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APPROXIMATE INVERSE FOR THE COMMON OFFSET

ACQUISITION GEOMETRY IN 2D SEISMIC IMAGING

CHRISTINE GRATHWOHL, PEER KUNSTMANN, ERIC TODD QUINTO,
AND ANDREAS RIEDER

Abstract. We explore how the concept of approximate inverse can be used and imple-
mented to recover singularities in the sound speed from common offset measurements
in two space dimensions. Numerical experiments demonstrate the performance of the
method.

1. Introduction

In the inverse problem of seismology one seeks subsurface material parameters from
measurements of reflected waves on a part of the propagation medium (typically an
area on the earth’s surface or in the ocean). To this end sources excite waves at certain
positions and their reflections are recorded by receiver arrays. From a mathematical point
of view we have to deal with a nonlinear parameter identification problem for a version
of the elastic wave equation (with damping). This problem is solved by a multi-stage
process which starts with determining the wave speed from a simpler model: the acoustic
wave equation. By linearization (Born approximation) we are led to the generalized
Radon transform (GRT) as a model for linear seismic imaging where the sound speed
is averaged over reflection isochrones connecting sources and receivers (microphones) by
points of equal travel time.

Let R be the GRT. Beylkin [1, 2] showed that there is a convolution type operator
K and dual transform R♯ (generalized backprojection operator) such that Ψ = R♯KR is
a perturbation of the identity operator. Thus, from the measurement g = Rf we can
compute Ψf by applying R♯K, i.e., Ψf = R♯Kg. Classical GRT migration entails the
direct application of K and R♯ to the data g and is a state of the art reconstruction
procedure in linearized seismology; see, for example, [25, Sec. 3] and [3, Chap. 5].

We advocate an alternative approach to this classical GRT migration scheme which
we demonstrate in this paper for the common offset scanning geometry in two space
dimensions. In this situation the GRT integrates over ellipses. Let F denote this elliptic
Radon transform. Then, our imaging operator is Λ = ∆F ∗ΦF where ∆ is the Laplacian,
F ∗ is the formal adjoint in an L2-space with a smooth weight, see (9) below, and Φ
is a smooth cutoff function such that F ∗ΦF is well defined. We argue that Λ is a
pseudodifferential operator of order 1 and hence emphasizes some singularities, see [16],
that is, Λf images some of the discontinuities of f .
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The structure of Λ is suited to apply the method of approximate inverse [19, 22]: Let
ep be a smooth approximation to the Dirac distribution concentrated about p and define
ψp := F∆ep. Then,

〈g, ψp〉 = 〈ΦFf, ψp〉 = 〈Λf, ep〉 ≈ Λf(p),

i.e., the L2-inner product of ψp with the data yields a stable approximation of the quantity
we seek. Note that the adjoint F ∗ is not needed explicitly and that the evaluation of
〈g, ψp〉 can be performed in parallel for different p.

We should point out important work incorporating the GRT and microlocal analysis
in seismic imaging. In [7], the GRT and a curvelet transform are used to reconstruct, and
in [23], microlocal analysis is used in the presence of multipathing. The articles [6, 25]
are good introductions with many further references.

In the following sections we motivate the selection of Λ, compute ψp semi-analytically
for an explicitly given ep, and present numerical experiments to illustrate the performance
of the scheme. For the sake of completeness and as a courtesy to the non-expert we derive
the GRT from the acoustic wave equation in some detail. Our presentation in the next
section is inspired by [4] and [24].

2. The imaging operator

2.1. From the acoustic wave equation to the generalized Radon transform. Let
u(t;x,xs) be the acoustic potential in x ∈ R

2 at time t ≥ 0 satisfying the acoustic wave
equation (with constant mass density)

(1)
1

ν2
∂2t u−∆xu = δ(x− xs)δ(t)

where ν = ν(x) is the speed of sound and xs is the excitation (source) point. In seis-
mic imaging one wants to recover ν from the backscattered (reflected) field u(t;xr,xs),
(t;xr,xs) ∈ Y := [0, Tmax] × R × S where S and R are the sets of source and receiver
(microphone) positions, respectively, and Tmax is the observation period.

