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Zusammenfassung

Mensch-Maschine-Schnittstellen fungieren als bidirektionale Interpretierer
in der Mensch-Maschine-Kommunikation. Efferente Interpretierer empfan-
gen vom Menschen erzeugte Signale, erzeugen daraus Steuersignale und
iibermitteln diese an virtuelle oder physikalische Endgerédte. Mit Hilfe
von Mensch-Maschine-Schnittstellen kénnen korperlich beeintréichtigte
Menschen ihren Handlungsspielraum vergréfiern.

Diese Arbeit beschiftigt sich mit dem Bedarf von Tetraplegikern — Perso-
nen deren untere und obere Gliedmafen infolge einer Querschnittldsion
geldhmt sind aber deren Kopfbeweglichkeit erhalten ist — Endgerite zu be-
dienen wie beispielsweise Elektrorollstiihle. Eine “nur-kopfangesteuerte”
Mensch-Maschine-Schnittstelle wird vorgestellt, die myoelektrische Sig-
nale — Muskelaktivitdt darstellende Signale — von den dufleren Ohrmuskeln
empfingt und verarbeitet.

Da jeder Mensch einzigartig ist, ist die vorgestellte Mensch-Maschine-
Schnittstelle derart adaptiv ausgestaltet, dass inter-individuelle Unter-
schiede physiologischer oder verhaltensbezogener Natur kompensierbar
sind. Zu diesem Zweck sind mehrere Ansétze zur effizienten Benutzer-
spezifizierung beriicksichtigt. Die Wichtigkeit von effizientem Training
und Benutzermotivation sind erkannt worden. Daher wurde ein Train-
ingskonzept fiir ungeiibte Benutzer entwickelt.

Verschiedene Aspekte der adaptiven Mensch-Maschine-Schnittstellen sind
entwickelt und untersucht worden. Sowohl kérperlich gesunde als auch
korperlich beeintréchtigte Personen konnten die virtuellen Simulationen
und einen Elektrorollstuhl mit Hilfe der in dieser Arbeit entwickelten
Mensch-Maschine-Schnittstelle erfolgreich bedienen.






Abstract

Human-machine interfaces act as bidirectional interpreters in human-to-
machine communication. Efferent interpreters receive human-generated
signals, generate control signals and transfer these to virtual or physical
executing devices. With the aid of human-machine interfaces, physically
handicapped people are able to augment their range of actions.

This work addresses the need of people living with tetraplegia — people
unable to move lower and upper extremities due to a spinal cord injury
but able to move their head — for operating executing devices such as
an electric-powered wheelchair. An head-only human-machine interface
receiving and processing myoelectric signals — that is, signals representing
muscle activity — taken from the extrinsic ear muscles is introduced.

As each person is unique, the proposed human-machine interface is designed
being adaptive to compensate for inter-individual differences in physiology
and behavior. To this end, multiple approaches aiming towards efficient
user individualization are incorporated. The importance of efficient training
and motivation of the user has been recognized. Therefore, a training
concept for unpracticed users is developed.

Diverse aspects of the adaptive human-machine interface have been de-
veloped and evaluated. Able-bodied as well as physically handicapped
persons successfully operated virtual simulations and an electric-powered
wheelchair with the aid of the proposed human-machine interface.
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1 Introduction

1.1 Motivation

Disabled persons encounter severe difficulties in several fields of daily life,
such as accessing health care services, education, transport and employ-
ment . In addition, the poverty rate of disabled persons is higher
than those without disabilities . In the broad sense, disability is a re-
sult of several concurrent causes that are of both a biological and social
nature [204]. According to the international classification of function-
ing, disability and health (ICF) issued by the World Health Organization
the umbrella term “disability” encompasses impairments in bodily func-
tions, activity limitations and participation restrictions. Due to the aging
population worldwide the prevalence of disability is expected to grow, as

indicated in Appendix

In order to support people with disabilities, a wide range of assistive
technologies addressing the shortcomings of handicapped persons were
developed. Specialized assistive and rehabilitative devices that compen-
sate for the deficits were invented. For instance, cochlear implants help
deaf people by providing a sense of sound. These devices are prosthetic
replacements for the inner ear that are implanted surgically . More-
over, artificial upper limbs are prostheses designated for arm and hand
amputees respectively to help them partially reacquire range of motion
. Persons incapable of moving the upper body caused by, for ex-
ample, highly located spinal cord injuries (SCIs) are in need of the help
of others throughout life. The development of assistive technologies helps
the handicapped to regain autonomy and sovereignty in their lives.

The WHO estimates the annual global incidence of spinal cord injuries
at 40 to 80 cases per million population . According to the federal
statistical office of Germany (DESTATIS) nearly 17,000 people suffered
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from a spinal cord injury in Germany in 2011 . People suffering
a spinal cord injury are strongly limited in their actions and mobility.
Spinal cord injuries can be induced by either sudden trauma or gradually
deteriorating health conditions like diseases. Typically, spinal cord injured
persons are confined to a wheelchair. In everyday life they move by sitting
passively in a wheelchair that is pushed by able-bodied care attendants or
relatives. This imposes a strong dependence on personnel support that
results in high costs. Therefore, assistive technologies designed to help
disabled persons regain their independence could reduce personnel costs.

In 2011 about 64,000 people suffered from the loss or partial loss of
limbs in Germany, according to the federal statistical office of Germany
(DESTATIS). In the same year the total number of persons living with
spinal cord injuries amounted to 17,000 [108]. According to the
total number of new (treated) cases of paraplegia reached 33,974 and the
total number of readmissions resulting from prevention and treatment of
complications was 77,203 in Germany since the national database began.
In Europe the total number of persons with spinal cord injuries is estimated
at 300,000 [54]. The national spinal cord injury statistical center (NSCISC)
provides an elaborate database about spinal cord injuries in the United
States , where about 250,000 persons suffer from SCIs .

Severely disabled persons typically suffer from both a physical disability
and depression in the wake of the physical disability . Authors with
disabilities made their handicaps the subjects of their own writing as
exemplarily addressed in Appendix As a sequela the quality of
life (QoL) — a general term for the well-being of individuals — tends
to decline. This in turn affects the person’s physical and mental state
negatively, leading to unfortunate self-reinforcing effects.

As a viable option, spinal cord injured persons may navigate electric-
powered wheelchairs (EPWs) and thus reduce the dependence on other
persons. However, EPWs are usually hand-joystick controlled — thus, not
accessible by persons unable to move upper extremities. This has motivated
researchers to develop specialized technological systems referred to as head-
only human-machine interfaces, enabling people with paralyzed upper limbs
to steer EPWs autonomously. Depending on the user’s degree of disability,
different operating principles for steering EPWSs can be applied. The EPW
can be controlled, for example, by a chin controller located in front of
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the user’s face. Theoretical physicist Stephen W. Hawking (who is almost
completely paralyzed resulting from amyotrophic lateral sclerosis (ALS))
uses a chin controller. Deliberate tongue movements that are detected by
an invasively implanted magnetic tracer provide another way to control
EPWs . Yet another means of controlling powered wheelchairs is by
monitoring the user’s eye movements . However, these systems rely
on bodily functions that are usually preoccupied with social interaction
or information acquisition. With respect to the aforementioned controls
grounded on head, tongue and eye movements, users will not be able to
turn their head, talk, eat or look around while steering the EPW.

Generally speaking, there are two approaches to support disabled persons:
The medical and the technological approach. For example, to someone
who lost an extremity the medical approach implies transplantation of a
deceased person’s limb. However, to date limb transplants are far from
being clinically routine. Moreover, patients are permanently required to
take immunosuppressive drugs which suppress the immune system that
otherwise would naturally reject the transplanted limb and therefore lead
to complete failure. Unfortunately, those drugs typically cause undesired,
adverse side effects. As for the care of spinal cord injured persons, the
surgical focus lies on the prevention of consequential secondary impair-
ments, such as the increase of height of the spinal cord lesion caused by
an unstable vertebral column [205].

On the other hand, following the technological approach, an artificial
surrogate limb is used as a substitute for the lost one. These limb prostheses
are classified into cosmetic prostheses (passive rehabilitation devices), body-
powered prostheses and EMG-controlled prostheses (active rehabilitation
devices) . The dexterity of prostheses is determined by two factors,
namely the mechanical construction like the shape, dimensions, number of
DOF and the bio-signal control ability .
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1.2 Muscle Physiology

1.2.1 Types of muscles

The human body comprises three major types of muscles, namely skeletal
muscles, cardiac muscles and smooth muscles. Table provides an
overview of the major muscle types. As the term indicates, skeletal muscles
control the skeletal and locomotor system. Most of them originate at bones
anchored by tendons and couple bones together. Skeletal muscles represent
the majority of all muscles and make up approximately 40 % of the body’s
mass. Oftentimes they are referred to as voluntary muscles as the muscle
contraction and relaxation is controlled by will. Cardiac muscles are solely
present in the heart. They maintain the circulatory system. Histologically,
both skeletal and cardiac muscles are striated muscle tissues. Smooth
muscles are found within organ walls. They embrace internal organs as
well as blood vessels. They manage bodily functions such as respiration
and digestion. These muscle tissues are not striated. Cardiac as well as
smooth muscles are labeled involuntary muscles .

Muscle Type Skeletal Cardiac Smooth

Occurrence Bones all over Heart Internal organs
the body all over the body

Function Postural Heart Diverse bodily
control and contraction functions
locomotion

Consciousness  Voluntary Involuntary Involuntary

Appearance Striated Striated Not striated

Table 1.1: Overview of the three major types of muscles

1.2.2 Skeletal muscles

The main function of skeletal muscles is to attach bones together and to
constitute a mechanical linkage as schematically illustrated in Figure
Skeletal muscles consist of numerous muscle fascicles as well as connective
tissue, blood vessels and nerves as depicted in Figure [1.1b]
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Upper arm bone

(Humerus)
Blood vessels

and nerves

Connective
tissue

Skeletal muscle
(Biceps brachii)

Muscle
Lower arm bone fascicles

(Ossa antebrachii)

(a) Gross anatomy of biceps (b) Sectional drawing of a skeletal
brachii flexing the forearm muscle

Figure 1.1: Simplified models of the skeletal muscle and its components
(modified from [190])

Muscle fascicles are bundles of large amounts of long and tubular muscle
cells as shown in Figure According to the muscle-specific terminology
muscle cells are named muscle fibers or myocytes. As every living cell
the muscle fiber contains cytoplasm (muscle-specific term "‘sarcoplasm"’)
which is the gelatinous substance holding the cell organelles in place.
The muscle fiber is covered by the cell membrane (muscle-specific term
"‘sarcolemma'’). Figure shows the section of a muscle fiber.

Sarcolemma
Muscle fiber Mitochon-
drion

Sarcoplasmic

. reticulum
Connective

tissue Myofibril

(a) Sectional drawing of a muscle fas- (b) Sectional drawing of a muscle
cicle fiber

Figure 1.2: Simplified models of the muscle fascicle and its macroscopic
and microscopic components (modified from [190])
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Viewed under the optical microscope, the sarcolemma of muscle fibers
exhibits regular cross-striations due to dark and light segments called
A-bands (anisotropic) and I-bands (isotropic), respectively, illustrated in
Figure Muscle fibers are multi-nucleated and non-branched.

Muscle fiber

Nucleus

Figure 1.3: Muscle fibers with cross-striations composed by sarcomeres

(modified from [190])

The essential organelles of a muscle fiber are mitochondria, myofibrils,
transverse tubules and sarcoplasmic reticulum. The mitochondria produce
the chemical adenosine triphosphate (ATP) that serve the muscle fiber as
chemical energy. The rod-like myofibrils basically perform the muscle con-
traction and relaxation. One muscle cell contains about 1,000 myofibrils.
They are made up of proteins such as troponin, actin, tropomyosin, myosin
as well as titin and nebulin. The contractile proteins actin and myosin con-
stitute the thin filaments and thick filaments, respectively. These filaments
let the muscle contract or relax by sliding along each other. Sections of
overlapping thick and thin filaments along the length of the myofibril are
termed sarcomeres. Ranging from one z-disk to another they are about
2 nm long [138]. The transverse tubules (T-tubules) are tunnel-like exten-
sions from the sarcolemma that traverse the muscle fiber from one side to
the other. They rapidly convey electrical nerve impulses (muscle action
potentials (MAPs)) from the neuromuscular junction, linkage between
the nervous system and the muscular system, into the muscle fiber. The
sarcoplasmic reticulum is a longitudinal structure (L-tubules) wrapped
around the myofibrils. It stores calcium ions (Ca?T) that are needed for
the chemical process of muscle contraction.
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Since voluntary skeletal muscles are found throughout the human body
including the upper body and the face, they are generally qualified for
being a source of non-verbal communication.

1.2.3 Contraction of skeletal muscles

Physiologically, two major types of muscle contraction are to be distin-
guished: The isotonic and the isometric muscle contraction. First, the
isotonic muscle contraction is concentric or eccentric. The concentric con-
traction shortens the muscle, such as when pulling up an external load.
This type of contraction matches the common linguistic usage of muscle
contraction. The eccentric contraction lets the muscle lengthen — for in-
stance, lowering down an external load. Second, the isometric contraction
preserves the muscle length — like holding an external load [193].

I-band A-band I-band

] % % f
— Actin protein
}ﬂmﬂ%%ﬁ (thin filament)

(a) Relaxation phase

Z-disk — Z-disk

r— Titin protein

— Myosin protein
(thick filament)

|-ossa——"——===so-]
osss=————=sso-|
-osgSe————=Ssse-

(b) Contraction phase

Figure 1.4: Schematic illustration of a sarcomere with sliding thin and
thick filaments in relaxation and contraction phases?

modified from http://en.wikipedia.org/wiki/Muscle_contraction
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Figures and show schematic illustrations of sliding filaments in
relaxation and contraction phases, respectively. The process of sliding
filaments leads to an increase of muscle tension referred to as muscle
contraction. The sliding filament theory characterizes the process of thin
filaments sliding synchronously over thick filaments while remaining at

constant length 85].

Action potentials are short-lasting electrical impulses (events) that occur
in excitable cells, such as nerve cells and muscle cells. During an action
potential the cell’s electrical membrane potential quickly increases and de-
creases again at a regular trajectory. In nerve cells, action potentials serve
the inter-cell communication. They are received by the nerve cell’s den-
drites, move along the axon and eventually emit another action potential
that is received by another nerve cell. In muscle cells, action potentials
induce intra-cell processes leading to muscle contraction.

Depending on the stimulus strength, muscle fibers either contract at the
maximum or not at all. This is termed the all-or-none law [193].

Muscle fibers are innervated by motor neurons that are efferent nerves
originating in the motor cortex. The number of muscle fibers innervated
by a single motor neuron depends on the type of motion. The linkage
between the muscle fibers and the motor neuron is named neuromuscular
junction (end-plate). A motor unit (MU) consists of a motor neuron and
its affiliated muscle fibers — that being the muscle fibers innervated by the
motor neuron. If a MU is activated an electrical potential termed motor
unit action potential (MUAP) can be measured.

As skeletal muscle contraction is controlled by one’s will, the basic elec-
trical impulse arises from the brain and is propagated via the nervous
system to the muscular system, where it causes the muscle to contract.
The electrical impulse moves from the brain to the alpha motor nerve
cell — also known as alpha motor neuron — at the spinal cord, that in turn
sends another electrical impulse down its axon. When reaching the neuro-
muscular junction, the electrical impulse stimulates voltage-gated calcium
channels allowing calcium ions to enter the neuron. The calcium ion influx
then causes the neurotransmitter acetylcholine (ACh) to diffuse across the
synapse at ACh receptors yielding again an electrical impulse. The elec-
trical impulse gets transmitted via the muscle fiber’s T-tubules network.
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This depolarizes the muscle fiber and triggers a repetitive biochemical pro-
cess of binding, releasing myosin and actin. As long as the chemical energy
ATP is available, myosin proteins (thin filaments) slide over actin proteins
(thick filaments), increasing the muscle tension.

1.2.4 Anatomy and innervation of human ear muscles

The external (outer) ear — also known as auricula or pinna — is the part
of the ear that is visible from outside. Its main objective is to focus and
redirect the arriving sound pressure waves to the eardrum via the ear canal.
To provide an overall view, Figure shows the human head and neck,
revealing the corresponding muscles. The auricula holds nine muscles in
total, classified into three extrinsic and six intrinsic muscles.

Auricularis

superior

Auricul Auricularis
uricuia anterior

Auricularis

posterior

Figure 1.5: Right lateral view showing the extrinsic ear muscles (red
highlighted) in the context of neck and head muscles (modified from [65])

The intrinsic muscles of the human auricula form and stabilize it, as
highlighted in yellow in Figure These muscles are named helicis major,
helicis minor, tragicus, antitragicus, transversus auriculae and obliquus
auriculae.
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Auricularis
superior

Auricularis
anterior
Helicis
major
Helicis

Auricularis .
minor

posterior

Tragicus
Anti-
tragicus

Figure 1.6: Right lateral detail view showing extrinsic muscles (red high-
lighted) and intrinsic muscles (yellow highlighted) of the human auricula
(modified from [65])

The extrinsic ear muscles — auricularis anterior, auricularis superior and
auricularis posterior — connect the external ear with the scalp and slightly
move it en bloc, as highlighted in red in Figures and The thin and
fan-shaped auricularis anterior is the smallest extrinsic ear muscle, drawing
the external ear forward and upward. The auricularis superior is the largest
of the three extrinsic ear muscles and is also thin and fan-shaped, drawing
the auricula upward. Finally, the auricularis posterior is composed of two
fleshy fasciculi and draws the auricula backward.

Both extrinsic ear muscles, auricularis anterior, and the auricularis superior
are supplied by the temporal (frontal) branch of the facial nerve — the
cranial nerve VII. The auricularis posterior is supplied by the posterior
auricular branch of the same nerve . Figure illustrates the bilateral
facial nerves.
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Right lateral

Left lateral facial nerve

facial nerve

Figure 1.7: Innervation of facial muscles and the external ear muscles?

Charles R. Darwin, naturalist and significant contributor to the Theory
of Evolution, stated that auricula movements — that is, the extrinsic-ear-
muscle-actuated orientation of the auricular which is partly decoupled
from the orientation of the head — could have been utilized for sound
localization. Furthermore, according to Darwin that function of the
extrinsic ear muscles could have been lost during evolution in certain
species (including humans) . Some mammalian animals make use
of auricula movements. As the oculomotor range — or the range of eye
movements — of the cat is rather limited, cats use auricula movements of a

certain range for locating sound [158] [233].

Humans feature — if any — only minimal ranges of auricula movement by
means of the voluntary activation of the extrinsic ear muscles. In humans
the extrinsic ear muscles exist rudimentarily. From the biological point
of view, humans are capable of moving the auricula through extrinsic ear
muscle activation, since those muscles are certainly innervated. However,
the majority of people cannot willfully activate these muscles. Publications
regarding the voluntary activation of the extrinsic ear muscles in humans

provide inconsistent results . On the other hand, it is commonly

?modified from http://en.wikipedia.org/wiki/Facial_nerve
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known that some people are able to learn the intentional activation of the
extrinsic ear muscles to some extent over time, with trial and error.

When a high-intensity acoustic stimulus occurs, a protective reflex termed
acoustic stapedius reflex, instantaneously and involuntarily prompts the
stapedius muscle in the middle ear to contract. As a consequence of
stapedius muscle contraction, the sound pressure representing the high-
intensity sound is dampened before passing it on to the inner ear. The
acoustic reflex protects the inner ear against sounds that are too loud and
can potentially hurt it .

1.2.5 Myoelectric signals

Electromyography (EMG) is a method for measuring electrical muscle
activity produced by muscle cells when getting activated neurologically
when contracting. The electrical muscle activity over time is also said to
be the myoelectric signal (MES). The MESs of the three major muscle
types (cf. Section differ from each other. Electrical impulses cause
the sarcolemma of the muscle fiber to depolarize, and repolarize again after
a certain time. The characteristics of the MES depend on physiological
aspects such as muscle size, the contraction strength and the tissue. On
the other hand, technological aspects like the electrode type also affect the

signal .

In general, EMG electrodes do not detect isolated MUAPs induced by a
single motor unit, but instead they detect superimposed MUAPs from
the motor units within detection range. In other words, the MES is the
summation of several MUAPs.

Depending on the type of electrodes this method is either non-invasive
or invasive. The muscle activity is measured non-invasively by surface
EMG (sEMG) electrodes. They provide low spatial resolution since the
detection range is rather wide. Fat tissue effects the signal quality of
sEMG. Subcutaneous (intramuscular) EMG electrodes, said to be fine-
wire EMG (fwEMG) or needle EMG electrodes, measure muscle activity
invasively. The fwEMG electrodes are directly inserted into the muscle
tissue. Since the detection range is rather narrow, they provide a high
spatial resolution. However, due to skin penetration, fwEMG implies a
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certain infection risk. Typical fwEMG electrodes are 50 mm long with an
outside diameter of 0.45 mm. Ahead of fwWEMG electrode insertion the
skin is usually cleaned with an alcohol pad.

Myoelectric signals acquired from the extrinsic ear muscles usually are
accessible for persons with tetraplegia as the facial nerves innervating the
ear muscles are above the neurological level of injury (NLI). Since the
extrinsic ear muscles are skeletal muscles, the contraction and relaxation
are controlled voluntarily and hence the myoelectric signals from the
extrinsic ear muscles are coherent signals. On the other hand, humans
are not used to activating the extrinsic ear muscles because there is no
function associated with it. Furthermore, drug-induced, partial spasticity
potentially corrupt the myoelectric signals.

1.3 Nervous System

1.3.1 Structure and function

The human nervous system comprises the central nervous system (CNS)
and the peripheral nervous system (PNS). The CNS encompasses the
brain and the spinal cord, while the PNS refers to the cranial and spinal
nerves. Cranial nerves, also known as cerebral nerves, emanate from the
brain and the brainstem. Spinal nerves originate from the spinal cord.

Nerves are cable-like bundles of axons (nerve fibers) and constitute the
pathways for transmitting the electrochemical nerve impulses (action
potentials). The event of nerve cells emitting an action potential is referred
to as “firing”.

The spinal cord connects the brain with the extremities and torso. It resides
in the spinal canal of the vertebral column that serves as the bone housing
and physical protection, as depicted in Figure The spinal cord’s three
major functions are the transmission of motor information from the CNS
to the PNS (efferent direction), the transmission of sensory information
from the PNS to the CNS (afferent direction) and the coordination of

specific reflexes [123)].
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Figure 1.8: Vertebral column housing the spinal cord and spinal nerves

(modified from )

There are 31 pairs of spinal nerves originating from the spinal cord. Each
pair of nerves symmetrically innervates both the left and right side of the
body. Along the vertebral column, from top to bottom, the nerves are
segmented into regions. There are eight pairs of cervical spinal nerves (C1-
C8), twelve pairs of thoracic spinal nerves (T1-T12), five pairs of lumbar
spinal nerves (L1-L5), five pairs of sacral spinal nerves (S1-S5) and one
pair of coccygeal spinal nerve (Co). The human vertebral column consists
of 33 bones referred to as vertebrae that are separated by intervertebral
discs — except for five bones that together form the sacrum.
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1.3.2 Functional neurological deficits

Spinal cord injuries (SCIs) refer to lesions of the spinal cord. These lesions
cause paralysis as the nerve impulses cannot be transmitted by the spinal
cord anymore. Paralysis is the partial or total impairment in the body’s
sensory and motor function, leading to loss of sensation and the control
of limbs and torso. SCIs are caused either by traumas, like traffic or
sport accidents, by diseases such as multiple sclerosis (MS), poliomyelitis
amyotrophic lateral sclerosis (ALS) or by congenital disorders like muscular
dystrophy (MD). The progress of non-traumatic SCIs can be gradual.

Other diseases also lead to movement restrictions but are not directly
related to the spinal cord. The locked-in syndrome (LIS) implies undam-
aged sensation but complete loss of muscle control. Locked-in patients
are conscious and alert but cannot move: They are “locked-in” their own
bodies.

Spinal muscular atrophy (SMA) causes progressive muscle wasting. This
genetically-caused disease severely affects the motor functions. Symptoms
of SMA are, for example, difficulties in swallowing, tongue muscle fascicu-
lation and muscle weakness. Currently a cure does not exist, but there is
palliative care, such as respiratory systems. Depending on the SMA type,
life expectancy ranges from a few years to a near-normal life span.

Paralysis may also be induced by strokes — also known as cerebrovascular
accidents (CVAs). Different forms of paralysis can be classified as mono-
plegia, hemiplegia, paraplegia and tetraplegia. Monoplegia refers to a
condition where one limb is paralyzed. If the extremities and torso on
the same body side are affected by paralysis, then the term is hemiplegia.
Paraplegia means the paralysis affecting the lower extremities. Tetraple-
gia, also known as quadriplegia, refers to the paralysis of both the lower
and upper extremities.

The location of the SCI is of prime importance with respect to the person’s
scheduled medical treatment and rehabilitative aid equipment. The NLI,
also known as level of injury, refers to where the spinal cord lesion is
located. In general, the higher the lesion, the more sensory and motor
functions are lost. The evaluation of the lesion height is carried out
either radiographically by means of imaging methods such as X-rays,
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magnetic resonance tomography (MRT), computed tomography (CT), or
neurologically with the aid of sensory or reflex testing.

Persons with tetraplegia are incapable of moving the lower or upper ex-
tremities. Depending on the exact localization of the spinal cord lesion
— that is to say the neurological level of injury (NLI) — residual bodily
functions vary inter-individually. Figure depicts the distribution of
tetraplegia with respect to the NLI. Persons living with tetraplegia typi-
cally merely have control of head-only activities — for instance, intentional
activation of neck, head or facial muscles.
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Figure 1.9: Distribution of tetraplegias with respect to the neurological
level of injury (NLI) (modified from )

Except for the cervical spinal nerve pair C1 and the coccygeal spinal
nerve pair Co, all the spinal nerves innervate a specific area of skin termed
dermatome, as depicted in Figure From evaluating dermatomes at the
key sensory points with coldness, touch or pinprick sensations neurologists
determine the lesion height.

Depending on the location of the spinal cord’s lesion different levels of in-
juries can be classified. Typically, lesions above or at the spinal nerves C4
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Figure 1.10: Dermatomes with key sensory points (modified from )

are acutely life-threatening, since these innervate the thoracic diaphragm
via the phrenic nerve. These severe lesions make abdominal (diaphrag-
matic) breathing impossible. Artificially induced respiration is absolutely
necessary in these cases.

Spinal cord injuries are categorized according to the five grades of the ASTA
impairment scale (AIS) by the American spinal injury association (ASIA),
as shown in Table Persons without a SCI do not receive an AIS grade
at all . In order to determine the AIS grade the strength of a number
of specific muscles need to be evaluated. These muscles — referred to as
key muscles — control ten motor functions (key movements) both on the
left and right side of the body. Key movements include, for example,
shoulder shrug, elbow flexion or wrist extension. In total, twenty key
movements are assessed for the AIS grade determination. They receive
a muscle strength grade as detailed in Table . The ASTA form is

provided in Figures and in the Appendix.

As SCIs are incurable to date, spinal cord injured persons are permanently
reliant on technological rehabilitation aids that aim at improving their
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Grade

Status

Criteria

AIS A

AIS B

AIS C

AIS D

AIS E

Complete SCI

S. incomplete SCI

M. incomplete SCI

M. incomplete SCI

Normal

No preserved sensory or motor functions below
the NLI including sacral spinal nerves S4-S5.

Preserved sensory functions below the NLI in-
cluding sacral spinal nerves S4-S5. No pre-
served motor functions. Typically a transient
phase leading to AIS C or D.

Preserved sensory and motor functions below
the NLI. At least half of key movements reach
muscle strength grades M0-M2.

Preserved sensory and motor functions below
the NLI. At least half of key movements reach
muscle strength grades M3-Mb5.

Normal sensory and motor functions but neu-
rological deficits.

Table 1.2: ASTA Impairment Scale (AIS) for grading SCIs

living conditions . Providing windows of communication is key,
and the main goal is to enable the patients to perform activities of daily
living (ADLs). These refer to a set of skills that constitute essential
abilities to care for oneself and meet basic needs.

The ADLs are generally viewed hierarchically from the most basic human
skill (i.e., the ability to feed oneself) to somewhat higher abilities (i.e., the
ability to dress oneself) [56].

Grade  Criteria

MO No contraction and no active movement

M1 Visible contraction, but no active movement

M2 Active movement, but not against gravity

M3 Active movement against gravity, but not against ad-
ditive external load

M4 Active movement against external load, but less than
normal

M5 Normal muscle strength

Table 1.3: Muscle strength grading
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1.3.3 Treatment approaches to spinal cord injuries

In general, two approaches in SCI treatment can be identified: The medical
and the technological approach. Although these approaches follow different
philosophies, these are not necessarily mutually exclusive, but rather may
be used complementarily for the benefit of the person with a spinal cord
injury.

As for the medical approach, the key idea is to promote motor and
sensory recovery. Experimental cell therapies are typically tested in animal
models. For example, spinal cord injured rats were treated with incubated
autologous white blood cells. The cells were injected near the lesion, and
some of the rats recovered motor and sensory function . A human
embryonic stem cell therapy trial in its early stages was dropped due to
financial constraints . Apart from cell injection, transplantation of
tissues both in rats and humans is also an object of research .

The technological approach encompasses diverse ideas aiming at improving
the afflicted person’s condition. One idea is bridging the areas of spinal
cord injury and the promotion of axonal regeneration by means of artificial
scaffolds, such as self-assembling nanofibers . Functional electrical
stimulation (FES) — also known as neuromuscular electrical stimulation —
is a rehabilitation method that activates nerves through electrical currents.
It is used in therapy to restore motor functions. A reciprocal control of an
elbow extension was demonstrated based on EMG signals from the upper
arm’s biceps and the triceps . Actuated technological ortheses, also
known as exo-skeletons, guide the user to stand upright and to accomplish
certain movements 197). Human-machine interfaces (HMIs) interpret
human-generated signals, link the user with technological executing devices
and thereby provide windows of communication for spinal cord injured
persons.

The medical approach and its diverse directions show great potential.
However, in current stages cell injections and tissue transplantations are
rather experimental and far away from becoming clinical routine. On the
other hand, bridging the areas of spinal cord injury presents promising
reproducible results without the need of immunosuppressive medication.
Exo-skeletons are accessible to persons with paraplegia but not those with
tetraplegia. Both exo-skeletons and HMIs do not restore the natural motor
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or sensory functions, but rather accept the spinal cord injured person’s
physical disability and aim for technological compensation.

1.4 Human-Machine Interfaces (HMIs)

1.4.1 Human-to-machine communication

The operating principle of human-machine interfaces (HMIs) is based on
the concept of human-to-machine (H2M) communication that is depicted
in Figure In general, as the arrows in the diagram imply, the H2M
communication works bidirectionally. HMIs are technological systems
receiving (efferent) human-generated indication signals (HgISs) and inter-
preting these signals in accordance with a predefined processing scheme.
In turn, interface-generated control signals (IgCSs) are sent to the execut-
ing device, where a corresponding action is executed eventually. In the
opposite direction, sensors implemented in the HMI receive (executing)
device-generated feedback signals (DgFSs). Afferent interface-generated
feedback signals (IgFSs) are produced through stimulation. Typically, the
human user observes the executing device and therefore is provided with
direct feedback from it.

Direct feedback

- l HglS IgCS m
uman xecuting
user Igk'S HMI DgFS device

Figure 1.11: Bidirectional human-to-machine communication (modified
from [133])

HMIs potentially enable disabled individuals to perform ADLs. The fun-
damental idea of HMIs is capturing the patient’s residual bodily functions.
By means of HMIs users like disabled — and able-bodied — persons are able
to utilize technical devices such as limb prostheses, powered wheelchairs
or word processors.
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Human-generated signals may be categorized with respect to both the level
of deliberation and the level of endogeneity. Table[1.4] provides an overview.
Humans can directly influence intentional (deliberate) signals at will,
whereas unintentional signals reflect human body processes that cannot
be influenced. For example, electrocardiography (ECG) signals reflect
the electrical activity of the heart that is a barely uninfluenceable, bodily
process. Another example for uninfluenceable or hardly influenceable
signals are the galvanic skin response (GSR) signals that are the electrical
conductance of the skin, which varies with its moisture level. As the sweat
glands activity is controlled by the sympathetic nervous system the GSR
can be utilized as an indication of psychological or physiological arousal.
In the field of affective wearables this is potentially helpful [152]. As
intentional signals are repeatable at one’s desire they are qualified to be
utilized as HMI input signals.

