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Zusammenfassung

In den vergangenen Jahren wurden technische Möglichkeiten studiert, die
es in Zukunft ermöglichen könnten, die Hirnschlag Diagnose schon in der
Ambulanz, also mobil durchzuführen. Dies wäre von großem Nutzen für
alle Patienten die einen Schlaganfall erleiden, da die Behandlung ohne
eine sichere Diagnose nicht begonnen werden kann. Als Standardtherapie
wird beim häufigsten Typ, dem ischämischen Schlaganfall, eine Throm-
bolysetherapie durchgeführt. Diese muss aber in den ersten 4,5 Stunden
erfolgen, da sonst keine Vorteile mehr erzielt werden können. Zudem gilt:
Umso früher die Therapie begonnen wird, umso besser die Prognose.

Eine gute Möglichkeit, diese frühe Diagnose zu erreichen könnte hier
die Mikrowellentechnologie sein, denn die dafür nötige Hardware wäre
äußerst kompakt. Die Diagnose mittels Mikrowellen erfordert “nur” eine
Anordnung von Antennen, ein Messsystem und einen leistungsstarken
Computer für die Auswertung.

Damit diese Technologie aber erfolgreich eingesetzt werden kann, muss
zuvor ein Diagnosealgorithmus entwickelt werden, der die Anforderun-
gen erfüllt. Damit eine Thrombolyse angewendet werden kann, muss
zweifelsfrei eine Blutung ausgeschlossen werden können. Da hierfür nicht
zwingend eine Bildgebung erforderlich ist, wurde als ein erster Algorith-
mus ein einfacher Beamforming-Algorithmus getestet. Vorteil dieser Art
von Algorithmen ist, dass sie enorm schnell Ergebinsse liefern können. Oft
ist in weniger als einer Minute ein Resultat verfügbar. Da dieser Algorith-
mus aber nicht die nötige Robustheit unter den vorhandenen Bedingungen
liefern kann, wurde ein zweiter Algorithmus auf Eignung getestet.
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Der zweite Algorithmus nutzte die Gauss-Newton-Methode und FDTD
Vorwärtsrechnungen um die Permittivitätsverteilung zwischen den Anten-
nen zu rekonstruieren. Da dieser iterative Prozess aber bis zu eine Woche
Rechenzeit für ein Ergebnis benötigte, wurde noch ein dritter Algorithmus
implementiert.

Der letzte Algorithmus, Contrast Source Inversion genannt, verzichtet
auf Vorwärtsrechnungen und verwendet anstelle dessen die Lippmann-
Schwinger-Gleichung um das Feld und den zuvor definierten Kontrast
unter Zuhilfenahme von sogenannten Kontrastquellen zu rekonstruieren.
Als Kontrast wird hierbei eine Größe, berechnet aus der Permittivität des
Hintergrundmaterials und der lokal gültigen Permittivität, bezeichnet.

Alle betrachteten Algorithmen zeigten eine potentielle Eignung zur
Schlaganfalldiagnose, allerdings wurden am Ende zwei aufgrund ihrer
Nachteile verworfen. Die Contrast Source Inversion erscheint geeignet
und nach weiterer Erforschung in der Lage, alle Bedingungen zu erfüllen.
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CHAPTER1
Introduction

Heinrich Hertz was the first who showed that freely propagating electro-
magnetic waves really exist. His experiments in 1886 opened the door to a
new age of telecommunication and global connectivity. Neither radio nor
wireless LAN would be possible without electromagnetic waves. Since
Dr. Hertz’s first experiments a lot of new applications for electromagnetic
waves have been introduced. We use them to locate objects on earth and
space, to heat our meals and stay linked to colleagues and friends.

Year by year a great number of new ways on how to use electromagnetic
waves are discovered. However, according to experts these electromagnetic
waves can also be applied in the medical sector.

Microwave imaging is such a medical application and it is subject of
current research programs. The interest on microwave imaging has steadily
been growing over the last decades. One of the reasons for this is the
fact that the necessary hardware can be produced in a very compact and
cheap way. Due to the compact components necessary for such a device,
the device will be applicable in a mobile way. In addition to that as a
diagnostic medium microwaves are known to be non-harmful, if the power
radiated by such a system is limited to a non-harmful level.

Assuming that microwaves could potentially penetrate the human head,
an imaging technology based on them could improve the treatment and
medical outcome of victims with acute cerebral diseases, such as strokes.



CHAPTER 1. INTRODUCTION

It is fact that the medical treatment of cerebral strokes is bound to a
temporal limit. Medical course books offer a limit in time with a maximum
of 4.5h. If the medication is not started during this period of time nothing
can be done to improve the health outcome after an ischemic stroke [1, 2].
Additionally, it is important to start the treatment as soon as possible.
Among experts this fact is called “time is brain”. – So why not starting the
medication right away? However, if there was an intracranial bleeding the
thrombolytic drugs would have awful consequences and could lead to the
death of the victim. This is the reason why a treatment is not advisable
until the cause of the stroke is 100% clarified.

A short glance at the statistics is enough to note that strokes are still
one of the major causes of death world wide. In 2012, strokes appear on
the second place, with a total of 6.7 million people, in statistics published
by the World Health Organization (WHO) [3]. Even in countries with
well-developed health systems and a good availability of stroke units like
Germany, strokes remain one of the main causes of death and disability
(until today it is still on the top ten list of death causes).

Stroke is a serious disease and even if the death of victims could be
prevented, late complications are often linked with further problems such
as disabilities and long periods of rehabilitation.

Due to likewise compact devices, microwave imaging will have the
potential to be used in ambulances and thus could help to improve the
medical outcome of stroke victims.

Facing the facts the growing interest in microwave imaging is not a
surprise.

The project with the farthest development is the Strokefinder, a product
of the company Medfield Diagnosis. The device (Strokefinder) is mostly
build on the findings of A. Fhager. The decision of a hemorrhage existence
is made by a computer learning algorithm. Detailed information is not
accessible, as the device is supposed to be a product [4].

Another device, named MARIA and produced by the company Mi-
crima, was originally based on research projects of the University of
Bristol,. It is as well as the Strokefinder already involved in clinical studies
[5].
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1.1. ABOUT THISWORK

The reseacher group of the university of Queensland should also be
mentioned here. They are working on a technology which is based on
microwaves to diagnose strokes and they published some interesting papers
about phantoms [6].

1.1 About ThisWork
During the last four years hardware and software were introduced to ex-
amine algorithms as well as measurement techniques. They were verified
and their limitations as well as their applicability on microwave-based
stroke-imaging systems were examined. In total three algorithms were
implemented. In addition to that a phantom for experimental measurements
was developed and arrays for different purposes were introduced.

The first part of this thesis offers the very basic physical fundamentals,
followed by a short chapter about some anatomical details of the human
head and their fundamental influences on microwaves and finally a chapter
about the basic mathematical algorithms used to reconstruct the images.

The second part starts with a chapter about the signal we can expect
and a few preliminary studies of the problem. The second chapter is about
the developed gelatin-sugar-water phantom and the last chapter is about the
three implemented and tested algorithms. The first section of this chapter
is about the so-called Delay And Sum (DAS) beamformer. The following
section describes the investigation of the Gauss-Newton-based black-box
inversion and the last section of that chapter is about the Contrast Source
Inversion (CSI) algorithm and its usability on diagnosing strokes.

Since no strict separation between the methods and the results was pos-
sible, each section describing an algorithm starts with a detailed description
of the method and ends with the achieved results.

Chapters on conclusions and outlook finalize this thesis.
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PART I

FUNDAMENTALS
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CHAPTER2
Propagation of

ElectromagneticWaves

As microwaves are the basic medium employed in this thesis, this chapter
is offering some basic natures of them.

In the case of microwave imaging a so called stimulus signal (a known
signal) is transmitted from one sending antenna to a set of receiving anten-
nas (sometimes including the sending antenna). By traversing the object
under examination the wave is collecting information about the structural
morphology and also about the current condition of the object. In the
case of stroke-imaging the information which is of interest is the health
condition of the brain tissues. However, the information achieved by a mea-
surement with a microwave system contains much more information; for
example about the head, the brain itself and even about the measurement
system itself. This chapter briefly overviews the peculiarity of propagating
waves to understand how the content of the information could be extracted
later.



CHAPTER 2. PROPAGATIONOF ELECTROMAGNETICWAVES

2.1 Maxwell Equations
The Maxwell equations are the fundamental definitions which hold for
every electromagnetic field problem.

∇ ·D = ρ (2.1)

∇ ·B = 0 (2.2)

∇×E+
∂B
∂ t

= 0 (2.3)

∇×H = J+
∂D
∂ t

(2.4)
With D, the electric displacement field, ρ , the charge density, H, the

magnetic Field, J, current density, E, the electric field and t for the time
[7]. Knowing the materials properties (namely the polarization P and
the magnetization M) every electromagnetic field problem with defined
boundary conditions can be solved by finding a solution for this system
of coupled partial differential equations. This is often not an easy task,
and in most of the cases there even does not exist a closed solution at
all. The only option to deal with such circumstances is to approximate
the underlying problem and its solution. A common way to deal with
differential equations is to approximate them numerically, by the method
of finite differences.

2.1.1 Numerical Approximation of the Differential
Equations

One of the oldest numerical approximations for electromagnetic field prob-
lems is the Finite Difference Time Domain (FDTD) method. As the name
suggests this method approximates the derivatives by finite differences.
This can be done by defining a sufficiently small step ∆x and take the
result of the approximated function Θ around the point of interest x. The
approximated derivative at x for example can be written as

∂Θ

∂x
≈ Θ(x+∆x)−Θ(x)

∆x
. (2.5)
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2.1. MAXWELL EQUATIONS

This in that way defined approximation of the derivative is called the for-
ward difference. Two other such definitions exist, the backward difference

∂Θ

∂x
≈ Θ(x)−Θ(x−∆x)

∆x
(2.6)

and the central
∂Θ

∂x
≈ Θ(x+∆x)−Θ(x−∆x)

2∆x
. (2.7)

All finite difference methods are based on at least one of these approx-
imations. Higher order derivatives can be derived by combining these
difference operators.

2.1.1.1 Finite Difference TimeDomain
It was Kane S. Yee who first defined a scheme to discretize the fields and
solve Maxwell’s equation numerically. He introduced the lattice shown in
Figure 2.1. Since the components of the fields are calculated on different
points, a separate calculation of the electric and the magnetic fields are
possible.

This lattice is up to today the standard when models are discretized for
Finite Difference Time Domain (FDTD) calculations.

Limitations Certain side conditions must be fulfilled, which are mainly
set by the maximal wavelength, which is included in the set up simulation.

To achieve representative results with FDTD-simulations a maximum
time step ∆t, that fulfills the following inequality

∆t ≤ 1

u
√

1
(∆x)2 +

1
(∆y)2 +

1
(∆z)2

, (2.8)

must by used. Here u denotes the velocity of propagation and ∆x, ∆y and
∆z are the spatial dimensions of the smallest element of the grid of the
simulation.[9]
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CHAPTER 2. PROPAGATIONOF ELECTROMAGNETICWAVES
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Figure 2.1: Lattice defined by Yee 1966. It shows various positions of field components.
The components of the electric field (#) are calculated in themiddle of the edges and
the components of themagnetic field (2) centered on the surfaces [8].

2.1.1.2 Finite Difference Frequency Domain
The Finite Difference Frequency Domain (FDFD) method is also based
on the grid defined by Yee for the FDTD method. In this method it is
not needed to calculate multiple time steps to achieve a solution. The
method is used to approximate a direct solution of Maxwell’s curl equation
at frequency domain. By using central differences to approximate the
second-order-spatial derivatives it leads to a system of linear equations
that can be represented by a sparse matrix. The linear system can then
be solved by an iterative method, for example the biconjugate gradient
method. [10, 11]

2.2 ElectromagneticWaves
An expanding time dynamic electric field in coherence with a time dynamic
magnetic field is called an electromagnetic wave. All electromagnetic
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2.2. ELECTROMAGNETICWAVES

fields and thus all electromagnetic waves depend on the fundamental rules
formulated by Maxwell (2.1 -2.4).

Maxwell’s equations can be decoupled by taking the curl of Faraday’s
Law (2.3) and Ampère’s Law (2.4) at free space. An equation depending
on the electric field can be derived form Faraday’s Law by

∇×∇×E = ∇×
(
−∂B

∂ t

)
. (2.9)

This can also be written as

∇(∇ ·E)−∇
2E =− ∂

∂ t
(∇×B) . (2.10)

With Ampère’s Law

∇×B = µ0ε0
∂E
∂ t

(2.11)
and Gauss’s Law

∇ ·E = 0 (2.12)
in free space the decoupled equation is

∇
2E = µ0ε0

∂ 2E
∂ t2 . (2.13)

The achieved equation is now easily identified as wave equation1. The
propagation speed of the wave is then 1/

√
µ0ε0 = c0 (the speed of light).

The equation depending on the magnetic field can be deduced in a similar
way [7]. As only the electric field is of interest later, just these equations
are offered here.

If only time harmonic problems are considered the equation (2.13) can
be simplified as

∇
2E =−ω

2
µ0ε0E. (2.14)

Here it should be noted that this equation is equal to the Helmholtz equa-
tion2 and sometimes also called that way in literature.

1Generally, a wave equation is a differential equation of the form ∂ f
∂ t2 = v2∆ f with

∆ the Lapace operator, f (t,x) an arbitrary function of time t and space (e.g. x ∈ R2)
2TheHelmholz equation is a partial differential equation of the form∇2A+v2A= 0
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CHAPTER 2. PROPAGATIONOF ELECTROMAGNETICWAVES

2.2.1 Green’s Functions
A fundamental solution considering the necessary boundary constraints in
connection with the principle of superposition for electromagnetic fields
is a powerful tool to solve more complex problems. Such fundamental
solutions are also called Green’s functions. The three-dimensional funda-
mental solution for an infinite small monochromatic point source at free
space is

g(r, t) =
1

4π · |r|e
i(k0|r|−ωt) (2.15)

and the two-dimensional solution is known to be

g(r, t) =
−i
4

H(2)
0 (k0|r|−ωt). (2.16)

Here r is a vector and |r| =
√

x2 + y2 + z2 or |r| =
√

x2 + y2 at two-
dimensions, k = 2π

λ
is the wave number in free space, ω = 2π f is the

angular frequency and H(2)
0 denotes the zero-order Hankel function of the

second kind. The complex unit is i and the time is denoted by t.
The term ωt in both equation can be neglected if only time harmonic

problems are regarded. Important equations for later examinations are

g(r) =
1

4π · |r|e
i(k0|r|) (2.17)

and
g(r) =

−i
4

H(2)
0 (k0|r|). (2.18)

Both equations for time harmonic problems are satisfying the Helmholz
equation in R3/0 and in R2/0 respectively.

2.3 Waves in ComplexMaterials
Influencing effects on an electromagnetic wave, whenever propagating
through homogeneous matter, are summarized by the values of permittivity
εr and permeability µr. Here the index r indicates that these values are of
relative meaning and denote the fraction εr =

ε

ε0
and µr =

µ

µ0
respectively.

It should be mentioned that some authors use ε and µ without the index
r to denote the relative permittivity and permeability. Within the theory
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2.3. WAVES IN COMPLEXMATERIALS

of magnetic fields the usage of the magnetic susceptibility χm = µr−1 is
more common as the permeability.

As almost every biological tissue is hard to magnetize the relative
permeability is usually close to one. Hence, the relative permeability can
by omitted on further considerations.

In order to get a feeling on how the complex permittivity influences
the propagating wave we have a closer look at the fundamental solution
on R3 (equation (2.17)). It is obvious that the propagation of the wave
is influenced by the in that case complex wave number k. If now the
considerations are limited to a single frequency the wave number is, as
commonly known, definable by:

k = 2π · f
c

(2.19)

where c is the speed of light in the medium and f is the frequency. The
speed of the light is in general defined by:

c =
1√
εµ

, (2.20)

and in the case of a medium with µr = 1:

c =
c0√
εr

. (2.21)

By using that, the wave number can be written by:

k = 2π ·√εr
f

c0
. (2.22)

If the matter is electrical conducting σ > 0 then the relative permittivity
is a complex value:

εr = ε
′
r− iε ′′r = εr− i

σ

ωε0
(2.23)

with the real and imaginary part ε ′r and ε ′′r respectively.
For a better understanding on how the imaginary part of the permittivity

influences the wave, we now have a closer look on the fundamental solution
(2.17). The solution is still valid, even in complex matter, only the wave
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CHAPTER 2. PROPAGATIONOF ELECTROMAGNETICWAVES

number is replaced by a complex wave number k, which contains the
complex permittivity.

It is easy to separate the periodical part of the expression

g(r) =
1

4π · |r|e
i(k|r|) (2.24)

from the damping part. This can be achieved by setting k = k+ iκ

g(r) =
1

4π · |r|e
i((k+iκ)|r|) =

1
4π · |r|e

i(k|r|) · e−(κ|r|). (2.25)

All parts of the wave number are real values except of the complex per-
mittivity. Unfortunately this value is under the square root. After some
calculations the square root of the permittivity could be written as

√
εr =

√
|εr|+ ε ′′r

2
− i

√
|εr|− ε ′′r

2
. (2.26)

A derivation of the complex root can be found at appendix A. If we look at
the result it is obvious that a positive σ does not only generate a damping
effect but also influences the speed of the wave and therefore leads to a
phase shift compared to a non-conducting medium. This is an important
point and has to be considered when trying to detect strokes.

2.3.1 Reflection andDiffraction
As most objects under examination are compositions of not only one kind
of material other influencing effects have to be considered, too. The effects
mentioned here are called reflection and diffraction. Reflection is an effect
preventing a part of or the whole electromagnetic wave to pass the interface
between two materials. Instead, it reflects this part or the whole wave to
the area where it came from. The diffraction leads to directional changes
of the wave, depending on the angle of incidence and the difference in
permittivity between two adjacent materials.

The influences of the described effects on the amplitude are formulated
in Fresnel’s equations. The amplitude of the reflected wave is given by

ER =

(
α−β

α +β

)
·EI (2.27)
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2.3. WAVES IN COMPLEXMATERIALS
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Figure 2.2: Schematic view of the relation between the incident wave (EI ,BI and kI ),the reflectedwave (ER,BR and kR) and the transmittedwave (ET ,BT and kT ). (basedon [7, Fig. 9.15])

and the amplitude of the transmitted wave by

ET =

(
2

α +β

)
·EI . (2.28)

β is defined by

β ≡ µ1n2

µ2n1
=

n2

n1
=

Re{√εr,2}
Re{√εr,1}

with µ1 = µ2 = 1 (2.29)

and α by

α ≡ cosθT

cosθI
(2.30)

where θI is the incident angle and θT the angle of the transmitted wave.
Figure 2.2 gives a visible impression of the relationship between the wave
directions and angles.

It must be kept in mind that the transmitted wave is always in phase
with the incident wave. This is in contrast to the reflected wave, which is
only in phase with the incident wave if α > β , otherwise it experiences a
phase shift of 180◦ [7, p. 491-498].
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CHAPTER 2. PROPAGATIONOF ELECTROMAGNETICWAVES

2.4 Scattering Problem of ElectromagneticWaves
If an electromagnetic wave is penetrating a region of non-homogeneous
permittivity the wave experiences diffraction and refraction as well as the
wave is split into transmitted and reflected partial waves. This process is in
general called scattering. In electromagnetics a scattering problem can be
written as

∇
2E(r)+ k2n(r)E(r) = 0 in R3, (2.31)

E(r) = Einc(r)+Escatt(r) (2.32)
where Einc denotes the incident field and Escatt the scattered field. The field
must satisfy the Summerfield radiation condition:

lim
|r|→∞

|r| n−1
2

(
∂

∂ |r| − ik
)

E(r) = 0 (2.33)

with n, the dimension of the space ( here 2 or 3).

2.4.1 Lippmann-Schwinger-Equation
A wide range of direct scattering problems can be rewritten using the
method of integral equations, whereby the resulting integral is called
Lippmann-Schwinger-Equation. This integral equation describes the scat-
tering problem (2.31 - 2.33) and is given by

E(r) = Einc(r)− k2
∫
R3

g(r−v)m(v)E(v) dv r ∈ R3 (2.34)

with m := 1−n(r) and n(r) := c2
0

c2(r) [12].
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CHAPTER3
TheHumanHead under
Microwave Exposure for

Microwave Imaging
The human head and its complex structures in conjunction with the different
permittivities of the tissues it consists of is responsible for signals with
extremely complex morphologies if examined by microwaves. Due to the
high level of individual differences concerning brains, not only between
different persons, but also between different locations within the head, the
extraction of the responses from for example a stroke diseased tissue, is
very difficult. In addition to that, the two halves of the neopallium are not
perfectly symmetrical, and that restricts the other side of the head to be
used as a reference signal.

This chapter gives an overview of the structures of the human head and
their influences on signals used for microwave imaging. Furthermore it is
an introduction to the general setup of microwave imaging systems.

3.1 Microwave Imaging
All microwave imaging systems have a similar setup if the technical design
is compared. The elements that are always present are a variable number



CHAPTER 3. THEHUMANHEADUNDERMICROWAVE EXPOSURE FOR
MICROWAVE IMAGING

of antennas, a signal-generating and measuring unit as well as a computing
system to evaluate the signals. For scientific purposes usually a network
analyzer is used to generate and measure the signals. The network ana-
lyzer usually measures the static case of a monochromatic wave so that
successive samples of discrete frequencies would be measured if it is used
to measure ultra-wide band signals. Often these values are delivered as
so-called scattering parameters (S-parameters)

S j,i =
b j

ai

∣∣∣∣
a j=0

(3.1)

where b j denotes the arriving wave at port j and ai is the wave injected
over port i. The square of b and a have the quantity of power.

The set of antennas is usually distributed around the object in such a
way to maximize the coverage. In other words, there have to be enough
differing views of, at the best case, every angle at the object.

The object is then illuminated by a microwave signal, called a stim-
ulation signal. The signal is sent by a subset of the antennas (often this
subset is a single antenna). Two different types of measurement strate-
gies are distinguished; the mono-static measurement and the multi-static
measurement. If the mono-static measurement is chosen, the same set
of antennas which send the simulating signal are also used to receive the
signal. In contrast the measurement of multi-static signals is performed by
the remaining non-sending antennas. Figure 3.1 gives a schematic view of
a microwave measurement setup.

3.2 HumanHead Anatomy and Effects on
Microwaves

The human head is a difficult-to-image object if wave-based techniques
like ultrasonic or radio frequency microwave imaging should be used.

This section points on the effects the occurring tissue layers have on the
signals measured with microwave imaging techniques as well as on a few
anatomical details that are important when the results of those algorithms
are interpreted.
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antenna 

discretization

object (phantom)

Figure 3.1: Schematic design of a microwave imaging system. The object under ex-
amination is a phantom similar to the phantom later described (chaptor 6). Often the
object domain is discretizised. The distance between the domain D and S can even be
narrow.