Consider the ansatz

(2)
1

ν2(x)
=

1 + n(x)

c2(x)

with a smooth and a priori known background velocity c = c(x). Now, n is the quantity
we seek. In the following we present a formal derivation of a linear integral equation for
determining n, see (6) below, where we follow the lines of [4] and [24].

Let ũ denote the solution of the above wave equation with sound speed c, i.e.,

(3)
1

c2
∂2t ũ−∆xũ = δ(x− xs)δ(t).

We will use ũ to derive a linear equation for n.
Subtracting (1) from (3) and given (2) we find that

1

c2
∂2t (ũ− u)−∆x(ũ− u) =

n

c2
∂2t u.

Replacing u by ũ on the right of the above equation we define the linear map

A : n 7→ ud|Y
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where ud solves
1

c2
∂2t ud −∆xud =

n

c2
∂2t ũ

and Y is the set of receivers. We may view A as a kind of linearization of the map
F : ν2 7→ u|Y , indeed, F(c2)−F(ν2) = F(ν2+nν2)−F(ν2) ≈ An. The linearized problem
for constant density seismic imaging now reads: Determine n from

An = F(c2)− F(ν2) = ũ|Y − u|Y
where u|Y has been recorded and ũ|Y has to be computed from (3).

Using Duhamel’s principle,

(4) An(t;xr,xs) =

∫
n(x)

c2(x)

(∫
∂2t ũ(s;x,xs)ũ(t− s;xr,x)ds

)
dx.

As c is assumed to be smooth we take the geometric optics approximation for granted,
that is, x ∈ supp n can be connected to each xr and to each xs by one and only by one
ray of geometric optics. Accordingly, ũ is a progressing wave in 2D:

(5) ũ(t;x,xs) ≈ a(x,xs) Ψ
(
t− τ(x,xs)

)

where

Ψ(t) =

{
t−1/2 : t > 0,

0 : t ≤ 0,

and where the travel time τ(x,xs) solves the eikonal equation

|∇xτ | =
1

c

and the amplitude a satisfies

div(a2∇xτ) = 0,

see, e.g., Symes [24, page 38]. See also Friedlander [11] and Courant and Hilbert [5].
Plugging (5) into (4) we find that

An(t;xr,xs) ≈ ∂2t

∫
n(x)

c2(x)
a(x,xs)a(xr,x) Ψ ⋆Ψ

(
t− τ(x,xs)− τ(xr,x)

)
dx

= ∂2t

∫
π n(x)

c2(x)
a(x,xs)a(xr,x)H

(
t− τ(x,xs)− τ(xr,x)

)
dx

= ∂t

∫
π n(x)

c2(x)
a(x,xs)a(x,xr)δ

(
t− τ(x,xs)− τ(x,xr)

)
dx =: Ãn(t;xr,xs)

where the first equality holds since Ψ ⋆ Ψ = πH with H being the Heaviside function,
see, e.g., [14, Chap. 1.5.5]. The second equality is true due to H ′ = δ where δ is the
one-dimensional Dirac-distribution.

Set udata := ũ− u. Our intermediate linear problem now reads

Ãn(t;xr,xs) = udata(t;xr,xs)

and integrating both sides with respect to t over the observation period from 0 to T we
finally obtain

(6) Fn(T ;xr,xs) = y(T ;xr,xs)
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Figure 1. Common offset scanning geometry.

where

y(T ;xr,xs) :=
1

π

∫ T

0

udata(t;xr,xs)dt

and

(7) Fn(T ;xr,xs) =

∫
n(x)

c2(x)
a(x,xs)a(x,xr)δ

(
T − τ(x,xs)− τ(x,xr)

)
dx

is a generalized Radon transform which integrates over reflection isochrones {x : T =
τ(x,xs) + τ(x,xr)}.

2.2. The elliptic Radon transform. In the following we assume that

• the background velocity c is constant, say, c = 1,
• n is compactly supported in the lower half space x2 > 0 (the positive direction of
the x2-axis points downwards to the interior of the earth),

• the common offset scanning geometry is used where source and receiver positions
are located on the line x2 = 0 and they are parameterized by s ∈ R via (s−α, 0)⊤
and (s+ α, 0)⊤, respectively. Here, α > 0 is the common offset.

