form

W (t) =

∞∑

k=1

ekβk(t),

where (ek)k is the standard orthonormal basis of l2 and (βk)k is a sequence of independent
real-valued Brownian motions relative to the filtration (Ft)t∈[0,T ].

[QN4] g = (g
(1)
n )n + (g

(2)
n )n : Ω × [0, T ] × Rd × Cd × Cd×d → l2(N)d is strongly measurable and

ω 7→ g(ω, t, x, y, z) is for all t ∈ [0, T ], x ∈ Rd, y ∈ Cd and z ∈ Cd×d strongly Ft-measurable.
Furthermore, (g(1)n )n is of linear growth, i.e.

‖(g(1)n )n(ω, t, ·, z,∇z)‖γ(l2;W 1,q(Rd)d) ≤ C(1 + ‖z‖W 2,q
σ (Rd))

and Lipschitz continuous, i.e. there are constants LB, L̃B > 0 such that

‖(g(1)n )n(ω, t, ·, y,∇y)− (g(1)n )n(ω, t, ·, z,∇z)‖γ(l2;W 1,q(Rd)d)

≤ LB‖y − z‖W 2,q
σ (Rd) + L̃B‖y − z‖Lq

σ(Rd)

for all y, z ∈ W 2,q
σ (Rd), t ∈ [0, T ] and almost all ω ∈ Ω. Here, LB must be small enough in

the sense of assumption [Q8] in the previous section. Furthermore, (g(2)n )n is locally of linear
growth, i.e.

‖(g(2)n )n(ω, t, ·, y,∇y)‖γ(l2;W 1,q(Rd)d) ≤ C(k)(1 + ‖y‖
B

2−2/p
q,p,σ (Rd)

)

and locally Lipschitz continuous, i.e.

‖(g(2)n )n(ω, t, ·, y,∇y)− (g(2)n )n(ω, t, ·, z,∇z)‖γ(l2;W 1,q(Rd)d) ≤ L(k)‖y − z‖
B

2−2/p
q,p,σ (Rd)

for all y, z ∈ B
2−2/p
q,p,σ (Rd) with norm at most k ∈ N, all t ∈ [0, T ] and almost all ω ∈ Ω.

[QN5] f ∈ Lp(Ω× [0, T ];Lq(Rd)d) is strongly measurable and F-adapted.

We want to apply Theorem 4.12 in E = Lq
σ(R

d), E1 = W 2,q
σ (Rd). The trace space is then given

by (E,E1)1−1/p,p = B
2−2/p
q,p,σ (Rd). Due to our assumptions, [Q1]− [Q3], [Q6*], [Q7*] and [Q8], [Q9]

are directly fulfilled. We now check [Q4*], i.e. we have to prove that PA(z) has for every z ∈

B
2−2/p
q,p,σ (Rd) a bounded H∞-calculus. In the following Proposition, we restate a result of Bothe and

Prüss (see [9], proof of Theorem 4.1). Unlike Bothe and Prüss, we need the precise dependence of
all involved constants from z. Therefore, we need an additional argument.

Lemma 5.1. We assume [QN1] and [QN2]. Then, for every z ∈ B
2−2/p
q,p,σ (Rd), there exists γ > 0, θ ∈

[0, π/2), such that the operator γ + PA(z) is R-sectorial in Lq
σ(R

d) on the sector Σθ. Moreover, γ, θ and
the bound Cν > 0 in

R
({

λR(λ, γ + PA(z))
}
⊂ B(Lq

σ(R
d))
)
≤ Cν

for given ν > θ only depends on ‖z‖
B

2−2/p
q,p,σ (Rd)

.

Proof. Bothe and Prüss derive from [QN1] the strong ellipticity of A(z) (see [9], page 385). Thus,
it is sufficient to show that given u ∈ Cα(Rd)d

2

∩ Lq(Rd)d
2

and a strongly elliptic operator
B(u) = −

∑
|β|=2 bβ(u)D

β with locally Lipschitz continuous coefficients bβ : Cd2

→ Cd×d, the
above statement holds true with PA(·) replaced by PB(·) and θ, Cν and µ only depend on the
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Hölder norm ‖u‖α and on ‖u‖Lq(Rd)d2 . Indeed, the above statement then follows directly by the
Sobolev embeddings

B1−2/p
q,p (Rd)d×d →֒ Cα(Rd)d

2

∩ Lq(Rd)d
2

for some α ∈ (0, 1).
Note, that in the original, the authors prove that γ − PB(u) has the maximal regularity prop-

erty in Lq
σ(R

d). But this is well-known to be equivalent to our statement. We can follow their
argument step by step, we just have to argue, that the spectral shift and the maximal regularity
constant only depend on ‖u‖α and on ‖u‖Lq(Rd)d2 . In Corollary 6.2, the authors prove, that one
still has maximal regularity, if one perturbs a constant coefficient elliptic operator with functions,
whose supremum is smaller than some η > 0. This η only depends on the ellipticity and the
supremum of the coefficients. For the general case, their idea is to use the uniform continuity of
the coefficients and convergence at infinity to choose finitely many balls Bi with center xi, such
that |bβ(u(x)) − bβ(u(xi))| < η for all x ∈ Bi and |bβ(u(x)) − bβ(0)| < η for x /∈ ∪iBi. Then, they
localize the equation with a partition of unity subordinate to these balls, solve locally and put
the local solutions together. It turns out, that both γ and the maximal regularity constant only
depend on the ellipticity and the supremum of the coefficients and the number of balls needed in
this argument. So, we have to estimate the number of balls by a quantity that can be controlled
by ‖u‖α and ‖u‖Lq(Rd)d2 .

Fix u ∈ Cα(Rd)d
2

∩ Lq(Rd)d
2

and let C(‖u‖∞) > 1 such that we have

|bβ(x) − bβ(y)| ≤ C(‖u‖∞)|x− y|

for all |x|, |y| ≤ ‖u‖∞. We divide Rd in the two disjoint subsets
{
|u| ≥ η

2C(‖z‖∞)

}
and {|u| <

η
2C(‖z‖∞)} and we define δ :=

(
η

6‖u‖αC(‖u‖∞)

)1/α
. Then, by compactness and Vitali’s covering

Lemma (see e.g. [28], Lemma 2.1.5), there are disjoint balls (B(i)
δ )i=1,...,N with radius δ and center

xi ∈
{
|u| ≥ η

2C(‖z‖∞)

}
, such that

{
|u| ≥ η

2C(‖z‖∞)

}
⊂

N⋃

i=1

B
(i)
3δ .

(B
(i)
3δ )i=1,...,N are the balls we are looking for. Indeed, for x /∈ ∪N

i=1B
(i)
3δ , we have |u(x)| ≤ η/2 and

for x, y ∈ B
(i)
3δ , we have

|bβ(u(x)) − bβ(u(y))| ≤ C(‖u‖∞)‖u‖α(3δ)
α ≤ 3αη

6 ≤ η
2 .

It remains to estimate the size of N. We have

∪N
i=1B

(i)
δ ⊂

{
|u| > η

4C(‖u‖∞)

}
.

Indeed, given y ∈ B
(i)
δ for some i = 1, . . . , N, we obtain

|u(y)| ≥ |u(xi)| − |u(xi)− u(y)| ≥ η
2C(‖u‖∞) − ‖u‖αδ

α = η
2C(‖u‖∞) −

η
6C(‖u‖∞) =

η
3C(‖u‖∞) .

