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Abstract

Strongly interacting atom—cavity systems within a network with many nodes constitute a possible
realization for a quantum internet which allows for quantum communication and computation on
the same platform. To implement such large-scale quantum networks, nanophotonic resonators are
promising candidates because they can be scalably fabricated and interconnected with waveguides and
optical fibers. By integrating arrays of ring resonators into a vapor cell we show that thermal rubidium
atoms above room temperature can be coupled to photonic cavities as building blocks for chip-scale
hybrid circuits. Although strong coupling is not yet achieved in this first realization, our approach
provides a key step towards miniaturization and scalability of atom—cavity systems.

1. Introduction

Light matter interaction in a cavity is one of the paradigms of quantum optics. Coupling a two level atom to a
resonator mode has established the field of cavity quantum electrodynamics (QED) [1-3]. Pioneering cavity
QED experiments in the optical domain used thermal atomic beams to detect optical bistability as well as non-
classical correlation functions in the transmitted light field of a high finesse cavity [4]. Coupling atoms to
microresonators was demonstrated early-on with dilute cesium vapor at room temperature through the
interaction with whispering gallery modes of a fused silica microsphere [5]. The strong coupling regime with
integrated devices has been explored by interfacing cold atoms with nanophotonic resonators [6, 7] and
photonic crystal waveguides [8]. While progress on the miniaturization of cold atom experiments has been
reported [9], their scaling in combination with cavity networks remains challenging. In contrast, thermal
vapor cells allow for a scalable approach to quantum networks when combined with resonant nanophotonic
circuits.

Thermal atoms have been coupled to guided light modes, e.g. in integrated hollow waveguides [10, 11],
hollow core fibers [12, 13], tapered nano-fibers [14—16], as well as solid core waveguides [17, 18], and are
envisaged to serve as building blocks for a combined atom-nanophotonic network. Besides solid state physical
systems like quantum dots, defect centers in crystals or single molecules embedded in host matrices, atoms
provide a uniquely narrow distribution of transition frequencies. Therefore they are well suited for
realizing quantum networks when coupled to optical cavities. Here we demonstrate the interaction of thermal
atoms with ring resonators integrated into nanophotonic circuits, which has been proposed theoretically
recently [19].

Although the coupling between atoms and the cavity mode in our first experiments is still much lower
compared to cavity QED experiments, this demonstration solves two major technical problems: first, we
increase integration density and design flexibility by coupling in and out of a waveguide with compact Bragg
couplers, which can be placed anywhere on the chip. Second, we achieve protection of the waveguide material
(silicon nitride (Si3N,)) against chemical deterioration by the aggressive alkali atoms (here rubidium) and thus

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Coupling an integrated ring resonator to atomic vapor. (a) Schematic diagram of the ring resonator surrounded by rubidium
vapor. The probelight Py, is injected into the bus waveguide via a Bragg coupler and subsequently coupled to the ring with coupling
parameters rand t. The output B, is detected with a photo multiplier tube (PMT). (b) Photograph of the vapor cell and the bonded
optical chip with the rubidium reservoir on the right. (¢) The gray curve shows the calculated bus waveguide transmission without
contribution of the atoms. The transmission is modified in presence of the atoms (blue curve), which is shown more detailed with a fit
of the model (red curve) in the inset.

enable long-term usage of the atom-clad platform. We estimate that these advances allow for the design of
robust atom—cavity networks which have the potential to reach cooperativity factors larger than one.

2. Materials and methods

For the experiments described in this work, we used a Si;N, ring resonator with a radius of 80 ym on a borosilicate
substrate. Asillustrated in figure 1(a), the ring is excited and probed via a bus waveguide terminated with grating
couplers for in- and out-coupling of light. To restrict the atom light interaction mainly to the ring resonator, all
remaining parts are completely covered with a 600 nm thick layer of silicon dioxide (SiO5), except for the short
coupling region between the bus waveguide and the ring. As rubidium atoms sticking to the waveguide surface
increase transmission losses [ 18] and therefore cause the resonances of the ring to disappear, we additionally cover
the structures with a 9 nm thick sapphire (Al,03) coating by means of atomic layer deposition. With this protection
coating the resonances remain visible, although their linewidth is still increased after rubidium exposure. This way
the devices are still usable after several months without showing further degradation of the optical performance,
which is essential for realizing more advanced circuits. In the Supplementary Information we present details of the
fabrication procedure and the transmission properties of the devices.

