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Abstract In this paper we introduce the expectile order, defined by X <, Y if e4(X) <
eq(Y) for each o € (0, 1), where e, denotes the a-expectile. We show that the expectile
order is equivalent to the pointwise ordering of the Omega ratios, and we derive several
necessary and sufficient conditions. In the case of equal means, the expectile order can be
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1 Introduction

A stochastic order quantifies the concept of one random variable being bigger than another
one in some sense. A leading figure in the theory of stochastic order relations was Moshe
Shaked, who passed away much too early. Among many other contributions he is coauthor
of the most important reference on stochastic orders, the book Shaked and Shantikumar
(2007). In this paper we introduce a new stochastic order based on the comparison of
expectiles, and we want to dedicate this paper to the memory of Moshe Shaked.

In recent years there is an increasing interest in using expectiles as an alternative to
quantiles to describe features of a distribution. They have been introduced by Newey and
Powell (1987) as coefficients in linear regression models based on an asymmetric least
square loss function. For a recent overview of the use of expectile curves in regression
analysis we refer to Kneib (2013) and the extensive discussions to that paper, in particular by
Eilers (2013) for an appraisal of expectiles and by Koenker (2013) for a critical viewpoint.
For some interesting recent studies where expectile curves have been used to describe the
relation between predictors and the response variable we refer to Schnabel and Eilers (2009)
for a study of life expectancies and to Lopez-Cabrera and Schulz (2014) for an application
to forecasting expectiles of electricity demands, see also Farooq and Steinwart (2015) and
Schulze-Waltrup et al. (2015) for further examples.

If one uses expectile curves to describe the relation between the predictor and the
response variable, then it is of course an important question what it means if the expec-
tile curves are increasing for all levels «. Does this have the same meaning as all quantile
curves being increasing? As a mathematical problem this boils down to the question of what
it means that all expectiles of one distribution are smaller than the expectiles of another
distribution. In this paper we will consider this problem by investigating the corresponding
expectile order. It will turn out that this order is strictly weaker than the stochastic order
which holds if all quantiles are ordered.

Another branch of research where expectiles became very popular recently is the theory
of risk measures. Bellini et al. (2014) have shown that for @ > 1/2 an expectile is a coherent
risk measure in the sense of Artzner et al. (1999). It has recently been shown that indeed
expectiles with @ > 1/2 are the only risk measures that are coherent and elicitable, see
e.g. Bellini and Bignozzi (2015) or Ziegel (2016). As coherent risk measures are increasing
with respect to increasing convex order (see e.g. Bauerle and Miiller 2006 for details) there
also should be a kind of relationship between expectile order and increasing convex order.
It will turn out that there is only a simple relationship between these two concepts in the
case of equal means, however. We will also show in the paper that ordering all expectiles
is equivalent to ordering all Omega ratios for all possible benchmarks. These have been
introduced in the financial literature by Keating and Shadwick (2002a) as an interesting
concept for comparing the performance of investment decisions. As it is a difficult question
how to choose an appropriate benchmark, our results are also interesting for that application,
as expectile ordering thus implies unambiguous decisions for investors using the Omega
ratio for decision making, independent of the chosen benchmark.

The rest of the paper is organized as follows. In Section 2 we will recall the basic defi-
nitions of expectiles, the related Omega ratios and stop-loss transforms and some important
relationships between these concepts. Section 3 will be devoted to the main properties of
expectile ordering, including subsections on the special case of distributions with equal
means that will be used to derive some interesting sufficient conditions also for the general
case. Section 4 will be devoted to the study of stochastic orderings of Lomax distribu-
tions, which is an interesting parametric family of distributions where the conditions for



usual stochastic order, increasing convex order and expectile order are different. Finally, in
Section 5 Lomax distributions are fitted to real world data of damage of natural disasters
in the U.S., differentiating between different sources of weather risk. Comparison of these
fitted distributions with respect to different stochastic orders is investigated.

2 Expectiles, Omega Ratios and Stop-loss Transforms

In this section we recall the definitions of expectiles, Omega ratios and stop-loss transforms.
We show how they are related, and in particular we derive how they uniquely determine the
distribution if considered as a function of the parameter.

Throughout the paper we assume that all mentioned random variables X have a finite
mean (denoted as X € L') and are defined on a common probability space (2, A, P) unless
stated otherwise. Recall that the expectiles ex («) of a random variable X € L? have been
defined by Newey and Powell (1987) as the minimizers of an asymmetric quadratic loss:

ex (o) = argmin{E€o (X — 1)}, (H
teR
where
2 .
axe, ifx >0,
ba(x) = { (1 —a)x?, ifx <0,
anda € (0, 1). For X € L!, Eq. 1 has to be modified (see Newey and Powell (1987)) to
ex(ot)ZaFthféiﬂg{E[ﬁa(X—t)—Ka(X)]}. 2
The minimizer in Eqs. 1 or 2 is always unique and is identified by the first order condition
aE(X —ex(@) =1 -a)E(X —ex(a))_, (3)
where x4 = max{x, 0}, x_ = max{—x, 0}.

