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Abstract: The growing generation capacity of electricity from renewable energy sources (RES-E) around the globe has an 
increasing impact on traditional energy and electricity markets. Well-ahead planned investment decisions as well as short 
term management of the power plant and storage dispatch and other challenges are highly dependent on the feed-in of 
RES-E. Therefore a thorough research of RES-E supply and knowledge about methods to generate corresponding model 
input is crucial when simulating electricity markets. 

This work focuses on an approach to generate an arbitrary number of synthetic time series of weather data (solar radiation 
in this example) on a high spatial and temporal resolution in order to calculate electricity production from photovoltaic power 
plants. While each time series shall represent its location as realistic as possible, the dependencies between the different 
location’s stochastic processes will be included. The method to generate synthetic time series inheriting dependency is 
developed for the application in energy systems analysis. Key indicators of the calculated RES-E supply time series are 
emphasized and discussed in a quantitative way in an effort to contribute to the research of RES-E supply and their effects 
on distributed energy systems and grids. 

1. Introduction  
The stochastic characterization of solar irradiation 
and other weather parameters has been studied 
intensely in literature. The approaches can generally 
be divided into two categories: Firstly, Markov 
processes draw a random variable applying a 
transition matrix which represents the probabilities 
of future states in dependence of the past 
realizations. (e.g. [1] and [2]).  Secondly, regression 
based models are based on drawing random 
variables applying an estimate of the probability 
distribution functions of the observations. Current 
and past realizations can be taken into account (e.g. 
[3] and [4]). Approaches of both methods are well 
advanced when simulating weather time series at 
single sites focusing on temporal correlation. They 
are well suited to generate irradiation profiles for 
energy systems analysis omitting limitations by a 
grid infrastructure. Current research considering 
multiarea simulation of RES-E supply as in [4] is yet 
limited to a small number of considered sites. 
However, with the decentralization of energy 
systems through electricity generated from 
renewable energy sources and the rising importance 
of grid aspects, the consideration of spatial 
correlation becomes increasingly relevant. Ignoring 
the spatial dependency of RES-E supply may lead 

to a serious underestimation of their electricity 
generation. Therefore, in this work we explore an 
alternative methodology to generate any required 
volume of realistic photovoltaic feed-in data 
inheriting spatial dependency between different 
locations based on copula theory. This aims at 
enabling energy systems analysts to base their 
modelling approaches on a larger set of realistic 
data and thus reaching more robust and reliable 
results. In section 2 the principal stochastic 
simulation processes is described, followed by its 
application and illustrative results in section 3. It is 
finished with the main conclusions and indications of 
needs for further research in section 4.   

2. A stochastic process to 

simulate solar radiation supply: 

model description 

 For our analysis we use extracts from historical 
irradiation data on a European scale with a temporal 
and spatial resolution of 10 minutes and 20x20km² 
provided by a numerical weather model. First, we 
adjust the time series of historical data in a linear 
way in order to remove deterministic effects which 
do not need a stochastic characterization for 
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simulation. For this analysis we conducted the 
following two steps: 
Subtraction of periodic and recurrent values: The 
irradiation from the sun can be forecasted in a 
perfectly deterministic way for a surface outside the 
earth’s atmosphere. The disturbances within the 
atmosphere result in a reduced level of irradiation to 
reach the earth’s surface. 
Deploying 24 years of historical irradiation data on a 
10 minute resolution, we construct a maximum 
irradiation curve which represents the maximum 
possible irradiation to reach the surface at a certain 
site and time step of the year. Through subtraction 
of this trend function we eliminate periodic elements 
of the time series and reduce the time series to 
information about the underlying stochastic in the 
atmosphere. Fig. 1 shows how the trend elimination 
explains large parts of the spatial correlation within 
the time series. 
 

 
Fig. 1: Spatial correlation before and after elimination of trend 
elements (as a function of spatial distance) 

Normalization of the time series: The second step of 
our adjustment generates a normalized times series 
with values limited to the range between [0,1] 
through division by the maximum irradiation curve 
introduced above. This helps to reduce the 
heteroscedasticity of the time series that occurs on 
a diurnal and seasonal (yearly) basis and thus 
enables us to implement a single irradiation process 
per site in contrast to modelling every time step of 
the day separately. The backwards-normalization 
also guarantees the simulated irradiation for every 
time step to be within a physically possible range. 
Both elements of time series adjustment can also 
reduce large parts for the autocorrelation within the 
data, especially for a lag of more than a few time 
steps (compare Fig. 2). 
 

 
 

 
Fig. 2: Autocorrelation with differing lags for the original time 
series (above) and the time series cleared from trend elements 
and after normalization (below) 

Based on work from [5] and [6], an approach is 
developed to simulate multiple time series 
representing simultaneous solar irradiation at 
various sites using copula theory. A copula can  
basically be described as a tool to draw from an 
arbitrary number of uniformly distributed random  
variables taking into account their dependency. 
Sklar’s theorem postulates this idea to join together 
the one-dimensional cumulative distribution 
functions (cdf) FX and FY of any random variables X 
and Y: 
 
 FXY(x, y) = C(FX(x), FY(y)) (1) 

The copula C represents the method to transform 
any number of independent and one-dimensional 
random processes to a joint multivariate distributed 
random process. There exists a variety of different 
copula designs in literature. In this work, in order to 
join together the irradiation processes of numerous 
spatially distributed sites, we apply a Gaussian 
copula defined as follows: 
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Fig. 3:  Layout of the nine weather cells where the locations of the model PV-plants are assumed to be installd