A nanophotonic chip containing multiple individual rings is integrated into a rubidium vapor cell using
triple stack anodic bonding [20] as shown in figure 1(b). A rubidium reservoir is attached to the cell and can be
heated independently from the chip to control the atom density. This gives a small and very convenient system
independent of large apparatus in contrast to cold atom experiments. By varying the temperature of the chip, the
ring resonance frequency wg can be tuned with respect to the atomic resonance wy (center of mass frequency of
the rubidium D, line). In order to approach critical coupling, where internal resonator loss and coupling loss are
equal, we select a device with an appropriate distance between the bus waveguide and the ring such that near zero
transmission on resonance is achieved.

3. Results and discussion

The inset of figure 1(c) shows a typical transmission spectrum of the bus waveguide at a moderate atom density
(ng ~ 2 x 10" cm ), where the ring resonance is centered to the atomic resonance and the probe frequency
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(a)

Figure 2. Photographs of the ring for an off-resonant situation (a) and for wg &~ wy (b). The interaction of the evanescent field with
the rubidium vapor is directly visible due to the fluorescence light of the atoms, which is color coded in these pictures.

wy is scanned over the rubidium D; line with the detuning A, = w;, — wy. The transmission of the device
without contribution of the atoms is calculated from fit parameters of our model (supplementary information)
and displayed in the background of figure 1(c) over more than one free spectral range (FSR/27 ~ 308 GHz) to
visualize the bandwidth proportions. Owing to the motion of the atoms, the spectral line shape is broadened due
to the Doppler effect and the short transit time of the atoms traveling through the evanescent field. Both
absorptive and dispersive properties of the atoms play a role, when they interact with the resonator mode. The
absorption of the light field lifts the critical coupling condition, leading to an increase in transmission for

WR " wy, whereas the real part alters the round trip phase shift, leading to a shift of the ring resonance to lower
(higher) frequencies on the red (blue) side of the atomic resonance. Note that the total signal is always a
combination of the ring signal and the absorption signal from the 100 zm long uncovered part of the bus
waveguide. The interaction of the atoms with the ring does not only manifest itself in the transmission signal, but
is also directly visible in the fluorescence of the atoms as shown in figures 2(a) and (b) for an off-resonant and a
resonant situation, respectively.

In order to investigate the transmission behavior at different positions within the ring resonance, we
performed a series of measurements where we thermally tune the ring resonance frequency to several values of
the atom-resonator detuning Ayg = wy — wg, while scanning the probe laser over the rubidium D, line.
Figure 3 presents the results of these measurements for an atom density of n; ~ 10'* cm ™. In figure 3(a) the bus
waveguide transmission spectra are placed at the corresponding positions of the ring resonance feature, as
determined from fits to the data. In an initial fit run, we determined the round trip transmission factor 7and the
straight-through coefficient r of the device, as well as the Lorentz width of the atoms. Then we carried outa
second fit run with the atomic density and the atom-resonator detuning as the only free fit parameters.

Figures 3(b)—(d) show selected transmission data for three values of Ay together with their respective fitting
curves. In the off-resonant case shown in figure 3(b) the transmission spectrum is dominated by absorption in
the uncovered part of the bus waveguide, since there is almost no coupling of the probe into the ring, which is
also clearly visible in figure 2(a).

At the slope of the resonance (see figure 3(c)), the signal reveals the dispersive nature of the atoms, since a
small change in the real part of the atomic susceptibility leads to a small shift of the round trip phase which
generates a large modulation of the ring transmission. The third characteristic feature is found on resonance
(wr ~ wp) where the additional losses induced by the atomic absorption lift the critical coupling condition and
therefore lead to increased transmission. This situation is shown in figure 3(d), where the transmission
enhancement amounts approximately 40%.

