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This work presents a comparative surface
analytical study on the solid electrolyte interphase (SEI)
composition influenced by additives in the electrolyte using
nanoparticulate SnO2 as anode active material for lithium ion
b a t t e r i e s (L IB s ) . I n p a r t i c u l a r , l i t h i um b i s
(trifluoromethanesulfonyl)imide (LiTFSI) based electrolytes
in combination with vinylene carbonate (VC) and
1 fluoroethylene carbonate (FEC) as electrolyte additives are used. The SEI composition of the electrodes is investigated at
two different aging stages by means of the complementary X ray photoelectron spectroscopy (XPS) and time of flight secondary
ion mass spectrometry (ToF SIMS), providing chemical and molecular information on the topmost surface layers. We are able to
show that the additives evolve different influences on the chemical composition of the formed SEI. The use of both additives
generally results in an improved cycling stability of the nanoparticulate SnO2 anodes. In consequence, these results open an
effective possibility to improve the cycling stability of SnO2 based electrode materials for LIBs by defined tailoring of the
electrolyte’s SEI composition.

1. INTRODUCTION

Today’s state of the art lithium ion batteries (LIBs) are the
leading and most valuable energy storage systems for mobile
electronic devices like cell phones, laptops, and power tools due
to their comparatively high energy density.1−3 During the past
decade, LIBs also gained more attention in the field of electrical
vehicles. Therefore, the increasing demand for LIBs drives the
worldwide development aiming at LIBs with high specific
capacity and energy density to enable electrical vehicles with
larger ranges that make them more attractive to the consumer
market.4 To fulfill these central requirements for LIBs, several
approaches at cell level like the development of new high
voltage cathode or anode materials with improved specific
capacities5,6 are currently in the focus of numerous R&D
activities.1,7

Materials based on silicon or tin have distinctively higher
theoretical specific capacities (>700 mAh/g) as compared to
the state of the art graphite anodes (372 mAh/g), and
therefore are currently in the focus of research studies for
anode materials.8,9 Whereas graphite acts as an intercalation
host material with a rather low volume expansion (∼10%)
during cycling, the principle of anode materials based on silicon
or tin is based on an alloying mechanism allowing one to store
overall more lithium per atom of the active material but with
the drawback of huge volume changes of up to 400% during
lithiation and delithiation.10,11 Consequently, these volume
changes will cause several problems like crack formation within
the active material layer or contact loss toward the current
collector during prolonged cycling.11,12 Additionally, the

inevitable pulverization of the active material leads to an
exposure of nonpassivated active material during cycling. This
will cause a continuous electrolyte degradation leading to an
ongoing SEI building process, which ends up with an
unfavorable capacity fading of such materials. These negative
effects clearly are exclusion criteria for industrial applications.
To encounter these problems, different approaches are
discussed in the literature. One way is to stabilize the active
material against extensive volume expansion either by
synthesizing composite active material compounds13,14 or by
using nanostructured active material.15,16 Another more cost
effective approach is the usage of electrolyte additives, which
are able to stabilize the SEI and reduce capacity fading during
long term cycling. Here, vinylene carbonate (VC) and
1 fluoroethylene carbonate (FEC) are very prominent
additives, which lead to a more favorable SEI composition.
Both additives already proved their beneficial effect to enhance
the cycling performance of silicon or tin based anodes.17,18

Because of the very different lithiation/delithiation process for
alloying materials like silicon or tin as compared to the process
of intercalation host materials, the SEI formation can deviate
from already stated mechanisms valid for well known anode
materials like graphite. Additionally, the SEI properties and
therefore the overall performance as well as the long term
stability of LIBs are also highly dependent on the electrolyte’s
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composition and interaction with the active material surface. To
understand the relevant SEI building mechanisms while using
alloying materials, it is important to investigate the chemical
composition of the SEI.19−22

In our previous work, we evidenced a significant improve
ment of the electrochemical performance of tin based nano
composite electrodes adding 10% VC as additive to the
electrolyte.23 These experiments showed a simple way of
optimizing the SEI properties by tailoring the electrolyte
composition. The reason for the optimized performance has
not been fully clarified yet. On the basis of these earlier results,
we here focus on a comprehensive surface analytical character
ization to elucidate a more detailed view on the influence of
FEC and VC as very promising additives in the field of SnO2
nanoparticle layered anode materials. In particular, comple
mentary X ray photoelectron spectroscopy (XPS) and time of
flight secondary ion mass spectrometry (ToF SIMS) were used
to determine the chemical and molecular composition of the
SEI on the surface and in depth to evaluate relevant SEI
building processes. Additional information on the electrode’s
topography was achieved by means of scanning electron
microscopy (SEM).

2. EXPERIMENTAL SECTION

Electrode Synthesis. Nanoparticulate SnO2 thin films
electrodes were synthesized using a microwave plasma process
avoiding conventional slurry formation. The gas phase process
for the synthesis of nanoparticles24 uses water free tetra n
butyltin, Sn(C4H9)4 (ABCR, Karlsruhe, Germany), as precursor
for the SnO2 nanoparticles. A feeding rate of 5 ml h−1 was
selected. The reaction gas was a mixture of 80 vol % Ar + 20
vol % O2 with a gas flow rate of 5 l min−1. The power of the
2.45 GHz microwave was set to 600 W. These synthesis
parameters have been selected, so that a SnO2 nanoparticle
layer thickness of around 2 μm was yielded in all cases.
Furthermore, these special conditions enabled the synthesis of
SnO2 nanoparticles, in situ coated with a thin layer of
hydrocarbons, CxHy, stemming from the organometallic
precursor and adsorbed on the nanoparticles surface, necessary
for electrical conductivity. Details about in situ hydrocarbon
coating of Sn, respectively, SnO2 nanoparticles, and character
ization of the hydrocarbons with elemental analysis are
described in our recently published work.23,24,29

