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Abstract
Strongly interacting atom–cavity systemswithin a networkwithmany nodes constitute a possible
realization for a quantum internet which allows for quantum communication and computation on
the same platform. To implement such large-scale quantumnetworks, nanophotonic resonators are
promising candidates because they can be scalably fabricated and interconnectedwithwaveguides and
opticalfibers. By integrating arrays of ring resonators into a vapor cell we show that thermal rubidium
atoms above room temperature can be coupled to photonic cavities as building blocks for chip-scale
hybrid circuits. Although strong coupling is not yet achieved in thisfirst realization, our approach
provides a key step towardsminiaturization and scalability of atom–cavity systems.

1. Introduction

Lightmatter interaction in a cavity is one of the paradigms of quantumoptics. Coupling a two level atom to a
resonatormode has established thefield of cavity quantum electrodynamics (QED) [1–3]. Pioneering cavity
QED experiments in the optical domain used thermal atomic beams to detect optical bistability as well as non-
classical correlation functions in the transmitted lightfield of a highfinesse cavity [4]. Coupling atoms to
microresonators was demonstrated early-onwith dilute cesium vapor at room temperature through the
interactionwithwhispering gallerymodes of a fused silicamicrosphere [5]. The strong coupling regimewith
integrated devices has been explored by interfacing cold atomswith nanophotonic resonators [6, 7] and
photonic crystal waveguides [8].While progress on theminiaturization of cold atom experiments has been
reported [9], their scaling in combinationwith cavity networks remains challenging. In contrast, thermal
vapor cells allow for a scalable approach to quantumnetworks when combinedwith resonant nanophotonic
circuits.

Thermal atoms have been coupled to guided lightmodes, e.g. in integrated hollowwaveguides [10, 11],
hollow core fibers [12, 13], tapered nano-fibers [14–16], as well as solid core waveguides [17, 18], and are
envisaged to serve as building blocks for a combined atom-nanophotonic network. Besides solid state physical
systems like quantumdots, defect centers in crystals or singlemolecules embedded in hostmatrices, atoms
provide a uniquely narrowdistribution of transition frequencies. Therefore they arewell suited for
realizing quantumnetworks when coupled to optical cavities. Herewe demonstrate the interaction of thermal
atomswith ring resonators integrated into nanophotonic circuits, which has been proposed theoretically
recently [19].

Although the coupling between atoms and the cavitymode in ourfirst experiments is stillmuch lower
compared to cavityQED experiments, this demonstration solves twomajor technical problems: first, we
increase integration density and designflexibility by coupling in and out of awaveguidewith compact Bragg
couplers, which can be placed anywhere on the chip. Second, we achieve protection of thewaveguidematerial
(silicon nitride (Si3N4)) against chemical deterioration by the aggressive alkali atoms (here rubidium) and thus
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enable long-termusage of the atom-clad platform.We estimate that these advances allow for the design of
robust atom–cavity networks which have the potential to reach cooperativity factors larger than one.

2.Materials andmethods

For the experiments described in thiswork,weused a Si3N4 ring resonatorwith a radius of 80 μmonaborosilicate
substrate. As illustrated infigure 1(a), the ring is excited andprobed via a buswaveguide terminatedwith grating
couplers for in- andout-coupling of light. To restrict the atom light interactionmainly to the ring resonator, all
remaining parts are completely coveredwith a 600 nm thick layer of silicondioxide (SiO2), except for the short
coupling regionbetween thebuswaveguide and the ring.As rubidiumatoms sticking to thewaveguide surface
increase transmission losses [18] and therefore cause the resonances of the ring to disappear,we additionally cover
the structureswith a 9 nm thick sapphire (Al2O3) coating bymeans of atomic layer deposition.With this protection
coating the resonances remain visible, although their linewidth is still increased after rubidiumexposure. Thisway
thedevices are still usable after severalmonthswithout showing further degradationof the optical performance,
which is essential for realizingmore advanced circuits. In the Supplementary Informationwepresent details of the
fabricationprocedure and the transmission properties of the devices.