Furthermore, endogenous signals, often referred to as biosignals, represent
somatic functions while exogenous signals (non-biosignals) stand for non-
bodily functions such as key presses, computer mouse clicks, joystick
positions or lever positions. Peripheral input devices commonly used for
personal computers (PCs) such as computer mice or keyboards can be
regarded as the widest spread HMIs to date. This work focuses on HMIs
receiving intentional and endogenous signals.

Various fields of research and development are concerned with the innova-
tion and improvement of HMIs such as the fields of assistive technology
and the rehabilitation engineering. Also, the relevance of HMIs for the en-
tertainment industry is increasing, as demonstrated through popular game

Deliberation Intentional Unintentional
Endogeneity = Endogenous Exogenous Endogenous Exogenous
Electromyo- Key press, Electrocardio- n/a
graphy (EMG), mouse click, graphy (ECG),
electrooculo- joystick galvanic skin
graphy (EOG), position, lever  response (GSR)
tongue move- position
ment

Table 1.4: Categorization of examples of human-generated signals with
respect to deliberation and endogeneity
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platforms like Nintendo’s Wii Balance Board, Sony’s Playstation Move
and Microsoft’s Xbox Kinect 224).

If the HMI receives one single human-generated signal it is referred to as an
unimodal HMI. On the other hand, multimodal HMIs receive two or more
human-generated signals. As compared to unimodal HMIs, multimodal
HMIs either increase the number of degrees of freedom (DOFs) — such
as head movements specifying the EPW’s navigation direction and voice
commands invoke certain actions — or improve information redundancy —
like a certain head movement together with a designated voice command
call for a specific action.

Human-to-human (H2H) interaction also relies on multimodal communi-
cation. It improves the information redundancy. For example, if people
talk to each other there is speaking and gesticulating on the one side and
hearing and seeing on the other. Multimodal HMIs are also superior to
unimodal HMIs from the mathematical point of view since the informa-
tion redundancy increases the quality of classification — in other words,
the user intention interpretation [189].

The development of HMIs in rehabilitation engineering mainly aims for the
improvement of the disabled person’s QoL. Especially in the context of
healthcare, it is referred to as health-related quality of life (HRQoL) that
is effected by diseases and disabilities . The HRQoL is assessed us-
ing patient questionnaires to take account of the individual’s point of view.
An individual places their actual situation in relation to their personal ex-
pectation. The personal expectation may change over time due to external
influences — for instance, severity of illness and family support . HMIs
potentially enhancing the impaired person’s QoL, personal independence
and competitiveness in the employment market .

For able-bodied persons HMIs provide additional communication channels.
In that context, sometimes the terms “hands-free control” or “third-hand
control” are used. In possible applications ranging from simple, single-shot
actions (e.g., tack welding when both hands are busy) to complex action
augmentation (e.g., robotic arm control) HMIs contribute helpful support.
With certain restrictions HMI technology may also be applied in the field of
attentiveness surveillance systems. This applies particularly to eye-based
HMIs . Another area of HMI application is the remote-controlled
(telemetric) salvage robotics [235).
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Human-to-human (H2H) communication is restricted to receiving and
transmitting signals based on human sensory perception (esthesia) — seeing
(visual perception), hearing (auditory perception), smelling (olfactory
perception), tasting (gustatory perception) and feeling (haptic perception).
The technological implementation of the human senses — that being the
technological imitation of the sensory organs — is a challenging task. On
the other hand, the H2M interaction is not restricted to the human sensory
perception but rather makes use of additional communication channels
like the interpretation of tongue movements or muscle activity.

1.4.2 Learning and training of HMI control

Humans learn constantly as they adapt themselves to varying circum-
stances. The variation of circumstances may be caused, for instance, by
environmental changes or by injuries. Apart from the adaptation to ex-
ternal influences, humans are also capable of changing their behavior and
learning purposely to improve physical or mental skills. From the neuro-
scientific point of view, the ability to learn is due to the neuroplasticity of
the brain, also known as brain plasticity. Neuroplasticity can be seen as
the adaptability of the CNS . It implies synaptic plasticity (i.e., the
strengthening or weakening of synapses) as well as non-synaptic plasticity
(i.e., the ion channel function modification in the neuron). Neuroplastic
mechanisms not only apply to the brains of children and adolescents, but
are also inherent to the adult brain. In other words, humans are able to
learn irrespective of how old they are. Neuroplasticity takes place in learn-
ing processes of undamaged brains as well as in the recovery of damaged

brains .

In the spinal cord injured person’s brain neurons which formerly took care
about the below lesion areas lie idle after the SCI happens. Based on the
knowledge about the brain’s neuroplasticity, it may be assumed that plenty
of these idle neurons of the motor cortex take over the deliberate activation
of areas that are still innervated but used to be under-represented in the
cortex. In the long term these cortex areas will be overrepresented in the
spinal cord injured patient’s brain in comparison to that of the non-injured
patient.
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Figure illustrates the cortical homunculi of both the somatosensory
cortex and the motor cortex. The primary somatosensory cortex is lo-
cated at the post-central gyrus, where the human brain processes touch
sensations. The primary motor cortex processing voluntary movements is
situated at the pre-central gyrus. Areas in the human brain are neurologi-
cally connected to their corresponding anatomical regions. This cortical
representation is not fixed but may change over time (neuroplasticity).

(a) Somatosensory cortex (b) Motor cortex

Figure 1.12: Cortical homunculi of the human brain (modified from |\

Users improve HMI handling through training. The effect of training is
the result of the adaptability of humans, that is, in turn, based on the
neuroplasticity. Typically, the more intuitive the HMI control is the higher
the user’s acceptance is. In addition, the more intuitive the HMI is the
less learning effort and training time is needed.

The NASA task load index (NASA-TLX) captures the subjective workload
of the user while occupying oneself with a given task. It assesses the
subjective workload in six aspects, namely the mental (cognitive) demand,
the physical demand, the temporal demand of the task as well as the levels
of performance, effort and frustration. The NASA-TLX is administered
either using printed or computerized questionnaires .
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The assistive technology device predisposition assessment (ATD-PA) ac-
counts for the subjective perception of the user of a given assistive technol-
ogy device. It examines the expected advantage of the addressed device
from the user’s point of view [178].

Transcranial magnetic stimulation (TMS) is a non-invasive method to
cause depolarization or hyperpolarization in the neurons of the brain
(motor cortex). The stimulation causes the corresponding muscle to move.
This method is utilized in therapies for persons suffering from paralysis,
depression and tinnitus aiming at changing for the better .

The neuroplasticity of human brains makes the development of HMIs, that
change their characteristics over time (adaptive HMIs), challenging. In
that case, two learning systems are affiliated with each other. Consequently,
these two systems influence each other: The user’s behavior affects the
adaptive HMI’s behavior and vice versa. If the design of the adaptive HMI
is not diligent enough or does not take the human user’s neuroplasticity
into account the HMI might not work properly, over or underreacting.
This potentially leads to unstable states of the HMI.

1.4.3 Head-only HMIs

As a subclass of HMIs, head-only HMIs receive biosignals exclusively gen-
erated by parts of the head. These HMIs can be categorized according to
both the sort of biosignals acquired or the part of the head the biosignals
are generated by. This section provides a brief overview of these HMIs cat-
egorized with respect to the latter, that being the biosignal generating part
of the head. A more in-depth literature review is given in Appendix

Table provides an overview of the applicability of different types of
head-only HMI controls (cf. Sections - with respect to the
user’s health constitution. Able-bodied users are capable of controlling
every kind of the listed HMI controls. On the other hand, disabled users
with certain movement restrictions (e.g., paralysis, spasticity) are not
capable to operate particular HMI controls. Input devices for personal
computers (PCs) are listed for the sake of completeness since these are
not head-only HMIs. Check marks and crosses indicate whether the HMI
control is suited for the user of the given health constitution.



User’s health Chin Tongue Speech  Airflow Facial ex- Imagi- Eye Muscle  Input
constitution control  control  control  control pression nation control  control  devices
control control for PCs
cf. Appendix A42]  [A43] [A44]  [A45] A4 A7 [Ads]  [A49]
Able-bodied [ J [ J [ J [ J ([ J [ J [ J [ J [ J
Paraplegic [ J [ J [ J [ J ([ J [ J [ J @) [ J
Tetraplegic [ J [ J [ J ©] [ J [ J [ J ©) X
Cerebrovascular [ J [ J @) O @) [ J [ J @) @)
Accident (CVA)
Spinal Muscular [ J [ J [ J [ J ([ J [ J [ J X X
Atrophy (SMA)
Locked-In Syn- X X X X X X X X X

drome (LIS)

9¢

Table 1.5: Overview of head-only HMI controls and their applicability with respect to the user’s health
constitution ranging from good applicability (@), to limited applicability (O), to no applicability (X)
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1.5 User Individualization of HMIs

1.5.1 Adaptive HMIs

Traditional HMIs do not alter their characteristics, but act rather the
same — notwithstanding the individual current human user.

As people have different characteristics and behavior the supply of a wide
range of users with tailor-made systems necessitates HMI individualization.
Therefore, calibration procedures have been developed executed offline
ahead of normal operation [113]. However, due to non-stationary signal
components — such as muscle fatigue in case of muscle controlled HMIs —
offline calibration procedures have to be repeated periodically to ensure
proper system functioning. To address that issue researchers seek to
develop procedures that recalibrate the system permanently to match with
the current user state. But most of these systems deal with readjustments
of the pattern recognition [124].

Commonly, human users learn how to handle interfaces and adjust them-
selves over time to improve performance. That means human users are
adaptive systems by default (cf. Section . Examples are activities
that require a certain level of dexterity, such as playing video games or
typewriting. However, in the context of biosignal-based HMIs it is of
prime importance that the interface adjusts to the user in order to improve
performance. These interfaces are said to be adaptive HMIs.

The term co-adaptive learning refers to at least two coupled adaptive
systems effecting one another. Therefore, co-adaptive learning is given if
human users (adaptive systems by default) operate adaptive HMIs.

At the time of Microsoft’s disk operating system (MS-DOS) based on
command line interaction, early works aiming at adaptive HMIs mainly
considered interface computer software to be adaptive. While that def-
inition is still valid, nowadays it has been extended to a larger context.
Not merely the interface computer software but each technological subsys-
tem within the H2M communication may be designed, thereby altering
its behavior. Nevertheless, Norcio and Stanley stated the most fundamen-
tal principle of adaptive HMIs: The interface adapts to the individual
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user [142]. In other words, the interface changes its behavior depend-
ing on external influences such as the user’s behavior. As a consequence,
two adaptive systems, namely the human user and the interface, are in-
volved. The collaboration of two or more adaptive systems is referred to
as co-adaptation.

In the following collection of research works the focus lies on adaptive
HMIs irrespective of the manner of adaptation, the sort of biosignal or
which part of the human body the biosignal emanates from. Table
gives an overview of applications of adaptive HMIs.

An adaptive prosthetic hand was developed in . It was tested with two
able-bodied subjects and one amputee. The four-channel sSEMG signal was
acquired from the right, lower arm. Signal features were extracted and as
a result of clustering classification eight hand motions were performed by
the prosthesis. An online and supervised learning method was proposed
that adapted the mapping between sEMG signal features and clustering
output classes.

In [144], an adaptive 5-class driving simulator was evaluated with five
able-bodied subjects. The four-channel sEMG signal was taken from
the lower arm. Time domain signal features such as mean absolute value
(MAV), waveform length (WL) and zero crossings (ZCs) were extracted and
exposed to a classifier. The support vector machine (SVM)-based classifier
outputs five classes for the driving task — go forward, backward, right, left
and stop — corresponding to five hand motions, specifically hand flexion,
extension, abduction, adduction and keeping straight. Both supervised and
unsupervised learning was performed. As for online supervised learning, an
additional goniometry sensor was implemented that assessed the current
hand state. The goniometrical information was used to label the sSEMG
features online.

An adaptive two DOFs robotic arm simulator was demonstrated in
with one able-bodied subject. From the left side’s wrist and both the
lower and upper arm a four-channel SEMG signal was acquired. An online
reinforcement learning (RL) method based on either system-generated or
human-generated reward signals (key presses) was utilized.

An adaptive HMI was presented in \\ to operate a hand prosthesis
that extracts sEMG signal features to identify different hand grip types.
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Depending on the contracting muscle group and the amplitude of the MES,
the hand prosthesis opens or closes at a specific speed.

Research on neurally-controlled systems revealed preliminary but promising
results. showed an adaptive EEG-based two-class driving simulator
that was tested with six able-bodied subjects. The subjects were asked
to imagine left or right hand movements in order to let the car move
to the left or right side. From the EEG signal the logarithmic band
power (BP) as well as the MAV were extracted and exposed to the linear
discriminant analysis (LDA) classifier. conducted a study with six
Long-Evans rats. They presented an adaptive 16-channel ECoG-based
HMI. The rats were requested to operate a one-dimensional auditory
center-out cursor to match a predefined frequency (reaching task). By
providing a food pellet as an incentive, the rats associatively learned the
task. The characteristics of the decoding Kalman filter was adapted after
each trial (inter-trial). Neurally-controlled robotic or prosthetic systems
that incorporate adaptive interfaces were also developed in .
A detailed review of adaptive HMIs in the context of assistive technologies

is provided in Appendix|[A.8|

In case of EMG-based systems, preprocessed MESs are barely comprehen-
sible. In contrast to MESs, activity signals are open to interpretation and
therefore activity signals need to be generated. A well-known algorithm
to transform MESs into activity signals contains the subsequent steps of
signal rectification, low-pass filtering and normalization. Appendix
provides the mathematical details of the digital signal normalization.



Reference Application Subjects Signal Generator Algorithm  Output Learning
Kato et al., Prosthetic 2 able-bodied, 4-channel  Lower arm  Cluster 8 hand Supervised,
2006 hand 1 amputee sEMG movements online
Oskoei et al., 5-class 5 able-bodied 4-channel  Lower arm  SVM 5 car states  Un-/Super-
2009 driving sEMG vised, on-
simulator line
Pilarski et al., Robotic arm 1 able-bodied 4-channel  Lower and RL 5 joint Supervised,
2011 W simulator sEMG upper arm velocities online
Mend et al., 2-class 6 able-bodied EEG Brain LDA 2 car states  Supervised,
2012 m driving online
simulator
Cai et al., Electric- 12 able-bodied  1-channel  Jaw SVM 2 types of Supervised,
2014 powered sEMG jaw clench-  online
wheelchair ing
Tervo et al., Trolley crane 4 able-bodied Lever Manual Skill Trolley Supervised,
2014 [202 simulator motion input Adaptive crane offline
Control 1-DOF
(SAC) position

Table 1.6: Applications of adaptive human-machine interfaces

0¢
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1.5.2 Intelligent vehicles

In the field of automotive engineering adaptive management systems chang-
ing behaviors depending on the driver’s state and current traffic situation
are of great interest. Advanced driver-assistance systems (ADASs) support
the driver and mitigate potentially dangerous traffic situations . For
example, the adaptive integrated driver-vehicle interface (AIDE) aims at
avoiding driver overload by unfiltered information flow . It provides
adaptive management functions for drivers. That way the road safety is to
be increased because the driver gets to know only the essential information
rather than being distracted by meaningless data in stressful situations.

Also, incoming telephone calls are automatically redirected to the tele-
phone mailbox if the driver’s workload estimate exceeds a certain thresh-

old .

Moreover, an aircraft cockpit’s display changes its configuration depending
on the situation. In order to support the pilot in establishing and main-
taining situation awareness the adaptive interface is able to present the
right information in the right format at the right time [1].

1.5.3 Criticisms and merits

Adaptive HMIs are not free from controversy. Critics reproach higher
complexity of implementation and therefore higher development costs as
compared to non-adaptive HMIs . Moreover, because the adaptive
interface changes its behavior permanently and automatically the user
might encounter difficulties to create a cognitive model of the interface .
Some users might perceive the adaptation of the HMI as a loss of control

over the technology [220].

In addition to the mentioned criticisms, adaptive HMIs potentially provide
beneficial aspects. If they are carefully designed, adaptive interfaces make
the system more useful to a larger number of people. Both novices and
experts can use an adaptive system with equal ease, since the system is
capable of serving both [142].
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1.6 Open Problems

In consideration of state-of-the-art HMI concepts described in the previous
section, there are still open problems and unsolved challenges in the field
of HMI development. Some of those are outlined hereinafter.

1. Lack of specific design methodologies Developers hitting on an idea
of a HMI have to follow guidelines concerning general product engi-
neering. There is no design methodology that covers the specifics of
HMI design.

2. Few biosignals accessible for head-only activities Severely disabled
persons capable of activating merely the head muscles are limited to
very few biosignals to operate HMIs. Therefore, additional biosignals
for head-only activities are needed.

3. Aesthetic impairment through excessive apparatus The technologi-
cal realization of HMIs requires biosignal acquiring metrology at the
site of biosignal generation. However, an overly salient apparatus in
the face of the user should to be avoided. An unobtrusive outward
appearance is of importance.

4. Double occupancy of bodily functions The functional overlapping
with bodily functions such as breathing, speaking, eating and see-
ing causes the loss of functionality. Human-generated signals not
interfering with other bodily functions are therefore preferable.

5. Poor biosignal controllability in the early stages Inexperienced users
— such as those who only recently lost upper extremities — may en-
counter difficulties in HMI control in the early stages. This typically
is caused by the user’s poor biosignal controllability. Therefore, a sys-
tematical training concept leading to full HMI control step-by-step
for inexperienced users is highly desired.

6. Time-variant biosignal drifts Over time, biosignals tend to drift grad-
ually due to various reasons — like physiological response, mental
fatigue — and as a consequence HMI control becomes more challeng-
ing. Hence, an adaptation scheme coping with time-variant biosignal
drifts is to be developed.
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1.7 Proposal and Structure

The overall objective of this work is to provide a wide range of persons
with an easy-to-use HMI. Taking the aforementioned open problems
into account, this work aims at the evaluation of novel biosignals that
are accessible for severely handicapped persons without interfering with
remaining bodily functions. Furthermore, this work proposes developing a
new training scheme facilitating HMI control.

This doctoral dissertation is organized into six chapters. Figure [1.13]
provides a graphic overview of the structure of this work and displays the
relationships among the chapters.

Chapter
Interface Design
Methodology

Chapter
Adaptive Mus-
cle Interface

Chapter Chapter
Implementation Results
~
Chapter [6}
Conclusions

and Outlook

Figure 1.13: Graphical overview of this doctoral dissertation
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The subsequent chapters are briefly outlined as follows.

Chapter |2| introduces a novel design methodology for HMIs based on un-
charted biosignals. In Chapter |3| the realization of the adaptive HMI
dedicated to MESs acquired from the outer ear muscles is presented. The
individualization of the interface allows users with different physiological
and habitual attributes to manage the robust and fail-safe control. Chap-
ter |4 portrays the implementation of the novel concept including both
hardware and software details. In Chapter |5/ results are presented. Chap-
ter [6] summarizes this work, gives a conclusion and provides an outlook
for further research.
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2.1 Generic Framework

Whenever developers intend to come up with concepts of HMIs, fun-
damental questions regarding the technological and economic feasibility
arise — especially if the HMI applies uncharted biosignals. Due to human-
generated signals that are challenging to process and not commonly used by
researchers, developers usually approach the realization in an unstructured
manner resulting from the lack of guidance in the literature. In scientific
literature, traditional design tools and design processes concerning general

product engineering can be found .

Literature addressing the challenges of interface design often emphasize the
intuitiveness and psychological involvement of interactive systems, such
as computer software, electronic books or virtual reality devices
191].

However, none of these methodologies cover the specifics of HMI designs in
this work’s understanding: The choice of human-generated biosignals, the
metrological acquisition of the biosignals and the algorithmic interpretation
of the biosignals. Generally, the traditional design guidelines do not
reflect upon the necessity of the human-to-machine communication and
its improvement. The traditional approaches imply the selection of one
solution out of a pool of possible solutions on the basis of stationary
processes. Inspired by developments in the field of precision engineering
and power transmission engineering, they focus on the best possible solution
in terms of mechanics and electronics. The design of HMIs should be user-
centric and improve user experience.

The generic framework for designing HMIs proposed here is a stepwise de-
velopment approach from the idea of a HMI to its realization. The steps
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are illustrated in Figure It focuses on the establishment of a HMI that
allows for well functioning human-to-machine communication. To begin
with, the target group analysis needs to be undertaken where the target
group of people, that the development is mainly intended for, is to be iden-
tified. Subsequently, the scope statement analysis needs to be performed
where technological objectives and design decisions (e.g., tethered or wire-
less inter-subsystem communication) as well as user-centered objectives
and design decisions (e.g., aesthetic design of the apparatus) are defined.
The scope statement analysis eventually yields a set of requirements that
is referred to by each of the subsequent steps of the generic design frame-
work. In other words, the set of requirements has direct repercussions on
the other steps.

Next, the signal specification and assessment of both the acquired biosignals
and the processed control signals is necessary. The exact utilization of the
various signals is to be clarified. The quality criteria need to be defined
in order to assess the biosignal control ability numerically. Furthermore,
techniques of biosignal control ability improvement are of prime interest
when developing a HMI. If users encounter difficulties controlling the
executing device for some time the motivation will most likely drop. Next,
the biosignal interpretation is to be characterized. The signal-to-meaning
mapping matches the incoming biosignal with the outgoing control
signal. Finally, the technical implementation of the HMI concept in terms
of hardware and software components completes the framework.

As a meta-strategy of technical system design, simplicity is to be preferred
to complexity in all aspects. This idea is represented, for instance, by the
MAYA principle that reads “Most advanced yet acceptable” [78].

The guidance provided by the generic framework aims at covering the
specifics of HMI designs. However, as the field of HMI design is overly
wide, the lists presented hereinafter make no claim of completeness.

2.2 Target Group Analysis

The target group analysis aims at clarifying the fundamental cornerstones
of the development and helps to focus the endeavors.
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Idea

Target group
analysis (cf. Section [2.2)

Scope statement

analysis (cf. Section [2.3)
| N

Data acquisition, signal T
Set of requirements

_______________

specification and assess- «---- !
ment (cf. Section , (technological and
l user-centered)

Biosignal control ability
improvement (cf. Section 2.5)

Biosignal interpreta-

tion (cf. Section [2.6) DA

Technical implementa- .
tion (cf. Section[2.7)
\—/

Realization

Figure 2.1: Generic framework for designing human-machine interfaces
from the idea to its realization

The analysis should result in documents that are referred to by the de-
velopers throughout the development process. They constitute the basis
for the scope statement analysis. The considerations of the target group
analysis are:
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o Intended target group of people: The group of human users to
whom the development is mainly dedicated. For instance, “third-
hand” applications for welding in the industrial context may be
dedicated to workers of a specific body height. HMIs based on
gesture interpretation in video games predominantly are dedicated
to players of a certain age range. In rehabilitation engineering, HMIs
compensating disability induced shortcomings are dedicated to a
particular type of patients.

e Minimum and maximum number of the target group of people: The
estimation of the target group size yields the approximate numbers
for the economic weighing of interests. For instance, in case the
maximum number exceeds a threshold (depending on the involved
developers) it does not make good economic sense to develop many
subsystems in-house, but rather to purchase them from other vendors.

o Characteristics of the target group individuals: The knowledge of the
typical skills and shortcomings of the individuals affiliated with the
target group plays an important role in designing the HMI. The HMI
ideally compensates for shortcomings while emphasizing the skills of
the users. For example, HMIs dedicated to below-knee amputees do
not rely on biosignals acquired from the calf, but rather make use of
other parts of the body for biosignal acquisition.

o Potential windows of communication for target group individuals:
The identification of various biosignals that are under intentional
control of the target group individuals is significant information for
the developers. The interpretation (extraction of the underlying
meaning) of the identified biosignals establishes various windows of
communication.

2.3 Scope Statement Analysis

After clarifying to whom the endeavors of the HMI development relate,
the scope statement analysis needs to be conducted. This is of prime
importance as it is supposed to result in a set of requirements. The
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set of requirements contains the technological and user-centered (non-
technological) objectives and design decisions of the HMI that is to be
developed.

Depending on the preferences of the developers the set of requirements
can be embodied by simple documents or spreadsheets as well as by
complex project management software tools like Redbooth!, Smartsheet?
or Basecamp?.

The set of requirements encompasses hard factors like technological con-
siderations, such as:

System partitioning: The overall system needs to be partitioned into
logical and physical subsystems, meaning the subsystem boundaries
are to be defined.

Inter-subsystem communication: The transmission of information
between the subsystems is either mechanical, hydraulic, pneumatic,
electric or hybrid combinations therein. As for electric information
transmission, developers need to opt for a tethered design if cables
can be tolerated or a wireless design to implement telemetric inter-
subsystem communication. In addition, communication protocols
should be defined.

Input signals: The type of input signals is to be characterized.
Human-generated input signals are, for example, EMG, EOG or
EEG signals.

Signal acquisition: The techniques of acquiring the input signals
needs to be decided, such as invasive or non-invasive signal acquisition
methods. The part of the body generating the signal should be readily
accessible.

Signal processing: Digital or analog signal processing methodologies
and algorithms need to be selected.

Scope of information provision and visualization: It needs to be
decided whether information (e.g., numeric intermediate or end

Thttp://www.redbooth.com
%http://www.smartsheet.com
3h‘ctp ://www.basecamp.com
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results) and visualizations (e.g., signal graphs) are intended to be
for supervisors only, for users only, for none or for both.

On the other hand, soft factors are user-centric considerations especially
factoring in the user acceptance and the approval of the social environment,
such as:

Signal coherence: To avoid user frustration the human-generated
signals need to reflect the intention of the user. To this end, user
individualization of the HMI is of prime importance to realize ac-
cessibility for an as wide as possible range of users with different
behavioral and physiological characteristics.

Aesthetic impairment: The aesthetic impact of the apparatus on
the overall visual appearance of the user is to be taken into account.
Obtrusive equipment and apparatus potentially causes a negative
response from people and social stigmatization. Therefore, subtle
cosmetics and minimum aesthetic interference are desirable. For
instance, large and obtrusive technical devices prominently placed
in front of the head might have a negative aesthetic impact.

Health risks: Developers also should think about possible endanger-
ments of the health of the user. The HMI should have the lowest
possible injury risk for the user. Precautionary measures are needed
to minimize health risks like inflammations caused by invasive data
acquisition methods.

Ergonomic efforts: The ergonomic design of the HMI is another
crucial aspect when it comes to user acceptance. Uncomfortable
stances or postures are to be avoided.

Mental efforts: In order to facilitate the overall usage of the HMI,
the developers would be well served by contemplating how to keep
down the essential mental efforts during operation. An intuitive
and easy-to-use control requiring minimum mental effort is preferred.
Moreover, it would be appreciated turning HMI operation into a
subconscious routine in the long term. As a consequence, the HMI
needs to feature motivating methods yielding minimum training
time.
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e Fault tolerance: Since system-inherent errors and user-induced errors
cannot be ruled out, the HMI requires being robust against incorrect
operation. The system is supposed to be fail-safe.

o Commercial availability: The majority of current HMIs are experi-
mental systems that are developed for research purposes. They are
solely available for a small group of subjects participating in the
corresponding research study. Oftentimes, the handicapped study
participants are not supplied with the HMI for their everyday life
after the research study.

e Low costs: Disabled persons often have large financial expenses on
realizing a comfortable everyday life due to high costs of rehabilitation
aids. In that context, the HMI is preferably as inexpensive as possible.
To this end, the enhancement of the in-place system by means of the
incorporation of standard parts (add-ons) is useful.

The set of requirements is utilized for quality management throughout
the entire development process. If needed, the set can be complemented
during the development process.

2.4 Data Acquisition, Signal Specification and
Assessment

2.4.1 Data acquisition

Depending on the desired type of input signals and the desired signal
source, the electrodes for the data acquisition need to be selected.

Considering the type of input signals, various electrode types might be
available. For instance, EEG signals can be acquired by means of surface or
implanted electrodes. As for EMG signals, surface, fine-wire or implanted
electrodes are conceivable.

The signal source that is desired also affects the type of electrodes. In case
of EMG signals, the spatial resolution is an important aspect. Surface
electrodes provide a lower spatial resolution as compared to fine-wire
electrodes. If the muscle that is selected as the EMG signal source is
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small, fine-wire electrodes typically are more eligible because they are
more precise and require less installation space than surface electrodes.
Generally speaking, the decision regarding the electrodes should carefully
consider two counterparts, namely health risks for the user and signal
quality.

The frequency of data acquisition needs to be decided once the type of
input signals and the signal source are selected. Ideally the sampling
frequency is set such that it covers all the essential information of the
biosignal. On the one hand, if the frequency is set too high it includes all
the information of the biosignal, but also creates an overhead of signal
processing and hence energy. On the other, if the frequency is set too low
it saves energy but does not include all the information.

2.4.2 Biosignal digitalization

The total number of input modalities (biosignals) I intended to be inter-
preted by the HMI is to be determined. This partly constitutes a design
decision and partly is restricted by the skills and shortcomings of the
users.

The index of input modalities is termed i € {1, ..., I}. The biosignals should
not affect each other, but rather be independent. The more independent
input modalities are available, the more degrees of freedom (DOFs) for
HMI control are available. In turn, the higher the number of DOFs, the
more diversified and complex HMI control can be realized, since each input
modality potentially controls a separate DOF simultaneously instead of
sequentially. Deploying the maximum number of acquirable biosignals is
desirable. On the other hand, to a degree, this deteriorates the usability
of the HMI as the mental effort increases.

Digital signal processing (e.g., bit operations) is easier to bring about as
compared to analog signal processing (e.g., electric circuits). By default,
the physical (analog) biosignal is defined in the time and value-continuous
domain

l'z(t) eR,t e RZO. (21)
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In order to deploy digital signal processing, the biosignal needs to be
digitized. The quantization resolution (in bits) of the analog-to-digital
converter (ADC) is referred to as n. The sampling rate or frequency (in Hz)
is termed f. This leads to time-discrete and value-discrete biosignal

zi[k] € [0,2" — 1],k € {0, ..., K}, (2.2)
where the time point of the k-th sample is

t= ; (2.3)

The last sample index is termed K. Figure illustrates the analog-to-
digital conversion process.

The digitized biosignal z;[k] ranges from 0 to 2" — 1 and reflect the
original, physical biosignal z;(t). Hence, x;[k] contains an unknown bias
together with an unknown signal-to-noise ratio. These signal distortions
are to be compensated before utilizing the biosignals for any HMI control
purposes. The digital signal process compensating the signal distortions
should eventually yield a digital, normalized biosignal in the range of 0 to 1,
since this meets the intuitive understanding of gradual activity between
0 % and 100 %.

z;(t) ;K]

lex

~
o S
~

ADC

Figure 2.2: Analog-to-digital converter (ADC) digitizing an analog signal
with respect to the quantization resolution n and the sampling rate f



44 2 Interface Design Methodology

2.4.3 Biosignal assessment paradigms

In the scientific literature two types of biosignal assessment paradigms
exist. The first category focuses on the physiological interpretation of the
biosignal. As for EMG signals, results are indicative of dysfunctioning
muscles or muscle fatigue . Regarding EEG signals, assessment
paradigms make mental fatigue of the user evident . The second type of
biosignal assessment paradigms evaluates the aptitude for HMI operation
of the biosignal rather than appraising the biosignal itself. Commonly
these paradigms assess the features or subsets of features regarding the
aptitude for HMI operation [22].

The following assessment paradigms count among the second category.
They are purely based on the amplitude of the preprocessed biosignal (e.g.,
normalized biosignal) and without the extraction of biosignal features the
assessment paradigms evaluate the aptitude for HMI operation. They
quantitatively capture the diverse abilities of the user to modify the
biosignal. To this end, they allow for inter as well as intra-individual
comparison on a numerical basis. Table provides an overview of the
assessment paradigms with respect to the biosignal quality criteria and
with respect to the demands of the HMI control.

Biosignal Assessment Biosignal quality criteria Control demand
paradigm

Duration of activity Endurance of activation Isotonicity
Rate of range activity Fine-granularity of activation Sensitivity
Response time of Promptness of activation Spontaneity
activation

Response time of Promptness of deactivation Spontaneity
deactivation

Frequency of Rate of significant activation Spontaneity
alternation changes

Table 2.1: Assessment paradigms with respect to biosignal quality criteria
and control demands

In case of an isotonic HMI control, the user is required to keep up the
biosignal activation for an extended time period. Therefore, the endurance
of biosignal activation is an essential quality criterion. On the other hand,
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if the HMI control needs to be sensitive — for instance, the range of the
biosignal amplitude is by design broken up into many countable or infinite
subranges affecting distinct consequences — then the fine-granularity of
biosignal activation is the crucial quality criterion. Moreover, if the HMI
control is promptness-critical requiring a certain degree of spontaneity —
like when the biosignal amplitude needs to be changed rapidly in certain
situations — then quality criteria such the promptness of biosignal activation
and deactivation as well as the rate of significant activation changes are of
prime interest.