Under these assumptions the reflection isochrones are ellipses with foci

xs(s) = (s− α, 0)⊤ and xr(s) = (s+ α, 0)⊤,

see Figure 1. Further,

τ(x,y) = |x− y| and a(x,y) =
1

|x− y| .

In this situation the generalized Radon transform (7) integrates over ellipses and may be
written as

(8) Fn(s, t) =

∫
A(s,x)n(x)δ

(
t− ϕ(s,x)

)
dx, t > 2α,

with

ϕ(s,x) := |xs(s)− x|+ |xr(s)− x| and A(s, x) =
1

|xs(s)− x| |xr(s)− x| .

The lower bound on t in (8) is needed because the major axis of the ellipse must be longer
than half the distance between the foci.
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2.3. Local reconstruction operator and approximate inverse. As we do not know
an inversion formula for F we do not try to reconstruct n directly from its integrals
g = Fn over ellipses. Instead, we employ ideas from Lambda tomography [9] and define
the reconstruction operator

Λ = ∆F ∗ΦF

where Φ = Φ(s, t) is a smooth compactly supported cutoff function, ∆ is the Laplacian,
and F ∗ is the formal (weighted) L2-adjoint of F satisfying

(9) 〈F ∗w, u〉L2(R2) = 〈w, Fu〉L2(R×]2α,∞[,t2 dtds).

The use of the measure t2 dtds in the image space of F compensates a damping factor,
see (12) below.

Let us briefly explain our choice of Λ: under the Bolker assumption (see, e.g., [15,
p. 371]), any hypersurface Radon transform R in an d-dimensional space and its (for-
mal, smoothly weighted) L2-adjoint R∗ are Fourier integral operators of order (1− d)/2.
Furthermore, if they can be composed, then R∗R is a pseudodifferential operator. Our
transform F on R

2 satisfies the Bolker assumption (this follows from [18, Theorem 4]
which establishes the microlocal properties of this operator for functions supported on
both sides of the axis x2 = 0) so, F ∗ΦF is of order −1 when Φ is a smooth cutoff function
(which is needed so that F ∗ and F can be composed). Thus, Λ has order 1 and we expect

Λn = ∆F ∗Φg

to emphasize singularities (e.g., jumps along curves) of n which are tangent to ellipses
being integrated over (rigorously, covectors in the wavefront set of f that are normal to
the ellipse which follows from [18, Theorem 3]). Further, Λ is local in the following sense:
To reconstruct Λn(p) one only needs integrals over ellipses near to p.

The structure of Λ is ideally suited to stabilize the evaluation of Λn(p) by the concept
of approximate inverse, see [19]. Instead of Λn(p) we try to compute

Λγn(p) := 〈Λn, ep,γ,k〉L2(R2)

where

ep,γ,k(x) = Ck,γ

{
(γ2 −Θ2)k : Θ < γ,

0 : Θ ≥ γ,
Θ = |x− p|,

with γ, k > 0 and

Ck,γ =
k + 1

π γ2(k+1)
.

We have supp ep,γ,k = Bγ(p), the closure of the ball about p with radius γ. Moreover,∫
ep,γ,k(x)dx = 1 such that ep,γ,k → δ(· − p) as γ → 0. Thus, γ serves as a scaling or

regularization parameter while k is a design parameter which determines the smoothness
of ep,γ,k. By its properties ep,γ,k is a mollifier.

Lemma 2.1. For k ≥ 3 we have that

Λγn(p) = 〈ΦFn, ψp,γ,k〉L2(R×]2α,∞[,t2 dtds)

with

(10) ψp,γ,k(s, t) = 4k
(
(k − 1)F

(
| · −p|2 ep,γ,k−2

)
(s, t)− Fep,γ,k−1(s, t)

)
.