A nanophotonic chip containingmultiple individual rings is integrated into a rubidium vapor cell using
triple stack anodic bonding [20] as shown infigure 1(b). A rubidium reservoir is attached to the cell and can be
heated independently from the chip to control the atomdensity. This gives a small and very convenient system
independent of large apparatus in contrast to cold atom experiments. By varying the temperature of the chip, the
ring resonance frequency wR can be tunedwith respect to the atomic resonance w0 (center ofmass frequency of
the rubidiumD2 line). In order to approach critical coupling, where internal resonator loss and coupling loss are
equal, we select a devicewith an appropriate distance between the buswaveguide and the ring such that near zero
transmission on resonance is achieved.

3. Results and discussion

The inset offigure 1(c) shows a typical transmission spectrumof the buswaveguide at amoderate atomdensity
( »ng 2×1013 cm−3), where the ring resonance is centered to the atomic resonance and the probe frequency

Figure 1.Coupling an integrated ring resonator to atomic vapor. (a) Schematic diagramof the ring resonator surrounded by rubidium
vapor. The probe light Pin is injected into the buswaveguide via a Bragg coupler and subsequently coupled to the ringwith coupling
parameters r and t. The output Pout is detected with a photomultiplier tube (PMT). (b)Photograph of the vapor cell and the bonded
optical chipwith the rubidium reservoir on the right. (c)The gray curve shows the calculated buswaveguide transmissionwithout
contribution of the atoms. The transmission ismodified in presence of the atoms (blue curve), which is shownmore detailed with a fit
of themodel (red curve) in the inset.
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wp is scanned over the rubidiumD2 linewith the detuning w wD = -p p 0. The transmission of the device
without contribution of the atoms is calculated fromfit parameters of ourmodel (supplementary information)
and displayed in the background offigure 1(c) overmore than one free spectral range ( p »FSR 2 308 GHz) to
visualize the bandwidth proportions. Owing to themotion of the atoms, the spectral line shape is broadened due
to theDoppler effect and the short transit time of the atoms traveling through the evanescent field. Both
absorptive and dispersive properties of the atoms play a role, when they interact with the resonatormode. The
absorption of the lightfield lifts the critical coupling condition, leading to an increase in transmission for
w w»R 0, whereas the real part alters the round trip phase shift, leading to a shift of the ring resonance to lower
(higher) frequencies on the red (blue) side of the atomic resonance. Note that the total signal is always a
combination of the ring signal and the absorption signal from the 100 μm long uncovered part of the bus
waveguide. The interaction of the atomswith the ring does not onlymanifest itself in the transmission signal, but
is also directly visible in thefluorescence of the atoms as shown infigures 2(a) and (b) for an off-resonant and a
resonant situation, respectively.

In order to investigate the transmission behavior at different positionswithin the ring resonance, we
performed a series ofmeasurements wherewe thermally tune the ring resonance frequency to several values of
the atom-resonator detuning w wD = -AR 0 R, while scanning the probe laser over the rubidiumD2 line.
Figure 3 presents the results of thesemeasurements for an atomdensity of »ng 1014 cm−3. Infigure 3(a) the bus
waveguide transmission spectra are placed at the corresponding positions of the ring resonance feature, as
determined from fits to the data. In an initial fit run, we determined the round trip transmission factor τ and the
straight-through coefficient r of the device, as well as the Lorentz width of the atoms. Thenwe carried out a
secondfit runwith the atomic density and the atom-resonator detuning as the only free fit parameters.
Figures 3(b)–(d) show selected transmission data for three values ofDAR togetherwith their respective fitting
curves. In the off-resonant case shown infigure 3(b) the transmission spectrum is dominated by absorption in
the uncovered part of the buswaveguide, since there is almost no coupling of the probe into the ring, which is
also clearly visible infigure 2(a).

At the slope of the resonance (see figure 3(c)), the signal reveals the dispersive nature of the atoms, since a
small change in the real part of the atomic susceptibility leads to a small shift of the round trip phase which
generates a largemodulation of the ring transmission. The third characteristic feature is found on resonance
(w w»R 0)where the additional losses induced by the atomic absorption lift the critical coupling condition and
therefore lead to increased transmission. This situation is shown infigure 3(d), where the transmission
enhancement amounts approximately 40%.