The resulting nanoparticles from the process were deposited
in situ as porous films on 300 °C preheated Ni substrates
according to the method described in previous studies.24 These
films were dried in a vacuum oven (Vacucenter VC20, Salvis
Lab, Rotkreuz, Germany) for 2 h at 140 °C.
Cell Assembling and Electrolyte Composition. For cell

cycling, SnO2 half cells of Swagelok type were built up by using
lithium foil (Alfa Aesar, Ward Hill, U.S.) as the counter and
reference electrode. The cells were assembled in an argon filled
Unilab glovebox (MBraun, Garching, Germany). Celgard 2325
(wetted in electrolyte overnight) was used as separator. The
electrolyte consisted of a solution of 1 M LiTFSI (99.5%, trace
metal basis, Sigma Aldrich) in ethylene carbonate (EC) and
dimethyl carbonate (DMC) (50:50). Both additives,
1 fluoroethylene carbonate (FEC, 99%, Sigma Aldrich) and
vinylene carbonate (VC, 99%, battery grade, 80 ppm BHT
stabilized, Sigma Aldrich, activated by filtering over Al2O3),
were used in a concentration of 2 wt %, respectively.
The following electrolyte compositions were tested:

= +LiTFSI LiTFSI EC/DMC (50:50 vol %)

+ = + +LiTFSI VC LiTFSI EC/DMC 2 wt % of VC

+ = + +LiTFSI FEC LiTFSI EC/DMC 2 wt % of FEC

In contrast to our previous study on nanoparticulate Sn
anodes,23 we have chosen LiTFSI as salt instead of LiPF6
because of its superior thermal stability and enhanced stability
against moisture and decomposition especially in terms of long
term cycling. It is therefore representing a promising salt for
future applications in more stable electrolytes.25−27 Never
theless, the relevant properties, conductivity and solubility of
LiTFSI in EC/DMC, are comparable to LiPF6, and therefore
LiTFSI based electrolytes are expected to reveal results similar
to those of commonly used LiPF6 based electrolytes.27,28

Hence, the major SEI building processes in DMC and EC
solvents are not significantly influenced by the exchange of the
used conducting salt.

Electrochemical Characterization. Battery cycling was
done using a lithium cell cycler (LICCY, developed at
Karlsruhe Institute of Technology, Institute for Data Processing
and Electronics, Germany) and a VMP3 multichannel
potentiostat (Bio Logic, France).
The SnO2 anodes were cycled in the voltage range of

0.1−2.8 V at a constant current rate corresponding to a C rate
of C20. The corresponding current was calculated according to
the active material weight directly yielded from the synthesis by
weighting the substrates. Cells cycled for 3 cycles were regarded
as “initial”, and cells cycled for in total 30 cycles were
considered as “aged”.
In the present study, cell cycling at higher currents was

omitted, due to the previously shown dramatic increase of the
degradation of the active material.29 Scheme 1 shows the
present electrode reactions taking place during charging and
discharging of SnO2. According to the literature, during the first
discharging cycle of SnO2 anodes, metallic tin and lithium oxide
are formed within an irreversible reaction (Scheme 1, reaction
I).30,31 Subsequent charging and discharging is based on a
reversible lithiation/delithiation reaction in kind of alloying/
dealloying of tin (Scheme 1, reaction II).30,31 The disassem
bling of the cells was performed in the delithiated state of the
electrodes.

After cell cycling, all three surface analysis methods (XPS,
ToF SIMS, and SEM) were performed consecutively on each
sample, providing complementary information. Prior to the
characterization, all cycled samples were carefully rinsed using a
mixture of DMC and 5 vol % propylene carbonate (PC, 99%,
Sigma Aldrich) immediately after cell disassembling inside the
glovebox.

XPS Characterization. The XPS measurements were
performed using a K Alpha XPS spectrometer (Thermo Fisher

Scheme 1. Irreversible Reaction of SnO2 Anode Material
during the First Discharging Cycle (I) and Reversible
Lithiation and Delithiation Reaction during Ongoing
Cycling (II)



Scientific, East Grinstead, UK). Data acquisition and processing
using the Thermo Avantage software is described elsewhere.32

All samples were analyzed using a microfocused, monochro
mated Al Kα X ray source (400 μm spot size). The acquired
spectra were fitted with one or more Voigt profiles (binding
energy uncertainty: ±0.2 eV). The analyzer transmission
function, Scofield sensitivity factors,33 and effective attenuation
lengths (EALs) of photoelectrons were applied for quantifica
tion. EALs were calculated using the standard TPP 2M
formalism.34 All spectra were referenced to the C 1s peak of
hydrocarbon at 285.0 eV binding energy controlled by means of
the well known photoelectron peaks of metallic Cu, Ag, and
Au. Sputter depth profiles were performed using a raster
scanned Ar+ ion beam at 0.5 keV and 30° angle of incidence.
For sample handling and transfer without atmospheric contact,
an Ar glovebox is directly attached to the loadlock of the K
Alpha.
ToF-SIMS. Time of flight secondary ion mass spectrometry

was performed on a TOF SIMS 5 instrument (ION TOF
GmbH, Münster, Germany), equipped with a Bi cluster liquid
metal primary ion source and a nonlinear time of flight
analyzer. The Bi source was operated in the “bunched” mode
providing 1 ns Bi3

+ ion pulses at 25 keV energy, an analyzed
area of 128 × 128 μm2, and a lateral resolution of
approximately 4 μm. Sputter depth profiles were performed
using a 1 keV Cs+ ion beam and a raster size of 500 × 500 μm2.
For all secondary ion images, the first 20 scans (x−y plane)
within a recorded sputter depth profile using Cs ions,
equivalent to 100 s etching time, were summed.
Positive polarity spectra were calibrated on the 6Li+, C+, CH+,

CH2
+, and CH3

+, C2H5
+, Cs2

+ peaks. All samples were
transferred via a hermitically sealed transfer vessel customized
by ION TOF; sample handling was performed within the K
Alpha glovebox system.
SEM. SEM images were recorded with a Zeiss Merlin

scanning electron microscope (Carl Zeiss SMT AG,
Oberkochen, Germany), equipped with a Schottky field
emission source (acceleration voltage of 2 kV within the in
lens mode, otherwise 10 kV). Sample transport from the K
Alpha glovebox to the microscope was achieved by a specially
designed inert gas transport vessel via flange connections.