Expectiles are a smoothed version of quantiles; we collect their main properties from
Newey and Powell (1987) and Bellini et al. (2014) in the following theorem.

Theorem 1 Let X € L' with distribution function F and o € (0, 1). Then:

a) exyn(a) =ex(a)+h, foreachh € R,

b) ewx(a) = rex(a), for each ) > 0,

¢) X<Yas =ex(a) <ey(a),foreacha € (0, 1),

d X<Yasand P(X <Y)>0= ex(a) <ey(w), foreacha € (0, 1),
e) exs(@) is strictly increasing with respect to «,

f) ex (@) is continuous with respect to «,

g) lim,_ ¢+ ex(a) = essinf(X), lim,_, ;- ex (o) = esssup(X),

h) ifa <1/2, thenexiy(a) > ex(a) + ey (), if e > 1/2, then

exty(a) < ex(a) +ey(a),

D e_x(@) =—ex(1—a),
j) for the right derivative of ex it holds

E|X —ex(a)l
(1 —a)F(ex(@)) + aF (ex(a))

ey (@) =

where F =1—F.



Clearly, expectiles depend only on the distribution of the random variable X; they can
be seen as statistical functionals defined on M (R), the set of distribution functions ‘with
finite mean on R. Expectiles are the quantiles of a suitably transformed distribution F(¢),

as it has been noted by Jones (1994). Indeed, Eq. 3 can be written in the equivalent form
EX—1t ~
E|X —1t|

Expectiles are also related with the so called Omega ratio, which has been introduced in the
financial literature by Keating and Shadwick (2002a) as

EX—-1),
Qx(t) = ———. 4
X0 =gt @)
As it was pointed out e.g. in Remillard (2013), Eq. 3 can be written as
-«
Qx(ex(@)) = o (5)
which gives the following one-to-one relation between expectiles and Omega ratios:
fl-« 1—ex' @)
ex<a)=sle< ) Qx(t) = —X—. (6)
ey (1)

The following properties of the function Qx are immediate.

Theorem 2 Let X € L', m = essinf(X), M = ess sup(X). The function Qx : (m, M) —
(0, +00) is strictly positive, continuous and strictly decreasing, with lim,_,,,+ Qx(t) =
400, lim;_, y- Qx(t) = 0and QLx(EX) = 1.

To derive more properties of the Omega ratio we consider the strongly related stop-loss
transform

nx (1) = E(X —1)4,

which is well known in the actuarial literature (see e.g. Miiller 1996) as it describes the
expected cost of a stop-loss insurance contract with deductible ¢ for a risk X. From

EX—-t)_=t—EX+EX-—-1t)4 @)
we immediately get
t
Qx(t) e JTX—()
t—EX +mx()

and therefore vice versa we can derive the stop-loss transform from the Omega ratio via the

formula
Qx(@)-t—EX
NX(t)z—X() ( ), t #EX,
1 —Qx(1)

which can be continuously extended in ¢t = E X. Assuming differentiability we can derive
the distribution function from the Omega ratio via

1 -Qx() + Q@) -t —EX)

(1 - Qx(1)?

This formula holds in general, if we replace the derivative by the right derivative. Using
Eq. 6 and taking into account that EX = ex (1/2) we derive the following explicit formula

Fx(t) = 1+7m%@) = , t#EX.



for the distribution function Fy in terms of ex. It is basically equivalent to a corresponding
formula already mentioned in Newey and Powell (1987) as Theorem 1 (iv), where a very
similar formula is stated for continuously differentiable distribution functions.

Theorem 3 Let ex () be the expectile function of a random variable X € L'. Then the
distribution function Fx of X is given by

1—Qx(t) + QY (1) - (t —ex(1/2))

F = )
x() (1= x ()

1 # ex(1/2),

where
-1
Qx(t) = %
ey (1)

3 Expectile Order

Let us recall some basic definitions and results from the theory of stochastic orders. For a
comprehensive review we refer to Miiller and Stoyan (2002) or Shaked and Shantikumar
(2007). In the following, in inequalities between expectations it is always tacitly assumed
that the expectations exist.

Definition 4 For given random variables X, Y we define the order relations

X <g¢Y ,ifEf(X)<Ef(Y) forall increasing f.

X <Y ,HEf(X) < Ef(Y) forall convex f.

X <Y ,ifEf(X)<Ef() forall concave f.

X <iex Y , I Ef(X) < Ef(Y) for all increasing convex f.
X <iw Y ,fEf(X) < Ef(Y) forall increasing concave f.

It is well known that the usual stochastic order <, is equivalent to the pointwise ordering
of the quantiles. Bellini (2012) has shown the following results for expectiles:

Theorem 5 a) X < Y = ex (o) < ey(a), foreacha € (0, 1),
b) X <o Y = ex(a) <ey(a), foreacha € (0, 1/2],
c) X < Y =>ex(a) <ey(w), foreacha € [1/2,1).

