

Ductilisation of tungsten through cold rolling: Change of brittle to ductile transition temperature in highly deformed tungsten

Carsten Bonnekoh, Jens Reiser, Simon Bonk, Jan Hoffmann

INSTITUTE OF APPLIED MATERIALS, APPLIED MATERIALS PHYSICS, HIGH TEMPERATURE MATERIALS, CAMPUS NORTH, KIT SFB-TR 103 YOUNG RESEARCHERS INTERACTION WEEK, IRSEE, 06.12.2016

KIT - The Research University in the Helmholtz Association

www.kit.edu

Karlsruhe Institute of Technology

Outline

- Improvements through severe cold rolling
- Theory of BDT
- Motivation
- Microstructure
 - Inverse pole figure maps
 - ODF maps
 - Grain boundary character
- Mechanical testing
 - Influence of specimen thickness
 - Influence of microstructure

Summary

- BCC metal with melting temperature of 3422 °C
- High heat conductivity, high temperature strength and low thermal expansion coefficient
 - Tungsten (W) perfect material for high temperature vacuum applications

Poor oxidation resistance

- Brittle fracture at ambient temperature
 - Not in use as structural material, only applied as functional material nowadays

[1] Wendelstein X7 Newsletter[2] www.euro-fusion.org

Tensile test: Ductility and yield strength improved

[3] Reiser, J. et al.: Ductilisation of tungsten (W): On the increase of strength and room-temperature tensile ductility through cold-rolling

- Tensile test: Ductility and yield strength improved
- Fracture behavior: Stable crack growth at room temperature achieved

[4] Reiser, J. et al.: Ductilisation of tungsten (W) through cold-rolling: R-curve behaviour

- Tensile test: Ductility and yield strength improved
- Fracture behavior: Stable crack growth achieved
- Charpy tests: BDTT shifted to lower temperatures

[5] Reiser, J. et al.: Ductilisation of tungsten (W): On the shift of the brittle-to-ductile transition (BDT) to lower temperatures through cold rolling

Theory of BDT

- BCC metals exhibit two kinds of fracture
 - Low energy fracture brittle
 - High energy fracture tough
- Competition between critical resolved shear stress and cleavage stress
 - Mobility of (111) screw dislocation depends on temperature, loading rate
 - Cleavage stress independent on temperature
- If CRSS reaches cleavage stress, transition in fracture behaviour

Theory of BDT

- BCC metals exhibit two kinds of fracture
 - Low energy fracture brittle
 - High energy fracture tough
- Competition between critical resolved shear stress and cleavage stress
 - Mobility of (111) screw dislocation depends on temperature, load rate
 - Cleavage stress independent on temperature
- If CRSS reaches cleavage stress, transition in fracture behavior
- Activation energy for BDT can be calculated

$$\dot{K} = A \exp(-\frac{Q_{BDT}}{k_{B} T_{BDT}})$$

[6] Hartmaier, A. et al.: On the Activation Energy for the Brittle/Ductile Transition

Motivation

- Observation: UFG microstructure affects strain rate sensitivity of BDT
- Hypothesis: Change of controlling mechanism

Question: Identification of controlling mechanism of BDT in ultra-fine grained W
Methods: Indirect by K-tests; direct via electron microscopy

[7] Németh, A. et al.: The nature of the brittle-to-ductile transition of ultra fine grained tungsten (W) foil

Material

- Five W sheets produced exclusively at PLANSEE SE, Reutte, Austria
- Processing through hot and cold rolling out of one single sintered compact

Sheet thickness s /mm	1.0	0.5	0.3	0.2	0.1
Degree of cold work ϕ_{CR} /-	1.8	2.5	3.0	3.4	4.1

- Extremely high degree of deformation through cold-rolling
- Five degrees of deformation causing
 - Five sheet thicknesses
 - Five microstructures
- No further heat treatment after rolling applied

Karlsruhe Institute of Technology

Outline

- Improvements through severe cold rolling
- Theory of BDT
- Motivation

Microstructure

- Inverse pole figure maps
- ODF maps
- Grain boundary character
- Mechanical testing
 - Influence of specimen thickness
 - Influence of microstructure

Summary

Karlsruhe Institute of Technology

Summary

- Tungsten: Designated material for plasma facing components in fusion devices but inherently brittle up to 400 °C
- Motivation: Dramatic improvement of its mechanical properties through cold rolling
- Goal: Identification of mechanism causing BDTT in ultra-fine grained tungsten
- Experimental: Five cold rolled sheets, five microstructures made of same sintered compact
- Result 1: Grain refinement down to 300 nm
- Result 2: Alpha and gamma fiber, pronounced rotated cube orientation
- Result 3: BDTT less dependent of specimen thickness
- Result 4: BDTT shift of 500 K downwards to -100 °C for the 0.1 mm UFG W

Thank you for your attention

The author is grateful to:

PLANSEE SE, University of Oxford, Erich Schmid Institute of Materials Science, DFG RE3551/4-1