Next, we studied the saturation behavior of the atoms in the evanescent field of the ringmode.Hencewe
recorded a sequence of transmission spectra for different input powers with the ring resonance tuned to the
atomic resonance. Byfitting these spectra with ourmodel, we extract the power dependent Lorentzian linewidth
and themagnitude of the susceptibility of the atoms as presented infigure 4. The linewidth clearly exceeds the
natural linewidth of rubidium already at low powers, whichwe attribute to transit time broadening. In order to
determine the input power, at which saturation occurs, wefit the function G = G +( )P P1tot 0 in sat

1 2 to the data,
with initial linewidth pG =20 628MHz and saturation power »Psat 5.7 μW.The knowledge of Psat allows us
to estimate amean intensity of the evanescent field for a given input power, by assuming = ´I P I Pin sat sat,
where Isat is the saturation intensity of the rubidiumD2 line, assuming a linewidth of G0. By simulating the
intensity distribution for ourwaveguide geometrywe infer that Isat is reached for an atom located at the position
ofmaximumexternal electricfield strengthwith amode power of∼100 nW,which corresponds to amean

Figure 2.Photographs of the ring for an off-resonant situation (a) and for w w»R 0 (b). The interaction of the evanescent fieldwith
the rubidium vapor is directly visible due to thefluorescence light of the atoms, which is color coded in these pictures.
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photon number of á ñ »n 1.3 photons being in the ring at any time. This number is in the same order of
magnitude as the saturation (or critical) photon number as defined in cavityQED [1], whichwe estimate to be

= G »^n g2 0.60
2 2 in our case, with the transverse decay rate G = G^ 20 and the coupling parameter g.

Togetherwith the damping rate of the resonatorκ the corresponding cooperativity parameter for this system
amounts k= G » ´^

-C g 2 3 102 3, which yields a critical atomnumber of = »N C1 300.

Figure 3.Transmissionmeasurements for various atom-resonator detunings DAR . (a)The gray curve shows the buswaveguide
transmissionwithout atomic contribution, as calculated fromfit parameters. The superimposed spectra show the transmission for an
atomic density of »ng 1014 cm−3 at correspondingDAR , indicated by arrows on the detuning axis. (b)–(d) Individual transmission
spectra for an off-resonant ring (b), on the slope of the resonance (c) and close to resonance w w»R 0 (d)withfits of themodel (green
curves). The vertical lines indicate the positions of the center ofmass frequency of the rubidiumD2 line, w0.

Figure 4. Saturation behavior in the ring resonator. Red dots show the Lorentz width and blue triangles the normalized susceptibility
of the atoms versus input probe power (top axis) extracted fromfits to the transmission data. Error bars show95%confidence
intervals of thefit parameters. The red solid curve is a fit of Gtot with initial linewidth pG =20 628 MHz and saturation power »Psat

5.7 μW.The blue dotted curve is a guide to the eye. From Psat we estimate the correspondingmean intensity of the evanescent field
(bottom axis).
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4. Conclusion

In summary, we demonstrated coupling of thermal rubidium atoms to a nanophotonic ring resonator
integrated into a vapor cell.We investigated the transmission spectra of the device for various positionswithin
the ring resonance, which are in excellent agreement with our theoreticalmodel. Additionally, we performed
power dependentmeasurements to examine the saturation behavior of the coupled atom-ring system.

Despite theDoppler and transit time broadening the cooperativity can be enhanced by reducing themode
volume and increasing the quality factor of the resonators. This obviously requires a different resonator design
using for example photonic crystal cavities which provide extremely smallmode volumes [21, 22, 25, 26] or
microresonators with ultra highQ factors [6, 23]. To estimate achievable cavityQEDnumbers, we consider a
combination of thermal rubidium atoms and the photonic crystal cavity presented in [26]withmode volume

l= ( )V n0.55m
3 andmeasured quality factor ~Q 55000. Assuming a transit time limited decay rate of

pG »20 1 GHz, a cooperativity of »C 20 ( = ´ -N 5 10 2, = ´ -n 1 100
4) could be reached. Additionally,

the photon lifetime in a resonator, and therefore theQ factor, can be significantly increased by the use of slow-
light effects [24]. Although cooperativity values as high as in cold atom experiments are not feasible, the
integration of thermal atomswith nanophotonic resonators still promises a scalable and integrable approach for
nonlinear optics on the single photon level and quantumnetworks. A systemof coupled ring resonators also
provides a platform for topological edgemodes of guided lightfields [27]. Here, the interfacingwith a nonlinear
medium like an atomic vapor could be utilized to induce photon–photon interactions [28]. In the same system,
themagneto-optic properties of the atomicmediummight be exploited to break time-reversal symmetry in the
presence of amagnetic field and thereby offer further prospects in studies of photonic topological order.
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