Theorem 5 shows that the usual stochastic order <;; implies ordering of all expectiles. It
is then very natural to introduce the main definition of the paper:

Definition 6 Two random variables X, Y < L! are ordered in expectile order (written
X <. Y)ifex(ax) <ey(a)foralla € (0, 1).

Some immediate properties of the expectile order are the following:

Theorem 7 Let X,Y € L.

a) X<, Y=X+4+h<,Y+h, foreachh € R,
b) X <.Y = AX <, )Y, foreach ) > 0,



) X=gY¥Y=>X=<Y7,
d) IfX, <. Yy, Xy > XandY, — Y weakly, with E|X,| — E|X| and E|Y,| —
E Y|, then X <, Y.

Proof a), b) and c) are immediate. d) follows from Theorem 10 in Bellini et al. (2014). [J

The expectile order is equivalent to the pointwise ordering of Omega ratios, and can also
be characterized by means of the stop-loss transform.

Theorem 8 Let X,Y € L!. Let m = max{essinf(X), essinf(Y)} and
M = min{ess sup(X), ess sup(Y)}. The following are equivalent:

a) X<=.7Y,
b) Qx(x) < Qy(x), for each x € (m, M),
¢) wx(x)(x —EY) <my(x)(x— EX), foreach x € (m, M).

Proof Let B = (1 —a)/a. From Eq. 5, the condition ex («) < ey () is equivalent to
Qx(x)=p,Qr(y)=B=>x=<y. 3)

Since Qx and Qy are strictly decreasing and since Eq. 8 holds for each 8 € (0, +00), it
follows that Qx (x) < Qy(x) forall x € R.
Item c) follows from Eqgs. 4 and 7. O

Notice that in Remillard (2013), Proposition 4.4.3. p. 130, it is claimed without proof
that Qx(x) < Qy(x), for each x € R if and only if X <;; Y. The statement is wrong, as
we will see in Theorem 12 in the equal mean case, and a counterexample is provided by
Example 16. Indeed, it will turn out that <, is strictly weaker than <;; and more similar to
the third order stochastic dominance.

For X <, Y, we clearly need EX < EY. Note that, in this case, the conditions b), c)
in Theorem 8 have only to be checked for x € (m, EX) and x € (EY, M) since they are
obviously satisfied for EX < x < EY.

From Theorem 2 we immediately get the following necessary conditions as a corollary.

Corollary 9 If X <, Y then essinf(X) < essinf(Y) and ess sup(X) < esssup(Y).

In the case of unbounded X and Y we can derive further necessary conditions for X <, Y
in terms of the tail behavior of X and Y.

Theorem 10 Ler X,Y € L' and assume that essinf(X) = essinf(Y) = —oo and
esssup(X) =esssup(Y) = o0. If X <, Y then
Fy(t Fx(t
lim sup _Y( ) >1 and limsup x(@) >1
t—oo Fx (1) t——o00 Fy(t)

Proof We will show that

) Qy@) . Fy(t) . Qy() . Fx (1)
lim sup < lim = and limsup < limsu .
t—00 QX(f) t—>00 Fx(t) t——00 QX(t) t——o00 Fy(t)

(€))



From this the assertion follows immediately, as X <Y holds if and only if Qx(¢) <
Qy(¢) for all t € R. Assume that 8 := limsup,_, , Fy(¢t)/Fx(t) < oo. Then for any ¢ > 0
there is some 7y < oo such that

Fy(t) < (B+¢&)Fx(t) forallt > .
This implies

E(Y —1)y = f Fr(2)dz < (B + e)/ Fy@dz = (B+)EX — 1)
t t

EY —1)_ . EY —1t
im ———— = lim =
1—oo E(X —1)_ t—oo EX —t

this implies

Qy@® _ . EY -1

. +
lim su =limsup ————— < B +=.
T A P g
Thus the first assertion of Eq. 9 holds. The proof of the second assertion is similar. O

Example 11 Assume that X and Y are normally distributed with X ~ N(u, 012) and
Y ~ N(uo, 022). If o1 # o9, then it follows from Theorem 10 that X and Y cannot be
compared with respect to <., as e.g. o1 > o, implies

Fy(t

im 20
t—00 Fx(t)

Hence it is necessary that o1 = 07. In this case X <, Y holds if 1 < w2, as in this case

also X <y Y holds. Thus for normal distributions the orderings X <, Y and X <y Y are
equivalent.

Fx (1) ~ s

and im =
t——o0 Fy(t)

3.1 The Case of Equal Means

In the equal mean case the expectile order can be easily characterized. Indeed, Theorem
8 shows that X <, Y if and only if the pertaining stop-loss transforms cross only once,
namely in p.

Theorem 12 Ler X,Y € L' with EX = EY = p. Then X <, Y if and only if rx(x) >
wy (x), for each x € (m, ) and tx(x) < mwy(x), for each x € (u, M). In particular, it is
necessary that E(X — EX)- = E(Y —EY)_and E(X — EX); = E(Y — EY),.