3. RESULTS AND DISCUSSION
Regarding the electrochemical results of the galvanostatic
cycling, the three used electrolytes revealed significant differ
ences in the overall cycling performance (Figure 1). The best
results with respect to cycling stability were achieved when
using FEC as additive within the electrolyte (Figure 1, blue
curves). Also, with the VC containing electrolyte (Figure 1, red
curves), it was possible to enhance the cycling performance as
compared to the pure LiTFSI based electrolyte (Figure 1, black
curves).
For all three electrolytes, it takes at least three cycles until the

Coulombic efficiencies (CE) are beyond 90% and stabilized
cycling performances were reached. The poor CE during the
initial cycling is mainly due to the SEI formation. Note that the
unusual high specific capacity of the first cycles, respectively, is
not only ascribed to the SEI formation. It also refers to an
additional contribution of hydrocarbons with a high H/C
atomic ratio to the specific capacity. The same effect was also
discussed in detail in our previously published work and can be
confirmed by other research studies found in the litera
ture.23,35,36 Once a stable SEI passivation layer is formed,

further parasitic electrolyte decomposition on top of the
electrode surface is prevented. Accordingly, the CE increases
for all investigated electrolytes. Nevertheless, during consec
utive cycling, a still ongoing degradation for all electrodes is
detectable. This is mainly related to the formation of cracks
within the active material layer caused by the volume expansion
during lithiation/delithiation. The crack formation will lead to
an exposure of fresh active material sites toward the electrolyte
resulting in a further SEI buildup. Figure 2 shows exemplary the

crack formation for the electrode cycled in LiTFSI electrolyte
as compared to a pristine electrode surface. With only minor
differences, this crack forming process was observable for all
electrodes and is independent from the used electrolyte (cf.,
Figure S4). Such a crack formation was also observed in our
previous studies.23 We therefore conclude that the observed
differences in the cycling behavior of the three compared
electrolytes must be related to another mechanism. Anyway,
FEC as well as VC containing electrolytes delivered a more
effective SEI formation and therefore an improved cycling
performance as compared to the additive free LiTFSI electro
lyte. However, only a systematic investigation of the SEI
composition using surface analytical methods will allow for a
better understanding of the underlying mechanisms and gaining
deeper insights into the interaction between the active material
and electrolyte.

3.1. Composition of the SEI Determined by XPS.
3.1.1. Additive-Free LiTFSI-Based Electrolyte. Figure 3
compares the XPS results of the three initial cycled electrodes

Figure 1. Specific discharge capacities and Coulombic efficiencies
(CE) of nanoparticulate SnO2 electrodes (vs Li+) cycled in LiTFSI,
LiTFSI+VC, and LiTFSI+FEC electrolyte, respectively.

Figure 2. SEM images of a pristine nanoparticulate SnO2 electrode
(A) and an initially cycled electrode in LiTFSI (B). The columnar
electrode structure (A) and the crack forming caused by the volume
expansion during cycling (B) are illustrated.

http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.6b06662/suppl_file/jp6b06662_si_001.pdf


using the respective electrolytes. The results of the samples
cycled either in LiTFSI, LiTFSI+VC, or LiTFSI+FEC are
discussed in the appropriate subsections. Figure 3a shows the
C 1s, O 1s, and F 1s XP spectra of the sample initially cycled for
3 cycles with C20 using the additive free LiTFSI based
electrolyte. The corresponding assignments and quantification
of the fitted components are compiled in Table 1. The binding

energies in the C 1s spectrum of 285.0 eV (C−C/C−H), 286.9
eV (C−O), 288.2 eV (OC−O), and 289.4 eV
(O−C(O)−O) correspond well to the findings in the
O 1s spectrum at binding energies of 530.6 eV
(OC/C−O−Li), 531.9 eV (O−C(O)−O), and 533.3 eV
(C−O) and confirm the incorporation of a mixture of several
organic and inorganic compounds like carbonates, semi

Figure 3. C 1s, O 1s, and F 1s XP spectra of nanoparticulate SnO2 electrode surfaces after initial cell cycling (3 cycles at C20) using LiTFSI (a),
LiTFSI+VC (b), or LiTFSI+FEC (c).

Table 1. XPS Binding Energies with Assignments and the Corresponding Atomic Concentrations of the Identified Components
of All Nanoparticulate SnO2 Anodes Cycled in LiTFSI Based Electrolytes

concentration [at. %]

LiTFSI LiTFSI+VC LiTFSI+FEC

photoelectron peak BE [eV] 3 × C20 30 × C20 3 × C20 30 × C20 3 × C20 30 × C20 assignment

Li 1s 53.9 3.4 4.5 Li2O
Li 1s 55.7 27.7 26.5 27.9 28.2 27.9 24.5 Li+

S 2p3/2 169.1 0.5 0.4 salt
C 1s 285.0 10.8 9.0 8.2 10.8 11.8 13.3 C C/C H
C 1s 286.9 9.9 12.8 12.4 11.3 5.2 6.2 C O
C 1s 288.2 2.5 3.0 2.1 1.9 2.1 2.6 O C O
C 1s 289.4 7.2 7.6 7.8 7.6 4.0 4.2 O C( O) O
C 1s 290.9 1.1 1.5 polymer
C 1s 293.1 0.3 0.2 salt
N 1s 399.9 0.5 0.3 salt
Sn 3d5/2 483.4 0.3 0.1 0.2 0.2 0.1 0.1 LixSn
Sn 3d5/2 486.9 0.4 0.2 0.1 0.1 0.2 0.3 SnO2

