

Towards ASTEC modeling of the QUENCH-LOCA-1

H. Muscher

QWS-22, Karlsruhe 2016

Institute for Applied Materials; Program NUKLEAR

Introduction/ outline

- The QUENCH high temp test series investigate the H₂ production as well as the transient behavior of core materials
- The aim is to present the experimental & ASTEC simulation results of the Q-L1 test.
- Start with installing and validating the new ASTEC v. 2.1.0.3 against TMI-2 SA complete reactor case, (w/o reflood, base case) using the results of the former OECD BE
- Motivation was: get experience with the new ASTEC <u>V2.1</u>.0.3
- In the Q-L1 experiment, the effect of on bundle oxidation & core reflooding was investigated. The bundle configuration of Q-L1 with 21 heated rods & 4 corner rods was similar to the design of former tests, however:

the **Q-L1 test** was conducted with <u>another</u> protocol as the former QUENCH tests 1-17 (a <u>short-time</u> –experiment) - thermo-mechanical ASTEC investigation is crucial here

• QUENCH-LOCA topics: among others the secondary hydriding :

as the burst occurs, steam reaches the inside of the cladding \rightarrow oxidizes the inner side. H₂ produced during the oxidation will be absorbed at the boundary to the inner oxide region.

Local mechanical LOCA properties – how to model them?

ASTEC V2.0 -→ V2.1 validation on a TMI-2-like scenario/1

ASTEC V2.0 - \rightarrow V2.1 validation on a TMI-2-like scenario/2

REBEKA-7 results, *KfK (now KIT)*

Single rod LOCA tests, KfK (now KIT)

Temperature transients and quenching behavior of a burst rod (REBEKA 6)

QUENCH_L1 test

heating phase

cooldown phase

flooding phase

Rod △p evolution <u>during heating phase</u>:Q-L1 burst time indication (results on Kr release)

decrease of the inner ${\boldsymbol \bigtriangleup}\,p\,$ to the system ${\boldsymbol \bigtriangleup}\,p:\tau_{_0}\!\approx 38\,$ s

burst time and according temperature to be ASTEC modelled

Q-L1 pressure transients

Burst events occured

Q-L1 test: axial temp profiles

Axial temperature measurement locations in the QUENCH-L1 test section.

QUENCH-L1; Axial temp profile TFS internal and external rod group together with TSH, left, and axial temp profile of all TFS, right, at 55,2 s (first cladding burst).

Q ·L1; Axial temp profile TFS internal and external rod group together with TSH, left, and axial temp profile of all TFS, right, at 87,6 (last cladding burst).

Bundle test Q-L1- results : sequence of events, design (quicklook)