Consequently, using that the B
(i)
δ are disjoint, we get

CdNδd =
∣∣∣

N⋃

i=1

B
(i)
δ

∣∣∣ ≤
∣∣∣
{
|u| > η

4C(‖u‖∞)

}∣∣∣ ≤
4qC(‖u‖∞)q‖u‖q

Lq(Rd)d2

ηq

with Chebyshev’s inequality, where Cd is the volume of the unit sphere in Rd. This yields finally

N ≤
4q6d/α‖u‖q

Lq(Rd)d2
‖u‖

d/α
α C(‖u‖∞)d/α+q

Cdηq+d/α
.
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Next, we conclude, that the operators γ + PA(z) from the above Lemma also have a bounded
H∞-calculus. Our proof of [Q4*] adapts the arguments of [35], Proposition 9.5 to our situation. A
key ingredient is Sneiberg’s Lemma.

Lemma 5.2. Let (Xθ)θ∈(0,1) and (Yθ)θ∈(0,1) be complex interpolation scales of Banach spaces and let
S : Xθ → Yθ for each θ ∈ (0, 1) be a bounded linear operator. If S is for some θ0 ∈ (0, 1) an isomorphism
between Xθ0 and Yθ0 , then there is a δ ∈ (0, 1) such that S is also an isomorphism between Xµ and
Yµ for µ ∈ (θ0 − δ, θ0 + δ). In particular, ‖S−1‖B(Yµ,Xµ) depends on ‖S‖B(Xµ,Yµ), ‖S‖B(Xθ0

,Yθ0
),

‖S−1‖B(Yθ0
,Xθ0

) and |µ− θ0|.

A proof can be found in [58], Theorem 3.6. The precise dependence of ‖S−1‖B(Yµ,Xµ) on the
other parameters is stated in Theorem 2.3 in the same article. The original proof is due to Sneiberg
(see [51]) in Russian language.

Proposition 5.3. Given z ∈ B
2−2/p
q,p,σ (Rd), the operator

u 7→ B(z)u = γu+ PA(z)u+ P (z · ∇)u : W 2,q(Rd) ∩ Lq
σ(R

d) → Lq
σ(R

d)

has a bounded H∞(Σθ)-calculus and the angle θ ∈ (0, π/2), the spectral shift γ and the constant C > 0
in

‖f(B(z))‖B(Lq
σ(Rd)) ≤ C‖f‖∞

only depend ‖z‖
B

2−2/p
q,p,σ (Rd)

. In particular, B(z) satisfies [Q4*] of the previous section.

Proof. By Lemma 5.1, γ − PA(z) is R-bounded on Lq
σ(R

d) on a sector Σθ, θ ∈ [0, π/2). The same
holds true for B(z), since u 7→ P (z·∇)u is just a lower order perturbation (see e.g. [49], Proposition
4.4.2).

Let (rn)n be a sequence of independent Rademacher random variables, ν ∈ (θ, π) and (λj)j∈N ⊂
Σν be a dense sequence. For η ∈ R, we define the norms

‖(uj)j‖Xη : = E‖
∞∑

j=1

rjuj‖Wη+2,q
σ (Rd) + E‖

∞∑

j=1

rjλjuj‖Wη,q
σ (Rd)

‖(uj)j‖Yη : = E‖
∞∑

j=1

rjuj‖Wη,q
σ (Rd)

and the spaces

Xη :=
{
(uj)j ⊂ W η+2,q

σ (Rd) : ‖(uj)j‖Xη < ∞
}

Yη :=
{
(uj)j ⊂ W η,q

σ (Rd) : ‖(uj)j‖Yη < ∞
}
.

Both (Xη)η∈R and (Yη)η∈R form complex interpolation scales. We define the operator

Sη : Xη → Yη, (fj)j 7→
(
λj −B(z))fj

)
j
.

Due to its Hölder continuous coefficients, the operatorB(z) : W η+2,q
σ (Rd) → W η,q

σ (Rd) is bounded,
if |η| < δ for some δ > 0 small enough. In particular Sη is bounded for |η| < δ. R-sectoriality of
B(z) on Lq

σ(R
d) implies, that S0 is an isomorphism with S−1

0 (uj)j =
(
(λj − B(z))−1uj

)
j
. By the

previous Lemma, ‖S0‖B(X0,Y0), ‖S
−1
0 ‖B(Y0,X0) only depend on the ellipticity and the Hölder norm

of the coefficients and hence they are determined by ‖z‖
B

2−2/p
q,p,σ (Rd)

. By Sneiberg’s Lemma, there
exists β > 0 such that S : X−β → Y−β is an isomorphism and the size of β and ‖S−1‖B(Y−β ,X−β)

depend on µ and ‖z‖
B

2−2/p
q,p (Rd)

. Especially, we have

E‖
∞∑

j=1

rjλj(λj −B(z))−1uj‖W−β,q
σ (Rd) ≤ ‖S−1

−β‖B(Y−β,X−β)E‖
∞∑

j=1

rjuj‖W−β,q
σ (Rd).
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This proves R-sectoriality of B(z) on W−β,q
σ (Rd) with domain W 2−β,q

σ (Rd). Indeed, let (λ̃j)
N
j=1 ⊂

C \ Σν and λ
(n)
j ∈ (λk)k, n ∈ N, j = 1, . . . , N, such that λ(n)

j → λ̃j as n → ∞. Then, by Fatou and
the holomorphie of the resolvent, we have

E‖
N∑

j=1

rj λ̃jR(λ̃j , B(z))fj‖W−β,q
σ (Rd)

≤ lim inf
n→∞

E‖
N∑

j=1

rjλ
(n)
j R(λ

(n)
j , B(z))fj‖W−β,q

σ (Rd)

≤ ‖S−1
−β‖B(Y−β,X−β)E‖

N∑

j=1

rjfj‖W−β,q
σ (Rd).

for every (fj)
N
j=1 ⊂ W−β,q

σ (Rd).
If we now apply Corollary 7.8 in [36], we get that B(z) has a bounded H∞(Ση) calculus on

the space 〈W−β,p
σ (Rd),W 2−β,p

σ (Rd)〉β/2. Here 〈·, ·〉η denotes Rademacher interpolation. Working
through the proof of Corollary 7.8 one sees, that the bound of the calculus only depends on the
size of |β| and on ‖S−1

−β‖B(Y−β,X−β). It remains to identify the Rademacher interpolation space.
Since the Helmholtz projection P commutes with I−∆ and I−∆ has a bounded H∞-calculus on
Wα,p(Rd)d for every α ∈ R, p ∈ (1,∞), this is also true for P (I −∆) = I −∆ on Wα,p

σ (Rd). In this
case, by Lemma 7.4 in [35], the Rademacher interpolation spaces and the complex interpolation
spaces coincide. This finally implies

〈W−β,q
σ (Rd),W 2−β,q

σ (Rd)〉β/2 =
(
W−β,q

σ (Rd),W 2−β,q
σ (Rd)

)
β/2

= Lq
σ(R

d).

It remains to check [Q5*]. Let y, z ∈ B
2−2/p
q,p,σ (Rd) with norm at most n and u ∈ W 2,q

σ (Rd). Recall
that

A(z)u = −µ(|∇z+∇zT

2 |22)
d∑

k=1

∂2
kui − µ′(|∇z+∇zT

2 |22)
d∑

j,k,l=1

(∂lzi + ∂izl)(∂kzj + ∂jzk)∂k∂luj .

With the Sobolev embedding B
2−2/p
q,p,σ (Rd) →֒ C1

b (R
d)d, we estimate

‖PA(y)u− PA(z)u‖Lq
σ(Rd)

≤
(
‖µ(|∇y+∇yT

2 |22)− µ(|∇z+∇zT

2 |22)‖L∞(Rd)

+ ‖µ′(|∇y+∇yT

2 |22)− µ′(|∇z+∇zT

2 |22)‖L∞(Rd)‖∇y‖2L∞(Rd)d×d

+ ‖µ′(|∇y+∇yT

2 |22)‖L∞(Rd)‖∇y‖L∞(Rd)d×d‖∇y −∇z‖L∞(Rd)d×d

)
‖u‖W 2,q

σ (Rd)

≤C
(
‖y‖L∞

σ (Rd), ‖z‖L∞
σ (Rd), ‖∇y‖L∞(Rd)d×d , ‖∇z‖L∞(Rd)d×d

)
‖∇y −∇z‖L∞(Rd)d×d‖u‖W 2,q

σ (Rd)

≤C(n)‖y − z‖
B

2−2/p
q,p,σ (Rd)

‖u‖W 2,q
σ (Rd).