3.2.1 The Scalp

The skin and the tissues underneath, surrounding the head, are called the
scalp. The scalp is the first layer the microwaves have to pass through. The
exact composition of the scalp is not relevant due to the frequency range
used. Hence, we limited our view to the effect a layer with an average
permittivity would have (the layer was assumed to have the permittivity
of skin). In addition to its conductivity, it delivers a high contrast in
conjunction with air. The skin over the cranium is varying in its thickness
from three up to seven millimeters. This is especially interesting for the
later introduced delay and sum algorithm and the robustness test made on
it.
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3.2.2 The Skull
The cranium or skull is a composition of bones, shielding one of the
most important and highly sensitive organs, the brain. Its original task
is to protect the soft tissues of the brain from mechanical violence, but
unfortunately (for our purposes) it is also a good protection against electro-
magnetic and even ultrasonic waves. The protecting effect is a result of the
high conductivity and the high relative permittivity of the cerebrospinal
fluid (CSF) in conjunction with the comparably low permittivity and low
conductivity of the cranial bones. This high contrast leads to a reflecting
barrier for microwaves, hence only a comparably small amount of energy
can penetrate and even less can leave the brain. The cranial bone has an
average thickness of about 6.0mm±1.5mm [13].

3.2.3 TheMorphology of the Brain
The brain is a highly complex organ in functionality and morphology.
The morphology is unique for every person (an important fact for later
discussions). In the following subsections the main structures of the brain
and their location are described.

For the simplified phantom, developed during this work, the differences
in permittivity were most important. Schematically, the materials can be
separated in two main tissue types:
◦ The grey matter: The outermost layer of the neocortex and part of

the midbrain are consisting of it. Grey matter is containing mostly
the somata (the body of the pyramidal cell neurons with long axons
connected to other parts of the brain).

◦ The white matter is a substance mostly consisting of the axons of
neurons and glial cells.

3.2.3.1 The Cerebrum
The cerebrum is thought to be the part of the brain, where our memories are
saved and it is also the part where most of the so-called higher functionality
is originated. The neocortex (the outermost layer of the cerebrum) of
humans is one of the biggest of all animals, only dolphins have a bigger
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one. Its surface is up to 1100cm2 [14, 215]. The folds, called gyri, and
grooves, named sulci, are a direct result of these huge dimensions. The
sulci and gyri arise during the rapid expansion of the neocortex at the
embryonic development. It is organized in two hemispheres, each of it
folded in a slightly different manner. The asymmetry of the halves could
be an effect of the lateralization of brain functions and thereby seems to
have a genetic origin. This is still subject of research [15].

3.2.3.2 The Cerebellum
The cerebellum is important to coordinated complex moves, where multiple
muscles are involved. Despite its small dimension, if compared to the
cerebrum, the cerebellum contains about 50% of all neurons of the whole
brain. This is possible due to the high density of neurons at the thin grey
matter layer on the surface of the cerebellum.

The morphology of the surface is comparable to the neocortex and of
complex nature. It is divided in two hemispheres. The separating fold is
not as pronounced as it is at the cerebrum. The horizontal folds all over
the surface are, similar to the gyri of the cerebrum, necessary to room the
enormous surface.

3.3 Stroke Disease
Clinically a stroke is defined to be a “sudden, non-convulsive focal neuro-
logical deficit” [16].

About 80% of the occurring strokes are of ischemic type meaning
that blood supply is interupted. The remaining 20% of strokes are caused
by ruptures of vessels within the brain. These patients are suffering a
hemorrhagic stroke [1].

One problem concerning imaging stroke by microwaves is the absence
of information about the changes in permittivity caused by the stroke. It is
hard to get data of newly affected tissues (within the first hour), especially
if it must be recorded by a not-sufficiently-tested device.

The only paper describing the change in permittivity in the transition
from live to death published 2003 by Schmid et al. and Burdette et al.
1986. Schmid et al. observed a change of the real part of permittivity of
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about 3− 4% and of conductivity by 11− 15% at a frequency range of
800−1900MHz. Whereby the team of Burdette measured a different drift.
Burdette et al. were observing a deviation of about 9% of real part of
permittivity and 18% of conductivity. Three differences in measurement
techniques could explain the inconsistency. First, and also mentioned by
Schmid et al., Burdette et al. measured the tissues after removing the
arachnoid skin layer, second the measurements of Burdette et al. were
taken of a different frequency (2450MHz) and at last the measurements
of Burdette et al. were made on canine brain whereas the measurement of
Schmid et al. were made on porcine brain tissues [17, 18].

Another paper published by Schmid et al. about measurements on
human patients 30 minutes before and up to 10h (at different subjects)
after death was also not able to offer specific differences in permittivity
occurring when the tissues were dying [19].

It seems to be complex and not a question to be answered easily. As a
result of all these studies we can only assume that the differences between
living tissues and dead tissues are significant but small. For this project
this meant: a device is needed which is able to recognize these small
differences of a few percent. Or if only bleeding should be excluded, even
comparably small amounts of blood must be found within the brain.

3.3.1 TheHemorrhagic Stroke
Although the hemorrhagic stroke is the less common one it is the one
preventing the doctors from a fast treatment.

Most of the treatments that are technically fast performable, as for ex-
ample the lysis therapy1, would have devastating consequences on patients
suffering from a hemorrhagic stroke.

The main risk factor for the occurrence of a hemorrhagic stroke is
thought to be hypertension. Assumably 15% of all occurring strokes
are caused by the so-called sudden intracerebral hemorrhage. The high
pressure within the arteries leads to ruptures at typical locations, mostly in
the subcortical white matter or at the pons.

1Medication with a fibrinolytic agent. Main complications are sudden internal
bleeding.
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Pre-existing illnesses are thought to be responsible for the remaining
5% of the hemorrhagic strokes [1].

3.3.2 Ischemic Strokes
Embolism of vessels supplying the brain with blood in general are the
reason for a patient to suffer an ischemic stroke. About 50% of the
ischemic strokes are caused by macroangiopathy and another 25% by
microangiopathy. Similar to hemorrhagic strokes hypertension is also the
main risk factor for ischemic strokes . Especially, the systolic pressure is
the value with the highest sensitivity [1].

A treatment with trombolytic drugs is thought to be effective within
the first 4.5h. After that time nothing can be done to improve the outcome.

The reason for the closing window lies in tissues with affected supply
which surrounds the stroke core. They start to die over time while the
stroke core is growing.
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CHAPTER4
Optimization

A wide range of applications in modern science are related to problems
with only partially measurable parameters. The models however demand
for the remaining non-measurable parameters. They have to be estimated,
in case there is a linear relation between the measured data and the hidden
parameters e.g. linear regression analysis is a preferred method. In case of
non-linear relation an optimization method is needed.

Another reason why research projects are linked to parameter estima-
tions is that parameters which are indeed measurable have to be known but
they can not be measured without causing breaking the object of interest
(in our case the patient suffering a stroke). Thus, they have to be estimated
from indirect measurements.

A good point to begin with the understanding of mathematical opti-
mization theory is a basic optimization algorithm. A Fundamental and easy
to understand method is generally known as Newton’s or Newton-Raphson
method.

Over the years many modifications were introduced, especially to avoid
the second derivative of the problem. One of these methods (also used in
the work) is the Gauss-Newton method.

The following sections explains Newton’s method, the modifications
the Gauss-Newton method provids, the computation of the step length
within these methods and the efficient method of conjugated gradients. All
of these algorithms are treated in detail in [20].
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4.1 Newton-RaphsonMethod
As generally known Newton’s Method is a numerical algorithm to approxi-
mate the solution of f (x) = 0. Thereby the solution is found by iteratively
calculating the root of a Taylor expansion of the current point xn.

T (x) = 0 = f (xn)+ f ′(xn)(x− xn) ⇒ xn+1 = xn−
f (xn)

f ′(xn)
(4.1)

Thus, to start the algorithm a start point x0 must be chosen. The start
point should be close to the root to guarantee the convergence of the
algorithm, or mathematically spoken, within a convex region around the
minimum. If for example an other extremum is between the root and the
starting point the algorithm will converge to a wrong solution or even
worse find no solution at all.

This is also true for multivariate systems f (xn), where the update
formula could be written by

xn+1 = xn−J−1(xn) · f (xn), (4.2)
with xn the current vector of unknowns and xn+1 the new arguments vector
and J a matrix containing the partial derivatives, namely Jacobi matrix
(some time just called Jacobian). If f : Cn→ Cm is complex-valued then
J will be a m×n matrix and therefore not invertible. To overcome this a
pseudoinverse J+ is utilized.

A commonly used pseudoinverse is the Moore-Penrose pseudoinverse
[21]. For a matrix A with linear independent rows, and its Hermitian
transposed AH , the pseudoinverse is

A+ = AH(AAH)−1 (4.3)

and for matrices with linear independent columns it is calculated by:

A+ = (AHA)−1AH . (4.4)

Now, if Newton’s method is used for the task of parameter estimation it
will operate on the derivative of the function and no longer on the function
itself. The reason for this is obvious: For practical purposes it is usually
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not possible to know an exact model of the problem, hence this is even
linearized (g(x)← A+x) and if measurements are used the values usually
contain noise. These errors have to be considered. So what we are usually
looking for is a minimum of a so-called loss or objective function for
example.

Hence, the update formula for a newton algorithm, operating on the
derivative, is written by

xn+1 = xn−H−1(xn) ·J(xn), (4.5)

with H, the Hessian matrix. Where the Hessian is the second derivative

H(xn) = ∇
2 f (xn) (4.6)

of a multivariate function.
Especially, if the optimization problem considers a high number of

unknowns a calculation of the inverse Hessian will be a highly time expen-
sive operation. To avoid this some brilliant minds introduced a number
of modifications of the default Newton method. One of these modified
methods is the Gauss-Newton method. As this method was also used
during this work a small introduction is given at the next section.

4.1.1 Gauss-NewtonMethod
As mentioned before the Gauss-Newton method is a modified version of the
default Newton method. Originally introduced for optimization problems it
avoids the direct computation of the Hessian. A general objective function
for a nonlinear least squares problem can be written as

f (xn) =
1
2
||g(xn)−y||22 =

1
2
||rn||22 (4.7)

with rn the residual vector. The indices of the matrices and vectors are
simplified notations and are standing for An := A(xn).

Now with that we can define the Jacobi matrix to be

J(xn) =


∂ r1(xn)

∂x1
· · · ∂ r1(xn)

∂xK
...

. . .
...

∂ rM(xn)
∂x1

· · · ∂ rM(xn)
∂xK

=

 (∇r1(xn))
H

...
(∇rM(xn))

H

 . (4.8)
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Based on this definition the gradient of the objective function can be
written as

∇ f (xn) =
M

∑
j=1

r j(xn)∇r j(xn) = JH
n · rn (4.9)

and the expression for the Hessian as

∇2 f (xn) =
M
∑
j=1

∇r j(xn)(∇r j(xn))
H +

M
∑
j=1

r j(xn)∇
2r j(xn)

= JH
n Jn +

M
∑
j=1

r j(xn)∇
2r j(xn) = Hn.

(4.10)

Within many applications the first term of (4.10) dominates the second.
This is especially the case if we are close to the minimum, and this is
exactly the approximation that was used. By neglecting the second term,
the Hessian can be approximated by

Hn = JH
n ·Jn, (4.11)

so that we do not need to compute any second derivatives. The benefit of
this approximation is obviously reduced computational cost.

With that simplification the system to solve can be rewritten as

JH
n Jndn =−JH

n rn, (4.12)

where dn is the search direction.
Depending on the optimization problem it can occur that the Hessian

is singular or near to it, which can be the same due to limited numerical
accuracy, so that a solution for d can not be computed. Generally, problems
with such conditions are called ill-posed. To overcome that a regulariza-
tion is usually used. The most common one is the additive Tikhonov
regularization. Hence, the system to solve can then be expressed by(

JH
n Jn +λE

)
dn =−JH

n rn, (4.13)

where E is the identity matrix and λ a scalar parameter that has to be
optimized as well. This approach will add the Tikhonov-Regularization
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parameter λ to each entry on the main diagonal of the approximated
Hessian matrix.

If the Jacobi matrix has full rank and the gradient is not zero the direc-
tion d will be a descent direction. But the knowledge of the direction alone
is often not enough to guarantee fast convergence of the algorithm. If we
deal with nonlinear problems the derivative of the objective function will
often variate from point to point. This and the numerically approximated
derivative in combination with the regularization influences the obtained
direction. Thus even if we know that we have a descending direction we
do not know how far we have to go. Here, choosing one as step width
would rarely be a good choice, consequently the update of the step has to
be written as

xn+1 = xn−α ·dn. (4.14)
Now, to evaluate a sufficient step length a line search algorithm is often
used.

4.2 Line Search Procedure
A line search is a way to estimate a good step length and a good algorithm
is often a way to save a lot of computation time, since each function
evaluation means performing a complete forward calculation. This is
especially true for multivariate and nonlinear systems, where the derivative
is only numerically calculable.

Over time many different line-search strategies were developed. Here,
an algorithm based on a secant decrease will be introduced, and later used
in section 7.2.

The search takes place on the single valued objective function

g(α) = f (xn−α ·dn). (4.15)

Starting with an initial guess α0 = 1 in combination with the current
value α = 0 and the average value αm,0 =

α1+0
2 , the first derivative g′ at

α = 0 and α = α0 as well as the second derivative g′′ at the average value
αm,0 is approximated. These values are used to compute a Newton like
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Figure 4.1: Schematic of a line search strategy which is based on a Newton like param-
eter estimation and the numerical approximation of the first and the second derivative.
The interval to approximate the derivatives depends on the last and the current value
to save computation time.

update step

αn+1 = αn±
g′(0)

g′′(αm,0)
. (4.16)

From there the described steps are repeated at the new interval [α0,α1].
Figure 4.1 gives a graphical view of the procedure.

Naturally, there are some traps that must be avoided. The plus-minus
symbol is already a hint. The symbol indicates that we can’t always be
sure that the achieved direction is a decreasing one. Another problem is a
resulting low convergence rate of the sub-problem (finding an optimal step
length for a given search direction). To avoid endless computations it is
wise to define a maximum number of iterations in the implementation of
the line search as well as a minimum accuracy threshold used as an abort
criterion.
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4.3 Conjugate GradientMethods
The conjugate gradient (CG) is a method introduced 1950 by Hestenes and
Stiefel to efficiently solve large linear systems with symmetric and positive
definite coefficient matrices [20, p. 101]. If these conditions are met, the
solution for an N×N System is computed at mostly N iterations, under
the assumption of exact arithmetic.

The CG algorithm is an iterative algorithm solving the problem

Ax = b. (4.17)

The updated solution xn+1 is given by

xn+1 = xn +αn ·pn (4.18)

whereby xn is the old solution, αn a step length and pn a descent direction
out of a set of nonzero vectors {p0, p1, . . . , pM} having a property called
conjugacy:

pT
i Ap j = 0 for all i 6= j. (4.19)

The αn is the minimizer of the quadratic minimization problem that is
equivalent to (4.17)

argmin
αn

f (νn) =
1
2

ν
T
n Aνn−bT

νn with νn = xn +αnpn, (4.20)

and can be explicitly calculated by

αn =−
rT

n pn

pT
n Apn

with rn = Axn−b. (4.21)

The conjugate vectors are usually generated during the procedure. To
start the algorithm an initial guess x0 must be given, where the first vector
p0 is set to

p0 =−r0, (4.22)
with the residual vector r0 = Ax0−b. The next conjugated vector pn is
then calculated during the iterations by

pn =−rn +βnpn−1. (4.23)
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The scalar βn can be calculated with equation (4.23), if it is premultiplied
by pT

n A. By regarding condition (4.19) we obtain

βn =
rT

n Apn−1

pT
n−1Apn−1

. (4.24)

The CG method is valid for complex values to, but there the transposed
parameters have to be replaced by the Hermitian transposed parameters.

Modified versions of the CG method can be used for systems with
non-symmetric coefficient matrices as well as systems based on non-linear
equations [20, 102-109]. The later introduced Contrast Source Inversion
(CSI) method is for example a derivation of the CG method, too.
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CHAPTER5
Basic Signal Analysis

Especially for ultra-wide band signals using beamforming algorithms it is
interesting to know more about the signals. But also for the tomographic
algorithms, mostly operating on monochromatic signals, a closer look can
help to understand limits.

5.0.1 Composition of the Ultra-Wide Band Signals
As indicated before, signals for microwave imaging purposes usually are
complex. If the principle of superposition is kept in mind, it is obvious that
the achieved complex signals are compositions of reflections and refrac-
tions of the original stimulating signal. Due to the dispersive character of
biological materials, the original signals are also transformed by simply
propagating through the medium.

To illustrate this behavior and the development of such signals, an
artificial signal was generated. Therefore the formulations of section 2.3.1
and the fundamental solution for the three-dimensional point source (2.17)
was utilized. By choosing the three-dimensional solution, the signal expe-
riences a stronger attenuation if compared to e.g. one- or two-dimensional
solutions. Hence, a step to a little more realistic scenario was reached.
The incident wave is therefor generated in a quite similar way, such as a
network analyzer will usually do by simply using a discretized rectangle in
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Figure 5.1: The incident wave, achieved by a rectangular signal at frequency domain
with a frequency range of 0.5 to 5GHz.
Table 5.1: Thickness of all materials in z direction, whereas they were infinite in ±x
and ±y directions. The table contains the thickness in z dimension. The source was
thought to be in direct contact to the first material.

Material: thickness:
skin 5mm
skull 5mm

cerebrospinal fluid 1mm
graymatter 2cm
whitematter 9mm
blood ∞

frequency domain. Hence, the time domain signal is a sinc function. The
incident wave achieved in that way is shown in Figure 5.1.

To simplify the calculations a model with infinite plane boundaries
between the different materials was assumed. The model includes five
different material layers. The materials and their thickness are given in
Table 5.1. The stroke was represented by a layer of the same dimension
inside the white matter which had the permittivity of blood. The necessary
permittivities therefor were taken from the tissue database of the Foun-
dation for Research on Information Technologies in Society (IT’IS) [22].

The generated signal was an ultra-wide band signal with 100 discrete
samples from frequencies of 500MHz up to 5GHz.

The whole calculation was performed in the frequency domain. Af-
terwards the signals were transformed back to time domain. As indicated
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before, no morphology was imprinted on the stimulus signal, hence, the
amplitude of all samples in frequency domain was 1 at the beginning. By
summing up all first reflections, after they had been back-propagated to
their origin, a signal as observable in Figure 5.2 could be reached. It
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Figure 5.2: The sum of all first reflections occurring on a simple planar model with infi-
nite extent. To simulate the propagation the three dimensional fundamental solution
was used (equation (2.17)). The part of the signal I was interested in was not easily
observable.
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Figure 5.3: Separate parts of the signal observable at Figure 5.2. The curves represent
the reflections after they were back-propagated to the source.

could be recognized that the signal part originally reflected at the blood
boundary is hardly observable. It is better observable in the plot at Figure
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Figure 5.4: The signals experience a strong attenuation when propagating through
thematerials. This figure shows the attenuation of the signals when they arrive at the
specifiedmaterials, where the blue colored line shows the signal as it arrives in white
matter and the remaining lines demonstrates the signal on the way back to the source.

5.3, which shows the signals before they were summed up. Figure 5.4 de-
picts the weakening the signal experienced during the propagation through
the model and backwards to the source. I was observing a decrease of
the amplitude of up to −90dB1. The curves are showing the signals in
frequency domain as they arrived at the specified materials.

It should be kept in mind that signals on real three-dimensional setups
experience an even stronger attenuation as the materials surfaces are usually
smaller and curved in some way. This means a good portion of energy is
missing the receiver.

In addition to that it must be mentioned that only first reflections were
considered. This, in combination with the naturally complex morphol-
ogy of the brain, will lead to many more responses and therefore to a
significantly more complex output signal.

1Aswe are talking about fields, the decibel definition with quadratic amplitudes
was used: GdB = 10 · log |A0 |2

|A1 |2
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Figure 5.5: Thewide band signal, as it was later used on the delay and sum algorithm
(500MHz to 2.5GHzwith one difference, there the signal was windowedwith a Tukey
window). On the x-axis the extent of the signal, calculated at a permittivity of 47.0−
i18.7 is shown. In front of the signal a true-to-scale phantom is drawn.

5.0.2 Spatial Extent of the Signals
As the spatial resolution of algorithms presented here depend, among other
things, on the frequencies involved, the spatial expansion of the signals is
also of interest. To illustrate that two small figures were generated.

The first of them (Figure 5.5) shows a true-to-scale head model in front
of the ultra wide-band stimulus signal. As later explained, it was not useful
to include signal parts above 2.5GHz, hence, the signal illustrated here,
has a frequency range of 0.5 to 2.5GHz. To calculate the distances, I used,
similar as it was done for the delay and sum algorithm (section 7.1), an
average complex permittivity of 47.0− i18.7 (of the phantom materials
section 6.2.2.1) to calculate the speed of the electromagnetic wave within
the medium (equation (2.21)). As mentioned above, the signal was of
rectangular morphology in the frequency domain.

The second figure shows a monochromatic signal with its expansion
over the same true-to-scale phantom (Figure 5.6). The frequency of the
sinusoidal signal was 1GHz. This frequency was selected as it shows the
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Figure 5.6: A monochromatic signal at 1GHz. The x-axis is presenting the spatial
expansion of the sinusoidal signal. The extend was calculated on a permittivity of
47.0− i18.7. In front of the signal a true-to-scale phantom is drawn.

best results for the tomographic algorithms and in addition to that it was
the frequency for which a Vivaldi-antenna, developed especially for that
purpose, showed a good performance.

It is obvious that both signals are highly sub-sampling the details of
the phantom and this is even worse with a realistic head.
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Permittivity Phantom of the

HumanHead
Usually, it is not possible to achieve measurements of real subjects in an
early state of research, especially if the technology, which should be tested,
is without medical approval.

To circumvent the missing of data two ways are possible. The first
way implies computer simulations. They are a good replacement for
measurement data in the beginning. The benefits of it are a well-defined
environment with usually well-known boundary conditions and therefore
many errors can be avoided. Unfortunately, the computation of large
problems is not possible in a reasonable period of time, especially if
realistic details are integrated.

The second way to go is it to measure at a simplified setup usually with
an artificial replacement for the patient. This replacement (called phantom)
usually has only the major properties of a real patient. Important is that it
is able to emulate the physical features and difficulties the algorithm needs
to manage.

Hence, what our phantom must have is a comparable refraction between
the layers. Therefore, the permittivity of the tissues of the head must be
approximated.

The examinations and findings described in the following sections were
obtained by two students while they were working on their bachelor thesis
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under my guidance. Since, the findings were in many cases a product of
a close cooperation and fruitful discussions, the pronoun “we” was used.
During the bachelor thesis of Carl Christian Marzi [23] the examination of
materials and a first draft of the phantom was developed. The verification
of the phantom as well as further developments were the contribution of
the bachelor thesis of Natalie Bauer [24].

6.1 Selection of theMaterials
What was needed, was an easy to use and not-expensive material, so that
phantoms with different shapes, with strokes of different types and with
individual morphologies at different locations within the model can be
created. Thus, ceramics with defined permittivity, so-called electronic
ceramics were excluded. Over the last decades a number of material
mixtures with different compositions have been proposed as a replacement
for the soft tissues (skin, grey and white matter). Most of these mixtures
are based on water.