Moreover, the following translation invariance holds

ψp,γ,k(s, t) = ψ(0,p2),γ,k(s− p1, t).
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Proof. By duality we see that
ψp,γ,k = F∆ep,γ,k

and evaluating ∆ep,γ,k yields (10).
The translation invariance is a direct consequence of the translation invariances of the

Laplacian and of F with respect to s: Fn(s− r, t) = F
(
n(· − r, ·)

)
(s, t). �

Lemma 2.1 tells us that we can compute Λγn(p) from the data g if we can evaluate the
function ψp,γ,k which is called a reconstruction kernel for F (belonging to the mollifier
ep,γ,k). The translation invariance of the reconstruction kernel might be used to speed
up the computation of Λγn(p) as one only needs to evaluate ψ(0,p2),γ,k numerically. Note
that we do not need to know F ∗ explicitly to compute Λγn(p).

3. Computing the reconstruction kernel

Calculating the reconstruction kernel ψp,γ,k according to (10) requires the application
of our imaging operator F , see (8), to functions which are supported in a ball. In a first
step we therefore present an explicit calculation of F acting on the indicator function of a
ball. This will be used for the general case, which is discussed at the end of this section.

Let χ be the indicator function of Br(p) with p2 > 0, and radius r where 0 < r < p2,
that is, Br(p) is completely contained in the lower half space (recall that the positive
x2-direction points downwards). We are going to evaluate

Fχ(s, t) =

∫
A(s,x)χ(x)δ

(
t− ϕ(s,x)

)
dx, t > 2α.

Using prolate spheroidal coordinates depending on (s, 0)⊤ given by

(11) x(s, t, φ) = (x1, x2)
⊤

where

x1 = s+
t

2
cosφ, and x2 =

√
t2

4
− α2 sinφ,

we find from our calculations in Appendix A that

Fχ(s, t) =

∫ π

0

A
(
s,x(s, t, φ)

)
χ
(
x(s, t, φ)

) t2/4− α2 cos2 φ√
t2 − 4α2

dφ.

As

A
(
s,x(s, ̺, φ)

)
=

1

|xs(s)− x| |xr(s)− x| =
1

t2/4− α2 cos2 φ
we obtain

(12) Fχ(s, t) =
1√

t2 − 4α2

∫ π

0

χ
(
x(s, t, φ)

)
dφ.

Note that we can restrict the integration over φ to the interval [0, π] because χ is supported

in the lower half space where x2 =
√
t2/4− α2 sinφ is non-negative.

To evaluate Fχ(s, t) further we provide the following quantities

T− = T−(s, r,p) = min
{
ϕ(s,x) : x ∈ ∂Br(p)

}
,

T+ = T+(s, r,p) = max
{
ϕ(s,x) : x ∈ ∂Br(p)

}
.

Let E(s, t) be the ellipse with foci xs(s), xr(s) and travel time (major diameter) t > 2α.
Then,

E(s, t) ∩ Br(p) 6= ∅ if and only if T− < t < T+
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which is a direct consequence of the definition of T±. From that we get

(13) Fχ(s, t) =






0 : t 6∈ ]T−, T+[,

φ2 − φ1√
t2 − 4α2

: t ∈ ]T−, T+[,

where

φ1 = φ1(s, t) = min
{
φ : x(s, t, φ) ∈ Br(p)

}
,

φ2 = φ2(s, t) = max
{
φ : x(s, t, φ) ∈ Br(p)

}
.

So it remains to find numerical approximations for T−, T+, and φ1, φ2. For the first pair
of values we parameterize ∂Br(p) by

∂Br(p) =
{
p+ r(cosϑ, sinϑ)⊤ : ϑ ∈ [0, 2π[

}
,

so that

T−/+ = min /max
{
ϕ̃(ϑ) : ϑ ∈ [0, 2π[

}
where ϕ̃(ϑ) := ϕ

(
s,p+ r(cosϑ, sinϑ)⊤

)
.

From the geometric setting it becomes evident that ϕ̃ attains exactly one minimum and
one maximum in [0, 2π[. As both extrema are clearly separated, we can apply Newton’s
method to get the two zeros of ϕ̃ ′.