Response time assessment

The minimum response time of input signal activation numerically cap-
tures how quickly the biosignal x(t) raises, for instance, positive signal
edge, caused by the response of the human user covering a predefined mag-
nitude (difference of two distinct signal levels). This quality criterion is
of importance for HMI control if the time span of input signal activation
matters. The assessment paradigm is depicted schematically in Figure
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Figure 2.3: Response time assessment of activation with exemplary signal
(=—) and stimulus (---)
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It determines the total response time of input signal activation like muscle
contraction, termed d,,. This characteristic value is represented by time
in milliseconds. It is defined as

6ra = tOT - tSta (24)

where tg; is a stipulated point in time triggering a stimulus and ts¢
is a subsequent point in time indicating that the biosignal exceeds the
predefined upper threshold xy. The total response time consists of the
response time of the human user d,, n and the response time of the system
0ra s according to

6ra = 6ra,h + 5ra,s- (25)

The point in time 44 is dependent on the actual biosignal following the
definition
th = min {t > t5t|x(t) > 569} . (26)

Analogous, the minimum response time of input signal deactivation char-
acterizes how quickly the biosignal — the negative signal edge, caused by
the response of the human user covering a predefined magnitude (differ-
ence of two distinct signal levels) — drops. In cases where the promptness
of input signal deactivation makes a difference, this quality criterion is an
important indicator. The assessment paradigm is presented in Figure

It finds the total response time of input signal deactivation, such as muscle
relaxation (referred to as d,q) represented by time in milliseconds. Its
definition reads

5rd = té

|~ ts (2.7)

where tg; denotes the point in time disappearing the stimulus and ¢; 1
is another point in time when the biosignal falls below the preset lower
threshold x;. The total response time is made up of the response time of
the human user 6,41, together with the response time of the system d,q s
according to

6rd = 5rd,h + 5rd,s~ (28)

The point in time falling below the lower threshold is defined as

tz, = min {t > tge|z(t) < x5} . (2.9)

0L
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Figure 2.4: Response time assessment of deactivation with exemplary
signal (—) and stimulus (---)

Frequency of alternation assessment

The maximum frequency of activations and deactivations of the input signal
determines how quickly the biosignal alternates the sign of the signal edge
while covering a predefined magnitude — for instance, the difference of two
distinct signal levels. If the rapidness of changes in the sign of the signal
edge matters, then this criterion is insightful. The frequency of alternation
assessment paradigm is shown in Figure

As the characteristic value of interest, this assessment identifies the maxi-
mum frequency of input signal activations and deactivations defined as

L
fi= -, (2.10)
tend

where L¢ is the total number of complete input signal activations and
deactivations (e.g., muscle contractions and relaxations), and tenq is a
predefined time.

The ongoing index Iy € {1, ...,.Z/f} represents the consecutive events of
complete input signal activations and deactivations.



48 2 Interface Design Methodology

lg= 1, 2
= Ty [ fro)
T
=
=]
.ob
wn
3]
m
.
o1 S |
torn tgya tor2 13 2 tend
Time ¢t

Figure 2.5: Frequency of alternation assessment with exemplary
signal (—) and ongoing index [ counting only the complete signal activa-
tions and deactivations

It is important to note that the input signal (originating from below x)
needs to exceed the upper threshold xyp and then fall below the lower
threshold z; again in order to be counted as a complete activation and
deactivation.

Duration of activity assessment

The duration of activity assessment quantifies how long the biosignal
activation lasts while being beyond a predefined signal level. This value
is informative for isotonic controls requiring full activation for a long
period of time. Figure illustrates the scheme of the duration of activity
assessment paradigm.

This paradigm determines the maximum duration of the input signal
activity, termed dqn,. The characteristic value is represented by time in
milliseconds. It is defined as

ddm = 15, — tor, (2.11)

where tg+ and | are defined by lb and 1 , respectively.
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Figure 2.6: Duration of activity assessment with exemplary signal (—)

Rate of range activity assessment

The rate of range activity assessment characterizes how long the biosignal
activation matches a predefined signal level subdomain as compared to
the total duration. This is of prime importance considering controls where
subdomains of the signal level carry distinct information. The paradigm
is shown with an exemplary signal in Figure

As the characteristic value of interest, this paradigm determines the relative
duration of the input signal activity 7 being within the (valid) range
between the lower threshold z; and the upper threshold zy with respect
to the total paradigm time. It is defined as

T= ﬁ, (2.12)

tend

where tenq is the total time of the paradigm and Ay, is the sum of durations
of range activity, defined as

i/rr
Ade =Y dary,- (2.13)
l

rr=1
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Figure 2.7: Rate of range activity assessment with exemplary signal (—)

The durations dq4;,,, are the]rr—th time periods when the signal is within
the valid range, I,, € {1,..., L;;}. They are defined as

5dr7lrr = tout7l“. - tin7l“-7 (214)

where tin ;.. and toue,;,, stand for the points in time when the signal goes
into and out of the valid signal range, respectively. The possibility of
both rising signals and falling signals at the upper and lower thresholds is
covered by the case differentiation

tin,l,, = Min {témlrr ) tei,lrr} ) (215)
fout,s,, = min {tm,l”, s wrr} . (2.16)
The point in time of exceeding the lower threshold 541,00 the point in time

of falling below the upper threshold tg, ;. , the point in time of exceeding

rr?
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the upper threshold ¢4, and the point in time of falling below the lower

threshold . correspond with

t54,,, = min {ta(t — At) <@g Ax(t) > x5}, (2.17)
tor,,, = min {tlz(t — At) <xg Ax(t) = zo}, (2.18)
toyr,, = min{t|z(t — At) > xg A2(t) < zp}and (2.19)
tgy, = min {t|z(t — At) > x5 Ax(t) < 25} (2.20)

Bimodal assessment

Given a bimodal HMI (i.e., receiving two input signals) if isolated activation
of only one signal at the same time is desired, this signal is typically termed
signal of interest, while the other is the reference signal. In case of isolated
biosignal activation, the biosignal of interest ideally is at its maximum
while the activation of the reference biosignal is at its minimum.

The bimodal assessment captures the portion of isolated signal activation
with respect to the biosignal of interest versus the reference biosignal. This
value represents the quality of signal isolation that is of prime interest
considering bimodal controls. The bimodal paradigm is illustrated in

Figure

This paradigm identifies the portion of isolated signal activation with
respect to the input modality of interest versus the reference input modality,
termed 7y, ; ;, defined as

s i (t) — xi (¢
rb_m-:/s zilt) =) 5, (2.21)
’ tse  Thdes(t)

2.5 Biosignal Control Ability Improvement

2.5.1 Biosignal feedback

The user operating an executing device via a HMI typically perceives the
impact of one’s own acts on the executing device (late-stage feedback).
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Figure 2.8: Bimodal assessment with exemplary signal (—) and desired
ideal bignal T, des(t) (---). The sum of activity of the biosignal of interest
f x;(t)dt (>) and the sum of activity of the reference biosignal f x;(t)dt

(///)

The biosignal feedback (early-stage feedback) provides information being
the fundamental basis of the actions of the executing device.

The feedback of the user’s “own” biosignal involve a considerable potential
for the biosignal control ability improvement. Without knowing the corre-
lation between the action of the user in hopes of the resulting biosignal
and the actual biosignal (cause-and-effect) the user is, per se, incapable
of improving the biosignal control ability. The confrontation with the
biosignal establishes that correlation. Feedback mechanisms that are easily
understandable to the user (intuitive feedback mechanisms) are to be pre-
ferred over less intuitive feedback mechanisms. In addition, the feedback
mechanisms should be direct and prompt.

Biosignal feedback in the context of HMIs can be visual, like signal repre-
sentatives visualized and displayed by computer monitors or LEDs. The
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amplitude of the biosignal can be represented by the increasing number
of flashing LEDs. Auditory biosignal feedback is another option. The fre-
quency of the generated feedback sound stands for the amplitude of the
biosignal.

Both the visual and the auditory feedback can be realized with the aid of
computer programs, such as graphical user interfaces (GUISs). For example,
GUIs have been implemented for playing Tetris with hand gestures ,
gait analysis feedback , tongue-controlled EPW navigation and
EMG-controlled robotic arms . These computer programs need to be
specifically designed and parameterized in order to meet both the task’s
as well as its user’s requirements.

2.5.2 Adaptation

The adaptation of the HMI refers to the idea that the HMI changes its
characteristics by modifying the inherent parameters. The objective is
to enhance the biosignals’ coherence of the user. In other words, HMI
adaptation methods aim at changing the signal-to-meaning mapping for
the better. The adaptation of the HMI allows for user individualization
leading to less frustration and more motivation.

Generally, user individualization applies to both inter and intra-individual
diversity. Inter-individual diversity is caused by variant physiological,
neurological or habitual attributes. For instance, the contraction of the
identical muscle but performed by different individuals typically yield
distinct signal patterns. The reasons are manifold, due to the complexity
of the human organism.

Intra-individual diversity denotes variations in signal patterns that occur
when measuring the biosignal from the same person and the same biosignal
generator but at different times. This is caused by non-stationarities —
time-variations — in the biosignal. Intra-individual diversity also appears
when measuring the biosignal from the same person but from distinct
biosignal generators (e.g., different muscles).

Three types of parameter adaptation methods are identified, namely

1. open-loop offline adaptation,
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2. closed-loop offline adaptation, and
3. closed-loop online adaptation.

Open-loop offline adaptation methods are applied once a session, depicted
in Figure The adaptation takes place ahead of the application in or-
der to determine suitable parameter values for the human user. The user
is guided through a fixed procedure to identify the parameter values auto-
matically once started by the human supervisor. During the application
the user operates the HMI applying these settings. Once set in the adap-
tation, it is not possible to modify the settings during the application,
meaning the adaptation is open-loop. The application itself is referred to
as being an online process. On the other hand, as the adaptation is per-
formed when the actual application is inactive or paused, the adaptation
is considered being an offline process. The open-loop offline adaptation
poses the risk of determining inapt parameters that are applied throughout
the sessions.

Session start

Session end

Figure 2.9: Course of events from session start to open-loop offline adap-
tation to online application to session end

Closed-loop offline adaptation methods, as pictured in Figure[2.10} feedback
user-specific information extracted from the application that is utilized
for the calculation of new, suitable parameter values for the human user.
In order to process that information the application needs to be paused.
Closed-loop offline adaptation is of particular interest for time-variant
signals and non-stationary processes. On the other hand, closed-loop
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adaptation methods potentially pose the risk of confusing the human user
since making an appropriate mental model of the (ever-changing) HMI
becomes more difficult.

Session start

Online!

Session end

Figure 2.10: Course of events from session start to closed-loop offline
adaptation to online application to session end

The closed-loop online adaptation methods, as shown in Figure
constantly extract the user-specific information during the application in
order to recalculate optimal parameter values “on the fly” and instantly
apply those. These methods necessitate criteria for assessing the quality
of signal coherence. As an option, the offline adaptation can be performed
before the application phase begins.

Session start

Online
PR

Adaptation

Application

Session end

Figure 2.11: Course of events from session start to closed-loop online
adaptation to online application to session end
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2.5.3 Gamification

Maintaining the motivation of the user as high as possible for a long period
of time plays a key role when it comes to improving the biosignal control
ability. In the fourth step, developers need to come up with methods to
encourage the users so that they are willing to practice and to improve
the biosignal control ability in order to master the HMI control. To this
end, the gamification of HMIs is an useful technique.

The umbrella term “gamification” refers to the general idea of utilizing
elements and mechanisms that are typical in video, card and board games
in a non-game contexts . Those game elements and mechanics in
non-game contexts serve the purpose of engaging the users and enabling
the users to solve problems . Gamification does not mean the user
plays a fully-fledged game. Rather, gamification merely modifies single
aspects of an application that can be virtual (computer application) or
physical (tangible device). These modifications affect the application that
probably is considered dull or tedious in a positive manner so the user
obtains pleasure dealing with it. Such applications are referred to as
gamified applications .

The concept of gamification can be applied in various non-game fields
such as education or physical exercising. One of the main intentions of
applying gamification in non-game fields is to improve user engagement,
performance and experience .

Figure visualizes the principle of gamification. Gamification enhances
the application with motivational affordances, meaning game elements and
mechanisms. The gamified applications invoke psychological experiences
for the user similar to those found in games. As a consequence, the
motivational affordances cause certain psychological outcomes which, in
turn, effect distinct behavioral outcomes . These outcomes are what
the HMI developers strive for.

In the context of HMI development, the idea of designing interfaces that
are more delightful to use dates back some centuries [120]. Various HMIs
associated with diverse gamification were developed — like playing Tetris —
by means of hand gestures .
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Application

’ Motivational affordances ‘

’ Psychological outcomes ‘

’ Behavioral outcomes ‘

Figure 2.12: Principle of gamification (modified from )

In [75] various empirical studies on gamification were reviewed. The ma-
jority of these studies reported positive effects due to the gamification
implementation. On the other hand, it was assumed that the positive im-
plications are caused by a novelty effect that most likely does not work
long-term . Moreover, it was assumed that removing gamifica-
tion implementation after adding it in the first place affects the results

negatively .

When gamifying applications developers need to consider two major aspects,
namely

e how to motivate the users to keep practicing HMI control for the
long term (i.e., how to gamify the HMI), and

o which skills are most appropriate to be practiced by the gamified
HMI for accurate control.

2.5.4 Training

It is also feasible to improve the biosignal control ability through training
in the traditional understanding (repetitions over time). The training
ideally

e is geared to the needs of the specific HMI,

e is structured in a way that is unambiguous and lucid to the user,
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e provides the user with a sufficient amount of time for practicing,

o provides the supervising persons with means to quantify the user’s
skill,

e is customizable to some extend meeting the needs of the user, and

« is entertaining as well as enjoyable for the user (through gamification,
cf. Section|2.5.3).

The improvement of the control ability is measurable. The average control
ability Eg’e’t over all users (index u = 1,...,U), over all environments

(index e = 1,..., E) and over all trials (index t = 1, ..., T') per day is defined
as ~

1 L1 &1 &
== 22 (7 2 caner | ] (2.22)
u=1 e=1

t=1

N

where ¢g ¢+ denotes the result of User u within the Environment e at the
Trial ¢t on Day d.

2.6 Biosignal Interpretation

Developers of HMIs need to take the biosignal interpretation into consid-
eration. Generally, the control signal generator works as an interpreter
converting (human-generated) biosignals that are unintelligible for the ex-
ecuting device into signals that are. In other words, it receives one or
several preprocessed biosignals and outputs one or several control signals,
as shown in Figure The generation of the control signals is based on
the algorithmic interpretation of the preprocessed biosignals.

Preprocessed 7 Cs(i)nrizr;l)l _’ Control sig-
biosignal(s) &[k] gengrator L, nal(s) ¥[k]

Figure 2.13: Control signal generator converting preprocessed biosignals
into control signals
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The main objective of the control signal generator is meeting the specifica-
tions of the human-generated signal as well as meeting the specifications
of the expected input signals of the executing device and converting these.
To accomplish that, there are numerous algorithmic conversions between
input signals and output signals feasible.

In general, the control signal generator can be seen as a function mapping
one or multiple input signals £[k] onto one or multiple output signals t[k]
according to

§[k] — [k (2.23)

The control signals necessarily meet the specifications of the expected input
signals of the executing device. Each executing device requires distinct
control signals.

Providing an example, navigation applications — like steering an electric-
powered wheelchair — necessitate two control signals for both translation
(propulsion) and rotation (steer angle). On the other hand, abstract game
applications such as Tetris require control signals covering the left and
right shift as well as the spin. Virtual and physical executing devices
typically expect different control signals.

With respect to the biosignals, the individual abilities and shortcomings
of the users vary. This is due to personal preferences and distinct personal
skills. As for persons with disabilities, the residual bodily functions may
vary, depending on the exact disability. Therefore, both the number and
the characteristics of the available biosignals vary inter-individually.

2.7 Technical Implementation

Eventually, the developers need to realize the HMI. The technical im-
plementation of a HMI includes both, the hardware and the software
implementation.

As for the hardware implementation, a number of design decisions need to
be made:
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Platform: The operating system MS Windows and Unix are mutually
exclusive, whereas MS Windows is more widespread. Cross-platform
developments combine platforms that are natively complementary
but are typically more complex to develop. Another option is to
develop for mobile platforms.

Topology: The logical and physical topologies of the subsystem
network are, for instance, ring, star, tree or line.

Inter-subsystem communication: As for electrical inter-subsystem
communication, the design options are, for example, tethered or
wireless.

Intelligent subsystems: The usage of microcontrollers as intelligent
subsystems allows the developers to design a subsystem network that
is decentralized from the signal processing point of view.

Electronics development: Developers either make use of development
kits by commercial electronics vendors or make their own electronics
in-house.

Regarding the software implementation, further design decisions are re-
quired to be made:

e Programming paradigm: The software can follow diverse paradigms

like procedural programming, object-oriented programming or sym-
bolic programming.

Programming language: Depending on the preferences of the devel-
opers, the software can be written in a lot of different programming
languages, some of which are C, C++, Java, Matlab or LISP.

Architectural patterns: The software architectural patterns for di-
verse main tasks of the software are, for instance, presentation-
abstraction control, model-view controller or model-view presenter.



2.8 Contribution of the Interface Design Methodology 61

2.8 Contribution of the Interface Design
Methodology

The interface design methodology covers Item 1 in the list of open problems
as formulated in Section

It addresses the lack of specific design methodologies that are dedicated to
the development of HMIs. It provides a guidance for developers seeking to
establish HMIs. As opposed to traditional design tools aiming mostly at
general product engineering and in contrast to user interface design tools
emphasizing psychological aspects, this novel interface design methodol-
ogy concerns the development of HMIs that receive biosignals generated
by human users and output control signals for the executing devices. It
covers subjects that are specific to HMIs and relevant for the develop-
ers, such as target group and scope state analyses, data acquisition and
signal assessments, biosignal control ability improvement and biosignal
interpretation.






3 Adaptive Muscle Interface

3.1 Applying Interface Design Methodology for
the Adaptive Muscle Interface

In this chapter a novel HMI based on the interpretation of two independent
muscle signals (EMG signals) is proposed. As opposed to brain-computer
interfaces (BCIs) dealing with EEG signals, EMG signals are more robust
and provide higher information transfer rates . The experimental plat-
forms of this HMI are firstly, virtual environments visualized on computer
displays and secondly, an electric-powered wheelchair. This HMI is first
and foremost developed for people living with tetraplegia.

The muscle interface is about to be
e adaptive, in order to meet the characteristics of the individual user,

e easy-to-learn, allowing the user to accomplish a decent level of control
accuracy within an acceptable period of time, and

e multipurpose, to be applicable for a variety of scenarios.

The development of this HMI follows the steps of the proposed design
methodology (cf. Chapter .

Figure illustrates the specific instantiation of the interface design
methodology, as introduced in Figure for the adaptive muscle inter-
face. The key requirements include that the development should aim at
persons living with tetraplegia, EMG signals from the ears should be the
biosignal generator, the aesthetical impairment caused by the HMI should
be minimal, distinct user and base station sites should coexist while the
inter-subsystem communication should be wireless.
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Figure 3.1: Development process of the adaptive muscle interface with
representative characteristics as the set of requirements

3.2 Target Group and Scope Statement
Analyses

The intended target group contains both persons with physical handicaps as
well as able-bodied persons. Examples of persons with physical handicaps
include those living with tetraplegia, persons suffering from paraplegia
with difficulties moving upper extremities due to spasticities, persons with
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limbs amputated. As for the able-bodied persons, “hand-free control”
or “third-hand control” applications are of particular interest. However,
the focus of development lies on persons with highly located SCIs and
with tetraplegia, since it is assumed that able-bodied persons are capable
of operating HMIs that were developed especially for and dedicated to
persons of this target group.

Persons with tetraplegia have potential access to windows of communication
based on facial muscles like eyebrows and lids, forehead, and tongue.
Apart from these, head movements (induced by neck muscle activity),
oral sounds, speech and brain activity signals can serve as windows of
communication. In research studies, experimental system implementations
of the aforementioned windows of communication were tested . A
standardized patient care for persons with tetraplegia allowing for an active
participation in social life by means of HMIs does not exist to date.

Figure portrays the system partitioning and the signal flow of the
proposed HMI. At the user site it includes two sensors, EMG sensor 1
and EMG sensor 2, acquiring the human-generated biosignals as well
as a microcontroller unit (MCU) termed end-device (MCU-ED). The
base station site contains the access-point (MCU-AP) and the graphical
user interface (GUI). These components constitute the human-machine
interface by which the human user is enabled to operate virtual executive
devices and physical executive devices.

The input signals are myoelectric signals (MESs) — that being signals
originating from electromyography (EMG). In this work the extrinsic ear
muscles as well as the forearm muscles are acquired. The technique of signal
acquisition can be both invasive — by means of fine-wire EMG (fwEMG)
— or non-invasive — with the aid of surface EMG (SEMG). The signals
are digitized by the MCU-ED and digitally processed by a GUI. The
GUI also provides means to set up the scope of information provision
and visualization. Usually the supervisor is provided with the full range
of information while the user is exposed to certain relevant information.
To achieve a high level of signal coherence the GUI implements user
individualization methods.

The aesthetic impairment of the HMI on the user should be as small as
possible in order to avoid social stigmatization.
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The communication between the user site and the base station site is
wireless. This provides the user with a high degree of flexibility. The
design enables the user to operate the executing device telemetrically.

3.3 Data Acquisition

3.3.1 Levels of system integration

The proposed HMI is generally applicable with
e surface electrodes,
e fine-wire electrodes, and
e implants.

The use of surface electrodes is the safest way to acquire data since the
health risk to the user is practically zero. The electrodes merely touch
the skin without penetrating it. However, the quality of the biosignals
potentially suffers from displacements of the electrodes or skin perspiration.
In addition, surface electrodes acquire the sum of a lot of muscle fascicles
covered by the area of the electrode and therefore provide only minor
spatial resolution. The system integration making use of surface electrodes
from the bilateral forearm muscles is approved in this work.

On the contrary, the use of fine-wire electrodes implies the minimally
invasive penetration of the skin (subcutaneous) and thus poses a potential
health risk to the user. There is a certain risk of local inflammation
of the skin but it can be reduced to a minimum via hygiene standards.
Advantageously, it yields high-quality biosignals without taking the risk
of electrode displacements or skin perspiration. The fine-wire electrodes
warrant a higher spatial resolution compared to the surface electrodes.
In this work fine-wire electrodes are tested for the bilateral extrinsic ear
muscles.

Implants need to be surgically inserted into the human body. For instance,
during or after the surgical operation complications may appear. They
pose the highest potential risk for the human user, but on the other
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hand potentially yield the highest quality biosignals. This level of system
integration is not tested in the scope of this work.

3.3.2 Forearm muscle signals

Figure shows the acquisition of MESs from the forearm muscles. These
muscles are rather large, so good quality biosignals are acquirable even
through sEMG electrodes. In order to reduce signal artifacts caused by
electrode displacements the sEMG electrodes are fastened by means of
cuffs. The skin is wet locally at the position of the electrodes to warrant
decent electric conductivity .

In case the upper extremities of the human user are in working order the
sEMG electrodes can be placed at the extensor digitorum muscle together
with the extensor carpi ulnaris muscle at the dorsal side.

Figure 3.3: Surface EMG electrodes placed at the dorsal side of the user’s
forearms and fastened through cuffs [209)
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If the user is incapable of activating one forearm — due to stroke, hemiplegia,
spasticity or amputation — the two SEMG electrodes can be placed at the
dorsal and ventral sides of the other forearm respectively. The flexor carpi
radialis muscle and the pronator teres muscle at the ventral side as well as
the extensor digitorum muscle and the extensor carpi ulnaris muscle at
the dorsal side serve as muscle signal generators.

3.3.3 External ear muscle signals

The external ear muscles (cf. Section are well suited to serve as
sources for the EMG-based HMI since they are voluntarily controllable
even in individuals with high-level tetraplegia. In addition, the minimal
interference with other activities and the easy accessibility represent ma-
jor advantages as compared to other HMIs dedicated to persons with

tetraplegia .

As both the length and the cross-sectional area of the posterior auricular
muscle are significantly smaller as compared to major muscles like forearm
muscles, the muscle force is smaller and needs to be acquired with the
aid of fwEMG electrodes. Moreover, the shortage of space behind the ear
exacerbates the application of sSEMG electrodes. Figure shows the
backside of the right ear with inserted fine-wires.

Each fwEMG electrode system consists of two fine-wire electrodes, one
sEMG electrode and the housing containing the electronics such as the
signal amplifier. The fine-wire electrodes are of 6 cm length and 50 pm
diameter. In order to place the fine-wire electrodes beneath the skin
(subcutaneously), a hollow needle, referred to as canula, carrying the
fine-wire electrode pierces the skin as depicted in Figure The primary
fine-wire electrode is positioned right at the posterior auricular muscle.

The secondary fine-wire electrode is positioned at the backside of the
external ear (retroauricularly) as presented in Figure The non-
invasive SEMG electrode is placed at the earlobe to determine the electrical
ground as reference. The pigtails of the fine-wire electrodes are electrically
connected to the fwWEMG electrode system with small metal springs.
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(a) Canula pierces the skin to posi- (b) Primary and secondary fire-wire elec-
tion the primary fine-wire electrode trodes

Figure 3.4: Positioning of fine-wire EMG electrodes behind the ear!

The muscle action potential is defined as the difference between the primary
and the secondary fine-wire electrode. Both fwEMG electrode systems are
attached to goggles on both sides.

The goggles are worn by the user during the application, as shown in
Figure The aesthetic impairment of the HMI on the user is reduced to
a minimum. The EMG sensors and metrological apparatuses that pick up
extrinsic ear muscle signals are covered by the ears. There is no obtrusive
equipment needed in the face of the human user.

LCourtesy of D. Liebetanz, University Medical Center Géttingen
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Figure 3.5: Right lateral fwEMG electrode system attached to goggles?

3.4 Biosignals of EMG Control

The total number of input modalities for the proposed HMI is limited to
I = 2 as humans have two ears and two forearms. By definition, these
input modalities are

i = {1 ,muscle activity of left flank (3.1)

2, muscle activity of right flank °

At either flanks, the differential EMG signal (between primary and sec-
ondary fine-wire electrodes) get amplified (gain = 1.000), band-pass filtered

2Courtesy of D. Liebetanz, University Medical Center Géttingen
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(4th order Butterworth filter, 20-1.000 Hz), digitized (sampling frequency
2.000 Hz) and digitally down-sampled to 125 Hz [172]. These prepro-
cessed, digitized biosignals of both the left and the right muscle are x;[k]
(cf. (2.2)) with the quantization resolution n = 10. The signals z;[k] are
processed in real time by the consecutive operations rectification, filtering
and normalization, depicted in Figure

Digital preprocessed signal,
l ;K]
Rectification (cf. Appendix |A.5.2)

Parameters: g;, Tfglvl,i

Digital rectified signal, z. ;[k]

Filtering (cf. Appendix|A.5.3)

Parameters: a;, m;

Digital filtered signal, xf;[k]
Normalization (cf. Appendix [A.5.4)

Parameters: Zfmin,i, Tfmax,i

l Digital normalized signal, z,, ;[k]

Figure 3.6: Work flow diagram of digital signal normalization showing the
processing stages and the processed digital signals

Each processing stage is characterized by distinct parameters. The gain
constant g; and the ground level parameter x¢g1v1,; specify the rectifica-
tion. The trade-off parameter for IIR-filtering a; as well as the window
width parameter m; describe the filtering. Eventually, both the minimum
parameter Tfmin; and the maximum parameter xfmax ; characterize the
normalization.

The filtered signal is defined as

m;

1
wgi[k]=a;wei[k—1]+(1—-a;)- m_+1'Z(gi"%[k—l]—ﬂff,glvl,i’){ (3.2)
v 1=0
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and the normalized signal reads

1 7lf l’f@[/ﬂ} S (xf,max,i» 2" — 1]
nilk] = M Jif 2ei[k] € [Teming, Temaxi] » (3-3)
0 s if Tt [k} € [0, xf,min,i)

where the control range p is defined as

P = Tfmax,i — Lfmin,i- (34)

Treating g;, a;, m; and x¢ 11, as system-specific constants, the normalized
signal depends on the preprocessed signal as well as the user-specific
parameters Tfmax,; and Zfmin,; according to

xrl7i[k] = f(xl[k]a Tf max,i» xf,min,i)- (35)

The digital signal processing is described in detail in the Appendix

The proposed HMI is supposed to feature an isotonic (cf. Section [1.2.3),
multi-level signal amplitude and promptness-critical control (cf. Sec-

tion .

3.5 Biosignal Control Ability Improvement

3.5.1 Open-Loop unimodal calibration

The sensor calibration method is executed for each sensor — that is, left
and right flank (¢ € {1,2}) — separately. This is required since the left
and right flank muscles are not perfectly balanced by nature because of
anatomical and neurological imperfections. The method compensates this
natural imbalance. It finds user-individual parameters, essential for the
digital signal normalization (cf. Appendix , namely

* Zfmin,; (Minimum parameter), responsible for canceling out user-
individual base levels of muscle tension,
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* Tfmax, (Maximum parameter), standing for the user-individual, max-
imum possible muscle tension, and

o Tigivi,; (ground level parameter), representing the system-inherent
base levels of the acquired signal.

The user generates low-level (index symbol /) — that is, muscle relaxation
— and high-level (index symbol #) — that is, muscle contraction — activities
successively producing the finite calibration signal z; ,[k] where p €
{1,..., P} is the index of low-level-high-level iterations and P is the total
number of these iterations. It is set to P = 3 to have a crisp procedure.
The finite calibration signal ¢, ,[k] holds K, samples in total. K, is
defined as a sum according to

Kp = Kv[yp + Kﬁ’p, (3.6)

it is the endmost discrete time index of z¢; »[k]. The endmost discrete
time indices of the low-level and high-level activities are K, and Kj ,,
respectively.

Figure shows an exemplary finite calibration signal that is idealized for
the sake of clear depiction. For better understanding, the signals x; 1[k],
xg,2[k] and xg; 3[k] are illustrated with rising edges and in ascending
order. This way, the top-end values xf op ;,p are unambiguously depicted.
The top-end values are essential for the determination of the sought-for
maximum parameters Tfmax,i-

As for this simplified example, the medium-end values as well as the
bottom-end values equal zero. That is, they are not explicitly depicted in

Figure

The user is urged by the supervisor to perform moderate high-level activities
that are not at the physiological maximum. If the user performed high-level
activities at the physiological maximum they will be required to generate
such high-level signals in the application phase as well. Repeatedly high-
level signals involve the risk of early exhaustion and fatigue — hence, it is
not desired.
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Figure 3.7: Sensor calibration with exemplary calibration signal x¢; ,[k]
(—) and resulting top-end values @ top,ip (quantile 1-q)

Each of the finite calibration signals x¢; p[k| (i.e., the values of the p-th
time series) are ordered by decreasing numerical value according to

2250 [C] = @4 plke], with (3.7)
Tt plkc] > @tip[kct1], and

{kla B kZ} = {17 "'7I~{p}7

where ¢ € {k1, ..., k3 } represents the index of the ordered finite calibration
signal. The index of the largest numerical value is k; while k; is the index
of the smallest numerical value.

The medium-end ¢ med,i,, of the p-th finite calibration signal equals the
median of the ordered, finite calibration signal x?rldp [¢]. As for the determi-
nation of the medium-end value with the aid of the median, it is essential
to meet the condition

~ 1 -~

Kip < §Kp' (3.10)
The p-th bottom-end value xf ot p is defined as quantile ¢ of the ordered,
finite calibration signal. Likewise, the p-th top-end value zftop,p is
determined as quantile 1 — ¢. It is ¢ € [0,0.5). The median and the
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quantiles are known as robust statistics, meaning they are not overly
effected by outliers within the signals. When it comes to outliers, the
robust statistics outperform the arithmetic mean and the sample minimum
and sample maximum, respectively. The parameter values are set according
to the definitions

Thtop,inp = T2k g, (3.11)
Timed,ip = Tf5p ko 5], and (3.12)
Tfbot,i,p — ac?;dp [k;], (313)

where ki_, ki 5 and kj; denote the indices of the ordered, finite calibration
signal. They are defined as

ko= —1) - (1-q)], (3.14)
kis=[(Kp,—1)-05], and (3.15)
ki=|(K,—1)-q. (3.16)

The operators |.| stand for the numerical rounding off. The indices allow
for the computation of the median and quantiles, notwithstanding the
parity of the finite signal, whether K, is odd or even.

