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A splitting approach for freezing waves.

Robin Flohr and Jens Rottmann-Matthes

Abstract We present a numerical method which is able to approximate traveling
waves (e.g. viscous profiles) in systems with hyperbolic and parabolic parts by a
direct long-time forward simulation. A difficulty with long-time simulations of trav-
eling waves is that the solution leaves any bounded computational domain in finite
time. To handle this problem one should go into a suitable co-moving frame. Since
the velocity of the wave is typically unknown, we use the method of freezing [2],
see also [1], which transforms the original partial differential equation (PDE) into a
partial differential algebraic equation (PDAE) and calculates a suitable co-moving
frame on the fly. The efficient numerical approximation of this freezing PDAE is a
challenging problem and we introduce a new numerical discretization, suitable for
problems that consist of hyperbolic conservation laws which are (nonlinearly) cou-
pled to parabolic equations. The idea of our scheme is to use the operator splitting
approach. The benefit of splitting methods in this context lies in the possibility to
solve hyperbolic and parabolic parts with different numerical algorithms.
We test our method at the (viscous) Burgers’ equation. Numerical experiments show
linear and quadratic convergence rates for the approximation of the numerical steady
state obtained by a long-time simulation for Lie- and Strang-splitting respectively.
Due to these affirmative results we expect our scheme to be suitable also for freezing
waves in hyperbolic-parabolic coupled PDEs.
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1 Introduction

Many partial differential equations from applications consist of different parts,

ut = Auxx + f (u)x +g(u) =: F(u). (1)

Sometimes, one part is parabolic while another part is hyperbolic and these parts
are nonlinearly coupled. Examples of such hyperbolic-parabolic coupled PDEs are
hyperbolic models of chemosensitive movement or reaction-diffusion equations for
which not all components diffuse.

One is often interested in special solutions, which arise as (time-)asymptotic lim-
its of solutions to the Cauchy problem for (1). An important class of such solutions
are traveling waves. They describe how mass (or information) travels through the
domain. From this interpretation, it is obvious, that one is often interested not only
in the shape but also the velocity of the traveling wave.

Traveling waves are solutions of the PDE (1) of the form

u(x, t) = v̄(x− µ̄t), x ∈ R, t ∈ R,

where v̄ : R→R is the non-constant profile and µ̄ ∈R the velocity of the wave. For
Burgers’ equation there is a family of traveling wave solutions,

u(x, t) = ϕ(x− µ̄t)+ 1
2 (b+ c) = v̄(x− µ̄t),

ϕ(x) = a
1− eax

1+ eax , a = 1
2 (b− c), µ̄ = 1

2 (b+ c),
(2)

parametrized by the asymptotic states limx→−∞ u(x, t) = b > c = limx→∞ u(x, t).
As a toy example we consider the Cauchy problem for the viscous Burgers’ equa-

tion
ut +( 1

2 u2)x = uxx on R× [0,∞), u(·,0) = u0 on R. (3)

For the numerical approximation of (3) one has to truncate the unbounded spatial
domain to a finite interval. This leads to the problem that every traveling wave solu-
tion with non-zero speed eventually leaves the computational domain. The simplest
remedy is to use periodic boundary conditions on a very large domain, but this is
only reasonable in the case of pulses. Instead, we use the freezing method from [2].
The idea is to move the spatial frame with the speed of the traveling wave. We make
the ansatz that the solution of (1) is of the form

u(x, t) = v
(
x− γ(t), t

)
, γ(t) ∈ R, (4)

where γ(t) denotes a time dependent position. Then, µ(t) := γt(t) can be interpreted
as the velocity of the wave at time t. Plugging (4) into (1) yields

vt = F(v)+µ(t)vx, (5)
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where both v and µ are unknown. Due to the additional unknown µ one has to
complement (5) with an addition algebraic equation, called phase condition in [2],
to retain well-posedness. In Burgers’ case this transforms (3) into the PDAE

vt = vxx− ( 1
2 v2)x +µvx,

0 =Ψ(v,µ),

γt = µ(t),

v(·,0) = u0,

γ(0) = 0.
(6)

This is called the freezing method in [2]. We restrict to two standard choices for the
phase condition, the orthogonal phase condition given by