It is commonly known that water has a very high permittivity of around
80 at 20 ◦C, but the permittivity can be reduced by choosing a second
material for the mixture having a significantly lower permittity (could be
called a filler). In most publications sucrose, glucose and/or starch (corn
flour) were proposed as filler for head phantoms. An early example of
a sugar-gelatin-based phantom was introduced by Marchal et al. 1989
[25]. The phantom was proposed for low frequencies applications. A more
related publication was offered 2013 by Chew et al.[26]. The introduced
phantom is thought to be used at microwave frequencies in the range of 1
to 6GHz [26]. And as a last relevant publication it is important to mention
the one by Mohammed et al. of 2012 [6]. The material they chose was a
mixture of water, corn flour and oil. Figure 6.1 shows a compartment with
the SAM (Specific Anthropomorphic Mannequin) head phantom [6].

If the two suggested materials for the soft tissues are compared we
have to notice that the possible fitting of the mixtures made of sugar, water
and gelatin by Chew et al. cannot be as accurate as it could be with the
mixture containing corn flour and oil by Mohammed et al.. The slope

42



6.1. SELECTIONOF THEMATERIALS

frequency [GHz]
1 21.5 2.5 3 3.5 4

re
la

tiv
e

pe
rm

itt
iv

ity

34

36

38

40

42
SAM head model
Developed head phantom

1 21.5 2.5 3 3.5 4
frequency [GHz]

co
nd

uc
tiv

ity
[S

/m
]

0

1

2

3

4
SAM head model

Developed head phantom

Figure 6.1: Relative permittivity (left) and conductivity (right) of the phantommaterial
introduced byMohammed et al. (a mixture primarily of oil, corn flour and water) in
comparison to a SAMphantom.[6]

of the dispersion of the sugar-water-gelatin mixture is stronger than it
should be (Figure 6.2), so an exact fit is not possible. Unfortunately, some
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Figure 6.2: The sugar (sgr), water (wtr) and gelatin (gltn) based phantom material
introduced by Chew et al.. The graphs were achieved during the investigationsmade
when fitting themixture to greymatter. [26]

preliminary tests showed that the mixture with oil and corn flour cannot be
easily handled. In most of our samples the oil containing part of the mixture
separated from the watery part as visible in Figure 6.3. The remaining
samples of this mixture type showed measurable differences concerning
the permittivity between the top of the sample and its bottom.
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Figure 6.3: Investigations onmixtures containing oil, corn flour, gelatin andwater. The
part containing oil was separating before themixture could solidify.

In the end our choice was the material without the corn flour and the oil.
In detail we have chosen a mixture of common sugar, distilled water and
porcine gelatin. The easy-to-manufacture mixture and the feature that it
contains only simple commercial materials enables the phantom to be used
for student experiments. Additional to the advantage mentioned above, the
low number of components enables the phantom to easily fit the mixture
ratios so that additional tissue types can be approximated.

The phantom with the selected material does not provide exactly the
same reflecting properties as a real head. Hence, the approximation would
only be suitable for algorithms working on monochromatic waves.

In general the stronger slope of the dispersion will influence the mor-
phology of the signals in a stronger way as it would be with real tissues.
The reason for the stronger influence on the morphology originates in the
bigger differences between the respective propagation speeds (dispersion)
of the frequencies involved. Due to the short propagation distance, if
compared to the wavelength, this was not thought to be of significance for
the later introduced UWB-Beamformer.

6.1.1 Material as Replacement for Bone
The cranial bone surrounding the head, as explained before (section 3.2.2),
is an important feature of the human head. Especially for microwave
imaging purposes it is a major source of reflections. Hence, a phantom that
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does not regard this feature cannot be a good test object for the development
of the measurement setup.

Our search for materials lead us to a couple of candidates, which
could be able to represent the cranial bone. Two of those materials we
thought to be possibly good replacements. The first one was epoxy resin
in combination with rutile (TiO2) and as a second we suggested Al2O3 to
be a good choice.

The naturally high permittivity of rutile (between 150 and 200 [27])
makes it an ideal filler, able to raise the permittivity of materials which
do have a low permittivity. We suggested epoxy resin as a good basis for
the skull-mixture. The reason for choosing epoxy resin was, in addition to
the solid form after it had been processed it also provides a high relative
permittivity (4− 6.5) [28]. Most of the other plastics usually only have
permittivities between 2 and 3 [29].

6.1.1.1 Experiments with Rutile and Epoxy Resin

The first thing we needed to know was how strong the influence of the
filler within the basis would be. We started with a concentration of about
25% vol. of the filler. At this concentration the TiO2 powder could be
easily mixed with the epoxy resin. Unfortunately, the concentration of
the filler seems not to be enough to achieve a significant raise of the
permittivity. Hence, we decided to increase the amount of the filler to a
maximum. At about 75% vol. the mixture was not stable any longer and
we were not able to achieve homogeneous mixtures. The ratios between
75% vol. and 25% vol. were either not sufficiently raising the permittivity
or the mixture was not homogeneous.

A cut through the middle of a sample with 50% vol. showed a large
number of small air bubbles (Figure 6.4). We suggested that due to that
bubbles we were not able to measure the permittivity of the mixture cor-
rectly. Due to these problems we decided to reject this type of material
mixtures.
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Figure 6.4: A cut through amixture of epoxy resin and rutile with a ratio 50%. The im-
age shows a large number of small air bubbles within themixture. Hence, thematerial
mixture was rejected.

6.1.1.2 Clay as PhantomMaterial for Bone
Al2O3 was mentioned above as a second material for the bone phantom.
The natural occurrence of aluminum oxide does have different forms. The
most common and natural form is a crystalline form called Corundum.
Sapphire, ruby and emery are most commonly known as such types. Even
if it is possible to manufacture synthetic crystals like corundum, it is still
an expensive process and in addition to that the hardness of crystal makes
a rework not affordable.

In its non-crystalline form, Al2O3 is the main component of pottery
clay and therefore of ceramics. Even if ceramics with specific electrical
properties can be manufactured and acquired by a handful of companies,
we decided to take pottery clay itself to form the skull of our phantom.
The so-called electrical ceramics are quite expensive. We decided that we
could not make such purchases at this state of project.

In the beginning of our experiments we were concentrating on the
relative permittivity and were ignoring the conductivity.
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Figure 6.5: A comparison of the candidatematerials for the skull phantom. The permit-
tivity of wet fired clay is thought to be a sufficient approximation to the physiological
bone.

Due to the porosity of fired clay and the unknown amount of other
components of common pottery clay we could not expect the value for
Al2O3 mentioned in literature. In addition to pure clay we were testing
samples containing an amount of titanium oxide. Unfortunately, the rise
in permittivity with titanium oxide was also not significant. This was
especially the case with watered samples when the skull made of clay was
a component of the whole phantom. Figure 6.5 shows the measured results.
We have to mention that the result was strongly depended on the tight fit
of the dielectric probe1 on the sample. Due to the non-smooth nature of
fired clay this could not be easily ensured. Polishing the sample helped
to improve the situation but not to fix it completely. On poorly fitting
locations the resulting measurements were usually lower as expected. An
explanation would be that the comparably small amount of air between the
probe and the sample would lead to the reduction of the average permittivity.
Hence, we assumed that the highest measured permittivity would be the
closest approximation to the real permittivity of the sample. Figure 6.5
contains the highest measured permittivity.

1All measurements were taken by an Agilent E8363B Phase Network Analyzer in
combination with the 85070EDielectric Probe Kit.
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Comparison The material we have chosen did not perfectly fit but for
initial tests of the system and the algorithm it was sufficient. The complete
phantom contained a hollow half sphere of pottery. Compared to the above
mentioned publicated phantomes this was an even better approximation.
For example, the phantom of Mohammed et al. contained a skull-phantom
made of polyvinyl chloride (PVC). Even if this skull was in its morphology
close to a realistic one, it was not if we look at the permittivity. The
permittivity of PVC is somewhere between 2−5 and thereby far away to
the permittivity of natural bone [30].

6.2 Development of the Phantom
First we had to decide how many details should be involved to achieve a
good test in order to gain the first measurements. Every tissue layer of the
head leads to a reflection and thereby to a reduction of the signal. Hence,
our phantom should incorporate as many layers as possible. However, a too
complex phantom complicates the interpretation of the results and thereby
makes it hardly usable for algorithms under development. So we decided
to omit the CSF and the most thin skin layers like the thin meninges. These
thin meninges were thought to have a neglectable influence on the signal
within the selected frequency range.

By regarding the above mentioned reasons we decided to include the
scalp as the outermost layer, directly beneath it a layer for the bone, the
skull, and inside the brain a layer for grey matter and another one for white
matter.

All the layers were made of half-spherical shapes except of the inner-
most white matter layer. This one was used to approximate the hemispheri-
cal morphology of a realistic brain.

6.2.1 Finding the CorrectMixing Ratio
To obtain the correct permittivity the ratio in percent of the components
of the mixture must be figured out. Therefore, a series of samples with
different concentrations of sugar were manufactured. We started with
a mixture without sugar and increased the sugar ratio up to the highest
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Figure 6.6: The reachable permittivity range when the sugar gelatin and water mix-
ture is used. The reachable region is marked by the hatched area. The highest sugar
concentration possible is at 63% and the lowest is with 0% sugar.

concentration possible, which was an amount of 63%2of sugar. With that
concentration the mixture was losing its homogeneous property and pure
sugar was visible on the surface of the sample. Furthermore, with this
concentration it was very difficult to get rid of air bubbles brought in during
the mixing process.

Hence, the reachable area of permittivities is set within a sugar concen-
tration of 63% and 0%. Figure 6.6 illustrates this area.

6.2.2 Regression Graph for NewMixtures
To achieve the correct ratios for all materials a regression graph was fitted
for the discrete samples achieved by the experiments described above. The
fitting was done at a single frequency and thereby it is probably not a
reliable solution for other frequencies. However, it is good enough to offer
an initial idea for a new mixture representing a tissue having not been taken
into account yet. The regression graph is given by the following formula:

ε
′(ω) = ε

′
min +

ε ′max− ε ′min

1+ e−a(−ω+b)
. (6.1)

2all percents are in weight percent.

49



CHAPTER 6. PERMITTIVITY PHANTOMOF THEHUMANHEAD

0 10 20 30 40 50 60
mass fraction of sugar [%]

35

40

45

50

55

60

65

70

75

re
la

ti
v
e

 p
e

rm
it
ti
v
it
y

measured permittivity

fitted mixing expression

linear approximation

Figure 6.7: The graph contains a graphical representation of a linear fitting compared
to the fitting of themixing formula (6.1).

Table 6.1: The resutling parameters after having fitted themixing formula (6.1) to the
measurements.

Formula a b ε ′max ε ′minlogarithmic grows 0.07947 38.89 70.71 31.18
linear regression −0.5965 74.48 - -

Here the values ε ′max and ε ′min are an upper limit and a bottom limit re-
spectively and the values a and b are free parameters without any physical
meaning. The limits are naturally given by the permittivity of pure sugar
and pure water. It has to be mentioned that only the real part of the complex
permittivity was taken into account for the fitting. Due to the naturally
given boundaries we selected a mathematical expression inspired by the
formula for limited logarithmic growth. The parameter estimation itself
was then made by a Trust-Region-Reflective algorithm provided by MAT-
LAB. Figure 6.7 shows the resulting mixing graph in comparison to the
measured samples and a linear approximation

ε
′(ω) = aω +b. (6.2)

Table 6.1 contains the parameters we achieved with the fitting. To achieve
the results visible in Figure 6.7 we decided to estimate all parameters
(including ε ′max and ε ′min).
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Figure 6.8: This graph is illustrating themeasurements of a new series of samples and
the proposed values of themixing formula (6.1) and the linear approximation (6.2)

For the verification of the achieved results a second series of samples
with different sugar concentrations were manufactured and measured. The
precalculated potential permittivity was compared to the measurements.
As visible in Figure 6.8 the manufactured samples did have the proposed
permittivity, except from a systematical error. The deviation was about 2
in relative permittivity but still within systematic accuracy.

6.2.2.1 The Resulting PhantomMaterials
After the investigations described above it was simple to obtain the correct
ratio for the mixtures. The percentual ratio for every considered tissue can
be read from Table 6.2. During our experiments a procedure to achieve
reproducible homogeneous air-free results was developed. The procedure
is mentioned below:

1. First the amount of water is measured and filled in a test glass on a
heating device which also contains a magnetic stir unit.

2. The device was switched on and the sugar was intermixed. It was
important that the device operates with a rotation high enough, oth-
erwise the sugar could be burnt at the bottom of the test glass.

3. After having added the sugar but before the mixture was getting too
hot the gelatin was intermixed.

4. Now the test glass was closed with a piece of cling film to prevent
the water from evaporation.
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Table 6.2: The percentual ratio for the phantommaterials to achieve the permittivity
visible at Figure 6.9

phantommaterials water sugar gelatin salt
skin 49% 45% 6% -

greymatter 59% 35% 6% -
white matter 47% 47% 6% -
blood 80% 14% 6% 0.9%

0 1 2 3 4 5
frequency [Hz]

×10
9

0

10

20

30

40

50

60

70

re
la

ti
v
e

 p
e

rm
it
ti
v
it
y

bio. blood
bio. grey matter
bio. white matter
bio. skull
bio. skin
ph. blood
ph. grey matter
ph. white matter
ph. skin
ph. skull

0 1 2 3 4 5
frequency [Hz]

×10
9

0

1

2

3

4

5

6

7

8

c
o

n
d

u
c
ti
v
it
y
 [

S
/m

]

Figure 6.9: Comparing the phantom material to the real biological permittivities of
the tissues we determined a difference especially concerning the slope of the real
permittivity and concerning the conductivity.

5. After that the mixture was heated up to a temperature of around
70◦C. But it must not boil.

6. When the temperature was reached it had to be held until all the
gelatin particles were melted.

The resulting mixtures compared to their biological counterparts are plotted
in Figure 6.9. The deviations from the right slope and the not well-fitted
conductivity graphs are the main obvious defects. If neglecting the mix-
ture for the hemorrhage the consistently too high conductivity increases
the damping of the signals and thereby (if compared to a real head) an
algorithm for imaging the inside has to manage it. However, the mixture
simulating the hemorrhagic stroke had a too low conductivity compared to
biological blood. Thus, a small amount of salt was necessary to reach the
correct conductivity. We assumed that the generally higher conductivity
would not be a problem.
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Figure 6.10: The left image shows the mold filled with grey matter mixture and the
dummies for the white matter hemispheres. In the background there is the aluminum
plate used to adjust the whitematter hemispheres and to cover themold. In the left
image the blood clod placedwithin the white matter space is visible.

6.3 AMold to Form the Phantom
As the materials were fluid during the process of manufacturing, a mold
and a well-defined procedure was needed to form a solid phantom. We
developed a mould with a diameter of 20cm to achieve approximately
the correct size of a head. The material chosen for the mold was poly-
oxymethylene (POM). The advantage of it was that the product can be
taken out without any release agent. This was possible as POM is a plastic
with an almost wax-like and hydrophobic surface. Due to the high level of
water in our mixtures the product came off easily.

The layer in contact and therefore the outermost layer is the skin or
scalp. The skin layer should have a thickness of between 3 to 7mm. To
ensure this thickness and to achieve a fit of the following layer, which is
good enough, a centering device was necessary. The layer following on the
skin was the skull and as this layer was made of fired clay we were able
to use it directly to form the inner surface of the scalp layer. The natural
properties of fired clay made it impossible to achieve an exact shape. That
means the bone layer was not exactly spherically shaped but more in a
non-smooth, elliptical shape so that we achieved a huge tolerance at the
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Figure 6.11: The complete phantom with a layer for skin, skull, grey matter, white
matter and with a clod of blood. Left; the bottom view and right the top view of the
phantom. The phantomwas coloredwith a green coloring agent tomake it easier to
separate the layers.

thickness of the skin layer. To prevent the adjacent layers of the phantom
from dehydration the clay as mentioned above was watered.

The next layer after the skull of our phantom was the grey matter. As
a mold for that layer the skull made of clay was used. The room for the
white matter was achieved by a dummy made of POM. The dummy was set
on an aluminum plate. The plate was also used as a centering mechanism
and to cover the POM mold after having filled in the grey matter mixture.
Figure 6.10 shows a test cast with mixtures for grey and white matter as
well as for blood. On the left side the dummy for the white matter within
the grey matter is visible and on the right side the clot of blood within the
white matter area can be seen. In the background of the left image the
aluminum plate is also visible. What can be noticed is that the aluminum
plate does have many holes. These holes were introduced as a reservoir
for the mixture filled up before closing the mold. This was necessary as
the mixtures were contracting when cooling down as otherwise it would
leave the mold filled incompletely. It has to be noted that with the last step,
when filling the white matter, it was quite important that the temperature
was within a small range between 36◦C and 40◦C. This was necessary to
achieve a sufficient adherence without melting the grey matter or the blood
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clod, if present. A complete phantom containing all tissue layers and a
hemorrhage is visible in Figure 6.11.

If a hemorrhage was integrated it had been placed either within the grey
matter or within the white matter layer. To form the hemorrhage a sample
of the blood mixture was manufactured and afterwards an approximate
sphere was cut out.

6.4 PhantomVerification
After the development of the phantom we had to know about the durability
and the reliability of the achieved compositions. This was important
especially if errors were searched in a later step.

A reasonable assumption regarding watery mixtures always is that sub-
stances or even the water itself leaves its intended position and propagates
into other mixtures. Therefore, an investigation was necessary. This was of
interest as we had to know if and for how long we can use the approximated
tissues.

6.4.1 Addition of a Separating Layer
As mentioned above we were assuming some kind of diffusion processes
between our mixtures. If that was the case even smaller parts like the blood
clod would vanish before anything could be measured. Hence, we started
examinations of the permittivity from samples consisting of two mixtures
each of the two with a different sugar concentration.

In total two different experiments were made to assess the influence
and the amount of diffusion inside the phantom.

The first experiment The first experiment was made to verify whether
there was a diffusion process at all. Therefore, two samples were manu-
factured. The first one was made by casting a white matter layer directly
onto an existing grey matter layer. For the second sample (the reference
sample) two layers were also made and stored separately. After having
been stored four weeks at 7 ◦C and wrapped in cling film the samples were
compared by an optical examination and by measuring the permittivity on
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Figure 6.12:On the left the samplewith the adhere layers and on the right the samples
separately stored. The samples were stored for 4weeks at a temperature of 7◦C.
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Figure 6.13: Schematic view of the samples. Left the sample with adhered layers and
on the right the samples separately stored. Themeasured dimensions were thought to
be a result of the diffusion process and the way they are stored (up Side of the layer is
smaller).

both sides (top and bottom). With the optical comparison (Figure 6.12) a
difference between the samples was clearly observable. The white matter
part of the sample seemed to have increased. It looked as if it had absorbed
a part of the water from the grey matter layer above. A deformation was
also observed at the reference sample. The reason for it was thought to
be a result of the evaporation of water and of the place the sample was
stored in within the refrigerator. Some parts of the deformation, visible
at the test sample, surely have been caused by the same reasons as they
have been at the reference sample. Therefore, a pure optical analysis was
not sufficient. A schematic representation of the deformation is given
in Figure 6.13. Figure 6.14 represents the measured permittivities. A
considerable difference between the sample with separately stored layers
and the sample with adhesive layers is observable. Especially, the grey
matter layer shows alterations even on the surface opposite to the white
matter layer.
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Figure 6.14:Measured permittivity of the sample with adhered layers and the refer-
ence sample (layers separately stored).

Second Examination The results of the first experiment which was
made to examine the durability inspired a second experiment.

The second experiment was made to examine how long the diffusion
lasts and how deep the diffusion zone would be. Due to the comparably
long manufacturing process needed for a single sample, a measurement
could at the earliest be made 4 hours after the start of the production. With
all the layers the production in total lasted three days. Thus, the material
has to last at least an additional fourth day in order to have one day to
measure.

A series of 7 samples were made to examine the duration. Each day
a new sample was produced and on the last day after the final sample
solidified. We separated the layers from each other and measured the
permittivity at the interface surfaces. By observing Figure 6.15 we can
notice that the diffusion process is almost finished after the completion of
the sample.

A last questions still remained open: Is the diffusion zone only a very
localized phenomenon on the contacting surface or does it happen all over
the sample?
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Figure 6.15: The resulting permittivity measured at 2GHz. The measurement was
taken on the surface were the layers were connected. The reference is the permittivi-
ties of the seperately stored layers.

Depth of the Diffusion Zone The penetration depth of the diffusion
zone was examined on a sample with adhering layers. The samples were
sliced into discs of 2.5mm thickness. After every cut the permittivity was
measured. The result of the experiment for a single frequency is visible
on the left side of Figure 6.16. We noticed that the diffusion zone reaches
nearly all the way through the sample.

At this point we decided to introduce a non-conducting waterproof
separating layer.

6.4.1.1 Investigation on the Influence of a Non-Conducting Layer

The first experiments with the aim to find out if a non-conducting layer
can be used was made with a polyethylene film (cling film) with a sub
millimeter thickness of about 16 µm. But we kept in mind that we later
would need a material that could be easily fitted on a spherical surface.
Furthermore, it could become important that at a later point of time a
more realistically shaped phantom would be needed and thereby the non-
conducting layer have to be affixed on a complex shaped surface. Hence,
we examined a second material: Latex milk.
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Figure 6.16: Examination of the penetration depth of the diffusion zone. The left
diagram shows themeasurement of a sample of two layers cast on each other with a
whitematter and a greymatter layer. The right diagram is of the same structure, except
a filmmade of latex which is between the grey andwhite matter layer.

Simulation on the Non-Conducting Layer Before the above men-
tioned non-conducting layer could be included, another experimental test
was needed. We had to verify, that the layer did not have a significant
influence on the measured signals. Therefore two simulations were made.
One of it contained a small PE film and the other did not.

The simulation was made with the same dimensions that we used during
the real experiments described above. The sample consisted of a layer of
a grey matter-representing material and another one representing white
matter. The layers were of 6mm thickness and had a diameter of 130mm.
The permittivity for the simulation was taken from the measurements
described above. As a simulation environment we used SEMCAD3. The
field was transmitted and received by bow tie antennas developed by M.
Jalilvand [31]. The influence of the layer can be read from the scattering
parameters. A reflection would influence the S11 and S22 parameters
and deviations in the transmissions would be visible at the S21 and S12

3A software for simulating electromagnetic field problems. The software is a
product of the SPEAGCompany, Zürich, Switzerland.
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Figure 6.17: The S11 (left) and the S21 (right) parameters of the simulation made toverify that a very thin non-conducting layer (around 16 µm) does not have an influence
on propagating waves. The simulation was made by SEMCADwith a homogeneous
permittivity neglecting disperion.

parameters. In Figure 6.17 the results of the simulations can be examined.
There was no difference between the simulations found. The graphs are
exactly congruent. One limitation should be mentioned here that non-
dispersive materials were used in the simulation. Hence, the complex
permittivity we used was the permittivity at 2.5GHz. This could explain
the second peak 3.8GHz passing through the sample, an effect we could
not detect during a real experiment (compare Figure 6.19).