Thus, in the equal mean case, a necessary and sufficient condition for the expectile order
is the concave ordering of the left deviation from the mean and the convex ordering of the
right deviation from the mean.

Corollary 13 Let X, Y € L' with EX = EY = pu. Then X <, Y if and only if (X —
W= <co Y —p)—and (X — )4 <ex (Y — )+

These conditions are related to the notion of third degree stochastic dominance (TSD)
introduced by Whitmore (1970) as follows: for random variables X and Y it holds X <rsp
Yif EX < EY and for all y,

y Z y z
/ / Fx(t)dtdz < f f Fy(t)dt dz.
—00 J —00 —00 J —0OQ



Indeed, we get immediately the following result.

Theorem 14 [fEX = EY, Var(X) < Var(Y)and X <, Y, then X <rsp Y.

Proof 1t follows from Theorem 12 that

y b4 y b4
yHMw=/ f ﬁmmm-/ f F.(t)dtdz

is increasing on (—oo, 1] and decreasing on [, 00) with

lim A(y)=0 and lim h(y) = Var(Y) — Var(X),
y—>—00 y—>0o0
thus the result follows.

We now show by means of an example that the expectile order is not closed with respect
to mixtures, in the sense that F; <, F> but

1F + 1G £ 1F + 1G
R R R
Example 15 (<, is not closed under mixtures)

Let F| and F, be the distribution functions of X and X, with

1 2 1
PX1=0)=PX; =4 = 7 P(X2=1/2) = 3 P(Xy=5) = 3
From Theorem 12 it follows that X; <, X». Letting G = §;, and denoting the mixtures
with Y7 and Y>, we get
P =0)=PM1=4 =1 P=1)=3

Pa=1/2)=4, P =5 =¢, P(h=1)=3.

Then EY; = EY, = 3/2 and
E(Y1 — EY))+ =5/8> E(Y — EYy))y =7/12.

Therefore it follows from Theorem 12 that ¥; and Y> can not be ordered with respect to
expectile ordering.

Miiller (1997) has shown that so called integral stochastic orders (also known as general
stochastic dominance rules) generated by a class of functions F in the form

X <. Yifandonly if Eu(X) < Eu(Y) forallu € F

are always closed with respect to mixtures, thus the preceding example shows that there can
not exist a class of utilities F generating expectile order.

Notice also that in Example 15 we have X;| <, X but not even X| <;., X» does
hold. Thus <, is strictly weaker than <y, and neither implies nor it is implied by <;.,. The
following example shows that the expectile order is not closed with respect to independent
sums.

Example 16 (<, is not closed under convolutions)
Assume that X has a two-point distribution

P(X=0)=04, P(X=1)=0.6,



and Y has a three-point distribution
P(Y=0)=04, PY=08)=05 PY=2)=0.1.

Then, EX = EY = 0.6, and Theorem 12 yields X <, Y. Now, let Z be in~dependent of X
and Y, having a two-point distribution in 0 and 1 with equal weights. For X = X + Z and
Y=Y+ Z, we get

P(X=0)=02, PX=1=05PX=2) =03,

PY=0=P¥=1=02, P¥ =0.8)=P( =1.8) =0.25,

P(Y =2) = P(Y =3) =0.05.
Then EX = EY = 1.1 and

E(X —EX); =027 < E(Y — EY); = 0.315.

Hence, by Theorem 12,
X+Z £, Y+ Z.

Finally, the following example shows that it is not sufficient to check the inequality for
the Omega ratios or the stop-loss transforms in the points of support of discrete distributions
in order to characterize expectile order.

Example 17 Assume that X and Y have three-point distributions
P(X=0)=04, P(X=1)=05 PX=2)=0.1,
PY=0=05 PY=1=03 PY=2)=02.

Here, EX = EY = . =7/10, and

_J@—61)/10, 0 <t <1, (@ -=51)/10, 0 <t <1,

”X(t)—{(z—t)/m, 1<r<2 TO=V0_45 1<r<2

Hence, nx(0) > 7y(0), and nx(k) < my(k) for k = 1,2, but since wx(u) # my(w),
Theorem 12 shows that X £, Y (indeed, the expectile curves cross in « = 1/2).

However, to prove or disprove expectile order between discrete distributions it never-
theless suffices to check a finite number of inequalities together with some elementary
calculations: due to Theorem 8, one has to check the inequality

nx ()t —EY)—nay(t)(t — EX) <0.

Since the stop-loss transform is piecewise linear for discrete distributions, the left hand side
of the inequality is a piecewise quadratic function in #. Hence, one simply has to check if a
parabola is nonpositive between the pertaining support points.

3.2 Sufficient Conditions for the Expectile Order

In this subsection we derive sufficient conditions for expectile ordering in terms of crossing
conditions for survival functions. From Theorem 12 we can derive the following Lemma for
the case of equal means.