Again using a Sobolev embedding, we get

‖P (y · ∇)u− P (z · ∇)u‖Lq
σ(Rd)

≤ ‖y − z‖L∞(Rd)d‖∇u‖Lq(Rd)d×d ≤ ‖y − z‖
B

2−2/p
q,p,σ (Rd)

‖u‖W 2,q
σ (Rd).

Thus u 7→ PA(z)u+P (z ·∇)u satisfies [Q5*]. All in all, we can apply Theorem 4.12 to the equation

(QNS)

{
du(t) = [−PA(u(t))u(t)− P (u(t) · ∇)u(t) + Pf(t)] dt+Pg(u,∇u)dW (t),

u(0) = u0.
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This yields a maximal unique local strong solution (u, (τ)n, τ) of (5.2) with

u ∈ Lp(0, τn;W
2,q
σ (Rd)) ∩ C(0, τn;B

2−2/p
q,p,σ (Rd))

pathwise almost surely for every n ∈ N and τ satisfies

P
{
τ < T, ‖u‖Lp(0,τ ;W 2,q

σ (Rd)) < ∞, u : [0, τ) → B2−2/p
q,p,σ (Rd) is uniformly continuous

}
= 0.

5.3 Weak solution of a quasilinear parabolic stochastic equation in divergence
form on a bounded domain

In this section, we consider a convection-diffusion equation on a bounded domain D ⊂ Rd, d ≥ 2,

(DIV)

{
du(t) =

[
div(a(u(t))∇u(t)) + F (t, u(t))

]
dt+B(t, u(t))dW (t),

u(0) = u0,

with Dirichlet, Neumann or mixed boundary conditions. To simplify the notation, we take real
valued coefficients and we look for a real valued solution. We first introduce the spaces we work
with.

Let Γ ⊂ ∂D be open in the topology of ∂D. For q ∈ (1,∞), we define W 1,q
Γ (D) as the comple-

tion of
C∞

Γ (D) :=
{
φ|D : φ ∈ C∞

c (Rd) and supp(φ) ∩ (∂D \ Γ) = ∅
}

with respect to the norm ‖φ‖W 1,q
Γ (D) := ‖∇φ‖Lq(D) + ‖φ‖Lq(D). Since smooth functions in f ∈

W 1,q
Γ (D) satisfy f |∂D\Γ = 0, ∂D \ Γ is understood as the Dirichlet part of the boundary, whereas

Γ can be interpreted as the Neumann part of the boundary. The space W−1,q
Γ (D) is defined as the

dual space of W
1, q

q−1

Γ (D) with respect to the standart L2-duality, which means that

〈u, v〉(
W−1,q

Γ (D),W
1,

q
q−1

Γ (D)
) =

∫

D

u(x)v(x) dx

if u ∈ W−1,q
Γ (D)∩Lq(D) and v ∈ W

1, q
q−1

Γ (D). Analogously, we define the Besov space B
1−2/p
q,p,Γ (D)

as the completion of C∞
Γ (D) with respect to the usual Besov norm ‖ · ‖

B
1−2/p
q,p (D)

. These spaces are
extensively studied in the literature about equations with mixed boundary on rough domains,
but we won’t go into detail here and just quote the results we use.

In our case, we always work with 1 − 2/p > d/q and therefore, every u ∈ B
1−2/p
q,p,Γ (D) is

continuous on D and satisfies u|∂D\Γ = 0.

We will consider the quasilinear equation (DIV) in the space W−1,q
Γ (D) for q ∈ [2,∞), which

means, we try to find a weak solution in the sense of partial differential equations. Indeed,(
u, (τn)n, τ

)
is a local solution of (DIV) in the sense of Definition 4.2 with the choice E = W−1,q

Γ (D)

and E1 = W 1,q
Γ (D) if and only if the identity

∫

D

(u(t, x) − u0(x))φ(x) dx =−

∫ t

0

∫

D

a(u(s, x))∇u(s, x)∇φ(x) dx ds

+

∫ t

0

〈F (s, x, u(s)), φ〉(W−1,q
Γ (D),W 1,q

Γ (D)) ds

+

∫ t

0

∫

D

B(s, x, u(s))φ(x) dx dW (s)

holds for almost all ω ∈ Ω, all t ∈ [0, τ) and for all φ ∈ C∞
Γ (D).
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5.4 Local weak solutions

In this section, we look at (DIV) with a locally Lipschitz diffusion matrix a(·). However, we have
to guarantee that the operators div(a(u(t))∇) on W−1,q

Γ (D) have for every t the same domain
W 1,q

Γ (D) and in the last decades, it turned out that this property highly depends on D, its dimen-
sion and the regularity of the coefficient function. Therefore, we introduce the following notation.
Given a uniformly elliptic and bounded coefficient function µ : D → Rd×d, we denote the set of
all r ∈ [1,∞), such that the operator

z 7→ − div(µ∇z) + z : W 1,r
Γ (D) → W−1,r

Γ (D)

is a topological isomorphism, with Tµ. We now specify the assumptions.

[LD1] For every point x ∈ ∂D, there exists two open sets U, V ⊂ Rd and a bi-Lipschitz transfor-
mation Φ from U to V such that x ∈ U and Φ(U ∩ (D ∪ Γ)) coincides with one of the sets
{y ∈ Rd : |y| < 1, y1 < 0} ∪ {y ∈ Rd : |y| < 1, y1 = 0, y2 > 0} and {y ∈ Rd : |y| < 1}.

[LD2] a : D × R → Rd×d is uniformly positive definite, i.e.

ess inf
y∈R,x∈D

inf
|ξ|=1

ξTa(x, y)ξ = δ0 > 0,

a(·, 0) ∈ L∞(D) and a is locally Lipschitz continuous in the second component, i.e. for every
α > 0, there exists L(α) > 0 such that

|a(x, y)− a(x, z)| ≤ L(α)|y − z|

for all |y|, |z| < α and almost all x ∈ D.

[LD3] We choose p, q ∈ (2,∞), such that 1− 2/p > d/q and q ∈ Ta(·,z) for all z ∈ B
1− 2

p

q,p,Γ(D).

[LD4] The initial value u0 : Ω → B
1−2/p
q,p,Γ (D) is a strongly F0- measurable random variable.

[LD5] F : Ω× [0, T ]×D × R → R is strongly measurable and ω 7→ F (ω, t, x, y) is for all t ∈ [0, T ],
x ∈ D and y ∈ R strongly Ft-measurable. Moreover, F is of linear growth, i.e.

‖F (ω, t, ·, y)‖W−1,q
Γ (D) ≤ C(1 + ‖y‖W 1,q

Γ (D))

and Lipschitz continuous, i.e. there are constants LF , L̃F > 0 such that

‖F (ω, t, ·, y)− F (ω, t, ·, z)‖W−1,q
Γ (D) ≤ LF ‖y − z‖W 1,q

Γ (D) + L̃F‖y − z‖W−1,q
Γ (D)

for all y, z ∈ W 1,q
Γ (D), for all t ∈ [0, T ] and almost all ω ∈ Ω. Furthermore LF must be small

enough in the sense of assumption [Q8] of the previous section.

[LD6] The driving noise W is an l2- cylindrical Brownian motion of the form

W (t) =

∞∑

k=1

ekβk(t),

where (ek)k is the standard orthonormal basis of l2 and (βk)k is a sequence of independent
real-valued Brownian motions relative to the filtration (Ft)t∈[0,T ].