O 1s 528.2 0.6 0.2 0.7 Li2O
O 1s 530.6 8.4 6.5 11.0 9.7 2.1 1.9 O C/C O Li
O 1s 531.9 25.4 25.8 22.4 21.6 12.7 10.9 CO3(carbonate)
O 1s 533.3 5.9 7.5 7.3 7.2 4.2 5.7 O C
O 1s 534.5 2.5 3.4 polymer
F 1s 685.2 0.7 0.3 0.2 0.3 19.2 16.9 LiF
F 1s 687.4 0.6 1.1 salt-decomp
F 1s 689.0 0.8 0.7 0.4 0.5 1.4 1.3 salt



carbonates, esters, and ethers into the SEI layer.37−40 These
compounds can be ascribed to the decomposition of EC and
DMC during the first cycles.
In contrast to cycled graphite anodes under similar

conditions,41 the overall amount of oxidized carbon species
and the ratio of the carbonate component normalized to the
C−O component within the SEI layer are comparatively high in
the nanoparticulate SnO2 electrode samples. This demonstrates
the more inorganic nature of the formed carbonates (i.e.,
Li2CO3) and is corroborated by the absence of C−O bonds
expected for products based on esterification of organic
carbonates or semicarbonates. Likewise, the total lithium
content of 27.7 at. % related to lithium containing SEI
compounds like Li2CO3 is comparatively high, too. Especially in
the first cycles, irreversible reactions between the solvents and
lithium occur forming the SEI layer. This irreversible
consumption of lithium for SEI forming is the main reason
for the high current loss resulting in lower Coulombic
efficiencies (Figure 1, black curve). As all samples were
disassembled in the delithiated state of the electrode and only
minor unreacted lithiated tin species could be detected, all
identified lithium species can be assigned to SEI compounds.
Both the high amount of oxidized carbon species and the high
lithium content within the SEI are very likely originated by the
high reactivity of the nanoparticle layered SnO2 anode surface
causing an accelerated decomposition of the electrolyte
solvents.
In contrast, the F 1s spectrum indicates a low content of

fluorine species like LiF (F 1s = 685.2 eV)40 besides small
amounts of conductive salt residues. This finding proves the
stability of LiTFSI against decomposition during cycling despite
a highly reactive SnO2 surface. However, after 3 cycles, the
nanoparticulate SnO2 thin film anode shows already a
distinctive crack formation within the columnar morphology
(Figure 2b), which couldn’t be prevented by the present SEI
layer. The crack formation is caused by the dramatic volume
expansion of the active material during the lithiation/
delithiation process and is well described in the literature.19,20

These cracks in addition might be the reason for the fact that
lithiated and unreacted tin species are still detectable in small
amounts even after three cycles, although the average SEI
thickness is expected to be already thicker than the XPS
sampling depth (∼5−8 nm).29

The XP spectra of the aged cell basically show the same
features as compared to the spectra of the initial cycled cell.
However, the ratios of oxidized carbon components referred to
the alkyl component (C−C/C−H) at 285.0 eV binding energy
are slightly increased (Figure S1a). In parallel, the ratios
between the single oxidized carbon components stayed nearly
constant. These effects can be explained by a growth of the SEI
layer during cycling due to the further decomposition of
carbonate solvents. A detailed analysis of the quantified
amounts additionally reveals an enhanced ratio of the C−O
content as compared to the other species and is reflected by the
increased peaks in the carbon spectrum at 286.9 eV as well as in
the oxygen spectrum at a binding energy of 533.3 eV. The
assignments and quantification of the fitted components are
summarized in Table 1.
Despite the mentioned minor changes of the SEI layer during

cycling, the SEI and its main components preserved roughly
their initial composition. This is supported by the trend of the
Coulombic efficiency (CE, Figure 1, black curve) during
cycling. Only the first initial cycles show a lower CE due to

current losses related to the SEI building process. With ongoing
cycling, the CE immediately begins to increase showing a
stabilization of the SEI layer with only minor losses due to
parasitic side reactions. Finally, the stability of the LiTFSI salt
during cycling is evidenced by the very small amount of its
decomposition products within the SEI, indicated by the low
content of fluorine compounds even after 30 cycles.

3.1.2. LiTFSI-Based Electrolyte Containing VC as Additive.
The reason for using VC as additive in the electrolyte is to
achieve a flexible SEI layer to improve the mechanical as well as
the electrochemical properties of the SEI, for example, by
integrating polymer like species into the surface layer via the
polymerization of VC.33 Such polymerization should already be
initialized at lower reduction potentials during the first
discharge cycle and, therefore, prior to any decomposition
reaction of DMC or EC.20,21

However, the XP spectra of the SnO2 samples cycled in the
VC containing electrolyte reveal no distinctive changes in the
SEI composition as compared to samples cycled in pure LiTFSI
electrolyte (Figure 3b). Although an increased ratio of the
oxidized carbon species (C 1s = 286.9 eV (C−O), 288.2 eV
(OC−O), and 289.4 eV (O−C(O) O) toward the alkyl
component at 285.0 eV (C−C/C−H) is visible (cf., Table 1),
no significant features representing a polymer like species or
distinctive features of VC can be identified. Furthermore, the
rise of the oxygen species at 530.6 eV assigned to lithiated
alkoxy compounds is more related to decomposition products
of DMC or EC than VC. The content of lithium species is
comparable to samples cycled in pure LiTFSI electrolyte. In
conclusion, the VC additive unexpectedly does not affect the
composition of the SEI on nanoparticulate SnO2 anodes that
strong. The XPS results differ from those of our previous
investigation on similar tin based anodes,23 where we have used
10 wt % VC within the electrolyte mixture and LiPF6 as salt.
The results are also in contrast to the known behavior of
graphite electrodes.41,42 The mechanisms discussed in the
literature are obviously not the only key to fully stabilize the
SEI layer and thus increase the performance of nanoparticulate
SnO2 anodes.

