KIT | KIT-Bibliothek | Impressum | Datenschutz

Combining synthetic image acquisition and machine learning: accelerated design and deployment of sorting systems

Retzlaff, Max-Gerd; Richter, Matthias; Thomas Längle; Beyerer, Jürgen; Dachsbacher, Carsten

Abstract (englisch):

Machine learning methods can automate the design of
large parts of an image processing pipeline in automated optical
inspection (AOI) systems. However, these methods typically require
an annotated sample of the objects under inspection, and
creating such samples is still a manual and labor-intensive process.
Synthetic image acquisition (SIA) can fill the gap to automate
this step. SIA joins a physically-based image synthesis
pipeline and procedural modeling techniques to recreate a physical
image acquisition process. We show that, when the hardware
parameters of a system are known, SIA can be used to train a
classifier, which can then be used for the physical system. Timeconsuming
manual acquisition and labeling of a training sample
is no longer necessary. Evaluations in the domain of glass recycling
demonstrate that the SIA approach performs on par with a
classifier that was trained using a manually collected training set.


Volltext §
DOI: 10.5445/KSP/1000059899
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Institut für Visualisierung und Datenanalyse (IVD)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2016
Sprache Englisch
Identifikator ISBN: 978-3-7315-0587-7
urn:nbn:de:swb:90-629980
KITopen-ID: 1000062998
Erschienen in Forum Bildverarbeitung 2016. Hrsg.: M. Heizmann
Verlag KIT Scientific Publishing
Seiten 49-61
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page