Lemma 18 Assume that EX = EY = u, E(X — w)4+ = E(Y — w)4 and that there exist
Z71 < U < z2 such that

Fx(2) < Fy(z) ifz<ziorz>2



whereas
Fx(z) 2 Fy(2) ifz1 <z <z
Then X <, Y.

Proof First notice that lim;_, o (rx (t) + t) = lim;_, o E(max{X, t}) = EX. Under the
stated assumption if follows

lim (mx(@) —ny(t))=EX —EY =0
——00
and therefore the function
o
t>mx(t) —nmy(t) = / (Fx(2) — Fy(2))dz
t
is increasing on (—o00, z1) and on (z2, c0) and decreasing on (71, z2) with limit
lim (mx () —ny(®)) = lim (wx(?) — 7wy () =0
——00 t—00

and wx () — wy (u) = 0. Thus the function in non-negative on (—oo, 1) and non-positive
on (i, 00). The assertion therefore follows from Theorem 12.

The preceding Lemma can be generalized also to the case of unequal means:

Theorem 19 Assume that there exist 7y < EX < zo such that

Fx() < Fy(x) ifz<ziorz>z
whereas
Fx(2) = Fy(2) ifz1 <z <zo.
We define the following areas between the survival functions:

EX
A= [ |Fy(z) — Fx(2)ldz, B ;:[ |Fy (2) — Fx(2)ldz,

Z1

o0

C 1= 3 1Fr(@ - Fx@idz. D= [ 1Ry - Frldz.

22

IfA>Band C < Dthen X <, Y.

Proof Notice that the conditions of Lemma 18 hold if and only if A = B and C = D. If
A > B we can define for each o« € (Fx(z1), 1) and z < z; a function Fy, with

. Fx(2), if E‘X(z) >,
Fy,2) =1 o ifFx(z) =a < Fy(2),
Fy(z), if Fy(z) < a.

Obviously, for all z < z; we have F, Y, (2) < Fy (z) and this function is increasing in «. The
function

o = g(a) !=/ |Fy, (2) = Fy(@ldz, &€ (Fx(z1), 1)

is continuous and increasing from 0 to A. Thus there is an o™ with g(a*) = B.
If C < D we can define z3 > z such that

2 _ _ 3 _ _
/ |FY(Z)—FX(Z)|dZ=/ |Fy(z) — Fx(2)ldz = C.
EX b4

2



We can now define a random variable Y* with survival function

) Fy,. (), ifz <z,
Fys(zx) =y Fr(2), ifz1 <z <z,
Fx(2), ifz>z3.

Then Fy«(z) < Fy(z) for all z € R. Therefore Y* <, Y and thus according to Theorem
7 ¢) also Y* <, Y. On the other hand, X and Y* fulfill the conditions of Lemma 18 and
therefore it holds X <, Y*. By transitivity we get X <, Y. O

Example 20 As an illustrative example, we consider random variables with skew-normal
distributions. To this end, let Z ~ SN («) be a standard skew-normal random variable
as defined in Azzalini (1985) with density fz(z) = 2¢(z2)®P(az),z € R, for any o €
R, where ¢(-) and ®(-) denote the density and the cumulative distribution function of a
standard normal random variable, respectively. Adding scale and location parameters, X =
& 4+ wZ is then said to have a skew-normal distribution with parameters &, o, o (shortly,
X ~ SN (&, w, a)). Mean, variance and skewness are given by

EX = & +w8\/2/n, Var(X)=a? (1 —282/7r>,

4—7  (8v2/m)
2 (1-28%/m)*

where § = a(1 4+ «?)~1/? € (=1, 1). The stop-loss transform of Z is given by

skew(X) = y1(X) =

wz(t)

/oo(x —1)2¢(x)D(ax)dx
t

—2f°o @ ()P (ax)dx — tFz (1)
t

201) P (at) + 2a /OO e @(ax)dx —tFz(1)
t

— f2() — tF7(t) + /2/78 (1 — o (t\/l +a2)),

where F7(-) denotes the survival function of Z. The stop-loss transform of X is then given
by mx(t) = w- -7z ((t — §)/w).

Now, let X; ~ SN(§;, w,@;),i = 1,2. Suppose &1 < & and o1 < ap, then X| <;; X»
(see Corollary 4.2 in Blasi and Scarlatti (2012), where also sufficient conditions for <;.,
are given).

As examples for skew-normal random variables ordered with respect to expectile order,
but not with respect to the usual stochastic order, let X ~ SN(§;,w;,o1) and ¥ ~
SN (&, wy, ap). Put 851 = 0.9 and 6, = 0.99 (i.e. o1 = 2.065 < ap = 7.018). Then choose
the other parameters in such a way that

EX=EY =0, Var(X)=1, nx(0)=my(0),

which yields & = —1.032, & = —1.279, w; = 1.437, w; = 1.620. Further, V(Y) =
0.986, y1(X) = 0.472, y1(Y) = 0.917. A plot of Fx(t) — Fy(t) is given in the left part of
Fig. 1, which shows that the crossing conditions of Lemma 18 are satisfied. Hence, X <, Y.