[LD7] B = (Bn)n : Ω× [0, T ]×D×R → l2(N) is strongly measurable and ω 7→ Bn(ω, t, x, y) is for
all t ∈ [0, T ], x ∈ D and y ∈ R strongly Ft-measurable. Furthermore, B is of linear growth,
i.e.

‖B(ω, t, ·, y)‖γ(l2;Lq(D)) ≤ C(1 + ‖y‖W 1,q
Γ (D))
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and Lipschitz continuous, i.e. there are constants LB, L̃B > 0 such that

‖B(ω, t, ·, y)−B(ω, t, ·, z)‖γ(l2;Lq(D)) ≤ LB‖y − z‖W 1,q
Γ (D) + L̃B‖y − z‖W−1,q

Γ (D)

for all y, z ∈ W 1,q
Γ (D), for all t ∈ [0, T ], n ∈ N and almost all ω ∈ Ω. Furthermore LB must

be small enough in the sense of assumption [Q8] of the previous section.

Before we proceed, we comment on our assumptions. We chose the requirement on the domain
[LD1] in order to guarantee the important interpolation results

[W−1,q
Γ (D),W 1,q

Γ (D)]1−1/p.p = B
1−2/p
q,p,Γ (D), [W−1,q

Γ (D),W 1,q
Γ (D)]1/2 = Lq(D).

In particular, this representation of the real interpolation space makes sure, that u0 is in the usual
space for initial values. Moreover, [LD3] implicitly contains assumptions on the boundary of D
and on the coefficient function a as well, since it is impossible to ensure, that

z 7→ − div(a(·, u(t))∇z) + z : W 1,q
Γ (D) → W−1,q

Γ (D)

is an isomorphism for all q, if one just assumes [LD1] and [LD2]. Even in case of the Dirichlet
Laplacian, there are counterexamples (see [33], Theorem A). In general, one only knows, that a
small interval (2−ε, 2+ε)with ε > 0 depending on the geometry of D and Γ and on the coefficient
function a is contained in Ta(·,z) (see [31], Theorem 5.6 and Remark 5.7). Nevertheless, there are
several situations, in which one can fulfil [LD3]. In the following, we mention some of them.

If one assumes D to be a C1-domain, that has either pure Dirichlet (Λ = ∅) or pure Neumann
boundary (Λ = ∂D) and one assumes µ to be a uniformly continuous coefficient function, one
has q ∈ Tµ for all q ∈ (1,∞). This is a classical result, that can be found in [1], section 15 or [45],
page 156-157. If there is C1-subdomain D̃ with positive distance to ∂D, such that both µ|D̃ and
µ|D\D̃ are uniformly continuous and µ is symmetric, the same result holds true by [26], Theorem

1.1. Consequently, since we require 1− 2/p > d/q and hence every z ∈ B
1−2/p
q,p,Γ (D) is even Hölder

continuous, we just need to demand that a is uniformly continuous in D̃ and in D \ D̃ in the first
component to ensure q ∈ Ta(·,z).

If D is just a Lipschitz domain with Dirichlet boundary (Λ = ∅) and the coefficient function
µ is a symmetric, uniformly continuous matrix, then there is a q > 3 with q ∈ Tµ. This can
only be helpful for us if d = 2, 3, since then it is possible to choose p large enough to ensure
1− 2/p > d/q. The same conclusion is true, if D is Lipschitz and there is a C1-subdomain D̃ with
positive distance to ∂D, such that both µ|D̃ and µ|D\D̃ are uniformly continuous. These results
are all shown in [26], Theorem 1.1.

So far, we only gave examples for Dirichlet or Neumann boundary. In case of mixed boundary,
we refer to very detailed work [18]. In the case d = 3, the authors provide a wide range of
geometries of D and Γ that permit the existence of a q > 3 such that q ∈ Tµ, where µ is a symmetric
coefficient matrix, that is allowed to be only measurable (see Theorem 4.8.). Moreover, in section
3, they provide many descriptive examples for the geometries, they allow.

Note, that we could also add locally Lipschitz nonlinearities F and B in the sense of [Q6*] and
[Q7*]. We just skipped this for sake of simplicity, since we won’t need it when we show global
well-posedness in case of Dirichlet boundary.

Our goal is to apply Theorem 4.12 to the operators

A(u(t))u(t) = − div(a(·, u(t))∇u(t) + u(t).

In the following Lemma, we prove that A(u(t)) has the needed mapping properties such as a
timely constant domain and a bounded H∞-calculus.

Lemma 5.4. Under the assumptions [LD1]-[LD3], the operators

A(z)u := − div(a(·, z)∇u) + u : W 1,q
Γ (D) → W−1,q

Γ (D)
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are for all z ∈ B
1−2/p
q,p,Γ (D) densely defined, closed with 0 ∈ ρ(A(z)) and have a bound H∞-calculus with

bound and angle only depending on L, δ0 and on ‖z‖
B

1−2/p
q,p,Γ (D)

. We also have for every n ∈ N the local

Lipschitz estimate

‖A(z)−A(y)‖B(W 1,p
Γ (D),W−1,p

Γ (D)) ≤ C(n)‖z − y‖
B

1− 2
p

q,p,Γ(D)

for all ‖z‖
B

1−2/p
q,p,Γ (D)

, ‖y‖
B

1−2/p
q,p,Γ (D)

≤ n and some C(n) > 0. Last but not least, we have

[W−1,q
Γ (D),W 1,q

Γ (D)]1−1/p,p = B
1− 2

p

q,p,Γ(D)

and as a consequence, A satisfies the assumptions [Q2], [Q3], [Q4*] and [Q5*] of the previous section.

Proof. By choice of p and q, the Sobolev embedding B
1− 2

p

q,p,Γ(D) →֒ Cl(D̄) holds true for some l > 0.

In the sequel, we write CJ for the constant of this embedding. Given z ∈ B
1− 2

p

q,p,Γ(D), we obtain

‖a(·, z)‖L∞(D) ≤ ess sup
x∈D

|a(x, z(x))− a(x, 0)|+ |a(x, 0)|

≤ L
(
CJ‖z‖

B
1− 2

p
q,p,Γ(D)

)
CJ‖z‖

B
1− 2

p
q,p,Γ(D)

+ ‖a(·, 0)‖L∞(D).

In particular, the operator A(z) : W 1,q
Γ (D) → W−1,q

Γ (D) is well-defined and bounded. Moreover,
since we assumed q ∈ T (a(·, z)), Theorem 6.5 in [19] implies, that A(z) with D(A(z)) = W 1,q

Γ (D)
is a closed operator.

By Theorem 11.5 in [6], A(z) has a bounded H∞-calculus of angle arctan
(‖a(·,z)‖L∞(D)

δ0

)
and

the bound also only depends on ‖a(·, z)‖L∞(D) and δ0 (see also [24].) Note, that the critical as-
sumption for this theorem is, that A(z) possesses the square root property in L2(D), i.e. the
operator

(div(a(·, z)∇) + I)1/2 : W 1,2
Γ (D) → L2(D)

is a topolical isomorphism. This result can be found in [25], Theorem 4.1.
The claimed Lipschitz estimate for A is an immediate consequence of the Lipschitz continuity

of a and of the Sobolev embedding. Indeed, we have

‖A(z)−A(y)‖B(W 1,q
Γ (D),W−1,q

Γ (D)) . ‖(a(·, z)− a(·, y))∇‖B(W 1,q
Γ (D),Lq(D))

. ‖a(·, z)− a(·, y)‖L∞(D)

≤ CJL(CJn)‖z − y‖
B

1− 2
p

q,p,Γ(D)

for all ‖z‖
B

1−2/p
q,p,Γ

(D), ‖y‖
B

1−2/p
q,p,Γ

(D) ≤ n.