20,21 Nevertheless, an improvement of the cycling
behavior can be achieved already with a small percentage of VC
(cf., Figure 1, red curve). Therefore, we suggest that the
predominant solvent decomposition reactions observed in the
present study can be encountered by raising the additive
content yielding a favored incorporation of VC products into
the SEI, finally leading to an overall stabilization of the
passivation layer. In conclusion, the present SEI layer is
predominantly consisting of SEI species related to the
decomposition of the main electrolyte solvent components
EC and DMC. This is obviously linked to the high reactivity of
the nanoparticulate SnO2 electrode surface, which favors the
decomposition of the main electrolyte components within the
SEI building process. These major decomposition products of
EC and DMC likely superimpose small amounts of VC related
SEI species, which complicates the clear identification of the
latter by XPS.
No major differences in the XP spectra of the initial cycled

electrode and the aged electrodes are found in the case of
LiTFSI+VC electrolyte (cf., Figure S1b and Table 1). This is
similar to the samples cycled in pure LiTFSI electrolyte.
Although there is an increase of the alkyl component as
compared to the oxidized carbon species, the ratios between
these single oxidized species stayed the same, indicating a
similar nature of the respective SEI compounds. In conclusion,

http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.6b06662/suppl_file/jp6b06662_si_001.pdf
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the SEI composition does not change significantly during
prolonged cycling. Also, the LiTFSI salt stays stable within the
performed cycling tests, indicated by still small amounts of
fluorine species. Despite small differences in the SEI
composition when using VC as additive as compared to the
pure LiTFSI electrolyte, the electrochemical performance and
cycling stability can be increased (Figure 1, red curve), proving
a beneficial effect even at small additive concentrations. This
also supports the assumption that SEI products of VC are
superimposed by the predominant solvent decomposition
products of EC and DMC, which complicates the identification
by XPS.
3.1.3. LiTFSI-Based Electrolyte Containing FEC as Additive.

The second very promising additive in the present study is
FEC, aiming again at the improvement of the SEI properties
and, therefore, the overall electrochemical performance
especially regarding the long term stability.43,44 For active
materials like silicon oxide, improved cycling stability is already
agreed upon in the literature but is not as well understood as
compared to the mechanisms accompanying/incorporating
VC.45,46 Moreover, in our study, FEC can solve the problem
of missing fluorine species when using LiTFSI based electro
lytes. Because the LiTFSI salt is more stable in contrast to
LiPF6, a lack of fluorine species can cause a less stable SEI layer
and will also lead to corrosion of the aluminum current
collector on the cathode side.26 Using FEC, a sufficient amount
of fluorine via an electrochemical induced defluorination
reaction of the molecule during cycling can be expected
enabling us to circumvent the above mentioned problems.
The XP spectra (Figure 3c) of the initial cycled sample in

LiTFSI+FEC directly prove the distinctive influence of FEC on
the SEI building process. The C 1s spectrum reveals
significantly lower amounts of oxidized carbon species
especially for the carbonate component at 289.4 eV and
C−O species at 286.9 eV binding energy. The corresponding
quantitative amounts of O 1s components at binding energies
of 531.9 eV (CO3) and 533.3 eV (C−O) corroborate these
findings (cf., Table 1). The new component at C 1s = 290.9 eV
and O 1s = 534.5 eV, respectively, is attributed to polymer
species originating from FEC. This assignment is directly
justified by the results of our synthesized VC reference polymer
(C 1s = 288.1 and 291.4 eV, O 1s = 533.1 and 535.0 eV) and in
very good agreement with literature data.42 Figure 4 (top)

displays a potential decomposition path for FEC leading to VC
as an intermediate and finally to a polycarbonate polymer
species.43 However, the comparatively small amount of the
assigned polymer species and high content of C−C/C−H
carbon require an additional organic species. In consequence,
an alternative FEC decomposition pathway, like the formation
of an olefinic polymer species (Figure 4, bottom),47 seems to be

favored when using a highly surface reactive electrode substrate
like the present nanoparticulate SnO2.
The amount of LiF (F 1s = 685.2 eV) clearly evidenced the

expected capability of FEC to provide fluorine necessary for
stabilizing the SEI and enabling the corrosion protection of the
current collector (cf., Table 1).47 The overall lithium content of
about 27.9 at. % is comparable to the other samples cycled in
LiTFSI based electrolytes. Yet the Li 1s peak now has a
pronounced asymmetric tailing at lower binding energies (see
Figure S3). Corresponding with a new O 1s peak at 528.2 eV,
we assume the formation of Li2O.