Having T∓ we solve

r2 = |p− x(s, t, φ)|2

for φ. Given t ∈ ]T−, T+[ and s ∈ R we have exactly the two solutions φ1 and φ2. Plugging
in prolate spheroidal coordinates we get the equation

r2 = (p1 − s)2 + p22 +
t2

4
− α2 −

√
t2 − 4α2 p2 sin φ− (p1 − s) t cosφ+ α2 cos2 φ.

We substitute

z = cos φ,

b = −(p1 − s) t,

c = (p1 − s)2 + p22 +
t2

4
− α2 − r2,

d = −
√
t2 − 4α2 p2,

to obtain the equation

−d
√
1− z2 = c+ b z + α2 z2

for z which has exactly two solutions in [−1, 1]. Using Newton’s method again we compute
the two solutions z2 < z1 in [−1, 1] and get

φi = arccos zi, i = 1, 2.

Using this, we can calculate a numerical value for Fχ(s, t), see (13).
The reconstruction kernel ψp,γ,k can be computed numerically in the same way as Fχ.

For instance, let k = 3. Then,

∆ep,γ,3(x) = C3,γ

(
− 36 |x− p|4 + 48γ2 |x− p|2 − 12γ4

)
χBγ(p)(x).

Now F can be applied to each of the components of ∆ep,γ,3. Consider
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Figure 2. Reconstruction kernel ψp,γ,3 for γ = 0.8 and α = 1 at p = (0, 3).
The cross section on the right is taken for s = 0.

F
(
| · −p|4χBγ(p)

)
(s, t) =





0 : t 6∈ ]T−, T+[,

1√
t2 − 4α2

∫ φ2

φ1

|x(s, t, φ)− p|4 dφ : t ∈ ]T−, T+[.

Here,

|x(s, t, φ)− p|4 =
((

s− p1 +
t

2
cos φ

)2
+
(√t2

4
− α2 sinφ− p2

)2
)2

is a trigonometric polynomial in φ whose antiderivative is known analytically. See Figure 2
for a graphical example.

4. Numerical experiments

We need to compute

(14) Λγn(p) := 〈Λn, ep,γ,3〉L2(R2) = 〈ΦFn, ψp,γ,3〉L2(R×]2α,∞[,t2 dtds)

from the discrete data

(15) g(i, j) = Φ(si, tj)Fn(si, tj), i = 1, . . . , Ns, j = 1, . . . , Nt,

where

{si} ⊂ [−smax, smax] and {tj} ⊂ [tmin, tmax], tmin > 2α

are uniformly distributed with step sizes hs and ht, respectively. By a simple approxima-
tion of the double integral on the right of (14) we get

Λγn(p) ≈ Λ̃γn(p) := hsht

Ns∑

i=1

Nt∑

j=1

g(i, j)ψp,γ,3(si, tj) t
2
j(16)

= hsht

Ns∑

i=1

∑

tj∈Ti(p)

g(i, j)ψp,γ,3(si, tj) t
2
j

with Ti(p) =
]
T−(si, γ,p), T+(si, γ,p)[.



AI FOR THE COMMON OFFSET ACQUISITION GEOMETRY IN 2D SEISMIC IMAGING 9

x1
0 2

4

2

x2

Figure 3. Visualization of the function n (17) to be reconstructed from
elliptic means. Light gray area: n = 1, black: n = 2, white: n = 0. The
light gray bar represents the half space x2 ≥ 6.5. The three dashed curves
show elliptic arcs belonging to the common offset α = 5 and s = 0, t = 12
(top), s = 3, t = 14 (middle), s = −3, t = 17 (bottom).
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For a first numerical experiment the function to be reconstructed is

(17) n = χB((0,4),2) − χB((0,4),1) + χB((3,5),1.5) + χx2≥6.5,

see Figure 3. The data g = ΦFn for the common offset α = 5 are plotted in Figure 4.
Observe the effect of the cutoff function Φ at the edges. We used the design of Φ ∈ C∞(R2)
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from [21, Sec. 5] modified such that

suppΦ ⊂ [−smax, smax]× [0.01, tmax] and Φ|[−smax+1,smax−1]×[0.02,tmax−1] = 1.