The parameter values are averaged with

1 P

Tfmax,i — &= ° g Tt top,i,ps (317)
p=1
1 P

Teglvl,i = = - E Zf,med,i,p, and (3.18)
p=1

H
=

Zf,bot,i,p- (319)

Tf min,i — F :
3.5.2 Open-loop bimodal calibration with linearization

In case of bimodal biosignal control, beside the activity of the intended
input modality there is oftentimes a certain activity level in the other
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input modality that does not correspond to the intention of the user. This
phenomenon of unintended interference between acquired signals is referred
to as crosstalk (index symbol xT').

Providing an example, if persons attempt to activate only the left extrinsic
ear muscle the right extrinsic ear muscle most likely also will be acti-
vated unintentionally. In particular, inexperienced users have difficulties
activating facial muscles independently due to the presence of crosstalk.

The two-dimensional, linear regression stipulates the two outcome values.
Given the user-individual amplitudes of the input modalities, the sought-
for regression parameter values match the input values with the output
values.

The following user-individual regression parameters that are crucial for
the crosstalk compensation (i.e., improving differential control quality) are
determined

oy (first crosstalk compensation parameter), representing the factor
amplifying the first biosignal, and

o ayre (second crosstalk compensation parameter), standing for the
second biosignal amplifier.

Differential control is based on the difference of activity signals of two
input modalities such as

Tna12[k] = 21 [k] — zn2[k] € [wi,w], (3.20)

where x, a12[k] is the bimodal differential signal, w; and w, stand for the
lower and upper bounds of the differential signal (i.e., denoting the range
of the differential signal). Bimodal calibration is executed for both input
modalities.

Ideally, both input modalities are independent and uncorrelated. In that
case it is

w = —1, (3.21)
wy = 1. (3.22)

Formally, given two input modalities, the unintended crosstalk in ¢ = 2
when only the activity in ¢ = 1 is intended is referred to as xy 1,2. On
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the other hand, the unintended crosstalk in ¢ = 1 when only the activity
in 4 = 2 is intended is denoted as x,, 2¢r1 in the remainder of this work. In
other words, the intended input modality is the first-mentioned while the
unintended input modality is the second-mentioned. The two scalar values,
Zn, 1,2 and zp 2,71, are found by the bimodal calibration as intermediate
results for the calculation of a1 and ays.

The more prominent the crosstalk is, the more aggravated the differential
control becomes. If crosstalk is present, the quality of the differential
signal typically deteriorates because the range of the differential signal is
reduced and the lower and upper bounds are

—l<w <w, <1 (3.23)

The compensation for crosstalk aims at restoring the full range of the
difference signal (i.e., w; = —1 and w, = 1). The crosstalk compensation
for two input modalities is based on the two-dimensional, linear regression
model defined as

wy = X g 0. (3.24)

The desired outcome vector w,; holds the target output values w; and wy

and is defined as
w -1
wr=(2)=(7), 525)

the transformation matrix X , contains the measured crosstalk activities
for both input modalities and is written as

X, = ( ! otz ) (3.26)

Tn,2x11

The coeflicient vector e, holds the unknown coefficients that are to be

determined
Q= ( art > (3.27)

Qyr2

As opposed to the sensor calibration, the bimodal calibration considers the
interference between both input modalities. First, the user is prompted to
generate high-level activity in ¢ = 1 while generating low-level activity in
1 = 2. Second, the user is asked to generate high-level activity in i = 2
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and generating low-level activity in ¢ = 1 at the same time. The user
guidance of the bimodal calibration is identical with the user guidance of
the open-loop sensor calibration (cf. Section, that is, P = 3, yielding
the finite calibration signal xy, ; »[k]. Figure illustrates the simplified
and idealized calibration signals of the bimodal calibration.

Analogous to the sensor calibration, the finite calibration signal x, ; (k]

gets ordered by decreasing numerical value (cf. (3.7), (3.8) and (3.9)). This

leads to the ordered, finite calibration signal 2375 [¢].

The unintended crosstalks of the p-th iteration are

Tn172,p = ng;p[kf_q], and (3.28)

Tty = 205 [k, (3.29)

Averaging over P yields

P
1
Tn 12 = F : fon,lxm,p» and (3~30)
p=1
1 P
Tn2xT1 = = ° fon,z«rl,p (3~31)
P =

Solving (3.24), the model coefficients are calculated following the formu-
las

1+ 2n10r
oy = — T EWLTZ g (3.32)
1— 2,102 - Tn2ut
14+ zn 201

1—2n 102 - To2ut

(3.33)

Qyr2 =

The detailed procedure of solution is presented in the Appendix In
the application phase, crosstalk compensation for a bimodal differential
signal (cf. ) is accomplished by applying the equation for crosstalk
compensation according to

ToATo K] = vt - o1 [K] + o - o[K] € [-1,1]. (3.34)
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Figure 3.8: Bimodal calibration with exemplary calibration signals x, 1 ,[k]
(intended, —) and @,,2 ,[k] (unintended, ---) and resulting parameters
Tn1v2,p (unintended crosstalk in i = 2)

The model coefficients a1 and oo are to be determined in the calibration
phase. The signal is equal to —1 if the user intentionally activates i = 1
and unintentionally activates ¢ = 2 to the extent of xy, 1,2. Vice versa, it
is equal to +1 if the user intentionally activates ¢ = 2 and unintentionally
activates muscle 7 = 1 to the extent of x, 2.1.

The compensated difference signal is coherent and matches the intention
of the user by design. It gradually ranges from its lower limit -1 to its
upper limit 41, so it is suitable for representing bends of different degrees
for electric-powered wheelchairs.

On the other hand, if the crosstalk drifts over time, the compensated
difference signal may exceed the limits -1 and 41, respectively. Therefore,
the crosstalk compensation needs to be performed repeatedly. Moreover,
the compensated difference signal basically results from the linear regression
(cf. (3.24)). Hence, it is incapable of embodying non-linear characteristics
some user might reveal in bimodal biosignal control. The high dimensional
approach of the bimodal calibration is presented in .
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3.5.3 Open-loop bimodal calibration without linearization

Difference models result in signals that are based on two normalized input
signals. The objective is to compensate for the user-individual crosstalk
for as many scenarios as possible. Those scenarios generally include all
types of different combinations of the two normalized input signals and
different degrees of crosstalk.

While pursuing the mentioned objective, the difference signal should feature
the desired characteristics smoothness, flatness at value zero, coverage of
the full range of values and boundary by values -1 and +1. Various models
without linear regression were developed presented in this section.

For the better legibility the following short forms are introduced

xn 1[k] short “ny”, and (3.35)
xp 2[k] short “ng”. (3.36)

The main idea of model V1 is to have a model that is simple, user-individual
and feature the desired characteristics at the same time. The difference
signal is defined as

o ntalk] — x[101,&,§00]
V1 _ n, min,A1l
T, a12[K] = 2 [1,..,100] _ [101,...,200] L, (3.37)

max,A12 l‘min,AIQ

where the signal z, a12[k] was defined earlier (cf. (3.20)). The user-

individual, scalar parameters x[wl"”’QOO] res x[l""’mo] are the minimum
) p min,A12 P Tiax,A12

resp. maximum values of the difference between the signals z,, ; and zy, 2
in specific time sections k£ = 101, ...,200 resp. £ = 1, ...,100. Consequently,
they follow the definitions

o123 = min {1 [101, ..., 200] — 2, 5[101, ..., 200]} , and ~ (3.38)
zlbo N = max {zna[1, ..., 100] — 2n2[1, ..., 100} . (3.39)

Model V2 makes use of three cases in order to handle the different scenarios.
The usage of cases depends on the signal value of x, a12[k]. A threshold
value of 10 % was fixed as an indicator for a slight difference between the
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two normalized input signals. Its difference signal follows the definition
given by

m . xn7A12[k] ,1f xn7A12 [k] > 01
max,A12
I‘X2Al2[k] = *m . CCH7A12UC] ,lf $H7A12[k] < 701 . (340)
min,A12
Tn A12[k] ,else

As a version, in model V2A the usage of cases depends on the value of the
larger of the two signals. The corresponding signal is defined as

ﬁ - Ty, A12[K] ,if max {ny,na} > 0.1
max,A12
xXQAAlQ[k] = —ﬁ - xna12k] L if max {ny,ne} < —0.1. (3.41)
min,A12
Zn A12]k] ,else

Difference model V3 defines two cases. The use of cases depends on

) A1o[k]. The difference signal is

\/J?XlAlz[k‘] -max {ny,na} ,if xxlAm[k] >0

xX,SAu (k] = \/

Model V3B is consistent with model V3 but with a superordinated case.
The definition of the difference signal reads

(3.42)

xxlAu[k]‘ -max {ny,ng} ,if xxlAu[k] <0

zY3 k] Lifni4+ne >0
xx?fw[k] = {O e else . (3.43)
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The difference model V4 defines seven cases seeking to cover the scenarios
as well as possible. The difference signal is

YAk it > Ak i < v

T, ~xr\1/’3Alz[kz] ,if ng > na A xigiigéool >vAng > Yo

mXQAm[k] ,if ng > na A ajglgi:”A'szO] >vAng <Yy
ryhnlkl = eV okl i <ne AwliAY) >0 ’

Ts- mxg’Au[k] ,if ng < na A xEunAul)g] <—-vAng >7Ty

x}{iu[k] ,if ng < na A xLllmAl(l)g] <—vAn <Yy

x?{ilz [k] ,else
(3.44)

where the threshold v is a predefined parameter and the terms of Y read

101,...,200
Ti=1+alood (3.45)
Ty=1-ab)0, (3.46)
Ts=1- mﬁ’i;'igg] and (3.47)
Ty =1+alo i (3.48)

3.5.4 Closed-loop offline parameter adaptation

The open-loop methods presented in Sections [3.5.1] [3.5.2] [3.5.3] can be
executed repeatedly whenever the application is paused. However, there
is no feedback information from the application. Therefore, the only way
of coping with drifts (i.e., non-stationarities) in the signal is to repeat
the parameter adaptation. Closed-loop adaptation methods make use of
feedback information and aim at obviating the need for repeated parameter
adaptation steps. Instead these methods want to re-adapt “on-the-fly”.

In , the idea of the closed-loop offline adaptation was proposed and
refined in 7 as illustrated in Figure The EMG signals of the
human user are acquired and transmitted to the HMI. In turn, it computes
control signals and sends those to the task where features are extracted
standing for the degree of fulfillment of the task. The extracted features
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are forwarded to the adaptation of the HMI (Adapt. HMI) that adjusts
the behavior of the HMI represented by the parameter vector defined as

ngI = (ai7 iy Tf min,is mf,max,i); (349)

where the contained parameters are defined previously (cf. Section .
In \\ Zfglvl,s Was not changed by the closed-loop parameter adapta-
tion.

Feedback
signals

Pu : Adapt. 3
i | HMI ‘

' PaMI Control :

signals Features| 1

Task |

Figure 3.9: Co-adaptive training environment for closed-loop offline adap-

tation (modified from [211])

In addition, the features could be forwarded to the adaptation of the
training environment (TE). The training environment, represented by the
parameter vector pry, contains meta-descriptions like task settings and
difficulty level.

The training environment generates multimodal feedback signals and sends
those to the human user who makes up a mental model of both the HMI
and the training environment represented by py. The human user, as
an adaptive system by default, constantly (subconsciously or consciously)
changes the mental model (Adapt. H) in one’s mind.

Parameters get adapted offline in a closed-loop scheme based on multiple
features by a single-objective optimization. Features such as the completion
time and the path error are extracted from the task — for instance, an
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obstacle course with a predefined ideal trajectory — and a scalar-valued
evaluation score is computed. The single-objective optimization problem
is formulated as

Popt = argmax Q(Pum1> Pres Pr), (3.50)

PumiPTE

where @ is the scalar-valued user performance estimate (evaluation number)
for the current trial.

The optimization problem (cf. ) cannot be solved directly but can-
didate values for optimal parameters can be found by varying parameter
values between trials. Hence, ) is to be maximized by altering the param-
eter values. The user performs the subsequent trial applying the newly
determined parameter values p,,y. Only parameter sets pyy and prg can
be varied while py cannot be affected. The scalar-valued user performance
estimate for each trial is calculated according to

Q(Pum1 PrEs Pr) = ngv (3.51)

where w denotes the algorithm control vector containing the weights
associated with the extracted features g according to

invar? b a‘nd (352)
gT = (:rinvar; Ainvar)» (353)

w! = (wT' wAiuvax-)

where Tinyar € [0, 1] is the normalized completion time and Aj,yar € [0, 1]
is the normalized path error. For the sake of simplicity, the number of
extracted features was reduced in [211] as compared to [210].

In order to assess the fulfillment of a navigation task, the completion time
and the path error are well-suited features. They reflect the ability of the
user to navigate in a fast and accurate manner.

The calculus in lb enables to quantify the user performance when oper-
ating an EMG-based HMI. It allows for adaptation of certain parameters
depending on the current user performance in a given task.



86 3 Adaptive Muscle Interface

Extreme values in g; should have only a little effect on g; invar. Therefore,
the limits are desired to be

lim v;(g;) =0 , and 3.54
o vi(gi) an (3.54)
gllirgw vi(g:) = 1. (3.55)

The feature normalization is accomplished by means of the arc tangent
functions defined as

Z —arctan(yr - (T — Temp) - Te;nlp)

VT(T) = ﬂnvar =2 T y and (356)
I — arctan (A = Acmp) - AL
I/A(A) == Ainvalr == 2 (fYA (7'[‘ p) P) ) (357)

where 7" and A denote the unnormalized features together with Temp
and A.pp representing empirical values for either features. The scaling
parameters vy and ya can be set individually as required. The functions

are depicted in Figure

& <
00 0.5 1 1.5
T [ms] 100 Alpx] 10
(a) vp(T) with Temp and yp = 4 (b) vaA(A) with Aemp and ya =4

Figure 3.10: Feature normalization functions (—) with corresponding
empirical values (---) (modified from [211])

As an approach to solve the optimization problem (cf. (3.50)) the heuristic
algorithm depicted in Figure was developed. It determines candidate
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values for optimal parameters in iterations of simulated trials (index
s € {1,...,5}) where the parameter values Prwmi,-s are algorithmically
varied with S being the maximum number of simulations. In other words,
the algorithm looks for parameter values that would have yielded better
user performance @ if applied to the same EMG signals.

The user performs a run (index 7), that is, an actual trial, a non-simulated
trial, applying the parameters pgy,. The resulting user performance
Qr(Pumi,-) is computed. Then another trial based on the exact EMG
signals of the run that was recorded applying the parameter values pgyyy ;- s
is simulated by an offline algorithm. The resulting user performance
Qr,s(Prmi . s) of the simulated trial is calculated. Unless neither the first
termination criterion, that is, maximal number of iterations was reached
(s > S ) nor the second termination criterion, that is, user performance
improved to a certain extent (AQ = Qrs — @r > AQ*) is met the next
iteration of simulated trials applying new algorithmically varied parameters
PHMI,rs+1 1S executed.

The algorithmic parameter variation determines parameter values in ac-
cordance with

Pir,s+1 = Pirs” (]' +d- P 9)7 (358)

where d € {—1,1} denotes the direction of optimization, p € (0,1) rep-
resents the normalized randomness factor and 6 € (0,1) stands for the
maximal, relative increment. The parameter value of the subsequent sim-
ulation p; ,. ;1 conforms with the previous parameter value p; ,. ; except
for the modification given by the product of d, p and 6.

After termination of the algorithm the offline parameter optimization with
respect to the previous run is completed. In case the user performance
improved in simulation as compared to the user performance of the run,
meaning Q, s > Q,, the corresponding parameter values get applied in the
subsequent run (i.e., Py, 41 = PHMLrs)-

In this way, w = (1,0) finds parameter values ensuring minimal com-

pletion time and wl = (0,1) determines parameter values warranting

minimal path error (cf. (3.52)).
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?

Initialize r, s
Initialize S, AQ*
Pumr,r,s=PHMI,r

l

Run r
applying Py,

QT(pHMI,7)

\7 N 7&:\
| Parameter [PHMLr,s+1|  Simulation s § :
'| variation applying Puwmr, s g :
1 +
[ Qr,s(PHMI,r,s) % i
| |
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: ncrease [AQ = Qs — Qr] 2
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No
Qrs > Qr
Yes

Pumir+1 = Pumir+1 =

Pumi,r PuwMmi,r,s

Figure 3.11: Heuristic algorithm to solve the single-objective optimization
problem (modified from [211])
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3.5.5 Closed-loop online parameter adaptation

Offline calibration determines tailor-made parameter values for each user.
However, the optimal values may vary over time due to physical or mental
fatigue on the one hand as well as improving personal skills (human
learning) on the other. To cope with those non-stationarities in the
biosignals, a strategy is needed that dynamically matches the parameter
values with the current physical and mental states of the user. The
parameter values need to be adapted dynamically.

Pseudo-stationarity of parameters can be assumed to be true only if the
time span between parameter determination and parameter application is
short, and in cases where the application phase does not last too long.

In \| an online parameter adaptation scheme was proposed. In general,
the actual value y,.[k] depends on the bimodal differential signal according
to

Yact [k] = o0 ,1[k] — 2 2[k] € [0, 1]. (3.59)

As for the specific case of providing 100 discrete and equidistant positions,
the actual value reads

Yot K] = 50 — (21 [k] — @n2[k]) - 50 € [1,100]. (3.60)

The difference between the actual and the desired value yqges[k] € [0, 1]
makes up the general form of the user performance Q[k] in accordance
with

Q[k] =1- |ydcs[k] — Yact [kH € (07 ” (361)

Regarding the aforementioned case together with the specific, desired value
Yheslk] € [1,100] the user performance reads

|Yies K] — Yac K]
k] =1— == 2 € (0,1], 3.62
Q°[K] - (0.1] (3.62)
where the absolute value of the difference needs to get normalized with the
division by 100, that is, the maximum range between actual and desired
value.
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Values of Q[k] resp. Q*[k] close to one represent decent user performance
while values close to zero relate to poor user performance. Therefore, Q[k]
resp. Q*[k] is to be maximized by parameter adaptation of the HMI. Based
on Q[k] resp. Q*[k], the parameter adaptation is performed incrementally
(i.e., every instant of time k).

In the remainder of this section the general forms yact[k], Ydes[k] and QK]
are used as synonyms for the specific forms y . [k], y5.[k] and Q*[k].

The parameter that is to be adapted in order to maximize Q[k] is ¢ max,: [k].
This parameter directly affects the digital signal normalization (cf. Ap-
pendix [A.5). The incremental adaptation follows

1
xf,max,i[k] = xf,max,i[k - 1] . (]- + X[k} CW (1 - m)z)v (363)

where x[k] denotes the actual-to-desired relation that is defined as

1 alf yact[ ] < ydeb[ } [k] A ydeb[ ] < Ydes [k - 1] I
1 aif yact[ ] > ydeb[ ] +e [k] A ydes[ ] > Ydes [k' - 1] IT
X[k] = 0, if Yaes[k] — €[k] < Yact[k] < Yaes[k] + €[k] ar .
-1 71f yact[ ] > ydcs[ } E[k] A ydcs[ ] < Ydes [k - 1] v
-1 71f yact[ ] < ydes[ } GUC] A ydes[ ] > ydes[k - ]-] \%
(3.64)

The constant increment factor w determines the maximum numerical
change of the parameter. The tolerance range (i.e., the acceptable deviation
from the desired value) is termed e[k].

If the actual value is out of the tolerance range, the parameter adaptation
is enabled. Two major conditions of falling out of tolerance can occur,
firstly, falling below the lower threshold yaci[k] < yaes[k] — €[k] (cf. T and
Vin (3.64)), secondly, exceeding the upper threshold yac[k] > yaes[k] + €[k]

(cf. IT and IV in (3.64)).

A further distinction is made. As for the first major condition, if the
signal value of yges[k] is decreasing between time points k and k + 1, x[k]
equals 1 (cf. I in (3.64)). If yges[k] is increasing within that time span,
x[k] equals -1 (cf. V in (3.64)). As for the second major condition, it is

x[k] =1 (cf. ILin (3.64)) and x[k] = —1 (cf. IV in (3.64)).
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Otherwise, if the actual value is within the tolerance range, the parameter

adaptation is disabled (x[k] = 0) (cf. III in (3.64)).

It should be noted that x[k] = 1 implies incremental increase of the
parameter value xfmax, ;[k] while x[k] = —1 leads to incremental decrease
of ¢ max.i[K].

Under academic supervision in the scope of a bachelor’s thesis, a variation
of the incremental adaptation was proposed [128]. It features a supporting
factor for the user. Its definition reads

L
Q[K]

where v € [0,1] denotes the supporting factor. Low values represent
little support by the incremental parameter adaptation while high values
stand for significant support. By supporting the user significantly in the
beginning and gradually diminishing ~ over the trials less frustrating trials
possibly happen.

xf,max,i[k} = xf,max,i[k - ]-] ' ((_ SlgH(AQ) Tw - (]- - )2) : '7)7 (365)

The acute trend of user performance AQ is defined as
AQ = QK] - Q[k — 1]. (3.66)
In the scope of a further bachelor’s thesis under academic supervision, this

adaptation method was applied and analyzed [129].

As for evaluation purposes, average user performances are defined. The
user performance standing for one trial that is performed by a single user
reads

_ 1 K
Qu,t = ’d ; QIk], (3.67)

where u = 1, ..., U denotes the index of users and U is the total number of
users [213]. K is the total number of discrete time points of the trial [213].

Moreover, the two-way average user performance reflecting one trial per-
formed by one plurality of users reads

=5 1 u _
Qf == Qur (3.68)
u=1

S
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The standard deviation of the two-way average user performance is defined

_ 1

0 =~
= > (Que = Q) (3.69)

u=1

U
Oy

The mean of standard deviations is

el

- . 1 T _
VT =23 "0V, (3.70)
t=1
where T is the total number of trials.

3.5.6 Gamified interface

As for isotonic HMI controls, it is advisable to provide the user with
gamified virtual environments (cf. Section encouraging to keep the
biosignal at a high-level for a long period of time. In case the user succeeds
in this a considerable score is achieved.

By definition, motivational affordances aim at motivating the user to
proceed using the application. Different motivational affordances may
serve distinct purposes. The following list illustrates various motivational
affordances that are utilized in the adaptive muscle interface in order to
achieve certain results.

o Reward together with penalty points: The instantaneous reward and
penalization in distinct situations are useful to direct the behavior of
the user in certain ways. The user perceives the instantaneous reward
and penalization as direct feedback depending on the behavior and
thus can extract the information of tendency. On the other hand,
accumulated reward and penalization still serve as feedback for the
user but do not imply the information of tendency.

¢ Leaderboards or highscore tables: Accumulated points achieved
by the user during completing a task are used for both inter and
intra-individual comparison.
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e 3D computer graphics: For the virtual simulation of physical devices
three-dimensional computer graphics are well suited. The users can
immerse themselves in the situation of applying the physical device.
Variations of controlling the physical device can be tested in risk-free
simulation. The user is provided with a virtual environment for
training and improving confidence in controlling the physical device.

e Difficulty levels: User-individual adjustments of the difficulty level
ensure that the individual performance level is met and potentially
avoids frustration.

e Story mode or progress visualization: In order to achieve intra-
individual motivation from session to session, telling an engaging
story in form of texts, graphics or videos is helpful. In addition, the
progress could be visualized, like a progress bar, or indicated as a
percentage.

o Trophies or badges: As a form of visualization of special achievements
and as an extraordinarily noticeable motivation trophies as well as
badges can be introduced. Those trophies or badges could optionally
be published for inter-individual comparison.

3.6 Training Concept for Unpracticed Users

Apart from parameter adaptation on the HMI side, the human user also
adapts the internal mental model, representing the circumstances, in
order to improve the performance over time. That is, humans learn by

doing [232].

On the other hand, it is unknown to what extent the HMI control via the
external ear muscles is learnable at all.

To provide the best support to the human user towards mastering the
HMI control — to maximize the learning effect for the user — a new training
concept was developed in this work. This training concept especially aims
at unpracticed users, such as human users that do not have any experience
in operating the HMI. For instance, it is applicable to persons that were
just injured at the spinal cord in an accident. The training concept for
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unpracticed users essentially is a composition of methods addressed earlier
in this work. It encompasses five main steps described as follows.

1. Biosignal feedback Feedback information (cf. Section about the
current quality of HMI control enables the user to act accordingly,
leading to an improvement in HMI control quality. This step is
crucial as the human user is instantaneously confronted with the
biosignal generation. The mere feedback of the “own” biosignal is the
very first step of improving the HMI control. The user consciously
or unconsciously begins to reflect the own behavior. In general, the
biosignal is fed back multimodally to the user by the HMI, auditorily
and visually.

2. User individualization The open-loop adaptation methods, namely the
sensor calibration for each biosignal (cf. Section and the bi-
modal calibration (cf. Section [3.5.2), help to generate normalized
biosignals and a crosstalk compensated bimodal difference signal.
The user individualization is helpful in terms of avoiding situations
of frustration in favor of situations of motivation.

3. User skill quantification The assessment paradigm methods (cf. Sec-
tion allow for the numerical rating of the user skill ahead of
and after the user individualization. Those methods are employed
to rate the initial skill as well as to rate the progress of the skill and
documentation of the learning process. Both unimodal and bimodal
biosignal skills are rated.

4. Virtual reality training with gamified environments The users per-
form diverse trainings in virtual reality. Those virtual realities are
gamified (cf. Section7 meaning, they are designed incorporating
game elements and mechanics to improve user engagement. Within
the virtual realities the user controls avatars using the same skills
that are needed for controlling real executing devices like the electric-
powered wheelchair. In the long term, virtual reality training aims
at reducing the mental effort for operating the HMI, converting the
conscious control of the HMI into a more subconscious control.

5. Real executing device training After the period of virtual reality train-
ing the optimal control scheme (cf. Section[3.7), the preferred scheme
for controlling, for example, the electric-powered wheelchair that
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meets the individual skills and deficiencies of the human user the
best will be identified. Eventually, that control scheme is utilized to
control the actual executing device.

3.7 Control Signal Generator

The control signal generator realizes the biosignal interpretation (cf. Sec-
tion . It outputs at least one control signal indicating the executing
device what to do.

Various control signal generators covering diverse purposes are feasible.
Table shows examples of control signal generators for the purpose of
electric-powered wheelchair (EPW) navigation. They receive either one
or two input signals and provide various options to navigate the EPW
ranging from simplistic to complex controls.

Control signal generator Zn,1[k] xn2[k] Navigation
options

One-Signal Morse v X (Xo¥e)

(cf. Appendix )

One-Signal Morse Proportional X roONO T
(cf. Appendix )

Two-Signal Threshold v v 100

(cf. Appendix b

Two-Signal Proportional v v toONO T

(incl. r/t-generator,
r/t-converter)

Table 3.1: Control signal generators providing navigation options: Straight-
forward movements (1), left resp. right curves (\, 7) and left resp. right
on-the-spot turns (O, O)

The One-Signal Morse control signal generator (cf. Appendix re-
ceives one input signal and generates straightforward movements as well
as double-sided on-the-spot turns. This control signal generator allows
disabled persons capable of activating merely one biosignal to navigate
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electric-powered wheelchairs without the prerequisite of differential con-
trol.

The One-Signal Morse Proportional control signal generator (cf. Appendix
also receives one biosignal. As opposed to the previous one, this
control signal generator allows for left and right curves in addition to
on-the-spot turns.

The Two-Signal Threshold control signal generator (cf. Appendix [A.7.3)
poses a more comfortable way of performing navigation tasks. Albeit
it requires two input signals and therefore is not applicable for persons
generating merely one biosignal.

The Two-Signal Proportional control signal generator extends the naviga-
tion options provided by the previous control signal generators and allows
for left and right curves. Figure depicts this control signal generator.
It contains the rotational/translational-generator (r/t-generator) and the
rotational/translational-converter (r/t-converter).

Control signal generator :

Tn1[k] = rotational/ za12,0[K] rotational / i L ol
.| translational- translational-| ' i, 1/); ]
Iy o [k] ——{ generator Ta12,4[k] | converter L

Figure 3.12: Two-signal proportional control signal generator with signal
clutch

First, the r/t-generator produces the intermediate rotational signal
za12.:]k] € [—1,1] that equals (3.34). The radii of the curves are propor-
tional to the degree of the signal difference between z, 1[k] and x, o[k,
the characteristic of the bimodal differential signal. The r/t-generator also
produces the intermediate translational signal, defined as

warz[k] = (1= |zare.[K]) - ¥ar0,[k] € [0, 1], (3.71)
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where 273 1, [k] € [0, 1], analogous to 7 is obtained by the open-loop
bimodal calibration with linear regression (cf. Section [3.5.2). The signal
za12.]k] works as a throttle. Only if the rotational signal is low, the
translational signal is allowed to be high.

Second, the r/t-converter converts these signals into control signals t[k]
that meet the specifications of the executing device according to

Ed 71f ‘$A127r[k] . Eu;El‘ < €
Ur[k] = E _E , and
Eq+ za12, k] - 201 else
(3.72)
. E.-F
Ed ,lf ‘.Z‘Am’t[k] =4 1‘ < €
Vak] = £ _B 2 . (3.73)
Eq+ xa12,]k] - =451 else
The default value of the executing device is defined as
E,— FE
Eq=FE + (21) , (3.74)

where E; and F, stand for the lower resp. upper limit of the executing
device’s control signal range.

€; and ¢; denote the dead band parameters of the rotational and transla-
tional control signals. Unless the signals exceed the dead band values they
continue to be at default value E4. This way, low disturbing signals are
efficiently suppressed.

Moreover, due to the discontinuities in 1 [k] and q[k] caused by the
incorporation of the dead bands the electric-powered wheelchair is given a
slight jolt as soon as the dead band parameter values are exceeded. This
way, the user is notified and gently alerted that the vehicle is about to
move in that very moment.

The rotational control signal 14 [k] and the translational control signal 5[],
that are digital signals, are sent to the digital-to-analog converter (DAC).
Then, the electric-powered wheelchair, as the executing device, interprets
the incoming analog control signals and creates corresponding motions.
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In our case, the electric-powered wheelchair receives analog control signals
(in mV) ranging from F) = 1700 to E, = 3300. Accordingly, the default
value is Eq = 2500.

On-the-spot turns correspond to a high differential signal and curves
coincide with a moderate differential signal. If the differential signal is
below a predefined threshold straightforward movements are produced.

The signal clutch, designed as double-pole, single-throw (DPST) switch,
connects and disconnects the output of the control signal generator. This
clutch permits safety controlling. In case the user is not able to generate
appropriate biosignals or the overall system is corrupted and generates
incorrect control signals, the clutch allows for quick disconnection of the
executing device.

3.8 Contribution of the Adaptive Muscle
Interface

The adaptive muscle interface covers Items 2 to 6 in the list of open
problems as outlined in Section

The proposed interface is accessible via muscle signals acquired from the
external ears — that is, head-only activities. At the same time it avoids
overly salient apparatus and double occupancy of commonly employed
bodily functions. This provides the user with additional windows of
communication. Moreover, it holds means available for improving biosignal
controllability and coping with biosignal drifts.
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4.1 Levels of Implementation

The implementation of human-machine interfaces (HMIs) can be seen as
three hierarchical levels . Figure illustrates the levels of imple-
mentation. First, the general implementation represents the most abstract
level and constitutes the basis for any other level of implementation. It
defines the communication interfaces of the high-level subsystems. The
main objective of the general implementation is to bring the basic commu-
nication between the associated high-level subsystems into being. Second,
the application-specific implementation explicitly narrows down the sort of
application, namely the input and output signals. It substantiates the com-
munication interfaces of the low-level subsystems. Third, the user-specific
implementation specifies the signal-to-meaning mapping between the user
individual input signals and the output signals to control the executing
device.