48 A possible origin for Li2O
is the decomposition of already existing SEI species like
Li2CO3, but also species out of the irreversible reaction step
during the first discharge cycle (Scheme 1, reaction I) cannot
be excluded. The clarification of the real origin of Li2O and why
it is exclusively seen when using the LiTFSI+FEC electrolyte
remains an open question.
As for all other tested LiTFSI based electrolyte compositions,

also for the FEC additive based electrolyte no major effects
toward the SEI composition arise from the applied aging
procedure (Figure S1c). In accordance with the aged samples of
the other two electrolytes, only minor further electrolyte
decomposition takes place. Still the total amount of oxidized
carbon species is reduced when using FEC, while the alkyl
component is the dominant species in the C 1s spectrum. The
further increase of the Li2O amount during aging might
originate from still ongoing decomposition reactions of already
existing SEI compounds like Li2CO3 in agreement with the
reduced amount of carbonate species as compared to the other
electrolytes.
The associated XPS sputter depth profile of the aged sample

(Figure S2) evidenced a constant amount of the fluorine
species across the SEI. This proves that the fluorine release of
FEC is homogeneously distributed all over the SEI layer
thickness and not only located close to the active material site.
Finally, when comparing the XPS results of the electrolytes
containing FEC or VC, it is evident that spectra from FEC
electrolytes show clearly more pronounced features of additive
related decomposition products than spectra from VC
electrolytes. This shows the greater influence of FEC on the
overall SEI composition. Consequently, the underlying
decomposition processes must be different for both additives
with more advantageous cell performance in the case of FEC. A
reasonable explanation is that FEC exhibits faster decom
position kinetics than VC. This mechanism is even more
important in the case of highly surface reactive active materials
like the present nanoparticulate SnO2.
In conclusion, using FEC as an electrolyte additive shows the

most positive influence on the cycling behavior (Figure 1). This
can be observed for the initial discharge capacities and the
Coulombic efficiencies as well as for the superior specific
capacities of all tested electrolyte compositions. These
enhanced cycling properties can be closely connected to the
existence of the detected polymer and alkyl species within the
SEI layer when using FEC. Because we did not notice major
differences in the crack formation between the single samples
(see Figure 2, Figures S3 and S4), we assume that the SEI has a
more flexible nature, which stabilizes the passivation layer and
minimizes further electrolyte decomposition as well as the loss
of lithium due to parasitic reactions when using FEC.
Consequently, taking the discussed results of XPS into

account and comparing all three electrolytes, the overall lower
amount of oxidized carbon species can serve as a decisive factor

Figure 4. Possible decomposition pathways of FEC.43,45,47
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in evaluating the quality and electrochemical properties of the
SEI.
3.2. Lateral and In-Depth Elemental Distribution

Determined by ToF-SIMS. Especially for carbonate solvent
based electrolytes and in the case of using VC or FEC as
electrolyte additive, the 3D distribution of the carbonate SEI
components is a key aspect in evaluating the forming processes
and quality of the SEI. This aspect was investigated by means of
ToF SIMS sputter depth profiling. The processes during SEI
formation as well as the resulting basic SEI compounds
identified with ToF SIMS were very similar for all investigated
samples. Therefore, we discuss exemplarily the ToF SIMS data
measured on the LiTFSI sample.
3.2.1. Initial SEI. Figure 5 shows the lateral and in depth

distribution of carbonate compounds within the SEI layer using

the Cs3CO3
+ fragment as indicator. The lateral distribution of

the carbonate as well as the lithium SEI species at the topmost
surface of the SEI are homogeneous (Figure 5, top).
Additionally, the cracks mentioned before, formed during the
initial cycling (cf., Figure 2 and Figure S4), are clearly visible
within the secondary ion image. A view along the x−z plane
reveals the in depth distribution of carbonate and lithium
containing SEI species, respectively (Figure 5, bottom). This
clearly evidences an accumulation of the SEI species mainly at
the topmost surface within a layer of about 10−15 nm
thickness. In contrast, the Cs3SnO2

+ secondary cluster ion is
only detected in deeper layers. This corroborates the
assumption that during the initial cycling the SEI formation
on reactive surface sites is preferred.
3.2.2. Aged SEI. Figure 6 shows the ToF SIMS secondary

ion images of Cs3CO3
+, Li+, Cs3SnO2

+, and the total ion
intensity of the aged nanoparticulate SnO2 sample. Similar to
the initially cycled sample, the lateral distribution of the
carbonate and lithium containing SEI species at the electrode
surface is homogeneous. However, the x−z cross sectional
views (Figure 6, bottom) doubtlessly prove the progress of the
formation of these SEI species toward deeper layers. Again, we
assume that at the beginning of the cell cycling, the carbonate
species will be formed preferably at positions of highest
reactivity located at the topmost surface. With ongoing cycling,
this formation and the respective species will propagate into
deeper layers of the SnO2 electrode. In addition, the aged
electrode shows a higher number of cracks of distinctively
shorter lengths. This, in consequence, causes an increasing

quantity of pristine SnO2 surfaces freshly exposed to the
electrolyte resulting in a further SEI formation in conjunction
with an ongoing decomposition of the electrolyte resulting in
lower CE and continuous degradation of the electrodes (cf.,
Figure 1).
Because the ToF SIMS results were very similar for all

electrodes cycled in the chosen electrolytes, the progress of the
SEI formation and its development during aging differ only
slightly. Nevertheless, XPS proved that the key issue for
evaluating the properties of the SEI is to evaluate its chemical
composition. When using active materials of high surface
reactivity like nanoparticulate SnO2 films, FEC is the additive of
choice to improve the batteries properties. FEC containing
electrolytes provide improved electrochemical performance as
compared to pure or VC containing LiTFSI electrolytes even
after aging. For an overview, Figure S5 gives a schematic
summary of the identified SEI products using the respective
electrolytes.