Experimental Verification on the influence ofNon-Conducting Lay-
ers. The same experiment as simulated above was repeated with real
samples having the same dimensions. A cling film was used as separating
layer. In our first experiment (shown in Figure 6.18) there were still some
differences noticeable. So we made further experiments. We had to learn
that the observed deviations were caused by small differences between
the sample mixtures and their shapes. To examine this we started a new
experiment where we introduced a gelatinous mass (later called matching
liquid) with approximately the same permittivity as the skin mixture. The
matching liquid was later used to improve the fitting of the antenna on
the surface and to achieve a distance between the antenna and the sample.
For this experiment we used the sample without the PE film in between
and added a layer of the matching liquid with a thickness of 1cm on top.
A new PE film was brought in place between the matching liquid and
the sample. After the first measurement the film was removed and the
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Figure 6.18: The S11 (left) and the S21 (right) parameters of the experiment made toverify, that a very thin (around 16 µm) non-conducting layer does not have an influence
on propagating waves. Two samples were produced eachwith two layers made from
mixtures for grey andwhitematter of 6cm thickness. In one of the samples the layers
were separated by a PE film.
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Figure 6.19: The S11 (left) and the S21 (right) parameters of the experiment, which wasmade to verify that a very thin (around 16 µm) non-conducting layer does not have an
influence on propagating waves. The expermient wasmadewith the sample without a
barrier of PE film. During one of themeasurements a newPEfilmwas brought between
the antenna and the sample. Therefore a layer of matching liquid was used to garantee
a good fitting of the antenna.

matching liquid level was compensated with more matching liquid. Then a
second measurement was made. Figure 6.19 shows the result. We could
not detect any difference between the two measurements. So we can state
that we do not have to consider such thin layers during reconstructions and
evaluations.

Remaining Diffusion on LatexMilk As we intended to use latex milk
instead of PE film we had to redo the experiment with a layer of latex as
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separator. Due to the way latex is processed, the layer we were generating
was never completely waterproof. So we considered that a light diffusion
could be remaining. The layer will hardly become waterproof as the
vaporizing ammonia is leaving pores behind. To measure the extent of the
remaining diffusion we sliced the sample after the experiment into discs as
we did with the sample which was cast together (described above). The
result is also plotted in Figure 6.16 (on the right). The red line marks at
which depth the difference between the white and grey matter-miming
material is equal to the sample directly cast together.
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CHAPTER7
Three Algorithms for Stroke

Diagnosis
Microwave imaging in the context of stroke diagnosis can only be useful if
it is able to deliver fast results. Microwave imaging was never thought to
be a replacement for well-established medical imaging systems like CT or
MRI, rather it should result in a technology to support the ambulant preclin-
ical treatment of victims suffering a stroke or even an anyhow-caused head
injury with the risk of an intracranial hemorrhage. Therefore, it is important
that the investigations focus on fast and reliable algorithms. The probably
fastest algorithms for that task are beamforming algorithms. These kind of
algorithms are mainly used in the field of ultrasound, acoustics or radar. In
our opinion this is a good reason to take such algorithms into account.

Unfortunately, beamforming goes hand in hand with many approxima-
tions and simplifications and therefore the resulting images (later in this
chapter) do not always lead to clearly interpretable results. Moreover, in
case of an error, it is hard or even impossible to identify wrong results
and separate them from good ones. A reason for us, to introduce a second
algorithm and examine its ability to image strokes.

Hence, the second section of this chapter describes the functionality,
implementation and verification of a Gauss-Newton-based reconstruction
algorithm. This algorithm does not need to have additional (often unknown)
information about wave propagation or underlying physical effects. This is
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possible due to the encapsulation of field-specific calculation into separate
simulations. Nevertheless, this benefit is usually traded against great
computational efforts. Thereby, the required demand of hardware and
computational performance to achieve a fast reconstruction is hard to
fulfill.

Hence, a last algorithm is introduced (section 7.3). An algorithm,
namely Contrast Source Inversion, that may serve both a minimum of
approximations and a comparably fast reconstruction.

7.1 Delay and SumBeamforming forMicrowave
Imaging

The idea behind beamforming is quite simple and in case of e.g. radar
does not require too many approximations: If for example electromagnetic
waves are propagating through a homogeneous medium, the velocities of
the waves will be equal and independent from the direction as well as the
orientation of propagation. Hence, the waves will spread in a spherical
manner from the particular sources. For the beamforming, the homogeneity
of the background is assumed. Moreover, the same velocity is used for all
mediums and only single scattering is regarded. These assumptions are
used in different ways for beamforming algorithms:

1. They are used to form a globally defined wave front of a different
morphology, for example a plane wave. Therefore, the transmissions
of the senders are synchronized in such a way that the superposition
of the single waves will generate the intended global wave.

2. The assumptions are also used to focus on a single point within the
examined object and therefore maximize the amount of microwave
energy exactly there. By doing so, a selective warming of the aimed
point can be reached. This is a technique that is actually under
research and is intended to treat for example intracranial cancer [32].

3. The assumptions are also used to focus on unknown sources by delay-
ing the received signals and therefore locate the sources themselves.
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Figure 7.1: A schematic representaion of the Delay And Sum (DAS) algorithm. The
distance between the discrete points in the resulting image and the antenna pairs
(transmitting and receiving antenna) are used to delay a time window. The window
is then used to cut out the corresponding time sequence of the received signal. All
cut-out signal parts are summed up and the achieved value is written through the
corresponding point.

Combinations of the strategies described above are used for ultra sonic
imaging, radar or even for microwave imaging.

7.1.1 TheDelay and SumAlgorithm
The algorithm I was using did combine point two and point three of the
above mentioned statements. First, the signals transmitted by all antennas
were delayed in such a way that a single point was focused. However in
our case not to heat the tissue but rather to achieve a strong reflection from
exactly that point. In a second step the reflections from the previously
focused point were windowed in time domain to cut out the potential
reflection. As a last step, the cut-out signal parts were summed up.

Due to the principle of superposition, the measurement for each sending
antenna can be made separately. The separate measurements are then
saved in the form of scattering parameters and the whole procedure can be
described in the following way:

1. Measure the scattering parameters in frequency domain for each
transmitting antenna (marked with the index m) and each receiving
antenna (marked with the index n) Sn,m with n,m∈ {1,2, . . . ,N} and
N the number of antennas. Inverse Fourier transform the signals to
time domain (F−1{Sn,m}).
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2. When all signals are acquired the area which should be imaged is
discretized. Therefore a K×L-grid is defined for a two-dimensional
example.

3. In the next step the distance between each discrete point pk,l (with
k ∈ {1,2, . . . ,K} and l ∈ {1,2, . . . ,L}) and each antenna position an

is calculated.
4. In this step the propagation time t(an, pk,l) to each point from every

antenna is calculated which is not possible without a strong approxi-
mation (the homogeneity of the velocity). Usually the propagation
times are therefore calculated with the velocity c of a wave that
propagates through a medium with the average permittivity εa of all
expected tissues:

t(an, pk,l) =
|an− pk,l |

c
, with c =

Re{√εa}
c0

, (7.1)
where c0 is the speed of light in vacuum.

5. Now, the propagation times are used to calculate the delay time
τn,m(pk,l) for every point and antenna combination. The delay time
is the sum of the propagation times from the source antenna to the
actual focus point and the propagation time from that point to the
receiving antenna.

6. The calculated delay times are used to move a time window w and
cut out the correct signal parts.

7. All cut-out signal parts for the corresponding point are summed up
and form the value Ik,l in the result image.

Figure 7.1 provides a schematic visualization of the delay and sum algo-
rithm.

Following the steps above, we can write

Ik,l =
N

∑
n=1

N

∑
m=n+1

w(t− τnm(pk,l)) ·F−1{Sn,m} (7.2)

with
τn,m(pk,l) =

1
c
· (|an− pk,l |+ |am− pk,l |). (7.3)

Having a closer look at equation (7.2) we notice that the second sum-
mation always starts with an index greater by one than the index of the
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first summation. This was done to illustrate two things: First, each pair of
antennas needs only one antenna to be transmitting. Due to the reciprocity
theorem, the second direction (if the other antenna is transmitting) does
not add any information. Hence, we do not have a benefit of adding these
signals (except an improvement of Signal to Noise ratio by

√
2). Second, I

used multi-static1 signals. Additionally, it must be mentioned that the ana-
lytic signal without modification was directly used in equation (7.2). Using
the analytic signal improved the spatial resolution, but also aggravated the
robustness of the algorithm.

In additon to, or in some cases as a replacement for the window w,
a weighting a is introduced to optimize the results. The weighting is for
example used to compensate system-specific differences between propaga-
tion paths within the object and therefore to unify the responses achieved
from the selected location [33]. This approach is used to include a priori
knowledge.

The implemented beamformer used the described time window as well
as a weighting for the values.

Weighting The weighting a(τnm) was defined to amplify the data ac-
cording to the time the corresponding part of the wave was propagating
through the tissues:

a(τnm) = (1+ r) · e−Im{εa}τ(pk,l)·c. (7.4)

Due to the common definition of permittivity εa, its imaginary part is
always negative. Hence, the term amplified the values exponentially over
the calculated distance.

It must be mentioned here that I was not able to achieve good results
when the weighting was active. The reason for this was that the side lobes
gained strong influence due to the spatial expansion of the signals. Hence,
I neglected the weighting. Better results were achieved using the time
window only.

1There are two ways signals can be measured: The so-called mono-static way,
where the sending antenna is also used to receive the signal or the multi-static way,
where the signal is received by a second not-sending antenna.
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TimeWindow In general, the width of the time window d can be deter-
mined freely (from one single sample up to the whole signal). Generally,
the goal of such a windowing is to improve the robustness of the algorithm
compared to the usage of discrete points in time. Anyhow, I decided to
define it depending on properties of the input signals. For my purposes I
defined the width of the window depending on the frequency range B. In
detail I summed up parts of the signals having the width of the main lobe
of the sinc function. As I was operating on discrete signals I defined the
discrete window width d(B,∆t) by

d(B,∆t) = round
(

1
B ·∆t

)
, (7.5)

with ∆t being the time step.

FrequencyWindow Another windowing was used for the algorithm.
The signals were windowed in frequency domain. This window was always
needed when scattering parameters were used in the frequency domain to
limit the spatial expansion of the signals or moreover to attenuate the side
lobes of the signal in the time domain. Therefore a Tukey window with a
cosine lobe of about 10% of the total width on each side was used.

APriori Knowledge Integration by Calibrating A priori knowledge
can be integrated in different ways, not only by the above mentioned
weighting. Another way to integrate a priori knowledge about the illumi-
nated object is for example by using so-called differential signals. This
kind of signal can be achieved by measuring at a different location and sub-
tracting the signal there from the signal measured at the original location.
It is only useful to do so if the object delivers comparable signals on both
locations except for the deviation which should be imaged. We intended
and also tried to use this procedure to subtract the scattering parameters of
the right hemisphere from the one of the left hemisphere. Thus we used a
calibration like this:

S = Sleft−Sright. (7.6)
This type of calibration can also be interpreted as a background sub-

traction. It is capable of removing every scatter which is not needed as
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long as the reference signal is good enough and the algorithm is robust
enough to compensate for the remaining errors.

The ideal reference signal would be gained by a measurement of the
now affected region made on exactly the same location, but before the
stroke. Such a scenario is possible if simulations are used to generate the
signals. To test the performance of this algorithm I simulated the set up
twice, first with and then without the stroke. In that way I generated the
measurement and the reference.

If not stated otherwise, a calibration of this kind was used for the
results.

7.1.2 Implementation of the Algorithm
The algorithm was implemented in MATLAB’s scripting language. Due
to the rich number of ready-to-use functions and tools, MATLAB is an
excellent environment for the development of this kind of algorithms.

The whole implementation can be separated into four main parts:
1. Loading the Data: To have the algorithm working a loading scheme

for different data from different files was needed. The minimum
amount of data necessary were the measurement data (including the
calibration data) and data about the geometry of the used aperture or
array. In addition to that a number of other data were necessary e.g.
for preprocessing purposes.

2. Preprocessing: The calibration of the data was performed. For
some experiments, it was necessary to transform the data from other
data types so that the algorithm could work on one specific data
type. Another thing implemented in the preprocessing part was
the coordinate transformation of the antenna positions. As some
simulations contained differing orientations of the coordinate axis it
was necessary to alter the visualized area. To avoid this, a function
to automatically transform the coordinates was introduced. An
additional benefit of the automatic transformation was the fact that
the tools to display the results no longer needed to be fitted. For
the transformation, an additional file with translation and rotation
information was introduced.
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3. Algorithm: The delay calculation as well as the calculation of the
image required helper calculations like the Fourier-Transform of
the measurement data were made within the algorithm part. The
Fourier-Tranform was necessary due to the fact that the network
analyzer as well as the simulations were usually returning frequency
domain data.

4. Displaying: The displaying of the data was separated from the beam-
forming procedure. After the beamforming had been completed, the
results were directly written to a file. This also offered the ability to
remotely run the algorithm on more powerful machines.

All routines of the algorithm were written in separate functions. This
allowed for easier debugging and a good modularity so that routines of the
algorithm could be replaced easily.

7.1.2.1 Performance and Parallelization
Often it is possible to improve the computational performance of an algo-
rithm by parallelization of the written code. This is especially true if the
implemented algorithm contains many independent steps. In many cases
a parallelization goes hand-in-hand with an increased amount of memory.
This is especially true for MATLAB. The reason for this is the fact that
many variables are copied for each separate process. The copying and
conflating of variables case a growing communication overhead which is
reducing the benefit of parallelization.

Anyhow, with machines having multiple cores the fully provided perfor-
mance is unreachable without parallelization. The easiest way to parallelize
a task in MATLAB is to use the command parfor. It is a parallelized
version of the default for-loop. Hence, wherever a for-loop shows up
it can be replaced by the parallel version. But, due to reasons mentioned
above, this is not useful for every case. Especially short tasks do not show
any benefit when using parfor instead of for.

It is not always easy to predict, whether a replacement of the for-loop
is beneficial. Hence, only try and error is often possible to figure that out.
Certainly, a good rule of thumb is to parallelize loops with a long duration
and a comparably low memory request for each loop run.
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Table7.1: Examination of the speedup achievable by parallelization. The table contains
the measured times for each loop with and without parallelization. The unit of the
values are seconds.

Parallelization DFT-loop Index-loop DAS-loop total
none 0.824 0.368 418.777 419.979

DFT-loop 2.872 0.379 413.917 417.180
Index-loop 0.821 0.7821 400.335 401.948
DAS-loop 0.977 0.432 262.579 263.998

Performance Test on an Array with 27 Antennas The example I
used to examine the performance of the parallelized code is introduced in
section 7.1.3. The necessary measurement data were taken from a com-
puter simulation. The simulation was performed in CST Microwave Studio
20152 and was computing 1001 frequency samples from 5 to 2.2GHz.
The reconstruction was conducted on multi-static signals and a resolution
of the reconstructed area was 100× 100× 50 voxels corresponding to
200mm(x)×200mm(y)×100mm(z). Time windowing as well as calibra-
tion was activated (see section 7.1.1). For the timings stated later only the
algorithm (step 3), neglecting loading and preprocessing, was measured.

The above mentioned algorithm as part of the computation contained
three different tasks where each of them was performed by a separate loop.
The first task was to transform the signals from frequency to the time
domain by a Discrete Fourier Transformation (DFT), later called DFT-loop.
To be more precise, the Fast Fourier Transformation (FFT) algorithm was
used for the transformation. In a second loop the time delays for each
point were computed and transformed to indices (later called Index-loop).
The last loop comprised the time windowing and the calculation of the
value for each point (later called DAS-loop). Now each of the described
loops was computed one time with a normal for-loop and in another run
with a parfor-loop. Here it should be mentioned that the computation
steps often comprised multiple nested loops. All of the loops, even the
nested ones, were tested. The best of each nested loop was then used
in the comparison between parallel and serial computations of the DAS-
Algorithm. Table 7.1 contains the result of this examinations. It can be
observed that only the parallelization of the DAS-loop offered an improved

2A software to performelectromagnetic field simulation. The software is a product
of the CST Computer Simulation Technology AG, Darmstadt, Germany

71



CHAPTER 7. THREE ALGORITHMS FOR STROKEDIAGNOSIS

Figure 7.2: The result generated bymono-static signals. On the left there is the recon-
struction of a single slice with the first implemented version and on the right there is
the result of the new implementation. The uppermost slice on the right is the same
layer as can be viewed on the left. In themiddle there is an image of the array which
was used for themeasurement. The unit of the axes in the left image are cm and in the
right imagem. The right image is a surface plot illustrating 70% of themaximum value,
where the black dots denote the antenna positions.

performance. The variation in the timings for the non-parallelized loops
are thought to be a result of system-owned background processes.

7.1.3 AnArray for the Algorithm
A first implementation of the algorithm was offerd by M. Jalilvand et
al. [34]. She worked at the Institute of Radio Frequency Engineering
and Electronics (IHE) and developed the antennas as well as a first array
(the small image in the middle of Figure 7.2). The array included twelve
antennas on each hemisphere, with the antennas being of bow tie type.
The antennas were a developement by X. Li [35] and later improved by M.
Jalilvand [36]. The measured object was a phantom as described in chapter
6. The result of the measurement is shown in the left image of Figure 7.2.
The measured results were calibrated as described above.

Due to the fact that the algorithm provided by M. Jalilvand was not
very flexible hindering the integration of new features the decision was
made to implement a new version as described above. Additionally, the
new version of the algorithm was capable of reconstructing a complete 3D
area whereas the old version was only able to reconstruct single 2D slices.
This advantage enabled me to view the result from more as one direction.
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The reconstructed results yielded by the new implementation did not show
the same image (Figure 7.2 in the right) as the results of the first version. It
rather resembled a mismatch of single antennas. If it was a mismatch, the
reason for it was probably the way the signals were measured. It has to be
mentioned here that the signals were measured by hand and the antennas
were not fixed to the array. Hence, deviations in location and orientation
were possible. An improper fit of the antenna on the phantom surface was
also possible.

Usually, a better interpretable response can be achieved by a better
spatial resolution. One way to achieve that is to include more frequencies
and thereby use a wider frequency band. If the findings of chapter 6 are
recognized this is hardly helpful as the frequency range usable is limited by
natural effects. The growing attenuation and the thereby limited penetration
depth would remove most of the acquired additional information.

Another way to improve the response is to increase the sample rate on
the surface of the object. In my case that means to improve the coverage
by more antennas. As the beamformer works on reflections only I could
move the antennas from one side of the array and use more antennas on
the other side of the array.

With a python script arranging the antennas on a spherical surface, a
new array was generated directly inside SEMCAD, the simulation software
used at that time. The antennas were placed as close as possible to each
other. The distances were similar as visible in Figure 7.3. Due to the fact
that the surface of a sphere is not easily dividable into parts with the same
shape and size I decided to define the distance between the antennas on the
angles as they are known from spherical coordinates. The antennas, which
have to be selected before, were arranged in rows and columns. Therefore,
the increment for the polar angle was calculated by

∆θ = π− arccos

(
−r+hcos(α)√

h2 + r2−2 ·h · r · cos(α)

)
, (7.7)

with

h =
√

3 · r ·∆φ0 and α =
π−∆φ0

2
. (7.8)
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Figure 7.3: On the left, there is the figure of an example array with 23 antennas. It was
defined by a strategy leading to nearly equilateral triangles. On the right a schematic
view is given. It can be observed that this leads to the hexagon surfaces ( markedwith
blue).

Figure 7.4: The new semiautomatically generated array with 27 bow tie antennas on
the surface of a quarter sphere.

The increment was defined by the height of an equilateral triangle projected
on the surface. Here, ∆φ0 is the increment of the azimuth angle at θ = π

2
and r is the radius of the spherical surface. ∆φ was updated for each angle
θ by

∆φ =
∆φ0

cos(
∣∣θ − π

2

∣∣) . (7.9)

The extent of the array was defined by a maximum azimuth angle. By
using the positions defined in that way an agglomeration of antennas at an
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azimuth angle of ±π occurred. The redundant antennas were afterwards
removed by hand. Figure 7.4 shows the array achieved in that way. In
total, the new array had 27 antennas and was able to cover one of the
hemispheres of the phantom (one half of the brain).

7.1.4 ExaminationsMade on theWay to Simulate the New
Array

As mentioned before, the software used for initial simulatations was SEM-
CAD. SEMCAD operates with voxel grids and calculates the electromag-
netic field using the FDTD algorithm.

Due to the freely rotated antennas and their small conducting parts
the simulations were growing very large and it was no longer possible to
simulate the developed setups within a reasonable time. Another effect
preventing a proper simulation was also related to the rotated antennas:
They were no longer aligned with the axes of the coordinate system and
hence, the waveguide source which was available in both simulation envi-
ronments could no longer be used. The so-called waveguide source was
used to simulate the behavior of a coaxial cable connected to the antenna.
Without this port the only source usable for the antenna was the socalled
“edge source”.

The Removal of the Feeding The edge source was able to provide
a current or an electric potential to conducting parts connected to the
source, whereas the waveguide port provided an electromagnetic wave
itself. Hence, the waves an edge source would provide were highly de-
pending on properly conditioned conducting parts (the antenna). As the
antennas contained a feeding (meant to compensate the unsymmetrical
behavior of the usually connected coaxial cables) experiments were needed
to examine if the new source in combination with the antenna was working
as expected. The experiment made to examine if the edge source could be
applied properly comprised two simulations with respective experimental
counterparts. Figure 7.5 shows images of the simulated setups. For the
first simulation a sample with one layer of white matter between the two
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Figure 7.5: Images of the simulated setup. The left image contains a simulation with
antennas and their feedings connected to edge source. The right image shows the
same setupwithout the feedings of the antennas. The feeding was removed and the
edge source was directly conntect to the bow tie. In some simulations the cylindrical
sample between the antennas wasmade of twomaterials.
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Figure 7.6: Comparison of a simulated scenario and a real measurement. The simula-
tion contained the full antenna with the feeding in combination with an edge source. It
canbeobserved that the energy passing trough the sample (S12and S21) in the simulatedscenewas almost zero which was not the case for themeasurement.

76



7.1. DELAY AND SUMBEAMFORMING FORMICROWAVE IMAGING

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
frequency [Hz]

×10
9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
|S

|

S11 measured

S12 measured

S21 measured

S22 measured

S11 simulated

S12 simulated

S21 simulated

S22 simulated

Figure 7.7: The results of the comparison between a real measurement and a sim-
ulation. The feeding of the antenna was neglected in the simulation. This leads to
comparable amounts of passing energy through the sample of grey andwhitematter.
Without the feeding no ripple over the frequencies was observed.

antennas was used. Both antennas contained their feedings. The sample
was made of the materials as introduced in section 6.4. Then, a second
simulation with a similar setup as the first one was conducted. However,
the sample there was a two-layered sample of white and grey matter as
described in section 6.4. A comparable setup is visible in the right image
of Figure 7.5. To achieve more realistic results the simulated materials
were dispersive. The measured permittivity of the manufactured real-world
samples were used to set up the simulated materials. Of course, measure-
ments of the real setup corresponding with the simulations described above
were conducted: One measurement with a one-layered sample of white
matter-like material and one measurement with a two-layered sample of
white and grey matter-like material. The experimental setup is visible in
Figure 7.8.