Next, consider ¥ ~ SN (&, w2, ap) with & = & + 0.05. Hence, EY = 0.05 > EX,
whereas variances and skewness remain the same. The right part of Fig. 1 shows a plot of
F x (1) — F 7 (1) together with the areas A, B, C, D defined in Theorem 19, indicating that



S & -
o o
N
o 4 (=
° S
S " A
o o
2
N
o |
T 3
=
<t |
o
S : :
! T T T T T T T T T T T T T T T T
-3 -2 1 0 1 2 3 4 -3 -2 1 0 1 2 3 4

Fig. 1 Plotof Fx (1) — Fy(¢) (left) and of Fx(t) — Fy(t) (right)

all conditions of the theorem are fulfilled. The requirement A > B, C < D can easily be

confirmed by numerical quadrature. Therefore, we obtain X <, Y.

4 Stochastic Orderings for the Lomax Distribution
In this section, we consider in some detail the Lomax or Pareto type II distribution having

density and distribution function
—(a+1)
o t
— (1 + ) , >0,

f@) = ft;0,2) Iy %

t —a
F() = Ft;a,2) = l—(1+X) , >0,

where « and A are positive parameters. Accordingly, hazard rate and stop-loss transform are
given by

) = f(0)/ (= F(t)) = A%t t>0,

1) )L 1+t o t>0
w(t) = —— - , > 0.
oa—1 A

In the following, assume X ~ F(t; a1, A1) and Y ~ F(t; a2, X2)
4.1 Hazard Rate Order and Usual Stochastic Order

The random variable X is smaller than the random variable Y with respect to the hazard rate
order (written X <j, Y)if rx(t) > rx(¢) for all real ¢. For the Lomax distribution, this is
the case if and only if

(a1 —o)t +ajhy —agh; >0, >0,

hence, if and only if

oy > o (10)



and
o MM
—_ > —. (11)
%) Ao
Since hazard rate order implies the usual stochastic order, Eqs. 10 and 11 are sufficient
conditions for X <;; Y. However, they are also necessary: in order to have
F(t; a1, A1) > F(t; 02, A2) (12)

for t — o0, condition (10) must hold. On the other hand, Eq. 12 is equivalent to

t t
a1 log (1—}—)\—1) > as log <1+ E)

and a first order Taylor expansion around ¢ = 0 shows that Eq. 11 is also necessary.
4.2 Increasing Convex Order

Here, we have to assume o, op > 1. For X <;., Y, we have to show that wx (1) < 7wy (t)
for + > 0. Looking at the behaviour of the stop-loss transform for ¢t — oo, we see that
Eq. 10 is necessary for X <;., Y as well. A second necessary condition is EX = mwx(0) <
wy(0) = EY, or

o] — 1 )\1

_ > . (13)

oy — 1 Ao
Now, assume that Eqs. 10 and 13 hold. Then, we get from the above results about the usual
stochastic order that

Ft;ar = 1,0) < F(t;aa = 1,40), 12 0.
Noting that

A _
()= —— - F(t;a—1,1),
a—1

where F () = 1 — F(¢) denotes the survival function of F, we obtain
wx () <my (), t=0. (14)

Hence, conditions (10) and (13) are also sufficient for X <;., Y.
4.3 Expectile Order

Again, let a1, ap > 1. Using Theorem 10, we see that condition (10) is necessary for X <,
Y. Further, EX < EY, i.e. condition (13), is necessary as well. Under these conditions,
X <icx Y, and Eq. 14 yields nx () < my(¢) for t > EY. Therefore, the condition in
Theorem 8 c) is fulfilled for r > EY. Hence, for X <, Y, we additionally need

Gt)=nx()(EY —1) > ny(t)(EX —1) = H(1), 0<t < EX. (15)
Since /(1) = —F(t) and F'(t; ¢, 1) = —% F(t;  + 1, 1), we obtain
G'(t) = —Fx(1)(EY — 1) — mx (1)

and
G'(t) = %F(r;al + 1L, AD(EY — 1) + 2Fx (1), (16)
1



and corresponding expressions for H' and H”. Obviously, G(0) = H(0) and
G’(0) = H’(0). Therefore, Eq. 15 can only be satisfied if

a; A2 oy Al
G"(0) = — 2 > —= 2 = H"(0),
© A oap—1 _k2a1—1+ ©)
or, equivalently, if
—1 A
aj(a; — 1) .y a7
az(aa —1) = A2
Note that, since the function A(x) = 2.=2 with x < oy is increasing in x for a; > ap > 1,

oy —X

condition (17) is weaker than Eq. 11, but stronger than Eq. 13. Summing up, Eqgs. 10 and 17
are necessary conditions for X <, Y.

Remark 21 Since h(x) is strictly increasing in x for oy > o, Eq. 17 can never be satisfied
if X and Y have equal means, i.e. if (o) — 1)/(e2 — 1) = A1/A2 (except in the trivial
case o] = oy, A1 = Ap). Hence, if X and Y are random variables from different Lomax
distributions, but with equal means, they can never be ordered in expectile order.