For the computation of Λ̃γn we used smax = 15, tmax = tmin + 30 with tmin = 4.9
for α = 2 and tmin = 10.5 for α = 5. All reconstructions have been computed from
NsNt = 6002 = 360000 elliptic means.

We approximated Λ̃γn(p) for p uniformly in [−2.5, 5] × [1.5, 7] using 150 equidistant
points for each interval. The results for the scaling γ = 0.2 are shown in Figure 5.
Restricting the data set reduces the visible singularities in the reconstruction: Figure 6
displays a reconstruction where smax = 7.5 and tmax = 25.50. Compared to the bottom
reconstruction of Figure 5 those singularities are missing whose tangents have a dominant
vertical component: This data set does not include integrals over ellipses tangent to those
singularities.

As F ∗ and F cannot be meaningfully composed we introduced the smooth cutoff func-
tion Φ in the definition of Λ. However, in our numerical experiments we can easily get
rid of Φ by setting Φ(si, tj) = 1 in (15) for all i and j. Figure 7 displays the difference
of such a reconstruction without a cutoff and the corresponding reconstruction with a
smooth cutoff (which is the reconstruction from the bottom of Figure 5). We see that
both reconstructions capture the singularities of n consistently: their difference does not
contain a trace of these singularities. On the other hand, the reconstructions differ greatly
in the added, unphysical singularities which are caused by the limited data and the nu-
merical scheme. Introducing the cutoff function damps significantly the intensity of the
artificial singularities. This is a general phenomenon that has been analyzed for tomo-
graphy problems including limited angle X-ray CT [17, 13, 20], sonar, and photoacoustic
tomography [12].

Next, we demonstrate how Λ̃γn is affected by perturbed data which we generated
according to

(18) gδ(i, j) = g(i, j) + δ ‖g‖⋆
n(i, j)

‖n‖⋆
, δ > 0,

where g is the exact data (15) and n is an Ns×Nt array of uniformly distributed random
numbers with values in [−1, 1]. The discrete norm

‖g‖2⋆ := hshs

Ns∑

i=1

Nt∑

j=1

|g(i, j)|2 t2j

approximates the norm in L2
(
[−smax, smax]× [tmin, tmax], t

2dsdt
)
. We have that

‖g − gδ‖⋆
‖g‖⋆

≤ δ,

i.e., δ measures the relative noise. Figure 8 shows reconstructions for a data set with
noise level δ = 8% using three different scaling parameters. We see clearly the smoothing
or regularizing effect of γ: increasing γ reduces the influence of noise while blurring the
contours.

In another experiment we study how the reconstructions are affected by a wrong
common offset in the inversion procedure, that is, a wrong α in computing the ker-
nel ψp,γ,3 (10). If we choose the common offset αrecon for the reconstruction larger than
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Figure 5. Reconstructions Λ̃γn, γ = 0.2, with n from (17). Top: common
offset α = 2, bottom: common offset α = 5. Further, Ns = Nt = 600. The
dashed lines in the top image indicate the singular support of n and are
not part of the reconstruction.

αdata, the common offset for recording the data, then the reconstructed singularities ap-
pear closer to the surface than the real singularities (top of Figure 9). The reason is
that the travel time t for a given point p increases with the common offset. In other
words: the diameter of an ellipse passing through p increases with the distance of the
foci. This effect is more pronounced at singularities located closer to the surface because
for large t and fixed foci the corresponding ellipse approximates a circle with radius t/2,
see Figure 1. Accordingly, if αrecon < αdata then the reconstructed singularities appear
farther down than the real singularities (bottom of Figure 9).



12 C. GRATHWOHL, P. KUNSTMANN, E. T. QUINTO, AND A. RIEDER

−2 −1 0 1 2 3 4 5

p1

2

3

4

5

6

7

p
2

α=  5.00, γ=  0.20, smin =  7.50, tmax =  25.50

−45

−30

−15

0

15

30

45

Figure 6. Reconstruction Λ̃γn, γ = 0.2, with n from (17). The common
offset is α = 5. The other used parameters are smax = 7.5, tmax = 25.50,
Ns = Nt = 600.
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Figure 7. Difference of a reconstruction without the smooth cutoff func-
tion Φ and of a reconstruction with Φ.