It remains to check [W−1,q
Γ (D),W 1,q

Γ (D)]1−1/p,p = B
1− 2

p

q,p,Γ(D). By [29], Lemma 3.4, we have
the identity [W−1,q

Γ (D),W 1,q
Γ (D)]1/2 = Lq(D). Using the reiteration formula between real and

complex interpolation (see e.g. [52], Theorem 1.10.3.2), it is sufficient to show

[Lq(D),W 1,p
Γ (D)]1−2/p,p = B

1−2/p
q,p,Γ (D).

This is done in [29]. Remark 3.6.

Next, we check that the spaces W−1,q
Γ (D) and W 1,q

Γ (D) fit in the setting of stochastic maximal
Lp-regularity.

Lemma 5.5. The spaces W 1,q
Γ (D) and W−1,q

Γ (D) are UMD Banach spaces with type 2. Moreover the
family of operators

{Jδ : δ > 0} ⊂ B(Lp(Ω× (0,∞); γ(H ;W−1,q
Γ (D))), Lp(Ω× (0,∞);W−1,q

Γ (D)))
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defined by

Jδb(t) := δ−1/2

∫ t

(t−δ)∨0

b(s)dW (s)

is R-bounded. In conclusion, these spaces satisfy assumption [Q1] of the previous section.

Proof. By Lemma 5.4 the spaces W−1,q
Γ (D) and W 1,q

Γ (D) are isomorph. In the proof of the same
Lemma, we checked [W−1,q

Γ (D),W 1,q
Γ (D)]1/2 = Lq(D) and hence amongst others A(0)1/2 pro-

vides an isomorphism between Lq(D) and W−1,q
Γ (D). Moreover the type of Banach space, the

UMD property and the R-boundedness of (Jδ)δ>0 are stable under isomorphisms and the UMD
space Lq(D) has type 2. Noting that by [57], Theorem 3.1, the family is R-bounded on Lp(Ω ×
(0,∞); γ(H ;Lq(D))) completes the proof.

Now, we are in the position to proof existence and uniqueness of a solution of (DIV) by ap-
plying Theorem 4.12 to the operators A(z)y = − div(a(·, z)∇y) + y.

Theorem 5.6. Let the assumptions [LD1]− [LD7] be satisfied. Then, there exists a maximal unique local

solution
(
u, (τn)n, τ

)
of (DIV) in W−1,q

Γ (D), such that we have

u ∈ Lp(0, τn;W
1,q
Γ (D)) ∩ C(0, τn;B

1−2/p
q,p,Γ (D))

pathwise almost surely for every n ∈ N. Moreover, τ satisfies

P
{
τ < T, ‖u‖Lp(0,τ ;W 1,q

Γ (D)) < ∞, u : [0, τ) → B
1−2/p
q,p,Γ (D) is uniformly continuous

}
= 0.

Proof. Writing

div(a(·, z)∇z) + F (t, z) =
(
div(a(·, z)∇z)− z

)
+
(
F (t, z) + z

)
,

we see, that we can solve the equation
{
du(t) =

[
−A(u(t))u(t) + F̃ (t, u(t))

]
dt+B(t, u(t))dW (t),

u(0) = u0

with F̃ (t, z) := F (t, z) + z for z ∈ W 1,q
Γ (D). By Lemma 5.4 the assumptions [Q2], [Q3], [Q4*] and

[Q5*] fulfilled, whereas Lemma 5.5 guaranties [Q1]. [LD6], [LD7] make sure, that the nonlinearities
F and B also satisfy [Q6]-[Q8]. All in all, Theorem 4.12 yields the desired result.

5.5 Global weak solution with Dirichlet boundary condition

In this section, we investigate the convection diffusion equation with Dirichlet boundary condi-
tions (Γ = ∅) and we therefore restrict us to the space W 1,q

∅ (D), that will be denoted with W 1,q
0 (D)

in what follows. As usual in the literature, we write W−1,q(D) for W−1,q
∅ (D). We consider the

equation

(GDIV)

{
du(t) =

[
div(a(u(t))∇u(t)) + div(G(u(t)))

]
dt+B(t, u(t))dW (t),

u(0) = u0,

and we strengthen the assumptions in order to prove that the local solution from Theorem 5.6
exists on the whole interval [0, T ]. We require:

[GD1] D ⊂ Rd is a bounded C1-domain.

[GD2] a : R → Rd×d uniformly positive definite, i.e.

inf
y∈R

inf
|ξ|=1

ξT a(y)ξ = δ0 > 0

and a is globally Lipschitz continuous, i.e there exists L > 0 such that

|a(y)− a(z)| ≤ L|y − z|

for all y, z ∈ R.

35



[GD3] We choose p, q ∈ (2,∞), such that 1− 2/p > d/q.

[GD4] The initial value u0 : Ω → B
1−2/p
q,p,0 (D) is a strongly F0-measurable random variable.

[GD5] G : R → Rd is Lipschitz continuous, i.e. there is LG > 0 such that

|G(y)−G(z)| ≤ LG|y − z|

for all y, z ∈ C.

[GD6] The driving noise W is an l2- cylindrical Brownian motion with the decomposition

W (t) =

∞∑

k=1

ekβk(t),

where (ek)k is the standart orthonormal basis of l2 and (βk)k is a sequence of independent
real-valued Brownian motions relative to the filtration (Ft)t∈[0,T ].

[GD7] B = (Bn)n : Ω× [0, T ]×D × R → l2(N) is strongly measurable and ω 7→ B(ω, t, x, y) is for
all t ∈ [0, T ], x ∈ D and y ∈ R strongly Ft-measurable. Furthermore, B is of linear growth,
i.e. ( ∞∑

n=1

|Bn(ω, t, x, y)|
2
)1/2

≤ C(1 + |y|)

and Lipschitz continuous in the last component, i.e. there is LB > 0 such that

( ∞∑

n=1

|Bn(ω, t, x, y)−Bn(ω, t, x, z)|
2
)1/2

≤ LB|y − z|

for all y, z ∈ C, t ∈ [0, T ], x ∈ D and almost all ω ∈ Ω. Moreover, we assume

‖Bn(ω, t, ·, f)‖γ(l2;W 1,2
0 (D)) ≤ C(1 + ‖f‖W 1,2

0 (D))

for all f ∈ W 1,2
0 (D), t ∈ [0, T ], x ∈ D and almost all ω ∈ Ω.

These assumptions are strictly stronger than [LD1]-[LD7]. a is not locally, but globally Lipschitz
and the nonlinearites div(G) and B are only of lower order. As we have already mentioned in our
remarks below the assumptions of the previous section, [GD1] and [GD2] also imply q ∈ Ta(·,z)

for every z ∈ B
1−2/p
q,p,0 (D) and q ∈ (1,∞).

All in all, Theorem 5.6 yields a local solution (u, (τn)n, τ) of (GDIV), i.e an increasing sequence
of F-stopping times (τn)n with 0 ≤ τn ≤ T and limn→∞ τn = τ almost surely and a process
u : Ω× [0, τ) → W 1,q

0 (D) such that u solves (GDIV) on [0, τn] and

E‖u1[0,τn]‖
p

Lp(0,T ;W 1,q
0 (D))

+ E sup
t∈[0,τn]

‖u(t)‖p
B

1−2/p
q,p,0 (D)

< ∞ (5.1)

for every n ∈ N.
In this section, we aim to prove, that we actually have τ = T almost surely. By the blow-up

alternative from Theorem 5.6, it is sufficient to show that u : [0, τ) → B
1−2/p
q,p,0 (D) is pathwise

almost surely uniformly continuous and satisfies ‖u‖Lp(0,τ ;W 1,q
0 (D)) < ∞. However, this is not too

easy, since the estimate (5.1), that originally comes from the abstract construction of a solution of
a quasilinear equation, depends on n and to find uniform estimates, we have to use the special
structure of our equation.

