

Towards ASTEC modeling of the QUENCH-LOCA-1

H. Muscher

QWS-22, Karlsruhe 2016

Institute for Applied Materials; Program NUKLEAR

Introduction/ outline

- **The QUENCH** high temp **test series** investigate the H₂ production as well as the transient behavior of core materials
- The aim is to present the experimental & ASTEC simulation results of the Q-L1 **test**.
- Start with installing and validating the new ASTEC v. 2.1.0.3 against TMI-2 SA complete reactor case, (w/o reflood, base case) using the results of the former OECD BE
- Motivation was: get experience with the new ASTEC **V2.1**.0.3
- In the **Q-L1** experiment, the effect of on bundle oxidation & core reflooding was investigated. The bundle configuration of Q-L1 with 21 heated rods & 4 corner rods was similar to the design of former tests, however:

the **Q-L1 test** was conducted with **another** protocol as the former QUENCH tests 1-17 (**a short-time** –experiment) - thermo-**mechanical ASTEC investigation** is crucial here

QUENCH-LOCA topics: among others the secondary hydriding :

as the burst occurs, steam reaches the inside of the cladding \rightarrow oxidizes the inner side. H₂ produced during the oxidation will be absorbed at the boundary to the inner oxide region.

Local mechanical LOCA properties – **how to model them**?

ASTEC V2.0 - V2.1 validation on a TMI-2-like scenario/1

ASTEC V2.0 - V2.1 validation on a TMI-2-like scenario/2

REBEKA-7 results, *KfK (now KIT)*

Single rod LOCA tests, KfK (now KIT)

Temperature transients and quenching behavior of a burst rod (REBEKA 6)

QUENCH_L1 test

Rod △p evolution during heating phase: Q-L1

heating phase

cooldown phase

flooding phase

burst time indication (results on Kr release) 60 1100 21 ballooning LOCA-1 LOCA-1 20 1000 19 ⇨ 18 50 burst 900 17 - 16 -15 800 40 - 14 Pressure, bar
O $\frac{1}{2}$ $\frac{700}{5}$ -13 internal -12 Temperature, rod group 11 600 - 10 ٠Q 500 8 20 7 400 external rod group 5 300 10 -3 200 $\overline{2}$ -1 $\mathbf{0}$ 40 Time, s 60 100 Ω 20 80 100 $\overline{0}$ 50 100 decrease of the inner Δp to the system $\Delta p : \tau_0 \approx 38$ s

burst time and according temperature to be ASTEC modelled

Q-L1 pressure transients

Burst events occured

Q-L1 test: axial temp profiles

Axial temperature measurement locations in the QUENCH-L1 test section.

QUENCH-L1; Axial temp profile TFS internal and external rod group together with TSH, left, and axial temp profile of all TFS, right, at 55,2 s (first cladding burst).

Q -L1; Axial temp profile TFS internal and external rod group together with TSH, left, and axial temp profile of all TFS, right, at 87,6 (last cladding burst).

Bundle test Q-L1- results : sequence of events, design (quicklook)

Design characteristics of the QUENCH-L1 test bundle

QUENCH-L1; Sequence of events

e of Technology

 $L701 =$

production rate.

Q-L1; El. resistances of rods [mΩ] at 20°C; most sensitive parameter

Karlsruhe Institute of Technolog

Internal circuit with 9+1 rods

Note: Measured values include the resistance of slide contacts R₅=0.75 m Ω

External circuit with 11 rods

Note: Measured values include the resistance of slide contacts R_s =0.75 m Ω

Each circuit connected to the DC generator with 4 parallel bonded cables. The resistance of each cable is $R_r = 1.2$ m Ω . Therefore, the external (outside) resistance corresponding to each heated rod (indicated by SCDAP/RELAP as fxwid) is $R_{ie} = R_s + 10^* R_c/4 = 3.75$ m Ω for the inner rod group and $R_{oe} = R_s + 11*R_e/4 = 4.05$ m Ω for the outer rod group.

phases

Paramete

a) Heat up phase

influence of uncertain parameters to the calculated cladding temperature of fuel rod imitators n outer ring at 750 mm height.