4. CONCLUSION
In this study, we have investigated the chemical composition of
the SEI formed in LiTFSI based electrolytes using VC and FEC
as performance improving additives for nanoparticulate SnO2
film anodes. Using complementary XPS and ToF SIMS, we
gained new insights in the SEI formation, and we were able to
correlate electrochemical cycling performance data with the
chemical composition of the SEI layer. Particularly, our study
proved a high surface reactivity of nanoparticulate SnO2
electrodes leading to a significant amount of oxidized carbon
surface species, mainly Li2CO3, already after the initial cycling.
The high surface reactivity of SnO2 leads to a preferred
decomposition of the main electrolyte components EC and
DMC. This complicates the identification of VC related SEI
species via XPS. Despite this, the FEC additive was able to
influence the SEI composition more reasonably, resulting in a
further improvement of the cycling properties as compared to
the pure LiTFSI or LiTFSI+VC electrolyte. Therefore, we
suggest a faster and favored decomposition reaction of FEC as
compared to VC, leading to a more pronounced impact on the
SEI properties. Nevertheless, both additives were able to
improve the overall cycling performance of nanoparticulate
SnO2 electrodes showing their positive impact toward the SEI
properties. Moreover, the combination of LiTFSI based
electrolytes together with FEC shows a promising approach
for an electrolyte mixture benefiting from a more thermic and

Figure 5. ToF SIMS images of an initially cycled nanoparticulate SnO2
electrode (LiTFSI), showing the total ion count, Li+, and the positive
secondary cluster ions Cs3CO3

+ and Cs3SnO2
+, each in the x−y plane

(top) and x−z plane (bottom) view, respectively.

Figure 6. ToF SIMS images of an aged nanoparticulate SnO2
electrode (LiTFSI), showing the total ion count, Li+, and the positive
secondary cluster ions Cs3CO3

+ and Cs3SnO2
+ each in the x−y plane

(top) and x−z plane (bottom).
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moisture stable salt as compared to LiPF6. Simultaneously, the
discussed problems accompanying LiPF6 like reduced/missing
fluorine species and aluminum current collector corrosion are
circumvented while using FEC as fluorine donating source in
combination with LiTFSI. Additionally, ToF SIMS studies
enable us to follow the lateral and in depth elemental
distribution of SEI species. At the initial state of the SEI, a
homogeneous distribution of SEI species concentrated at the
electrode surfaces was evidenced. During ongoing cycling, the
decomposition process of the electrolyte and the respective SEI
species propagates into deeper layers depending on the aging
state of the electrodes.

■ AUTHOR INFORMATION

Corresponding Author
*E mail: volkerwinkler@web.de.

Present Addresses
∥IPREM, Equipe Chimie Physique, UMR 5254 UPPA/CNRS,
Technopole Helioparc, 2 avenue du President Angot, 64000
Pau, France.
⊥Varta Microbattery, Daimlerstraße 1, 73479 Ellwangen,
Germany.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We gratefully acknowledge the support of Udo Geckle for SEM
analysis.

■ REFERENCES
(1) Wagner, R.; Preschitschek, N.; Passerini, S.; Leker, J.; Winter, M.
Current research trends and prospects among the various materials
and designs used in lithium based batteries. J. Appl. Electrochem. 2013,
43, 481−496.
(2) Marom, R.; Amalraj, S. F.; Leifer, N.; Jacob, D.; Aurbach, D. A
review of advanced and practical lithium battery materials. J. Mater.
Chem. 2011, 21, 9938−9954.
(3) Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and
future. J. Power Sources 2010, 195, 2419−2430.
(4) Goodenough, J. B.; Park, K. S. The Li Ion Rechargeable Battery:
A Perspective. J. Am. Chem. Soc. 2013, 135, 1167−1176.
(5) Patoux, S.; Daniel, L.; Bourbon, C.; Lignier, H.; Pagano, C.; Le
Cras, F.; Jouanneau, S.; Martinet, S. High voltage spinel oxides for Li
ion batteries: From the material research to the application. J. Power
Sources 2009, 189, 344−352.
(6) Xu, B.; Qian, D.; Wang, Z.; Meng, Y. S. Recent progress in
cathode materials research for advanced lithium ion batteries. Mater.
Sci. Eng., R 2012, 73, 51−65.
(7) Zhang, W. J. A review of the electrochemical performance of alloy
anodes for lithium ion batteries. J. Power Sources 2011, 196, 13−24.
(8) Liang, B.; Liu, Y.; Xu, Y. Silicon based materials as high capacity
anodes for next generation lithium ion batteries. J. Power Sources 2014,
267, 469−490.
(9) Nitta, N.; Yushin, G. High Capacity Anode Materials for Lithium
Ion Batteries: Choice of Elements and Structures for Active Particles.
Part. Part. Syst. Charact. 2014, 31, 317−336.