If we compare the scattering parameters (Figure 7.6) of the simulation
with complete antennas and the scattering parameters of the correspond-
ing measurement we can observe that in contrast to the experimentally
measured S-parameters the simulated S-parameters do not show a proper
amount of passing power (S21 and S12). A similar result can be observed
when comparing the amount of reflected power (S11 and S22); a signif-
icantly higher amount of the introduced power was reflected. This was
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Figure 7.8: The experimental setup of the two setups measured to examine if the
feeding could be neglected in simulations. In the left image there is the setup used for
the comparison with the simulation containing the feeding and in the right image there
is the setup for comparing with the simulation where the feeding was neglected.

especially true for lower frequencies which otherwise showed a better
ability to penetrate the phantom materials.

Comparing the simulation without the feeding and the corresponding
measurement (observable in Figure 7.7) remarkable similarities can be
observed. The transmitted power between the simulation and the measure-
ment (S12 and S21) is almost equal even if the reflected power (S11 and S22)
shows significant differences. For example the simulated S-parameters
did not show the characteristic ripple. Generally, there were differences
observable between the morphology of the reflected signals. The reflected
signals of the simulation showed a higher amount of power, which can
be interpreted to mean that the total amount of radiated power was lower
compared to the real measurement. Due to the fact that the arriving power
on the adjacent antenna (if compared with the measurement) is almost
equal, it was assumed that the missing power was laterally radiated in
the feeding. Due to the qualitative imaging character of the algorithm in
combination with the calibration and despite the deviations observed I
assume that neglecting the feeding would be a valid simplification for my
purposes.

How to Simulate theWhole NewArray Unfortunately, all the above
introduced simplifications were not enough if FDTD was used and a
simulation comprising the whole array should be made within reasonable
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time. A simulation for a single excitation of one antenna took three days,
which means that a whole simulation with all 27 antennas would take 81
days with the available computing power. In addition to that, we need to
consider that a single simulation was not enough to achieve results. Hence,
a second simulation for the calibration data was necessary and therefore
another 81 days.

Due to this immense computational effort I was searching for alter-
natives. As the Karlsruhe Institute of Technology provides a license for
another software to simulate electromagnetic fields (CST Microwave Stu-
dio) I then examined the abilities of this product. After some tests I found
a way to go: To simulate the whole array with a complete phantom the
reduced order model technique integrated into the frequency domain solver
of CST was used. This solver operated on a triangle mesh and therefore
did not need such a huge number of elements. By using this configuration
the whole simulation was possible in less than a week.

7.1.5 UsingMono-Static Signals
Due to the unclear results achieved with measurements using the old 24
antennas array the experiment with the newly developed array was redone,
using simulated data. Hence, errors, as expected during the experimental
measurements described above, could be avoided. For the mentioned
experiment, a second set of measured data for calibration perposes was
needed. Therefore, a second simulation without the simulated stroke was
performed. On the left side of Figure 7.9 the result of the reconstruction
with mono-static signals is shown. It is hard to observe any response of
the simulated stroke. Due to these results multi-static signals were used
on further investigations. The right side of Figure 7.9 shows the results
achieved by multi-static signals. The response of the stroke is clearly
visible.

This even worked with ischemic brain tissues (Figure 7.10). To exam-
ine this, a simulation as described above was made but this time with a
simulated stroke having the permittivity of ischemic tissues. The ischemic
tissues were achieved by modifying the original permittivity of the stroke
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Figure 7.9: On the left side the reconstructed results of mono-static signals and on the
right side there are the reconstructions of multi-static signals. It should bementioned,
that the images in the lower part display views from the bottom upwards. The unit of
all axes ism. The upper row are a surface plots illustrating 70% of themaximum value,
where the black dots denote the antenna positions (Delay and Sum on simulated data
and calibrated with a headwithout a stroke).
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Figure 7.10: Reconstruction of an ischemic stroke located in the lower-middle part of
the full phantom. The signals were calibrated by data of the same simulation without a
stroke. The unit of the axes ism. The left image is a surface plot illustrating 70% of the
maximum value, where the black dots denote the antenna positions.

region as described in section 3.3. The location of the stroke was also
different. The stroke was located in the lower-middle of the array.
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Figure 7.11: The array producedwith the 3D-Printer. Unfortunately, the precision of
the device was limited, so the work piece had hols and protrusions (left image). Hence,
a rework was necessary.

7.1.6 Measurements on the NewArray
Inspired by the findings from above, I built the new array as a real device.
To do so I used the existing 3D construction from CST and exported it to
a step file. This format was directly compatible with a 3D-Printer, which
was available at the IHE. Hence, only minimal changes made within the
CST simulation were needed to fulfill tolerances and then the array could
be printed. Due to the imprecision of the device a rework on some areas
was necessary (Figure 7.11).

Due to the limited dimension of the printer, the array was printed in two
hemispheres: first the part with all the antennas and then the second part
without antennas. The antennas had a loose fit within the array. Hence, to
prevent a shifting of the antennas the antennas were clogged with silicone.
At last, a holder for the array was constructed. The existing holder of the
old array was not stable enough. The new holder had to be able to hold the
weight of the array and the constructed phantom with about two kilograms.
The holder was designed with the software, Inventor3 and manufactured
by the workshop of the IBT (Figure 7.12).

Robustness of theAntennas After some experiments I noticed that the
antennas were easily broken. This was often the case during the removing
and fixing of the coaxial cables. To improve this, additional parts to hold
the antennas were manufactured (on the right side of Figure 7.12, the black

3Inventor is a CAD software formAutodesk Inc.
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Figure 7.12: The developed holder, which was able to hold the array and the phan-
tom. It was stable enough to endure a great number of experiments. The holder was
designed using the CAD software Inventor formAutodesk Inc..

and blue parts). Unfortunately, that was not sufficient. Hence, another
solution had to be found. Three technical possibilities were intended:
◦ Improve the stabilization of the antennas.
◦ Improve the fixation of the cables.
◦ Use cables with less weight and less stiffness.

The first point could be reached by casting the whole antenna with
epoxy resin. This was tested with two antennas of this kind. Therefore,
the epoxy Epox 4305 together with the hardener 313 of the online shop
PHD-24 was used. The relative permittivity of a sample of this material
was measured to be 2.3. The material showed almost no dispersive effects
and a very low conductivity. The measured permittivity value was used for
a simulation of the epoxy embedded antenna. The comparison of the fields
and the scattering parameters between a simulation with a normal antenna
and a simulation with the embedded antenna did not show significant
differences. Hence, the embedding was assumed to be valid. Two of these
antennas were also manufactured and used for some student experiments.
One example is the experiment to examine the non-conducting layer as
described in section 6.4.1.1. However, the integration into the array was
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Figure 7.13: The complete measurement setup: in the rear left is the switchmatrix, in
front of it is the array and in the right is the network analyzer.

only possible if the array was rebuilt. Another disadvantage of casting
the antennas into epoxy was the fact that the reusability of the antennas
was limited. The second point, which meant to improve the fixation of the
cables, could not easily be realized. Therefore, either spherically shaped
metal sheet or alternatively a new set of smaller cables and a flat metal
sheet attached to the holder would have been necessary. After having
evaluated all options the technical possibility mentioned last was selected.
The cables were replaced by more flexible and lighter ones. The final setup
is visible in Figure 7.13.

7.1.6.1 Measurements Using the NewArray
The measurement was coordinated by a software originally developed at
the IHE. The software was written on C++ and Qt. It ran on a Laptop
with a Microsoft Windows operating system. The tasks of the software
was to control the measurement system, to switch the ports of the switch
matrix bought for this project and to store the measured results into a text
document. Nevertheless, some modifications were made to improve the
usability and performance of the software. Thereby, the modifications were
always related to findings I discovered during the experiments.

Calibration of the SwitchMatrix The first feature adressed a problem
with the mentioned switch matrix. This device was purpose-built for this
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project. Unfortunately, some disadvantages were discovered. The paths
of the signals through the device were not equally long. Hence, a method
to compensate this was needed. First I intended to calibrate each channel
combination with a SOLT4 calibration. Due to the 24 ports and by leaving
out the equal port combinations, the number of separate calibrations were
24×23 = 552. As one calibration was at best taking 4min, the calibration
of the whole switch matrix took at least 36.8 hours. As this was thought
to be a one-off event, it was done. Therefore, a feature was integrated to
automatically open the calibration widget, switch to the correct port pair
and after closing the widget, save the correction data to a specific file. The
benefit of this feature was that the user does not need to define the file name
by hand and therefore errors could be prevented. Unfortunately, this effort
was useless. When the calibration process was completed, I discovered
that the achieved correction data were no longer valid. The problem I
observed was that the properties of the switch matrix were changing over
time. Hence, a faster way to calibrate was necessary.

For the new procedure only one pair of ports was calibrated. After that,
a measurement of the complete switch matrix without connecting anything
was made. Due to the frequency range used the amount of radiated energy
could be neglected, and hence, ports were approximated as ideal open
ports. By dividing all achieved scattering parameters by the scattering
parameters of the calibrated pair a set of correction data were generated.
For this method temporally stable relative deviations between the paths
were assumed.

Measurement Results During the last years several experiments with
the measurement setup and the developed phantom were made. Unfortu-
nately, I was not able to achieve sufficient results with this setup. The good
results achieved by the simulations could not be replicated.

Nevertheless, two of the reconstructions and a description of the under-
lying experiments are offered here: For the first experiment, a full phantom
with a hemorrhagic stroke located in the middle of the outermost area on
one of the white matter hemispheres and in direct contact with the grey

4SOLT is the abbreviation of short-open-load-through and is a full 2-port-
calibration.
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Figure 7.14: Both results were obtained by using the 60◦ measurements as reference
for the calibration. The left image was achieved by the data of the 0◦ measurement
and the right image by the data of the 30◦ measurement. Neither the response of the
stroke is clearly observable nor the rotation between the two reconstructions. The
unit of the axes ism. The images are surface plots, which illustrate 70% of themaximum
value, where the black dots denote the antenna positions.

matter was measured. The first measurement was taken with the stroke in
the middle (in a 90 ◦ angle to the gap between the two hemispheres). Then
the phantom was rotated clockwise in steps of 30 ◦ size. After every step a
measurement was taken. Hence, I obtained six measurements on a turn of
180 ◦.

For the reconstructions I used one of the measurements to calibrate
another data set. Two examples of the results are visible in Figure 7.14.
The left image shows the result obtained by using the measurement of
the 60 ◦-rotated phantom as reference for the calibration, together with
the measurement at 0 ◦. The right image was achieved with the 30 ◦ mea-
surements together with the 60 ◦ measurement as reference. Both of the
reconstructions showed responses. Unfortunately, the responses were not
very clearly located and the rotation could not really be identified. Hence,
I cannot clearly say that the response was from the stroke or form inaccura-
cies within the phantom or the measurement setup. It should be mentioned
that I measured only 23 of the antennas due to the limited number of ports
the switch matrix provided (in total 24 ports). Therefore, two of the 27
antennas on each side were left out. Hence, the symmetric shape of the
array could be preserved.

In the second experiment mentioned here, exactly the same should
be done as was done with the simulated data. Therefore, a new phantom
without a stroke was manufactured. In a first step the unchanged phantom
was measured. The orientation of the phantom was similar to the above
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described experiment. After that measurement a small amount of distilled
water was injected. The water was brought in by a pipette as visible in
Figure 7.15. Again, directly after the insertion of the water a measurement

Figure 7.15: Measurement setup for an experiment where a small amount of water
was applied through a pipette. The water was used to simulate a hemorrhagic stroke.

was made. Hence, nothing of the measurement setup was able to change
much. Even if the water spread out or diffused into other tissues I ought
have been able to visualize the differences.

For these measurements the full array with all 27 antennas was mea-
sured, despite the fact that the switch matrix had only 24 ports. To do so,
three measurements were necessary at least. The first measurement was
made as described above by neglecting four antennas. Then, the cables
of four already measured antennas were removed and connected through
the four antennas not included in the first measurement. After the second
measurement the procedure was repeated with four antennas which were
connected at both of the already-made measurements. After these three
measurements all antenna combinations were at least measured one time.

The results are visible in Figure 7.16. It can be observed that a response
at the correct position exists. Unfortunately, the response is not as clear as
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Figure 7.16: The results of the DAS algorithm from themeasurement visible in 7.15.
It can be observed that responses are visible at the correct position, even if they are
not as good as on simulated data. The axes ticks are inm and the left image is a surface
plot illustrating 70% of themaximum value, where the black dots denote the antenna
positions.

I hoped it to find. If the way on how I received the results is recognized,
better results should have been possible.

7.1.7 Robustness of the Algorithm
Due to the non-optimal results demonstrated in the section above further
investigations to examine the robustness of the algorithm were made. The
goal of the investigation was to learn more about how accurate the data for
calibration has to be such that positive results could be achieved. Therefore
several simulations were performed. Each of them contained different
small deviations compared to the simulations made as measurement re-
placement. The deviations as mentioned before were of slightly different
radii concerning the grey or the white matter. However, one of the parts
contained a bit higher permittivity/conductivity than the other. This was
done for a full phantom and also for a phantom including only grey and
white matter both shaped as half spheres.

What was discovered during these examinations is visible in Figure 7.17
and Figure 7.18. Even small uncertainties within the data used to calibrate
corrupted the results. This was especially true when a full phantom was
used. Surprisingly, deviations in permittivity also showed a huge influence.
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Figure 7.17: The results of an experiment with amore simplified phantomwith a hem-
orrhagic stroke. The phantom does only have two layers. A cut through the simulation
setup is shown in the upper left image. The simulation for the calibration was made
with small disturbance in shape and also with deviations in permittivity. The upper
right imagewas offered as a reference. It was calibratedwithout any deviations. For
the lower left image the permittivity of the whitematter was changed by 2%. And if
calibrated with a phantomwhere the white matter was shifted by 7mm the lower right
image shows the result. The unit of the axes ism.

7.1.8 TheDAS in the Context of Stroke Imaging
When reviewing all offered results of the DAS chapter the usability of the
DAS algorithm for stroke detection is questionable. It must be kept in
mind that strong simplifications were made for the phantom, especially
the simplifications made concerning the morphology of the brain, which
is unique for each human. Hence, the robustness would even be worse
with real tissues. Thus, the usage of a simulation with a head model can
possibly never be good enough to remove enough scattering.
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Figure 7.18: The same experiment as described in Figure 7.17, except of the phantom
being a full one here. The upper images have the same content as before: on the left the
measurement setup and on the right the reference. The lower left image was obtained
with a calibration deviating regarding permittivity. Therefore, thewhitematter was
changed by 2% and the lower right wasmade by a shift, but this time a shift of 0.5mm
was enough to disturbe the image that much. The unit of the axes ism.

7.2 Blackbox Reconstructionwith a Gauss-Newton
Optimization

In contrast to the qualitative algorithm introduced in section 7.1 a quan-
titative reconstruction algorithm is introduced here. For the algorithm, a
Gauss-Newton approach was used to reconstruct the permittivity distri-
bution of a region between the antennas. Inspired by the publication of
Rubæk et al. [37], an algorithm was implemented. For the implementa-
tion different software packages were included. In our implementation
a framework called Meep5 for the electromagnetic field calculation [39],

5There is no unique definition for the termMeep. The authors offered different
meanings, for exampleMaxwell’s Equations for Every Person orMany Eggheads Earn
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a framework called PETSc6 for the optimization [40–42] and the boost
libraries [43] for the soft skill tasks, such as loading the settings and saving
some results to a file, were used.

7.2.1 TheObjective Function
The objective function f for my Gauss-Newton optimization was the L2-
Norm of the difference between a measurement vector b and the results
obtained by simulations Φ(x). The simulations can also be called forward
calculations. Thus, the objective function can be written as

f (x) = ||Φ(x)−b||2. (7.10)

And the problem which should be solved can be written as

x = argmin
x∈DN

f (x) (7.11)

with D⊂ C and N the number of elements of the argument vector. Here,
the elements are the complex permittivities of the voxels between the
antennas. Hence, the definition range for the elements of x j := x′j + ix′′j is

{x′j ∈ R| 1≤ x′j < ∞}
{x′′j ∈ R| −∞ < x′′j ≤ 0} (7.12)

with i the imaginary unit. An example can be seen in Figure 7.20 where
the number of elements was N = 49×61 = 2989.

Limitation of the Parameters Due to the physical meaning of the pa-
rameters a well-known domain of definition exists and has to be regarded.
Otherwise, simulations or better forward calculations would diverge and
never produce proper results.

Prestige. But probably themost common one isMIT Electromagnetic Equation Propa-
gation. This definition offers also a hint to the origin of the framework (Massachusetts
Institute of Technology) [38]

6PETSc is an abbreviation for „Portable, Extensible Toolkit for Scientific Computa-
tion“
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Figure 7.19: The introduced parameter transformations; on the left the transforma-
tion of the real part and on the right the transformation of the imaginary part. The
transformation is quadratic on the interval [1,−1] and linear on the remaining range.

Hence, a way had to be found to ensure that the parameters will stay
inside the domain of definition with each iteration. With the first imple-
mentation of the algorithm, the values of the parameter were simply set
to the value of the corresponding limit if the ranges were exceeded. As
this left an edge to the otherwise smooth optimization function I intended
to find a more mathematical definition for this. Therefore, a parameter
transformation for the real part and the imaginary part was introduced,
respectively. The real part was transformed by

Re{pp}=
{

1+Re{po}2, |Re{po}|< 1
2 · |Re{po}|, |Re{po}| ≥ 1

(7.13)

and the imaginary part was transformed as follows:

Im{pp}=
{ −Im{po}2, |Im{po}|< 1

2 · (|Im{po}|−1), |Im{po}| ≥ 1
(7.14)

A graphical representation of the above-mentioned transformations is
visible in Figure 7.19. I decided to use a transformation based on the
absolute value of the corresponding part. The definition of the absolute
value was used to avoid influencing the convergence of the algorithm by a
quadratic transformation.
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Figure 7.20: The setup used to generate the input data for the Gauss-Newton-based
reconstrution. The white dots mark the source points for the waves.

7.2.2 The Forward CalculationwithMeep
It should be mentioned here, that I did not start with an empty sheet when
beginning with the implementation of this algorithm. Similar to the DAS
project this project had also already been started by M. Jalilvand et al. [44].
The implementation was made in C++ and includes the framework Meep
and the Boost libraries. In this section, we will concentrate on the way the
simulations were achieved.

For the simulations a model of the measurement setup was needed.
The model was represented by a single class. It delivered the relative
permittivity and the conductivity of an arbitrary point within the area
defined as simulation region whereas the data of the model was stored in a
separate, independent two-dimensional voxel grid.

The setup contained a shape of a human head between and in the
middle of the antennas. Figure 7.20 shows the simulation setup with the
positions of the antennas and the head as it was used. The visible setup
was bounded by multiple invisible voxel rows of absorbing material. The
material, called perfectly matched layers (PML), was provided by Meep.
We found a number of 10 rows as sufficient for our purposes. The head
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Table 7.2:Material properties of the tissues we used for the forward calculation. The
values were taken from the database of tissues provided by the ITIS Foundation[22],
for the corresponding frequency of 1GHz.

tissues relative permittivity conductivity (S/m)
skin 45.71 0.88
skull 12.36 0.155
CSF 68.44 2.45

greymatter 52.28 0.98
whitematter 38.58 0.62
stroke(blood) 61 2
background 45 0.5

was a single slice of the visible man (a computer model of a human being
generated at the IBT [45]). As frequency we used 1GHz, we also used the
permittivity of the tissue (Table 7.2) at this frequency.

The 24 white dots mark the positions of the source points for the waves.
To perform a simulation, the setup was separated into 24 independent
subsimulations. In each subsimulation, a single point-source was active. A
point-source was defined as a spotty sinusoidal electric current. Hence, the
source point transmitted a two-dimensional circular and monochromatic
wave. The wave had only an electric field component perpendicular to the
simulation plane. For the first examinations an FDFD-solver available in
Meep was used. This solver delivers the steady state after converging. Of
course, the steady state cannot be reached exactly. It can only be calculated
with a relative accuracy. For my simulations I selected an accuracy of
1e− 8. It should be mentioned here that this is not the accuracy of the
measured field but the accuracy used for solving the underlying linear
problem.

After the calculation had converged the values of the fields were read
out at the remaining, not-sending antenna positions. In total M := 24×
23 = 552 values for the result vector E were obtained. The same was
done for an empty reference simulation without the head but with the same
antenna configurations. The elements of the reference vector Er were used
to calibrate the elements of the result vector by subtracting

ES, j =
E j−Er, j

Er, j
. (7.15)
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7.2.2.1 Switching to the FDTD-Solver
Unfortunately, the available FDFD-Solver did not always converge properly
and hence, the reconstruction was randomly aborting. To overcome this, I
decided to switch to the more robust FDTD-Solver.

The implementation of the FDTD-Solver available in Meep is con-
nected to a single function which, when called, calculates a single time
step forward. Due to the way the solver had to be used, a stopping criterion
was needed.

In general if the steady state is reached, the magnitude of the field does
no longer change at any location. Hence, I used this and the fact that only
discrete points were of interest to form the new criterion.

The algorithm was stopped if the sum of the difference between the
absolute values of the field from current time step and the absolute values
of the previous time step over a quarter period fell below a threshold . The
error term for a single point j ∈ 1,2, . . . ,N is

e j =
K

∑
k=a
|(|E j(tk−1)|− |E j(tk)|)|. (7.16)

with K the number of discrete time steps within the quarter period and a
the current time step. In detail, the values acquired in this manner were
used to form an error vector e and the element with the maximum value
was then compared to the previously defined accuracy. As the transmitting
point was ignored for the stop criterion and all other fields were zero in the
beginning, the algorithm would have stopped before the field had arrived
at any of the receiver points. In addition to the stop criterion a second
criterion was introduced: The check was set to rest for a fixed time period
after start.

Due to the simulation in the time domain and also due to the new stop
criterion, the time periods of subsimulations were not longer equal and
hence, the values lost their phase similarity. To correct the phase, the
simulation time was used to “turn back” the values to time zero. This could
be done by multiplying each value with

eiωTs . (7.17)
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Figure 7.21: Excitation of a point source as available in theMeep framework. The left
image shows the default excitation with the hyperbolic tangent function to smooth the
switch in this event. The blue curve represents the current and the red graph the field
at the source point. The field at a certain distance is colored in yellow. The right image
shows the same experiment after replacing the smoothing function by a polynomial of
fifth order.

Ts is the simulation time. Due to the definitions inside Meep, the correction
was made with a positive time value.

7.2.2.2 Optimizing the Convergence Rate of the FDTD-Solver
After the introduction of the FDTD-Solver, as described in the previous
section, a significant increase in convergence time was noticed. The find-
ings of this section were originally achieved in cooperation with Micha
Pfeiffer [46].