Our first goal is to derive uniform Lα(Ω;L∞(0, τn;L
α(D)))-estimates for u with α ∈ [2,∞)

and to do this, we need a suitable version of the Itô formula, that is useful to deal with weak
solutions of stochastic partial differential equations. In [15], the authors developed such a tool for
equations on the torus Td with periodic boundary conditions. We give an analogous result under
assumptions that are adjusted to our situation. The proof follows the same lines.
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Lemma 5.7. Let µ : Ω → [0, T ] be an F-stopping time and φ ∈ C2(R) with φ(0) = 0 and with a
bounded second derivative. Assume, that the F-adapted process u : Ω × [0, µ] → R with u1[0,µ] ∈

L2(Ω × [0, T ];W 1,2
0 (D)) is pathwise continuous on [0, µ] viewed as function with values in L2(D) and

satisfies E sup0≤t≤µ ‖u(t)‖
2
L2(D) < ∞. Furthermore, we assume u to be of the form

u(t)− u0 =

∫ t

0

divF (s) ds+

∫ t

0

H(s)dW (s) (5.2)

almost surely for all t ∈ [0, µ] in W−1,2(D) with an F0-measurable initial value u0 ∈ L2(D) , an F-
adapted H1[0,µ] ∈ L2(Ω × [0, T ] × D; l2(N)) and with F1[0,µ] ∈ L2(Ω × [0, T ] × D)d. Then, the
generalized Itô formula

∫

D

φ(u(t, x)) − φ(u0(x)) dx =−

∫ t

0

∫

D

φ′′(u(s, x))∇u(s, x)F (s, x) ds

+

∫ t

0

∫

D

φ′(u(s, x))H(s, x) dx dW (s)

+
1

2

∞∑

n=1

∫ t

0

∫

D

φ′′(u(s, x))H2
n(s, x) dx ds

holds almost surely for all t ∈ [0, µ].

The following Lemma was used several times in the literature in a comparable situation (see
e.g. [32], Theorem 3.1 or [15], Proposition 5.1). The difference is, that we deal with Dirichlet
boundary conditions, whereas the references consider periodic boundary conditions on the torus
and that we work on a random interval up to a stopping time.

Lemma 5.8. If we assume [GD1]-[GD7] and additionally u0 ∈ Lα(Ω×D) for some α ∈ [2,∞), we have

(
E sup

0≤t<τ
‖u(t)‖αLα(D)

)1/α
≤ Cα(1 + ‖u0‖Lα(Ω×D))

with a constant Cα > 0 independent of u0. Moreover, we have

‖u1[0,τ)‖L2(Ω×[0,T ];W 1,2
0 (D)) < ∞.

Proof. We fix m ∈ N and work on the interval [0, τm]. By (5.1), the process u satisfies u1[0,τm] ∈

L2(Ω × [0, T ];W 1,2
0 (D)), has almost surely continuous paths viewed as function with values in

L2(D) with E sup0≤t≤τm ‖u‖2L2(D) < ∞ and can be written in the form

u(t)− u0 =

∫ t

0

div(a(u(s))∇u(s)) + div(G(u(s))) ds +

∫ t

0

B(u(s))dW (s)

almost surely for t ∈ [0, τm] and is therefore an Itô process in W−1,2
0 (D).

We aim to apply the Itô formula from Lemma 5.7 to the function φ(ξ) = |ξ|α, but unfortunately,
its second derivative is not bounded, if we are not in the case α = 2. Therefore, we have to start
with an approximation of φ. We use

φn(ξ) =

{
|ξ|α, |ξ| ≤ n,

nα−2
(α(α−1)

2 ξ2 − α(α − 2)n|ξ|+ (α−1)(α−2)
2 n2

)
, |ξ| > n

for every n ∈ N if α ∈ (2,∞). If α = 2, we set φn(ξ) := ξ2.
One has limn→∞ φn(ξ) = |ξ|α pointwise for all ξ ∈ R, φn(0) = 0 and φ′′

n(ξ) ≥ 0 for all ξ ∈ R.
Moreover, by calculation, one can derive the estimates

|ξφ′
n(ξ)| ≤ αφn(ξ),
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|φ′
n(ξ)| ≤ α(1 + φn(ξ)),

ξ2φ′′
n(ξ) ≤ α(α− 1)φn(ξ), (5.3)

φ′′(ξ) ≤ α(α− 1)(1 + φn(ξ))

for all ξ ∈ R, n ∈ N. Now we are in the position to apply Itô’s formula and obtain
∫

D

φn(u(x, t)) dx =

∫

D

φn(u0(x)) dx

−

∫ t

0

∫

D

φ′′
n(u(s, x))∇u(s, x)

(
G(u(s, x)) + a(u(s, x))∇u(s, x)

)
dxds

+

∫ t

0

∫

D

φ′
n(u(s, x))B(s, x) dx dW (s)

+
1

2

∞∑

k=1

∫ t

0

∫

D

φ′′
n(u(s, x))Bk(s, x, u(s, x))

2 dx ds (5.4)

almost surely for all t ∈ [0, τm]. Next, we estimate E sup0≤s≤t∧τm

∫
D φn(u(x, s)) dx term by term

beginning with the stochastic integral. Applying the scalar valued Burkholder-Davis-Gundy in-
equality, the assumptions on B and the estimates (5.3), we obtain

E sup
0≤s≤t∧τm

∣∣∣
∫ s

0

∫

D

φ′
n(u(r, x))B(r, x, u(r, x)) dx dW (r)

∣∣∣

. E

( ∫ t∧τm

0

∞∑

k=1

(∫

D

φ′
n(u(r, x))Bk(r, x, u(r, x)) dx

)2
dr
)1/2

. E

( ∫ t∧τm

0

‖φ′
n(u(r))

1
2u(r)

1
2 ‖2L2(D)‖φ

′
n(u(r))

1
2u(r)−

1
2B(r, u(r))‖2L2(D;l2(N) dr

)1/2

. E

( ∫ t∧τm

0

‖φn(u(r))
1
2 ‖2L2(D)‖1 + φn(u(r))

1
2 ‖2L2(D) dr

)1/2

. E

( ∫ t∧τm

0

∫

D

φn(u(r, x)) dx
(
1 +

∫

D

φn(u(r, x)) dx
))1/2

≤ E

(
sup

0≤s≤t∧τm

∫

D

φn(u(r, x)) dx
)1/2(

1 +

∫ t∧τm

0

∫

D

φn(u(r, x)) dx dr
)1/2

.

Finally, the well-known estimate ab ≤ εa2 + Cεb
2 for a, b > 0 yields

E sup
0≤s≤t∧τm

∣∣∣
∫ s

0

∫

D

φ′
n(u(r, x))B(r, x, u(r, x)) dx dW (r)

∣∣∣

≤
1

2
E sup

0≤s≤t∧τm

∫

D

φn(u(r, x)) dx+C
(
1 + E

∫ t∧τm

0

∫

D

φn(u(r, x)) dx dr
)

for some C > 0. We proceed with the deterministic terms in (5.4). Since φ′′ ≥ 0 and a is coercive,

−φ′′
n(u(s, x))∇u(s, x)a(u(s, x)∇u(s, x)

is almost surely for all s ∈ [0, τm] and all x ∈ D non-positive and the corresponding term can be
dropped in an upper estimate. Moreover, the divergence theorem of Gauss and u(t, x) = 0 almost
surely for t ∈ [0, τm] and x ∈ ∂D yields

∫

D

φ′′
n(u(s, x))∇u(s, x)G(u(s, x)) dx =

∫

D

div
(∫ u(t,x)

0

φ′′
n(ξ)G(s, ξ) dξ

)
dx

=

∫

∂D

(∫ u(t,x)

0

φ′′
n(ξ)G(s, ξ) dξ

)
ν dσ(x) = 0.
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The last remaining term can be estimated with the assumptions on B and (5.3).