We emphasize that singularities are displaced only in vertical direction. Their horizon-
tal position is not affected which can be seen at the horizontal line singularity which is
cleanly moved up and down, respectively.

Remark about other acquisition geometries. Other important scanning arrange-
ments are the common midpoint (CM) and the common source (CS) geometries.
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Figure 8. Reconstructions Λ̃γn from the same perturbed data set with
δ = 8%, see (18). Top: γ = 0.2, middle: γ = 0.3, bottom: γ = 0.4. All
other parameters are as in Figure 5.
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Figure 9. Reconstructions with a wrong common offset αrecon in the re-
construction kernel. The data g is generated with αdata = 2 (see top
of Figure 5 for the ‘correct’ reconstruction where αdata = αrecon). Top:
αrecon = 2.5, bottom: αrecon = 1.5. The dashed lines indicate the singular
support of n and are not part of the reconstruction.

• In CM, source and receiver positions are parameterized by s ≥ 0 as (xmp − s, 0)
and (xmp+s, 0), respectively, where (xmp, 0) ∈ R

2 is the (fixed) common midpoint,
see Figure 10.

• In CS, the source is fixed, say at (xsc, 0) ∈ R
2, and the receivers are located at

(xsc + s, 0) for s ∈ R, see Figure 11.

Both geometries are known to allow only the reconstruction of a very restricted set of
singularities, even if full data would be available. This fact can be rigorously understood
by microlocal analysis which describes how Fourier integral operators and their adjoints
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Figure 11. Common source scanning geometry.

map singularities [16]. Using this technique, Felea et al. [10] showed that the CM geometry
in radar might even introduce singularities which are not present in the original image.

With the help of Figures 10 and 11 we can easily explain a fundamental difference of
CM and CS when n is layered, i.e., only depends on x2. Recall that singularities are
visible in the data only when there is an ellipse being integrated over which is tangent to
the singularity. Therefore the distribution of ellipses allows CS to detect a horizontal line
singularity completely while CM only detects one point of this line located at x1 = xmp.

Next we will highlight the shortcomings of CM and CS by numerical experiments. Our
numerical scheme for the common offset geometry can easily be adapted to CM and CS
based on the following relations

FCMn(s, t) = Fsn(xmp, t), s ≥ 0, t > 2s,

FCSn(s, t) = F|s/2|n(xsc + s/2, t), s ∈ R, t > |s|,
where Fα denotes the common offset transform (8) with offset α and FCM and FCS are the
corresponding transforms with the CM and CS parameterizations of ellipses, respectively.

Reconstructions from the CM and CS data displayed in Figure 12 can be examined in
Figure 13. We emphasize that both reconstructions would not exhibit more singularities
of n if the ranges of t and s would be increased. The number of used elliptic means in
each case is NsNt = 6002, cf. (15), and γ = 0.2. Thus, the reconstructions of Figure 13
are directly comparable to the reconstructions of Figure 5. The superiority of common
offset over CM and CS is striking.

Data from the wave equation. We perform experiments where the discrete data g
used in (16) are generated by solving the acoustic wave equation numerically, that is, g is
an approximation to y in (6). Thus, we are closer to the real situation of seismic imaging,
that is, the data are contaminated by a modeling and linearization error.

For the solution of the wave equations (1) and (3) as well as for recording the receiver
signals we relied on PySIT [8] which is an open source toolbox for seismic inversion and
seismic imaging. The computational domain is the rectangle [0.1, 1]× [0.1, 0.8] furnished
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Figure 12. Transforms FCMn (left) and FCSn (right) for n from (17)
where xmp = 0 and xsc = 0, respectively.

with absorbing boundary conditions using a perfectly matched layer (PML). It was dis-
cretized by a constant step size 0.01 in each coordinate direction resulting in a Cartesian
grid G with 90× 70 points.