Discussion adopting KIT ASTEC- knowledge

- Perspectives (*future prospects):* **validation of the thermo-mechanical models Q-L1** H_2 / [kg/s]/ [kg] especially during the Q- phase
- ASTEC description of the Q -facility (meshing, nodes) & adapting specified **scenarios**–done (IDs); also the **Q-L1** trends/profiles should be consistent with the (intuitive) expectation, as it was the case of all visualized **Q-14** τ- dependences
- The newest version of the ASTECv2.1 code (still under development) will surely give us a further chance for even more accurate modeling of the quench-phenomena.
- The following important general aspects of the Q-L1 process should be modeled in a correct way at first:
- 1) the position of the hottest zone in the test bundle,
- 2) **burst times**
- 3) $T(\tau)$ histories-needed for finding "the H₂ prod. data" (or rates) in the different Q-L1 phases
- 4) the thicknesses of the oxide layers both over **time & height** of the **bundle .** In our former ASTEC modeling only the part of **outer** cladding oxide has been incorporated. the Q-L1 experiment showed relative thick **inner** oxide layers in the claddings (up to ca. 20 *µm*) in the upper elevations Although some differences in the validation of the Q-L1 modeling results towards exp-t occurred (higher temperatures, especially for the QUENCH phase itself) one can be
	- optimistic looking for the next stage
- → **Band banding** and consequently the channel blockages were prototypical beginning with the Q-L3 test, so **buckling** phenomena out of scope here…

ASTEC- ID adaptation for Q-L1

The existing **QUENCH-05 ID** was used, developed by S. Melis (IRSN), & adapted in former times as Q-06 by H. Muscher.

- To change the QUENCH-ID according to the exp. conditions of Q-L1 & ASTEC v 2.1.0.3 (changes in **style/ syntax/ contents**):
- the Th-H part **done**; sophisticated **thermo-mechanic** part still to be done
- El. power histories for both sub circuits of heated rods have been changed in accordance to experimental values, correct **time instants** incorporated etc..
- Visu: some fig-s have to be additionally produced (designed) By all these implementations, changes/ improvements in the Q-L1 IDs - especially for the new ASTECv2.1 several runs have to be performed, allowing a comparison of the results given by the older / newer ASTECversions
- The specific Q-facility **geometry** is given in KIT reports **see** according (**quick look) tables**
- \rightarrow Some new quantitative results are obtained via ASTEC at KIT
- → **Trends captured** were ok, but the values: not fully consistent with the (intuitive) expectation Temperatures given by ASTEC where somewhat too high, resulting in a higher $H₂$ data as in QL1 **Feasibility study:** "the codes (SOCRAT, ATHLET) were feasible to examine the QUENCH-L-1": applying the 38% strain –criterion for burst;
- "BARC- PT CREEP" uses similar approach, for calandria tubes, but generally the results are (strongly) dependent on imposed BC, IC…
- Further QL1- ASTEC work is to be continued using the **new ASTEC: instead of V2.0-rev3p4 now v2.1.0.4 (Nov 2016)**