E sup
0≤s≤t∧τm

∣∣∣
∞∑

k=1

∫ s

0

∫

D

φ′′
n(u(r, x))Bk(r, x, u(r, x))

2 dx dr
∣∣∣

. E sup
0≤s≤t∧τm

∣∣∣
∫ s

0

∫

D

φ′′
n(u(r, x))(1 + u(r, x))2 dx dr

. E

∫ t∧τm

0

∫

D

1 + φn(u(r, x)) dx dr

. 1 +

∫ t

0

E sup
0≤s≤r∧τm

∫

D

φn(s, x) dx dr .

All in all, we proved

E sup
0≤s≤t∧τm

∫

D

φn(u(x, s)) dx . 1 + E

∫

D

φn(u0(x)) dx+

∫ t

0

E sup
0≤s≤r∧τm

∫

D

φn(s, x) dx dr

and hence with Gronwall,

E sup
0≤s≤t∧τm

∫

D

φn(u(x, s)) dx . 1 + E

∫

D

φn(u0(x)) dx

for every t ∈ [0, T ] and n ∈ N and the estimate is independent of n. We want to finish the proof by
applying Fatou to pass to the limit n → ∞. Note that one can interchange sup and lim inf in an up-
per estimate, since lim inf can be written in the form sup inf and supremums can be interchanged,
whereas sup inf ≤ inf sup. Thus, we have

E sup
0≤s≤t∧τm

∫

D

|u(x, s)|α dx ≤ lim inf
n→∞

E sup
0≤s≤t∧τm

∫

D

φn(u(x, s)) dx

. 1 + lim inf
n→∞

E

∫

D

φn(u0(x)) dx

and the last term equals E‖u0‖Lα(D), which can be proved with Lebesgue’s dominated conver-
gences theorem. This proves

(
E sup

0≤t≤τm

‖u(t)‖αLα(D)

)1/α
. 1 + ‖u0‖Lα(Ω×D)

for every m ∈ N. The first claim now follows from another application of Fatou’s Lemma. For the
second claim, we have to look at (5.4) in the special case α = 2. We get

‖u(t)‖2L2(D) =‖u0‖
2
L2(D) − 2

∫ t

0

∫

D

∇u(s, x)a(u(s, x))∇u(s, x) dx ds

+ 2

∫ t

0

∫

D

u(s, x)B(s, x, u(s, x)) dx dW (s) +

∞∑

k=1

∫ t

0

∫

D

Bk(s, x, u(s, x))
2 dx ds

almost surely for all t ∈ [0, τm]. Coercivity of a(u(s, x)) then yields

−

∫

D

∇u(s, x)a(u(s, x))∇u(s, x) dx ≤ −δ0‖∇u(s)‖2L2(D)

for some ε ∈ (0, δ0) and Cε > 0. As a consequence, we have

δ0

∫ t

0

‖∇u(s)‖2L2(D) ds ≤‖u0‖
2
L2(D) + 2

∫ t

0

∫

D

u(s, x)B(s, x, u(s, x)) dx dW (s)

+
1

2

∞∑

k=1

∫ t

0

∫

D

Bk(s, x, u(s, x))
2 dx ds
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and with the estimates we already did before and

(
E sup

0≤t<τ
‖u(t)‖2L2(D)

)1/2
≤ C2(1 + ‖u0‖L2(Ω×D))

we get

(
E‖∇u1[0,τ)‖

2
L2([0,T ]×D) ds

)1/2
. (1 + ‖u0‖L2(Ω×D)).

This finishes the proof.

As a consequence of these estimates, we can extend u pathwise to a continuous function with
values in L2(D) on the closed interval [0, τ ].

Lemma 5.9. If we assume [GD1]-[GD7] and additionally u0 ∈ L2(Ω × D) the function u : [0, τ) →
L2(D) is pathwise almost surely uniformly continuous and can be extended to a continuous function on
[0, τ ].

Proof. We know, that u is an Itô process in W−1,2(D) and that we have

u(t)− u0 =

∫ t

0

(
div(a(u(s))∇u(s)) + div(G(u(s)))

)
ds+

∫ t

0

B(u(s))dW (s)

for every t ∈ [0, τ) and by Lemma 5.8, we have u ∈ L2(0, τ ;W 1,2
0 (D)) pathwise almost surely.

Moreover, by [GD7] and Itô’s isometry, we obtain

‖t 7→

∫ t

0

B(u(s))1[0,τ)(s)dW (s)‖L2(Ω×[0,T ];W 1,2
0 (D)) = ‖B(u)1[0,τ)‖L2(Ω×[0,T ]×N;W 1,2

0 (D))

. 1 + ‖u‖L2(Ω×[0,T ];W 1,2
0 (D)) < ∞

and so we also have t 7→
∫ t

0 B(u(s))dW (s) ∈ L2(0, τ ;W 1,2
0 (D)) pathwise almost surely. Conse-

quently, we have

t 7→ u0 +

∫ t

0

div(a(u(s))∇u(s)) + div(G(u(s))) ds ∈ L2(0, τ ;W 1,2
0 (D))

pathwise almost surely. On the other hand, the fundamental theorem of calculus yields t 7→

u0 +
∫ t

0
(div(a(u(s))∇u(s)) + div(G(u(s)))) ds ∈ W 1,2(0, τ ;W−1,2(D)) almost surely. Since the

embedding
W 1,2(0, τ ;W−1,2(D)) ∩ L2(0, τ ;W 1,2

0 (D)) →֒ C(0, τ ;L2(D))

is bounded, t 7→ u0 +
∫ t

0
div(a(u(s))∇u(s)) + div(G(u(s))) ds is uniformly continuous on [0, τ)

viewed as a function in L2(D). Clearly, by the Burkholder-Davies-Gundy inequality, the same
holds true for the stochastic integral. This closes the proof.

In the previous Lemmatas, we extended our local solution
(
u, (τn)n, τ

)
to the closed interval

[0, τ ] and derived estimates for u on [0, τ ]. As a consequence, we can apply a regularity result for
quasilinear stochastic evolution equations in divergence form, that yields additional regularity
properties for u. It turns out, that u is even pathwise Hölder continuous in space and time.

Lemma 5.10. If we assume (GD1)-(GD7) and u0 ∈ Lm(Ω × D) for every m ∈ [2,∞), the process
u : Ω × [0, τ ] × D → R is pathwise Hölder- continuous in space and time. More precisely there exists
η > 0, such that

E

(
sup

t∈[0,τ ],x∈D

|u(t, x)|+ sup
t,s∈[0,τ ],x,y∈D

|u(t, x)− u(s, y)|

max{|t− s|η, |x− y|2η}

)m
< ∞

for every m ∈ [2,∞).
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Proof. By Lemma 5.8 and Lemma 5.9, we have

u1[0,τ ] ∈ Lm(Ω;L∞(0, T ;Lm(D))) ∩ L2(Ω× [0, T ];W 1,2
0 (D))

for all m ∈ [2,∞) and u : [0, τ ] → L2(D) is pathwise uniformly continuous. Moreover, our initial
value u0 ∈ B

1−2/p
q,p,0 (D) satisfies u0 = 0 almost surely on ∂D, since required 1 − 2/p > d/q. Thus

a slight variation of [14], Theorem 2.6 implies the claimed result. The only change we need is
that we investigate the equation on the random interval [0, τ ] instead of [0, T ]. However, in the
proof of Theorem 2.6 one can replace T by τ without further difficulties, since they authors argue
pathwise with a classical regularity result about deterministic parabolic equations by Ladyzhen-
skaya, Solonnikov and Uralceva (see [40], Theorem 10.1 in Chapter III). In [14], Theorem 2.6, ∂D
was assumed to be smooth, but to apply Ladyzhenskaya’s result, a piecewise C1-boundary com-
binded with the so called condition A, that is explained in [40] on page 9, is sufficient. However,
with a moment of consideration one checks, that our assumption of a C1-boundary implies this
condition A.