Next, we studied the saturation behavior of the atoms in the evanescent field of the ring mode. Hence we
recorded a sequence of transmission spectra for different input powers with the ring resonance tuned to the
atomic resonance. By fitting these spectra with our model, we extract the power dependent Lorentzian linewidth
and the magnitude of the susceptibility of the atoms as presented in figure 4. The linewidth clearly exceeds the
natural linewidth of rubidium already at low powers, which we attribute to transit time broadening. In order to
determine the input power, at which saturation occurs, we fit the function I}y, = Iy)(1 + Py/Pa)'/? to the data,
with initial linewidth I /27 = 628 MHz and saturation power B,; ~ 5.7 uW. The knowledge of B, allows us
to estimate a mean intensity of the evanescent field for a given input power, by assuming I = Py, X I/ P
where I, is the saturation intensity of the rubidium D, line, assuming a linewidth of Ij. By simulating the
intensity distribution for our waveguide geometry we infer that I, is reached for an atom located at the position
of maximum external electric field strength with a mode power of ~100 nW, which corresponds to a mean
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Figure 3. Transmission measurements for various atom-resonator detunings Axg. (a) The gray curve shows the bus waveguide
transmission without atomic contribution, as calculated from fit parameters. The superimposed spectra show the transmission for an
atomic density of n, ~ 10" cm ™ at corresponding Ay, indicated by arrows on the detuning axis. (b)—(d) Individual transmission
spectra for an off-resonant ring (b), on the slope of the resonance (c) and close to resonance wyr ~ wy (d) with fits of the model (green
curves). The vertical lines indicate the positions of the center of mass frequency of the rubidium D, line, wy.
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Figure 4. Saturation behavior in the ring resonator. Red dots show the Lorentz width and blue triangles the normalized susceptibility
of the atoms versus input probe power (top axis) extracted from fits to the transmission data. Error bars show 95% confidence
intervals of the fit parameters. The red solid curve is a fit of I}, with initial linewidth I, /27 = 628 MHz and saturation power By =
5.7 tW. The blue dotted curve is a guide to the eye. From P, we estimate the corresponding mean intensity of the evanescent field
(bottom axis).

photon number of (n) ~ 1.3 photons being in the ring at any time. This number is in the same order of
magnitude as the saturation (or critical) photon number as defined in cavity QED [1], which we estimate to be
ny = I'} /2¢% ~ 0.6 in our case, with the transverse decay rate I', = I,/2 and the coupling parameter g.
Together with the damping rate of the resonator « the corresponding cooperativity parameter for this system
amounts C = ¢2/2T" k ~ 3 x 1072, which yields a critical atom number of N = 1/C ~ 300.
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4. Conclusion

In summary, we demonstrated coupling of thermal rubidium atoms to a nanophotonic ring resonator
integrated into a vapor cell. We investigated the transmission spectra of the device for various positions within
the ring resonance, which are in excellent agreement with our theoretical model. Additionally, we performed
power dependent measurements to examine the saturation behavior of the coupled atom-ring system.

Despite the Doppler and transit time broadening the cooperativity can be enhanced by reducing the mode
volume and increasing the quality factor of the resonators. This obviously requires a different resonator design
using for example photonic crystal cavities which provide extremely small mode volumes [21, 22, 25, 26] or
microresonators with ultra high Q factors [6, 23]. To estimate achievable cavity QED numbers, we consider a
combination of thermal rubidium atoms and the photonic crystal cavity presented in [26] with mode volume
Vi = 0.55()\/n)? and measured quality factor Q ~ 55000. Assuming a transit time limited decay rate of
I,/27 ~ 1 GHz,a cooperativityof C =~ 20 (N =5 x 1072, 1y = 1 x 10~*) could be reached. Additionally,
the photon lifetime in a resonator, and therefore the Q factor, can be significantly increased by the use of slow-
light effects [24]. Although cooperativity values as high as in cold atom experiments are not feasible, the
integration of thermal atoms with nanophotonic resonators still promises a scalable and integrable approach for
nonlinear optics on the single photon level and quantum networks. A system of coupled ring resonators also
provides a platform for topological edge modes of guided light fields [27]. Here, the interfacing with a nonlinear
medium like an atomic vapor could be utilized to induce photon—photon interactions [28]. In the same system,
the magneto-optic properties of the atomic medium might be exploited to break time-reversal symmetry in the
presence of a magnetic field and thereby offer further prospects in studies of photonic topological order.
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