(10) Winter, M.; Besenhard, J. O. Electrochemical lithiation of tin
and tin based intermetallics and composites. Electrochim. Acta 1999,
45, 31−50.
(11) Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J. Li alloy based
anode materials for Li secondary batteries. Chem. Soc. Rev. 2010, 39,
3115−3141.
(12) Chen, D.; Indris, S.; Schulz, M.; Gamer, B.; Mönig, R. In situ
scanning electron microscopy on lithium ion battery electrodes using
an ionic liquid. J. Power Sources 2011, 196, 6382−6387.
(13) Wang, G.; Wang, B.; Wang, X.; Park, J.; Dou, S.; Ahn, H.; Kim,
K. Sn/graphene nanocomposite with 3D architecture for enhanced
reversible lithium storage in lithium ion batteries. J. Mater. Chem. 2009,
19, 8378−8384.
(14) Hassoun, J.; Derrien, G.; Panero, S.; Scrosati, B. A Nano
structured Sn−C Composite Lithium Battery Electrode with Unique
Stability and High Electrochemical Performance. Adv. Mater. 2008, 20,
3169−3175.
(15) Yang, Z.; Du, G.; Meng, Q.; Guo, Z.; Yu, X.; Chen, Z.; Guo, T.;
Zeng, R. Dispersion of SnO2 nanocrystals on TiO2(B) nanowires as
anode material for lithium ion battery applications. RSC Adv. 2011, 1,
1834−1840.
(16) Eom, K.; Jung, J.; Lee, J. T.; Lair, V.; Joshi, T.; Lee, S. W.; Lin,
Z.; Fuller, T. F. Improved stability of nano Sn electrode with high
quality nano SEI formation for lithium ion battery. Nano Energy 2015,
12, 314−321.
(17) Yang, Z.; Gewirth, A. A.; Trahey, L. Investigation of
Fluoroethylene Carbonate Effects on Tin based Lithium Ion Battery
Electrodes. ACS Appl. Mater. Interfaces 2015, 7, 6557−6566.
(18) Seo, D. M.; Nguyen, C. C.; Young, B. T.; Heskett, D. R.;
Woicik, J. C.; Lucht, B. L. Characterizing Solid Electrolyte Interphase
on Sn Anode in Lithium Ion Battery. J. Electrochem. Soc. 2015, 162,
A7091−A7095.
(19) Paloukis, F.; Elmasides, C.; Neophytides, S. G.; Ioannides, T.
Electrochemical Performance of Sn/C Nanocomposites Interphased
with Varying Mixtures of Ethyl , Dimethyl and Vinylene Carbonate. J.
Electrochem. Soc. 2016, 163, A1013−A1019.
(20) Park, S.; Heon Ryu, J.; Oh, S. M. Passivating Ability of Surface
Film Derived from Vinylene Carbonate on Tin Negative Electrode. J.
Electrochem. Soc. 2011, 158, A498−A503.
(21) Dalavi, S.; Guduru, P.; Lucht, B. L. Performance Enhancing
Electrolyte Additives for Lithium Ion Batteries with Silicon Anodes. J.
Electrochem. Soc. 2012, 159, A642−A646.
(22) Martinez de la Hoz, J. M.; Balbuena, P. B. Reduction
mechanisms of additives on Si anodes of Li ion batteries. Phys.
Chem. Chem. Phys. 2014, 16, 17091−17098.
(23) Kilibarda, G.; Schlabach, S.; Winkler, V.; Bruns, M.; Hanemann,
T.; Szabo,́ D. V. Electrochemical performance of tin based nano
composite electrodes using a vinylene carbonate containing electrolyte
for Li ion cells. J. Power Sources 2014, 263, 145−153.
(24) Szabo,́ D. V.; Kilibarda, G.; Schlabach, S.; Trouillet, V.; Bruns,
M. Structural and chemical characterization of SnO2 based nano
particles as electrode material in Li ion batteries. J. Mater. Sci. 2012, 47,
4383−4391.
(25) Yang, H.; Zhuang, G. V.; Ross, P. N., Jr Thermal stability of
LiPF6 salt and Li ion battery electrolytes containing LiPF6. J. Power
Sources 2006, 161, 573−579.
(26) Matsumoto, K.; Inoue, K.; Nakahara, K.; Yuge, R.; Noguchi, T.;
Utsugi, K. Suppression of aluminum corrosion by using high
concentration LiTFSI electrolyte. J. Power Sources 2013, 231, 234−
238.
(27) Dahbi, M.; Ghamouss, F.; Tran Van, F.; Lemordant, D.; Anouti,
M. Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for
electrochemical storage. J. Power Sources 2011, 196, 9743−9750.
(28) Xu, K. Nonaqueous Liquid Electrolytes for Lithium Based
Rechargeable Batteries. Chem. Rev. 2004, 104, 4303−4418.
(29) Kilibarda, G.; Szabo,́ D. V.; Schlabach, S.; Winkler, V.; Bruns,
M.; Hanemann, T. Investigation of the degradation of SnO2 electrodes
for use in Li ion cells. J. Power Sources 2013, 233, 139−147.

mailto:volkerwinkler@web.de


(30) Park, M. S.; Wang, G. X.; Kang, Y. M.; Wexler, D.; Dou, S. X.;
Liu, H. K. Preparation and Electrochemical Properties of SnO2

Nanowires for Application in Lithium Ion Batteries. Angew. Chem.,
Int. Ed. 2007, 46, 750−753.
(31) Liu, H.; Long, D.; Liu, X.; Qiao, W.; Zhan, L.; Ling, L. Facile
synthesis and superior anodic performance of ultrafine SnO2

containing nanocomposites. Electrochim. Acta 2009, 54, 5782−5788.
(32) Parry, K. L.; Shard, A. G.; Short, R. D.; White, R. G.; Whittle, J.
D.; Wright, A. ARXPS characterisation of plasma polymerised surface
chemical gradients. Surf. Interface Anal. 2006, 38, 1497−1504.
(33) Scofield, J. H. Hartree Slater subshell photoionization cross
sections at 1254 and 1487 eV. J. Electron Spectrosc. Relat. Phenom.
1976, 8, 129−137.
(34) Tanuma, S.; Powell, C. J.; Penn, D. R. Calculations of electron
inelastic mean free paths. V. Data for 14 organic compounds over the
50−2000 eV range. Surf. Interface Anal. 1994, 21, 165−176.
(35) Chen, W.; Zhu, Z.; Li, S.; Chen, C.; Yan, L. Efficient preparation
of highly hydrogenated graphene and its application as a high
performance anode material for lithium ion batteries. Nanoscale 2012,
4, 2124−2129.
(36) Lee, S. Y.; Park, K. Y.; Kim, W. S.; Yoon, S.; Hong, S. H.; Kang,
K.; Kim, M. Unveiling origin of additional capacity of SnO2 anode in
lithium ion batteries by realistic ex situ TEM analysis. Nano Energy
2016, 19, 234−245.
(37) Andersson, A. M.; Abraham, D. P.; Haasch, R.; MacLaren, S.;
Liu, J.; Amine, K. Surface Characterization of Electrodes from High
Power Lithium Ion Batteries. J. Electrochem. Soc. 2002, 149, A1358−
A1369.
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