Design characteristics of the QUENCH-L1 test bundle

QUENCH-L1; Sequence of events

e of Technology

	PWR	Time [s]	Event			
	21 heated rods	Time [5]				
(considering surface of heated rods, shroud and corner rods)	30.6 rods (21 + 7.4 from shroud + 2.2 from corner rods)	-3248	Stlart data recording, Tmax = TFS 4/13 = 839 K, el. power at 3.49 kW.			
•	14.3 mm	(11:00:00;	1438 mm. L 501 = -405 mm. System pressure 3 bar. Ar 6 g/s, superheated steam 2 g			
	29.65 cm ²	02.02.2012)				
•	11.5 mm					
•	10.75 mm	-2260	Pressurization of rods from 15 to 55 bar.			
	Zircaloy-4	-2170				
	0.725 mm					
(elevations)	2480 mm (-690 to 1790 mm) 0		Start of transient with max electrical power increase rate.			
is)	5.5 MPa abs.; rod#10: 4.6 MPa due to leakage before heating; (Kr)	2; 4	Electrical power 32; 43 kW.			
surface roughness	Tantalum (Ta) Ra=1.6 μm	3658	Sequential onset of ballooning for rods pressurized to 55 bar.			
	1024 mm		Sequential onset of burst for rods from inner rod #4 to peripherical rod #10. See burst			
•	6 mm	5587	table (Table 10).			
material	ZrO2;Y2O3-stabilized					
dimensions	Ø 9.15/6.15 mm; L=11 mm		Switch of the electrical power from max 58.65 kW to decay heat of 3.5 kW.			
surface roughness	Ra=0.3 μm	87	Initiation of rapid steam supply line (50 g/s) additionally to carrier argon (6 g/s). Switch-			
	0 mm to ~1020 mm		off of slow steam supply (2 g/s). Tmax = TFS 4/12 = 1345 K.			
material	Zircaloy-4					
instrumented (A, C, D)	tube ∅ 6x0.9 (bottom: -1140 mm) rod ∅ 6 mm (top: +1300 mm)	91	Cladding surface temperature maximum reached. Maximal hydrogen production rate. Tmax = TFS 4/12 = 1373 K.			
not instrumented (B)	rod Ø 6 mm (-1350 to +1155 mm)					
material	Zircaloy-4, Inconel 718	91209	Cool-down of bundle in steam. Decrease of TFS 4/12 reading from 1373 K to 1023 K.			
length sheet thickness alovation of lower adda	Zircaloy: 42 mm, Inconel: 38 mm 0.5 mm Inc: 100 mm, Znr: 150, 550, 1050, 1410 mm	212	Initiation of quench water supply. Switch-off of steam supply. Switch of argon to bundle top supply.			
material	7 Zirconium 702 (flange: 7n-4)					
wall thickness	3.17 mm	212221	Increase of bundle temperatures to ~1073 K due to switch-off of the steam cooling.			
outside diameter length (extension)	86.0 mm 1600 mm (-300 mm to 1300 mm)	237	Maximal quench rate (about 100 g/s) reached.			
material insulation thickness elevation	ZrO2 fiber ~ 36 mm -300 to ~1000 mm	247293	Wetting of cladding surface thermocouples (TFS) at elevations between -250 and 1350 mm at temperatures between 484 (TFS 7/1) and 858 K (TFS 7/12)			
length of upper electrodes	766 mm (576 Mo, 190 mm Cu)		(Table 12).			
length of lower electrodes outer diameter:	690 mm (300 Mo, 390 mm Cu)	270305	Maximal water evaporation rate (about 25 g/s).			
prior to coating after coating with ZrO ₂	8.6 mm 9.0 mm	351	Bundle completely filled with water (L 501 = 1307 mm)			
coat. surface roughness	Ra=6-12 μm diameter 2 mm. length 96 mm	417	Electrical power switched off. Tmax = TFS 15/15 = 333 K			
Material: inner/outer tube inner tube	Inconel 600 (2.4816) / SS (1.4571) Ø 158.3 / 168.3 mm	1688	End of data recording. L 501 = 1289 mm			
	(considering surface of heated rods, shroud and corner rods) (elevations) (elevations) (elevations) (elevations) (elevations) (elevations) (elevations) (elevations) (elevations) (elevations) (elevations) (elevation of lower edge) (elevation of lower edge) (material) (material) (material) (material) (insulation thickness) (elevation) (elevatio	PWR21 heated rods(considering surface of heated rods, shroud and corner rods)30.6 rods (21 + 7.4 from shroud + 2.2 from corner rods)14.3 mm29.65 cm²11.5 mm10.75 mm21realoy-40.725 mm(elevations)2480 mm (-690 to 1790 mm)5)5.5 MPa abs.; rod#10: 4.6 MPa due to leakage before heating; (Kr)surface roughnessRa=1.6 µm1024 mm6 mmmaterial surface roughnessZircaloy-40 mm to ~1020 mmmaterial surface roughness21craloy-40 mm to ~1020 mmmaterial surface roughness21craloy-4instrumented (A, C, D) mot instrumented (B)rod Ø 6 mm (top: +1300 mm) rod Ø 6 mm (top: 2100, 1410 mm) rod Ø 6 mm (top: 2100, 1410 mm) rod Ø 6 mm (1350 to +1155 mm)material elevation of lower edge inc: -100 mm; Zry: 150, 550, 1050, 1410 mmmaterial elevation of lower edge insulation thickness elevation3.17 mm outside diameter issulation thickness elevation2702 fiber rissulation thickness elevation200 to ~1000 mm coating after coating after coating after coating with ZrO2 9.0 mm coat. surface roughness8.6 mm elevation9.0 mm coat. surface roughness diameter 2 mm, length 96 mm diameter 2 mm, length 96 mm Material: inner/outer tube inner tube0000<	PWR Time [s] 21 heated rods Considering surface of heated 30.6 rods (21 + 7.4 from shroud + 2.2 from rods, corner rods) -3248 (considering surface of heated 30.6 rods (21 + 7.4 from shroud + 2.2 from rods, corner rods) -3248 (10.75 mm 23.65 cm ² 0.202.2012) 11.5 mm -2260 -2170 0.725 mm -2260 -2170 0.725 mm -0.725 mm -2260 (elevations) 2480 mm (-690 to 1790 mm) s) 5.5 MPa abs.; rod#10: 4.6 MPa due to leakage before heating; (Kr) -2170 surface roughness Ra=1.6 µm -0 surface roughness Ra=1.6 µm -0 surface roughness Ra=1.6 µm -0 surface roughness Ra=0.3 µm -0 material Zircaloy-4 -0 instrumented (A, C, D) tube Ø 6 60.9 (bottom: -1140 mm) rod Ø 6 mm (top: +1300 mm) 91 not instrumented (B) rod Ø 6 mm (top: +1300 mm) 91209 material Zircaloy: 42 mm, inconel: 38 mm 212 wall thickness 3.17 mm			