In the following, our aim is to derive sufficient conditions for X <, Y which are weaker
than the conditions for X <, Y. For this, we can assume that

o A
a—; < T; (18)
(otherwise, X <;; Y, which implies X <, Y). Assuming Eq. 18, we get
AL > Ao (19)
(since a1 > o). Now, Egs. 17 and 18 imply
%(EY—t):%ﬁ—%t>%ﬁ—%t:%(EX—t) 20)

for ¢ > 0. Further, we have the following theorem:

Theorem 22 Under Eqgs. 10 and 18,

_ t\ " N\
Fx(@) = (1+)Tl> > <1+72> = Fy(t) 2n

for 0 <t <t, where t; = 2(aar] — a1X2) /(a1 — a2) if oy > g, and t] = o0 if ] = wp.
A proof is given in the Appendix. Now, Eq. 21 together with Eq. 19 imply
F(t;an +1, 1) =(1+ fl)_l Fx(0)
> (1-1—,{7)_] Fy(t) = F(t; 2 + 1, 12) (22)
for 0 < r < ;. With an eye to Eq. 16, we see that Egs. 20, 21 and 22 imply G”(t) > H" ()

for 0 < ¢ < t1, which, in turn, implies G(¢) > H(¢t) for 0 < ¢ < ¢t;. Hence, we have the
following result:



Theorem 23 [f Egs. 10, 17 and 18 hold, and if

A 2(coh] — a A
EX — 1 <= (a2d1 — g 2)’
a; — 1 o] —ap

then X <, Y, but X and Y are not ordered with respect to the usual stochastic order.

As a typical example, take o1 = 3,1 = V3,00 = 2,4 = 1. Then, EX = ﬁ/Z <
EY =1and

3 —1 -1 A
ﬂ:f< M:ﬁ<al =2, —]:x/g.
o 2 ar(ar — 1) oy — 1 %)

Further, 11 = 2\/5(2 — \/§) ~ 0.928 > EX ~ (0.866. Hence, all conditions in Theorem 23
are fulfilled, and X is smaller than Y with respect to expectile order, but not with respect to
stochastic order. Figure 2 shows the functions G(¢) and H(¢) defined in Eq. 15 and a plot
of log Fx(t) — log Fy (7).

5 Real Data Example

As an illustrative application, we consider data of billion-dollar weather and climate disas-
ters taken from NOAA (2016). Data set 1 are the costs of severe storm disasters to affect
the U.S. from 2000 to 9/2016 with CPI-adjusted losses exceeding $1 billion each across the
United States. Data sets 2 and 3 are tropical cyclone and flooding disasters exceeding $1
billion for the same period. For reproducibility, we list the values:

xy =(1.1,1.1,1.6,1.8,3.5,2.1,1.2,1.0,2.0,1.2,1.3,1.3, 1.6, 1.4, 1.8, 3.8, 1.6,
14,1.1,1.0,18,2.5,1.4,2.1,3.0,2.7,2.4,3.5,1.2,1.1,3.3,1.2, 1.1, 1.4,
9.7,109,1.1,2.2,2.4,3.0,4.2,1.0,3.6,1.1,1.5,1.6,1.8,1.9,1.6,3.4,1.1,
1.2,1.3,2.9,29,19,1.5,1.3,1.3,1.1,5.4,2.6,2.8,4.2),

xy = (68.3,2.9,2.7,14.4,33.6,6.7,1.5,23.4,22.8,153.8,3.1,9.6,26.2, 12.5,
21.1,7.2,1.5,11.6),

x3 = (10.0,1.0,1.2,1.3,2.0,2.6,1.0,1.5,1.1,2.1,3.2,2.5,1.7,11.2, 1.8).
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Fig. 2 Plot of the functions G(¢) and H (t) defined in Eq. 15 (leff), and plot of log Fx (1) — log Fy (t) (right)



Table 1 Sample sizes, arithmetic means, standard deviations and estimated parameter values for the three
data sets in Section 5

n x s & A a/h @—1/x
x1 64 225 1.76 3.083 2.649 1.164 0.786
X2 18 23.49 36.32 1.972 23.660 0.083 0.041
x3 15 2.95 3.18 1.305 0.964 1.354 0.317

The use of the Lomax distribution is widespread for this type of loss data. For example, Giles
et al. (2013) fitted this distribution to data relating to insurance losses in excess of 5 million
dollars due to major hurricanes between 1949 and 1980. This is also theoretically justified
as the Lomax distribution is a generalized Pareto distribution and therefore a natural model
for peak over threshold data, as shown by Pickands (1975).

We fitted the Lomax distribution to each data set using MLE after subtracting 1 (billion)
from each of their sample values. Key statistical values and estimated parameter values of
the fitted Lomax distributions are given in Table 1. The plots of the empirical cumulative
distribution functions (after subtracting 1 from each sample value) and the cdf’s of the fitted
Lomax distributions in Fig. 3 indicate that the Lomax distribution is a suitable model for all
three data sets.