0 =Ψ(v,µ) := 〈vt | vx〉L2 = 〈vxx− ( 1
2 v2)x +µvx | vx〉L2 (7)

and the fixed phase condition given by

0 =Ψ(v,µ) := 〈v− v̂ | v̂x〉L2 (8)

with v̂ an appropriately chosen reference function.
For the numerical approximation of (6) we use splitting methods, which we

briefly recall for convenience. Assume that a solution to an initial value problem
of the form

ut = A(u)+B(u) (9)

is sought. Let Φ t
A(u0) and Φ t

B(u0) denote the solution operators for ut = A(u) and
ut = B(u) with initial value u0, respectively. The Lie-Trotter splitting,

un+1 = Φ
∆ t
B ◦Φ

∆ t
A (un), (10)

typically converges linearly to the exact solution for ∆ t→ 0. A splitting method that
typically leads to second order convergence is Strang splitting,

un+1 = Φ
∆ t/2

A ◦Φ
∆ t
B ◦Φ

∆ t/2
A (un). (11)

For example in [4], the authors show that this scheme is second order convergent
for the viscous Burgers’ PDE.

To apply this approach to the freezing PDAE (6), we split the equation into two
parts to separate the hyperbolic and parabolic problem. Then we solve each part
with a method which is particularly adapted to the respective sub-problem. Namely
we solve the hyperbolic problem with an explicit scheme from Kurganov and Tad-
mor [5]. The parabolic sub-problem is solved by an implicit second order finite-
difference approximation, due to the restrictive CFL condition.

Our main focus in this article is on approximating the limits of the time evolu-
tion and, unlike [4], not on the finite time convergence properties of the scheme. In
particular, we aim to understand the preservation of steady states and their stability
by our schemes.

In the case of ordinary differential equations there is a well-established theory for
numerical steady states. For example in [8] there are results which state that one-step
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methods preserve fixed points and their stability in a ∆ tr-shrinking neighborhood
under Lipschitz assumptions, where r denotes the order of consistency of the one-
step method. An analogous result holds for the Strang splitting:

Theorem 1 ([3]). Let A,B ∈ C3(Rm,Rm) and assume that û is a hyperbolic fixed
point of (9). Let ϕA,ϕB be one-step methods approximating ΦA,ΦB respectively.
If ϕA,ϕb are second order Runge-Kutta methods then there exist ∆ t0,K > 0, such
that the numerical Strang splitting, Un+1 = ϕ∆ t(Un) = ϕ

∆ t/2
B ◦ϕ∆ t

A ◦ϕ
∆ t/2

B (Un),
has a fixed point Û which is unique in the ball B(û;K∆ t2) for all 0 < ∆ t ≤ ∆ t0.
Furthermore, Û is a stable (resp. unstable) fixed point of ϕ∆ t if û is a stable (resp.
unstable) steady state of (9).

For the freezing method there are several results available, where it is shown
that the (continuous) method provides good approximations including preservation
of asymptotic stability of traveling waves for certain problem classes in the contin-
uous and semi-discrete case, see [6, 1, 9]. But the time-asymptotic behavior of a
discretization with a splitting approach was never considered before.

A different approach to apply adapted schemes for different parts of the freez-
ing PDAE appears in [7], where the freezing method is used to capture similarity
solutions of the multidimensional Burgers’ equation. There an IMEX-Runge-Kutta
approach is used and second oder convergence for the time dependent problem is
shown on finite time intervals.

2 The splitting scheme

We now explicitly state our numerical scheme. We split (6) into two sub-problems
as follows: Let Φ t

A : (z0,γ0,µ0) 7→
(
z(t),γ(t),µ(t)

)
be the solution operator to the

parabolic problem 
zt = zxx,

γt = 0,
µt = 0,

z(·,0) = z0,

γ(0) = γ0,

µ(0) = µ0,

(A)

let Φ t
B : (w0,γ0,µ0) 7→

(
w(t),γ(t),µ(t)

)
be the solution operator to

wt =−( 1
2 w2)x +µwx,

0 =Ψ(w,µ),

γt = µ(t),

w(·,0) = w0,

γ(0) = γ0.
(B)

Here Ψ is one of the phase conditions (7) or (8). Note that the initial value µ0 is
ignored for this operator (B), because it is uniquely determined by the constraints.
Since the splitting approach now iterates both solution operators consecutively, the
question when and how to solve the algebraic constraint arises. For the orthogonal
phase condition we chose an explicit and for the fixed phase condition we use a half-
explicit approach. Thus we calculate the speed µ prior to solving the nonlinear PDE,
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ΦA

ΦB

ΦA

ΦB

Fig. 1 Diagram of the Lie-Trotter splitting on the left and the Strang splitting on the right.