The amplitude of the field oscillated after the source had been switched
on. This behavior was related to the implemented “switch on event”. A
source was represented by the function A ·e jωt . Thus, an event comparable
to a step input to a system that is free to vibrate happened if the field or
better the field inducing current was switched on. To circumvent this, the
Meep library also offered the ability to smoothly switch on the source. In
that case the step was smoothed by a shifted hyperbolic tangent. However,
due to the asymptotic form of the hyperbolic tangent the magnitude A
as well as the start value 0 can never be reached. Due to this smaller
steps remained. The residual oscillations caused by the remaining steps
increased the duration of the simulation. The residual oscillations can
be observed in the left image of Figure 7.21. Due to the huge number of
simulations which must be performed with each iteration a lot of time could
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be saved by a faster convergence. To achieve that, the hyperbolic tangent
was replaced by a polynomial of fifth order. The polynomial was fitted
between zero and one. This polynomial guaranteed a smooth field function
and also a smooth derivative of the function. With this modification the
source function can be written as

s(t) =

{
h( t

td
)Aeiωt , t ≤ td
Aeiωt , t > td

(7.18)

with
h(t) = (−10+(15−6 · t) · t) · t3 (7.19)

for the polynomial and td for the switch-on-smoothing time.
This change allowed a much faster switch-on time nearly without

oscillation. The result can be observed in the right plot of Figure 7.21.

7.2.3 The First Derivative of the Function
The first derivative of a multidimensional function can be written by a
so-called Jacobi matrix. The elements of the Jacobi matrix are the partial
derivatives of the function. If we are working with discrete values, the
Jacobi matrix can only be approximated for discrete points. To approximate
a derivative we need at least two points for a forward difference operator
(section 2.1.1). To limit the computational effort the forward difference
(equation (2.5)) to approximate the partial derivatives of the function
was used. Due to the fact that the used function was a relation of the
type Φ : CN → CM at least 2989 complex derivatives were needed. As
mentioned before a basic implementation already existed but with an
approximation of the derivative by the following approach: If x j := x′j + ix′′j
was the current value we would approximate the partial derivative using
forward difference by

∂Φ

∂x j
≈

Φ(x j +h · x′j)−Φ(x j)

2 ·h . (7.20)

Due to this definition of the approximation, the step width depended on the
dimension of the real part of the complex permittivity. For the derivative
the imaginary part was ignored. To achieve equally weighted derivatives
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and to include the derivative of the imaginary part a more reliable definition
of the derivative of a complex function was used [47]:

∂Φ

∂x j
=

1
2

(
∂Φ

∂x′j
− i

∂Φ

∂x′′j

)
. (7.21)

Due to this modifications the computational effort needed for the Jacobi
matrix was doubled. In addition to that, the number of unknowns was
doubled, too and this led to an increased number of iterations necessary
for convergence.

7.2.4 The Regularization
As the problem is generally ill-posed and the linear system to be solved in
every iteration is often near to singular, a regularization to solve the under-
lying approximative linear system was necessary (equation (4.12)). The
definition of the regularization that was used within the original implemen-
tation was inspired by a publication of N. Joachimowicz et al. [48]. The
regularization parameter λ as mentioned in equation (4.13) was calculated
by

λ = α · 1
N
· tr(JHJ)||r||22, (7.22)

where tr(JHJ) denotes the trace of the matrix JHJ and α was freely se-
lectable.

But after the integration of the newly formulated derivative the linear
problem, to obtain the optimization direction, was not always solvable de-
spite the regularization. To overcome that a new regularization formulation
was defined. The new formulation used the lower limit for the conditioning
number

κ(JHJ)≥ maxi |[JHJ](i, i)|
mini |[JHJ](i, i)| , (7.23)

where maxi |[JHJ](i, i)| denotes the absolute value of the maximum element
from the main diagonal and mini |[JHJ](i, i)| denotes the absolute value of
the minimum element. The limit was derived from Geršgorin’s theorem
[49] and the fact, that the condition number can be calculated by

κ(A) =
|λmax(A)|
|λmin(A)|

(7.24)
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for a normal matrix A. |λmax(A)| and |λmin(A)| are the maximum and the
minimum eigenvalues of A respectively. Hence, my new regularization
term was

λ = α · maxi |[JHJ](i, i)|
mini |[JHJ](i, i)| ||r||

2
2. (7.25)

After the introduction of the new regularization the linear problem to
be solved in order to achieve the optimization direction, could be solved
again.

7.2.5 Performance and Parallelization
Just from the beginning onward the parallelization of the code was un-
avoidable due to the huge number of simulations for each iteration and the
expensive calculations linked with it. Even the first implementation was
parallelized and hence, it included strategies for inter-process communi-
cation. The first implementation communicated with default output and
therefore the communication was string based. To allow for this, pipes
were used to link the different processes with local machines. To link
the processes with remote machines, pipes over Secure Shell (SSH) were
used. In addition to that, Meep is able to use the Message Passing Interface
(MPI) to communicate between processes, which could be used to achieve
a further scaling of the computations. This strategy was only usable for
clusters with direct user access to each cluster node. The parallelization
was also only used to parallelize the derivative (the Jacobi matrix). To
improve the performance in a further way a new way of parallelization
using MPI only was introduced. While changing the parallelization the
framework PETSc was included.

Although this framework has many optimization abilities, the one I
intended to use was missing. The framework did not provide a Gauss-
Newton algorithm. Due to the fact that this algorithm had already been
tested and that it worked properly, I decided to integrate it into the PETSc
framework. The framework also provides parallelized solvers for linear
systems and therefore offers the ability to switch from the serial LU fac-
torization, as used in the first implementation, to a parallelized version or
even to a parallelized Conjugated Gradient (CG) method.
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For the parallelization of the simulations and the derivative a custom
splitting procedure was implemented. The strategy I was following was
not exactly comparable to the well known master-slave concept. Each node
calculated its one portion to compute. The global MPI-communicator was
split into subcommunicators for each antenna and therefore, also for each
subsimulation. As the subsimulations were independent from each other,
this reduced the communication overhead and hence, improved the overall
performance. But this could only be done if the number of nodes at the
global communicator was greater than the number of antennas. If this was
not the case the program assigned the antennas to the available nodes.

A similar thing was done for the derivative and therefore for the number
of unknowns. However, I did not have access to a cluster with enough
nodes to reach the case where the number of nodes was greater than the
number of unknowns.

7.2.6 Imaging results
The imaging was done by first simulating the setup described above with
Meep forward and then by an inverse calculation with the described Gauss-
Newton approach. The result M. Jalilvand obtained by the first implemen-
tation can be observed in Figure 7.22 and the results achieved by the new
implementation are shown in Figure 7.23.

It should be mentioned here, that the background material for the test
with the old software was different compared to the test made with the
new software. The background material had a permittivity of 45− i8.9876
comparable to the permittivity of skin but with a lower conductivity. For the
test with the new implementation the background was set to the permittivity
of water (70− i8.9876).

It is obvious that both implementations were capable to image the
hemorrhagic stroke. But the performance was quite different: The new
implementation was capable to compute on 96 cores and hence, to compute
15 iterations within 24 hours, even despite the doubling of necessary
forward calculations. Whereas the old implementation was limited by
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Figure 7.22: The resulting reconstruction after having forward calculated with the
Meep and backwardswith the first implementation of theGauss-Newton-Method. The
simulatedmeasurement setup is visible in Figure 7.20. This imagewas reached after
10 iterations with a residuum of 0.0682052 (c is the real part of relative permittivity and
d the conductivity)
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Figure 7.23: The results of the new implemented Gauss-Newton algorithm after 131
iterations. A residuum of 0.1285was reached. Themeasurement setupwas equal to
the setup known from the first implementation despite of the backgroundmaterial. As
backgroundmaterial water was chosen. The size of the quadratic voxels was 3,33mm
and the original permittivities can be taken from Table 7.2 except from the background
permittivity (water 70− i8.9876)
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several facts through a smaller amount of cores and therefore the fastest
configuration required at least one week to calculate 15 iterations.

However, the results of the first iteration was achieved after 10 itera-
tions with a residuum of 0.0682052. The second result was achieved after
132 iterations with a residuum of 0.1285. It must be mentioned that the
residuum within the first implementation was normalized to the square
root of the number of parameters. Without this normalization the residuum
of the first implementation was 3.72889. Additionally, it must be men-
tioned that the result did not change much after iteration 60 with the new
implementation.

7.2.6.1 Sensitivity of the Parameters
An expectation about the sensitivity of the parameters can be derived by
examining the computed Jacobi matrix (Figure 7.24).

It can be noted that there are generally low values (×10−4 on the color
bar) in the Jacobi matrix and a great number of the values are almost zero
(almost all of the matrix is colored in blue). An image as visible in Figure
7.25 can be achieved if a single row of the Jacobi matrix is extracted and
reshaped to a 61× 49 matrix. Those images can be used to analyze the
influence, a small change of the voxel value would have on the field which
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Figure 7.24: Illustration of the absolute value of the Jacobi matrix of the iteration 131
as it was calculated by the new implementation. When comparing with the color bar
it can be noted that the Jacobi matrix generally contains low values (×10−4). A great
number of the values that are almost zero (all blue elements) is also notable. Hence, a
change of one of the values does not have a great influence on themeasured fields.
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Figure 7.25: A reshaped graphical view of the eleventh row of the Jacobi matrix of
iteration 0. It can be used to observe the influences small changes of voxel valueswould
have on the signal of the corresponding antennas pair (opposite antennas; position
0 and 12). The left image shows the real part of the complex derivative and the right
image the imaginary part. The size of the quadratic voxels were 3,33mm.

can be measured by the corresponding antenna pair. If we look at Figure
7.25, for example it is obvious that this combination of antennas (opposite
antennas; on position 0 and position 11) was comparably sensitive to the
inside of the head. A different observation could be made by examining
the images in Figure 7.26. This image illustrates the influence of adjacent
antennas (position 0 and 1). The inside of the head had almost no influence
on the measured field values. In general it could be observed that a single
voxel did not have a significant influence on the signals at all.

As generally low values were observed, the sensitivity against small
changes is low, too and therefore small differences in permittivity will be
hard to visualize. An improvement was achieved with the usage of the
matched background material but not significantly enough to enable a good
imaging of ischemic tissues.

7.2.7 Results in the Context of Stroke Diagnosis
The main disadvantage of this algorithm was the huge amount of compu-
tational effort necessary to converge. This made the mobile application
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Figure 7.26: The reshaped graphical view of the first row taken form the Jacobi matrix
7.24. It can be observed that voxels from inside the head do have a minor influence
on signals from these two antennas (adjacent antennas; position 1 and 2). The left
image shows the real part of the complex derivative and the right image the imaginary
part.The size of the quadratic voxels were 3,33mm.

of such an algorithms at least doubtful. Especially, if we remember that
a two-dimensional example was reconstructed here. If the algorithm was
used with data of 3D simulations, the results were poor and the details
were smoothed out. The reason for this was that the incident fields were
based on the two-dimensional fundamental solution and not on the three-
dimensional fundamental solution. This means that the propagating fields
experienced a different damping. Additionally, all 3D simulations con-
tained antennas and a single point source cannot represent the complex
field of the real antenna.

To overcome this, models of the antenna can be integrated into the
forward calculation. However, this would increase the number of necessary
voxels significantly.
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7.3 Contrast Source Inversion for Stroke Imaging
The Contrast Source Inversion (CSI) method is the third and last method
we examined for suitability for stroke diagnosis. The method was orig-
inally published by van den Berg and Kleinman [50]. The CSI method
is tightly linked to methods named modified gradient methods and can
be interpreted as a further development of them. The biggest advantage
of those methods is that forward calculations via numerical solvers are
avoided. This is usually at the cost of additional unknowns and a greater
number of iterations is necessary for a convergence of the algorithm [51].

Publications of Abubakar et al. from 2000 and 2002 show good recon-
struction results, both in numerical examples [52] and in a real measure-
ment [53]. However, the setups used there only contained objects with
simple permittivity distributions compared to a human head.

In the following section the investigations and findings of the CSI
method used for stroke detection are presented. All of the findings were
obtained while Micha Pfeiffer was working on his master thesis [46]. Since,
close cooperation and fruitful discussions led to these results, I decided to
use the pronoun “we” in this section.

7.3.1 Setup andDomains
The antenna setup is quite comparable to the one used with the Gauss-
Newton-Method but with the difference that the antennas had a greater
distance from the object and were arranged in a circle. Figure 7.27 gives
an example setup as it was used here. The relevant domains are also
noted in the figure. The data domain is limited to the circle where the
antennas are located (marked with S) and the object domain comprises the
whole space the square denotes (marked with D). Another similarity to the
other introduced algorithms was the homogeneous background medium
the object was surrounded by. Here we should keep in mind, that volume
integrals are area integrals in the object domain and line integrals in the
data domain.
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Figure 7.27: Schematic view of the setup as it was used for microwave imaging with
the contrast source inversionmethod. The Smarks the circular data domain and the D
denotes the area of the squared object domain. The object here is a two-dimensional
simplified head phantom.

7.3.2 The Contrast Source Inversion Algorithm
Due to the superposition principle we can write the field E j, caused by
antenna j, as a combination of the field without the object (called the
incident Field) Einc, j and the scattered Field Escat:

E j(p) = Einc, j(p)+Escat, j(p) . (7.26)

The incident field can usually be analytically calculated, measured or
determined by a numerical field simulation. The scattered field, assumed
that way, can be calculated by

Escat, j(p) = k2
b

∫
D

g(p,q)o j(q)dv . (7.27)

Where kb denotes the complex wave number of the background medium,
g(p,q) denotes the Green’s function with r = |q− p| and o j(q) stands
for the contrast source. For the contrast sources a contrast between the
permittivity of the background medium εb and the permittivity of the still
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unknown object ε(p)

χ(p) =
ε(p)− εb

εb
(7.28)

is calculated. These contrast sources o j(q) are a product of the contrast
χ(p) and the total field of the antenna E j:

o j(p) = χ(p)E j(p). (7.29)
If we keep in mind that the Green’s function, as introduced in (2.17) or

(2.18), only depends on the distance between the source point and another
arbitrary point we can understand the equation (7.27) as a convolution
integral. Hence, the contrast sources can be thought of as point sources.
The scattered field is then a superposition of the fields from the contrast
sources.

Within the following part we have a closer look at the total field: if
the scattered field of equation (7.26) is replaced by the equation (7.27) the
Lippmann-Schwinger Equation is reached:

E j(p) = Einc, j(p)+ k2
b

∫
D

g(p,q)o j(q)dv . (7.30)

For later definitions the following simplification was used:

Go j(p) = k2
b

∫
D

g(p,q)o j(q)dv . (7.31)

Here G is a mathematical operator. This operator is often marked by an
index. Whereupon the index is set to D if the location of the point p is in
the object domain or to S if the point is in the data domain [53, 54].

7.3.2.1 TheObjective Function
In contrast to the objective function known from the Gauss-Newton Method
(GNM) the objective function for the CSI algorithm contains two terms

1
ηS

∑
j
‖ f j−GS(o j)‖2

S +
1

ηD
∑

j
‖o j−χEinc, j−χGDo j‖2

D . (7.32)

The first one of the tow summands is called data equation FS(o) and is
comparable to the one used for GNM. The second term is new and called
object equation FD(o,χ). Both terms will be explained in the following:
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Data Equation Starting at the Lippmann-Schwinger Equation (7.30) by
utilizing the G-operator and rearranging the terms results in the following
equation:

E j(p)−Einc, j(p)−Go j(p) = 0. (7.33)
E j(p)−Einc, j(p) is exactly the value which will be measured later.

If we replace E j(p)−Einc, j(p) = f (p) equation (7.33) can be written
as

f j(p)−Go j(p) = 0. (7.34)
As such equations usually do not hold exactly, an error term ρ is needed:

ρ = f j−Go j (7.35)

For the so-called data equation all those errors are summed up and the
following equation is reached:

FS(o) = ηS

N

∑
j
‖ f j−Go j‖2

S , (7.36)

with N, the number of antennas and ηS, as a factor for normalization:

ηS =
1

∑ j ‖ f j‖2
S

. (7.37)

Verbalized, the data equation states that the scattered field of all contrast
sources should have exactly the same value as the one obtained by mea-
suring the fields of an empty setup, subtracted from a measurement with a
setup containing an object.

Object Equation The so called object equation can also be obtained by
modifying equation (7.30). For this, equation (7.30) is also rearranged and
afterwards multiplied by the contrast:

χE j(p)−χEinc, j(p)−χGo j(p) = 0 . (7.38)

The first term is already known as the contrast source. Hence, we replace
it and achieve

o j(p)−χEinc, j(p)−χGo j(p) = 0. (7.39)
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Since, such an equation does not hold exactly, an error term

δ = o j(p)−χEinc, j(p)−χGo j(p) (7.40)

is needed. At last we have to sum up the δ ’s and arrive at the object
equation:

FD(o,χ) = ηD

N

∑
j
‖o j−χEinc, j−χGo j‖2

D (7.41)

This formula is quite more difficult to understand. Verbalized it means
that the contrast sources are the sources induced by the incident field as
well as the total field. As the contrast sources contain the total field, this
formulation is able to regard multiple reflections.

7.3.2.2 Regularization and Additional Constraints
To achieve optimal results it is often useful to include additional knowledge.
In the publication of van den Berg et al. the total variation was used to
improve imaging results. Especially if the measurement data contained
noise the total variation showed great benefit [53–55]. The main hypothesis
to use the total variation can be derived form natural features: Natural
images are usually sparse in some domains and therefore only a few
dominant coefficients are needed to represent all the information [56].
Interestingly, most of the noise an image contains is found with other
coefficients. Hence, a regularization must be used that forces these other
coefficients to be near to zero if noise should be reduced.

A domain where natural images are usually sparse can be reached by
the calculation of the finite differences between neighboring pixels. As
regularizations based on the L1-norm ‖ · ‖1 usually penalize non-sparse
vectors, the result vectors are sparse. Hence, the L1-norm of the differences
is the regularization term that should be used.

Mathematically, we can write the total variation as

TV (χ) = ‖∇χ‖1 =
∫

D
|∇χ(p)|dv, p ∈ D . (7.42)

Unfortunately, the L1-norm is not continuously differentiable and therefore
the total variation term is also not continously differentiable. To overcome
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that, a small value δ to smooth the kink of the absolute value |∇χ| =√
(∇χ)2 +δ 2 can be added. This was also proposed by Abubakar et

al.[52]. Then a derivable total variation term is obtained:

TV (χ) =
∫

D

√
|∇χ(p)|2 +δ 2 dv . (7.43)

This definition still had a disadvantage: Abubakar et al. were not able to
show that the problem stays convex after a modification of this kind. Their
solution for this problem was to use the L2-norm instead:

TV (χ) =

√∫
D
|∇χ(p)|2 +δ 2 dv . (7.44)

The regularization term defined in that way was not used as an additive
term by the authors because this would require the finding of a suitable
scalar value α to adjust the influence of the term

F = FS(o)+FD(o,χ)+α TV (χ) . (7.45)

However, the term was used in a multiplicative way instead:

F = [FS(o)+FD(o,χ)] TV (χ) . (7.46)

Usually, a regularization is configured in such a way that its influence
vanishes if the correct residuum is reached. When a multiplicative regular-
ization is used, the regularization has to reach a value of one. Hence, the
total variation term needs another modification. The modification was to
normalize the term with the derivative from the previous step

TV (χ) =

∫
D |∇χ(p)|2 +δ 2

n dv∫
D |∇χn(p)|2 +δ 2

n dv
. (7.47)

As the changes within the contrast would get very small near the
residuum this term does indeed vanish if a minimum is reached. The
square root was neglected to simplify the gradient of this term. But there
still was an unwanted behavior: The L2-norm, as used here, would penalize
large values more than smaller ones and the sparsity would be lost. Hence,
the term as written here would smooth out the sharp edges, which are
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usually wanted in the images. The solution is: if the integral is taken out
of the fraction

TV (χ) =
1
V

∫
D

|∇χ(p)|2 +δ 2
n

|∇χn(p)|2 +δ 2
n

dv (7.48)

the weighting is no longer global, but becomes a local one. Each point
derivative is weighted with the prior derivative at the same point. Hence,
even a large step will deliver a small value near the residuum. V denotes
the volume of the object domain.

The value δn is still undefined and was set to

δ
2
n = FD,n−1

1
dvD

, (7.49)

where dvD is the size of a volume element of the discretized object domain
and FD,n−1 is the value of the object equation of the previous iteration step.
The multiplicative regularizised contrast source inversion (MR-CSI) as
described here was originally introduced by van den Berg, Abubakar et al.
[53–55].

Natural Limits The permittivity of the material that should be imaged
does have natural limits. The complex relative permittivity would neither
have a positive imaginary part nor a real part smaller than one. Hence, we
calculated a minimal contrast

χmin =
εmin− εb

εb
(7.50)

with a minimal complex permittivity

εmin = ε0

(
1− i

0
ωε0

)
= ε0 +0i . (7.51)

This minimal contrast was afterwards enforced with each iteration. A
comparable idea was used by van den Berg et al. [54].
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7.3.2.3 The Update Procedures
By observing the full objective function

F(χ,o) = [FS(o)+FD(o,χ)]FR(χ) (7.52)

=

(
ηS ∑

j
‖ f j−GSo j‖S +ηD ∑

j
‖χEinc−o j +χGDo j‖D

)
FR(χ)

(7.53)
with

FR(χ) =
1
V

∫
D

|∇χ(p)|2 +δ 2
n

|∇χn(p)|2 +δ 2
n

dv , (7.54)

which is used by the algorithm, it is obvious that an update formula is
quite complicated. This was also the idea which the original authors of
the algorithm had. Hence, they introduced another simplification: As
the algorithm needs an update for the contrast and the contrast sources,
respectively, they intended to split the update [55]. In a first step only
the contrast sources o were updated and the contrast χ was hold fix. In a
second step the problem was reversed and the contrast source o was fixed
where an update for the contrast χ was made.

Updating the Contrast Sources To update the contrast sources a CG-
method was used. The update formula

o j,n = o j,n−1 +α
o
n v j,n (7.55)

looks quite similar to the one known from the GNM where v j,n is the update
direction and α is the step size. However, the way to obtain the direction
is different. The direction was calculated by the so-called Polak-Ribière
conjugate gradient direction:

v j,n =


g j,n, n = 0

g j,n +
∑k 〈gk,n,gk,n−gk,n−1〉D

∑k 〈gk,n−1,gk,n−1〉D
v j,n−1, n > 0 (7.56)

with the gradient

g j,n =−ηSG∗Sρ j,n−1−ηD
[
r j,n−1−G∗D(χn−1 r j,n−1)

]
. (7.57)
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Here G∗S and G∗D are the adjacent operators of GS and GD respectively
(more in Appendix B) and 〈·, ·〉D :=

∫
D . . .dv denotes the dot product on

the domain D. The step size α was determined by a line search along the
direction v j,n:

α
o
n = argmin[FS(on−1 +α

o vn)+FD(on−1 +α
o vn,χn−1)] (7.58)

Multiple complex results and one real valued result are possible with that
equation but the real valued one is the one wanted. The correct result is
delivered by the following equation:

α
o
n =

real(∑ j〈g j,n,v j,n〉D)
ηS ∑ j ‖GSv j,n‖2

S +ηD ∑ j ‖v j,n−χn−1GDv j,n‖2
D

. (7.59)

Updating the Contrast on CSI The problem to be solved here is more
simple than the update of the contrast sources. The objective function for
this part of the problem is

min
χ

FD(on,χ) . (7.60)

This problem does have an analytic solution

χn =
∑ j o j,nE j,n

∑ j
∣∣E j,n

∣∣2 . (7.61)

This is possible due to the fact that the data equation FS does not directly
depend on χ . The therefore needed field E j,n is calculated by the Lippman-
Schwinger equation (7.30).