ASTEC- ID adaptation for Q-L1/ preliminary results

ASTEC- ID adaptation for Q-L1/ *for illustration purposes only*

Karlsruhe Institute of Technolog

Peculiarities of ASTEC / ICARE got from the guidelines

- Axial extension (LP, UP, plugs) \rightarrow is **outside the** ICARE **domain**
- Strong sensitivity of **burst τ** on that volumes (**LP, UP**); low heating rates (<0,5K/s) problematic
- Max **hoop strain** recommended as **~40%** for PWR-like systems to prevent unrealistic deformations of the cladding
- Surprising results, if **no early burst τ** is detected by CREE **rubric**
- However, embrittlement not treated by CREE, this should be done by VESSEL/ INTE through defining **criteria** to be fulfilled **simultaneously**
- Fuel rod "loss of integrity": let us substitute inadequate **temp/ θ** [µm] criteria by:
- **embrittlement** criteria *(having large influence on the sim. results)*
- as well as **steam flow rate per heated rod** and **length unit**
- CH blockages: highly influenced by ballooning/ creep progress
- Chronology of these blockages might become inconsistent in ASTEC
- ASTEC *(similar to other codes)* recommends *limit deformation EPMX <35% - that is crucial*
- $\alpha \rightarrow \beta$ **phase transition** may be affected by EPMX user value = const
- CROX- only allowed at high internal rod Δp
- Loss of integrity can occur even t rather low T/K due to thermal shocks ("thermal runaway")
- or **fast cooling** (quenching)

Peculiarities of ASTEC / ICARE from the guidelines, *ff.,*

- ICARE analysis **w/o** accounting **for** the presence of [O] in the β–Zr phase
- **EXARE** "surely not adapted to handle the embrittlement of Zry claddings in the quench**phase**" – since the **ductility of the β-Zr** play a key role here
- **Shattering:** SHAT a sudden exposition of free surfaces ("spalling of scales" temp. escalation is to **modeled via VESSEL/ OPTI** (NMIX as a parameter is to be changed)
- Rod loss of integrity: (simulation trick is, to modify mats properties, *since lack of models has to be compensated somehow)*
- **E** ICARE2: not yet designed for **detailed rod analysis** under DBA conditions \rightarrow not "**bestestimate"** studies possible yet, but only (=just) **exploratory** ones".
- UZRO as such has not to be applied at low temperatures
- For **DBA** analysis (LOCA) it is **mandatory** to **select ZROX - activating** the **ZROX/CREE line,** *although tight UZRO/ DROX coupling was recommended* for the quench phase
- **Pre-hydrided** claddings can be accounted only by CREE *(in a simplest way)*
- The fuel column in case of **very high pressure** scenarios (>15 MPa) **not accounted for** by ICARE2.

(for comparison- see: BARC/ their PT CREEP)

QUENCH-L1, Rod #9; longitudinal circumferential strain changing (top); azimuthal diameter changing downwards from burst (bottom).

QUENCH-L1; Rod pressure control and measurement panel.

Schematic diagram of clad tube undergoing ballooning deformation (b) an axisymmetric thin revolution shell (c) stresses on infinitesimal element on shell surface (Wright [8])

19 12.11.2014 KIT – IAM

 $\frac{3}{2}$

 $2.$

 $\begin{bmatrix} 1 \\ 0 \\ \hline \end{bmatrix}$

0.2

1200. 900.

60O.

 0.15

 0.1

Radial position from centre (m)

0.05

Conclusions

•We still believe that ASTEC has the potential to sim. the Q-L1 (to be approved, see guidelines) \rightarrow concerning mechanics "CLADDING BALOONING; CREEP & BURST"- with **CREE not CROX**

- A new Q- L1-ID inclusive **more advanced** thermo-**mechanics** should be adopted, however...
- the according parts of ICARE-guidelines were carefully studied & well understood (embrittlement, loss of geometry, pellets fragmentation…hydriding, etc).

•Tables, figures & **standardized** spread sheets with the **Q-L1 results** and the QL1 ID will be submitted at the next stage (\rightarrow CESAM & FUMAC communities, March 2017)

- **base case Q-L1 work** regarding **T, ∆p** transients (is still to be continued for a complete bundle test) **; runs are ongoing**/ work on advanced ID **not completed yet** Fulfilling the complete set of recommendations latest in 03/2017. Being mandatory !
- (I expect new **plots similar to outputs** presented at the **12th QWS**, but now not for a SVECHA-single rod, but for a complete **bundle** test)

Acknowledgement: thank you, J. Stuckert Thank you all.