User-specific implementation

Application-specific implementation

General implementation

Figure 4.1: Levels of HMI implementation (according to \|

In the context of this work, the general implementation is illustrated in
Figure The high-level subsystems are the human user, the HMI as
well as the executing device. The human user generates biosignals that are
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received by the HMI. In turn, the interface generates control signals based
on an algorithmic interpretation of the biosignals and transmits those to
the executing device. The executing device performs actions representing
the control signals based on the interpretation of the biosignals.

The application-specific implementation of the telemetric and myoelectric
ear muscle sensing system (TELMYOS) is illustrated in Figure It
allows the user to control both physical executing devices and virtual
executing devices by means of muscle activity. This level of implementation
specifies details of low-level subsystems such as the biosensor, the MCUs
end device (ED) and access point (AP) as well as the GUI and describes
their objective targets. It also defines the communication between the
low-level subsystems.

The biosensor captures muscle activity in the form of electrical potentials.
The analog myoelectric signals (MESs) are transmitted to the end device
(ED). It incorporates an ADC and sends the digitized MESs to the
access point (AP) that, in turn, sends the signals to the GUI. Based
on the incoming digital MESs the GUI generates digital control signals.
Depending on the application and the type of executing device the digital
control signals are of different nature, that is, the control signals designated
for physical executing devices and for virtual executing devices differ from
each other. The digital control signals are sent either directly to the virtual
executing device, displayed on the computer monitor, or via the AP that
incorporates a DAC and sends the analog signals to the physical executing
device.

The human supervisor sets application-related parameter values — like the
sampling rate — in three steps via an integrated development environment
(IDE) by modifying the source code of the MCUs, recompiling the modified
source code and eventually porting it onto the MCUs. Alternatively,
the human supervisor may also modify the application-related settings
directly via the GUI. Special transmitting functions of the GUI as well as
receiving and transmitting functions of the MCUs allow for bidirectional
communication between GUI and MCUs. In other words, the GUI may
send messages to both the AP and ED requesting (read functions) or setting
(write functions) specific parameter values. This is more comfortable, less
error-prone and faster.
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The human supervisor and the human user may be the same person for
testing purposes. However, as editing the source code requires expert
know-how the human supervisor usually is a system developer.

The user-specific implementation is detailed in Figure Grounded on
the application-specific implementation it defines the user individualization
of the system that is realized through providing feedback to the user, cus-
tomizable user-related parameter values and user-specific control schemes.
With the aid of feedback mechanisms both, the user and the technological
subsystems such as the GUI and the MCUs, are provided with user-related
information. The GUI provides various control schemes that can be cus-
tomized at the preferences of the user. The control scheme calculates
digital control signals.

Typically, the human user observes the immediate acting of the executing
device and therefore is provided with direct, visual feedback information.
In the understanding of the human user (mental model) this feedback
interrelates the action of the human user (i.e., muscle activity) and the
action of the executing device (i.e., acting of the executing device). In
addition, user-related information is extracted from the virtual executing
devices (virtual realities (VRs)) and fed back to the GUI. In turn, the
GUI uses the feedback for visualization (i.e., feedback to the human user)
or for parameterization (i.e., feedback to the HMI).

The human supervisor sets user-related parameter values like affecting the
algorithmic interpretation of the biosignal by means of the GUI.
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4.2 Standard System Setup

The standard setup of the system for controlling both virtual and non-
virtual executing devices through myoelectric signals (MESs) follows the
user-specific implementation and is detailed in Figure An electric-
powered wheelchair represents the physical executing device and VRs ma-
terialize diverse virtual executing devices. Two electromyography (EMG)
electrode systems (EMG sensors 1 and 2) acquire the MESs corresponding
to the activity of the muscles.

The topology of the HMI can be subdivided into the user site and the base
station site (cf. Section . The signal transmission between ED at the
user site and AP at the base station site is wireless. Therefore, the user
is free to move the head and look around while sitting in the wheelchair.
Dependent on the constitution of the user, this wireless system design also
allows the user to leave the wheelchair. Moreover, the supervisor can set
application-related or user-related parameter values telemetrically at the
base station site during normal operation.

Generally, the proposed HMI concept is not limited to two electrode
systems of a specific kind. However for the sake of simplicity, the standard
system setup comprises two electromyography (EMG) electrode systems
acquiring the muscle activity (i.e., MESs) of the human user. These are
acquired either (minimally) invasively by means of fine-wire electrodes
(fwEMG) or non-invasively with the aid of surface electrodes (SEMG).
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4.3 Embedded System

In addition to the GUI, the embedded system is also capable of performing
the basic signal processing described in Appendix The advantage of
the GUI performing the signal processing is the manifold of feedback tools
helping to optimize the experience for the user. If needed, once the user
got familiar with the HMI and proper user-specific parameters were found
the basic signal processing can be outsourced for the sake of performance
enhancement of the overall system. With the aid of special transmission
protocols, parameter values used for the signal-processing algorithm are
readable and writable.

The embedded system comprises two electronic boards, these are the
microcontroller unit (MCU) end device (ED) at the user site and the
microcontroller unit (MCU) access point (AP) at the base station site.
Both serve different purposes within the context of the overall system.
The electronic boards mechanically fasten and electrically connect diverse
miniaturized modules. The microcontroller (MC) is the central component
of the board. It is a miniaturized computer implemented on an integrated
circuit (IC). In addition, various communication modules such as radio
frequency (RF) transceiver, chip antenna, push buttons, light-emitting
diodes (LEDs) and general-purpose pins are available.

The MCUs MSP430F2274' by Texas Instruments are employed. They
feature ultralow-power architecture, 16-bit reduced instruction set comput-
ing (RISC) central processing unit (CPU) and a flexible clock system [49)].
Figure depicts the eZ430-RF25002 development tool kit by Texas In-
struments which is used as the initial design for the wireless communication
of the system. While both MCUs are identical regarding their hardware
specification, the boards differ from each other with respect to the software
programs since they serve different purposes.

The MCU ED, depicted in Figure receives analog signals acquired by
the biosignal sensors that are connected to the external input channels and
digitizes them with the 10-bit ADC module. The digitized biosignals are
sent via the on-board 2.4 GHz RF transceiver CC2500% to the MCU AP.

Thttp://www.ti.com/product/mspa30£2274
*http://www.ti.com/eZ430
3http://www.ti.com/product/cc2500
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Figure depicts the MCU AP. It receives the data, adds header
information that is required for the safe communication and sends it to
the PC.

Push- LED CC
2500

button

Battery USB MSP Accessible Chip
pack connector 430 pins antenna

(a) Battery board with MCU ED board (b) USB board with MCU AP board

Figure 4.5: Development tool kit eZ430-RF2500

Code Composer Studio software by Texas Instruments is an IDE that is
used to edit the C source code, to compile the executable program and to
port the executable program onto the MCU. In the Appendix, Figure
shows a screen shot of Code Composer Studio.

There are two main objectives of the embedded system. First, the em-
bedded system constitutes the linkage between hardware and software
components through DAC and ADC such as biosignal sensors, PC, EPW
— that is, the MCUs communicate with other subsystems. Second, the em-
bedded system wirelessly transmits information between both MCUs. In
general, this data transmission is bidirectional.

To realize robust and fast communication between the subsystems — namely
ED, AP, GUI and non-virtual executing devices — transmission protocols
for various application scenarios need to be deployed.
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4.4 Transmission Protocols

4.4.1 Unidirectional two-sensor data transmission

In case of unidirectional, cyclical two-sensor data transmission from ED to
GUI the transmission protocol as depicted in Figure is utilized. The
ED sends sensor data acquired from the biosignal sensor systems via the
AP that, in turn, passes it on to the GUI.

Byfe ¢ 1 2 3 4 5 6
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Byte s1Hb s1Lb s2Hb s2Lb tEd tAp
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lager  MAREARY [TTTTTTT] CITCCICL [(TITTI0T) (I ORI T
¢ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
GUI

layer

Figure 4.6: Protocol for cyclical two-sensor data transmission from ED to
GUI. Sensor values split into high byte (Hb) and low byte (Lb).

The ED software layer is implemented in the ED. It compiles a five-byte
array containing two sensor values (bytes s1Hb, s1Lb, s2Hb and s2Lb)
as well as the time index of the ED (byte tEd). Each sensor value is
represented by a 10-bit binary number, split into two bytes. The high-
order bytes (suffix Hb) carry two high-order bits while the low-order bytes
(suffix Lb) contain eight low-order bits. The five-byte array is transmitted
to the AP via Texas Instruments’ RF network protocol SimpliciTI#.

The AP software layer adds two bytes to the original byte array. The
message start (byte st) is prepended to the original byte array and the
time index generated by the AP (byte tAp) is appended to the original
byte array. By design of the transmission protocol, the fixed value of the
message start equals 0b11111111 = 0xFF. It indicates the beginning of
a new message. The time indices are counter variables and function as

dhttp://www.ti.com/simpliciti
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indicators for data loss. The total number of bytes sent by the AP to the
GUI amounts to seven.

4.4.2 Unidirectional two-sensor data transmission with
accelerometer

The unidirectional two-sensor data transmission with accelerometer adds
two aspects as compared to the transmission protocol discussed in Sec-
tion The three-dimensional data from two acceleration sensors as
well as the supply voltage of the EDs provide supplementary information.
The enhanced transmission protocol is illustrated in Figure

Byte 1 (X+1)2  (X+41)241 18 19 20 21

Byte  stAp stEd dHb dLb tEd tAp vH vL
name

layer (LTI (T

=
%

AP
tayer O [T [T O
7 (O T EEE EETEET EEEEEEr AR

Figure 4.7: Protocol for cyclical two-sensor data transmission from ED to
GUI with accelerometer information. Sensor values split into high byte
(Hb) and low byte (Lb).



110 4 Implementation

4.4.3 Bidirectional two-sensor data transmission

Typically, altering meta-data of the embedded systems such as the sampling
rate of the ED is time-consuming. Setting meta-data requires modifying the
C source code of the embedded system, re-compiling the modified source
code and eventually porting the newly- generated, executable program
onto the embedded system.

Bidirectional communication (i.e., the information flow goes both ways)
from the ED to the GUI and vice versa enables altering the parameters
of the embedded system during run time without the aforementioned,
time-consuming steps. The bidirectional, cyclical two-sensor data with
acyclical meta-data transmission protocol was developed under academic
supervision in the scope of a Master’s thesis .

As for cyclical two-sensor transmission with acyclical meta-data transmis-
sion in the direction from the ED to the GUI the protocol as shown in

Figure is applied.

Byte 1 2 3 4 5 6
index

Byte
name

layer (R ITITO [(MITIIO (T (I
¢ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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GUI
layer

st s1Hb s1Lb s2Hb s2Lb tEd tAp

Figure 4.8: Protocol for cyclical two-sensor transmission and acyclical
meta-data transmission from ED to GUI. Sensor values split into high
byte (Hb) and low byte (Lb) (modified from [42]).

The 10-bit sensor values are split equally into two bytes. Each byte contains
five bits sensor information. The low-order bytes (suffix Lb) hold five
low-order bits and the high-order bytes (suffix Hb) contain five high-order
bits. The ED transmits either sensor data or meta-data (parameters). The
second-highest-order bit in the second byte denotes the meta-flag “M”. If
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this flag is set the ED is transmitting meta-data to the AP. Otherwise it
is transmitting sensor data. Setting the second-highest-order bit equals
the addition of 64 decimal value. The AP forwards messages coming
from the ED to the GUI with the corresponding message start byte. The
lowest-order bit of the message start byte is the negated meta-flag. This
way, the transmission of sensor data is indicated by the message start
byte containing Ob11111111 = 0xFF and the transmission of meta-data is
pointed out by 0b11111110 = 0xFE. The second-highest-order bit in the
first byte indicates the receive-flag “R”. If this flag is set the ED is ready
to receive commands coming from the AP.

As the information flow goes the opposite direction, that is, from the GUI
to the ED, the transmission protocol as shown in Figure is used. The
GUI software layer is implemented in the GUL. The message start byte
containing 11111110 = O0xFE sent by the GUI tells the AP the beginning
of another byte array. The first byte contains an identifier (ID) that is
unique to the command intended for either the AP or ED. If the command
is intended for the ED, the AP redirects it to the ED. In case of argument
carrying commands the bytes two to four contain the corresponding argu-
ment values. The message end byte equals 0b11111101 = 0xFD. Table
in the Appendix gives an overview of the commands.

ex O 1 2 3 4 5
e St emd a1 a2 a3 e
foper  (OOAAAER (IO (T (0 (0 AR
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Figure 4.9: Protocol for acyclical parameter requests from GUI to ED

(modified from [42]).
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4.4.4 Unidirectional eight-sensor data transmission

For the unidirectional, eight-sensor, cyclical data transmission with 16-bit
digital signal resolution the protocol as depicted in Figure is utilized.
The low-power, eight-sensor analog-to-digital converter ADS1298° by Texas
Instruments is deployed.
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Figure 4.10: Protocol for cyclical eight-sensor data transmission from ED
to GUI

4.5 Graphical User Interface

4.5.1 Overview

The graphical user interface (GUI) is implemented with standard C++
utilizing the Qt application framework® for the realization of the graphical

Shttp://www.ti.com/product/ads1298
Shttp://www.qt-project.org
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widgets. The software is cross-platform, meaning, it is applicable to various
operating systems (OSs). The Qt application framework supports Unix
OSs, for example, Apple’s OS X, Linux OS, and Microsoft’s Windows
OSs as well as cell phone OSs, for instance, Google’s Android, Microsoft’s
Windows Phone to provide a wide range of platforms with TELMYOS.

The main window of the GUT is shown in Figure It is subdivided into
four main sections, namely the superordinate menu (A), the tab area (B),
the parameter field (C) and the signal graphs (D).

Figure 4.11: Main window of the graphical user interface with the superor-
dinate menu (A), the tab area (B), the parameter field (C) and the signal
graphs (D)

Role-dependent views allow for supervisor view (back-end of the GUT) and
user view (front-end of the GUI) that can be displayed on separate screens
if needed. The supervising person is provided with information about the
biosignal of the user in real-time and monitors the full range of results.
With the aid of specific user views, the users are enabled to focus on the
actual task as solely relevant information is displayed (cf. Section .
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The superordinate menu includes options to change the user, to connect
or disconnect the incoming biosignals, to close the GUI, to open or close
the user view, to pseudonymize the user names and to show the help
information. The menu is accessible at all times by the supervisor.

The tab area contains several tabs. Each tab is dedicated to a specific
group of functionalities and features. Figure depicts examples of these
tabs. The Configuration tab (cf. Figure provides the supervisor with
general settings.

The Sensor Options tab, as depicted in Figure[4.12a], is dedicated to settings
regarding the biosensors. The Paradigms tab, shown in Figure
holds the implementations of the biosignal assessment paradigms (cf.
Section available. The Coins tab, the Race tab, as depicted in
Figure the Tetris tab, the Parkour tab and the Virtual Wheelchair
tab, illustrated in Figure contains the implementations of virtual
environments. The ADS View tab, presented in Figure is dedicated
to visualization methods of up to 16 biosignals. The 3rd-Party Apps tab
provides with interface options to operate third-party applications.

The parameter field concisely provides the supervisor with the most im-
portant parameter values as they are currently applied.

The signal graphs visualize the incoming biosignals, the digitally processed
signals with intermediate processing steps as well as the control signals for
the virtual environments or the electric-powered wheelchair (EPW).

Inter as well as intra-individual user sessions are manageable. Each user
is represented via a separate working directory where sessions are admin-
istrated. The dialog window for changing the current user is depicted in
Figure The name of the user is to be specified and optionally the
age, gender and handedness can be set. User-related data is saved into
designated subfolders of the working directory for offline analysis and doc-
umentation. By default, saved data files are automatically labeled with
the current system date and time as a distinct file identifier. An unam-
biguous data structure allows for multi-user management. Previous user
sessions can be resumed by reference to the user names (user identifiers).
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(a) Sensor options tab (b) Paradigms tab

(c) Race tab

(e) ADS view tab

Figure 4.12: Examples of tabs in supervisor view

If needed, the real name of the user can be pseudonymized in retrospect.
The integrated user pseudonymization tool ensures data privacy and data
integrity. It replaces every occurrence of the real name by a pseudonymized
name in the windows of the software as well as in the saved data files.
The user pseudonymization tool is based on a look-up table realized by a
American standard code for information interchange (ASCII) text file.
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Figure 4.13: Dialog window for user change

The look-up table bidirectionally maps the real name onto a pseudonymized
name. Enabling and disabling the user pseudonymization tool causes the
pseudonymized name or the real name to appear. The format of the
look-up table is userPSEUDONYMIZED_USER_NAME,REAL_USER_NAME. Each
line of the text file represents the pseudonymization of one user where
the supervisor administrates and edits the text file and explicitly sets
REAL_USER_NAME and its alias PSEUDONYMIZED_USER_NAME.

By using user names without any personal relevance from the beginning,
user anonymization can be realized. User anonymization allows for the
maximum data privacy, but in contrast to user pseudonymization, obstructs
multi-session user tests such as training over a number of days.

The online data import is implemented via the standard serial port of the
PC (i.e., universal serial bus (USB)), applying Qt’s native class QSerialPort.
Both, biosignals and non-biosignals (e.g., analog signals from potentiome-
ters) may serve as input data that is acquired in real time (RT). The
offline data import functionalities ensure seamless data interchange across
local PCs.

Incoming data is processed and feedbacked both visually and auditorily in
RT. Auditory signal feedback is realized by including Firelight Technolo-
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gies” sound library FMOD Ex”. The supervisor sets the auditory signal
feedback’s frequency and volume.

Figure shows the supervisor view for setting user individual parameter
values related to the first biosignal. It is a detail view of the sensor options

tab (cf. Figure[4.12a). The supervisor has reading and writing access
to all relevant parameters, for instance, the maximum parameter ¢ max,i,

the minimum parameter xfmin i, the ground level parameter ¢ g1y, the
IIR filtering trade-off parameter a; and the RMS filtering window width

parameter m; of biosignal i, as well as to its corresponding calibration
methods.

Calibration sensor 1

Cancel Default values

= —

|y

414 Maximum, [0,1023] [] oA

5 Minimum, [0,1023]
539 Mean, [0,1023]
.95 IR, [0,1)

10 RMS, =0

Figure 4.14: Supervisor view for setting user individual parameter values
of sensor 1

The GUI was developed by the Karlsruhe Institute of Technology (KIT)
as the essential software of the adaptive muscle interface. Currently, it is
only available for the developers.

4.5.2 User guidance

The user guidance of the sensor calibration, as depicted in Figure
consists of six consecutive countdowns. The countdown for the low-level

“http://wuw.fmod.org
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activity phase lasts five seconds. During this time the user observes the
countdown (bright background color) and is asked to generate a low-level
activity signal like relaxing the muscle. The countdown for the high-level
activity phase lasts three seconds. The user observes the numbers counting
down (green background color) and is instructed to generate high-level
activity signal, contracting the muscle moderately. The user guidance
eventually terminates after these countdowns (red background color).

The appearance of the user view is dependent on the task. Figure [4.16|
shows the user view window during sensor calibration. The user is provided
with brief descriptions about the task, gets instantaneous visual signal
feedback as well as visual clues or stimuli if needed.

Biosignal quantification paradigms are implemented providing both super-
visor and user views. They determine user characteristic values reflecting
the biosignal control ability of the user and serve as both intra and inter-
individual comparators. In general, any kind of input signal (biosignal
or non-biosignal) can be subjected to the quantification paradigms. The
implemented paradigms are described closely in Section If needed,
multiple paradigm descriptive parameters such as time spans or threshold
values are customizable by the supervisor.

Diverse types of virtual environments are implemented enabling the user
to practice and improve biosignal control ability. The user controls virtual
devices — like agents, cars and tokens — displayed on the screen by means of
the intentional biosignal activation and deactivation. Virtual environments
encompass both games and simulated rehabilitation aids.

Games provide diversified options for practicing biosignal control. Both Qt-
native games as well as third-party games are supported. The supervisor
sets the controls, visualization options and various game-related parameters.
Figure depicts user views of Qt-native games.

The Coins game, as illustrated in Figure is a two-dimensional
animation presenting a simplified avatar from the aerial perspective that
features an arrow as the visual indicator for the current forward direction.
The avatar navigates freely within the area of bounded horizontal and
vertical elongation.
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Figure 4.15: User guidance during sensor calibration including low-level
activity phases (bright background color), high-level activity phases (green
background color) and termination (red background color)

]

The objective is to reach all coins that are randomly spread across the
area as fast as possible. As the avatar reaches one coin, the very next coin
that is to be reached appears somewhere in the area.
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B TELMYOS - Extemnal View [EE

Calibration

Calibration of sensor 1

During the countdown without stimulus, relax your musde.
During the countdown with stimulus, contract your musde.

Figure 4.16: User view window during calibration of sensor 1

The Parkour game is depicted in Figure Alike the Coins game, it
is a two-dimensional animation with a simplified avatar from the aerial
perspective. It is an obstacle course and the objective is to reach the finish
area as fast as possible, beginning from the starting area where the avatar
spawns. Both, the Coins and the Parkour game demand a decent level of
spatial thinking.

Figure shows the Race game. A simplified car serves as an avatar.
The user is able to control merely the horizontal position of the avatar. The
track moves on (vertically from top to bottom) at constant time intervals
creating the illusion of driving the car forward. The street is represented
with straight lines and arcs of distinct degrees. The street is of varying
width. The middle line of the street stands for the ideal path along the
track. The objective is to follow the ideal path as close as possible.
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(a) Coins game: Top-view avatar is navi-  (b) Parkour game: Top-view avatar is
gated to reach the next highlighted coin  navigated through the obstacle course
from start area to finish area

[
o 66

I 1
.'= - IE -—)
(c) Race game: Avatar is controlled  (d) Tetris game: Descending tokens are

one-dimensionally (left resp. right-hand  controlled in position and orientation
side) to meet the road’s middle line to achieve a gapless merging

Figure 4.17: User views of various Qt-native games

The Tetris game, as depicted in Figure|4.17d| follows the game mechanics of
classic Tetris. The objective is to achieve an as high as possible accumulated
score where each removed line is awarded with points.

The third-party game interface enables the user to play third-party games
by means of biosignals normally controlled by peripheral equipment, some
of which are keyboards or computer mice. Keyboard presses or mouse
clicks are emulated by the GUI as a function of the biosignal input.

Figure shows the customizable interface for third-party applications.
The emulated key press (e.g., left cursor, space or any other key press) for
the single and combined activation of input modalities’ i are specified by
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the supervisor. Also, the thresholds for detecting the modalities’ activation
are set. Emulated mouse movements can be restricted either to the vertical
or to the horizontal axis and the emulated mouse movement’s sensitivity
is set. The software clutch that can be engaged or disengaged by the
supervisor ensures the acquired biosignals are only translated into control
signals and transferred to the third-party game at the supervisor’s wish.

Apps

PFing Pong [ ] Jardinains 2 (M B. Painters |.Tfi Frogger iECE

Emulator

Mouse settings
Sensitivity: 10

Keyboard settings
L-Contraction Co-Contraction Co-Relaxation R-Contraction
Key:

Threshald (0, 1): 0.2 0.2

Figure 4.18: Third-party games interface

In general, browser games of any kind are supported. However, in case
of mouse-controlled browser games the area of valid mouse positions is
not restricted. This could cause problems in game handling. Games
based on the application programming interface (API) open graphics
library (OpenGL) are generally supported. Microsoft’s DirectX including
DirectInput is currently not supported.
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The three-dimensional simulation of an electric-powered wheelchair (EPW)
was developed and implemented under academic supervision in the scope of
an internship . The user view is depicted in Figure The physical
attributes (e.g., mass, acceleration or deceleration) of the simulated EPW
can be specified by the supervisor to match the physical attributes of a
real electric-powered wheelchair. The three-dimensional visual appearance
together with the simulation of the physical attributes induces a high level
of user immersion. The supervisor sets a control signal generator that is
suitable of the user and that is preferred by the user. The user navigates
the simulated wheelchair freely within the virtual environment. If needed,
all acquired biosignals, generated control signals and parameters can be
logged for documentation and offline analysis. Obstacle collision detection
is also implemented.

The virtual hand prosthesis Michelangelo is a three-dimensional model of a
real prosthesis by OttoBock developed by the Department for Neurorehabil-
itation Engineering at University Medical Center Gottingen. Figure
shows the user view. The interface for biosignal control was realized
with the aid of user datagram protocol (UDP). Based on finite state
machine (FSM) implementations, the virtual hand prosthesis performs
movements such as hand opening and closing as well as hand rotation.

Both simulations serve as three-dimensional virtual realities (VRs) that
help to accustom the user to the real rehabilitation aids.

(a) Electric-powered wheelchair simula- (b) Hand prosthesis simulation
tion Michelangelo

Figure 4.19: Virtual realities of rehabilitation equipment
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The user’s biosignals and any other kind of signal generated during run
time can be recorded and exported as ASCII text files by means of export
functionalities. The file extension is *.tss which refers to time series.
Exported tss-files are used for offline analysis, such as Mathwork’s Matlab,
Microsoft’s Excel, Gait-CAD® , or documentation.

Control signals are transmitted to real rehabilitation aids such as EPWs.
Real-time data output is realized via the computer’s standard serial port
USB applying Qt’s native class QSerialPort.

The GUI is used by healthcare professionals at the department for Clinical
Neurophysiology at University Medical Center Gottingen.

The user assessment paradigms (cf. Section are implemented in
the paradigms tab (cf. Figure [4.12b). The supervisor manually deter-
mines settings such as the lower and upper thresholds as well as the time
parameters.

The response time assessment paradigm guides the user according to the
scheme depicted in Figure

Figure 4.20: User guidance during response time assessment

After counting down three seconds of preparation, the user is prompted
to deactivate the biosignal (bright background color) — like relaxing the
muscle — for a pseudo-randomized time, composed of a constant time

8http://sourceforge.net/projects/gait-cad
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together with a random time. Then, the user view displays a visual
stimulus (green background color) cueing the user to activate the biosignal
— like contracting the muscle — as soon as possible. The visual stimulus is
displayed for the constant time. Eventually, the visual stimulus is hidden
again notifying the user to deactivate the biosignal — such as relaxing
the muscle — as soon as possible. Finally, a constant time terminates the
paradigm.

After each of the paradigms is completed, its results are presented both to
the supervisor and to the user as depicted exemplarily for the response
time assessment paradigm in Figure

B TEMOS - BrtemallView [P

Response Test

ur muscle

Vihen the stmulus appears, contract your musde ASAP and hold it
Vihen the stmulus disappesrs, relax your muscle ASAP.

[ ——— =)
Number: 1

Nbr. 'OK' so far: 0
Nbr. 'Discarded' so far: 0

Score: 243 /271

Comment

243ms /271ms

(a) Supervisor view (b) User view
(repeat dialog)

Figure 4.21: Result presentation after completion of the response time
assessment paradigm

The results are the response time for activation 6., = 243 ms and the
response time for deactivation 6,4 = 271 ms. In the repeat dialog, as
shown in Figure the supervisor is provided with options to label the
recorded tss-file of the trial positively (valid trial) or negatively (invalid
trial). One session of the same paradigm may consist of several trials and
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can be continued or discontinued by the supervisor. It is also possible to
write comments (e.g., documentation of special facts) that are then saved
within the tss-file.

The implementations of the supervisor view of the paradigms are depicted

in Figures - of the Appendix

Figure shows the “navi monitor”, that is, a visualization means of
the translational velocity and the rotation angle of a vehicle, for example,
a navigation avatar or wheelchair. The length of the arrow represents
the translational velocity while the direction (originating in the center)
stands for the rotation angle. The navi monitor is useful to get a better
understanding of the cause-and-effect relation between the biosignals and
the actions performed by navigation avatar or wheelchair.

T TELMYOS - Navi Monitor

FRONT

LEFT

RIGHT

O

BACK

t

Figure 4.22: Navi monitor in case of idle state (i.e., translational velocity
is zero)
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4.6 Electric-Powered Wheelchair Interface

The digital-to-analog converter (DAC) (cf. Section receives control
signals from the GUI and generates corresponding analog signals in com-
pliance with the specifications of the electric-powered wheelchair (EPW).
Eventually, these analog signals get interpreted by the wheelchair and lead
to actual movements.

In addition, special functions that are natively available by the wheelchair,
such as the enabling and disabling of the horn, the headlights and the
direction indicators (left and right) were implemented, directly looped
through the GUI.

An emergency stop was also realized. The implementation of the emer-
gency stop comprises, firstly, the transmission of an idle-command to the
wheelchair with the result that the wheelchair immediately stops and, sec-
ondly, the decoupling of GUI and the wheelchair (software clutch). Among
others, the supervisor can manually trigger the emergency stop.






5 Results

5.1 Overview

The adaptive human-machine interface based on ear muscle input signals,
as introduced in this work, is being assessed. The results are presented in
this chapter. The assessments relate to distinct aspects of the HMI. Some
do not involve any user while some involve users ranging from able-bodied
to physically handicapped.

The assessment of the proposed difference models (cf. Section is pre-
sented in Section of this chapter. Criteria for an ideal difference signal
are postulated. The difference models receive made-up benchmark sig-
nals that reflect real use scenarios. The difference signals are qualitatively
examined with regard to the postulated criteria.

The inter-trial parameter adaptation (cf. Section is analyzed in
Section[5.3] By means of forearms muscle signals, users complete trials of a
virtual task. Between the trials, new parameter values are algorithmically
generated. The assessment of this method’s quality is carried out in regard
to the accomplished time and accuracy.

The examination of the intra-trial parameter adaptation (cf. Section
is presented in Section With inappropriately preset parameter val-
ues, the user performs a virtual task controlled by forearms muscle signals.
During task completion, new parameter values are algorithmically gener-
ated. The method’s ability to adapt the parameter values stepwise towards
more suitable values based on the user performance is examined.

Some of the parameter adaptation methods proposed in this work compile
different schemes of parameter adaptation. These schemes are compared
in a study with 20 subjects in Section The subjects perform virtual
tasks by means of the forearm muscle signals.
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Aiming at the development of a HMI accessible for head-only activities,
able-bodied users performed the training of the ear muscles, as presented
in Section The users performed virtual tasks and navigated an electric-
powered wheelchair.

Physically handicapped subjects belong to the target group of this work’s
development of a HMI (cf. Section [3.2)). The training of the ear mus-
cles with the aid of virtual tasks and EPW navigation is presented in

Section

5.2 Assessment of Difference Models for
Crosstalk Compensation with Benchmark
Signals

The open-loop bimodal calibration methods (cf. Sections 3.5.3)) aim
at compensating for crosstalk and generating an appropriate difference
signal.

These methods represent distinct difference models. In the application
phase they receive two normalized signals (inputs) acquired from the user
and generate one difference signal (output). In the adaptation phase, these
difference models need to get calibrated in order to meet the characteristics
of the individual user.

The difference models were experimentally assessed with the aid of bench-
mark signals that were designed using Matlab. These benchmark signals
are the calibration signals and input signals.

The difference signal ideally meets the desired properties (des. prop.):
#1) smoothness and homogeneousness,
#2) flatness at value zero (flatline, idle state),

#3) full range coverage [—1, 1] spanned by the two user-specific calibration
settings, and

#4) boundary by —1 resp. +1 at the two user-specific calibration settings.
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The benchmark signals of both the adaptation phase (two calibration
signals) and the application phase (two evaluation signals) serve as repre-
sentatives of the actual biosignals of the users. The conjunction of distinct
calibration signals together with various evaluation signals is about to
assess how the difference models cope with diverse situations.

Figure exemplarily depicts a specific design of the two calibration
signals: Normalized signals (z,,1[k] and z, 2[k]) for two calibration settings.
These normalized signals represent the calibration settings of a notional —
exemplary and made-up — user.

1) On the left-hand side, a first calibration setting represents the user
intention “navigating sharp left” (time indices 1-100). In the first
calibration setting there is no presence of crosstalk, meaning x, 1 [k] =
1A llin72[k'] =0.

r) On the right-hand side, a second calibration setting stands for the
user intention “navigating sharp right” (time indices 101-200). In the
second calibration setting crosstalk is apparent, meaning z, 1 [k] =
0.8 A zpo[k] =1.