convergence order 1 order 2

full problem ut +
( 1

2 u2
)

x = uxx

freezing method orthogonal or fixed p.c. fixed p.c.

sub-problem wt =−( 1
2 w2)x zt = zxx wt =−( 1

2 w2)x zt = zxx

semi-discrete
formulation Rusanov Scheme discrete Laplacian Kurganov-Tadmor discrete Laplacian

time
discretization forward Euler backward Euler Heun’s method Crank-Nicolson

splitting method Lie Strang

Fig. 2 Overview of the applied numerical schemes for the presented schemes which offer a nu-
merical steady state.

the µwx part is then discretized by using finite differences. Lie and Strang splitting
are illustrated by classical diagrams in Fig. 1. A step in the vertical direction in
Fig. 1 amounts in numerically solving the Cauchy problem for the heat equation (A),
whereas a step in the horizontal direction amounts to solve the hyperbolic PDAE
(B). Only states on the dashed diagonal line might be considered as approximations
to solutions to the original problem. In addition, the order of the sub-problems (A),
(B) in the splitting approach is chosen such that the phase condition is satisfied at
the end of a full time step. More details about how to calculate the speed with the
algebraic constraint can be found in the description of the schemes, see (12), (13),
(16) and (17). A schematic overview of the schemes is given in Fig. 2.
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2.1 First order scheme.

We first present a first order scheme. For this we use a method of lines (MOL)
approach for (B): We choose a finite interval [L−,L+] and choose a spatial grid with
uniform step size ∆x and spatially discretize with the semi-discrete version of the
Rusanov scheme. We use Dirichlet boundary conditions. It is worth mentioning here
that for example the LxF or NT scheme do not offer a semi-discrete version. The
Rusanov scheme (RS) in its semi-discrete form is given by

d
dt

w j(t) =−
f
(
w j+1(t)

)
− f
(
w j−1(t)

)
2∆x

+
κ

2∆x
[w j+1(t)−2w j(t)+w j−1(t)]

=−∂0 f
(
w(t)

)
j +κ

∆x
2 ∂

2
0 w(t) j

=: RS∆x(w(t)),

where ∂0 is the central difference quotient, ∂0w j =
1

2∆x (w j+1−w j−1), ∂ 2
0 the dis-

crete Laplacian, both with Dirichlet boundary conditions and κ = max j u( j∆x,0) is
the maximum over the initial value evaluated at all grid points.

This scheme is in a simplified form: Since the local maximal speeds, used in the
Kurganov-Tadmor scheme, ensure that all information of the Riemann fans stay in
each cell of the discretized problem, they can be replaced by an upper bound. In the
case of the Burgers’ nonlinearity this upper bound is given by the maximal absolute
value of the solution, which, in turn, is given by the maximal absolute value κ of
the initial function u0 due to the maximums principle.

The time discretization is done with a uniform step size ∆ t, for the first order
version we use the forward Euler method. The numerical approximation of Φ∆ t

B
will be denoted by φ ∆ t

B,RS∆x and ϕ∆ t
B,RS∆x for the two different phase conditions (7)

and (8), respectively. The operator φ ∆ t
B,RS∆x is given as the function which maps

w0,γ0,µ0 to the solution w1,γ1,µ1 of the system

w1 = w0 +∆ t RS∆x(w0)+∆ tµ∗∂0w0,

µ
∗ =−

∂0w0>(∂ 2
0 w0−w0∂0w0

)
∂0w0>∂0w0 ,

γ
1 = γ0 +∆ tµ1,

µ
1 =−

∂0w1>(∂ 2
0 w1−w1∂0w1

)
∂0w1>∂0w1 ,

w0 = w0,

γ
0 = γ0,

(12)

where we use a discrete version of the orthogonal phase condition (7). For the
fixed phase condition (8) the operator ϕ∆ t

B,RS∆x is given as the mapping, which maps
w0,γ0,µ0 to the solution w1,γ1,µ1 of the system
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w1 = w0 +∆ t RS∆x(w0)+∆ tµ1

∂0w0,

µ
1 =−

∂0v̂>
(
w0 +∆ t RS∆x(w0)− v̂

)
∆ t∂0v̂>∂0w

,

γ
1 = γ0 +∆ tµ1,

w0 = w0,

γ
0 = γ0.

(13)

Also for the sub-problem (A) we use a MOL approach, namely we spatially dis-
cretize (A) by finite differences, i.e. the discrete Laplacian with Dirichlet boundary
conditions, ∂ 2

0 , is used to approximate the second spatial derivative,

d
dt

z j = ∂
2
0 z j, z j(0) = z0

j .