In the following, denote the parameters of the Lomax distribution fitted to the i-th data set
by (&, }A\,-), and let X; be a random variable with the corresponding distribution, i = 1, 2, 3.
From Table 1, &1 > & > a3 > 1.

First, we compare the first with the second fitted Lomax distribution. Since &; > &; and
ay/ay > )AL]/)AQ, i.e. Egs. 10 and 11 hold, and using the results of Section 4.1, we obtain
X1 <5t X2, which is not surprising in view of Fig. 3.

Next, we compare the first with the third fitted Lomax distribution. Note that X| £, X3
since condition (11) is violated. In contrast, condition (17), which is sufficient for X| <;.
X3 and necessary for X; <, X3, is satisfied. Indeed, the plot of the corresponding expectile
curves on the left-hand side of Fig. 4 clearly shows that X| <, X3. Note, however, that the
additional sufficient condition in Theorem 23 ensuring X <, X3 is not fulfilled.

Finally, we compare the second with the third fitted Lomax distribution. The plot on the
right-hand side of Fig. 4 which shows the difference of the cdf’s of X» and X3 clearly sug-
gests X2 >4 X3. In fact, it is also easy to see that the empirical distributions clearly satisfy
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Fig. 3 Empirical cumulative distribution functions (in grey) and cdf’s of the fitted Lomax distributions (in
black) for the datasets in Section 5
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Fig. 4 Left: Expectile curve for the distribution of X (solid line) and X3 (dotted line). Right: Difference of
the cdf’s of X, and X3

the conditions of >;,;. However, theoretically, for the estimated Lomax distribution this is
impossible since oy > «3. On the other hand, condition (13) is not fulfilled, therefore even
X5 <icex X3 does not hold. Hence, both distributions are not comparable using the stochas-
tic orders considered in Section 4, as we get a heavier tail for the estimated distribution of
the third data set. Note, however, that the two distribution function cross at x = 12437 bil-
lion $. Hence, for all practical purposes and the considered example, one may well assume
X5 stochastically dominates X3.

6 Conclusion

In this paper we have investigated properties of the expectile ordering. Necessary as well as
sufficient conditions have been derived and it was related to other stochastic orderings. As
an interesting example of a family of distributions we considered the Lomax distribution,
for which we could not find any results on stochastic ordering properties in the literature.
We also fitted Lomax distributions to real world data on the damage of natural weather dis-
aster in the U.S. and compared the different sources of weather risk with respect to various
stochastic orderings for that concrete application.

Several natural questions arise from this first study on expectile ordering for future inves-
tigations. The most natural one is to ask for the meaning of more spread out expectiles. One
gets a natural definition of an expectile dispersion ordering, if one replaces quantiles by
expectiles in the definition of dispersive ordering <4y, (see e.g. Definition 1.7.1 in Miiller
and Stoyan (2002)). Several different related concepts could be defined and their usefulness
and their relation to other orderings could be studied.

Appendix: Proof of Theorem 22

Since the assertion is true for &1 = ay, we assume o] > a3 in the following. Consider the
functions

= t
g(t) = log Fx(t) = —aj log (1 + )T) ,
1

h()

_ t
log Fy(t) = —aplog <1 + —) ,

A2
dt) = g@) — h(),



with d(0) = 0. We have to show that
dit)y=g(t) —h(t) >0 for 0<t<1.

Since o o
d(t)=—— -
t+ Ao t+ A
we obtain d’'(0) = az /Ay — a1 /A1 > 0, and
A — 1A
d/(I)ZO PN ,:w:;m,
ap — oy

where f9p > 0. Further, an application of 1’Hopital’s rule yields lim;_ oo g(t)/h(t) =
ar/ay > 1or
im @:ﬂ—l =c>0,
t—00 h(t) o
which implies d(t) < ¢/2- h(t) for ¢ large enough. Hence, d is positive and increasing until
fo, then decreasing to minus infinity for t — oo.

Next, we show

d'(to—1)—I|d'(to+1] =0, 0<t<r, (23)
or, equivalently,
o) 2%
(@ —a)rr+y —u * (@1 —o)dy+y +u

o] o] -
(0 —a)ri+y —u (¢ —a)rA+y+u —

where y = apA1 —ojhy > 0, and u = (o) — an)t. With¢; = (a1 —a)Ai +y,i = 1,2
this is equivalent to

0, 0<ucx<y,

[0 %X %) a1C1
3 - = >0, O=uc=xy,
¢ —u? P —u?
2 1
or
crea(aac) —ajer) + (are) —ope)u* >0, 0<u<y. (24)
Since

ciea(ae) —ajep) = 0,
ajc) —oncy = (o —ap) (@A —aziz +y) > 0,

inequality (24), and hence (23), are true. This means that the increase up to #y is steeper than
the subsequent decrease, which implies d(tg 4+ ) > d(tg — t) for 0 < t < t. It follows that
d>0for0 <t <2t=r1.
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