Q-L1; El. resistances of rods [m Ω] at 20°C; most sensitive parameter \square

Karlsruhe Institute of Technology

Internal circuit with 9+1 rods

rod	1	2	3	4	5	6	7	8	9	16	Ave- rage	10 rods parallel
pre- test	6.5	6.5	6.4	6.4	6.5	6.6	6.4	6.4	6.4	6.2	6.4	0.64
post- test	6.4	6.9	6.8	<mark>6</mark> .7	5.7	6.4	<mark>6</mark> .7	6.5	6.7	7.7	6.7	0.66

Note: Measured values include the resistance of slide contacts R_s =0.75 m Ω

External circuit with 11 rods

rod	10	11	12	13	14	15	17	18	19	20	21	Ave- rage	11 rods parallel
pre- test	6.3	6.4	6.2	6.2	6.2	6.3	6.2	6.2	<mark>6.</mark> 5	6.2	6.3	6.3	0.57
post- test	7.8	<mark>6.8</mark>	7.1	<mark>6.5</mark>	<mark>6.8</mark>	7.7	6.7	7.4	<mark>6.8</mark>	<mark>6.</mark> 5	6.7	7.0	<u>0.63</u>

Note: Measured values include the resistance of slide contacts R_s =0.75 m Ω

Each circuit connected to the DC generator with 4 parallel bonded cables. The resistance of each cable is $R_c=1.2 \text{ m}\Omega$. Therefore, the external (outside) resistance corresponding to each heated rod (indicated by SCDAP/RELAP as **fxwid**) is $R_{ie}=R_s+10^*R_c/4=3.75 \text{ m}\Omega$ for the inner rod group and $R_{oe}=R_s+11^*R_c/4=4.05 \text{ m}\Omega$ for the outer rod group.

nfluence of uncertain parameters to the calculated cladding temperature of fuel rod imitators n outer ring at 750 mm height.

Discussion adopting KIT ASTEC- knowledge

- Perspectives (future prospects): validation of the thermo-mechanical models Q⁻L^{*}l^{*} H₂ / [kg/s]/ [kg] especially during the Q- phase
- ASTEC description of the Q -facility (meshing, nodes) & adapting specified scenarios-done (IDs); also the Q-L1 trends/profiles should be consistent with the (intuitive) expectation, as it was the case of all visualized Q-14 τ- dependences
- The newest version of the ASTECv2.1 code (still under development) will surely give us a further chance for even more accurate modeling of the quench-phenomena.
- The following important general aspects of the Q-L1 process should be modeled in a correct way at first:
- 1) the position of the hottest zone in the test bundle,
- 2) burst times
- 3) $T(\tau)$ histories-needed for finding "the H₂ prod. data" (or rates) in the different Q-L1 phases
- 4) the thicknesses of the oxide layers both over time & height of the bundle.
 In our former ASTEC modeling only the part of outer cladding oxide has been incorporated.
 the Q-L1 experiment showed relative thick inner oxide layers in the claddings (up to ca. 20 μm) in the upper elevations
 Although some differences in the validation of the Q-L1 modeling results towards exp-t occurred (higher temperatures, especially for the QUENCH phase itself) one can be
 - optimistic looking for the next stage
- → Band banding and consequently the channel blockages were prototypical beginning with the Q-L3 test, so buckling phenomena out of scope here...

ASTEC- ID adaptation for Q-L1

The existing **QUENCH-05 ID** was used, developed by S. Melis (IRSN), & adapted in former times as Q-06 by H. Muscher.

- To change the QUENCH-ID according to the exp. conditions of Q-L1 & ASTEC v 2.1.0.3 (changes in style/ syntax/ contents):
- the Th-H part **done**; sophisticated **thermo-mechanic** part still to be done
- El. power histories for both sub circuits of heated rods have been changed in accordance to experimental values, correct **time instants** incorporated etc..
- Visu: some fig-s have to be additionally produced (designed) By all these implementations, changes/ improvements in the Q-L1 IDs - especially for the new ASTECv2.1 several runs have to be performed, allowing a comparison of the results given by the older / newer ASTECversions
- → The specific Q-facility **geometry** is given in KIT reports **see** according (**quick look) tables**
- \rightarrow Some new quantitative results are obtained via ASTEC at KIT
- →**Trends captured** were ok, but the values: not fully consistent with the (intuitive) expectation Temperatures given by ASTEC where somewhat too high, resulting in a higher H_2 data as in QL1 **Feasibility study:** "the codes (SOCRAT, ATHLET) were feasible to examine the QUENCH-L-1": applying the 38% strain –criterion for burst;
- "BARC- PT CREEP" uses similar approach, for calandria tubes, but generally the results are (strongly) dependent on imposed BC, IC...
- Further QL1- ASTEC work is to be continued using the <u>new ASTEC: instead of V2.0-rev3p4</u> now v2.1.0.4 (Nov 2016)