For the time discretization we use backward Euler, because implicit methods have
better stability properties for this type of equation. Using the linearity of ∂ 2

0 , this
leads to φ ∆ t

A,BE∆x : (z0,γ0,µ0) 7→ (z1,γ1,µ1) where
z1 = (I−∆ t∂ 2

0 )
−1z0,

γ
1 = γ

0,

µ
1 = µ

0,

z0 = z0,

γ
0 = γ0,

µ
0 = µ0,

(14)

such that φ ∆ t
A,BE∆x ≈Φ∆ t

A .
By using the Lie splitting (10), the full scheme for the freezing PDAE (6) is given

by vn+1

γn+1

µn+1

 := φ
∆ t
B,RS∆x ◦φ

∆ t
A,BE∆x

vn

γn

µn

 (LO)

for the orthogonal phase condition and byvn+1

γn+1

µn+1

 := ϕ
∆ t
B,RS∆x ◦φ

∆ t
A,BE∆x

vn

γn

µn

 (LF)

for the fixed phase condition.

2.2 Second order scheme.

To construct a scheme with quadratic convergence in time and space we have to
replace our numerical solution operators by suitable second order schemes and use
Strang splitting instead of Lie splitting. For the nonlinear hyperbolic part we use the
second order semi-discrete scheme from [5]. It is given as
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d
dt

u j(t) =−
1

2∆x

(
f
(
u+j+ 1/2 (t)

)
+ f
(
u−j+ 1/2 (t)

)
− f
(
u+j− 1/2 (t)

)
− f
(
u−j− 1/2 (t)

))
+

κ

2∆x

(
u+j+ 1/2 (t)−u−j+ 1/2 (t)−u+j− 1/2 (t)+u−j− 1/2 (t)

)
=: KT∆x(u(t)),

(15)
where

u±
j+ 1

2
(t) := u j+ 1

2±
1
2
(t)∓ ∆x

2
(ux) j+ 1

2±
1
2
(t)

for j =−M, . . . ,M with u(t)∈R2M+1 and u j(t)∈R its j-th element. The slopes are
approximated using the minmod limiter

(ux)
n
j = minmod

(un
j −un

j−1

∆x
,

un
j+1−un

j

∆x

)
,

where minmod(a,b) := 1
2 [sgn(a) + sgn(b)] ·min(|a|, |b|). For the time integration

we use Heun’s method. In the case of (7), φ ∆ t
B,KT∆x is the mapping φ ∆ t

B,KT∆x :
(w0,γ0,µ0) 7→ (w1,γ1,µ1) given by the solution of

w∗ = w0 +∆ t KT∆x(w0)+∆ tµ∗∂0w0,

w1 = 1
2 w0 + 1

2

(
w∗+∆ t KT∆x(w∗)+∆ tµ∗∂0w∗

)
,

µ
∗ =−

∂0w0>(∂ 2
0 w0−w0∂0w0

)
∂0w0>∂0w0 ,

γ
1 = γ0 +∆ tµ1,

µ
1 =−

∂0w1>(∂ 2
0 w1−w1∂0w1

)
∂0w1>∂0w1 ,

w0 = w0,

γ
0 = γ0.

(16)

For the fixed phase condition (8) we define ϕ∆ t
B,KT∆x as the mapping (w0,γ0,µ0) 7→

(w1,γ1,µ1)

w∗ = w0 +∆ t KT∆x(w0)+∆ tµ1
∂0w0,

w1 = 1
2 w0 + 1

2

(
w∗+∆ t KT∆x(w∗)+∆ tµ1

∂0w∗
)
,

µ
1 =−

∂0v̂>
(
w0 +∆ t KT∆x(w0)− v̂

)
∂0v̂>∂0w

,

γ
1 = γ0 +∆ tµ1,

w0 = w0,

γ
0 = γ0.

(17)

For the heat equation, we use the Crank-Nicolson1 method to discretize in time and,
as in the first order version, the discrete Laplacian with Dirichlet boundary condi-
tions, ∂ 2

0 , is used in space. The solution operator φ ∆ t
A,CN∆x is given by the mapping

(z0,γ0,µ0) 7→ (z1,γ1,µ1) of

1 The Crank-Nicolson method used here is only the discretization in time by combining the forward
and backward Euler method.
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10−5
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t - time

‖u
n+

1
−

un ‖
L2

1. Order - fixed p.c.
2. Order - fixed p.c.
1. Order - orth p.c.
2. Order - orth p.c.
eps

Fig. 3 Convergence to a numerical steady state except for the second order scheme with orthogonal
phase condition.


z1 = (I− ∆ t

2 ∂
2
0 )
−1(I + ∆ t

2 ∂
2
0 )z

0,

γ
1 = γ

0,

µ
1 = µ

0,

z0 = z0,

γ
0 = γ0,

µ
0 = µ0.