=
=~
z -

In,l[k]a'rn,2[k]

0

0 100 200
Discrete time k

Figure 5.1: Benchmark calibration signals: Exemplary, normalized signals
xn1lk] (—) and x, 2[k] (---) making up two calibration settings, namely
“navigating sharp left” and “navigating sharp right”

The exemplary benchmark evaluation settings are illustrated in Figure
They are constituted by two input signals — normalized signals (xy 1[k] and
xn2[k]) that are designed with Matlab. Seven combinations of benchmark
input signals represent distinct situations (evaluation settings) that are
being evaluated. These include
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i) n1[k] =1 A xn2[k] = 0 (time indices 1-100) representing ideal
“navigating sharp left” without any crosstalk,
ii) n1lk] =1 A @n2[k] = 0.2 (time indices 101-200),
ifi) zp1[k] =1 A x42[k] = 0.8 (time indices 201-300),
iv) zn1[k] = xn2lk] = 1 (time indices 301-400) standing for ideal
“straightforward” without crosstalk,
V) Zn1lk] = 0.8 A xno[k] (time indices 401-500),

=1
vi) @p1[k] = 0.2 A zy2[k] =1 (time indices 501-600), and

~—

vii) zn1[k] = 0 A xn2[k] = 1 (time indices 601-700) typifying ideal
“navigating sharp right” without crosstalk.

1

xn,l [k],an [/ﬂ}

0 100 200 300 400 500 600 700
Discrete time k

Figure 5.2: Benchmark input signals: Exemplary, normalized signals
zn1lk] (—) and xy2[k] (---) making up seven benchmark evaluation
settings. Inaccessible evaluation setting are grayed out.

Considering the benchmark calibration signals of the notional user (cf. Fig-
ure , merely evaluation settings i to v are accessible because of the
presence of crosstalk. Thus, the evaluation settings vi and vii are grayed
out, insinuating those evaluation settings that remain inaccessible for the
notional user. In other words, the notional user is unable to generate input
signals for ideal “navigating sharp right” without crosstalk.

For this reason, the optimal difference model is expected to output +1
for evaluation setting i. Due to the presence of crosstalk, the notional
user is unable to reach evaluation settings vi and vii. Thus, the ideal
“navigating sharp right” without crosstalk is not achievable for the notional
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user. Therefore, the optimal difference model is expected to output —1 for
evaluation setting v, as that is reachable for the notional user. In between
+1 at evaluation setting i and —1 at evaluation setting v, for a decent
predictability the optimal difference model is expected to generate the
value 0 at evaluation setting iii. Moreover, the optimal difference model
is expected to yield the value +0.5 at evaluation setting ii and —0.5 at
evaluation setting iv.

The assessment of the difference models reveals the actual difference signals.
They are presented in Figures and The optimal difference model’s
output for the accessible evaluation settings i to v is hinted by circle marks.
The signals need to be assessed with respect to the aforementioned desired
properties of an ideal difference signal.

The difference model V1 generates the difference signal as depicted in
Figure It is smooth (des. prop. #1), covers the full range (des. prop.
#3) and is bounded (des. prop. #4). However, the flatness is not at value
zero. There is an offset along the y-axis. In other words, it does not meet
the desired property #2. This difference model outputs a signal suggesting
activity when the user actually is idling.

The output signal of difference model V2, illustrated in Figure is flat
at value zero (des. prop. #2), covers the full range (des. prop. #3) and is
correctly bounded (des. prop. #4). On the downside, the signal is not
smooth at time indices 430 and 470. That is, difference model V2 fails
regarding the desired property #1. The user will be strongly confused as
the generated output around —1 and +1 is not homogeneous.

The difference signal of model V2A, presented in Figure is smooth
(des. prop. #1), is flat at value zero (des. prop. #2) and respects the
desired boundaries (des. prop. #4). Albeit it does not cover the full
range, neglecting the desired property #3. This difference model merely
generates slight signal amplitude for the fifth evaluation setting (time
indices 401-500) and therefore is unable to generate an output standing
for “navigating sharp right”.
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(d) Output signal of difference model V3

Figure 5.3: Output of models V1, V2, V2A and V3 resulting from evalua-
tion settings i - vii with calibration settings 1 and r. Inaccessible evaluation
settings are grayed out. Optimal output is hinted by circle marks.
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(a) Output signal of difference model V3B

(K]

V3B
n,Al12
(@)

AV

(b) Output signal of difference model V4

1
=
o
8
—1 | | | | |
0 100 200 300 400 500 600 700

Discrete time k

(c) Output signal of difference model utilizing linear regression

Figure 5.4: Output of models V3B, V4 and linear regression resulting from
evaluation settings i - vii with calibration settings 1 and r. Inaccessible
evaluation settings are grayed out. Optimal output is hinted by circle
marks.

The model V3 creates the difference signal, shown in Figure[5.3dl This
signal is flat at value zero (des. prop. #2), covers the full range (des.
prop. #3) and is correctly bounded (des. prop. #4). But the signal is
inhomogeneous: The desired property #1 is neglected. Therefore, it will
be challenging for the user to navigate safely.
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The difference model V3B yields an output signal, depicted in Figure
that is flat at value zero (des. prop. #2), covers the full range (des. prop.
#3) and also is bounded as desired (des. prop. #4). However, this signal
is not smooth, as it violates the desired property #1. The edges of the
signal lead to abrupt changes of the amplitude making the navigation
difficult for the user.

The output signal of difference model V4 is shown in Figure [5.4bl It is flat
at value zero (des. prop. #2), covers the desired range (des. prop. #3)
and is correctly bounded (des. prop. #4). However, it is not smooth and
thus does not meet the desired property #1.

Eventually, the model that makes use of linear regression (cf. Section 3.5.2)
meets all of the desired properties of an ideal difference signal. That is,
the difference signal is smooth and homogeneous, it is flat at value zero, it
covers the full range [—1, 1] and it is bounded by —1 resp. +1. The optimal
output at time index 250 is not reached. This is due to the application of
the strictly linear regression to the “asymmetrical” benchmark calibration

signals. The signal is illustrated in Figure It is defined in 1)

Table provides an overview of assessment of the difference models with
respect to the desired properties. Only the model with linear regression
satisfies all of the properties.

#  Desired Property Vi V2 V2A V3 V3B V4 Linear
Regression

1  Smoothness/Homogen. @ X (] X X X (]

2 Flatness at Zero X [ J [ J [ J [ J [ J [ J

3 Full Range Coverage [ [ X [ J ([ J [ J ([ J

4 Boundary [ J [ J [ J [ J ([ J [ J ([ J

Table 5.1: Comparison of difference models with respect to the desired
properties ranging from satisfaction (@) to no satisfaction (X)
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5.3 Heuristic Inter-Trial Parameter Adaptation
with Forearm Muscle Signals

In order to evaluate the heuristic inter-trial parameter adaptation (cf. Sec-
tion , experiments with two able-bodied subjects (23-year-old male
and 28-year-old male) were conducted. The experiments lasted less than
one day per subject.

In sequential, non-simulated trials the subjects navigated an avatar within
the two-dimensional, virtual Parkour environment (cf. Section by
means of EMG signals acquired from the left and right forearms with
surface electrodes. The subjects sat conveniently on a chair in front of
a desktop computer and looked at the monitor where the virtual avatar,
controlled by the user’s signals, was displayed. The forearms rested
conveniently on the table. The subjects were requested to complete
specific courses from the start area (bottom left corner) to the finish area
(top right corner) by navigating the avatar.

In distinct trials, the subjects needed to fulfill two different tasks represent-
ing two constraints. First, the subjects were ought to reach the finish area
as fast as possible, as depicted in Figure Second, they were requested
to reach the finish area while respecting the given, desired trajectory as
accurate as possible, as illustrated in Figure

After the completion of each run (index r), that is, non-simulated trial,
and on the basis of the corresponding recorded EMG signals, the offline
heuristic algorithm (cf. Figure was executed determining optimal
parameter values.

As for the first task with algorithm control option wi = (1,0) (cf. ),
that is, looking for the minimal completion time, Figure illustrates
the setting. Figure shows the non-simulated z-y-trajectory of the
avatar, meaning, the trajectory that was recorded while the human user
was actually navigating the avatar and where the parameters pyy, were
utilized. Figure depicts the simulated trajectory resulting from the
parameter values Py, s—3, found by the offline heuristic algorithm after
three loops of offline simulation, applied to the recorded EMG signals. The
parameter values Py, s—3 are said to be the outcome of the algorithm.
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The completion time of the simulated trial is shorter than the completion
time of the non-simulated trial. This becomes evident analyzing the
simulated trajectory. It ends at the very corner of the finish area instead of
at the vertical bound. This indicates that the parameter values found by
the offline heuristic algorithm are better suited for achieving optimal trial
results. If needed, these parameter values can be applied to the subsequent
non-simulated trials.

As for the second task with algorithm control option w2 = (0,1) (looking
for the minimal path deviation) Figure shows the setting.

Figure presents the recorded trajectory of the non-simulated trial
utilizing parameter values pyyy .. Figure shows the simulated z-y-
trajectory that is based on the parameters pyyyy . s—77 determined by the
offline heuristic algorithm after 77 simulation loops.

As the iterations of the simulated trials (index s =1, ...,5) proceed, many
combinations of parameter values pyyy . s are found and applied to the
recorded EMG signals in the distinct simulation loops. For each loop of
simulation, the resulting xz-y-trajectory is assessed yielding the simulated
user performance Q.. s(Pumi,-s)- Some of the combinations of parameter
values induce improvements in the simulated user performance while some
others yield deteriorations in the simulated user performance.

For the sake of clear and unambiguous depiction, Figure does not plot
the deteriorated, simulated user performances but rather only the improved,
simulated user performances, meaning the envelope of the simulated user
performances over all simulations, defined as

Qimpr,r,s = max {Qr,s} . (51)

Unless another improved, simulated user performance is achieved by the
offline algorithm the previously improved, simulated user performance is
conserved and depicted as a horizontal line (cf. Figure[5.7).

As the offline algorithm proceeds with ongoing simulation loops, ever-
improving, simulated user performances are achieved.
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Figure 5.5: Trial of the Parkour environment with non-simulated (—) and

simulated (—) x-y-trajectories of the avatar applying algorithm control

option w! = (1,0) (i.e., minimal completion time)
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Figure 5.7: Improved simulated user performance over iterations of simu-

lation (S = 100)

Starting at the very first simulated user performance @, s—1 = 0.890
that (by design of the algorithm) equals the non-simulated user perfor-
mance @, the offline algorithm finds step-by-step parameter values leading
to improved, simulated user performances.

This reveals that the offline algorithm (cf. Figure [3.11) works as ex-
pected. It generates parameter values that in simulation yield better, user
performances/results.

Then, the newly determined parameter values were applied to subsequent
non-simulated tasks. Significant improvements in the user performances
of both subjects could not be found — albeit both subjects mentioned that
navigating the avatar within the virtual environment was more comfortable
with the newly determined parameter.
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5.4 Incremental Intra-Trial Parameter
Adaptation with Forearm Muscle Signals

The closed-loop online parameter adaptation (cf. Section was evalu-
ated in experiments with one able-bodied subject (29 years old male) [209).
Within the Race environment (cf. Section the able-bodied subject nav-
igated an avatar by means of forearm EMG signals with surface electrodes.
One trial lasted about 30 seconds. The user is called upon to navigate the
car that is controlled by the EMG signals as close to the middle line of

the road as possible (cf. Figure 4.17c).

In these experiments, inappropriate parameter values were set prior to
the trial execution on purpose in order to evaluate the efficacy of the
incremental intra-trial parameter adaptation. The aim of this approach was
to show the ability of the method to change the parameters from the initial
inappropriate values to suitable values step-by-step (i.e., incrementally).

Scenario S1 and Scenario S2 were set up to simulate inappropriate param-
eter values. In S1 the initial parameter values xEIlnaxyi[O] were set -90% off.
That is, they were set too low with respect to those values being consid-
ered optimal for the user at that very time determined by the open-loop

parameter adaptation xzmax,i (cf. Section . On the other hand, in S2

S2
f,max,s

the starting parameter values x [0] were set +300% off, meaning, too
high in regard to x;max,i. The definitions of the initial parameter values

therefore read

x?j‘nax,i[o] =0.1- x;max,i’ and (52)
x%?nax,i[o] =4- Izmax,i' (53)

In this evaluation, the specific forms (specifically for the Race environ-
ment) of the actual value, the desired value and the user performance are
applied. The specific actual value, namely y . [k] (cf. )7 is repre-
sented by the horizontal car position. The horizontal middle line position
of the road stands for the specific, desired value y}[k]. In the specific
Race environment context, x[k] (cf. (3.64)) is termed car-to-middle-line
relation. The specific user performance Q*[k] follows . The parame-
ter adaptation is carried out incrementally according to with the
constant increment factor w = 1.2.
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Figure shows the way how the incremental intra-trial adaptation of the
parameter Tfmax; Works. Starting from the initially and inappropriately
set values 271, .[0] and 22 . .[0], respectively, the adaptation determines
parameter values better suited to the current situation. The left-hand
sides of Figures and at discrete time k = 0, stand for the settings
before the beginning of the trial while the corresponding right-hand sides,
at discrete time k = 3000, represent the settings after the trial termination.
During trial execution (i.e., online), the parameter value gets altered from
the inappropriate value towards the desired value. This indicates that
the incremental intra-trial parameter adaptation is able to alter user-
individual parameter values dynamically coping with non-stationarities in
the biosignals.
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Figure 5.8: Progression of the incremental parameter adaptation dur-
mg trial execution with maximum parameters xf max,i ((a),—) resp.

252 1xi ((b),—) with the corresponding desired values xf}max)i (=) [209]

In Figure the effect of altering xfmax; on the user performance is
demonstrated. Both the current user performance and the average user
performance are depicted. The current user performance fluctuates de-
pending on the position of the car with respect to the position of the
middle line.
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Figure 5.9: Current user performance Q[k] (—) and average user perfor-
mance (=) during trial execution [209]

As the car position is initialized at the middle line position the user
performance is high at the very beginning of the trial. This must be
considered an artifact caused by the initialization of the Race environment.
It does not reflect the correct user performance in the initial phase.

The average user performance is determined by zero-phase digital filtering
in the forward and reverse direction. Thus, it does not equal one at the
very beginning. The average user performance declines after the initial
phase since an accurate control using inappropriate parameter values is
hard to accomplish. As the user continues the trial execution and the
adaptation incrementally alters the parameter values towards appropriate
values, the user performance increases gradually.

Figure depicts the trajectories of the horizontal car and middle line
positions, respectively. In Scenario S1, at first the car overreacts due to
the low initial parameter value. Even subtle EMG signals cause heavy
control signals and consequently let the car fluctuate a lot.

After a while, the parameter values better suit the user and it becomes
easier to navigate the car accurately on the middle line. On the other hand,
in Scenario S2 the car reacts too lazy due to the high initial parameter
value. Strong EMG signals only result in subtle control signals.
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Figure 5.10: Horizontal car position y[k] (—) and horizontal middle
line position yj.[k] (==) during trial execution [209]

The squared and averaged deviation (position error) between the car
and middle line positions is depicted in Figure The trend of this
evaluation measure indicates that in both scenarios the online parameter
adaptation makes it easier for the user to steer the car.

800

(=)

o

o
T

Deviation
N
)
S
T

200 |- B g
0 | | /\\\/LJ
0 1000 2000 3000 O 1000 2000 3000
Discrete time k Discrete time k
(a) Scenario S1 (b) Scenario S2

Figure 5.11: Squared and averaged deviation between car and middle line
positions during trial execution [209)
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Parameter values that are incorrect or inappropriate due to, for instance,
incorrect calibration, can be compensated by this method. It autonomously
determines appropriate parameter values meeting the needs of the user.
The capability of the incremental intra-trial parameter adaptation to
alter user-individual parameter values dynamically was substantiated here
with the aid of the Race environment. Generally, this method can be
incorporated into diverse environments to provide the users with a variety
of experiences. It can be utilized as a more exciting alternative to the
open-loop parameter adaptation.

5.5 Empirical Comparison of Parameter
Adaptation Methods with Forearm Muscle
Signals

A volunteer study was conducted to evaluate the efficacy of the different
parameter adaptations developed in this work [166] [213].

Twenty able-bodied subjects participated in the volunteer study. A session
of each subject typically lasted a few hours (i.e., less than one day per
subject). In the first stage, 12 trials (index ¢ = 1,...,12) within the
Race environment (cf. Section were executed by each subject for the
actual parameter adaptation. In the second stage, the subjects completed
trials within the Virtual Wheelchair environment (cf. Section for the
subsequent assessment of the parameter adaptation. The virtual avatars
in either of the environments were controlled by means of forearm EMG
signals with surface electrodes.

Asking for permission to conduct the volunteer study an application for
ethical approval was filed . The documents of the application for
ethical approval (German language) are provided in Appendix The
Ethical Committee of the Karlsruhe Institute of Technology approved the
volunteer study.

The volunteer study’s data was statistically evaluated by means of two-
sampled Student’s t-tests, multiple Student’s ¢-tests with Bonferroni cor-
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rection, analyses of variance (ANOVAs) and Pearson product-moment
correlation coefficients (PCCs).

In the remainder of this section the significance of p-values is denoted

according to

p** Lif p <0.001
p=<p™* if p<0.005. (5.4)
p*  L,if p<0.05

Four parameter adaptation methods were compared. The total number
of subjects was equally divided over the four adaptation methods. Con-
sequently, four test groups (A, B, C and D) of subjects were acquired,
namely

A. one-size-fits-all parameterization group (5 subjects),

B. initial calibration group (5 subjects),

C. inter-trial calibration (offline recalibration) group (5 subjects), and
D. intra-trial calibration (online recalibration) group (5 subjects).

The subjects were briefly informed of the existence of the differing test
groups. However, in order to preserve the subjects’ unbiased approach
the explicit differences between the test groups were not revealed (blinded
study design).

As human users naturally can be considered as adaptive systems (cf. Sec-
tion , the interaction of human users and parameter adaptation in
test groups B, C and D are co-adaptive systems.

Test group A (one-size-fits-all parameterization) did not utilize any param-
eter adaptation and served as a control group. The fixed parameter values
were estimated based on prior experience and manually set to

Tf min,t,i — 20, and (55)
Tf max,t,i — 280. (56)

Test group B (initial calibration group) made use of the open-loop sensor
calibration (cf. Section|[3.5.1) once, prior to the first trial execution, yielding
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ac;min,u and :c; max,1,i- Lhese parameter values were not changed after
the initial determination, but rather they were applied as fixed values
throughout all trials according to

*
Lfmin,t,i = Lfmin,1,i’ and (5.7)

*
Tfmax,t,i = Lfmax,1,i: (58)

Test group C (inter-trial calibration group) performed the open-loop sensor
calibration (cf. Section repeatedly, prior to the each trial execution
yielding x}imin,t,i and @¢ .., ;- Accordingly the distinct values for the
Trials 1 to 12 are defined as

*
Lf,min,t,i = mf,min,t,i’ and (59)

*

Lf,max,t,i = Lfmax,t,i* (510)

Test group D (intra-trial calibration group) applied the open-loop sensor
calibration (cf. Section once, prior to the first trial execution. In
addition, the closed-loop online parameter adaptation (cf. Section
was performed during the trials. The incremental parameter adaptation is
defined as

Tt min,ti = m;,min,l,iv together with (5.11)

(3.65) where
xf,max,i[k] = x:,max,l,i[k]ﬂ and (512)
$f,max7i[k - 1] = x;,max,l,i[kl - 1] (513)

Table provides an overview of the applied parameter values over Trials
1 to 12.



Trial ¢ Input ¢ A B C D
1 1 (20,280)  (x; Tt min,1,1° :max,l,l) (x;,min,l,l’ £ max,l,l) (‘Z;min,l,l’mz;;x,l,l[k})
2 (20,280) ("Ef min,1,2° f max,1,2) (x;,min,lﬂ’ fmax,l,2) (m;min,l,Q’ ?;;x,l,Q k])
2 1 (20,280)  (x; f min,1,1° f max,1,1) (5’3;,min,2,17 fmax,2,1) (x;k,min,l,v ?;521,1 k])
2 (20,280)  (ay Tt min,1,27 f max,1,2) (x;,min,2,2’ fmax,2,2) (x;min,l,Q’ f;ax,l,Q[ 1)
3 1 (20,280) (l"f min,1,1° ¢ max,1,1) (x;,min,fi,l’ f,max.3, 1) (I;min,l,l’ f ;a7x2,1,1 k)
2 (20,280)  (ay Tt min,1,27 :max,l,Q) (w;,min,3,2’ f,max.3, 2) (T’;min,l,w 2;521,2 k))
4 1 (20,280) (zf min,1,1° f max,1,1) (33; ‘min,4,1” f max,4,1) (:Cz:,min,l,l ) xf,;ax,l,l (k1)
2 (20,280) (zf min,1,2° Tt max,1,2) (z ;min,4,27 L max,4,2) (m;min,l,Q’ a:?,r_ﬂ;ix,l,Q[ )
5 1 (20,280) ( Lt min,1,1° :max,l,l) (z Zf min,5,1° f max,5, 1) ($:,min,l,l’ zr:n;lﬁl,l k)
2 (20,280) (xf min,1,2° f max,1 2) (z ;min,5,2’ fmax,5, 2) (x;min,l,z’xzzgx,lz[k})
6 1 (20,280) ( Tt min,1,1° f,max,l,l) (zf ‘min,6,1° f max,6, 1) (x:,mirx,l,l’xz;;zx,l,l[ 1)
2 (20,280) (I:min,l,T x;max,l,Z) (x:,min,6,27 £, max,6, 2) (x:,min,l,Z’ x?;;x,Lz[kD
7 1 (20,280) (I;min,Lv x:,max,l,l) (I;min,zlv fmax,T, 1) (x::,mm 1,10 ?;;21,1[1’3})
2 (20,280) (= :mln 1,2 ?max,l,Q) (x;min,7,2’ fmax,T, 2) (x:,min,l,w ?;;;?,1,2[]“})
8 1 (20,280)  (x; Tt min,1,1° f max,l,l) (x;min,&l’ f;max8, 1) (m;min,l,l’ f,:lax,l,l[k})
2 (20,280) (xf min,1,2° f max,1,2) (x;,min,8,2’ f;max8, 2) (‘xzmin,l,Q’ mf,;ax,lﬁ[k})
9 1 (20,280)  (z; f min,1,1° f max,1,1) (5’3;mm,9,17 f,max.9, 1) (x;k,mm,l,l’ f ;gx,l,l[k])
2 (20,280)  (ay Zf min, 1,2’ f max,1,2) (x;,min 9,2 f max,9, 2) (x;min,l,Q’ f igx,l,z[m)
10 1 (20,280) (mf min,1,1° ¢ max,l,l) (x;mln 10,1° xf max,10, 1) (x;,min,l,l’ f;gx,l,l[kb
2 (20,280)  (x} Z¢ min,1,2’ :max,l,Q) (I;mln 10,2 f max,10,2) (m;min,l,Z’ £ I:nax,l,Q[kD
1 1 (20,280) (zf ,min,1,1° f max,l,l) (I:,mm 11,17 If max,11, 1) (:C;mln,l,l’ f:nzoix,l,l[k})
2 (20,280) (‘rf min,1,2° Tt max,l,Q) (wzk,mm,u,w fmax,11 2) ($;min,l,2’ ;'y,r_n(z)ix,l,Q[kD
12 1 (20,280) ( f min,1,1° :max,l,l) (x:,min 12,17 f max,12, 1) (x:,min,l,l’ f,r:nax,l,l[k})
2 (20,280)  (ay Tt min,1,2’ gﬁf max,1,2) (x;mm 12,20 JUf max,12,2) (x:min 1,20 %¢ j-ix 1,2[1‘3})

Table 5.2: Schedule of the parameter adaptation methods with corresponding parameter values over

Trials 1 to 12 (modified from [213])
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Figure shows the progress of the user performances (cf. (3.68)) over
Trials 1 to 12 with corresponding standard deviations (cf. (3.69)).
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Figure 5.12: User performances Q? with standard deviations o over Trials

1 to 12 of the test groups A to D in Race environment (U = 5) [213]
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Figure illustrates the user performance éf of the five subjects
belonging to test group A. The very first value reads Q% = 0.909 while the

final value equals Q%, = 0.941. Thus, a moderate and linear improvement
is visible. The mean of standard deviations is %1% = 0.044.

Figure|5.12b| shows the progress in 622? of test group B subjects. The value
of Trial 1 equals Q3 = 0.919 and the value of Trail 12 results is Q}, = 0.962.
A decent improvement in the Trials 1 to 5 but stagnation in the remaining
trials is indicated. The standard deviation mean is 6512 = 0.026. This is
less than the standard deviation mean of test group A.

Figure presents the result of test group C. The initial trial yields
23 = 0.872. The final trial’s value is Q55 = 0.946. The standard deviation
mean results in %12 = 0.047. Notionally, the user performance values Q3
of test groups B and C are expected to be the same due to the identical
initial procedure. In practice, these values are not equal because of user
individual variations.

Figure|5.12d|depicts the outcome of test group D. Initially, the value equals
23 = 0.911. After Trial 12 the value reads @3, = 0.960. The mean of the
standard deviations is %12 = 0.026.

The two-way average user performances éi’ of each of the test groups A

to D feature an increasing trend (cf. Figures -[5.12d).

The user performances éfo are depicted in Figure

o .
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Figure 5.13: User performances Q?° with standard deviations 02° over

Trials 1 to 12 of all test groups in Race environment (U = 20) ||
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The two-way average user performance éfo represents the average over all
test groups. The initial user performance value is éfo = 0.903 and the final
value yields Q%9 = 0.952. The standard deviation mean is 212 = 0.016.
An ANOVA test of éfo reveals a p-value of p = 0.001*** and a Student’s

t-test leads to p = 0.005**. Thus, the improvement in Q?° is statistically
significant.

The correlation coefficient is R = 0.955 with a p-value of p = 0.000***.
This result suggests a strong correlation between the number of trials and
the user performance. Thus, with increasing experience the user generally
improves. This is in turn reflected in increasing user performance
213].

It suggests an overall increasing trend. This emphasizes that training in
the virtual Race environment naturally causes positive trends in the user
performance.

Figure illustrates a comparison between the test groups by means of
second-order polynomials fitting the user performances in the least-squares
sense.

Fitted two-way average
user performance Q7

|
1 2 3 4 5 6 7 8 9 10 11 12

Trial ¢

Figure 5.14: Second-order polynomially fitted (least-squares) user perfor-

mance Q7 over Trials 1 to 12 of test groups A (-----), B (--=-), C (---) and
D (—) in Race environment [213]
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Initially, the user performances Q? of the test groups A, B and D were
at about the same levels. In contrast, the initial polynomially fitted
user performance Q7 of the test group C was considerably lower. The
levels at the very beginning strongly depend on the differences between the
individual users. Finally, the test group D yielded the highest polynomially
fitted user performance Q7. The test groups B and C had final polynomially

fitted user performances Q? of about the same level. The lowest final level
was yield by test group A.

Looking at the overall progress from Trial 1 to 12, the test group A
accomplished the lowest relative increase. This is probably because the
one-size-fits-all parameter values do not meet the individual requirements
of the users at the very beginning like the initial calibration (test group B)
does. Furthermore, this is likely due to the fact that the one-size-fits-all
parameter values does not adapt to the user like the inter-trial calibration
(test group C) does, who learns how the handling better over time (i.e., over
the trials). Test group C accomplished the highest increase. It is indicated
that parameter adaptation positively affects the user performance.

Figure shows fitted standard deviation 7.
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Figure 5.15: Second-order polynomially fitted (least-squares) standard
deviations of user performance over Trials 1 to 12 of test groups A (-----),

B (---)), C (---) and D (—) in Race environment \\
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The o7 is fitted in the least-squares sense with second-order polynomials
of the test groups A to D over Trials 1 to 12. Each of the polynomials
declines due to the naturally caused training effects (cf. Figure[5.12). The
test group D accomplished the best final result o9y = 0.017 in addition to
a substantial improvement given the decent starting level o = 0.036.

Comparing the standard deviations between the test groups, Student’s
t-tests together with a Bonferroni correction coefficient m = 6 were applied.
The comparison of test groups A and B results in p - m = 0.004**. As for
test groups A and C there is p-m = 1. Moreover, test groups A and D
results in p - m = 0.027*. The comparison of test groups B and C leads to
p-m = 0.020*. Test groups B and D yield p-m = 1 while test groups C
and D gives p - m = 0.046* [213].

Figure shows a scatter plot of the average user performance Qu,f,
(cf. (3.67)) and the control range p (cf. (3.4)) of test group C. The control
range, defined as the difference between the maximum parameter and the
minimum parameter, insinuates the ability of the user to intentionally
establish both high and low values.
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Figure 5.16: User performance @, ; over control range p of test group C

in Race environment [213]

As test group C consists of five subjects and each subject completed 12
trials, the total number of data points amounts to 60. Each data point
represents one control range value p that was collected before trial execution
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and one average user performance value Q%t that was determined after
trial execution. Applying the Student’s ¢-test to the control range p of
Trials 1 and 12 yields p = 0.346. Thus, an influence of the training on the
quantity of the control range is likely to be ruled out.

The PCC of correlation between Qu,t and p is R = 0.62 with p =
0.000*** . This result gives indication of a moderate correlation
between @, : and p. The volunteer study presents a positive correlation
between user performance and control range. Users who are well able to
establish high and low values tend to achieve higher performance values.

In Figure the results of the trials in Virtual Wheelchair environment
(second stage) with respect to two different values are depicted.

250
200 - y
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Average
elapsed time
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(a) Elapsed time in s
20 T

Average
path deviation

Test group

(b) Path deviation in px

Figure 5.17: Elapsed time and path deviation with standard deviations of
test groups A to D in Virtual Wheelchair environment \\
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The users were prompted to navigate along a reference path both as
fast and accurate as possible. In this assessment none of the parameter
adaptations were activated but rather those trials served as comparison
of the performance levels of the distinct test groups after the dedicated
training and adaptation phase (first stage).

Figure presents the average elapsed time. It is the mean value over
the subjects belonging to the test groups of the time from leaving the start
location to arriving at the designated finish location. The subjects of test
group D completed the reference path the fastest (140.8 s). The second
fastest results were achieved by the subjects of test group C (163.3 s),
followed by those of test group B (172.3 s) and A (179.9 s). This result is
promising because the higher-level adaptation methods tend to outperform
lower-level adaptation methods. However, the ANOVA test of the average
elapsed times results in a p-value of p = 0.138. Hence, these results are not
significant, and the number of subjects is probably insufficient. Conducting
a follow-up study including more participants possibly would clarify this
matter.

Figure shows the average path deviation. It corresponds to the
mean value over the test group’s subjects of the accumulated, orthogonal
distances between the actual and the reference avatar position. These
orthogonal distances are defined as

A(yref, yact)[k] = \/(gref[k] - %Ct [k])T ’ (gref[k] - gact [k})v (514)

where Fref[k] and Fact[k] denote the reference and actual avatar positions.

The subjects of test group D reached the best result, meaning the least
average accumulated path deviation (10.1 px). The average accumulated
path deviations of the subjects belonging to test group B (11.3 px), test
group C (11.7 px) and test group A (13.9 px) accomplished not as good
results. Albeit, the ANOVA test yields p = 0.638. Therefore, significance
could not be found. A follow-up study with more subjects could resolve
this uncertainty.

Further PCC were calculated by examining the correlations between the
results in the Virtual Wheelchair environment and those of the Race
environment. The average elapsed time within the Virtual Wheelchair en-
vironment and the average user performance within the Race environment



5.6 Training of Ear Muscle Signals for the Able-Bodied 157

correlate with R = 0.118. Therefore, a cross-environment correlation is
not evident.

Also, the correlation coefficient between the average path deviation and
the average user performance within the Race environment amounts to
R = —0.228. Hence, a significant correlation is not indicated.

5.6 Training of Ear Muscle Signals for the
Able-Bodied

For the first time, the concept of EMG-based human-machine inter-
faces (HMIs) was expanded by utilizing the extrinsic ear muscles (cf. Sec-
tion as EMG-signal sources. The utilization of EMG-signals, ac-
quired from the human extrinsic ear muscles, as HMI input signals denote
a completely novel approach. As the extrinsic ear muscles usually are not
activated in humans, individualized training was absolutely necessary.

The adaptive muscle interface, as introduced in this work (cf. Chapter ,
was evaluated. The individualized training was conducted with ten able-
bodied subjects. They completed the individualized training of the extrinsic
ear muscles for unpracticed users (cf. Section , developed in this work.
This training, aiming at enabling the users to activate their ear muscles,
lasted five days per subject. The daily training endured about one hour
per subject. EMG signals from the extrinsic ear of both the left and the

right flank were acquired .