Finally, we can prove the main theorem of this section. We show that our local solution u is in-
deed a global solution, that exists on the whole interval [0, T ]. For this proof, we compare u with
the solution z of a stochastic heat equation with the noise B(u(t))dW (t). Then, we investigate
the regularity properties of u − z, which solves a non-autonomous deterministic partial differen-
tial equation with a random parameter, by applying results on maximal regularity for both the
stochastic heat equation and for the arising non-autonomous equation.

Theorem 5.11. If we assume (GD1)-(GD7), the local solution
(
u, (τn)n, τ

)
of (GDIV) is a global solu-

tion, i.e. we have τ = T almost surely and the solution satisfies

u ∈ Lp(0, T ;W 1,q
0 (D)) ∩ C(0, T ;B

1−2/p
q,p,0 (D))

pathwise almost surely.

Proof. We first check the theorem for u0 ∈ L∞(Ω;B
1−2/p
q,p,0 (D)). By Theorem 5.6, there exists a

local solution
(
u, (τn)n, τ

)
of (GDIV) to the initial value u0. Since we chose 1 − 2/p > d/q, we

have u0 ∈ Lm(Ω × D) for all m ∈ [2,∞) and as a consequence, Lemma 5.10 implies, that u :
Ω× [0, τ ]×D → R is pathwise almost surely uniformly continuous in space and time and u1[0,τ ] ∈
Lm(Ω;L∞(0, T ;Lm(D))).

Next, we consider the equation
{
dz(t) = ∆z(t) dt+B(u(t))dW (t) for t ∈ [0, T ],

z(0) = 0.

By (GD7), we have B(u) ∈ Lp(Ω× [0, T ]; γ(l2;Lq(D))). Therefore the maximal Lp-regularity result
for stochastic evolution equations, Theorem 3.2, yields a unique solution

z ∈ Lp(Ω× [0, T ];W 1,q
0 (D)) ∩ Lp(Ω;C(0, T ;B

1−2/p
q,p,0 (D))).

If we now investigate the difference y := u−z on [0, τ ], we find out, that y pathwise almost surely
solves the deterministic non-autonomous parabolic equation

{
y′(t) = [div(a(u(t))∇y(t)) + div(G(u(t))) + div((a(u(t)) − I)∇z(t)),

y(0) = u0.
(5.5)

As a next step, we prove that this equation has deterministic maximal Lp-regularity. We estimate

‖ div(a(u(t))∇x) − div(a(u(s))∇x)‖W−1,q(D) ≤ ‖(a(u(t))− a(u(s)))∇x‖Lq(D)

≤ sup
x∈D

|a(u(t, x)) − a(u(s, x))|‖x‖W 1,q
0 (D)
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. sup
x∈D

|u(t, x)− u(s, x)|‖x‖W 1,q
0 (D)

and since u is pathwise almost surely uniformly continuous on [0, τ ] × D (see Lemma 5.10),
the mapping [0, τ ] ∋ t 7→ div(a(u(t))∇) ∈ B(W 1,q

0 (D),W−1,q(D) is almost surely continuous.
Moreover, as we have seen in Lemma 5.4, the operator div(a(u(t))∇) has almost surely for fixed
t ∈ [0, τ ] a bounded H∞-calculus on W−1,q(D) and its domain is given by W 1,q

0 (D). Therefore
we can apply [48], Theorem 2.5. and obtain the pathwise almost surely maximal Lp-regularity of
the non-autonomous equation (5.5). Moreover, we both have div(G(u)) ∈ Lp(0, τ ;W−1,q(D)) and
div((a(u)− I)∇z) ∈ Lp(0, τ ;W−1,q(D)). Indeed [GD6] and the regularity of z together with [GD2]
imply

‖ div(G(u))‖Lp(0,τ ;W−1,q(D)) . ‖G(u)‖Lp(0,τ ;Lq(D)) . 1 + ‖u‖Lp(0,τ ;Lq(D)),

‖ div((a(u)− I)∇z)‖Lp(0,τ ;W−1,q(D)) . ‖(a(u)− I)∇z‖Lp(0,τ ;Lq(D) . ‖z‖Lp(0,τ ;W 1,q
0 (D)).

As a consequence of maximal regularity, we have

‖y‖Lp(0,τ ;W 1,q
0 (D)) + ‖y‖

C(0,τ ;B
1−2/p
q,p,0 (D))

≤ CMR

(
‖ div(G(u))‖Lp(0,τ ;W−1,q(D)) + ‖ div((a(u)− I)∇z)‖Lp(0,τ ;W−1,q(D))

)

. 1 + ‖u‖Lp(0,τ ;Lq(D)) + ‖z‖Lp(0,τ ;W 1,q
0 (D))

and thus y ∈ Lp(0, τ ;W 1,q
0 (D)) ∩ C(0, τ ;B

1−2/p
q,p,0 (D)) pathwise almost surely. With u = y + z

one sees that u is also pathwise almost surely in the space Lp(0, τ ;W 1,q
0 (D))∩C(0, τ ;B

1−2/p
q,p,0 (D)).

Hence the blow-up alternative from Theorem 5.6 yields τ = T almost surely, which is the desired
result.

Last but not least, we have to deal with arbitrary initial values u0 : Ω → B
1−2/p
q,p,0 (D). Defining

Λn := {‖u0‖B1−2/p
q,p,0 (D)

< n} and the truncated initial values u
(n)
0 := u01Λn , we can apply the

result we derived above and we get global solutions un of (GDIV) to the initial value u
(n)
0 , that

pathwise almost surely satisfy un ∈ Lp(0, T ;W 1,q
0 (D)) ∩ C(0, T ;B

1−2/p
q,p,0 (D)). By Corollary 4.9,

the solutions un and um coincide on Λn∧m and therefore the pointwise limit u = limn→∞ un is
a well-defined adapted process. Moreover, since for almost all ω ∈ Ω there is an n(ω) such that
u(ω, ·) = un(ω)(ω, ·), u solves (GDIV) and has pathwise almost surely the claimed regularity.

The reader may ask, why we could not prove

u ∈ Lp(Ω× [0, T ];W 1,p
0 (D)) ∩ Lp(Ω;C(0, T ;B

1−2/p
q,p,0 (D)))

under the additional assumption u0 ∈ Lp(Ω × [0, T ];B
1−2/p
q,p,0 (D)). This is due to the maximal

regularity result for non-autonomous deterministic equations we used. The maximal regularity
constant CMR highly depends on the modulus of continuity of the coefficient function which is
in our case given by a(u(ω, t, x)). Therefore, CMR depends on the modulus of continuity of u
itself, but this one differs from path to path and cannot be controlled uniformly in ω. So, the best
estimate, we can achieve is

‖u(ω, ·)‖Lp(0,T ;W 1,p
0 (D)) = ‖y(ω, ·) + z(ω, ·)‖Lp(0,T ;W 1,p

0 (D))

≤ CCMR(ω)
(
1 + ‖u(ω, ·)‖Lp(0,τ ;Lq(D)) + ‖z(ω, ·‖Lp(0,τ ;W 1,q

0 (D))

)

for almost ω ∈ Ω, but it is impossible to control ‖u‖Lp(Ω×[0,T ];W 1,p
0 (D)) in this way. One would

need a significantly stronger result on maximal Lp- regularity for non-autonomous deterministic
equations with CMR only depending on the upper bound and the ellipticity constant of the co-
efficient function a(u(ω, t, x)). Unfortunately, such a result is only known for p = 2 by a classical
result of Lions and for p ∈ [2 − ε, 2 + ε] for some small ε > 0 by a recent result of Disser, ter Elst
and Rehberg (see [19], Proposition 6.3). This can be used to prove at least

u ∈ Lp(Ω;Lr1(0, T ;W 1,r2
0 (D)))

for r1, r2 ∈ [2− ε, 2 + ε].
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