These methods where chosen, because they offer quadratic convergence for the indi-
vidual problems and thus we can hope for quadratic convergence of the full problem
with Strang splitting. Strang splitting (11) leads to our second order scheme given
by vn+1

γn+1

µn+1

= φ
∆ t/2

B,KT∆x ◦φ
∆ t
A,CN∆x ◦φ

∆ t/2
B,KT∆x

vn

γn

µn

 (SO)

for the orthogonal phase condition and byvn+1

γn+1

µn+1

= ϕ
∆ t/2

B,KT∆x ◦φ
∆ t
A,CN∆x ◦ϕ

∆ t/2
B,KT∆x

vn

γn

µn

 (SF)

for the fixed phase condition.

3 Numerical Results

The purpose of our schemes is to calculate viscous profiles by a simple forward
simulation and thus we are interested in the quality of those profiles obtained at the
end of a long-time simulation. Note that we do not consider the initial convergence
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−10 0 10
−0.1

−5 ·
10−2

0

5 ·10−2

0.1

x - space

O1 scheme - orth. p.c.: error profiles

100 ∆x steps

200 ∆x steps

800 ∆x steps

−10 0 10
−1

−0.5

0

0.5

1
·10−2

x - space

O2 scheme - fixed p.c.: error profiles

100 ∆x steps

200 ∆x steps

800 ∆x steps

Fig. 4 Different numerical steady states for different dt = ∆x
10 . Note that the errors dominate where

the profile varies the most and not at the boundary.

order on finite intervals. For all following computations we use the finite interval
[−15,15] and Dirichlet boundary conditions. The reference function is given by
(2) using b = 1.5, c = −0.5, which is also used as initial value with t = 0. This
leads to a speed of 0.5 for the traveling wave. Since we are looking for numerical
steady states in the co-moving frame, we have to check if our numerical schemes
yield steady states. A steady state has the property d

dt u(t) = 0, which translates in
the numerical case to un+1 = un. In Fig. 3 we plot the time against the discrete L2

distance ‖un+1−un‖L2 and see that our schemes yield steady states at around t ≈ 100
for (LO), (LF) and (SF) since ‖un+1− un‖L2 ≈ machine precision. For the Strang
splitting scheme with orthogonal phase condition (SO) we see that ‖un+1− un‖L2

does not converge to zero and the scheme does not offer a steady state. Solutions for
this scheme leave the co-moving frame because the approximation of the speed is
incorrect in this case. For these computations we use 300 steps in space and ∆ t = ∆x

10 .
Next, we consider the error profiles of the calculated steady states with different

step sizes. This result is shown in Fig. 4. Obviously, we get different numerical
steady states for different dt = ∆x

10 , which approximates the exact steady state better
for smaller steps sizes. In addition, we observe that the dominant error occurs in the
profile and there is more-or-less no error at the boundary.

The most interesting observation in our case is the convergence of our numerical
steady states to the exact one. For this we plot the discrete L2 error of our states to
the exact one for different step sizes in Fig. 5. Here we see linear convergence of our
numerical steady states to the exact one for our first order scheme. For the second
order version we see quadratic convergence.

Finally, we note that usually the exact solution of the traveling wave is unknown.
Therefore one has to guess some suitable reference function. In Fig. 6 we see that a
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10−2 10−110−5

10−4

10−3

10−2

10−1

100

10∆ t = ∆x - step sizes

discrete L2-error to exact solution

O1 scheme - orth. p.c.

O2 scheme - fixed p.c.

linear ref.

quad. ref.

Fig. 5 Convergence rates of the numerical steady states to the exact one. The scheme (LF) was
omitted because it produces the same results as (LO), whereas the scheme (SO) was ignored be-
cause it does not offer steady states.

−10

0

10 5
10

15

0

1

space time

Profile sequence of O2 scheme

initial value & reference function v̂

Fig. 6 Solution using initial value and reference function which only covers the rough behavior of
the solution.

rough guess is sufficient for the initial value as well as for the reference function v̂.
The forward simulation approximates the traveling wave as before.
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