We considered two different sound speeds ν1 and ν2 each attaining exactly two different
values with jumps along smooth curves:

ν1(x) =

{
1 : x2 ≤ 0.1 sin(x1) + 0.5,

1.5 : otherwise,
ν2(x) =

{
1 : x2 ≤ 0.1 cos(x1) + 0.5,

1.5 : otherwise.

We used 17 source/receiver pairs with common offset α = 0.05 positioned at (0.1, s±α),
s ∈ {0.15 + 0.05i : i = 0, . . . , 16}, to record the corresponding solutions u of (1) at the
receivers. The (temporal) Dirac impulse modeling the source signal was approximated
by a scaled (and truncated) Gaussian and the reference solution ũ of (3) was computed
with constant sound speed c = 1. Thus, the right hand side y of (6) was available, see
Figure 14.

In Figure 15 you see Λ̃γn(p) of (16) for p ∈ G and γ = 0.06 where g was replaced
by the y’s of Figure 14. We clearly observe again that only those singularities can be
detected which are tangent to ellipses being in the data set, i.e., being integrated over.
This explains clearly why we recover more singularities at the example with the sine than
with the cosine profile.

Software. The Python 2.7 code with which we have conducted the numerical experi-
ments for the common offset geometry (Figure 5 to Figure 9) can be downloaded from
http://www.waves.kit.edu/downloads/CRC1173_Preprint_2016-37_supplement.zip.
We made use of the intrinsic parallel structure of the approximate inverse and organized

the evaluation of Λ̃γn at different reconstruction points in parallel using the ProcessPoolExecutor
interface provided by the concurrent.futures module.
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Figure 13. Reconstructions of n (17) from the CM (top) and CS (bot-
tom) data which are displayed in Figure 12. The dashed lines indicate the
singular support of n and are not part of the reconstruction.

Appendix A. Weight calculation

In this section we show how the integral

F̃w(s, t) :=

∫
w(x)δ

(
t− ϕ(s,x)

)
dx

has to be evaluated where δ is the one-dimensional Dirac-distribution. Indeed, we will
see that F̃w(s, t) has to be understood as

(19) F̃w(s, t) =

∫ π

0

w
(
x(s, t, φ)

) t2/4− α2 cos2 φ√
t2 − 4α2

dφ
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Figure 14. Data y of (6) as a function of time at the 17 receiver positions.
The numbers at the ordinate give the midpoints s of the source/receiver
pair at (0.1, s ± α). Left: sine velocity profile ν1, right: cosine velocity
profile ν2.

if w is integrable and supported in the lower half space. Here, x(s, t, φ) are the prolate

spheroidal coordinates from (11). Note that F̃ (An) = Fn, see (8).
Our starting point is the limit representation of the one-dimensional Dirac distribution,

that is,

(20) F̃w(s, t) = lim
hց0

1

h

∫

{x∈R2 : t≤ϕ(s,x)≤t+h}

w(x) dx.

Next, we express the integral using the prolate spheroidal coordinates (with t replaced
by τ). The Jacobian determinant of the corresponding coordinate transform is easily
calculated to be

det




1

2
cosφ −τ

2
sinφ

τ/2√
τ 2 − 4α2

sinφ

√
τ 2 − 4α2

2
cos φ


 =

τ 2/4− α2 cos2 φ√
τ 2 − 4α2

which is positive because τ > 2α.
Applying this transformation and relying on ϕ(s,x(s, τ, φ)) = τ we arrive at

F̃w(s, t) = lim
hց0

1

h

∫

{x∈Rd : t≤ϕ(s,x)≤t+h}

w(x) dx

= lim
hց0

1

h

∫ t+h

t

∫ π

0

w(x(s, τ, φ))
τ 2/4− α2 cos2 φ√

τ 2 − 4α2
dφ dτ

which immediately implies (19) by the Lebesgue differentiation theorem.
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Figure 15. Reconstructions Λ̃γn, γ = 0.06, from the data shown in Fig-
ure 14. Top: reconstruction from data of ν1, bottom: reconstruction from
data of ν2. The dashed lines indicate the true singular support of ν1 and
ν2, respectively, and are not part of the reconstructions.
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