ASTEC- ID adaptation for Q-L1/ preliminary results

ASTEC- ID adaptation for Q-L1/ for illustration purposes only

Karlsruhe Institute of Techni

Peculiarities of ASTEC / ICARE got from the guidelines

- Axial extension (LP, UP, plugs) → is outside the ICARE domain
- Strong sensitivity of **burst** τ on that volumes (**LP, UP**); low heating rates (<0,5K/s) problematic
- Max hoop strain recommended as ~40% for PWR-like systems to prevent unrealistic deformations of the cladding
- Surprising results, if **no early burst** τ is detected by CREE **rubric**
- However, embrittlement not treated by CREE, this should be done by VESSEL/ INTE through defining criteria to be fulfilled <u>simultaneously</u>
- Fuel rod "loss of integrity": let us substitute inadequate temp/ θ [μm] criteria by:
- embrittlement criteria (having large influence on the sim. results)
- as well as steam flow rate per heated rod and length unit
- CH blockages: highly influenced by ballooning/ creep progress
- Chronology of these blockages might become inconsistent in ASTEC
- ASTEC (similar to other codes) recommends limit deformation EPMX <35% that is crucial</p>
- $\alpha \rightarrow \beta$ phase transition may be affected by EPMX user value = const
- CROX- only allowed at high internal rod Δp
- Loss of integrity can occur even t rather low T/K due to thermal shocks ("thermal runaway")
- or <u>fast cooling</u> (quenching)

Peculiarities of ASTEC / ICARE from the guidelines, ff.,

- ICARE analysis w/o accounting for the presence of [O] in the β -Zr phase
- ICARE "surely not adapted to handle the embrittlement of Zry claddings in the <u>quench</u> <u>phase</u>" – since the ductility of the β-Zr play a key role here
- Shattering: SHAT a sudden exposition of free surfaces ("spalling of scales" temp. escalation is to modeled via VESSEL/ OPTI (NMIX as a parameter is to be changed)
- Rod loss of integrity: (simulation trick is, to modify mats properties, since lack of models has to be compensated somehow)
- ICARE2: not yet designed for detailed rod analysis under DBA conditions → not "bestestimate" studies possible yet, but only (=just) <u>exploratory</u> ones".
- UZRO as such has not to be applied at low temperatures
- For DBA analysis (LOCA) it is mandatory to <u>select ZROX</u> activating the <u>ZROX/CREE line</u>, although tight UZRO/ DROX coupling was recommended for the quench phase
- **Pre-hydrided** claddings can be accounted only by CREE (in a simplest way)
- The fuel column in case of very high pressure scenarios (>15 MPa) not accounted for by ICARE2.

(for comparison- see: BARC/ their PT CREEP)

QUENCH-L1, Rod #9; longitudinal circumferential strain changing (top); azimuthal diameter changing downwards from burst (bottom).

QUENCH-L1; Rod pressure control and measurement panel.

Schematic diagram of clad tube undergoing ballooning deformation (b) an axisymmetric thin revolution shell (c) stresses on infinitesimal element on shell surface (Wright [8])

PHYS/STRU CREE	Name of creep model	EDGAR	CHAPMAN
CRACK/ STRU CREE	Extent of crack (axial extension of the cracking after clad burst)	0.5	0.3

Heinrich Muscher

Conclusions

•We still believe that ASTEC has the potential to sim. the Q-L1 (to be approved, see guidelines) →concerning mechanics "CLADDING BALOONING; CREEP & BURST"- with CREE not CROX

- A new Q- L1-ID inclusive more advanced thermo-mechanics should be adopted, however...
- the according parts of ICARE-guidelines were carefully studied & well understood (embrittlement, loss of geometry, pellets fragmentation...hydriding, etc).

•Tables, figures & standardized spread sheets with the Q-L1 results and the QL1 ID will be submitted at the next stage (\rightarrow CESAM & FUMAC communities, March 2017)

- ✓ base case Q-L1 work regarding T, ∆p transients (is still to be continued for a complete bundle test); runs are ongoing/ work on advanced ID not completed yet Fulfilling the complete set of recommendations latest in 03/2017. Being mandatory !
- (I expect new plots similar to outputs presented at the 12th QWS, but now not for a SVECHA-single rod, but for a complete bundle test)

Acknowledgement: thank you, J. Stuckert Thank you all.