Updating the Contrast onMR-CSI If the multiplicative regularization
term is used, the updating of the contrast for the objective function is not
as easy as it is without it.

Due to the dependency of the regularization term FR on χ , the data
equation cannot be neglected and the update enforces the consideration of
the whole objective function

min
χ

[FS(o j,n)+FD(o j,n,χ)] FR(χ) . (7.62)
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As here the CG method was also used the gradient of the objective function

gR,n =
∂ [(FS,n +FD,n)FR,n]

∂ χ
(7.63)

is needed for the update. It can be noted that the arguments for the functions
were omitted to improve the readability. By applying the product rule we
achieve

gR,n =
∂ (FS,n +FD,n)

∂ χ
FR,n +(FS,n +FD,n)

∂FR,n

∂ χ
(7.64)

and if the independence of FS,n from χ is regarded, we achieve

gR,n =
∂FD,n

∂ χ
FR,n +(FS,n +FD,n)

∂FR,n

∂ χ
. (7.65)

At this point we can use the formulations used before, introduced to
only update the contrast on CSI. By using equation (7.61) a new contrast
χn minimizing (7.60) can be obtained. Hence, the partial derivative ∂FD,n

∂ χ

will be zero at this point [55] and thus, the gradient simplifies to

gR,n = (FS,n +FD,n)
∂FR,n

∂ χ
. (7.66)

The partial derivative of the regularization term needed now is

∂FR(χ)

∂ χ
(p) =

1
V

∇ ·
[

∇χ(p)
|∇χn(p)|2 +δ 2

n

]
, (7.67)

where ∇χ :=
[

∂ χ

∂x ,
∂ χ

∂y

]
denotes the spatial gradient. More details about

the computation of the partial derivative of the FR(χ) can be found in the
appendix C.

Here it should be noted that the numerator is now due to the spatial
derivative a vector and because of this the ∇·-operator in front of the
brackets stands for the divergence operator. By having the gradient we can
now calculate an update direction by using the CG method:

vR,n =


gR,n, n = 0

gR,n +
〈gR,n,gR,n−gR,n−1〉D
〈gR,n−1,gR,n−1〉D

vR,n−1, n > 0 (7.68)
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As a last step a line search is needed to determine a sufficient step size
βR for the updated equation

χR,n = χn +βR vR,n . (7.69)
As published by van den Berg et al. a suitable value for βR can be

calculated analytically [55]. Unfortunately, our test showed that the ana-
lytic solution for βR contains large exponents and involves large numbers,
causing the solution process to be numerically unstable. To overcome
that we decided to use a numeric minimization procedure as provided by
MATLAB. Our implementation of the line search involved the function
fminbnd which is based on a golden section search. This showed similar
results for the numerically calculated step size if compared to the analytic
solution.

7.3.2.4 Starting with an Initial Guess
The convergence of the algorithm depends beside other facts also on proper
initial values for the contrast sources o j and the contrast χ[54]. A good
initial guess for the contrast source can be achieved by

o j,0 =
‖G∗S f j‖2

D

‖GSG∗S f j‖2
S

G∗S f j . (7.70)

where the term G∗S f j can be understood as a back propagation of the mea-
surement to the object domain. The rest of the expression is a scalar
weighting in order to achieve results independent from the measured am-
plitude. With initial contrast sources achieved that way, an initial contrast
is calculated:

χ0 =
∑ j o j,0E j,0

∑ j |E j,0|2
. (7.71)

The overall initial field E j,0 is calculated, as introduced before, by using
the Lippmann-Schwinger equation (7.30).

7.3.3 Test Data from Forward Calculations
Due to the two-dimensional test setup used, an also two-dimensional
forward calculation was desirable. Thus, the already existing simulation
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Figure 7.28: The field obtained by the implemented FDTD-Meep-Solver. The images
show the field obtained by the subsimulation of antenna 24. The left image shows the
real part of the incident field (i.e. Einc,24) and the right image shows the field after havingadded an object, E24 . The backgroundmedium used herewas air. Thus, the attenuationwithin the background medium was almost zero. It can be noted that only the field
values measured at the antennas were used for the reconstruction but not the entire
field distributions which are shown here. For the reconstruction the incident field was
approximated using an analytic function and the field with the object was considered
to be unknown (because it would be unknownwhen it comes to real measurements).

tools utilizing the Meep-solvers, which were implemented for the Gauss-
Newton Algorithm (compare section 7.2.2) were reused. The benefit of
using Meep was the fact that Meep provides point sources which was
not the case for the more advanced simulation environments CST and
SEMCAD. For CST and SEMCAD antennas were necessary for a field
excitation. However, with the inclusion of antennas other effects also have
to be regarded, like coupling between antennas and a non-omnidirectional
radiation pattern.

Similar to the simulations made for the Gauss-Newton method an
empty simulation and a simulation containing the object of interest was
needed. The empty simulation was not really empty, but the whole space
was filled with the permittivity of the background medium.

Even the simulation procedure was equal to the one I did for the Gauss-
Newton method. N subsimulations were performed with only one source
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switched on in each case. A simulated example (subsimulation 24) can be
observed in Figure 7.28.

7.3.3.1 Sub-Voxel Permittivity Values and Interpolation
As indicated before (section 7.2.2), Meep uses a spatial resolution for the
simulations, which was independent of the voxel grid where the permittivity
values were stored. Moreover, Meep uses the common known Yee’s lattice
for the spatial discretization of the simulated space. Due to the shift of a
half voxel size between the electric and the magnetic field as defined by
Yee’s lattice, values of the permittivity for half and full voxels are required.
During the first implementation of the class holding the object, this was
regarded by just rounding the input point to the next full voxel. Since this
shifted the model and thus influenced the results of the CSI a bi-linear
interpolation for the permittivity was introduced. A similar interpolation is
used inside the Meep framework for the freely positionable sources and the
function to acquire the field which also supports freely defined positions.

7.3.4 Calibration
As already mentioned for the CSI algorithm the basis of the field cal-
culation is a superposition of the fields from multiple point sources at
the CSI algorithm. All point sources are the result of a convolution (the
G-Operator) between a fundamental solution (Green’s function) and the
overall permittivity distribution. Since this formulation was also used to
propagate errors from the data domain through the object domain and
vice versa the algorithm works at its best when the incident fields are also
analytically approximated.

Due to the ability of the Meep framework to simulate near ideal point
sources it should be assumed that a calibration is not necessary. Unfor-
tunately, this is not exactly true, as a closer look showed a phase shift
between the fields propagating along the main diagonals and the ones
propagating along the axis direction (compare Figure 7.29).

However, the discovered phase shift reduced the quality of the recon-
structions. Fortunately, this can be compensated by a correction factor
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Figure 7.29: If the analytically calculated field of a point source (equation (2.18)) is
compared to the field obtained by a simulation with the FDTD-Solver ofMeep a phase
difference between the axis direction and a diagonal propagation could be observed.
The reason for this is seen in the discretization of quadratic voxels and indeed the
effect is reduced in higher spatial resolutions. The difference is noted in [rad].

defined by

K j,l =
Ean

inc, j(pl)

Esim
inc, j(pl)

, (7.72)

where Ean
inc, j(pl) denotes an analytic field and Esim

inc, j(pl) the simulated field
at the receiver position pl . The correction is then done by

f cal
j,l = K j,l f j,l (7.73)

= K j,l [E j(pl)−Esim
inc, j(pl)] (7.74)

= K j,lE j(pl)−Ean
inc, j(pl) (7.75)

where f cal
j,l denotes the calibrated input values. By the way this calibration

procedure could also be used to calibrate real measured input data.
Usually, a network analyzer is used to measure and hence, the input data

are not fields but S-parameters. Fortunately, the conversion can be done
by the same procedure as Ostadrahimi et al. showed 2011[57]. Therefore
the simulated field Esim

inc, j(pl) is replaced by the corresponding scattering
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parameter Sl, j. Thus, the equation (7.72) is written by

K j,l =
Ean

inc, j(pl)

S j,l
. (7.76)

As an alternative to the calibration the incident fields taken from the
simulation could be used which we had done before the discovery of the
phase shift.

7.3.5 Three Test Objects
In total the algorithm was tested on three objects, sometimes called models.
Here the objects were distributions of complex permittivity, including the
background medium and the discretization of the S and D domains. If it is
not stated differently the data domain always contained 32 antennas.

7.3.5.1 Concentric Squares
The first of the models (the concentric squares model) was defined to be
dependent on the frequency used for reconstruction and the background
medium. Therefore the spatial shaping was defined to be of the size
2λ ×2λ with a step inside to a smaller square of λ ×λ . The dimension
of the object domain with a size of 3λ ×3λ was also defined in that way.
The contrast of the inner square was selected to be χ1 = 0.3+ i0.4, the
outermost square had a contrast of χ2 = 0.6+ i0.2 and the background
contrast was zero. A picture of the model is given in Figure 7.30. The radius
of the data domain was selected to be 3λ . The frequency with which the
model was defined was selected to be 0.5GHz and the background medium
had the permittivity and conductivity of air (εr = 1 and σ = 3×10−15S/m).
Due to the relative definition of the squares the morphology of the model
depended on the selected background medium. As an example for this
Figure 7.31 shows an image of the model having air as its background in
the upper row and in the lower row of the image matching liquid (εr = 50
and σ = 0.8S/m) was selected.

The model, as defined here, was also used by the original authors of
this algorithm [54, 55]. This was the reason why we needed it to compare
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Figure 7.30: The concentric squares object defined at a frequency of 0.5GHz as intro-
duced by Abubakar and van den Berg [54]. The contrast is shown of the 3λ ×3λ object
domain, with real part (left) and imaginary part (right). The domainwas discretized into
29×29 voxels.

the performance of the implementation. One thing should be noted here:
we did not redesign the model, when switching the frequency. This means
that the reconstruction of greatly differing frequencies would look different,
too. This is not only related to the differing dimension in relation to the
wave length of the object, but it is also related to the frequency dependence
of the imaginary part.

7.3.5.2 A SimplifiedHeadModel
After the tests with the first abstract test object a second object more
closely linked to reality was introduced. Realistic dimension and realistic
permittivities were therefore defined for the model.

Table 7.3: Permittivities used for the simple head phantom. The values were taken
from [22] at 1.0GHz. The same permittivity values were also used when the model
was simulated and reconstructed in other frequencies (i.e. the frequency-dependency
of the relative permittivity and conductivity was ignored). By ignoring the frequency-
dependency the reconstructions of differing frequencies were easier to compare.

Material Rel. Permittivity εr Conductivity σ (S/m)
Skin 40.9 0.9
Bone 20.6 0.364
Brain 48.9 1.31
Blood 61.1 1.58

As we intended to use a frequency of 1GHz for the simulation (a
frequency selected by regarding the frequency range of the antennas and
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Figure 7.31: The concentric squares model with a backgroundmaterial of air is visible
in the upper row andwith a backgroundmaterial of matching liquid in the lower row.
Due to the different background media the wavelength (shown in the bottom right
corner of the conductivity images) varies greatly. Since this model is defined to have an
object domain of 3λ by 3λ the size of the whole model also changes drastically with
the change in backgroundmedium. The crosses mark the antenna positions.

previous studies) we also selected the permittivity of the materials for
this frequency (Table 7.3). The basic shape, similar to that of the other
phantoms, was circled with an outermost diameter of 20cm. It included
a skin layer of 1cm thickness and a bone layer of also 1cm thickness.
The inside was filled with general brain tissues. The model contained a
hemorrhage, a small non-centered circle of diameter 4cm, filled with a
material having a blood-like permittivity.

Due to the simplicity of the model it is ideal to study effects, inherent
to the algorithm, as for example the influence of the huge contrast at the
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Figure 7.32: A simplified head phantommodel containing skin, skull and brain, the rel-
ative permittivity (left) and the conductivity (right) are shown. The small non-centered
circle was used to simulate a hemorrhage and the small bar in the lower right corner
shows the wavelength at 1.0GHz in matching liquid.

Figure 7.33: Contrast of the simple head phantom model at 1.0GHz with matching
liquid as backgroundmaterial. The outermost layer represents the skin. Its permittivity
is close to that one of the matching liquid and hence, the contrast is small (around
0.1+0.1i ). The next layer is representing the skull. There a very large jump in the real
part of the contrast is generated. In this setup the bleeding area is hardly visible in the
image of the imaginary part of the contrast but it leaves a high value in the real part.

skin-skull-brain interface. To study those effects the model was simulated
and reconstructed with various background materials. The most notable
ones were air and matching liquid. Figure 7.33 contains the contrast of
the object domain and Figure 7.32 offers a full view of the model. In both
cases matching liquid was used as background material.

7.3.5.3 Realistic HeadModel
In the end the algorithm should also work sufficiently in realistic conditions.
Hence, we introduced a realistic object. The setup for it was similar to the
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one containing the simplified head, except from the head phantom. The
head phantom used was constructed from MRI data by Michel et al. [58].
They used T1-weighted MRI scans to reconstruct permittivity maps of the
brain. To do so a water-content map was derived from the T1− image
and afterwards used to calculate a permittivity map. The premise to do so
was that they assumed that the water content is a good indicator for the
measurable permittivity at the utilized frequency range. As the procedure
did not include segmentation or comparable steps all the details of the
inside head could be maintained. Due to this a very realistic view of the
head could be utilized for our model. It included cerebrospinal fluid and
very fine structures lying between grey and white matter. Even the liquid
filled ventricles were observable. A view of the setup can be seen in Figure
7.34 and a view of the object domain and its contrast in Figure 7.35. This
time the object domain was visualized from above. This was done due to
the fact that the high steps in contrast were leading to 3D-surface-views
which were not easily interpretable.

Figure 7.34: The object derived fromMRI within the setup. For the simulation and
reconstruction 1GHz was used and a background material consisting of matching
liquid.

Finally, a setup including a simulated hemorrhagic stroke was intro-
duced. This was done to examine the ability of this algorithm to diagnose
intracerebral bleeding. Figure 7.36 shows the contrast of the object domain
of this setup. This was similar to the stroke region of the simplified phan-
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Figure 7.35: The contrast view of the object domain. Shown is the advanced head
phantom at 1GHz. The range of the contrast is significantly higher than the one of
other models.

Figure 7.36:Modifiedmodel with a simulated hemorrhage having a diameter of 4cm.
The permittivity at the location of the hemorrhage was replaced by the permittivity of
pure blood.

tom. It contained a circular region of 2cm radius having a permittivity of
blood.
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7.3.6 Frequency Hopping
Since the spatial resolution is among other things depending on the utilized
frequency the details of the head are smoothed out. This is a way how a
reconstruction using higher frequencies could add important information.
Unfortunately, the probability of converging into a wrong minimum grows
with higher frequencies. Due to that fact a convergence in high frequencies
depends on an initial guess, close to the correct minimum.

Starting from blank space such a sufficient initial guess could be
reached by previous reconstructions with lower frequencies. Such a pro-
cedure was also introduced by van den Berg and Abubakar [54]. They
described a stepwise increase of the frequency after every reconstruction.
As both the contrast and the contrast sources are strongly depended on
the frequency they cannot be used as yielded by the algorithm, instead the
values must be transformed.

7.3.6.1 Transform the Contrast for a New Frequency
The easiest way to transform the contrast would be achieved by first cal-
culating the relative permittivity and the conductivity of the model and
then calculating the new contrast of those values. To achieve the complex
permittivity from the current contrast the rearranged equation (7.28)

ε f0 = χ f0εb + εb (7.77)
can be used. The relative permittivity is then

εr =
Re{ε f0}

ε0
(7.78)

and the conductivity

σ =−imag(ε f0)ω f0 , (7.79)
where f0 denotes the current frequency. After updating the background
permittivity the new contrast for f1 can be calculated by

χ f1 =
ε f0 − εb

εb
=

ε0

(
εr− i

σ

ω f0ε0

)
− εb

εb
. (7.80)
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Here it should be noted that almost all biological materials are dispersive
and due to this they have a frequency-dependent relative permittivity and
conductivity. With sufficiently small frequency steps this feature can be
neglected as the algorithm is able to compensate these small errors.

7.3.6.2 A Transformation for the Contrast Sources?
Unfortunately, the contrast sources are not as easy to transform as the con-
trast itself. By observing equation (7.29), their dependence on the electric
field is observable. Due to the fact that it contains all the reflections and
refraction it is strongly nonlinear concerning frequency changes. Hence,
there cannot be a transformation as easy as the one for the contrast.

Some examinations on this topic showed that using the new incident
field Einc, f1, j and the old contrast χ f0 to generate new contrast sources

o j, f1 = χ f0Einc, f1, j (7.81)

was not a sufficient initial guess. If this was used as initial guess the
algorithm was not converging into the correct minimum. As an alternative
we then used the reconstructed contrast within a simulation to generate
the new field. By doing so the correct minimum could be found (compare
7.3.8.5).

7.3.7 A FewDetails of the Implementation
As indicated before we used MATLAB to implement the algorithm. Due to
the wide variety of tools to image and review results it is a good platform
to develop and debug such algorithms. We often described the G and G∗

operations as convolutions. This fact was used to improve the performance
and hence, the operator was carried out in the frequency domain. The
convolution can be calculated by a simple multiplication. Due to the
fact that the Green’s function was independent from all iterations it could
be calculated and cached before the algorithm was stared. Finally, the
ability to perform parallel calculation of MATLAB was used to increase
the performance in a further way.

125



CHAPTER 7. THREE ALGORITHMS FOR STROKEDIAGNOSIS

7.3.8 Reconstruction Results of the Contrast Source
Inversion Algorithm

All three test objects were used in various setups. The simulations were
made with the FDTD-Meep-Solver and the reconstructions either with the
CSI method or with the MR-CSI method.

7.3.8.1 Reconstruction Results of the Concentric Squares
The spatial dimensions of the model were designed for a frequency of
0.5GHz. The dimensions were hold fix even if the frequency was changed.
Hence, the model with air as its background material was constructed with
a λ of approximately 60cm and the model with the matching liquid with
λ ≈ 6.7cm. The permittivity distribution of the object was determined by
the predefined contrasts and the permittivity of the background medium.

Reconstructions in Air When air was used as background medium
both algorithms (CSI and MR-CSI) were able to deliver good results. The
simulated measurements for this case can be observed in Figure 7.37.

Figure 7.37: Results of the simulations with air as background medium and at a fre-
quency of 0.5GHz. The left image illustrates the results of the reference simulation
without an object and the center image illustrates the results of the simulationwith the
concentric squares. The right image shows the input data f (the difference between the
right and the center image). Each row contains themeasurement of a subsimulation,
whereas the values on themain diagonal would contain themeasurement at the source
point. As this point was neglected the value is zero.

Each row of the image contains the measurement of a single subsimulation
where the value for the source (main diagonal) was set to zero. The left
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Figure 7.38: Reconstruction results of the concentric squares model with air as its
backgroundmaterial. As described before themodel was designed for a frequency of
0.5GHz. It shows the results achieved theMR-CSI algorithm. On the left the real part
of the contrast and on the right the imaginary part. Three different frequencies were
tested, 0.3GHz (top row), 0.5GHz (the central row) and at 0.7GHz (the lowermost row).
For these reconstructions 1024 iterations were carried out.

image shows the measured fields for the empty setup, the centered image
contains the measurements achieved by the setup containing the concentric
squares and the right image shows the input data f (the difference between
the left and the center image).

By looking at the input data (right image) high values on the minor
diagonals can be observed. These diagonals contain the transmitted signals.
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Because of those it can be observed that the main information for the
reconstructions comes from the antennas opposite of the source.

Three different frequencies were tested. The results achieved by the
frequency, which was also used to design the model, were by far the
best ones and the results for the lower frequency were simply smoothed
out. Conspicuously, the results of the higher frequency are quite bad.
We assumed that the reason for this was the fact that the algorithm was
converging to a wrong minimum. If our results are compared with the
results published by van den Berg and Abubakar [54] it can be noted that
their results look slightly better. Especially the contours are more sharp.
The result seems to be almost equal to the input model. We assume that
the reason for this is that our simulations were made on a Yee’s lattice
with interpolated permittivities which led to an input profile with smoothed
edges.

Concentric Squares inMatching Liquid As mentioned before match-
ing liquid is usually used to improve the coupling between antennas and
the object of interest so that the energy transmitted though the object is at
its best. Due to the way the permittivity was defined (over the contrast)

Figure 7.39: Simulated input data form the concentric squares with matching liquid
as its backgroundmaterial. In the left the results of the reference simulation without
an object. The center image is the result of the same setup with the difference that an
object was present and the right image contains the input data, which is the difference
between the left and the center image. It can be observed that here theminor diagonal
no longer contains themain information. Now themain diagonal is stronger. Hence,
the reflection becamemore important for the reconstruction.

a better match was not achievable. Our intention concerning the test case
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Figure 7.40: CSI reconstruction of the concentric squares model with matching liquid
as its backgroundmedium at a frequency of 0.5GHz. The top row shows the 512’th iter-
ation and the results imaged at the lowermost row are achieved after 10000 iterations.

was to see if the algorithm could handle a medium with a significantly
higher conductivity. In addition to the high conductivity in the background
medium the conductivity within the object was also increased. Hence, the
attenuation over the object domain was larger and grew from formerly 8dB
with air up to 30dB with the matching liquid. This was also observable
with the results from simulation (Figure 7.39).

The differences between the left and central image cannot be perceived
by the human eye. Another significant change was perceivable on the
input data (the right image) the highest values are now no longer on the
minor diagonal. That means that the main information is now provided by
reflections and no longer by the transmissions, as it was the case for the
setup with air as its background medium.

One result of all this was that the contours were reconstructed first and
comparably fast. But to achieve results for the inside of the object a lot
more iterations were required. Good points to observe this effect were
iteration 512 and iteration 10,000 (compare Figure 7.40).
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Figure 7.41:MR-CSI Reconstruction of the concentric squaresmodel withmatching
liquid as its background medium at a frequency of 0.5GHz. The result after 512 is
visible in the top row and the result after 10000 iterations in the lowermost row. The
final result is remarkably close to the original object.

A significant improvement was achieved with a switched-on multiplica-
tive regularization. The results of the MR-CSI algorithm are observable
in Figure 7.41. The MR-CSI method was effectively flattening the re-
constructed object. This was especially the case with the first thousand
iterations. With a growing number of iteration and decreasing errors this
effect became less effective and the original profile was sufficiently re-
constructed. However, a strange effect remained with the results of the
MR-CSI, namely a rippled pattern in the middle of the objects. Unfortu-
nately, we were not able to identify the origin of this ripple till now.