To provide the subjects with biosignal feedback, visualization methods
of the graphical user interface (GUI) (cf. Section were utilized. This
enabled the users to establish a cause-and-effect relationship between their
own intention and the actual, resulting EMG signals of the extrinsic ear.
This was of prime importance as most naive users (i.e., users who never
before attempted to activate their extrinsic ear muscles) were incapable of
intentional activations of their extrinsic ear muscles.

After that initial phase the users completed diverse virtual tasks. The
implementation of the biosignal assessment paradigms (cf. Section [2.4.3))
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captured the abilities of the users to modify the EMG signals in specific
ways.

Figure presents the comparison of trials between Day 1 and Day 5 (i.e.,
the final day) of the training in the Parkour environment (cf. Section [4.5)).

Start area

(b) Trials of Day 5 (final day)

Figure 5.18: Actual path trajectories of trials of Parkour environment \\

Each user was required to complete the obstacle course from the start
area to the finish area. Looking at Figures [5.18a] and [5.18b| the visual
impression indicates an improvement in the user’s ability to control the
virtual avatar.
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The positive visual impression is also reflected in the numerical evidence.
The average control ability ¢5“" (cf. 1D was determined with U = 10.
Figure illustrates the average control ability in percent with cor-
responding standard errors. The normalization of the average control
abilities is in accordance with &°* = 100 %, that is, the results of the
Days 2 to 5 were referred to the result of the Day 1.

The average control ability over the training turned out being 112.11 % at
Day 2, 142.52 % at Day 3, 159.16 % at Day 4 and 174.09 % at Day 5.

Hereby, an absolutely novel conclusion is indicated. The ability to control
the virtual environments by means of EMG signals from the extrinsic ear
muscles is trainable. Albeit the promising trend in the data, significance
could not be found. Therefore, a follow-up study with more subjects might
resolve this uncertainty.
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Figure 5.19: Averaged control ability in percent with corresponding stan-
dard errors over Days 1 to 5 in Parkour environment \\

In Figure as the final examination, at Day 5 the able-bodied users
were asked to navigate a real electric-powered wheelchair (EPW), the
B600 by Otto Bock as presented in Appendix through a real obstacle
course by means of the EMG signals from the extrinsic ear muscles. This
final examination was geared towards being an incitement and motivation
for the users. Thus, quantitative data was not acquired from these real
obstacle courses.

For reasons of safety, the subjects were instructed not to release the built-in
emergency stop of the electric-powered wheelchair (EPW). Together with
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Figure 5.20: Able-bodied user steering the electric-powered wheelchair
(EPW) by EMG signals from the extrinsic ear muscles through an obstacle
course with hand set to the built-in emergency stop!

the implemented emergency stop (cf. Section [4.6) any kind of occurring
problems during operation could have been handled by both the users and
the supervising staff.

5.7 Training of Ear Muscle Signals for the
Physically Handicapped

5.7.1 Tetraplegia

As an absolute novelty, the adaptive muscle interface as introduced in
this work (cf. Chapter , utilizing the EMG-signals from the extrinsic ear

LCourtesy of D. Liebetanz, University Medical Center Géttingen



5.7 Training of Ear Muscle Signals for the Physically Handicapped 161

muscles, was applied in a study with physically handicapped individuals.
The participants, who were limited in their mobility due to physical
handicaps, freely navigated a real electric-powered wheelchair (EPW).

Two subjects living with tetraplegia, caused by a cervical spinal cord

injury (SCI) (cf. Section [1.3.2), participated in the study [172}[182]. Pa-

rameter adaptation was applied in order to support the users in controlling
the executing device . Furthermore, the biosignal feedback and visual-
ization methods of the graphical user interface (GUI) (cf. Section [4.5), as
developed in this work, were applied. The subjects represented particularly
the main target group of the adaptive muscle interface (cf. Section .
Subject 1 resp. Subject 2 exhibit neurological levels of injury (NLIs) of C5
resp. C3 with ASTA impairment scale (AIS) of A resp. C.

From the extrinsic ear muscles of both the left and the right flank the EMG
signals were acquired bilaterally. Asking the subjects prior to the execution
of the training whether they can activate the extrinsic ear muscles on
purpose revealed distinct answers. Subject 1 answered in the affirmative,
while Subject 2 answered in the negative.

The five-days training consists of virtual training at the computer monitor
as described above (cf. Section as well as navigation of a real electric-
powered wheelchair (EPW), the B600 by Otto Bock as presented in
Appendix through an obstacle course. The real obstacle course was
built up in an indoor sports arena. The corridor width of the obstacle
course was about 2 m. For the sake of the subjects’ safety, the demarcation
indicators were not irremovable but rather, in cases the subjects clashed
with the demarcation indicators, were easily to push aside. Figure
presents one subject during the real electric-powered wheelchair (EPW)
navigation.

The trajectories of Subject 1 resp. Subject 2 in the virtual Parkour
environment resp. in the real obstacle course are portrayed in Figure
resp. Figure The implementation of the virtual Parkour environment
(cf. Section permitted the collisions in a manner of scraping along the
virtual walls. In contrast, in cases of collisions of the real electric-powered
wheelchair (EPW) the vehicle was stopped by the supervising staff via an
emergency stop as implemented (cf. Section .
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Figure 5.21: Spinal cord injured user steering the electric-powered wheel-
chair (EPW) through an obstacle course?

Then, the supervisors instantaneously positioned the EPW correctly on
the obstacle course again so that the subject could continue the course.

As shown in Figure the initial virtual trial of Subject 1 was rather
choppy and implicated five collisions with the demarcation walls. Fig-
ure shows the trace of trial in the real obstacle course of Subject 1.
The subject clashed once with the demarcation indicators but could con-
tinue immediately after the supervisor repositioned the wheelchair again.

In Figure the initial trial in the virtual Parkour environment of
Subject 2 reveals two collisions with the demarcation walls while navigating
choppily. The same subject completed the real obstacle course with one
collision in a smooth fashion, as shown in Figure

2Courtesy of U. Eck, Heidelberg University Hospital
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(a) Virtual trial in Parkour environment at Day 1

(b) Trace of trial in real obstacle course at Day 5

Figure 5.22: Path trajectories of trials of Subject 1 |\

The training over five days was reflected positively in the numerical re-
sults. The implementations of the biosignal assessment paradigms (cf. Sec-
tion showed improvements over the training time. Also, in the
virtual Parkour environment the completion time, that is, the elapsed time
from leaving the start area to arriving at the finish area, improved. As
for Subject 1, the completion time was improved from 91.0 s (at Day 1)
to 71.6 s (at Day 5) which corresponds to about 20 s of betterment. Sub-
ject 2 managed to improve from 139.5 s (at Day 1) to 104.9 s (at Day 5)
measuring up to about 35 s advancement.
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(a) Virtual trial in Parkour environment at Day 1

(b) Trace of trial in real obstacle course at Day 5

Figure 5.23: Path trajectories of trials of Subject 2 \\

After finishing the virtual training phase, at Day 5, both subjects succeeded
in completing the real obstacle course. The Subject 1 took 86.0 s while
Subject 2 took 201.6 s.

The results suggest that the deliberate activation of the extrinsic ear
muscles can be trained over time by persons with highly located SClIs.
Moreover, it becomes evident that intuitive navigation of EPWs is possible
for persons that typically use to be significantly immobile due to their
impairment of motor functions. The NASA-TLX (cf. Section
indicated a low resp. medium subjective workload for T1 resp. T2.
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5.7.2 Spinal muscular atrophy

A subject suffering from a severe type of spinal muscular atrophy (SMA)
participated in another setting as shown in Figure

e

< ‘,.«n""'"""‘“"

Figure 5.24: User living with spinal muscular atrophy (SMA) playing the
Tetris game by means of the extrinsic ear muscles?

Artificial respiration and drip-feed is given to the 13-year-old subject with a
short life expectancy as there are only very few remaining motor functions.
Numeric data was not explicitly recorded but rather this setting served
for testing purposes.

With the adaptive muscle interface (cf. Chapter the severely handicapped
subject succeeded in controlling the Tetris environment (cf. Section by
means of the extrinsic ear muscles. For the first time the subject was able
to actually control a computer game. This would have been inconceivable
and poses a real asset for the subject.

3Courtesy of U. Eck, Heidelberg University Hospital
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5.8 Summary

The experimental assessments of the difference models for crosstalk com-
pensation brought to light that the model with linear regression satisfies
all of the desired properties. Various parameter adaptation methods were
tested and statistically evaluated in experimental studies with subjects.
The novel adaptive muscle interface, as introduced in this work (cf. Chap-
ter , was also successfully tested where the muscle signals were acquired
from the extrinsic ear muscles of the subjects.

Ultimately, the adaptive muscle interface was tested for the first time with
physically handicapped individuals. With training for unpracticed users
according to the concept of this work (cf. Section the handicapped
individuals completed the virtual and real navigation tasks with success.



6 Conclusions and Outlook

Persons incapable of moving extremities due to trauma or disease induced
disabilities such as spinal cord injuries (SCIs) are highly dependent on
other persons’ help in everyday life. Human-machine interfaces (HMIs)
potentially alleviate the suffering of the disabled persons and change
living conditions for the better, for instance, by regaining independence of
mobility through navigation of electric-powered wheelchairs (EPWs).

This work addresses the need for HMIs applicable for persons suffering
from highly located SCIs. The main aspects of this work are listed below.

e Introduction of a novel HMI concept based on the user’s intentional
activation of the outer ear muscles (cf. Chapter [2).

o Design of user and supervisor-centered tools (cf. Chapter 3).
o Implementation of the introduced HMI concept (cf. Chapter .

o Experimental validation of the implemented system (cf. Chapter .

Considering the requirements effecting user acceptance and addressing
open problems of state of the art HMI concepts, this work achieved the
following main results.

1. Introduction of a new HMI concept named telemetric and myoelectric
ear muscle sensing system (TELMYOS). As opposed to state of the
art HMI concepts, it enables persons with tetraplegia to control
various kinds of technological devices without the loss of remaining
bodily functions or major aesthetic impairments. It encompasses
biosignal quantification, user-specific calibration and training scheme
for unpracticed users.
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6 Conclusions and Outlook

10.

11.

. Development of biosignal quantification methods for the numerical

assessment of the user’s biosignal control ability. These methods allow
evaluation of inter-individual variations as well as intra-individual
variations over time and provide the basis for user individualization.

. Invention of novel user-specific parameter calibration methods en-

abling a wide range of users to accomplish accurate HMI operation
despite of inter-individual differences.

. Design of a training scheme aiming at unpracticed users to promote

improvements in control ability. This scheme is highly customizable
to meet each user’s individual strengths and weaknesses.

. Demonstrating the evidence of functionality of the HMI concept with

both able-bodied and handicapped persons. In studies, participants
showed an increase of biosignal control ability (i.e., outer ear muscle
activity). Persons with paraplegia accomplished navigating an EPW
autonomously through an obstacle course.

. Examination of co-adaptive learning with respect to parallel and

sequential application of user training and parameter adaptation.

. Analysis of biosignal processing algorithms incorporating user-specific

and time-variant parameters to generate activity signals.

. Analysis of procedures for user-specific parameter adaptation coping

with the non-stationary nature of the acquired biosignals.

. Implementation of development tools featuring both front- and back-

end usage of a graphical user interface (GUI) for users and supervisors,
respectively.

Development of new transmission protocols and implementation of
wireless data transmission for subsystems.

Analysis of individualized control schemes dependent on the user’s
bodily functions and the user’s preferences.

The open problems outlined in Section have been researched. The
proposed HMI concept makes use of an additional head-only activity. More-
over, while acquiring facial biosignals it provides an unobtrusive outward
appearance and it preserves remaining bodily functions like breathing or
speaking. The poor biosignal controllability of users in the early stages has
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also been addressed. A supportive training scheme helps users to improve
control skills. Finally, by means of an adaptation scheme the proposed
HMI concept is able to cope with time-variant biosignal drifts.

Further research is still necessary and the implementation of useful features
helps to improve the system:

Facilitation of EPW navigation

— Development of non-isotonic controls such as cruise control, to
be easy on the user’s muscle stamina

— Improvement of the reverse gear functionality
Safety functions for the EPW

— Addition of hardware components like light detection and rang-
ing (LIDAR) sensors for obstacle detection

— Implementation of stop zones in the front and rear as well as
slow down zones to the left and right

Miniaturization of system components such as the development of a
mobile GUI version on cell phones

Enhancement of the system error management, like adding light-
emitting diode (LED) displays at the subsystems

Tethered inter-subsystem communication

Extension of types of electrodes for acquiring input signals, for
instance, activity signal electrodes (commonly used in prostheses)

Studies including more subjects for statistical proving of effects of
training and adaptation

Improvement of the immersion of virtual realities (VRs) to provide
the user with more realistic simulations

— Haptic feedback, such as a vibration actuator
— Head-mounted displays, for instance, Oculus Rift, Google Glass

— Assessment of the subjective mental and physical workload of
the user






A Appendix

A.1 Population Aging and its Consequences

Figure indicates the prevalence of disability is expected to grow due to
the aging populations and the increase in chronic health conditions. The
European Commission declared participation, equality and employment
among others as areas of action in the European Disability Strategy .
In accordance with WHO’s estimates about 15 % of the world’s population
experience disabilities of variant degrees.
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Figure A.1: The prevalence of disabilities increases with the age (modified

from )
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A.2 Disability and Writing

Locked-in patient Jean-Dominique Bauby wrote his autobiographical novel
“The Diving Bell and the Butterfly” with the aid of a device interpreting his
left eyelid blinking. It was the only remaining bodily function controllable
by will . He finalized his novel successfully. The entire book took about
200,000 blinks.

Paraplegic patient Robert Francis Murphy described the gradual deteriora-
tion caused by a slow-growing spinal cord tumor in his personal narrative
“The Body Silent: The Different World of the Disabled” [136].

A.3 Experimental Wheelchair Platform

The highly versatile, electric-powered wheelchair B600 by Otto Bock is
the utilized experimental platform. It is portrayed in Figure Users
capable of moving at least one upper extremity typically maneuver this
EPW via the control panel by hand, as depicted in Figure

(a) B600 (b) enAble50

Figure A.2: Electric-powered wheelchair B600 and the hand control panel
enAble50*

LCourtesy of Otto Bock HealthCare GmbH
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The B600 is designed for indoor and outdoor use. The maximum speed
is declared as 10 km/h, the climbing ability amounts to 17 % and the
approximate distance range is 35 km. On-the-spot turns are feasible. The
main scope of application is the electric mobility for persons with walking
impediments or walking inability. The wheelchair is adjustable in many
ways to meet the personal requirements of the user. Seating position can
be adjusted with the backrest, arm rests, foot rests and the seat cushion.
Furthermore, electric motors help adjust the seat height and angle .

A.4 Head-only HMIs

A.4.1 Hybrid HMIs

Hybrid HMIs apply two or more operating principles within one system.
As a consequence, at least two biosignals of different types are acquired
from the human user. The information of these biosignals is eventually
merged by algorithmic calculus to gain a rich data representation of the
intention of the user. For hybrid HMIs, the categorization is challenging
since various operating principles are utilized and each can be categorized
according to either of the aforementioned ways. Therefore, in this section
some publications appear in several different categories if needed.

A.4.2 Chin Control

An established and well-known head-only HMI is the chin-controlled in-
terface. The user’s chin deflects the miniaturized joystick that is situated
in front of the user’s face to generate control signals. This HMI requires
head movements to some extent. Hence, the user needs to have certain
control over the neck muscles. The chin-controlled joystick basically works
the same way hand-controlled joysticks do. As for EPW control systems,
the deflection of the joystick to the front direction causes the wheelchair
to drive forward. The joystick deflection is typically proportional to the
velocity of the wheelchair . Chin controllers to navigate EPWs are
commercially available for example by Otto Bock HealthCare GmbH.
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As chin controller systems are simple and intuitive because they resemble
hand-controlled joysticks merely moderate training is needed. However,
the joystick positioned in front of the user’s head implies aesthetic impair-
ment.

A.4.3 Tongue Control

Tongue-controlled HMIs generate control signals depending on the user’s
tongue movements. Two major classes are distinguished, namely systems
relying and not relying on auxiliary means in mouth or throat.

Systems utilizing auxiliary means in mouth or throat provide high informa-
tion density. These systems are invasive and require surgical interventions
to position the auxiliary means. A magnetic field that serves as HMI in-
put can be altered by movements of a magnetic implant or piercing in the
user’s tongue, termed tracer. The magnetic field is detected by sensors
located in a headset or other peripheral structures. Depending on the com-
parison between the actual tongue movement and a priori recorded tongue

movement patterns control signals are generated .

Interfaces without auxiliary means in mouth or throat are non-invasive
but only provide low information density. Some systems make use of
tongue movement ear pressure (TMEP) signals that are detected in the
user’s ear by pressure sensors incorporated in the earplugs. By tongue
clicking the ear pressure alters because the mouth cavity and the ear canal
are interconnected. The TMEP signal gets digitized, filtered, segmented
and its short-term energy (STE) is calculated. Signal interpretation is
accomplished via classification based on a priori generated templates.
Researchers conducted a case study with real-time simulation and control
of a wheelchair moving through a constrained 2D environment .
Different tongue movements yield distinct TMEP signals that can be
classified . Another tongue-controlled system without auxiliary means
extracts the shape of the tongue from images of an ultrasonic scanner for
mapping images of the vocal tract onto a sound output. This is not used
as a general HMI but rather as a musical controller .

Tongue-controlled HMIs provide advantages such as high agility, high
accuracy, intuitive movements and only little muscle fatigue. However,
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in some cases the systems imply a certain aesthetic impairment through
headset or earplugs. Also, irrespective of the usage of auxiliary means in
mouth or throat tongue-controlled HMIs do not allow the user to speak
while operating the interface because tongue movements are essential
for verbal articulation. In addition, eating also causes artifacts in the
control signal as the tongue is used for handling the meal in the oral cavity.
Yawning also potentially result in control signal artifacts.

A.4.4 Voice Control

Automatic speech recognition (ASR), also known as speech-to-text (STT),
utilizes human language for the H2M communication. Early works are pre-
sented in @ . Overviews of conversational user interfaces can be found
in . There are two major classes, namely the speaker- independent
approach and the speaker-dependent approach. The speaker-independent
approach does not necessitate the system to learn the individual speech
of the user . On the other hand, the speaker-dependent approach is
based on a training phase where the user reads some text aloud so the
system learns how the user speaks . There are diverse techniques
realizing silent speech interfaces (SSIs), such as electromagnetic articu-
lography (EMA) . Systems following the speaker-dependent approach
usually achieve more accurate transcription results .

In order to find voice commands ensuring robust and safe navigation some
works conducted experiments where blind subjects were guided by seeing
supporters through a course. A minimum number of voice commands is
required for safe navigation [102].

Phonetic control focuses on the sounds generated by the vocal tract
rather than the human language. By interpreting the pitch and duration
of humming sounds it is language-independent and hence multilingual.
However, this approach is rather counter-intuitive .

Speech-controlled HMIs are extraordinary intuitive as speech is the most
natural manner of H2H communication. On the downside, verbal H2H
communication and HMI control are largely mutually exclusive — the user
cannot talk to people while operating the interface. Moreover, many
different voice commands are needed for accurate wheelchair control. As
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for speaker dependent systems long training phases are required. Speech
control also potentially annoys other people as they inevitably hear the
voice commands.

A.4.5 Airflow Control

Some HMIs make use of pressure sensors to measure the nasal airflow.
Nasal sniffing and breath inhalation through the mouth is utilized as a
communication channel.

In passive sniff controllers, a pump generates a low-flow stream of air
into a nasal mask. The mask pressure is measured via the sniff controller.
Opening and closing the soft palate (velum palatinum) decreases and
increases the pressure, respectively. The pressure signal is independent
of respiration as the user can breathe normally during both opened and

closed soft palate [156].

The sip-and-puff (SNP) principle relies on the deliberate variation of air
pressure in a pneumatic tube. It is also known as suck-and-blow. Both the
amplitude and the sign of the airflow may be altered by the user. The user
holds the mouthpiece of a pneumatic tube which is connected to the SNP
system. If the user inhales (sip) the air pressure in the pneumatic tube
decreases, and if the user exhales (puff) it increases, respectively. That
way the user generates input signals for the SNP-based HMI.

Typically, four patterns of input signals are differentiated in SNP control,
namely high-level sip, high-level puff, low-level sip and low-level puff. A
common field of application for SNP-based HMIs is the EPW control.
Starting from the stationary state a high-level puff lets the wheelchair
move forward (non-stationary state) as long as a high-level sip stops the
wheelchair into the stationary state again. This also applies vice versa —
starting from the stationary state a high-level sip moves the wheelchair
backwards as long as a high-level puff stops the wheelchair. Low-level
sips or low-level puffs move the wheelchair to the left or to the right,
respectively. The rotation is proportional to the duration of continuous in-
or exhaling. A survey of SNP is available in . Commercial SNP-based
EPW controllers are available from vendors such as Otto Bock HealthCare
GmbH. In the operation of an Apple iPod via SNP remote control is
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examined. To prevent unintentional control commands through sneezing or
coughing (signal artifacts) the patterns for the control have to be performed
repeatedly. However, that scheme complicates the control.

Airflow-controlled HMIs imply aesthetic interferences caused by the promi-
nent nasal sensors and pneumatic tubes in the user’s face. In addition, the
deliberate control of one’s airflow is not always easy to handle and in some
cases there are complications with colds or bronchitis. Spinal cord injured
persons often encounter difficulties breathing because they do not have
full control over muscles usually involved while breathing and they usually
sit in their wheelchairs bent forward. These aspects exacerbate the SNP
control for longer periods. Passive sniff-controlled HMIs do not interfere
with the user’s breathing but SNP-controlled HMIs do. SNP-controlled
HMIs require a significant amount of training since the variation of pneu-
matic amplitude and sign is usually perceived as counterintuitive by the
naive users.

A.4.6 Facial Expression Control

Facial expression controlled HMIs interpret the user’s facial expressions
that are regarded as input signals. These HMIs utilize common H2H
communication as a channel for the H2M interaction. To prevent the
system from interpreting the facial expressions permanently and risk
misclassifications some systems put a kind of clutch to use. This clutch
can be engaged or disengaged by the user to tell the system to take the
current facial expressions as input signals or not. For instance, in [139]
the system only interprets the facial expression if the user moves the head
into the central position. Two major sorts of facial expression HMIs are
available, namely the camera-based and the EMG-based systems.

In purely camera-based systems, cameras permanently point at the user’s
face and specialized image processing software extracts information inter-
preted as HMI input . developed a purely EMG-based facial
expression HMI. Hybrid interfaces make use of both image processing and
additional information such as EMG signals from the forehead to improve
the overall system’s accuracy . In facial expressions
acquired with the aid of 14-channel electroencephalography (EEG) and
head movements were combined.
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Facial expression HMIs are non-invasive and merely necessitate moderate
training effort as they make use of a common H2H communication channel.
On the downside, by default the system interprets each facial movement.
That means unless there is some kind of clutch incorporated the system
treats the user’s facial expressions as input signals while speaking, laughing
and eating. Issues such as face normalization or facial expression intensity
need to be addressed [53]. As for the forehead EMG-based systems, there
is an aesthetical impairment.

A.4.7 Imagination Control

Brain-computer interfaces (BCIs) refer to a subclass of HMIs that make
use of biosignals acquired directly from the brain. That is opposed to
the indirect biosignal acquisition from other body parts that are basically
controlled by the brain. BCIs are non-muscular interfaces. Common
synonyms are mind-machine interfaces (MMIs), direct neural interfaces
(DNIs), synthetic telepathy interfaces (STIs) and brain-machine interfaces
(BMIs). The fundamental concept of imagination-based HMIs is the
detection of electric fields in the brain caused by neuron activity. Profound
reviews on BCI technology can be found in .

The non-invasive detection of electric potentials on the scalp (pericranium)
is termed EEG. Numerous surface electrodes that are held by a bonnet
are distributed across the head. There are various EEG subcategories .
One subcategory encompasses the steady-state visually evoked potentials
(SSVEPs) and visual-evoked potentials (VEPs) 236]. These are
natural responses of the brain to a visual stimulation (visual stimulus
flickering) and at the same frequency or multiples of the stimulation
frequency. Another subcategory contains the event-related synchronization
(ERS), event-related desynchronization (ERD) and slow-cortical potentials

(SCPs) (148} [149} [151} [195} 201).

These systems make use of the intentional amplitude modulation of the
p-rhythm, also known as sensorimotor rhythm (SMR). The user modulates
the amplitude by the imagination of movements. When the user imagines
a movement with a certain part of the body the corresponding area in
the motor cortex that represents that part of the body shows a changed
p-rhythm. The increase of the py-rhythm when imagining movements is
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termed ERS while the decrease of the p-rhythm when imagining movements
is said to be ERD. Yet another subcategory is the event-related brain
potential (ERP), especially the well-studied P300 ERP 135]. The
“oddball” evoked potential ERP which is a natural response of the brain
to a rare event is elicited in the EEG at a latency of about 300 ms.

Typically band-pass filters are utilized to cope with artifacts from EMG and
EOG as these are only present at certain frequency bands. It is estimated
that 20-25 % of all subjects are not able to operate EEG-based BClIs at
all . For these subjects either no idle SMR is observed over motor
areas or this idle rhythm is not modulated during motor imagery .
Wheelchairs and mobile robots can be controlled via these interfaces @
. One of the most advanced BCI is the Berlin-BCI .
Spelling devices were developed that enable the users to spell texts
101]. It was found that EEG signals and electrocorticography (ECoG)
signals respectively acquired from paralyzed and non-paralyzed subjects
differ significantly. The reason for that phenomenon is not yet completely
understood . Some hybrid systems rely on a combination of different
BCI subcategories. For instance, the hybrid BCI in combines
SSVEP and ERD. EEG-based BCIs provide only a low signal-to-noise
ratio.

Magnetoencephalography (MEG) is another non-invasive sort of BCIs. It
measures the magnetic fields of the brain caused by neuronal activity. As
compared to EEG it provides higher spatial and temporal resolution but
classification accuracies do not differ significantly .

Electrocorticography (ECoG), also known as intracranial EEG (iIEEG), is
an invasive type of BCI. It makes use of electrodes that are implanted into
the brain. Research on rhesus macaque monkeys (Macaca mulatta) demon-
strated this method successfully [137]. An intracortical multi-electrode
array was implanted into the monkey’s brain. The monkey succeeded in us-
ing neural control to move the computer cursor which was connected to the
BCI . In an intracortical multi-electrode array was implanted in
a human subject’s left motor cortex.

Another non-invasive HMI based on the user’s imagination examines the
effects of imagery on salivary pH. Patients could answer to yes-or-no
questions by imagery of food . It is not a BCI as it does not analyze
signals directly related to the brain activity.
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BCIs possess high potential as mind reading assistive devices for severely
disabled persons. However, at present time they do not provide sufficient
accuracy and therefore further research is necessary. Researchers and
society need to further discuss ethical considerations with respect to this
cutting-edge technology. For instance, there is a certain risk of misusing
BCIs as mind-reading devices. The sleep quality of the user could be
effected negatively. Moreover, the invasive BCIs lack user acceptance
because of the high injury and infection risk.

A.4.8 Eye Control

Eye movements generate biosignals that can be harnessed for HMI control.
Two major types of eye-controlled HMIs can be identified, namely camera-
based and EOG-based interfaces.

In camera-based systems the camera points towards the eye and analyzes
its exact orientation through tracking the pupil’s position . Examples
for commercial systems based on cameras and image processing software
are iView X HED by SensoMotoric Instruments? and Mobile Eye-XG by
Applied Science Laboratories?.

Electrooculography (EOG) bases on the fact that the eye is a dipole. The
retina is the negative pole and the cornea is the positive pole. Two pairs
of electrodes are adhered to the facial skin. The first pair of electrodes de-
tects the difference of potential between cornea and retina horizontally
and therefore infers the horizontal eye movement. The second pair of
electrodes infers the vertical eye movement analogously via the potential
difference between cornea and retina vertically. In addition, one reference
electrode placed somewhere else onto the skin detects the reference po-
tential. Research revealed a partly linear relation between the angle of
viewing direction and the electric potential . Application-oriented
publications dealt with mobile EOG-based systems with glasses .
Also, EOG-controlled electric powered wheelchairs were analyzed .
In contrast to camera-based eye-controlled interfaces, EOG-based systems
work with closed eyes and total darkness.

*http://www.smivision.com
3http://www.asleyetracking.com
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Beside the horizontal and vertical eye movements the eye blinking consti-
tutes an additional DOF . It is referred to as eyelid control. Apart
from purely camera-based and purely EOG-based systems hybrid solutions
such as an EEG-based system enhanced with eye blinking signals .

The Midas touch problem addresses that eyes are never inactive but
constantly moving as the human looks around. From the HMI perspective
this hampers the interpretation of eye movements as a communication
channel. The implementation of a clutch — for instance, triggered by the
user’s head position — solves that problem. If engaged the clutch connects
the user to the HMI. On the other side, if the clutch is disengaged the user
can look around without the system interpreting the eye movement. The
clutch should be able to engage and disengage as quickly as possible. The
act of engaging or disengaging should be as intuitive as possible (i.e., not
requiring too much of concentration) \| In case no clutch is implemented,
looking around and HMI operation at the same time is not possible. Also,
most of eye-controlled HMIs imply a certain aesthetical impairment. For
persons suffering from nystagmus eye-controlled HMIs are not applicable.
Nystagmus is a pathological condition of involuntary, mostly horizontal
eye movements, also known as “dancing eyes”.

A.4.9 Muscle Control

The deliberate activation of muscles serves as a communication channel for
HMIs. Muscle activity can be detected with the aid of EMG or acoustic
myography (AMG).

Electromyography (EMG) yields MESs (cf. Section|1.2.5)). As the signal
quality depends on the electrode positioning, automated electrode place-
ment methods were developed . EMG-based HMIs rely on muscle
contraction and relaxation for the generation of high-level and low-level
signals. A historic overview of the EMG technology is provided in .
There are two main classes, namely pattern and non-pattern recognition
interfaces . As for pattern recognition, the common steps are
data segmentation, feature extraction, classification and performing cor-
responding actions. The desired classes of functions are discriminated
from signal patterns by classifiers and the variety of functions depends
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directly on classification performance. As for non-pattern recognition, var-
ious schemes are feasible, like proportional control, threshold control or
FSMs. Proportional control means that signal strength is proportional to
the controlled variable such as speed or force.

Single threshold methods usually perform actions when a predefined thresh-
old is exceeded. Improved single threshold methods like the Marple-Hovart
and Gilbey (MHG) algorithm are more advanced. Two adjacent time win-
dows that are equal in length are defined, the first is leading the latter is
trailing. These windows slide over a data sequence. In each leading win-
dow, the MAV of the signal is calculated and compared with the signal in
the trial window. Onset and offset time can be obtained by relying on the
hypothesis that the maximum difference between mean values occurs when
one window contains a muscle contraction, and the other does not [143].
Double threshold methods with more parameters to tune provide higher
detection rates. FSMs require data segmentation, feature extraction and
the definition of states and transitions.

Many application-oriented EMG-based HMIs were developed such as arm

and hand prostheses 165], robotic arms and hands
and EPWs . Robotic exoskeleton systems

as well as mobile robots were developed . Some works also deal
with the implementation of specialized command languages [146] [157).

Acoustic myography (AMG), also known as phonomyography (PMG),
sound myography, vibromyography and surface mechanomyogram, is non-
invasive. It detects low frequency sounds (infrasounds, f < 20 Hz) caused
by contracting muscles with specialized microphones. These are inaudible
for humans. Researchers found that AMG exceeds EMG as a technique
to monitor muscle fatigue non-invasively as the root mean square (RMS)
amplitude of SEMG signals does not correlate well with fatigue .

Targeted muscle reinnervation (TMR) is a surgical procedure for upper
extremity amputees. Peripheral nerves which normally innervate the
arm are reattached to residual, unused muscles; usually the pectoral
muscles . EMG of the pectoral muscles is acquired to control
arm/hand prostheses. With this method patients control prostheses rather
intuitively as the innervation of the pectoral muscles corresponds to the
innervation of the amputated extremity. However, it is not applicable for
patients with paralyzed limbs, but exclusively applicable for amputees.
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Facial muscles such as the forehead or eye-winking muscles are crucial for
non-verbal communication. HMIs relying on signals from these muscles
do not allow users to express themselves facially without risking system
misclassifications. These muscles perform two functions at the same
time: Facial expression and HMI control. This problem is solved by the
implementation of a virtual clutch to enable and disable the biosignal’s
interpretation. Distinguishing between facial muscle movements meant
for non-verbal communication and the generation of control signals is
challenging. Interfaces based on facial muscles also tend to imply certain
impairment to esthetics. The system in charge should not stigmatize
the users in the social context unduly due to a rather apparatus in their
face and due to requiring the users to make funny faces. As for spinal
cord injured patients EMG-based interfaces are limited to muscles of
above-lesion areas.