 
 

C (ε1, ε2, … , εn) = 

Φn(Φ−1(ε1), Φ−1(ε2), … , Φ−1(εn)) (2) 

The random processes at each of the n ∈ ℕ sites 
are represented by the independent random 
variables ε1, ε2, … , εn that are uniformly distributed 
on the interval [0,1] and linked by the Gaussian 
copula C. Φ represents the standard normal 
distribution function and Φn the n-dimensional 
multivariate standard normal distribution function. In 
order to generate synthetic irradiation time series we 
apply the following steps: 
 
1) Reduce deterministic parts and normalize the 
time series through the trend adjustment described 
above. 
2) Estimate the matrix of linear correlation under a 
Gaussian copula from the historical time series. 
3) Draw uniformly distributed random numbers for 
the n modelled sites applying the Gaussian copula.1 
4) Back-transform the uniformly distributed time 
series to the original domain of solar irradiation 
using the inverse cdf. 

                                                      
1 Step 2 and 3 were performed using the functions 
copulafit and copularnd from MathWorks Matlab software. 

 
The transformation between the uniform distribution 
and the empirical distribution is done by standard 
inverse transformation methods which can be 
applied to draw random numbers following any 
desired empirical distribution: May X be a random 
variable and FX its invertible cdf with: 
 

FX(x) = P(X ≤ x) (3) 

Then FX(X) is uniformly distributed: FX(X) = U ∈

[0,1] and the inverse empirical cdf  FX
−1 (U) follows 

the distribution of X. [5] 

3. Application and results with 

regard to the influence of spatial 

correlation of different locations 

on the PV power supply 

For modelling the solar power generation, we apply 
the PV model of [2] which includes an implementation 
of the physical model of [7]: The (horizontal) global 
irradiation is transformed into electrical power in 
dependency of the ambient temperature and 
technical properties of the PV system (e.g. 
orientation, module efficiency, etc.). In order to 
illustrate the effect of spatial correlation on the PV 
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power supply, we generate time series for an 
illustrative cluster of n = 9 locations, located as 
illustrated in Fig. 3.  
 
The set-up is motivated by the gridded structure of 
the underlying data which is available on a 
20x20km² scale. The sites li (1 ≤ i ≤ 9) are equally 
spaced by 100km to each other and a location in 
central Germany was randomly chosen.2 The 
denomination of sites is illustrated by the matrix L: 

 
𝐿 = [

𝑙1 𝑙2 𝑙3

𝑙4 𝑙5 𝑙6

𝑙7 𝑙8 𝑙9

] (4) 

Typically, when no correlation is accounted for, a 
representative irradiation profile for a certain region 
is used and applied to the accumulated size of all 
PV systems within the region. In order to compare to 
this approach, we assume a PV system with a 
nominal (peak) power of 90MWp and take the 
simulated irradiation of l5 as representative profile 
for the whole cluster (locations 1-9). In comparison, 
nine separate 10MWp PV systems with the same 
technical characteristics are allocated to each 
location and the simulated site-specific irradiation 
profile is applied. Then, the generation of the 
different sites is aggregated to one 90MWp system. 
For both cases, the same ambient temperature 
profile, representative for the cluster, is used. The 
simulation runs on 10 minute time steps and covers 
a full year. 
 

 
Fig. 4:  Differences of 10min time steps within a year between 
one 90MWp (l1) and nine aggregated 10MWp PV systems 
(irradiation values equal zero are excluded) 

                                                      
2 The coordinates of the central location 𝑙5 are +49.81° 
latitude and +10.17° longitude. 

The consideration of local correlation results in 
different electrical PV supplies. Fig. 4 shows the 
occurrence frequency of the power difference 
between both cases. For 8233 time steps of the 
simulation, the difference is lower than ± 0.75MW, 
for 2753 time steps, the supply of the 90MWp PV 
system is 0.75-2.25MW higher than the sum of the 
nine locations. The slight negative skewness of the 
distribution is reasoned by a higher irradiation of l5 
compared to the average irradiation of the other 
locations. That indicates the problem of choosing a 
“representative” profile for a region. 
In the extreme case, there is an underestimation 
of -51MW. Albeit this event occurs only twice per 
year, there is a crucial impact for capacity and 
dispatch planning or grid issues when half of the 
installed power is not supplied. Bearing in mind the 
installed capacity of photovoltaics in Germany for 
example which exceeds 30.000 MW, it becomes 
clear that ignoring spatial correlation between RES-
E generation units might cause high risks for the 
security of supply. 

4. Conclusion and outlook 
A methodology to simulate spatially correlated 
irradiation time series based on copula theory was 
successfully implemented. Enhanced trend 
adjustments to the time series and the ability to 
explain large parts of correlation were presented. 
Furthermore, we show that for simulating global 
irradiation, the spatial weather dependencies should 
be taken into account to generate valid PV profiles. 
Future enhancements of the simulation process can 
be reached by an integrated approach which 
simulates a plurality of parameters including spatial 
and temporal correlations between the various 
parameters (e.g. temperature, wind and global 
irradiation). The methodology to generate spatially 
correlated PV profiles outlined in this paper can be 
applied to the analysis of decentralized energy 
systems and grids. 
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