7.3.8.2 Reconstructing the Simple Head Phantom
For the reconstruction of the simplified head phantom multiple frequencies
were tested, too. As examples, the results of the setup for 0.5GHz (Figure
7.42) and 0.7GHz (at Figure 7.43) are presented here. Due to the naturally
high conductivity inside biological tissues and the also high conducting
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Figure 7.42: Resulting reconstruction of the setup for 0.5GHz when using MR-CSI
after 10000 iterations. The simulated bleeding is clearly observable, even if the recon-
structed permittivities are not perfectly matching. This was especially the case inside
the skull. The ripple patternwith unclear origin, which is known from the test before, is
observable, too.

Figure 7.43: Reconstruction of the setup containing the simplified head phantom after
10000 iterations. The selected frequencywas 0.7GHz. Similar to the reconstruction
at 0.5GHz the bleeding is clearly observable. Here the unclear ripple pattern is not as
strong as it was for the lower frequency, but it is still visible.

matching liquid similar effects were observable in this reconstruction, as
could be observed for the concentric squares with high conductivity. The
reconstruction was started at the outermost contours of the object and the
inner structures were not visible for a long time. Only after a minimum of
5000 iterations a vague impression of the inside became apparent.

An interesting, but not very surprising, observation of these results
is related to the deep fold the skull was causing in the contrast image
(Figure 7.33). The algorithm was not able to reconstruct this feature
correctly. The small thickness of the skull (about a quarter wave length)
was probably outside the available spatial resolution. It is of interest
that the algorithm compensated the error caused by the missing skull by
adding a high conducting area to the inside of the head, adjacent to the
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imperfect skull (visible in both Figures 7.42 and 7.43). To verify that this

Figure 7.44: The reconstructed phantom after the replacement of the permittivity of
the skull by the permittivity of the skin. As expected the ring of high permittivity in the
imaginary part of the contrast was vanished.

is indeed an error caused by the skull the same setup was simulated and
reconstructed again but this time the permittivity of the skull was replaced
by the permittivity of the skin. The results indeed showed the expected
effect (Figure 7.44). The imaginary part did not show the high conducting
area. This is an error we could not avoid and an error that would probably
occur in all reconstructions containing a head or a head-like phantom.

7.3.8.3 Results with the Realistic Head Phantom
The last of the three test objects (the realistic head phantom) was recon-
structed and simulated for multiple frequencies, similar to the simplified
phantom. Surprisingly, the total variation term was not of benefit here. The
regularization flattened the inner head up to unrecognizable conditions.
This was probably caused by a too strong influence of the regularization
term. Hence, the regularization was disabled for these reconstructions.
The result of a reconstruction without the regularization can be observed
in Figure 7.45. The skull was not correctly reconstructed. But here the
positive slope of the imaginary part is not easily separable from the any-
way existing positive slopes caused by the cerebrospinal fluid. Anyhow,
some of the inner structures are well identifiable, such as for example the
ventricular system filled with high conducting cereborspinal fluid.

132



7.3. CONTRAST SOURCE INVERSION FOR STROKE IMAGING

Figure 7.45: Result of a CSI reconstruction with a setup containing a realistic head
phantom. The phantomwas derived fromMRI images. For the simulation as well as
the reconstruction a frequency of 1.0GHzwas used. A few physiologic structures are
clearly observable (compare also Figure 7.35).

AnArtificial Hemorrhage Inside theRealistic HeadPhantom As a
final experiment with the realistic head model and also due to the fact
that on a later state a stroke diagnosis should be possible the setup was
supplemented with an artificial hemorrhage, as described in section 7.3.5.3.
Therefore a circular section of the brain was replaced by the permittivity of
blood. The result of this experiment is visible in Figure 7.46. To exclude

Figure 7.46: Reconstructions on a realistic headmodel including a hemorrhagic stroke.
The setupwas simulated at 1.0GHz. The blood is sufficiently visible on both parts of
the complex contrast.

side effects and shadows within the reconstruction the difference between
this reconstruction and the reconstruction without the stroke was also
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observed. Figure 7.47 illustrates this difference. It is clearly observable

Figure 7.47: The difference between the reconstruction of the setupswith the realistic
head phantom. One of the setups included an artificial hemorrhage. Except from small
artifacts the difference can be found in the high values of the correct location and in
the expected spatial expansion.

that the bleeding is in the correct location with almost the exact spatial
expansion. However, minor artifacts caused by the algorithm breaking
through the stroke region are also visible.

7.3.8.4 Results on Noisy Input Data
Beside numerical errors no errors were considered with the examination so
far. As this is impossible if dealing with real measured data the performance
of the CSI algorithm was also tested with noisy input data. Thus, the
simulated input data was modified by

f noise
j,l = f j,l + γ

[
r Re( f j,l)+ i r Im( f j,l)

]
, (7.82)

where r stands for a random value between −1 and 1, and γ denotes a
determinable value controlling the fractal proportion of the noise. Figure
7.48 shows the results for the input data with up to 20% additional noise.
Surprising was the fact that there was almost no difference between the
final result obtained by the CSI method and the final results the MR-CSI
algorithm yielded. We assumed that somehow the results described a
distribution that really solved the problem and that therefore the influence
of the regularization term vanished in the end.
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(a) 5%Noise (γ = 0.05) (b) 10%Noise (γ = 0.10)

(c) 15%Noise (γ = 0.15) (d) 20%Noise (γ = 0.20)

Figure 7.48: Results when noise was added to the input values f . The images were
reconstructed by using the CSI algorithm at 0.5GHz.

7.3.8.5 Improvements Obtainedwith Frequency Hopping
Due to the simple structure of the concentric squares object it is an ideal
test subject for further examinations. Hence, it was selected to examine
the benefit of frequency hopping. Therefore the well-known setup up
was reconstructed with 0.3GHz. After that the frequency hopping was
performed with a first step of 0.2GHz and afterwards a step of 0.3GHz
up to a last frequency of 1.0GHz. The obtained results of 0.7GHz and
1.0GHz are illustrated in Figure 7.49. What was clearly observable was
the fact that the results were by far better than without the initial guess of
the previous reconstruction. Not as clear as that but still observable was
the fact that the results also improved with the spatial resolution. However,
as mentioned before, this procedure is only possible if the fields were
taken from simulations, made between every hop. As this is linked to
a simulation consuming high resources (which is especially true if the
simulation should be compared to real measurements) this will compensate
the main benefit of the method: Simulations containing for example a
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(a) Reconstruction at 0.7 GHz

(b) Reconstruction at 1.0 GHz

Figure 7.49: Frequency hopping results of theMR-CSI algorithmwith the concentric
squares object. The results are significantly improved if compared to the direct recon-
struction in higher frequencies. However, the necessary simulation between the hops
consume all the benefit of themethod (compare also Figure 7.38).

complete antenna array need hours even with fast cluster computers. Since
only the final image (achieved by the highest frequency) is needed, it is
possible that a good initial guess with a predefined model would probably
reach similar improvements for higher frequencies.

7.3.9 Time is Brain
As doctors keep to say time is brain the performance of the algorithm is an
important feature. This was the reason for us to examine the performance,
too. As mentioned before some of the routines were parallelized to improve
performance.

By utilizing the profiling function provided by MATLAB a speed test
of the algorithm was made. The results achieved can be observed in Table
7.4. Due to the huge number of iterations necessary to reach these results
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Table 7.4: The speed of the algorithm. Naturally, the MR-CSI algorithm takes signif-
icantly longer per iteration as the pure CSI algorithm. Due to performance declines
from overhead communications the concentric squares model and the simple head
phantomneeded almost the same timeper iteration even despite of the different image
sizes. The frequency for which the imagewas reconstructed had no remarkable impact
on the timings. (The size of the domain D is expressed in voxels and the unit of the time
is seconds)

Model Domain D Algorithm Time/Iteration
Concentric Squares 29× 29 CSI 0.1862

MR-CSI 0.2423
Simple Head Phantom 45× 45 CSI 0.1894

MR-CSI 0.2486
AdvancedHead Phantom 120× 120 CSI 0.6587

MR-CSI 0.8633

(at best 5000 for the realistic head model), a reconstruction took nearly an
hour in total.

7.3.10 Stroke Imaging Using Contrast Source Inversion?
When looking at the results it is obvious that there is still a gap between
the reconstructions of real measurements and the examples presented
here. However, due to the enormous performance compared to the other
examined reconstruction algorithms this seems to be the most promising
approach to reach a successful stroke diagnosis. Better hardware and a
performant implementation, together with a clever way of integrating the
antennas could lead to sufficient and fast enough results.
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Conclusion

A significant step in the direction of microwave stroke imaging was done.
This work presents a wide range of algorithms related to this topic. All of
them were implemented and tested for their ability of diagnosing strokes.
Only one possibility of solving the problem was not adressed: The one
Person et al. mentioned in the Strokefinder project [59]. They used a
computer learning algorithm to diagnose strokes. However, this was not
possible for our research team because a huge amount of data sets would
have been necessary for training those algorithms. In addition to that it is
hard to show that those algorithms always deliver good results which is
especially true for neuronal networks.

However, the findings show that a stroke diagnostic with all imple-
mented algorithms would be possible even if some of them had been
excluded because they were either not robust or the computational effort
was too large.

In the end I came to the conclusion that only the contrast source
inversion algorithm sufficiently fulfilled all requirements. The algorithm
was capable of imaging coarse objects inside the head and it delivered
sufficient results after an acceptable time. The algorithm was also able to
reconstruct full three-dimensional regions and it was able to reconstruct the
two-dimensional slices within an hour. Finally I think that an improvement
of the performance can be reached by a parallel calculation on GPUs. Here
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it must be mentioned that all introduced algorithms were implemented on
a basic status.

For example, there were many improvements intended for the DAS
algorithm by other authors. Some of them suggested to remove the reflec-
tions from the skin or others wanted to improve the robustness. However,
due to the spatial expansion of the signals and the poor results I obtained
under nearly ideal conditions I excluded these types of algorithms.

By looking at the implemented Gauss-Newton-Algorithm the setup
up does still need some modifications. For example, until now real an-
tennas have not been integrated and the algorithm is only implemented
for two-dimensional problems. However, we should keep in mind that
when switching to a three-dimensional setup the number of unknowns
will grow significantly. But even if these drawbacks were compensated by
defining fewer and bigger areas, where the permittivity should be changed,
the simulation time would significantly increase by switching to full 3D
simulations. This is a disadvantage that does not commonly exist for the
CSI algorithm, as there the 2D Green’s function can be simply replaced by
the 3D fundamental solution of a point source. This, in combination with
an antenna with a flat radiation pattern (e.g. a vivaldi antenna), probably
makes a reconstruction of a single 2D slice of the observed 3D scene
possible. Unfortunately, due to the spherical spreading of 3D waves the
attenuation will be stronger and therefore even more iterations will be
necessary for sufficient results.

Finally, I believe that a major step towards stroke diagnosis via mi-
crowave imaging was reached with this work. The CSI algorithm and its
good performance is the best candidate for further investigations and is the
one able to facilitate a fast, reliable and transparent stroke diagnosis. By
finding a sufficient resolution in combination with ideal hardware the nec-
essary performance to compute results within minutes would be reachable.
As such a device could greatly improve the clinical outcome of victims
suffering from a stroke, a further development is recommended.

140



CHAPTER9
Outlook

Now, the question of interest is how could this project be continued?
This question is easy to answer. To continue the project the next step
would be to integrate the antennas into the CSI algorithm and reconstruct
two-dimensional slices from 3D simulations.

I intended to use multiple point sources mimicking a real antenna. The
superposition of those point sources can then generate a field similar to the
one the antenna would provide. Beside that this would also be a suitable
solution for the Gauss-Newton-Algorithm. The benefit for this algorithm
would be that no antennas, which contain small metallic parts, would be
present and therefore the forward calculations would be fast.

Replacing Antennas by Point Sources A small pre-study was made
to examine whether a few point sources can sufficiently represent the field
of a complex antenna. To examine this, a CST simulation with a single
Vivaldi antenna was made and the field was exported. By using 15 point
sources the field was reconstructed. Figure 9.1 shows the reconstructed
field in the right image and the residual between the simulated and the
reconstructed field in the left image.

To achieve this result, a quasi-newton optimization algorithm was used
to fit the complex amplitudes as well as the positions of the source. To
prevent the sources from drifting too far, an additive penalty term was used.
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Figure 9.1: Results of an optimization performed by a Quasi-Newton method. The
images show a combination of point sources. The original field was taken from an
FDTD-simulation performed byMicrowave Studio fromCST. The left image shows the
reconstructed field and the right image the residual field.

This was done by selecting a point on the antenna and then calculating
the differences d between this point and the actual points of the sources.
They were included in an L2-norm punishing term. The term was weighted
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Figure 9.2: The resulting distribution of the point sources. The size of the dots are
scaled by the absolute values of the complex amplitude.

with the squared value of the current residuum. Hence, the influence grew
smaller with the decreasing residuum. The distribution of the sources can
be observed in Figure 9.2.
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Here it should be mentioned that for the CSI algorithm even simulated
fields could be used instead of fields reproduced by point sources. However,
studies showed that the reconstructions with simulated fields were not as
good as those with analytic fields.

Anyhow, the integration of these features has not been completed until
today.

A Flexible and Easy Extendable Framework One last thing should
be mentioned here: I am convinced that further developments of those
algorithms can profit from a framework containing all parts of all the
implemented methods as this would enable the user to combine the findings
and develop any kind of hybrid algorithms. For example, a simulation
between reconstructions with the CSI algorithm can be used to calculate
the fields, such as it was done for the frequency hopping test. When using
the Gauss-Newton approach the calculation of the full Jacobi matrix in
each iteration would be avoidable by the findings of the CSI algorithm.

For this purpose a flexible and easily extendable framework was de-
veloped. The framework was a product of the bachelor thesis of Andreas
Baumeister [60].

The framework encapsulates the functionality of the algorithms in-
cluded into logical-nodes. It also provides a structure to load and to
distribute data over multiple computation nodes. The concept of the
logical-node enables a modular development of algorithms. Addition-
ally, the developed algorithm can be easily rearranged without modifying
the interfaces. It must be mentioned that until now, only the DAS algorithm
is already integrated.

Final Thoughts A parametrizable head model could possibly be used
to minimize the number of free parameters and therefore minimize the
number of iterations in the Gauss-Newton-Algorithm. The head model
could also be used for an investigation of a fitting scenario with the DAS-
algorithm to minimize the reflections of the known head morphology. It
could also be used to calculate a good initial guess for a higher frequency
when using the CSI or MR-CSI. Thus, in my opinion, another path that
should be followed is the development of such a model.

143



CHAPTER 9. OUTLOOK

Finally, a pending task would be to develop antennas with a better
isolation between each other because this would reduce mutual coupling
and improve the spatial resolution.

The mentioned developments are by far not all possible ways to go.
This only shows that this project is still in an early state of development.
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APPENDIXA
The Complex Root of the

Permittivtiy
To separate the root of the complex permittivity into the imaginary and the
real part the complex number is written in different representations:

εr = ε
′− jε ′′ = |εr| ·

(
cos(arg{εr})+ j sin(arg{εr})

)
= |εr| · e j arg{εr}

(A.1)
We start with the polar representation. There it is easy to understand

that the square-root is simply the square-root of the absolute value of the
complex permittivity and its argument is the half of the original argument:

√
εr =

√
|εr| · e j arg{εr}

2 (A.2)

We can use that now to write the square-root in the Euler form:

√
εr =

√
|εr| ·

(
cos
(

arg{εr}
2

)
+ j sin

(
arg{εr}

2

))
(A.3)

In general the argument of a complex number can be calculated by the
arc tangent but the right quadrant has to be chosen. We know that the
imaginary part is always negative and the real part is always positive as
well as larger than one. That is true for nearly all the materials. This means
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that we can use

arg{εr}= arctan
{−ε ′′

ε ′

}
=−arccos


1√

1+
(

ε ′′
ε ′

)2

=−π+arccos
{
− ε ′

|εr|

}
(A.4)

to calculate the argument of εr. At this point we can use the half-angle
formulas

sin α

2 = ±
√

1−cos(α)
2

cos α

2 = ±
√

1+cos(α)
2

(A.5)

to replace the argument at (A.3) and set (A.4) for α . The sign of the root
depends on the quadrant, too. In our case we achieve:

√
εr =

√
|εr| ·

(√
1
2
·
(

1+
ε ′

|εr|

)
− j

√
1
2
·
(

1− ε ′

|εr|

))
(A.6)

or √
εr =

√
1
2
·
(
|εr|− ε ′

)
− j

√
1
2
·
(
|εr|+ ε ′

)
. (A.7)
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APPENDIXB
The GOperators of CSI

The operator

Go j(p) = k2
b

∫
D

g(p,q)o j(p)dv (B.1)
of the Contrast Source Inversion (CSI) method can be used to determine
the field at a point p ∈ {D∪S}, generated by the contrast sources o j in the
domain D. Since it uses the Green’s function of the background medium it
can be thought that the wave propagation is caused by the sources when no
other medium is present.

Depending on whether the point p lies in the object domain D or
the measurement domain S the operator G will be called GD and GS

respectively.
The Green’s functions for a homogeneous infinite background medium

with the wavenumber kb in two and three dimensions can be written as [61,
p. 295]

2D: g(p,q) =− i
4 H(1)

0 (kb|p−q|)

3D: g(p,q) =− exp(ikb|p−q|)
4π|p−q| .

In the two-dimensional case H(1)
0 stands for the zero-order Bessel

function of the first kind (which is a solution to the Bessel equation [61, p.
46]).
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(a) Contrast (b) Field

(c) Contrast sources (d) G operator applied to contrast
sources

Figure B.1: Demonstration of theGD operator. All images show the absolute values ofthe respective functions: (a) A contrast distribution inside the object domain. (b) The
field generated by antenna 1 at the right side of the object domain. (c) The contrast
sources obtainedby o1 = χE1 . (d) The result of applying theGD operator to the contrastsources,GDo1.
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B.1. CALCULATION TIME

An example of how the G operator works is given in Figure B.1.
For this algorithm, the adjoint operators for GD and GS are also needed.

These can be calculated by [54]:

(G∗Sρ j)(p) = k2
b

∫
S

G(p,q)ρ j(q)dv p ∈ D (B.2)

(G∗Dφ j)(p) = k2
b

∫
D

G(p,q)φ j(q)dv p ∈ D . (B.3)
The G∗S operator is used to transform its input from the data domain S

to the object domain D, whereas the G∗D operator converts an input from
the object domain to the same domain.

B.1 Calculation Time
A run-time analysis of the code showed that in each iteration most of the
time is spent on calculating the GD and G∗D operators. This is why decreas-
ing the cost of calculating these operators would benefit the reconstruction
time as well.

We note that the Green’s function both in 2D and 3D only contains
the difference between its arguments p and q. Thus, we could also use the
notation

G(p,q) = G(p−q) . (B.4)
When using this it can be seen that the operators contain a convolution. For
example, the GD operator is now changed to1

GDo j(p) = k2
b

∫
D

G(p−q)o j(p)dv (B.5)
= k2

b G(p)∗o j(p) . (B.6)

Using the convolution theorem the convolution can be calculated in the
frequency domain:

F{u∗ v}= F{u}F{v} (B.7)
u∗ v = F−1{F{u}F{v}} (B.8)

1This can also be applied to the other operators in the sameway
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where F{·} denotes the Fourier transform and F−1{·} denotes the inverse
Fourier transform. Since in the frequency domain the convolution is
replaced by a multiplication it can be calculated much faster.

As an example applying this to the GD operator it yields:

GDo j(p) = k2
b(G(p)∗o j(p)) (B.9)

= k2
bF
−1{F{G(p)}F{o j(p)}} (B.10)

To use this method the input vector o j as well as the Green’s function
G(p,q) must be Fourier-transformed. The latter does not change during
the reconstruction so that its Fourier transform can be calculated once
at the start. The input vector needs to be Fourier-transformed in each
iteration which is done by using the FFT. Both the GD and the G∗D operators
are calculated in the frequency domain which greatly decreased their
calculation times.
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APPENDIXC
Differentiation of theMR Term

In this section, the derivation of the Multiplicative Regularization (MR)
term FR(χ) is described. Since this term is a functional (because χ is a
function of the position p) methods from the calculus of variations will be
used. More specifically, the Euler-Lagrange equation will be used to find
the derivative of the functional FR(χ) with respect to χ .

We start by moving the constant volume V into the denominator of the
fraction inside the integral. Afterwards, the denominator can be replaced
with W because it can be considered constant. This is valid as it only
depends on the constant χn which has already been found and will not
change any more. The replacement makes the following notations simpler.

FR(χ) =
1
V

∫
D

|∇χ(p)|2 +δ 2
n

|∇χn(p)|2 +δ 2
n

dv (C.1)

=
∫

D

|∇χ(p)|2 +δ 2
n

W
dv (C.2)



APPENDIX C. DIFFERENTIATIONOF THEMRTERM

As a next step the absolute value is rewritten with the inner product
(as ‖ · ‖2 = 〈·, ·〉). Since we work in the two-dimensional case the gradient
operator ∇ denotes a vector of two partial derivatives, in x and y directions:

FR(χ) =

∫
D

∣∣∣∣∣
[

∂ χ

∂x
∂ χ

∂y

]∣∣∣∣∣
2

+δ 2
n

W
dv (C.3)

Now the inner product is evaluated:

FR(χ) =

∫
D

( ∂ χ

∂x )
2 +( ∂ χ

∂y )
2 +δ 2

n

W
dv (C.4)

This functional is of the form

F(χ) =
∫

L(x, y, χ, χx, χy)dv (C.5)

where χx and χy are the partial derivatives of χ with respect to x and y.
In this notation the function χ and its partial derivatives are treated like
variables of L.

According to the Euler-Lagrange equation the derivative of the func-
tional FR(χ) can then be written as

∂FR(χ)

∂ χ
=

∂L
∂ χ
− ∂

∂x
∂L
∂ χx
− ∂

∂y
∂L
∂ χy

. (C.6)

As L does not directly depend on χ , the term ∂L/∂ χ is zero. For the
other two addends the derivatives of L with respect to the partial derivatives
of χ are required:

∂L
∂ χx

=
∂

∂ χx

 ( ∂ χ

∂x )
2 +( ∂ χ

∂y )
2 +δ 2

n

W

=
2
(

∂ χ

∂x

)
W

(C.7)

∂L
∂ χy

=
∂

∂ χy

 ( ∂ χ

∂x )
2 +( ∂ χ

∂y )
2 +δ 2

n

W

=
2
(

∂ χ

∂y

)
W

(C.8)
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Lastly, according to equation (C.6), the first of these equations needs to
be derived with respect to x and the second with respect to y. This results
in

∂FR(χ)

∂ χ
=−2

 ∂ 2χ

∂x2 + ∂ 2χ

∂y2

W

 . (C.9)

The numerator of this ratio is simply the Laplace operator of the con-
trast, ∆χ , which can be written as ∆ = ∇∇. Doing this leads to the form
which is used in the description of the algorithm in section 7.3.2.3:

∂FR(χ)

∂ χ
(p) =−2∇

[
∇χ(p)

W

]
. (C.10)

The difference between this function and the one used by the authors in
the CSI algorithm (equation (7.67)) is the constant factor of −2. Since the
derivative found here is used in a line search where the updated step-size
is βR, we can assume that βR will contain the factor and if neglected it will
not change the final results.
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