A.5 Digital Signal Normalization

A.5.1 Digital Preprocessed Signal

The digital signal normalization aims at producing smooth and normalized
signals serving as interpretable activity signals intended for the control of
HMIs. Values close to zero represent low activity (e.g., muscle relaxation
in case of MESs) and values close to one stand for high activity (e.g.,
muscle contraction in case of MESS).

Signal normalization algorithms are widely utilized in the context of
MESs. An extensive literature review regarding the normalization of sSEMG
signals was presented in [122]. On the other hand, in , a threshold-
based algorithm to detect muscle activation without normalization was
proposed.

The n-bit digitized signal z;[k] € [0,2™ — 1] represents the preprocessed
input modality (cf. Section where i € {1,...,I} denotes the index of
input modalities. Any kind of biosignals (e.g., MESs) can be represented
by x;[k]. In addition, non-biosignals, these are signals mapping physical
quantities, can be represented by z;[k]. Figure exemplarily depicts a
digital preprocessed MES.
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Digital n-bit value

Discrete time k

Figure A.3: Digital preprocessed signal

A.5.2 Rectified Signal

The preprocessed signal z;[k] is not suitable for controlling purposes as it
is biased by a specific digital value representing the direct current (DC)
offset of the sensor power supply. In order to remove the bias the signal
ground level xfg1v1,; is subtracted from z; [k]. This parameter needs to be
determined manually or by means of a calibration method. Furthermore,
the unbiased signal is rectified (absolute value) and multiplied by a gain
constant g; € R<( to get the full range of positive digital values.

The rectified (i.e., unbiased and positive valued) signal z, ;[k] € [0,2" — 1]
is calculated in accord with

oy ilk] = gi - |$i[/f] - xf,glvl,i’- (A1)

A digital rectified MES is depicted in Figure

A.5.3 Filtered Signal

The overall characteristics of the control signals need to be smooth in order
to apply threshold-based methods. However, the rectified signal z, ;[k] is
volatile and therefore needs to be smoothed.
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Digital n-bit value

Discrete time k

Figure A.4: Digital rectified signal

In order to get a smooth signal the rectified signal x, ;[k] is processed
sequentially by the RMS filter and the infinite impulse response (IIR) filter.
The RMS filter applies the preset window width parameter m; € N< ¢ which
indicates the usage of the previous m; rectified values (i.e., z, ;[k], @, :[k—1],
<ty @ri[k —my]). The IIR filter applies the preset trade-off parameter a;
€ [0,1) which indicates the share between the previously filtered value
xgilk — 1] and the currently RMS-filtered value in order to calculate
the newly filtered value z¢;[k]. The filtered signal x¢;[k] € [0,2" — 1] is
calculated according to

zeilk] = a; - weilk — 1+ (1 —a;) - 1 Zb:cfl[k -1. (A2
1=0

m; + 1 ’ —
Figure shows a typical filtered MES.

A.5.4 Normalized Signal

The filtered signal ¢ ,[k] does not necessarily occupy the full value range
[0,2™ — 1] and hence is not applicable as control signal. The normalization
scales the filtered signal x¢;[k] to the range between zero and one.
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Digital n-bit value

Discrete time k
Figure A.5: Digital filtered signal

The normalization is based on the minimum value Zf min,; and maximum
value Zfmax,; of the filtered signal z;[k]. These parameters are set man-
ually or with the aid of the calibration method. The normalized signal
zn k] € [0,1] is also called activity signal of the input modality 7. It is
calculated in accordance with .

A typical normalized digitized MES is presented in Figure

Activity

Discrete time k

Figure A.6: Digital normalized signal
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A.6 Derivation of Model Coefficients for
Crosstalk Compensation

The system of linear equations (cf. (3.24)) is defined as

wa =Xy o (A.3)

-1 1 Tn,1x12 Qyrl
= ’ . A4
< 1 ) ( Tn 2ar1 1 ) ( Qo ) (8.4)

The linear equations are to be solved for a; following

oy = X&l Wyr, (A5)
with the inverse matrix
_ 1 1 —Xn 1.2
X, = P A6
r det X\/T < —Zn,2x71 1 ( )
and the determinant
det X;(/‘ =1- Tn,1x12 * Tn,2x71- (A7)

The multiplication yields the equations for both model coefficients, namely
a1 and agpe, according to

1 _ Tn,1xT2 1
1—x - 1—x -z -
g = :;,1;{7224\791,2:(1“1 u,usz n,2xT1 ( 1 ) (A8)

1=z, 1572 Ty 2x71 1=z, 1312 T 2x11

_ 1+1’n,1xT2
— 1=z, 1372 Ty 2x71
- 1+, o . (Ag)

17wn,1(\T2 “Tn,2xT'1

A.7 Control Signal Generators

A.7.1 One-Signal Morse

In case merely one human-generated signal is available this control signal
generator, as depicted in Figure is applicable.
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Forward :
Turn left -x_} State e )y [K]

Zn,bin,1 [k] d
U H Turn right + xcz(e)fter e o [k]
Stop +

Figure A.7: One-signal Morse control signal generator containing one bang-
bang hysteresis controller, a finite state machine and a state converter

The information of the signal is modulated by frequency. Therefore the
control signal generator implements a self-devised Morse code comprising
four words as presented in Table This Morse code meets the Fano
variety — none of the words is the prefix of another word.

Word Modulation Short form
Forward “long, long” - -
Turn left “long, short, short” - - -

Turn right  “long, short, long” - .-
Stop “short”

Table A.1: Patterns of the Morse code alphabet with short activity (-)
and long activity (-)

Figure depicts the finite state machine. Each of the executive states
forward, turn left and turn right need to be activated via the idling
state stop. The turning states are on-the-spot turns, while turning the
translational speed equals zero. There are no transitions between the
executive states. The translational and rotational speeds are constant and
predefined.
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Figure A.8: Finite state machine of the one-signal Morse control signal
generator with short activity () and long activity (-)

A.7.2 One-Signal Morse Proportional

The previous control signal generator (cf. Appendix enables the
user to navigate based on only one biosignal. However, it may become
tedious for the user to rely merely on straightforward movements together
with left and right on-the-spot turns in order to navigate freely.

The one-signal Morse proportional control signal generator enables the
user to perform turns with translational speed. It outputs a rotational
signal dependent on the actual biosignal amplitude rather than standing
still and turning on-the-spot.

After parsing the complete patterns representing the left resp. right turn
(short forms - - - resp. - - -), the amplitude of the biosignal is interpreted
as the inverse desired radius. In other words, high biosignal amplitudes
stand for small radii and low biosignal amplitudes yield large radii. This
special mode of biosignal interpretation is disabled and the pattern parsing
is enabled again as soon as the biosignal amplitude falls below a predefined
threshold.
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A.7.3 Two-Signal Threshold

Figure illustrates a control signal generator comprising two bang-bang
hysteresis controllers, a finite-state machine and a state converter. This
control signal generator requires two input signals x, 1[k] and z, 2[k] and,
in turn, generates two control signals for both translation velocity )y [k]
and rotation velocity 2 [k].

i Control signal generator;

I Tn,bin,1 [k] :
Ty 1]k|—> L ‘
alk] H Forward 1 i

: Turn left -x_} State —/-—> 1 [k]

Turn right + con e Yok
verter :

n,bin k T !
Ty 2 [k]—> H Zn,bin,2[K] Stop |

Figure A.9: Two-signal threshold control signal generator containing two
bang-bang hysteresis controllers, a finite state machine and a state con-
verter

The bang-bang hysteresis controllers output binary signals @n bin,1[k] rep-
resenting the (abstract) presence of activity and the absence of activity,
respectively, according to

1 Jif @y 4[k] > 6y, short form “x; =17
Zn,bini[k] = { 0 ,if xy i[k] < 61, short form “z; =07 ° (A-10)

The upper threshold 6,, and the lower threshold 6; of the hysteresis are set

manually with
0. > 0. (All)

The state diagram of the finite-state machine is depicted in Figure
It is based on both the binary signals x1 and x2. The initial state is the
idling state termed stop. The states turn left and turn right rotate the
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vehicle on-the-spot. On the other hand, the state forward propels the
vehicle straightforward without any rotation. For better intuitiveness, it is
not feasible to transition directly from one turning state into the other.

$1=O/\.732:1

Figure A.10: Finite state machine of the two-signal threshold control
signal generator (modified from [183])

A.8 Adaptive HMIs in Assistive Technologies

In the context of assistive technologies and rehabilitation engineering
plenty of works dealt with the design of adaptive HMIs to address the
need for patient customized solutions.

developed an EMG signal based adaptive HMI that recognize
user triggered signal pattern through wavelet decomposition. By means of
self-adjustable thresholds it detects different muscle contraction types for
different users. presented an EMG pattern classifier for wheelchair
control. It was designed to cope with the effects of muscle fatigue.

When controlling a computer mouse or computer pen the presence of tremor
is problematic. [170}[171] sought to improve the accuracy of manual input
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by canceling involuntary motion with a feedforward neural network. The
tremor is modeled by forming a truncated Fourier series estimate. An
adaptive filter is implemented which learns the tremor user’s frequency and
amplitude (tremor estimator) in order to suppress the tremor during HMI
control (tremor canceler). presented a tendon driven under-actuated
prosthetic hand providing adaptive grasp. proposed the EMG driven
meal assistance robotic system. It applies an adapting single-threshold
method on EMG power. Two bipolar EMG sensors are attached to the left
and the right calf. developed a robotic exoskeleton arm with a neuro-
fuzzy controller by means of several surface EMG sensors attached to the
user’s elbow and shoulder. The controller adapts itself to the individual
need of different users. The adaptation is performed by the aid of the
backpropagation learning algorithm. The adaptation is carried out offline
before operation. It is based on desired muscle activity level of the user.

[146] presented an adaptive threshold method for generating Morse code.
presented an adaptive system based on the satisfaction measurement.
The key idea was the development of human-oriented interfaces (i.e., the
executing device adapts to the human), in contrast to machine-oriented
interfaces (i.e., the human adapts to the executing device) based on the
assessment of human satisfaction. The user carries out a simple mental
task that is the addition of two-digit numbers. The user’s satisfaction
level is measured by means of extracted EEG signals. The time interval
between the presentation of one addition problem and the next is adapted
to meet the user’s satisfaction. maintained the task difficulty using an
adaptive staircase algorithm based on task performance. The task is to
play an adaptive version of the multitasking training game NeuroRacer.
In order to assess the multitasking costs during playing the game EEG
signals are acquired from the user. presented a robotic arm for
rehabilitation purposes named GENTLE/A. The user task was 3D point-
to-point movements with embedded and VR environment. The deviation
between the actual 3D coordinates and the reference 3D coordinates at a
given time was used to identify the lead-lag contribution of the participant
interacting with the system. The duration for executing one path segment
was adjusted between the trials. presented a data glove incorporating
19 resistive sensors to detect the hand posture. The user task is to
reach certain positions with the virtual cursor that is representing the
hand. The hand posture is mapped to a virtual 2-DOF robotic arm via
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mapping matrix. The adaptation mechanism is based on the endpoint
error (time-to-target timeout). developed an EMG based master-slave
manipulator system for arm amputees. The system works with EMG
signal pattern recognition via statistical neural networks. It adapts the
pattern recognition depending on the user. The EMG entropy level was
utilized as a measure of the classifier input-output pairs’ validity. They
stated that if the EMG entropy was lower than a predefined threshold,
then the reliability of the classified patterns could be high. Thus, the
input-output pairs could be added to the neural network’s on-line training
set, while the oldest pairs were deleted from it.

presented a virtual forearm prosthesis controlled by EMG signals
taken from the biceps brachii and triceps brachii muscle. The system
incorporates affective measures by acquiring the entropy of the alpha band
of the forehead EEG signals taken from a pair of electrodes placed on
forehead. Therefore, this HMI can adapt itself to the subject’s mental
states. examined an object grasping task. The grasping force
prediction is designed adaptive depending on the object’s image information
and the object’s SEMG information without actually lifting the object.

\\ utilized two SEMG electrodes and one goniometer to control a virtual
hand within a virtual grasping task. The task difficulty level is adaptive
and dependent on the task success of the user.

showed how the performance in EEG control could be improved
by the developed adaptive calibration. developed an adaptive HMI
using incremental SVM with sEMG signals. An EPW was controlled.
analyzed an adaptive SVM with sEMG signals to control a robotic

arm.
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A.10 Application for Ethical Approval (German)

Antrag an die Ethikkommission des KIT zur Beurteilung eines
Forschungsvorhabens

1. Bezeichnung des Forschungsvorhabens

Wirksamkeitsuntersuchung inkrementeller Parameteradaptionsalgorithmen im Kontext einer
myoelektrisch gesteuerten Mensch-Maschine-Schnittstelle

2. Name und Kontaktdaten des Antragstellers

Institut fir Angewandte Informatik (1Al)
Hermann-von-Helmholtz-Platz 1
76344 Eggenstein-Leopoldshafen
Dipl.-Ing. Michele René Tuga
michele.tuga@kit.edu
0721-608-26672

24.02.2015

Kein vorheriger Antrag

3. Auftraggeber bzw. Geldgeber des Projekts

Bundesministerium fiir Bildung und Forschung (BMBF)

TELMYOS - telemetrisches, myoelektrisches Ohrmuskelableitsystem zur Steuerung
technischer Rehabilitationsmittel — im Forschungsprogramm ,Innovative Hilfen in der
Rehabilitation und fiir Behinderte*

FKZ: 01EZ1122C

4. Angaben zu den Rahmenbedingungen des Vorhabens

Die Probandenstudie beginnt am 16.03.2015 und dauert ca. 2 Wochen.

5. Gegenstand und Verfahren des Vorhabens

Gegenstand: Es werden zwei Adaptionsalgorithmen zur Optimierung der Steuerung eines
virtuellen Rollstuhls verglichen. Ziel ist der Nachweis einer signifikanten Verbesserung der
Steuerung gegenuber einer Steuerung ohne Adaptionsalgorithmus.

Methoden: Es werden Muskelaktivitétssignale (EMG-Signalen) von der Unterarmmuskulatur
der Probanden abgeleitet.

Aufgaben: Den Probanden werden je eine (nicht invasive) Oberflachen-EMG-Elektrode auf
dem linken und eine auf dem rechten Unterarm platziert. Die Elektroden werden mit Hilfe
von Manschetten an den Unterarmen befestigt und vor Deplatzierung gesichert. Um eine
bessere Signalqualitat zu gewahrleisten, wird die Hautoberflache unter der Elektrode lokal
leicht mit Wasser angefeuchtet.

Figure A.13: Application for ethical approval, Page 1
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Uber Anspannung (Kontraktion) und Entspannung (Relaxation) der Unterarmmuskulatur
(hauptséchlich M. extensor digitorum) kann der Proband in einem Computerspiel ein
virtuelles Auto nach links oder rechts steuern. Die Probanden werden gebeten, mittels dieser
vereinfachten Steuerung ein Auto auf einer sich &ndernden Stral3e zu halten. Die
Muskelaktivitat des Probanden wird erfasst und der Echtzeit-Signalverarbeitung zugefuhrt.

In den ersten Minuten hat der Proband Zeit, die Steuerung des Autos zu Gben. Dabei ist
dauerhaft eine Aufsichtsperson anwesend, die bei Bedarf Fragen beantworten kann. Nach
dieser Ubungsphase werden die Daten zur Steuerung des Autos wéhrend des
Computerspiels aufgezeichnet. Die Performanz der Probanden wird in Form eines
quantitativen Gutekriteriums wahrend des Spiels berechnet. Die Probanden werden
aufgefordert, 10 Mal hintereinander das Autorennen zu absolvieren. Ein Durchgang dauert
ca. 60 Sekunden. Zwischen den Durchgangen wird eine Ruhephase von ca. 30 Sekunden
eingehalten, in der den Probanden die Moglichkeit gegeben wird, die Muskulatur zu
entspannen. Die Probanden werden in drei Gruppen (A, B, C) eingeteilt.

Gruppe A dient als Kontrollgruppe. Probanden dieser Gruppe absolvieren das Spiel ohne
Anwendung eines Adaptionsalgorithmus. Die Gruppe B steuert das Auto unter Hinzunahme
des Adaptionsalgorithmus1 und die Gruppe C unter Hinzunahme des
Adaptionsalgorithmus2.

Einschatzung der wissenschaftlichen Relevanz: Um Mensch-Maschine-Schnittstellen
effektiv einsetzen zu kdnnen, ist eine individuelle Anpassung an den Nutzer erforderlich.
Diese Studie dient der Untersuchung einer Form der schnittstellenseitigen, automatisierten
Anpassung an den Benutzer.

6. Wo sehen Sie mégliche ethische Fragestellungen durch das Projekt aufgeworfen?

Unter Umstanden koénnten Probanden Frustration erleben, falls das virtuelle Auto sich nicht
wie erwartet verhalt bzw. sich auf dem Bildschirm darstellt.

7. Wurden die jeweils zustandigen Beauftragten z.B. Datenschutz beteiligt?

Die Datenschutzbeauftragte des KIT, Frau Marina Bitmann, wurde im Vorfeld konsultiert und
hat nach Prufung der vorgelegten Unterlagen keine datenschutzrechtlichen Bedenken
hinsichtlich der Studiendurchfiihrung.

8. Projekte unter Einbeziehung von Probandinnen/Probanden

a) Abwagung der wissenschaftlichen Relevanz der Projektergebnisse mit méglichen
Auswirkungen auf Probanden/Probandinnen:

Mit der Teilnahme an dieser Studie bietet sich den Probanden die Mdéglichkeit einen Beitrag

zur Verbesserung von automatisierten Schnittstellenanpassungen zu leisten.

b) Gewinnung der Personenstichprobe und Vergiitung von
Probanden/Probandinnen:
Es werden pro Gruppe 5 Probanden benétigt, insgesamt also 15 Probanden.

Figure A.14: Application for ethical approval, Page 2
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Geschéftsfahigkeit: Samtliche Teilnehmer sind volljéhrig und geschaftsfahig

Einschlusskriterien
e Menschen (m/w) im Alter zwischen 18 und 70 Jahren ohne signifikante korperliche
oder geistige Beeintrachtigungen

Ausschlusskriterien
e Korperliche Beeintrachtigungen, die die Steuerung mittels Unterarmmuskulatur
verhindern
* Geistige Beeintrachtigungen
e Psychische Auffalligkeiten
e Epilepsie
« Erfahrungen mit der EMG-Schnittstellen in Bezug auf das Autorennen

Teilnahmevergutung: Die Teilnahme an dieser Studie wird nicht vergutet.
c) Freiwilligkeit der Studienteilnahme ist in der Teilnehmerinformation angegeben.

Die Teilnahme ist absolut freiwillig. Jederzeitige Ruicktrittsmoglichkeit ohne Nachteile und mit
Recht auf Léschung der eigenen Daten ist sichergestellt.

d) Die Teilnehmerinformation sowie die Einwilligungserklarung sind diesem Antrag

beigefigt.

Ich bestétige, dass alle Angaben in diesem Antrag korrekt sind.

Ort, Datum Unterschrift der Leitung des
Forschungsvorhabens

Figure A.15: Application for ethical approval, Page 3
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Studienleitung:

Karlsruher Institut fiir Technologie
Institut fir Angewandte Informatik
Hermann-von-Helmholtz-Platz 1
76344 Eggenstein-Leopoldshafen
Dipl.-Ing. Michele René Tuga

T: +49 721 608-26672

F: +49 721 608-22602

E: michele.tuga@kit.edu

Probandeninformation
Wirksamkeitsuntersuchung inkrementeller Parameteradaptionsalgorithmen im Kontext

einer myoelektrisch gesteuerten Mensch-Maschine-Schnittstelle

Sehr geehrte Probandin, sehr geehrter Proband,

die Arbeitsgruppe Biosignalanalyse des Instituts fir Angewandte Informatik beschaftigt
sich mit der Entwicklung innovativer Rehabilitationshilfen fiir Behinderte. Sogenannte
Mensch-Maschine-Schnittstellen nehmen in der Mensch-Maschine-Kommunikation eine
Schlusselrolle ein. Es handelt sich dabei um technische Realisationen, die kérpereigene
Biosignale, z.B. Muskelaktivitdt, des Menschen interpretieren und daraus
Steuerungssignale fiir technische Geréte, z.B. Elektrorolistiihle, generieren.

In diesem Forschungsvorhaben werden Adaptionsalgorithmen zur Optimierung der
Steuerung eines virtuellen Rollstuhls verglichen. Es werden dazu Muskelaktivitatssignale
(EMG-Signale) von lhrer Unterarmmuskulatur beidseitig gemessen. Nicht-invasive
Oberflachen-Elektroden werden lhnen von einer Aufsichtsperson auf den Unterarmen
platziert und mit Manschetten vor Deplatzierung gesichert. Die Messung der EMG-Signale
ist also schmerzfrei und gefahrlos. Um eine bessere Signalqualitét zu gewahrleisten, wird
die Hautoberflache unter der Elektrode lokal leicht mit Wasser angefeuchtet.

Uber Anspannung (Kontraktion) und Entspannung (Relaxation) lhrer beidseitigen

Unterarmmuskulatur (hauptséchlich M. extensor digitorum) kénnen Sie in einem

Figure A.16: Information sheet regarding the study, Page 1
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Computerspiel ein virtuelles Auto horizontal nach links oder rechts steuern. Sie werden
gebeten, mittels dieser vereinfachten Steuerung ein Auto auf einer sich andernden Strae
zu halten. lhre EMG-Signale werden erfasst und der Echtzeit-Signalverarbeitung
zugefuhrt.

In den ersten Minuten einer jeden Sitzung haben Sie Zeit, die Steuerung des Autos zu
Uben. Sie sitzen bequem mit angeschlossenen Elektroden und blicken auf einen
Computermonitor, der das Computerspiel visualisiert. Dabei ist dauerhaft eine
Aufsichtsperson anwesend, die lhnen bei Bedarf Fragen beantworten wird. Nach dieser
initialen Ubungsphase wird der erste Durchgang gestartet und es werden die Daten zur
Steuerung des Autos wéhrend des Computerspiels aufgezeichnet, um diese spater
auszuwerten. lhre Performanz wird in Form eines quantitativen Gutekriteriums wahrend
des Spiels berechnet. Sie werden aufgefordert, in 10 hintereinander folgenden
Durchgangen das Autorennen zu absolvieren. Ein Durchgang des Autorennens dauert
ca. 60 Sekunden. Zwischen den Durchgangen wird eine Ruhephase von ca. 30 Sekunden
eingehalten, in der Sie die Moglichkeit haben, die Muskulatur zu entspannen und sich auf
den nachsten Durchgang vorzubereiten. Nach diesen 10 Durchgéngen folgt eine Pause
von einigen Minuten. In einem abschlieBenden Test werden Sie gebeten einen virtuellen
Rollstuhl durch einen dreidimensionalen Parkour zu steuern. Hierbei kénnen Sie neben
der Richtungssteuerung auch die Geschwindigkeit beeinflussen. Diese lasst sich durch
die Intensitat der Muskelkontraktionen veréandern. Je nach Geschwindigkeit kann dieser
Durchgang 3-6 Minuten dauern.

Alle Messungen werden an einem Tag durchgefuihrt. Dies bedeutet fir Sie einen
Zeitaufwand von ca. 20 Minuten. Ein Termin wird in Absprache mit lhnen im Voraus
vereinbart. Falls der Termin nicht eingehalten werden kann, sind Sie gebeten dies
rechtzeitig zu melden.

Sie werden in eine von drei Gruppen (A, B, C) eingeteilt. Gruppe A dient als
Kontrollgruppe. Probanden dieser Gruppe absolvieren das Spiel ohne Anwendung eines
Adaptionsalgorithmus. Die Gruppe B steuert das Auto unter Hinzunahme des
Adaptionsalgorithmus1 und die Gruppe C unter Hinzunahme des Adaptionsalgorithmus2.

Figure A.17: Information sheet regarding the study, Page 2
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Es existiert keine gesonderte Versicherung fur die Teilnahme an diesem
Forschungsvorhaben.

Figure A.18: Information sheet regarding the study, Page 3
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Informationen zum Datenschutz

Wahrend der Studie werden keine Kontaktdaten erhoben. Die gemessenen

Muskelsignale werden sogleich anonymisiert gespeichert.

Die Teilnahme an der Studie ist freiwillig. Es entstehen fir Sie keinerlei Nachteile, falls
Sie sich nicht zu einer Teilnahme an der Studie entschlieen sollten. Auch wenn Sie die
Einverstandniserklarung unterschrieben haben, kénnen Sie die Untersuchung wahrend
ihrer Durchfihrung ohne Nennung von Grinden jederzeit abbrechen. Im Falle eines

Abbruchs werden samtliche bis dahin erhobenen Daten geldscht.

Die anonymisierten Forschungsdaten werden 10 Jahre nach der letzten Publikation

geldscht.

Die Studienergebnisse werden ausschlie3lich in aggregierter Form verdffentlicht.

Wenn Sie noch weitere Fragen lber den Studienablauf haben oder Ihnen noch etwas
unklar ist, wenden Sie sich bitte an die Studienleitung. Sollten Sie nach dem
Untersuchungstermin noch Fragen haben, koénnen Sie sich jederzeit an den/die
Versuchsleiterin oder den/die Studienleiterin wenden.

(Studienleiter Dipl.-Ing. Michele René Tuga)

Figure A.19: Information sheet regarding the data privacy
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Studienleitung:

Karlsruher Institut fir Technologie
Institut fir Angewandte Informatik
Hermann-von-Helmholtz-Platz 1
76344 Eggenstein-Leopoldshafen
Dipl.-Ing. Michele René Tuga

T: +49 721 608-26672

F: +49 721 608-22602

E: michele.tuga@kit.edu

Einwilligungserklarung

Wirksamkeitsuntersuchung inkrementeller Parameteradaptionsalgorithmen im Kontext einer

myoelektrisch gesteuerten Mensch-Maschine-Schnittstelle

Name der/s Probandin

Herr Michele René Tuga hat mit mir heute ein ausfiihrliches Aufklarungsgesprach tber Art,
Umfang und Bedeutung dieser Studie gefiihrt. Dabei wurden u.a. Studienziel und Studienlange,
studienbedingte Erfordernisse und mdogliche Nebenwirkungen der Studie besprochen. Die
Probandeninformation sowie ein Exemplar der Einverstandniserklarung habe ich erhalten,
gelesen und verstanden. In diesem Zusammenhang bestehende Fragen wurden besprochen und
beantwortet. Ich hatte ausreichend Zeit, mich fur oder gegen eine Teilnahme an dieser Studie zu
entscheiden. Ich wurde dartiber informiert, dass keine gesonderte Versicherung wahrend der
Studienteilnahme existiert.

Ich bin einverstanden, als Untersuchungsteilnehmerin an dieser Studie teilzunehmen.

Figure A.20: Declaration of consent, Page 1
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Mir ist bekannt, dass diese Studie in erster Linie der Wissenserweiterung dient, und
gegebenenfalls auch keinen personlichen Vorteil fir mich bringen kann.

Ich bin dartiber unterrichtet worden, dass meine Teilnahme vollkommen freiwillig erfolgt
und ich meine Einwilligung zur Teilnahme an dieser Studie jederzeit ohne Angabe von

Griunden und ohne persénlichen Nachteil widerrufen kann.

Ich habe die Probandeninformationen und insbesondere den Abschnitt “Informationen zum

Datenschutz“ gelesen und meine Fragen wurden ausreichend beantwortet.

Mir ist bekannt, dass bei dieser Studie auch personenbezogene Daten uber mich erhoben,
gespeichert und ausgewertet werden sollen. Die Verwendung der personenbezogene Daten
erfolgt nach gesetzlichen Bestimmungen und setzt vor der Teilnahme an der Studie folgende
freiwillig abgegebene Einwilligungserklarung voraus, d.h. ohne die nachfolgende Einwilligung

kann ich nicht an der Studie teilnehmen.

Ich bin damit einverstanden, dass im Rahmen der Studie die in den ,Informationen zum
Datenschutz“ beschriebenen Daten erhoben und in anonymisierter Form gespeichert und
fiir die in den ,,Probandeninformationen“ dargestellten Zwecken verarbeitet werden.

Name ProbandIn Ort, Datum, Unterschrift

Name Studienleiterin Ort, Datum, Unterschrift

Figure A.21: Declaration of consent, Page 2
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% €/C++ - main_AP.c - Code Composer Studio (Licensed) [E=EEn
File Edit View Navigate Project Target Tools Scripts Window Help
BIRB®~ %0 P B sEoen
T C/Cs Projects 32 | o B & 7 = 0|9 main 0. main AP 01| [ virtual_com_cmds.c T = O[3 outine 32 | =0
(5 €Z430-RF2500 WSM [Active - Access Point] 196 static volatile uinté_t sdoinSem = 0: - BRE e ¥
< Binaries 197 statie volatile uint®_t sSelflfeasureSem = 0 =L stringh
5 1 u g
(& Includes L =L stdboolh
= Access Point 192 char msgAP[7] = {0,0,0,0,0,0,0}; 2 bsph
= Applications 200 char actualVoltage [2] = €0,0}: o i
[} virtual_com_cmds.h 207 int args(3]; .
ot o oo = 0: B i
[ vie_rand.h ; it tdx = © =1 bsp_buttonsh
[ main_AP.c L hat dnca = = nwk_types.h
L& main_ED.c [Excluded from Build] : 4 5 .
rtual o 205 int channel = 0; _H_ Bl nwk_api.h
[} virtual_com_cmds.c 206 int voltage = 0 & nwk_frame.h
[ vio_rand.asm 207 bool cmdStarcEF = false; = nwkh
(5 Components 202 bool send = false; =1, virtual_com_emds.h
(= bsp 3 i MCU Init
& mdi 21 Fhg DAInit
@ nwk 211 * Main Tt DA Out
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= Configuration 213°void main (void) Figo USCIORX 15K
(2 Access Point 2t . &g <D B
(= End Device 218 bspIState © intStace; 5 sNumCurrentPeers
,mn_m_aﬂ-;gw;sr‘@;:m dat 216 uintd_t timestamp = 07 1§ 5CB
& End Device 217 &Y sPeerFramesem
&) MSP430F2274.ccxml [Active/Default] 218 IR = e &9 oinsem
219 P10UT = 0x00; o
[ Ink_msp430£2274.cmd gh o - o &} sSelfMeasureSem
|8 macros.ini o ;
= 221 P20UT = 0x00; O msgAP
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223 P30UT — 0x00: O args
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225 P4OUT = 0x60: @ idx
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2zge itializes the specific target hardware. It should be invoked Q_m_ voltage
229 before the call. @ cmdStartFF
230 BSP_Init(); @ send
231 52 ® g main
o [ | E ©f sCB
1 Console 1 | ® Gl of B - 03 - = O|[E pobems 11 [ = 0] SaMUNE
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Description °g
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Code Composer Studio by Texas Instruments
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A.13 Commands

ID Command Details Receiver
1 Stand-by Set MCU’s low-power mode and MCU ED

RF transceiver’s sleep mode. No

data transmission. End stand-by by

activating push button.
2 Restart Non-flash-memory data gets lost. MCU ED
3 Restart Non-flash-memory data gets lost. MCU AP
4 Set sampling rate < 125 Hz MCU ED
5 Get sampling rate Current sampling rate. MCU ED
6  Set voltage channel 1 [1700 mV, 3300 mV] MCU AP
7 Get voltage channel 1 Current voltage MCU AP
8  Set voltage channel 2 [1700 mV, 3300 mV] MCU AP
9 Get voltage channel 2 Current voltage MCU AP
10 n/a n/a n/a
11 Set receiving rate [1, 1000] MCU ED
12 Get receiving rate Current receiving rate MCU ED
13  n/a n/a n/a
14 n/a n/a n/a
15 n/a n/a n/a
16  Amend voltage channel 1  [1700 mV, 3300 mV] MCU AP
17 Amend voltage channel 2  [1700 mV, 3300 mV] MCU AP
18  Set voltage channel 4 [1700 mV, 3300 mV] MCU AP
19  Set voltage channel 5 [1700 mV, 3300 mV] MCU AP
20  Set voltage channel 6 [1700 mV, 3300 mV] MCU AP

Table A.2: GUI commands intended for ED and AP (modified from )
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